Science.gov

Sample records for cells bacterial

  1. Bacterial Cell Mechanics.

    PubMed

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  2. Bacterial Cell Wall Components

    NASA Astrophysics Data System (ADS)

    Ginsberg, Cynthia; Brown, Stephanie; Walker, Suzanne

    Bacterial cell-surface polysaccharides cells are surrounded by a variety of cell-surface structures that allow them to thrive in extreme environments. Components of the cell envelope and extracellular matrix are responsible for providing the cells with structural support, mediating intercellular communication, allowing the cells to move or to adhere to surfaces, protecting the cells from attack by antibiotics or the immune system, and facilitating the uptake of nutrients. Some of the most important cell wall components are polysaccharide structures. This review discusses the occurrence, structure, function, and biosynthesis of the most prevalent bacterial cell surface polysaccharides: peptidoglycan, lipopolysaccharide, arabinogalactan, and lipoarabinomannan, and capsular and extracellular polysaccharides. The roles of these polysaccharides in medicine, both as drug targets and as therapeutic agents, are also described.

  3. Radiation effects on bacterial cells

    NASA Technical Reports Server (NTRS)

    Powers, E. L.

    1968-01-01

    Study reveals the physicochemical and biochemical mechanisms which alter or modify the effects of high-energy radiation on living cells. An in-depth discussion is presented emphasizing the importance of optimizing bacterial treatment with glycerol.

  4. Bacterial activation of mast cells.

    PubMed

    Chi, David S; Walker, Elaine S; Hossler, Fred E; Krishnaswamy, Guha

    2006-01-01

    Mast cells often are found in a perivascular location but especially in mucosae, where they may response to various stimuli. They typically associate with immediate hypersensitive responses and are likely to play a critical role in host defense. In this chapter, a common airway pathogen, Moraxella catarrhalis, and a commensal bacterium, Neiserria cinerea, are used to illustrate activation of human mast cells. A human mast cell line (HMC-1) derived from a patient with mast cell leukemia was activated with varying concentrations of heat-killed bacteria. Active aggregation of bacteria over mast cell surfaces was detected by scanning electron microscopy. The activation of mast cells was analyzed by nuclear factor-kappaB (NF-kappaB) activation and cytokine production in culture supernatants. Both M. catarrhalis and N. cinerea induce mast cell activation and the secretion of two key inflammatory cytokines, interleukin-6 and MCP-1. This is accompanied by NF-kappaB activation. Direct bacterial contact with mast cells appears to be essential for this activation because neither cell-free bacterial supernatants nor bacterial lipopolysaccharide induce cytokine secretion.

  5. Bacterial cell division proteins as antibiotic targets.

    PubMed

    den Blaauwen, Tanneke; Andreu, José M; Monasterio, Octavio

    2014-08-01

    Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of proteins and the availability of crystal structures has increased our knowledge on bacterial cell division considerably in this century. Consequently, bacterial cell division proteins are more and more recognized as potential new antibiotic targets. An international effort to find small molecules that inhibit the cell division initiating protein FtsZ has yielded many compounds of which some are promising as leads for preclinical use. The essential transglycosylase activity of peptidoglycan synthases has recently become accessible to inhibitor screening. Enzymatic assays for and structural information on essential integral membrane proteins such as MraY and FtsW involved in lipid II (the peptidoglycan building block precursor) biosynthesis have put these proteins on the list of potential new targets. This review summarises and discusses the results and approaches to the development of lead compounds that inhibit bacterial cell division.

  6. Probing bacterial cell biology using image cytometry.

    PubMed

    Cass, Julie A; Stylianidou, Stella; Kuwada, Nathan J; Traxler, Beth; Wiggins, Paul A

    2017-03-01

    Advances in automated fluorescence microscopy have made snapshot and time-lapse imaging of bacterial cells commonplace, yet fundamental challenges remain in analysis. The vast quantity of data collected in high-throughput experiments requires a fast and reliable automated method to analyze fluorescence intensity and localization, cell morphology and proliferation as well as other descriptors. Inspired by effective yet tractable methods of population-level analysis using flow cytometry, we have developed a framework and tools for facilitating analogous analyses in image cytometry. These tools can both visualize and gate (generate subpopulations) more than 70 cell descriptors, including cell size, age and fluorescence. The method is well suited to multi-well imaging, analysis of bacterial cultures with high cell density (thousands of cells per frame) and complete cell cycle imaging. We give a brief description of the analysis of four distinct applications to emphasize the broad applicability of the tool.

  7. Bacterial cell-wall recycling

    PubMed Central

    Johnson, Jarrod W.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many—and quite possibly all—bacteria, the peptidoglycan fragments are recovered and recycled. While cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall–targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall recycling inhibitors. PMID:23163477

  8. Patterning Bacterial Communities on Epithelial Cells

    PubMed Central

    Dwidar, Mohammed; Leung, Brendan M.; Yaguchi, Toshiyuki; Takayama, Shuichi; Mitchell, Robert J.

    2013-01-01

    Micropatterning of bacteria using aqueous two phase system (ATPS) enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv) gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions. PMID:23785519

  9. Photo-Induced Effect on Bacterial Cells

    NASA Astrophysics Data System (ADS)

    El Batanouny, M. H.; Amin, Rehab M.; Naga, M. I.; Ibrahim, M. K.

    2010-04-01

    Bacterial resistance against antibiotics is an increasing problem in medicine. This stimulates study of other bactericidal regimens, one of which is photodynamic therapy (PDT), which involves the killing of bacterial species by low power laser light (LLL) in the presence of photosensitizing agent. It has already been shown that, various gram- negative and gram-positive bacteria can be killed by photodynamic therapy in vitro, using exogenous sensitizers. The mechanisms of laser action on bacteria are not adequately understood. Here, PDT on H. pylori, as an example of gram negative bacteria was studied. The ultra structure changes of the organism after PDT were examined under electron microscope. Neither Irradiation with laser without sensitizer nor sensitizing without laser has any lethal effect on bacterial cells. However, the successful lethal photosensitization was achieved by applying certain laser dose with the corresponding concentration of the photosensitizer. On the other hand, PDT has no significant effect on the genomic DNA of the cells.

  10. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  11. The physiology of bacterial cell division.

    PubMed

    Egan, Alexander J F; Vollmer, Waldemar

    2013-01-01

    Bacterial cell division is facilitated by the divisome, a dynamic multiprotein assembly localizing at mid-cell to synthesize the stress-bearing peptidoglycan and to constrict all cell envelope layers. Divisome assembly occurs in two steps and involves multiple interactions between more than 20 essential and accessory cell division proteins. Well before constriction and while the cell is still elongating, the tubulin-like FtsZ and early cell division proteins form a ring-like structure at mid-cell. Cell division starts once certain peptidoglycan enzymes and their activators have moved to the FtsZ-ring. Gram-negative bacteria like Escherichia coli simultaneously synthesize and cleave the septum peptidoglycan during division leading to a constriction. The outer membrane constricts together with the peptidoglycan layer with the help of the transenvelope spanning Tol-Pal system.

  12. Biosensors for Whole-Cell Bacterial Detection

    PubMed Central

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  13. High resolution structure of bacterial cell sacculi

    NASA Astrophysics Data System (ADS)

    Dutcher, John; Touhami, Ahmed; Matias, Valerio; Clarke, Anthony; Jericho, Manfred; Beveridge, Terry

    2008-03-01

    The major structural component of bacterial cell walls is the peptidoglycan sacculus, which is one of nature's strongest and largest macromolecules that allows the cell to maintain a large internal pressure while allowing the transport of molecules into and out of the cell and cell growth. The three-dimensional structure of this unique biopolymer is controversial, and two models have been proposed: the planar model, in which the glycan strands lie in the plane of the cell surface, and the scaffold model, in which the glycan strands lie perpendicular to the cell surface. In this study we have used atomic force microscopy (AFM) to investigate the high resolution structure of isolated, intact sacculi of both Gram-positive and Gram-negative bacterial cells. We have observed a sponge-like structure for both types of sacculi with pore diameters between 5 to 15 nm. Our data for Gram-positive sacculi provide evidence for the validity of the scaffold model, whereas our data for Gram-negative sacculi indicate an orientation along the short axis of the cell which is consistent with the planar model. To further elucidate the structure, we have exposed sacculi to the tAmiB enzyme which cleaves peptide-peptide bonds.

  14. Measuring bacterial cells size with AFM

    PubMed Central

    Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto

    2012-01-01

    Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described. PMID:24031837

  15. Elastic Deformations During Bacterial Cell Growth

    NASA Astrophysics Data System (ADS)

    Huang, K. C.

    2010-03-01

    The wide variety of shapes and sizes found in bacterial species is almost universally defined by the cell wall, which is a cross-linked network of the material peptidoglycan. In recent years, cell shape has been shown to play a critical role in regulating many important biological functions including attachment, dispersal, motility, polar differentiation, predation, and cellular differentiation. In previous work, we have shown that the spatial organization of the peptidoglycan network can change the mechanical equilibrium of the cell wall and result in changes in cell shape. However, experimental data on the mechanical properties of peptidoglycan is currently limited. Here, we describe a straightforward, inexpensive approach for extracting the mechanical properties of bacterial cells in gels of user-defined stiffness, using only optical microscopy to match growth kinetics to the predictions of a continuum model of cell growth. Using this simple yet general methodology, we have measured the Young's modulus for bacteria ranging across a wide variety of shapes, sizes, and cell wall thicknesses, and our method can easily be extended to other commonly studied bacteria. This method makes it possible to rapidly determine how changes in genotype and biochemistry affect the mechanical properties of the cell wall, and may be particularly relevant for studying the relationship between cell shape and structure, the genetic and molecular control of the mechanical properties of the cell wall, and the identification of antibiotics and other small molecules that affect and specifically modify the mechanical properties of the cell wall. Our work also suggests that bacteria may utilize peptidoglycan synthesis to transduce mechanosensory signals from local environment.

  16. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  17. Cell cycle regulation by the bacterial nucleoid.

    PubMed

    Adams, David William; Wu, Ling Juan; Errington, Jeff

    2014-12-01

    Division site selection presents a fundamental challenge to all organisms. Bacterial cells are small and the chromosome (nucleoid) often fills most of the cell volume. Thus, in order to maximise fitness and avoid damaging the genetic material, cell division must be tightly co-ordinated with chromosome replication and segregation. To achieve this, bacteria employ a number of different mechanisms to regulate division site selection. One such mechanism, termed nucleoid occlusion, allows the nucleoid to protect itself by acting as a template for nucleoid occlusion factors, which prevent Z-ring assembly over the DNA. These factors are sequence-specific DNA-binding proteins that exploit the precise organisation of the nucleoid, allowing them to act as both spatial and temporal regulators of bacterial cell division. The identification of proteins responsible for this process has provided a molecular understanding of nucleoid occlusion but it has also prompted the realisation that substantial levels of redundancy exist between the diverse systems that bacteria employ to ensure that division occurs in the right place, at the right time.

  18. Bacterial foodborne infections after hematopoietic cell transplantation.

    PubMed

    Boyle, Nicole M; Podczervinski, Sara; Jordan, Kim; Stednick, Zach; Butler-Wu, Susan; McMillen, Kerry; Pergam, Steven A

    2014-11-01

    Diarrhea, abdominal pain, and fever are common among patients undergoing hematopoietic cell transplantation (HCT), but such symptoms are also typical with foodborne infections. The burden of disease caused by foodborne infections in patients undergoing HCT is unknown. We sought to describe bacterial foodborne infection incidence after transplantation within a single-center population of HCT recipients. All HCT recipients who underwent transplantation from 2001 through 2011 at the Fred Hutchinson Cancer Research Center in Seattle, Washington were followed for 1 year after transplantation. Data were collected retrospectively using center databases, which include information from transplantation, on-site examinations, outside records, and collected laboratory data. Patients were considered to have a bacterial foodborne infection if Campylobacter jejuni/coli, Listeria monocytogenes, E. coli O157:H7, Salmonella species, Shigella species, Vibrio species, or Yersinia species were isolated in culture within 1 year after transplantation. Nonfoodborne infections with these agents and patients with pre-existing bacterial foodborne infection (within 30 days of transplantation) were excluded from analyses. A total of 12 of 4069 (.3%) patients developed a bacterial foodborne infection within 1 year after transplantation. Patients with infections had a median age at transplantation of 50.5 years (interquartile range [IQR], 35 to 57), and the majority were adults ≥18 years of age (9 of 12 [75%]), male gender (8 of 12 [67%]) and had allogeneic transplantation (8 of 12 [67%]). Infectious episodes occurred at an incidence rate of 1.0 per 100,000 patient-days (95% confidence interval, .5 to 1.7) and at a median of 50.5 days after transplantation (IQR, 26 to 58.5). The most frequent pathogen detected was C. jejuni/coli (5 of 12 [42%]) followed by Yersinia (3 of 12 [25%]), although Salmonella (2 of 12 [17%]) and Listeria (2 of 12 [17%]) showed equal frequencies; no cases of Shigella

  19. Dynamic Viscoelasticity of Individual Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Vadillo-Rodriguez, Virginia; Dutcher, John

    2009-03-01

    We have used an AFM-based approach to probe the mechanical properties of single bacterial cells (gram-negative Escherichia coli K12) by applying a constant compressive force to the cell under fluid conditions while measuring the time-dependent displacement (creep) of a colloidal AFM tip due to the viscoelastic properties of the cell. We observed that the cells exhibited a viscoelastic solid-like behavior with retarded elasticity, i.e. both an instantaneous and a delayed elastic deformation, which is well described by a three-parameter mechanical model. Using the best fit parameter values, we have calculated the dynamic viscoelastic behavior of the cells over a wide range of frequencies based on a numerical time-frequency transform technique and we have compared the calculated behavior with that measured experimentally. Comparison of the results obtained for E. coli with previously reported data on the mechanical properties of others gram-negative cells and their isolated surface layers suggests that the elastic component of the cell viscoelastic response is dominated by the properties of the peptidoglycan layer, whereas the viscous component likely arises from the liquid-like character of the cell membranes.

  20. Diffusion of Bacterial Cells in Porous Media

    PubMed Central

    Licata, Nicholas A.; Mohari, Bitan; Fuqua, Clay; Setayeshgar, Sima

    2016-01-01

    The chemotaxis signal transduction network regulates the biased random walk of many bacteria in favorable directions and away from harmful ones through modulating the frequency of directional reorientations. In mutants of diverse bacteria lacking the chemotaxis response, migration in classic motility agar, which constitutes a fluid-filled porous medium, is compromised; straight-swimming cells unable to tumble become trapped within the agar matrix. Spontaneous mutations that restore spreading have been previously observed in the enteric bacterium Escherichia coli, and recent work in other bacterial species has isolated and quantified different classes of nonchemotacting mutants exhibiting the same spreading phenotype. We present a theoretical description of bacterial diffusion in a porous medium—the natural habitat for many cell types—which elucidates how diverse modifications of the motility apparatus resulting in a nonzero tumbling frequency allows for unjamming of otherwise straight-swimming cells at internal boundaries and leads to net migration. A unique result of our analysis is increasing diffusive spread with increasing tumbling frequency in the small pore limit, consistent with earlier experimental observations but not captured by previous models. Our theoretical results, combined with a simple model of bacterial diffusion and growth in agar, are compared with our experimental measurements of swim ring expansion as a function of time, demonstrating good quantitative agreement. Our results suggest that the details of the cellular tumbling process may be adapted to enable bacteria to propagate efficiently through complex environments. For engineered, self-propelled microswimmers that navigate via alternating straight runs and changes in direction, these results suggest an optimal reorientation strategy for efficient migration in a porous environment with a given microarchitecture. PMID:26745427

  1. One Bacterial Cell, One Complete Genome

    SciTech Connect

    Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos; Clum, Alicia; Copeland, Alex; Schackwitz, Wendy; Lapidus, Alla; Wu, Dongying; McCutcheon, John P.; McDonald, Bradon R.; Moran, Nancy A.; Bristow, James; Cheng, Jan-Fang

    2010-04-26

    While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.

  2. Spatial organization of transcription in bacterial cells.

    PubMed

    Weng, Xiaoli; Xiao, Jie

    2014-07-01

    Prokaryotic transcription has been extensively studied over the past half a century. However, there often exists a gap between the structural, mechanistic description of transcription obtained from in vitro biochemical studies, and the cellular, phenomenological observations from in vivo genetic studies. It is now accepted that a living bacterial cell is a complex entity; the heterogeneous cellular environment is drastically different from the homogenous, well-mixed situation in vitro. Where molecules are inside a cell may be important for their function; hence, the spatial organization of different molecular components may provide a new means of transcription regulation in vivo, possibly bridging this gap. In this review, we survey current evidence for the spatial organization of four major components of transcription [genes, transcription factors, RNA polymerase (RNAP) and RNAs] and critically analyze their biological significance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Messenger RNA Degradation in Bacterial Cells

    PubMed Central

    Hui, Monica P.; Foley, Patricia L.; Belasco, Joel G.

    2015-01-01

    mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. They function with the assistance of ancillary enzymes that covalently modify the 5’ or 3’ end of RNA or unwind base-paired regions. Triggered by initiating events at either the 5’ terminus or an internal site, mRNA decay occurs at diverse rates that are transcript-specific and governed by features such as RNA sequence and structure, translating ribosomes, and bound sRNAs or proteins. In response to environmental cues, bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of cellular toxins. PMID:25292357

  4. Messenger RNA degradation in bacterial cells.

    PubMed

    Hui, Monica P; Foley, Patricia L; Belasco, Joel G

    2014-01-01

    mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. These ribonucleases function with the assistance of ancillary enzymes that covalently modify the 5' or 3' end of RNA or unwind base-paired regions. Triggered by initiating events at either the 5' terminus or an internal site, mRNA decay occurs at diverse rates that are transcript specific and governed by RNA sequence and structure, translating ribosomes, and bound sRNAs or proteins. In response to environmental cues, bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of cellular toxins.

  5. Shedding light on biology of bacterial cells

    PubMed Central

    2016-01-01

    To understand basic principles of living organisms one has to know many different properties of all cellular components, their mutual interactions but also their amounts and spatial organization. Live-cell imaging is one possible approach to obtain such data. To get multiple snapshots of a cellular process, the imaging approach has to be gentle enough to not disrupt basic functions of the cell but also have high temporal and spatial resolution to detect and describe the changes. Light microscopy has become a method of choice and since its early development over 300 years ago revolutionized our understanding of living organisms. As most cellular components are indistinguishable from the rest of the cellular contents, the second revolution came from a discovery of specific labelling techniques, such as fusions to fluorescent proteins that allowed specific tracking of a component of interest. Currently, several different tags can be tracked independently and this allows us to simultaneously monitor the dynamics of several cellular components and from the correlation of their dynamics to infer their respective functions. It is, therefore, not surprising that live-cell fluorescence microscopy significantly advanced our understanding of basic cellular processes. Current cameras are fast enough to detect changes with millisecond time resolution and are sensitive enough to detect even a few photons per pixel. Together with constant improvement of properties of fluorescent tags, it is now possible to track single molecules in living cells over an extended period of time with a great temporal resolution. The parallel development of new illumination and detection techniques allowed breaking the diffraction barrier and thus further pushed the resolution limit of light microscopy. In this review, we would like to cover recent advances in live-cell imaging technology relevant to bacterial cells and provide a few examples of research that has been possible due to imaging. This

  6. Shedding light on biology of bacterial cells.

    PubMed

    Schneider, Johannes P; Basler, Marek

    2016-11-05

    To understand basic principles of living organisms one has to know many different properties of all cellular components, their mutual interactions but also their amounts and spatial organization. Live-cell imaging is one possible approach to obtain such data. To get multiple snapshots of a cellular process, the imaging approach has to be gentle enough to not disrupt basic functions of the cell but also have high temporal and spatial resolution to detect and describe the changes. Light microscopy has become a method of choice and since its early development over 300 years ago revolutionized our understanding of living organisms. As most cellular components are indistinguishable from the rest of the cellular contents, the second revolution came from a discovery of specific labelling techniques, such as fusions to fluorescent proteins that allowed specific tracking of a component of interest. Currently, several different tags can be tracked independently and this allows us to simultaneously monitor the dynamics of several cellular components and from the correlation of their dynamics to infer their respective functions. It is, therefore, not surprising that live-cell fluorescence microscopy significantly advanced our understanding of basic cellular processes. Current cameras are fast enough to detect changes with millisecond time resolution and are sensitive enough to detect even a few photons per pixel. Together with constant improvement of properties of fluorescent tags, it is now possible to track single molecules in living cells over an extended period of time with a great temporal resolution. The parallel development of new illumination and detection techniques allowed breaking the diffraction barrier and thus further pushed the resolution limit of light microscopy. In this review, we would like to cover recent advances in live-cell imaging technology relevant to bacterial cells and provide a few examples of research that has been possible due to imaging

  7. Mechanical influences in bacterial morphogenesis and cell division

    NASA Astrophysics Data System (ADS)

    Sun, Sean

    2010-03-01

    Bacterial cells utilize a ring-like organelle (the Z-ring) to accomplish cell division. The Z-ring actively generates a contractile force and influences cell wall growth. We will discuss a general model of bacterial morphogenesis where mechanical forces are coupled to the growth dynamics of the cell wall. The model suggests a physical mechanism that determines the shapes of bacteria cells. The roles of several bacterial cytoskeletal proteins and the Z-ring are discussed. We will also explore molecular mechanisms of force generation by the Z-ring and how cells can generate mechanical forces without molecular motors.

  8. The role of cytoskeletal elements in shaping bacterial cells.

    PubMed

    Cho, Hongbaek

    2015-03-01

    Beginning from the recognition of FtsZ as a bacterial tubulin homolog in the early 1990s, many bacterial cytoskeletal elements have been identified, including homologs to the major eukaryotic cytoskeletal elements (tubulin, actin, and intermediate filament) and the elements unique in prokaryotes (ParA/MinD family and bactofilins). The discovery and functional characterization of the bacterial cytoskeleton have revolutionized our understanding of bacterial cells, revealing their elaborate and dynamic subcellular organization. As in eukaryotic systems, the bacterial cytoskeleton participates in cell division, cell morphogenesis, DNA segregation, and other important cellular processes. However, in accordance with the vast difference between bacterial and eukaryotic cells, many bacterial cytoskeletal proteins play distinct roles from their eukaryotic counterparts; for example, control of cell wall synthesis for cell division and morphogenesis. This review is aimed at providing an overview of the bacterial cytoskeleton, and discussing the roles and assembly dynamics of bacterial cytoskeletal proteins in more detail in relation to their most widely conserved functions, DNA segregation and coordination of cell wall synthesis.

  9. Bacterial cell curvature through mechanical control of cell growth

    PubMed Central

    Cabeen, Matthew T; Charbon, Godefroid; Vollmer, Waldemar; Born, Petra; Ausmees, Nora; Weibel, Douglas B; Jacobs-Wagner, Christine

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics of cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology. PMID:19279668

  10. An Overview of Genetic Mechanisms in the Bacterial Cell.

    ERIC Educational Resources Information Center

    Metcalfe, Judith; Baumberg, Simon

    1988-01-01

    Outlines the genetic elements found in the bacterial cell which play a role in recombining DNA sequences. Provides a core structure to which the mechanisms occurring in and between bacterial cells can be related. Discusses the practicalities of recombinant DNA techniques. (Author/CW)

  11. An Overview of Genetic Mechanisms in the Bacterial Cell.

    ERIC Educational Resources Information Center

    Metcalfe, Judith; Baumberg, Simon

    1988-01-01

    Outlines the genetic elements found in the bacterial cell which play a role in recombining DNA sequences. Provides a core structure to which the mechanisms occurring in and between bacterial cells can be related. Discusses the practicalities of recombinant DNA techniques. (Author/CW)

  12. Bacterial cell division as a target for new antibiotics.

    PubMed

    Sass, Peter; Brötz-Oesterhelt, Heike

    2013-10-01

    Bacterial resistance to currently applied antibiotics complicates the treatment of infections and demands the evaluation of new strategies to counteract multidrug-resistant bacteria. In recent years, the inhibition of the bacterial divisome, mainly by targeting the central cell division mediator FtsZ, has been recognized as a promising strategy for antibiotic attack. New antibiotics were shown to either interfere with the natural dynamics and functions of FtsZ during the cell cycle or to activate a bacterial protease to degrade FtsZ and thus bring about bacterial death in a suicidal manner. Their efficacy in animal models of infection together with resistance-breaking properties prove the potential of such drugs and validate the inhibition of bacterial cell division as an attractive approach for antibiotic intervention.

  13. Structure of a bacterial cell surface decaheme electron conduit

    USDA-ARS?s Scientific Manuscript database

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits...

  14. Immersion Refractometry of Isolated Bacterial Cell Walls

    PubMed Central

    Marquis, Robert E.

    1973-01-01

    Immersion-refractometric and light-scattering measurements were adapted to determinations of average refractive indices and physical compactness of isolated bacterial cell walls. The structures were immersed in solutions containing various concentrations of polymer molecules that cannot penetrate into wall pores, and then an estimate was made of the polymer concentration or the refractive index of the polymer solution in which light scattering was reduced to zero. Because each wall preparation was heterogeneous, the refractive index of the medium for zero light scattering had to be estimated by extrapolation. Refractive indices for walls suspended in bovine serum albumin solutions ranged from 1.348 for walls of the rod form of Arthrobacter crystallopoietes to 1.382 for walls of the teichoic acid deficient, 52A5 strain of Staphylococcus aureus. These indices were used to calculate approximate values for solids content per milliliter, and the calculated values agreed closely with those estimated from a knowledge of dextran-impermeable volumes per gram, dry weight, of the walls. When large molecules such as dextrans or serum albumin were used for immersion refractometry, the refractive indices obtained were for entire walls, including both wall polymers and wall water. When smaller molecules that can penetrate wall pores to various extents were used with Micrococcus lysodeikticus walls, the average, apparent refractive index of the structures increased as the molecular size of probing molecules was decreased. It was possible to obtain an estimate of 1.45 to 1.46 for the refractive index of wall polymers, predominantly peptidoglycans in this case, by extrapolating the curve for refractive index versus molecular radius to a value of 0.2 nm, the approximate radius of a water molecule. This relatively low value for polymer refractive index was interpreted as evidence in favor of the amorphous, elastic model of peptidoglycan structure and against the crystalline, rigid

  15. Osmotic Pressure, Bacterial Cell Walls, and Penicillin: A Demonstration.

    ERIC Educational Resources Information Center

    Lennox, John E.

    1984-01-01

    An easily constructed apparatus that models the effect of penicillin on the structure of bacterial cells is described. Background information and procedures for using the apparatus during a classroom demonstration are included. (JN)

  16. Using bacterial cell growth to template catalytic asymmetry.

    PubMed

    Kaehr, Bryan; Brinker, C Jeffrey

    2010-08-07

    We report an approach to position gold nanoparticle catalysts for metal reduction asymmetrically on a biological template (E. coli) by exploiting the polarity of the bacterial cell envelope undergoing growth and division.

  17. New Application of Hyperspectral Imaging for Bacterial Cell Classification

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral microscopy has shown potential as a method for rapid detection of foodborne pathogenic bacteria with spectral characteristics from bacterial cells. Hyperspectral microscope images (HMIs) are collected from broiler chicken isolates of Salmonella serotypes Enteritidis, Typhimurium, Infa...

  18. Osmotic Pressure, Bacterial Cell Walls, and Penicillin: A Demonstration.

    ERIC Educational Resources Information Center

    Lennox, John E.

    1984-01-01

    An easily constructed apparatus that models the effect of penicillin on the structure of bacterial cells is described. Background information and procedures for using the apparatus during a classroom demonstration are included. (JN)

  19. Growth mechanics of bacterial cell wall and morphology of bacteria

    NASA Astrophysics Data System (ADS)

    Jiang, Hongyuan; Sun, Sean

    2010-03-01

    The peptidoglycan cell wall of bacteria is responsible for maintaining the cell shape and integrity. During the bacterial life cycle, the growth of the cell wall is affected by mechanical stress and osmotic pressure internal to the cell. We develop a theory to describe cell shape changes under the influence of mechanical forces. We find that the theory predicts a steady state size and shape for bacterial cells ranging from cocci to spirillum. Moreover, the theory suggest a mechanism by which bacterial cytoskeletal proteins such as MreB and crescentin can maintain the shape of the cell. The theory can also explain the several recent experiments on growing bacteria in micro-environments.

  20. Bacterial cell biology outside the streetlight

    PubMed Central

    2016-01-01

    Summary As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated – more or less intimately – with multicellular eukaryotes. PMID:27306428

  1. Bacterial cell wall: thinking globally, actin locally.

    PubMed

    Eraso, Jesus M; Margolin, William

    2011-08-23

    The bacterial actin-like protein MreB is thought to form a continuous helical polymer at the membrane to confer rod shape. Two new studies now show that MreB forms discrete dynamic patches that travel circumferentially. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Rho GTPase-activating bacterial toxins: from bacterial virulence regulation to eukaryotic cell biology.

    PubMed

    Lemonnier, Marc; Landraud, Luce; Lemichez, Emmanuel

    2007-09-01

    Studies on the interactions of bacterial pathogens with their host have provided an invaluable source of information on the major functions of eukaryotic and prokaryotic cell biology. In addition, this expanding field of research, known as cellular microbiology, has revealed fascinating examples of trans-kingdom functional interplay. Bacterial factors actually exploit eukaryotic cell machineries using refined molecular strategies to promote invasion and proliferation within their host. Here, we review a family of bacterial toxins that modulate their activity in eukaryotic cells by activating Rho GTPases and exploiting the ubiquitin/proteasome machineries. This family, found in human and animal pathogenic Gram-negative bacteria, encompasses the cytotoxic necrotizing factors (CNFs) from Escherichia coli and Yersinia species as well as dermonecrotic toxins from Bordetella species. We survey the genetics, biochemistry, molecular and cellular biology of these bacterial factors from the standpoint of the CNF1 toxin, the paradigm of Rho GTPase-activating toxins produced by urinary tract infections causing pathogenic Escherichia coli. Because it reveals important connections between bacterial invasion and the host inflammatory response, the mode of action of CNF1 and its related Rho GTPase-targetting toxins addresses major issues of basic and medical research and constitutes a privileged experimental model for host-pathogen interaction.

  3. Stochasticity in Colonial Growth Dynamics of Individual Bacterial Cells

    PubMed Central

    Lianou, Alexandra

    2013-01-01

    Conventional bacterial growth studies rely on large bacterial populations without considering the individual cells. Individual cells, however, can exhibit marked behavioral heterogeneity. Here, we present experimental observations on the colonial growth of 220 individual cells of Salmonella enterica serotype Typhimurium using time-lapse microscopy videos. We found a highly heterogeneous behavior. Some cells did not grow, showing filamentation or lysis before division. Cells that were able to grow and form microcolonies showed highly diverse growth dynamics. The quality of the videos allowed for counting the cells over time and estimating the kinetic parameters lag time (λ) and maximum specific growth rate (μmax) for each microcolony originating from a single cell. To interpret the observations, the variability of the kinetic parameters was characterized using appropriate probability distributions and introduced to a stochastic model that allows for taking into account heterogeneity using Monte Carlo simulation. The model provides stochastic growth curves demonstrating that growth of single cells or small microbial populations is a pool of events each one of which has its own probability to occur. Simulations of the model illustrated how the apparent variability in population growth gradually decreases with increasing initial population size (N0). For bacterial populations with N0 of >100 cells, the variability is almost eliminated and the system seems to behave deterministically, even though the underlying law is stochastic. We also used the model to demonstrate the effect of the presence and extent of a nongrowing population fraction on the stochastic growth of bacterial populations. PMID:23354712

  4. RNA-seq based transcriptomic analysis of single bacterial cells.

    PubMed

    Wang, Jiangxin; Chen, Lei; Chen, Zixi; Zhang, Weiwen

    2015-11-01

    Gene-expression heterogeneity among individual cells determines the fate of a bacterial population. Here we report the first bacterial single-cell RNA sequencing (RNA-seq), BaSiC RNA-seq, a method integrating RNA isolation, cDNA synthesis and amplification, and RNA-seq analysis of the whole transcriptome of single cyanobacterium Synechocystis sp. PCC 6803 cells which typically contain approximately 5-7 femtogram total RNA per cell. We applied the method to 3 Synechocystis single cells at 24 h and 3 single cells at 72 h after nitrogen-starvation stress treatment, as well as their bulk-cell controls under the same conditions, to determine the heterogeneity upon environmental stress. With 82-98% and 31-48% of all putative Synechocystis genes identified in single cells of 24 and 72 h, respectively, the results demonstrated that the method could achieve good identification of the transcripts in single bacterial cells. In addition, the preliminary results from nitrogen-starved cells also showed a possible increasing gene-expression heterogeneity from 24 h to 72 h after nitrogen starvation stress. Moreover, preliminary analysis of single-cell transcriptomic datasets revealed that genes from the "Mobile elements" functional category have the most significant increase of gene-expression heterogeneity upon stress, which was further confirmed by single-cell RT-qPCR analysis of gene expression in 24 randomly selected cells.

  5. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    PubMed

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination.

  6. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    DOE PAGES

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; ...

    2015-01-19

    Electroporation was used to insert purified bacterial virulence effector proteins directly into living eukaryotic cells. Protein localization was monitored by confocal immunofluorescence microscopy. This method allows for studies on trafficking, function, and protein-protein interactions using active exogenous proteins, avoiding the need for heterologous expression in eukaryotic cells.

  7. Light scattering application for bacterial cell monitoring during cultivation process

    NASA Astrophysics Data System (ADS)

    Kotsyumbas, Igor Ya.; Kushnir, Igor M.; Bilyy, Rostyslav O.; Yarynovska, Ivanna H.; Getman, Vasyl'B.; Bilyi, Alexander I.

    2007-07-01

    Monitoring of bacterial cell numbers is of great importance not only in microbiological industry but also for control of liquids contamination in the food and pharmaceutical industries. Here we describe a novel low-cost and highly efficient technology for bacterial cell monitoring during cultivation process. The technology incorporates previously developed monitoring device and algorithm of its action. The devise analyses light scattered by suspended bacterial cells. Current stage utilizes monochromatic coherent light and detects amplitudes and durations of scattered light impulses, it does not require any labeling of bacterial cell. The system is calibrated using highly purificated bacteria-free water as standard. Liquid medial are diluted and analyzed by the proposed technology to determine presence of bacteria. Detection is done for a range of particle size from 0.1 to 10 μm, and thus particles size distribution is determined. We analyzed a set of different bacterial suspensions and also their changes in quantity and size distribution during cultivation. Based on the obtained results we conclude that proposed technology can be very effective for bacteria monitoring during cultivation process, providing benefits of low simplicity and low cost of analysis with simultaneous high detection precision.

  8. Nanomechanical Response of Bacterial Cells to Cationic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Walters, Grant; Parg, Richard; Dutcher, John

    2014-03-01

    The effectiveness of antimicrobial compounds can be easily screened, however their mechanism of action is much more difficult to determine. Many compounds act by compromising the mechanical integrity of the bacterial cell envelope, and our study introduces an atomic force microscopy (AFM)-based creep deformation technique to evaluate changes in the time-dependent mechanical properties of Pseudomonas aeruginosa PAO1 bacterial cells upon exposure to two different but structurally related antimicrobial peptides: polymyxin B and polymyxin B nonapeptide. We observed a distinctive signature for the loss of integrity of the bacterial cell envelope following exposure to the peptides. Measurements performed before and after exposure, as well as time-resolved measurements and those performed at different concentrations, revealed large changes to the viscoelastic parameters that are consistent with differences in the membrane permeabilizing effects of the peptides. The AFM creep deformation measurement provides new, unique insight into the kinetics and mechanism of action of antimicrobial peptides on bacteria.

  9. Bacterial cell identification in differential interference contrast microscopy images.

    PubMed

    Obara, Boguslaw; Roberts, Mark A J; Armitage, Judith P; Grau, Vicente

    2013-04-23

    Microscopy image segmentation lays the foundation for shape analysis, motion tracking, and classification of biological objects. Despite its importance, automated segmentation remains challenging for several widely used non-fluorescence, interference-based microscopy imaging modalities. For example in differential interference contrast microscopy which plays an important role in modern bacterial cell biology. Therefore, new revolutions in the field require the development of tools, technologies and work-flows to extract and exploit information from interference-based imaging data so as to achieve new fundamental biological insights and understanding. We have developed and evaluated a high-throughput image analysis and processing approach to detect and characterize bacterial cells and chemotaxis proteins. Its performance was evaluated using differential interference contrast and fluorescence microscopy images of Rhodobacter sphaeroides. Results demonstrate that the proposed approach provides a fast and robust method for detection and analysis of spatial relationship between bacterial cells and their chemotaxis proteins.

  10. Can dead bacterial cells be defined and are genes expressed after cell death?

    PubMed

    Trevors, J T

    2012-07-01

    There is a paucity of knowledge on gene expression in dead bacterial cells. Why would this knowledge be useful? The cells are dead. However, the time duration of gene expression following cell death is often unknown, and possibly in the order of minutes. In addition, it is a challenge to determine if bacterial cells are dead, or viable but non-culturable (VBNC), and what is an agreed upon correct definition of dead bacteria. Cells in the bacterial population or community may die at different rates or times and this complicates both the viability and gene expression analysis. In this article, the definition of dead bacterial cells is discussed and its significance in continued gene expression in cells following death. The definition of living and dead has implications for possible, completely, synthetic bacterial cells that may be capable of growth and division. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Single Cell Analysis of a Bacterial Sender-Receiver System

    PubMed Central

    Mückl, Andrea; Kapsner, Korbinian; Gerland, Ulrich; Simmel, Friedrich C.

    2016-01-01

    Monitoring gene expression dynamics on the single cell level provides important information on cellular heterogeneity and stochasticity, and potentially allows for more accurate quantitation of gene expression processes. We here study bacterial senders and receivers genetically engineered with components of the quorum sensing system derived from Aliivibrio fischeri on the single cell level using microfluidics-based bacterial chemostats and fluorescence video microscopy. We track large numbers of bacteria over extended periods of time, which allows us to determine bacterial lineages and filter out subpopulations within a heterogeneous population. We quantitatively determine the dynamic gene expression response of receiver bacteria to varying amounts of the quorum sensing inducer N-3-oxo-C6-homoserine lactone (AHL). From this we construct AHL response curves and characterize gene expression dynamics of whole bacterial populations by investigating the statistical distribution of gene expression activity over time. The bacteria are found to display heterogeneous induction behavior within the population. We therefore also characterize gene expression in a homogeneous bacterial subpopulation by focusing on single cell trajectories derived only from bacteria with similar induction behavior. The response at the single cell level is found to be more cooperative than that obtained for the heterogeneous total population. For the analysis of systems containing both AHL senders and receiver cells, we utilize the receiver cells as ‘bacterial sensors’ for AHL. Based on a simple gene expression model and the response curves obtained in receiver-only experiments, the effective AHL concentration established by the senders and their ‘sending power’ is determined. PMID:26808777

  12. Studying Biomolecule Localization by Engineering Bacterial Cell Wall Curvature

    PubMed Central

    Renner, Lars D.; Eswaramoorthy, Prahathees; Ramamurthi, Kumaran S.; Weibel, Douglas B.

    2013-01-01

    In this article we describe two techniques for exploring the relationship between bacterial cell shape and the intracellular organization of proteins. First, we created microchannels in a layer of agarose to reshape live bacterial cells and predictably control their mean cell wall curvature, and quantified the influence of curvature on the localization and distribution of proteins in vivo. Second, we used agarose microchambers to reshape bacteria whose cell wall had been chemically and enzymatically removed. By combining microstructures with different geometries and fluorescence microscopy, we determined the relationship between bacterial shape and the localization for two different membrane-associated proteins: i) the cell-shape related protein MreB of Escherichia coli, which is positioned along the long axis of the rod-shaped cell; and ii) the negative curvature-sensing cell division protein DivIVA of Bacillus subtilis, which is positioned primarily at cell division sites. Our studies of intracellular organization in live cells of E. coli and B. subtilis demonstrate that MreB is largely excluded from areas of high negative curvature, whereas DivIVA localizes preferentially to regions of high negative curvature. These studies highlight a unique approach for studying the relationship between cell shape and intracellular organization in intact, live bacteria. PMID:24391905

  13. Shear-induced adhesion of bacterial cells

    NASA Astrophysics Data System (ADS)

    Lecuyer, Sigolene; Rusconi, Roberto; Shen, Yi; Forsyth, Alison; Stone, Howard

    2009-11-01

    Bacterial adhesion is the first step in the development of surface-associated communities known as biofilms. The formation of these microbial structures is the cause of many different problems in medical devices and industrial water systems. Despite an extensive literature, the underlying mechanisms of the initial reversible attachment are not fully understood. We have investigated the effects of hydrodynamics on the probability of adsorption and detachment of bacteria on model surfaces by using phase-contrast microscopy in straight microchannels. In this way we have been able to measure the time that each bacterium spends on the surface and to analyze the mobility as a function of the flow rate. The main finding of our experiments and analyses is a counter-intuitive enhanced adhesion as the shear stress is increased over a wide range of shear rates.

  14. Aerotactic Cell Density Variations in Bacterial Turbulence

    NASA Astrophysics Data System (ADS)

    Fernandez, Vicente; Smriga, Steven; Menolascina, Filippo; Rusconi, Roberto; Stocker, Roman

    2015-11-01

    Concentrated suspensions of motile bacteria such as Bacillus subtilis exhibit group dynamics much larger than the scale of an individual bacterium, visual similar to high Reynolds number turbulence. These suspensions represent a microscale realization of active matter. Individually, B. subtilis are also aerotactic, and will accumulate near oxygen sources. Using a microfluidic device for generating oxygen gradients, we investigate the relationship between individuals' attraction to oxygen and the collective motion resultant from hydrodynamic interactions. We focus on changes in density revealed by a fluorescently labeled sub-population of B. subtilis in the dense suspension. This approach allows us to examine changes in density during the onset of collective motion as well as fully developed bacterial turbulence.

  15. Bacterial Exposure Induces and Activates Matrilysin in Mucosal Epithelial Cells

    PubMed Central

    López-Boado, Yolanda S.; Wilson, Carole L.; Hooper, Lora V.; Gordon, Jeffrey I.; Hultgren, Scott J.; Parks, William C.

    2000-01-01

    Matrilysin, a matrix metalloproteinase, is expressed and secreted lumenally by intact mucosal and glandular epithelia throughout the body, suggesting that its regulation and function are shared among tissues. Because matrilysin is produced in Paneth cells of the murine small intestine, where it participates in innate host defense by activation of prodefensins, we speculated that its expression would be influenced by bacterial exposure. Indeed, acute infection (10–90 min) of human colon, bladder, and lung carcinoma cells, primary human tracheal epithelial cells, and human tracheal explants with type 1–piliated Escherichia coli mediated a marked (25–50-fold) and sustained (>24 h) induction of matrilysin production. In addition, bacterial infection resulted in activation of the zymogen form of the enzyme, which was selectively released at the apical surface. Induction of matrilysin was mediated by a soluble, non-LPS bacterial factor and correlated with the release of defensin-like bacteriocidal activity. Bacteria did not induce matrilysin in other cell types, and expression of other metalloproteinases by epithelial cells was not affected by bacteria. Matrilysin was not detected in germ-free mice, but the enzyme was induced after colonization with Bacteroides thetaiotaomicron. These findings indicate that bacterial exposure is a potent and physiologically relevant signal regulating matrilysin expression in epithelial cells. PMID:10725342

  16. Immobilization of motile bacterial cells via dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Nyamjav, Dorjderem; Rozhok, Sergey; Holz, Richard C.

    2010-06-01

    A strategy to bind bacterial cells to surfaces in a directed fashion via dip-pen nanolithography (DPN) is presented. Cellular attachment to pre-designed DPN generated microarrays was found to be dependent on the shape and size of the surface feature. While this observation is likely due in part to a dense, well formed mercaptohexadecanoic acid (MHA) monolayer generated via DPN, it may also simply be due to the physical shape of the surface structure. Motile Pseudomonas aeruginosa bacterial cells were observed to bind to DPN generated mercaptohexadecanoic acid/poly-L-lysine (MHA/PLL) line patterns, 'blocks' made up of eight lines with 100 nm spacings, with ~ 80% occupancy. Cellular binding to these 'block' surface structures occurs via an electrostatic interaction between negatively charged groups on the bacterial cell surface and positively charged poly-L-lysine (PLL) assemblies. These data indicate that these DPN generated 'block' surface structures provide a promising footprint for the attachment of motile bacterial cells that may find utility in cell based biosensors or single cell studies.

  17. Myeloid-Derived Suppressor Cells in Bacterial Infections

    PubMed Central

    Ost, Michael; Singh, Anurag; Peschel, Andreas; Mehling, Roman; Rieber, Nikolaus; Hartl, Dominik

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) comprise monocytic and granulocytic innate immune cells with the capability of suppressing T- and NK-cell responses. While the role of MDSCs has been studied in depth in malignant diseases, the understanding of their regulation and function in infectious disease conditions has just begun to evolve. Here we summarize and discuss the current view how MDSCs participate in bacterial infections and how this knowledge could be exploited for potential future therapeutics. PMID:27066459

  18. Selection of peptidoglycan-specific aptamers for bacterial cells identification.

    PubMed

    Ferreira, Iêda Mendes; de Souza Lacerda, Camila Maria; de Faria, Lígia Santana; Corrêa, Cristiane Rodrigues; de Andrade, Antero Silva Ribeiro

    2014-12-01

    Peptidoglycan is a highly complex and essential macromolecule of bacterial outer cell wall; it is a heteropolymer made up of linear glycan strands cross-linked by peptides. Peptidoglycan has a particular composition which makes it a possible target for specific bacterial recognition. Aptamers are single-stranded DNA or RNA oligonucleotides that bind to target molecules with high affinity and specificity. Aptamers can be labeled with different radioisotopes and possess several properties that make them suitable for molecular imaging. The purpose of this study was to obtain aptamers for use as radiopharmaceutical in bacterial infection diagnosis. Two aptamers (Antibac1 and Antibac2) against peptidoglycan were selected through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology. The dissociation constant (Kd) for Antibac1 was 0.415 + 0.047 μM and for Antibac2 was 1.261 + 0.280 μM. These aptamers labeled with (32)P showed high affinity for Staphylococcus aureus cells. The binding to S. aureus and Escherichia coli in vitro were significantly higher than for Candida albicans and human fibroblasts, demonstrating their specificity for bacterial cells. These results point Antibac1 and Antibac2 as promising tools for bacterial infections identification.

  19. Glycosaminoglycans are involved in bacterial adherence to lung cells.

    PubMed

    Rajas, Olga; Quirós, Luis M; Ortega, Mara; Vazquez-Espinosa, Emma; Merayo-Lloves, Jesús; Vazquez, Fernando; García, Beatriz

    2017-05-02

    Lower respiratory infections are among the top ten causes of death worldwide. Since pathogen to cell adhesion is a crucial step in the infection progress, blocking the interaction between eukaryotic receptors and bacterial ligands may enable the pathogenesis process to be stopped. Cell surface glycosaminoglycans (GAGs) are known to be mediators in the adhesion of diverse bacteria to different cell types, making it of interest to examine their involvement in the attachment of various pathogenic bacteria to lung cells, including epithelial cells and fibroblasts. The function of cell surface GAGs in bacterial adhesion was studied by reducing their levels through inhibiting their biosynthesis and enzymatic degradation, as well as in binding competition experiments with various species of GAGs. The participation of the different bacterial adhesins in attachment was evaluated through competition with two peptides, both containing consensus heparin binding sequences. Blocking inhibition assays using anti-syndecans and the enzymatic removal of glypicans were conducted to test their involvement in bacterial adhesion. The importance of the fine structure of GAGs in the interaction with pathogens was investigated in competition experiments with specifically desulfated heparins. The binding of all bacteria tested decreased when GAG levels in cell surface of both lung cells were diminished. Competition experiments with different types of GAGs showed that heparan sulfate chains are the main species involved. Blocking or removal of cell surface proteoglycans evidenced that syndecans play a more important role than glypicans. The binding was partially inhibited by peptides including heparin binding sequences. Desulfated heparins also reduced bacterial adhesion to different extents depending on the bacterium and the sulfated residue, especially in fibroblast cells. Taken together, these data demonstrate that the GAG chains of the cell surface are involved in the adhesion of

  20. Nanomechanical Response of Bacterial Cells to Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Parg, Richard; Dutcher, John

    2015-03-01

    The effectiveness of antimicrobial compounds can be easily screened, however their mechanism of action is much more difficult to determine. Many compounds act by compromising the mechanical integrity of the bacterial cell envelope, and we have developed an atomic force microscopy (AFM)-based creep deformation technique to evaluate changes in the time-dependent mechanical properties of bacterial cells upon exposure to antimicrobial peptides. Measurements performed before and after exposure, as well as time-resolved measurements and those performed at different antimicrobial concentrations, revealed large changes to the viscoelastic parameters including a distinctive signature for the loss of integrity of the bacterial cell envelope. Our previous experiments have focused on Pseudomonas aeruginosaPAO1 bacterial cells in Milli-Q water, for which the cells can withstand the large osmotic pressure. In the present study we have focused on performing the measurements in buffer to obtain more biologically relevant results. The AFM creep deformation measurement provides new, unique insight into the kinetics and mechanism of action of antimicrobial peptides on bacteria.

  1. Phenotypic Landscape of a Bacterial Cell

    PubMed Central

    Nichols, Robert J.; Sen, Saunak; Choo, Yoe Jin; Beltrao, Pedro; Zietek, Matylda; Chaba, Rachna; Lee, Sueyoung; Kazmierczak, Krystyna M.; Lee, Karis J.; Wong, Angela; Shales, Michael; Lovett, Susan; Winkler, Malcolm E.; Krogan, Nevan J.; Typas, Athanasios; Gross, Carol A.

    2011-01-01

    Summary The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs. PMID:21185072

  2. Phenotypic landscape of a bacterial cell.

    PubMed

    Nichols, Robert J; Sen, Saunak; Choo, Yoe Jin; Beltrao, Pedro; Zietek, Matylda; Chaba, Rachna; Lee, Sueyoung; Kazmierczak, Krystyna M; Lee, Karis J; Wong, Angela; Shales, Michael; Lovett, Susan; Winkler, Malcolm E; Krogan, Nevan J; Typas, Athanasios; Gross, Carol A

    2011-01-07

    The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs.

  3. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells

    PubMed Central

    2010-01-01

    Background In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells. PMID:20831775

  4. Yields of Bacterial Cells from Hydrocarbons

    PubMed Central

    Wodzinski, Richard S.; Johnson, Marvin J.

    1968-01-01

    A strain of Nocardia and one of Pseudomonas, both isolated on pristane (2,6,10,14-tetramethylpentadecane), gave cell yields of approximately 100% on n-octadecane and pristane. Both organisms grew more rapidly on the n-octadecane than on the pristane. A mixed culture, isolated on 3-methylheptane, whose two components were identified as species of Pseudomonas and of Nocardia, gave approximately 100% cell yields and grew with generation times of about 5 hr on n-heptane, n-octane, and 2-methylheptane. The generation time on 3-methylheptane was 8.6 hr and the cell yield was only 79%. A strain of Pseudomonas isolated from naphthalene enrichments and one from phenanthrene enrichments both gave a cell yield of 50% on naphthalene. The phenanthrene isolate gave a cell yield of 40% on phenanthrene. A Nocardia species isolated on benzene gave a 79% cell yield on benzene. The generation times of the bacteria isolated on aromatic hydrocarbons were related to the solubility of the aromatic hydrocarbons on which they were grown; the more insoluble hydrocarbons gave slower growth. PMID:5726161

  5. Chronic Alcohol Exposure Renders Epithelial Cells Vulnerable to Bacterial Infection

    PubMed Central

    Wood, Stephen; Pithadia, Ravi; Rehman, Tooba; Zhang, Lijuan; Plichta, Jennifer; Radek, Katherine A.; Forsyth, Christopher; Keshavarzian, Ali; Shafikhani, Sasha H.

    2013-01-01

    Despite two centuries of reports linking alcohol consumption with enhanced susceptibility to bacterial infections and in particular gut-derived bacteria, there have been no studies or model systems to assess the impact of long-term alcohol exposure on the ability of the epithelial barrier to withstand bacterial infection. It is well established that acute alcohol exposure leads to reduction in tight and adherens junctions, which in turn leads to increases in epithelial cellular permeability to bacterial products, leading to endotoxemia and a variety of deleterious effects in both rodents and human. We hypothesized that reduced fortification at junctional structures should also reduce the epithelial barrier’s capacity to maintain its integrity in the face of bacterial challenge thus rendering epithelial cells more vulnerable to infection. In this study, we established a cell-culture based model system for long-term alcohol exposure to assess the impact of chronic alcohol exposure on the ability of Caco-2 intestinal epithelial cells to withstand infection when facing pathogenic bacteria under the intact or wounded conditions. We report that daily treatment with 0.2% ethanol for two months rendered Caco-2 cells far more susceptible to wound damage and cytotoxicity caused by most but not all bacterial pathogens tested in our studies. Consistent with acute alcohol exposure, long-term ethanol exposure also adversely impacted tight junction structures, but in contrast, it did not affect the adherens junction. Finally, alcohol-treated cells partially regained their ability to withstand infection when ethanol treatment was ceased for two weeks, indicating that alcohol’s deleterious effects on cells may be reversible. PMID:23358457

  6. Isolation of cell-free bacterial inclusion bodies.

    PubMed

    Rodríguez-Carmona, Escarlata; Cano-Garrido, Olivia; Seras-Franzoso, Joaquin; Villaverde, Antonio; García-Fruitós, Elena

    2010-09-17

    Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that have been traditionally considered as undesirable products from protein production processes. However, being fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in biological interfaces. Using an appropriate combination of chemical and mechanical cell disruption methods we have established a convenient procedure for the recovery of bacterial inclusion bodies with undetectable levels of viable cell contamination, below 10⁻¹ cfu/ml, keeping the particulate organization of these aggregates regarding size and protein folding features. The application of the developed protocol allows obtaining bacterial free inclusion bodies suitable for use in mammalian cell cultures and other biological interfaces.

  7. Electrostatic behavior of the charge-regulated bacterial cell surface.

    PubMed

    Hong, Yongsuk; Brown, Derick G

    2008-05-06

    The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid-base functional groups and Ca(2+) sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl(2)), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca(2+) surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.

  8. Expression and stabilization of bacterial luciferase in mammalian cells

    NASA Astrophysics Data System (ADS)

    Patterson, Stacey S.; Dionisi, Hebe M.; Gupta, Rakesh K.; Sayler, Gary S.

    2004-06-01

    Current mammalian bioreporters using either firefly luciferase (luc) or GFP constructs require lysis and/or exogenous excitation to evoke a measurable response. Consequently, these cells cannot serve as continuous, on-line monitoring devices for in vivo imaging. Bacterial luciferase, lux, produces a photonic reaction that is cyclic, resulting in autonomous signal generation without the requirement for exogenous substrates or external activation. Therefore, lux-based bioluminescent bioreporters are the only truly autonomous light-generating sensors in existence. Unfortunately, the bacterial lux system has not yet been efficiently expressed in mammalian cells. In this research, three approaches for optimal expression of the a and b subunits of the bacterial luciferase protein were compared and reporter signal stability was evaluated from stably transfected human embryonic kidney cells. Maximum light levels were obtained from cells expressing the luciferase subunits linked with an internal ribosomal entry site (IRES). Cells harboring this construct produced bioluminescence equaling 2.6 X 106 photons/sec compared to 7.2 X 104 photons/sec obtained from cells expressing the luciferase from a dual promoter vector and 3.5 X 104 photons/sec from a Lux fusion protein. Furthermore, the bioluminescence levels remained stable for more than forty cell passages (5 months) in the absence of antibiotic selection. After this time, bioluminescence signals dropped at a rate of approximately 5% per cell passage. These data indicate that mammalian cell lines can be engineered to efficiently express the bacterial lux system, thus lending themselves to possible long-term continuous monitoring or imaging applications in vivo.

  9. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells

    PubMed Central

    Martín, César; Etxaniz, Asier; Uribe, Kepa B.; Etxebarria, Aitor; González-Bullón, David; Arlucea, Jon; Goñi, Félix M.; Aréchaga, Juan; Ostolaza, Helena

    2015-01-01

    Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of “toxin-coated bacteria” proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or “free” in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca2+-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system. PMID:26346097

  10. Micro-magnet arrays for specific single bacterial cell positioning

    NASA Astrophysics Data System (ADS)

    Pivetal, Jérémy; Royet, David; Ciuta, Georgeta; Frenea-Robin, Marie; Haddour, Naoufel; Dempsey, Nora M.; Dumas-Bouchiat, Frédéric; Simonet, Pascal

    2015-04-01

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications.

  11. Improved immunoadsorption procedure with anion-exchange bacterial cell columns.

    PubMed

    McKinney, R M; Thacker, L; Wong, M C; Hebert, G A

    1978-01-01

    Bacterial cell columns for immunoadsorption were prepared with Streptococcus cells and triethylaminoethyl cellulose (Cellex-T) matrix material as a model system. Good column flow properties and satisfactory retention of the cells were obtained with ratios as high as 2 ml of packed cells/3 g dry weight of cellulose. Anion-exchange fractionation of whole serum by the Cellex-T was prevented by using 0.25 M NaCl in the developing buffer. Antibodies were adsorbed directly from whole serum and recovered in high yield by desorption at pH 2.3. Pre-exposing bacterial cells to formalin and washing them with acetone was necessary to ensure that they remained on the columns. One strain of Streptococcus salivarius (SS 908) was satisfactorily retained on a column only after cells were labeled with fluorescein isothiocyanate and washed with acetone. The means by which Cellex-T retains bacterial cells appears to be a combination of electronic attraction and physical entrapment.

  12. GTPases in bacterial cell polarity and signalling.

    PubMed

    Bulyha, Iryna; Hot, Edina; Huntley, Stuart; Søgaard-Andersen, Lotte

    2011-12-01

    In bacteria, large G domain GTPases have well-established functions in translation, protein translocation, tRNA modification and ribosome assembly. In addition, bacteria also contain small Ras-like GTPases consisting of stand-alone G domains. Recent data have revealed that small Ras-like GTPases as well as large G domain GTPases in bacteria function in the regulation of cell polarity, signal transduction and possibly also in cell division. The small Ras-like GTPase MglA together with its cognate GAP MglB regulates cell polarity in Myxococcus xanthus, and the small Ras-like GTPase CvnD9 in Streptomyces coelicolor is involved in signal transduction. Similarly, the large GTPase FlhF together with the ATPase FlhG regulates the localization and number of flagella in polarly flagellated bacteria. Moreover, large dynamin-like GTPases in bacteria may function in cell division. Thus, the function of GTPases in bacteria may be as pervasive as in eukaryotes.

  13. Sorption of heavy metals by prepared bacterial cell surfaces

    SciTech Connect

    Churchill, S.A.; Walters, J.V.; Churchill, P.F.

    1995-10-01

    Prepared biomass from two Gram-negative and one Gram-positive bacterial strains was examined for single, binary, and quaternary mixtures of polyvalent metal cation binding to cell surfaces. The biosorption of {sub 24}Cr{sup 3+}, {sub 27}Co{sup 2+}, {sub 28}Ni{sup 2+}, and {sub 29}Cu{sup 2+} for each bacterial cell type was evaluated using a batch equilibrium method. The binding of each metal by all three bacterial cells could be described by the Freundlich sorption model. The isotherm binding constants suggest that E. coli cells are the most efficient at binding copper, chromium, and nickel; and M. luteus adsorbs cobalt most efficiently. The K-values for copper bound to P. aeruginosa and E. coli are > 2-fold and > 8-fold greater, respectively, than previous reported for intact cells. The general metal-affinity series observed was Cr{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+}. There was a marked lower affinity of all biosorbents for Co{sup 2+} and Ni{sup 2+}. M. luteus and E. coli had a strong preference for Co{sup 2+} over Ni{sup 2+}. Metal-binding enhancement could be ascribed to increased cell barrier surface porosity to metal-bearing solutions.

  14. Microarray analysis of human epithelial cell responses to bacterial interaction.

    PubMed

    Mans, Jeffrey J; Lamont, Richard J; Handfield, Martin

    2006-09-01

    Host-pathogen interactions are inherently complex and dynamic. The recent use of human microarrays has been invaluable to monitor the effects of various bacterial and viral pathogens upon host cell gene expression programs. This methodology has allowed the host response transcriptome of several cell lines to be studied on a global scale. To this point, the great majority of reports have focused on the response of immune cells, including macrophages and dendritic cells. These studies revealed that the immune response to microbial pathogens is tailored to different microbial challenges. Conversely, the paradigm for epithelial cells has--until recently--held that the epithelium mostly served as a relatively passive physical barrier to infection. It is now generally accepted that the epithelial barrier contributes more actively to signaling events in the immune response. In light of this shift, this review will compare transcriptional profiling data from studies that involved host-pathogen interactions occurring with epithelial cells. Experiments that defined both a common core response, as well as pathogen-specific host responses will be discussed. This review will also summarize the contributions that transcriptional profiling analysis has made to our understanding of bacterial physio-pathogensis of infection. This will include a discussion of how host transcriptional responses can be used to infer the function of virulence determinants from bacterial pathogens interacting with epithelial mucosa. In particular, we will expand upon the lessons that have been learned from gastro-intestinal and oral pathogens, as well as from members of the commensal flora.

  15. Bacterial cell surface structures in Yersinia enterocolitica.

    PubMed

    Białas, Nataniel; Kasperkiewicz, Katarzyna; Radziejewska-Lebrecht, Joanna; Skurnik, Mikael

    2012-06-01

    Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.

  16. Bacterial cell division and the septal ring.

    PubMed

    Weiss, David S

    2004-11-01

    Cell division in bacteria is mediated by the septal ring, a collection of about a dozen (known) proteins that localize to the division site, where they direct assembly of the division septum. The foundation of the septal ring is a polymer of the tubulin-like protein FtsZ. Recently, experiments using fluorescence recovery after photobleaching have revealed that the Z ring is extremely dynamic. FtsZ subunits exchange in and out of the ring on a time scale of seconds even while the overall morphology of the ring appears static. These findings, together with in vitro studies of purified FtsZ, suggest that the rate-limiting step in turnover of FtsZ polymers is GTP hydrolysis. Another component of the septal ring, FtsK, is involved in coordinating chromosome segregation with cell division. Recent studies have revealed that FtsK is a DNA translocase that facilitates decatenation of sister chromosomes by TopIV and resolution of chromosome dimers by the XerCD recombinase. Finally, two murein hydrolases, AmiC and EnvC, have been shown to localize to the septal ring of Escherichia coli, where they play an important role in separation of daughter cells.

  17. Determining the bacterial cell biology of Planctomycetes.

    PubMed

    Boedeker, Christian; Schüler, Margarete; Reintjes, Greta; Jeske, Olga; van Teeseling, Muriel C F; Jogler, Mareike; Rast, Patrick; Borchert, Daniela; Devos, Damien P; Kucklick, Martin; Schaffer, Miroslava; Kolter, Roberto; van Niftrik, Laura; Engelmann, Susanne; Amann, Rudolf; Rohde, Manfred; Engelhardt, Harald; Jogler, Christian

    2017-04-10

    Bacteria of the phylum Planctomycetes have been previously reported to possess several features that are typical of eukaryotes, such as cytosolic compartmentalization and endocytosis-like macromolecule uptake. However, recent evidence points towards a Gram-negative cell plan for Planctomycetes, although in-depth experimental analysis has been hampered by insufficient genetic tools. Here we develop methods for expression of fluorescent proteins and for gene deletion in a model planctomycete, Planctopirus limnophila, to analyse its cell organization in detail. Super-resolution light microscopy of mutants, cryo-electron tomography, bioinformatic predictions and proteomic analyses support an altered Gram-negative cell plan for Planctomycetes, including a defined outer membrane, a periplasmic space that can be greatly enlarged and convoluted, and an energized cytoplasmic membrane. These conclusions are further supported by experiments performed with two other Planctomycetes, Gemmata obscuriglobus and Rhodopirellula baltica. We also provide experimental evidence that is inconsistent with endocytosis-like macromolecule uptake; instead, extracellular macromolecules can be taken up and accumulate in the periplasmic space through unclear mechanisms.

  18. Following the fate of bacterial cells experiencing sudden chromosome loss.

    PubMed

    Elbaz, Maya; Ben-Yehuda, Sigal

    2015-04-28

    Chromosomal DNA is a constant source of information, essential for any given cell to respond and adapt to changing conditions. Here, we investigated the fate of exponentially growing bacterial cells experiencing a sudden and rapid loss of their entire chromosome. Utilizing Bacillus subtilis cells harboring an inducible copy of the endogenous toxin yqcG, which encodes an endonuclease, we induced the formation of a population of cells that lost their genetic information simultaneously. Surprisingly, these DNA-less cells, termed DLCs, did not lyse immediately and exhibited normal cellular morphology for a period of at least 5 h after DNA loss. This cellular integrity was manifested by their capacity to maintain an intact membrane and membrane potential and cell wall architecture similar to those of wild-type cells. Unlike growing cells that exhibit a dynamic profile of macromolecules, DLCs displayed steady protein and RNA reservoirs. Remarkably, following DLCs by time lapse microscopy revealed that they succeeded in synthesizing proteins, elongating, and dividing, apparently forming de novo Z rings at the midcell position. Taken together, the persistence of key cellular events in DLCs indicates that the information to carry out lengthy processes is harbored within the remaining molecular components. Perturbing bacterial growth by the use of antibiotics targeting replication, transcription, or translation has been a subject of study for many years; however, the consequences of a more dramatic event, in which the entire bacterial chromosome is lost, have not been described. Here, we followed the fate of bacterial cells encountering an abrupt loss of their entire genome. Surprisingly, the cells preserved an intact envelope and functioning macromolecules. Furthermore, cells lacking their genome could still elongate and divide hours after the loss of DNA. Our data suggest that the information stored in the transient reservoir of macromolecules is sufficient to carry out

  19. Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells

    PubMed Central

    Pu, Yingying; Zhao, Zhilun; Li, Yingxing; Zou, Jin; Ma, Qi; Zhao, Yanna; Ke, Yuehua; Zhu, Yun; Chen, Huiyi; Baker, Matthew A.B.; Ge, Hao; Sun, Yujie; Xie, Xiaoliang Sunney; Bai, Fan

    2016-01-01

    Summary Natural variations in gene expression provide a mechanism for multiple phenotypes to arise in an isogenic bacterial population. In particular, a sub-group termed persisters show high tolerance to antibiotics. Previously, their formation has been attributed to cell dormancy. Here we demonstrate that bacterial persisters, under β-lactam antibiotic treatment, show less cytoplasmic drug accumulation as a result of enhanced efflux activity. Consistently, a number of multi-drug efflux genes, particularly the central component TolC, show higher expression in persisters. Time-lapse imaging and mutagenesis studies further establish a positive correlation between tolC expression and bacterial persistence. The key role of efflux systems, among multiple biological pathways involved in persister formation, indicates that persisters implement a positive defense against antibiotics prior to a passive defense via dormancy. Finally, efflux inhibitors and antibiotics together effectively attenuate persister formation, suggesting a combination strategy to target drug tolerance. PMID:27105118

  20. Morphology, Growth, and Size Limit of Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Jiang, Hongyuan; Sun, Sean X.

    2010-07-01

    Bacterial cells utilize a living peptidoglycan network (PG) to separate the cell interior from the surroundings. The shape of the cell is controlled by PG synthesis and cytoskeletal proteins that form bundles and filaments underneath the cell wall. The PG layer also resists turgor pressure and protects the cell from osmotic shock. We argue that mechanical influences alter the chemical equilibrium of the reversible PG assembly and determine the cell shape and cell size. Using a mechanochemical approach, we show that the cell shape can be regarded as a steady state of a growing network under the influence of turgor pressure and mechanical stress. Using simple elastic models, we predict the size of common spherical and rodlike bacteria. The influence of cytoskeletal bundles such as crescentin and MreB are discussed within the context of our model.

  1. How bacterial cells keep ribonucleases under control

    PubMed Central

    Deutscher, Murray P.

    2015-01-01

    Ribonucleases (RNases) play an essential role in essentially every aspect of RNA metabolism, but they also can be destructive enzymes that need to be regulated to avoid unwanted degradation of RNA molecules. As a consequence, cells have evolved multiple strategies to protect RNAs against RNase action. They also utilize a variety of mechanisms to regulate the RNases themselves. These include post-transcriptional regulation, post-translational modification, trans-acting inhibitors, cellular localization, as well as others that are less well studied. In this review, I will briefly discuss how RNA molecules are protected and then examine in detail our current understanding of the mechanisms known to regulate individual RNases. PMID:25878039

  2. Trogocytosis-associated cell to cell spread of intracellular bacterial pathogens.

    PubMed

    Steele, Shaun; Radlinski, Lauren; Taft-Benz, Sharon; Brunton, Jason; Kawula, Thomas H

    2016-01-23

    Macrophages are myeloid-derived phagocytic cells and one of the first immune cell types to respond to microbial infections. However, a number of bacterial pathogens are resistant to the antimicrobial activities of macrophages and can grow within these cells. Macrophages have other immune surveillance roles including the acquisition of cytosolic components from multiple types of cells. We hypothesized that intracellular pathogens that can replicate within macrophages could also exploit cytosolic transfer to facilitate bacterial spread. We found that viable Francisella tularensis, as well as Salmonella enterica bacteria transferred from infected cells to uninfected macrophages along with other cytosolic material through a transient, contact dependent mechanism. Bacterial transfer occurred when the host cells exchanged plasma membrane proteins and cytosol via a trogocytosis related process leaving both donor and recipient cells intact and viable. Trogocytosis was strongly associated with infection in mice, suggesting that direct bacterial transfer occurs by this process in vivo.

  3. Subdiffraction localization of a nanostructured photosensitizer in bacterial cells

    PubMed Central

    Delcanale, Pietro; Pennacchietti, Francesca; Maestrini, Giulio; Rodríguez-Amigo, Beatriz; Bianchini, Paolo; Diaspro, Alberto; Iagatti, Alessandro; Patrizi, Barbara; Foggi, Paolo; Agut, Monserrat; Nonell, Santi; Abbruzzetti, Stefania; Viappiani, Cristiano

    2015-01-01

    Antibacterial treatments based on photosensitized production of reactive oxygen species is a promising approach to address local microbial infections. Given the small size of bacterial cells, identification of the sites of binding of the photosensitizing molecules is a difficult issue to address with conventional microscopy. We show that the excited state properties of the naturally occurring photosensitizer hypericin can be exploited to perform STED microscopy on bacteria incubated with the complex between hypericin and apomyoglobin, a self-assembled nanostructure that confers very good bioavailability to the photosensitizer. Hypericin fluorescence is mostly localized at the bacterial wall, and accumulates at the polar regions of the cell and at sites of cell wall growth. While these features are shared by Gram-negative and Gram-positive bacteria, only the latter are effectively photoinactivated by light exposure. PMID:26494535

  4. Resistance to antibiotics targeted to the bacterial cell wall

    PubMed Central

    Nikolaidis, I; Favini-Stabile, S; Dessen, A

    2014-01-01

    Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed. PMID:24375653

  5. Global dispersion of bacterial cells on Asian dust

    PubMed Central

    Yamaguchi, Nobuyasu; Ichijo, Tomoaki; Sakotani, Akiko; Baba, Takashi; Nasu, Masao

    2012-01-01

    The atmospheric dispersion of bacteria over long distances is an important facet of microbial ecology. Certain groups of dispersed bacteria can adapt to their new location and affect established ecosystems. Aeolian dust particles are known to be carriers of microbes but further research is needed to expand our understanding of this field of microbiology. Here we showed the potential of aeolian dust to global migration of bacterial cells. We demonstrated the presence of microbial cells on dust particles directly by bio-imaging. Bacterial abundance on dust particles declined from 105 to less than 103 cells/m3 as the dust event subsided. Taxonomically diverse bacteria were identified by 16S rRNA gene sequencing and some of these bacteria retained growth potential. Our results confirm that bacteria can attach to aeolian dust particles and they have the potential to migrate globally during dust events and thus can contribute to the diversity of downwind ecosystems. PMID:22826803

  6. Subdiffraction localization of a nanostructured photosensitizer in bacterial cells.

    PubMed

    Delcanale, Pietro; Pennacchietti, Francesca; Maestrini, Giulio; Rodríguez-Amigo, Beatriz; Bianchini, Paolo; Diaspro, Alberto; Iagatti, Alessandro; Patrizi, Barbara; Foggi, Paolo; Agut, Monserrat; Nonell, Santi; Abbruzzetti, Stefania; Viappiani, Cristiano

    2015-10-23

    Antibacterial treatments based on photosensitized production of reactive oxygen species is a promising approach to address local microbial infections. Given the small size of bacterial cells, identification of the sites of binding of the photosensitizing molecules is a difficult issue to address with conventional microscopy. We show that the excited state properties of the naturally occurring photosensitizer hypericin can be exploited to perform STED microscopy on bacteria incubated with the complex between hypericin and apomyoglobin, a self-assembled nanostructure that confers very good bioavailability to the photosensitizer. Hypericin fluorescence is mostly localized at the bacterial wall, and accumulates at the polar regions of the cell and at sites of cell wall growth. While these features are shared by Gram-negative and Gram-positive bacteria, only the latter are effectively photoinactivated by light exposure.

  7. Resistance to antibiotics targeted to the bacterial cell wall.

    PubMed

    Nikolaidis, I; Favini-Stabile, S; Dessen, A

    2014-03-01

    Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed.

  8. Bacterial cells enhance laser driven ion acceleration

    PubMed Central

    Dalui, Malay; Kundu, M.; Trivikram, T. Madhu; Rajeev, R.; Ray, Krishanu; Krishnamurthy, M.

    2014-01-01

    Intense laser produced plasmas generate hot electrons which in turn leads to ion acceleration. Ability to generate faster ions or hotter electrons using the same laser parameters is one of the main outstanding paradigms in the intense laser-plasma physics. Here, we present a simple, albeit, unconventional target that succeeds in generating 700 keV carbon ions where conventional targets for the same laser parameters generate at most 40 keV. A few layers of micron sized bacteria coating on a polished surface increases the laser energy coupling and generates a hotter plasma which is more effective for the ion acceleration compared to the conventional polished targets. Particle-in-cell simulations show that micro-particle coated target are much more effective in ion acceleration as seen in the experiment. We envisage that the accelerated, high-energy carbon ions can be used as a source for multiple applications. PMID:25102948

  9. Bacterial cells enhance laser driven ion acceleration.

    PubMed

    Dalui, Malay; Kundu, M; Trivikram, T Madhu; Rajeev, R; Ray, Krishanu; Krishnamurthy, M

    2014-08-08

    Intense laser produced plasmas generate hot electrons which in turn leads to ion acceleration. Ability to generate faster ions or hotter electrons using the same laser parameters is one of the main outstanding paradigms in the intense laser-plasma physics. Here, we present a simple, albeit, unconventional target that succeeds in generating 700 keV carbon ions where conventional targets for the same laser parameters generate at most 40 keV. A few layers of micron sized bacteria coating on a polished surface increases the laser energy coupling and generates a hotter plasma which is more effective for the ion acceleration compared to the conventional polished targets. Particle-in-cell simulations show that micro-particle coated target are much more effective in ion acceleration as seen in the experiment. We envisage that the accelerated, high-energy carbon ions can be used as a source for multiple applications.

  10. The structure of bacterial cell cycle and age structure of bacterial populations.

    PubMed

    Ivanov, V N; Svechnikova, T A; Stabnikova, E V; Gregirchak, N N

    1995-01-01

    Study of synchronous and asynchronous cultures of Bacillus megaterium, Bacillus thuringiensis and Bacillus licheniformis has shown that the duration of chromosomal DNA replication (period C) is proportional to the generation time, and time between two cycles of the DNA replication (known as period I). The duration of period C is nearly constant and makes up from 0.5 to 1.0 hour at the variations of the generation time from 1.5 to 2.75 hours. The duration of period B (the time between the termination of the cell division and initiation of DNA replication), and period D (the time between the termination of DNA replication and initiation of cell division) were experimentally revealed as stochastic parameters. The theoretical model of the bacterial cell cycle and the age structure of bacterial population was suggested. The main points of this theory are that periods C and I may be stochastically disposed in the division cycle of individual cells and a sum of duration of C- and I-periods is equal to generation time. The data calculated from the theoretical model were confirmed by the experimental data of flow cytofluorometric analysis of the age structure of synchronous and asynchronous cultures of the bacilli.

  11. Studying bacterial quorum-sensing at the single cell level

    NASA Astrophysics Data System (ADS)

    Delfino Perez, Pablo; Pelakh, Leslie; Young, Jonathan; Johnson, Elaine; Hagen, Stephen

    2010-03-01

    Like many bacterial species, Vibrio fischeri can detect its own population density through a quorum sensing (QS) mechanism. The bacterium releases a signal molecule (AI, autoinducer), which accumulates at high population density and triggers a genetic switch. In V.fischeri this leads to bioluminescence. Little is known about how stochastic gene expression affects QS at the level of single cells. We are imaging the luminescence of individual V.fischeri cells in a flow chamber and directly measuring the intercell variability in AI activation of the QS circuit. Our single-cell luminescence experiments allow us to track cells over time and characterize variations in their response to AI levels. We find heterogeneous response to the external signal: at a given AI concentration some cells may be strongly luminescent while others are virtually dark. The analysis of noise in the individual cell response can eventually lead to a better understanding of how cells use QS to gather information about their environment.

  12. A framework to understand cell type transitions in bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Seminara, Agnese; Sinha, Naveen; Wilking, James; Koelher, Stephane; Cabeen, Matthew; Weitz, David; Brenner, Michael

    2013-11-01

    Bacterial biofilms are colonies of cells that live associated to surfaces and differentiate into different cell types, in response to unknown environmental cues. Similar to the development of multicellular organisms, differentiation happens in reproducible spatio-temporal patterns of gene expression. Why do we see the patterns that we see? Fluorescence microscopy shows that there is a cell lineage specific to biofilms: cells are first motile, they then become matrix producers, and finally they sporulate. We combine this knowledge to the complete space-time distribution of fluorescence to study when and where the transitions among these three cell types arise. We first isolate the effect of growth and expansion on the evolution of the expression profiles to detect the cell type transitions. Based on these data we then elaborate a consistent scenario to explain cell type transitions.

  13. Bacterial cell division: experimental and theoretical approaches to the divisome.

    PubMed

    Broughton, Claire E; Roper, David I; Van Den Berg, Hugo A; Rodger, Alison

    2015-01-01

    Cell division is a key event in the bacterial life cycle. It involves constriction at the midcell, so that one cell can give rise to two daughter cells. This constriction is mediated by a ring composed offibrous multimers of the protein FtsZ. However a host of additional factors is involved in the formation and dynamics of this "Z-ring" and this complicated apparatus is collectively known as the "divisome". We review the literature, with an emphasis on mathematical modelling, and show how such theoretical efforts have helped experimentalists to make sense of the at times bewildering data, and plan further experiments.

  14. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells.

    PubMed

    Chae, Kyu-Jung; Choi, Mi-Jin; Lee, Jin-Wook; Kim, Kyoung-Yeol; Kim, In S

    2009-07-01

    Four microbial fuel cells (MFCs) were inoculated with anaerobic sludge and fed four different substrates for over one year. The Coulombic efficiency (CE) and power output varied with different substrates, while the bacterial viability was similar. Acetate fed-MFC showed the highest CE (72.3%), followed by butyrate (43.0%), propionate (36.0%) and glucose (15.0%). Glucose resulted in the lowest CE because of its fermentable nature implying its consumption by diverse non-electricity-generating bacteria. 16S rDNA sequencing results indicated phylogenetic diversity in the communities of all anode biofilms, and there was no single dominant bacterial species. A relative abundance of beta-Proteobacteria but an absence of gamma-Proteobacteria was observed in all MFCs except for propionate-fed system in which Firmicutes dominating. The glucose-fed-MFC showed the widest community diversity, resulting in the rapid generation of current without lag time when different substrates were suddenly fed. Geobacter-like species with the most representative Geobactersulfurreducens PCA(T) were integral members of the bacterial community in all MFCs except for the propionate-fed system.

  15. Proteolysis in plasmid DNA stable maintenance in bacterial cells.

    PubMed

    Karlowicz, Anna; Wegrzyn, Katarzyna; Dubiel, Andrzej; Ropelewska, Malgorzata; Konieczny, Igor

    2016-07-01

    Plasmids, as extrachromosomal genetic elements, need to work out strategies that promote independent replication and stable maintenance in host bacterial cells. Their maintenance depends on constant formation and dissociation of nucleoprotein complexes formed on plasmid DNA. Plasmid replication initiation proteins (Rep) form specific complexes on direct repeats (iterons) localized within the plasmid replication origin. Formation of these complexes along with a strict control of Rep protein cellular concentration, quaternary structure, and activity, is essential for plasmid maintenance. Another important mechanism for maintenance of low-copy-number plasmids are the toxin-antitoxin (TA) post-segregational killing (psk) systems, which prevent plasmid loss from the bacterial cell population. In this mini review we discuss the importance of nucleoprotein complex processing by energy-dependent host proteases in plasmid DNA replication and plasmid type II toxin-antitoxin psk systems, and draw attention to the elusive role of DNA in this process.

  16. ULTRASOUND INCREASES THE RATE OF BACTERIAL CELL GROWTH

    PubMed Central

    Pitt, William G.; Ross, S. Aaron

    2006-01-01

    Ultrasound was employed to increase the growth rate of bacterial cells attached to surfaces. Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli cells adhered to and grew on a polyethylene surface in the presence of ultrasound. It was found that low frequency ultrasound (70 kHz) of low acoustic intensity (<2 W/cm2) increased the growth rate of the cells compared to growth without ultrasound. However, at high intensity levels, cells were partially removed from the surface. Ultrasound also enhanced planktonic growth of S. epidermidis and other planktonic bacteria. It is hypothesized that ultrasound increases the rate of transport of oxygen and nutrients to the cells and increases the rate of transport of waste products away from the cells, thus enhancing their growth. PMID:12790676

  17. B cells enhance early innate immune responses during bacterial sepsis

    PubMed Central

    Kelly-Scumpia, Kindra M.; Scumpia, Philip O.; Weinstein, Jason S.; Delano, Matthew J.; Cuenca, Alex G.; Nacionales, Dina C.; Wynn, James L.; Lee, Pui Y.; Kumagai, Yutaro; Efron, Philip A.; Akira, Shizuo; Wasserfall, Clive; Atkinson, Mark A.

    2011-01-01

    Microbes activate pattern recognition receptors to initiate adaptive immunity. T cells affect early innate inflammatory responses to viral infection, but both activation and suppression have been demonstrated. We identify a novel role for B cells in the early innate immune response during bacterial sepsis. We demonstrate that Rag1−/− mice display deficient early inflammatory responses and reduced survival during sepsis. Interestingly, B cell–deficient or anti-CD20 B cell–depleted mice, but not α/β T cell–deficient mice, display decreased inflammatory cytokine and chemokine production and reduced survival after sepsis. Both treatment of B cell–deficient mice with serum from wild-type (WT) mice and repletion of Rag1−/− mice with B cells improves sepsis survival, suggesting antibody-independent and antibody-dependent roles for B cells in the outcome to sepsis. During sepsis, marginal zone and follicular B cells are activated through type I interferon (IFN-I) receptor (IFN-α/β receptor [IFNAR]), and repleting Rag1−/− mice with WT, but not IFNAR−/−, B cells improves IFN-I–dependent and –independent early cytokine responses. Repleting B cell–deficient mice with the IFN-I–dependent chemokine, CXCL10 was also sufficient to improve sepsis survival. This study identifies a novel role for IFN-I–activated B cells in protective early innate immune responses during bacterial sepsis. PMID:21746813

  18. Benzodioxane-benzamides as new bacterial cell division inhibitors.

    PubMed

    Chiodini, Giuseppe; Pallavicini, Marco; Zanotto, Carlo; Bissa, Massimiliano; Radaelli, Antonia; Straniero, Valentina; Bolchi, Cristiano; Fumagalli, Laura; Ruggeri, Paola; De Giuli Morghen, Carlo; Valoti, Ermanno

    2015-01-07

    A SAR study was performed on 3-substituted 2,6-difluorobenzamides, known inhibitors of the essential bacterial cell division protein FtsZ, through a series of modifications first of 2,6-difluoro-3-nonyloxybenzamide and then of its 3-pyridothiazolylmethoxy analogue PC190723. The study led to the identification of chiral 2,6-difluorobenzamides bearing 1,4-benzodioxane-2-methyl residue at the 3-position as potent antistaphylococcal compounds.

  19. Sporulation, bacterial cell envelopes and the origin of life

    PubMed Central

    Tocheva, Elitza I.; Ortega, Davi R.; Jensen, Grant J.

    2016-01-01

    Electron cryotomography (ECT) enables the 3D reconstruction of intact cells in a near-native state. Images produced by ECT have led to the proposal that an ancient sporulation-like event gave rise to the second membrane in diderm bacteria. Tomograms of sporulating monoderm and diderm bacterial cells show how sporulation can lead to the generation of diderm cells. Tomograms of Gram-negative and Gram-positive cell walls and purified sacculi suggest that they are more closely related than previously thought and support the hypothesis that they share a common origin. Mapping the distribution of cell envelope architectures onto a recent phylogenetic tree of life indicates that the diderm cell plan, and therefore the sporulation-like event that gave rise to it, must be very ancient. One explanation for this model is that during the cataclysmic transitions of the early Earth, cellular evolution may have gone through a bottleneck in which only spores survived, which implies that the last bacterial common ancestor was a spore. PMID:28232669

  20. Nanoscopy of bacterial cells immobilized by holographic optical tweezers

    PubMed Central

    Diekmann, Robin; Wolfson, Deanna L.; Spahn, Christoph; Heilemann, Mike; Schüttpelz, Mark; Huser, Thomas

    2016-01-01

    Imaging non-adherent cells by super-resolution far-field fluorescence microscopy is currently not possible because of their rapid movement while in suspension. Holographic optical tweezers (HOTs) enable the ability to freely control the number and position of optical traps, thus facilitating the unrestricted manipulation of cells in a volume around the focal plane. Here we show that immobilizing non-adherent cells by optical tweezers is sufficient to achieve optical resolution well below the diffraction limit using localization microscopy. Individual cells can be oriented arbitrarily but preferably either horizontally or vertically relative to the microscope's image plane, enabling access to sample sections that are impossible to achieve with conventional sample preparation and immobilization. This opens up new opportunities to super-resolve the nanoscale organization of chromosomal DNA in individual bacterial cells. PMID:27958271

  1. Nanoscopy of bacterial cells immobilized by holographic optical tweezers.

    PubMed

    Diekmann, Robin; Wolfson, Deanna L; Spahn, Christoph; Heilemann, Mike; Schüttpelz, Mark; Huser, Thomas

    2016-12-13

    Imaging non-adherent cells by super-resolution far-field fluorescence microscopy is currently not possible because of their rapid movement while in suspension. Holographic optical tweezers (HOTs) enable the ability to freely control the number and position of optical traps, thus facilitating the unrestricted manipulation of cells in a volume around the focal plane. Here we show that immobilizing non-adherent cells by optical tweezers is sufficient to achieve optical resolution well below the diffraction limit using localization microscopy. Individual cells can be oriented arbitrarily but preferably either horizontally or vertically relative to the microscope's image plane, enabling access to sample sections that are impossible to achieve with conventional sample preparation and immobilization. This opens up new opportunities to super-resolve the nanoscale organization of chromosomal DNA in individual bacterial cells.

  2. On the difference between SERS spectra of cell growth media and whole bacterial cells

    PubMed Central

    Premasiri, W. Ranjith; Gebregziabher, Yoseph; Ziegler, Lawrence D.

    2013-01-01

    It has been recently suggested [N. E. Marotta and L. A. Bottomley, Appl. Spectrosc. 64, 2010, 601-06] that previously reported SERS spectra of vegetative bacterial cells are due to residual cell growth media that were not properly removed from samples of the lab cultured microorganism suspensions. SERS spectra of several commonly used cell growth media are similar to those of bacterial cells as shown here and reported elsewhere. However, a multivariate data analysis approach shows that SERS spectra of different bacterial species grown in the same growth media exhibit different characteristic vibrational spectra, SERS spectra of the same organism grown in different media display the same SERS spectrum, and SERS spectra of growth media do not cluster near the SERS spectra of washed bacteria. Furthermore, a bacterial SERS spectrum grown in a minimal medium, which uses inorganics for a nitrogen source and displays virtually no SERS features, exhibits a characteristic bacterial SERS spectrum. We use multivariate analysis to show how successive water washing and centrifugation cycles remove cell growth media and result in a robust bacterial SERS spectrum in contrast to the previous study attributing bacterial SERS signals to growth media. PMID:21513591

  3. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    PubMed Central

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; Savchenko, Alexei; Skarina, Tatiana; Cui, Hong; Cort, John R.; Adkins, Joshua N.; Brown, Roslyn N.

    2015-01-01

    The study of protein interactions in the context of living cells can generate critical information about localization, dynamics, and interacting partners. This information is particularly valuable in the context of host-pathogen interactions. Many pathogen proteins function within host cells in a variety of way such as, enabling evasion of the host immune system and survival within the intracellular environment. To study these pathogen-protein host-cell interactions, several approaches are commonly used, including: in vivo infection with a strain expressing a tagged or mutant protein, or introduction of pathogen genes via transfection or transduction. Each of these approaches has advantages and disadvantages. We sought a means to directly introduce exogenous proteins into cells. Electroporation is commonly used to introduce nucleic acids into cells, but has been more rarely applied to proteins although the biophysical basis is exactly the same. A standard electroporator was used to introduce affinity-tagged bacterial effectors into mammalian cells. Human epithelial and mouse macrophage cells were cultured by traditional methods, detached, and placed in 0.4 cm gap electroporation cuvettes with an exogenous bacterial pathogen protein of interest (e.g. Salmonella Typhimurium GtgE). After electroporation (0.3 kV) and a short (4 hr) recovery period, intracellular protein was verified by fluorescently labeling the protein via its affinity tag and examining spatial and temporal distribution by confocal microscopy. The electroporated protein was also shown to be functional inside the cell and capable of correct subcellular trafficking and protein-protein interaction. While the exogenous proteins tended to accumulate on the surface of the cells, the electroporated samples had large increases in intracellular effector concentration relative to incubation alone. The protocol is simple and fast enough to be done in a parallel fashion, allowing for high

  4. Electroporation of functional bacterial effectors into mammalian cells.

    PubMed

    Sontag, Ryan L; Mihai, Cosmin; Orr, Galya; Savchenko, Alexei; Skarina, Tatiana; Cui, Hong; Cort, John R; Adkins, Joshua N; Brown, Roslyn N

    2015-01-19

    The study of protein interactions in the context of living cells can generate critical information about localization, dynamics, and interacting partners. This information is particularly valuable in the context of host-pathogen interactions. Many pathogen proteins function within host cells in a variety of way such as, enabling evasion of the host immune system and survival within the intracellular environment. To study these pathogen-protein host-cell interactions, several approaches are commonly used, including: in vivo infection with a strain expressing a tagged or mutant protein, or introduction of pathogen genes via transfection or transduction. Each of these approaches has advantages and disadvantages. We sought a means to directly introduce exogenous proteins into cells. Electroporation is commonly used to introduce nucleic acids into cells, but has been more rarely applied to proteins although the biophysical basis is exactly the same. A standard electroporator was used to introduce affinity-tagged bacterial effectors into mammalian cells. Human epithelial and mouse macrophage cells were cultured by traditional methods, detached, and placed in 0.4 cm gap electroporation cuvettes with an exogenous bacterial pathogen protein of interest (e.g. Salmonella Typhimurium GtgE). After electroporation (0.3 kV) and a short (4 hr) recovery period, intracellular protein was verified by fluorescently labeling the protein via its affinity tag and examining spatial and temporal distribution by confocal microscopy. The electroporated protein was also shown to be functional inside the cell and capable of correct subcellular trafficking and protein-protein interaction. While the exogenous proteins tended to accumulate on the surface of the cells, the electroporated samples had large increases in intracellular effector concentration relative to incubation alone. The protocol is simple and fast enough to be done in a parallel fashion, allowing for high

  5. Uniform dose atmospheric pressure microplasma exposure of individual bacterial cells

    NASA Astrophysics Data System (ADS)

    Rutherford, David; Mahony, Charles; Spence, Sarah; Perez-Martin, Fatima; Kelsey, Colin; Hamilton, Neil; Diver, Declan; Bennet, Euan; Potts, Hugh; Mariotti, Davide; McDowell, David; Maguire, Paul

    2015-09-01

    Plasma - bacteria interactions have been studied for some time with a view to using plasma exposure for wound healing, sterilization and decontamination. While high efficacy has been demonstrated, important fundamental mechanisms are not understood and may be critical for ultimate acceptance. The dose variation across the exposed population and the impact of non-lethal exposure on subsequent bacterial growth are important issues. We demonstrate that individual bacterial cells can remain viable after exposure to a uniform plasma dose. Each bacteria cell (E coli) is delivered to the atmospheric pressure plasma in an aerosolised droplet (d ~ 10 micron). The estimated plasma density is 1E13 - 1E14 cm-3, gas temperature <400 K, and exposure times vary between 0.04 and 0.1ms. Droplet evaporation in flight is ~2 micron and plasma - cell interactions are mediated by the surrounding liquid (Ringers solution) where plasma-induced droplet surface chemistry and charging is known to occur. We report the cell viability and recovery dynamics of individual exposed cells as well as impact on DNA and membrane components with reference to measured plasma parameters. This research was funded by EPSRC (Grants: EP/K006088/1 & EP/K006142/1).

  6. Virus and Bacterial Cell Chemical Analysis by NanoSIMS

    SciTech Connect

    Weber, P; Holt, J

    2008-07-28

    In past work for the Department of Homeland Security, the LLNL NanoSIMS team has succeeded in extracting quantitative elemental composition at sub-micron resolution from bacterial spores using nanometer-scale secondary ion mass spectrometry (NanoSIMS). The purpose of this task is to test our NanoSIMS capabilities on viruses and bacterial cells. This initial work has proven successful. We imaged Tobacco Mosaic Virus (TMV) and Bacillus anthracis Sterne cells using scanning electron microscopy (SEM) and then analyzed those samples by NanoSIMS. We were able resolve individual viral particles ({approx}18 nm by 300 nm) in the SEM and extract correlated elemental composition in the NanoSIMS. The phosphorous/carbon ratio observed in TMV is comparable to that seen in bacterial spores (0.033), as was the chlorine/carbon ratio (0.11). TMV elemental composition is consistent from spot to spot, and TMV is readily distinguished from debris by NanoSIMS analysis. Bacterial cells were readily identified in the SEM and relocated in the NanoSIMS for elemental analysis. The Ba Sterne cells were observed to have a measurably lower phosphorous/carbon ratio (0.005), as compared to the spores produced in the same run (0.02). The chlorine/carbon ratio was approximately 2.5X larger in the cells (0.2) versus the spores (0.08), while the fluorine/carbon ratio was approximately 10X lower in the cells (0.008) than the spores (0.08). Silicon/carbon ratios for both cells and spores encompassed a comparable range. The initial data in this study suggest that high resolution analysis is useful because it allows the target agent to be analyzed separate from particulates and other debris. High resolution analysis would also be useful for trace sample analysis. The next step in this work is to determine the potential utility of elemental signatures in these kinds of samples. We recommend bulk analyses of media and agent samples to determine the range of media compositions in use, and to determine how

  7. Bursting the bubble on bacterial biofilms: a flow cell methodology

    PubMed Central

    Crusz, Shanika A.; Popat, Roman; Rybtke, Morten Theil; Cámara, Miguel; Givskov, Michael; Diggle, Stephen P.; Williams, Paul

    2012-01-01

    The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trouble-shooting techniques for even the most experienced laboratories. The adoption of a common and reliable methodology amongst researchers would enable findings to be shared and replicated amongst the biofilm research community, with the overall aim of advancing understanding and management of these complex and widespread bacterial communities. PMID:22877233

  8. Towards a bottom-up reconstitution of bacterial cell division.

    PubMed

    Martos, Ariadna; Jiménez, Mercedes; Rivas, Germán; Schwille, Petra

    2012-12-01

    The components of the bacterial division machinery assemble to form a dynamic ring at mid-cell that drives cytokinesis. The nature of most division proteins and their assembly pathway is known. Our knowledge about the biochemical activities and protein interactions of some key division elements, including those responsible for correct ring positioning, has progressed considerably during the past decade. These developments, together with new imaging and membrane reconstitution technologies, have triggered the 'bottom-up' synthetic approach aiming at reconstructing bacterial division in the test tube, which is required to support conclusions derived from cellular and molecular analysis. Here, we describe recent advances in reconstituting Escherichia coli minimal systems able to reproduce essential functions, such as the initial steps of division (proto-ring assembly) and one of the main positioning mechanisms (Min oscillating system), and discuss future perspectives and experimental challenges.

  9. Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness.

    PubMed

    Auer, George K; Lee, Timothy K; Rajendram, Manohary; Cesar, Spencer; Miguel, Amanda; Huang, Kerwyn Casey; Weibel, Douglas B

    2016-06-22

    Bacteria must maintain mechanical integrity to withstand the large osmotic pressure differential across the cell membrane and wall. Although maintaining mechanical integrity is critical for proper cellular function, a fact exploited by prominent cell-wall-targeting antibiotics, the proteins that contribute to cellular mechanics remain unidentified. Here, we describe a high-throughput optical method for quantifying cell stiffness and apply this technique to a genome-wide collection of ∼4,000 Escherichia coli mutants. We identify genes with roles in diverse functional processes spanning cell-wall synthesis, energy production, and DNA replication and repair that significantly change cell stiffness when deleted. We observe that proteins with biochemically redundant roles in cell-wall synthesis exhibit different stiffness defects when deleted. Correlating our data with chemical screens reveals that reducing membrane potential generally increases cell stiffness. In total, our work demonstrates that bacterial cell stiffness is a property of both the cell wall and broader cell physiology and lays the groundwork for future systematic studies of mechanoregulation.

  10. Cooperativity of peptidoglycan synthases active in bacterial cell elongation.

    PubMed

    Banzhaf, Manuel; van den Berg van Saparoea, Bart; Terrak, Mohammed; Fraipont, Claudine; Egan, Alexander; Philippe, Jules; Zapun, André; Breukink, Eefjan; Nguyen-Distèche, Martine; den Blaauwen, Tanneke; Vollmer, Waldemar

    2012-07-01

    Growth of the bacterial cell wall peptidoglycan sacculus requires the co-ordinated activities of peptidoglycan synthases, hydrolases and cell morphogenesis proteins, but the details of these interactions are largely unknown. We now show that the Escherichia coli peptidoglycan glycosyltrasferase-transpeptidase PBP1A interacts with the cell elongation-specific transpeptidase PBP2 in vitro and in the cell. Cells lacking PBP1A are thinner and initiate cell division later in the cell cycle. PBP1A localizes mainly to the cylindrical wall of the cell, supporting its role in cell elongation. Our in vitro peptidoglycan synthesis assays provide novel insights into the cooperativity of peptidoglycan synthases with different activities. PBP2 stimulates the glycosyltransferase activity of PBP1A, and PBP1A and PBP2 cooperate to attach newly synthesized peptidoglycan to sacculi. PBP2 has peptidoglycan transpeptidase activity in the presence of active PBP1A. Our data also provide a possible explanation for the depletion of lipid II precursors in penicillin-treated cells.

  11. Identification of Salmonella functions critical for bacterial cell division within eukaryotic cells.

    PubMed

    Henry, T; García-Del Portillo, F; Gorvel, J P

    2005-04-01

    Salmonella typhimurium multiplication inside eukaryotic host cells is critical for virulence. Salmonella typhimurium strain SL1344 appears as filaments upon growth in macrophages and MelJuSo cells, a human melanoma cell line, indicating a specific blockage in the bacterial cell division process. Several studies have investigated the host cell response impairing bacterial division. However, none looked at the bacterial factors involved in inhibition of Salmonella division inside eukaryotic cells. We show here that blockage in the bacterial division process is sulA-independent and takes place after FtsZ-ring assembly. Salmonella typhimurium genes in which mutations lead to filamentous growth within host cells were identified by a large scale mutagenesis approach on strain 12023, revealing bacterial functions crucial for cell division within eukaryotic cells. We finally demonstrate that SL1344 filamentation is a result of hisG mutation, requires the activity of an enzyme of the histidine biosynthetic pathway HisFH and is specific for the vacuolar environment.

  12. Bacterial foraging based edge detection for cell image segmentation.

    PubMed

    Pan, Yongsheng; Zhou, Tao; Xia, Yong

    2015-01-01

    Edge detection is the most popular and common choices for cell image segmentation, in which local searching strategies are commonly used. In spite of their computational efficiency, traditional edge detectors, however, may either produce discontinued edges or rely heavily on initializations. In this paper, we propose a bacterial foraging based edge detection (BFED) algorithm for cell image segmentation. We model the gradients of intensities as the nutrient concentration and propel bacteria to forage along nutrient-rich locations via mimicking the behavior of Escherichia coli, including the chemotaxis, swarming, reproduction, elimination and dispersal. As a nature-inspired evolutionary technique, this algorithm can identify the desired edges and mark them as the tracks of bacteria. We have evaluated the proposed algorithm against the Canny, SUSAN, Verma's and an active contour model (ACM) based edge detectors on both synthetic and real cell images. Our results suggest that the BFED algorithm can identify boundaries more effectively and provide more accurate cell image segmentation.

  13. Bacterial actin and tubulin homologs in cell growth and division.

    PubMed

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.

  14. Bacterial cells carrying synthetic dual-function operon survived starvation.

    PubMed

    Matsumoto, Yuki; Ito, Yoichiro; Tsuru, Saburo; Ying, Bei-Wen; Yomo, Tetsuya

    2011-01-01

    A synthetic dual-function operon with a bistable structure was designed and successfully integrated into the bacterial genome. Bistability was generated by the mutual inhibitory structure comprised of the promoters P(tet) and P(lac) and the repressors LacI and TetR. Dual function essential for cell growth was introduced by replacing the genes (i.e., hisC and leuB) encoding proteins involved in the biosynthesis of histidine and leucine from their native chromosomal locations to the synthetic operon. Both colony formation and population dynamics of the cells carrying this operon showed that the cells survived starvation and the newly formed population transited between the two stable states, representing the induced hisC and leuB levels, in accordance with the nutritional status. The results strongly suggested that the synthetic design of proto-operons sensitive to external perturbations is practical and functional in native cells.

  15. Human mesenchymal stem cells: New sojourn of bacterial pathogens.

    PubMed

    Kohli, Sakshi; Singh, Yadvir; Sowpati, Divya Tej; Ehtesham, Nasreen Z; Dobrindt, Ulrich; Hacker, Jörg; Hasnain, Seyed E

    2015-05-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is the leading infectious disease which claims one human life every 15-20s globally. The persistence of this deadly disease in human population can be attributed to the ability of the bacterium to stay in latent form. M. tuberculosis possesses a plethora of mechanisms not only to survive latently under harsh conditions inside the host but also modulate the host immune cells in its favour. Various M. tuberculosis gene families have also been described to play a role in this process. Recently, human bone marrow derived mesenchymal stem cells (MSCs) have been reported as a niche for dormant M. tuberculosis. MSCs possess abilities to alter the host immune response. The bacterium finds this self-renewal and immune privileged nature of MSCs very favourable not only to modulate the host immune system, with some help from its own genes, but also to avoid the external drug pressure. We suggest that the MSCs not only provide a resting place for M. tuberculosis but could also, by virtue of their intrinsic ability to disseminate in the body, explain the genesis of extra-pulmonary TB. A similar exploitation of stem cells by other bacterial pathogens is a distinct possibility. It may be likely that other intracellular bacterial pathogens adopt this strategy to 'piggy-back' on to ovarian stem cells to ensure vertical transmission and successful propagation to the next generation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Cell surface energy, contact angles and phase partition. II. Bacterial cells in biphasic aqueous mixtures.

    PubMed

    Gerson, D F; Akit, J

    1980-11-04

    Partition coefficients in biphasic mixtures of poly(ethylene glycol) and Dextran are compared to cell surface energies obtained from contact angles of each liquid phase on cell layers. Linear relationships are observed between these two independent measurements for a variety of bacterial cells. The results demonstrate the importance of interfacial phenomena and contact angles in the phase-partition process.

  17. Tiny cells meet big questions: a closer look at bacterial cell biology.

    PubMed

    Goley, Erin D

    2013-04-01

    While studying actin assembly as a graduate student with Matt Welch at the University of California at Berkeley, my interest was piqued by reports of surprising observations in bacteria: the identification of numerous cytoskeletal proteins, actin homologues fulfilling spindle-like functions, and even the presence of membrane-bound organelles. Curiosity about these phenomena drew me to Lucy Shapiro's lab at Stanford University for my postdoctoral research. In the Shapiro lab, and now in my lab at Johns Hopkins, I have focused on investigating the mechanisms of bacterial cytokinesis. Spending time as both a eukaryotic cell biologist and a bacterial cell biologist has convinced me that bacterial cells present the same questions as eukaryotic cells: How are chromosomes organized and accurately segregated? How is force generated for cytokinesis? How is polarity established? How are signals transduced within and between cells? These problems are conceptually similar between eukaryotes and bacteria, although their solutions can differ significantly in specifics. In this Perspective, I provide a broad view of cell biological phenomena in bacteria, the technical challenges facing those of us who peer into bacterial cells, and areas of common ground as research in eukaryotic and bacterial cell biology moves forward.

  18. Chromosome replication status and DNA content at any cell age in a bacterial cell cycle.

    PubMed

    Jiménez-Sánchez, Alfonso

    2015-09-07

    An algorithm is presented to determine the chromosome replication status, the rate of DNA synthesis per fork, and the amount of DNA in chromosome equivalents (G) per chromosome, per cell and per age throughout a bacterial cell cycle. This algorithm is the only attempt to study replication and the G value at any cell age since the general model of the bacterial cell cycle by Cooper and Helmstetter (1968, J. Mol. Biol. 31, 619-644). To help using it, two implementations are provided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Following the Fate of Bacterial Cells Experiencing Sudden Chromosome Loss

    PubMed Central

    Elbaz, Maya

    2015-01-01

    ABSTRACT Chromosomal DNA is a constant source of information, essential for any given cell to respond and adapt to changing conditions. Here, we investigated the fate of exponentially growing bacterial cells experiencing a sudden and rapid loss of their entire chromosome. Utilizing Bacillus subtilis cells harboring an inducible copy of the endogenous toxin yqcG, which encodes an endonuclease, we induced the formation of a population of cells that lost their genetic information simultaneously. Surprisingly, these DNA-less cells, termed DLCs, did not lyse immediately and exhibited normal cellular morphology for a period of at least 5 h after DNA loss. This cellular integrity was manifested by their capacity to maintain an intact membrane and membrane potential and cell wall architecture similar to those of wild-type cells. Unlike growing cells that exhibit a dynamic profile of macromolecules, DLCs displayed steady protein and RNA reservoirs. Remarkably, following DLCs by time lapse microscopy revealed that they succeeded in synthesizing proteins, elongating, and dividing, apparently forming de novo Z rings at the midcell position. Taken together, the persistence of key cellular events in DLCs indicates that the information to carry out lengthy processes is harbored within the remaining molecular components. PMID:25922388

  20. Instructive simulation of the bacterial cell division cycle.

    PubMed

    Zaritsky, Arieh; Wang, Ping; Vischer, Norbert O E

    2011-07-01

    The coupling between chromosome replication and cell division includes temporal and spatial elements. In bacteria, these have globally been resolved during the last 40 years, but their full details and action mechanisms are still under intensive study. The physiology of growth and the cell cycle are reviewed in the light of an established dogma that has formed a framework for development of new ideas, as exemplified here, using the Cell Cycle Simulation (CCSim) program. CCSim, described here in detail for the first time, employs four parameters related to time (replication, division and inter-division) and size (cell mass at replication initiation) that together are sufficient to describe bacterial cells under various conditions and states, which can be manipulated environmentally and genetically. Testing the predictions of CCSim by analysis of time-lapse micrographs of Escherichia coli during designed manipulations of the rate of DNA replication identified aspects of both coupling elements. Enhanced frequencies of cell division were observed following an interval of reduced DNA replication rate, consistent with the prediction of a minimum possible distance between successive replisomes (an eclipse). As a corollary, the notion that cell poles are not always inert was confirmed by observed placement of division planes at perpendicular planes in monstrous and cuboidal cells containing multiple, segregating nucleoids.

  1. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells.

    PubMed

    Popa, Crina M; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding.

  2. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells

    PubMed Central

    Popa, Crina M.; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding. PMID:27489796

  3. New insights into the bacterial cell wall peptidoglycan architecture

    NASA Astrophysics Data System (ADS)

    Dutcher, John; Touhami, Ahmed; Jericho, Manfred

    2009-03-01

    The molecular architecture of the bacterial cell wall peptidoglycan (sacculi) is among the most challenging, yet still unsolved, structural problems in biochemistry. Two models have been proposed: the planar model, in which the glycan strands lie in the plane of the cell surface, and the scaffold model, in which the glycan strands lie perpendicular to the cell surface. We have used atomic force microscopy (AFM) to investigate the molecular structure of this unique biopolymer in the rod-shaped bacterium Bacillus subtilis at high resolution. AFM images recorded in air on single sacculi revealed a porous regular network with 25-50 nm-wide peptidoglycan fibers and a 5-25 nm pore size. Interestingly, the new bacterial pole showed a regular structure with the same fiber sizes but with the fibers running in a direction that is almost perpendicular to that observed away from the pole. This finding combined with our previous data on live hydrated bacteria (1) provides new insights into the three-dimensional architecture of the peptidoglycan of Gram-positive bacteria. 1- A. Touhami, M. H. Jericho, and T. J. Beveridge, J. Bacteriol., 2004 186: 3286-3295.

  4. Structure of a Bacterial Cell Surface Decaheme Electron Conduit

    SciTech Connect

    Clarke, Thomas A.; Edwards, Marcus; Gates, Andrew J.; Hall, Andrea; White, Gaye; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alex S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.

    2011-05-23

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves deca-heme cytochromes that are located on the bacterial cell surface at the termini of trans-outermembrane (OM) electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular inter-cytochrome electron exchange along ‘nanowire’ appendages. We present a 3.2 Å crystal structure of one of these deca-heme cytochromes, MtrF, that allows the spatial organization of the ten hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65 Å octa-heme chain transects the length of the protein and is bisected by a planar 45 Å tetra-heme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g. minerals), soluble substrates (e.g. flavins) and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  5. Structure of a bacterial cell surface decaheme electron conduit

    PubMed Central

    Clarke, Thomas A.; Edwards, Marcus J.; Gates, Andrew J.; Hall, Andrea; White, Gaye F.; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alexander S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.

    2011-01-01

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along “nanowire” appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface. PMID:21606337

  6. Structure of a bacterial cell surface decaheme electron conduit.

    PubMed

    Clarke, Thomas A; Edwards, Marcus J; Gates, Andrew J; Hall, Andrea; White, Gaye F; Bradley, Justin; Reardon, Catherine L; Shi, Liang; Beliaev, Alexander S; Marshall, Matthew J; Wang, Zheming; Watmough, Nicholas J; Fredrickson, James K; Zachara, John M; Butt, Julea N; Richardson, David J

    2011-06-07

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  7. Diminished performance of bacterial fuel cells in microgravity

    NASA Astrophysics Data System (ADS)

    de Vet, S. J.; Rutgers, R.

    2005-08-01

    The student-experiment 'BugNRG' was flown to the International Space Station to study the effects of microgravity on the output of Bacterial Fuel Cells (BFCs) using the Rhodoferax Ferrireducens strain. Due to the possibilities of the impact of microgravity on the bacteria, a higher output and better performance was hypothesised. Voltage and current were recorded and the container temperature was logged.Measurements of the ISS and reference experiments indicate a significantly lower performance in microgravity. The exact mechanism for this performance remains as yet unknown. The BFCs worked in orbit and this is a 'space-first'.

  8. Metabolism, cell growth and the bacterial cell cycle

    PubMed Central

    Wang, Jue D.; Levin, Petra A.

    2010-01-01

    Adaptation to fluctuations in nutrient availability is a fact of life for single-celled organisms in the ‘wild’. A decade ago our understanding of how bacteria adjust cell cycle parameters to accommodate changes in nutrient availability stemmed almost entirely from elegant physiological studies completed in the 1960s. In this Opinion article we summarize recent groundbreaking work in this area and discuss potential mechanisms by which nutrient availability and metabolic status are coordinated with cell growth, chromosome replication and cell division. PMID:19806155

  9. Lung dendritic cells facilitate extrapulmonary bacterial dissemination during pneumococcal pneumonia

    PubMed Central

    Rosendahl, Alva; Bergmann, Simone; Hammerschmidt, Sven; Goldmann, Oliver; Medina, Eva

    2013-01-01

    Streptococcus pneumoniae is a leading cause of bacterial pneumonia worldwide. Given the critical role of dendritic cells (DCs) in regulating and modulating the immune response to pathogens, we investigated here the role of DCs in S. pneumoniae lung infections. Using a well-established transgenic mouse line which allows the conditional transient depletion of DCs, we showed that ablation of DCs resulted in enhanced resistance to intranasal challenge with S. pneumoniae. DCs-depleted mice exhibited delayed bacterial systemic dissemination, significantly reduced bacterial loads in the infected organs and lower levels of serum inflammatory mediators than non-depleted animals. The increased resistance of DCs-depleted mice to S. pneumoniae was associated with a better capacity to restrict pneumococci extrapulmonary dissemination. Furthermore, we demonstrated that S. pneumoniae disseminated from the lungs into the regional lymph nodes in a cell-independent manner and that this direct way of dissemination was much more efficient in the presence of DCs. We also provide evidence that S. pneumoniae induces expression and activation of matrix metalloproteinase-9 (MMP-9) in cultured bone marrow-derived DCs. MMP-9 is a protease involved in the breakdown of extracellular matrix proteins and is critical for DC trafficking across extracellular matrix and basement membranes during the migration from the periphery to the lymph nodes. MMP-9 was also significantly up-regulated in the lungs of mice after intranasal infection with S. pneumoniae. Notably, the expression levels of MMP-9 in the infected lungs were significantly decreased after depletion of DCs suggesting the involvement of DCs in MMP-9 production during pneumococcal pneumonia. Thus, we propose that S. pneumoniae can exploit the DC-derived proteolysis to open tissue barriers thereby facilitating its own dissemination from the local site of infection. PMID:23802100

  10. Bacterial spread from cell to cell: beyond actin-based motility.

    PubMed

    Kuehl, Carole J; Dragoi, Ana-Maria; Talman, Arthur; Agaisse, Hervé

    2015-09-01

    Several intracellular pathogens display the ability to propagate within host tissues by displaying actin-based motility in the cytosol of infected cells. As motile bacteria reach cell-cell contacts they form plasma membrane protrusions that project into adjacent cells and resolve into vacuoles from which the pathogen escapes, thereby achieving spread from cell to cell. Seminal studies have defined the bacterial and cellular factors that support actin-based motility. By contrast, the mechanisms supporting the formation of protrusions and their resolution into vacuoles have remained elusive. Here, we review recent advances in the field showing that Listeria monocytogenes and Shigella flexneri have evolved pathogen-specific mechanisms of bacterial spread from cell to cell.

  11. Entry of the bacterial pathogen Listeria monocytogenes into mammalian cells.

    PubMed

    Ireton, Keith

    2007-06-01

    The bacterial pathogen Listeria monocytogenes causes food-borne illnesses leading to meningitis or abortion. Listeria provokes its internalization ('entry') into mammalian cells that are normally non-phagocytic, such as intestinal epithelial cells and hepatocytes. Entry provides access to a nutrient-rich cytosol and allows translocation across anatomical barriers. Here I discuss the two major internalization pathways used by Listeria. These pathways are initiated by binding of the bacterial surface proteins InlA or InlB to their respective host receptors, E-cadherin or Met. InlA mediates traversal of the intestinal barrier, whereas InlB promotes infection of the liver. At the cellular level, both InlA- and InlB-dependent entry require host signalling that promotes cytoskeletal rearrangements and pathogen engulfment. However, many of the specific signalling proteins in the two entry routes differ. InlA-mediated uptake uses components of adherens junctions that are coupled to F-actin and myosin, whereas InlB-dependent entry involves cytosolic adaptors that bridge Met to regulators of F-actin, including phosphoinositide 3-kinase and activators of the Arp2/3 complex. Unexpectedly, entry directed by InlB also involves endocytic components. Future work on InlA and InlB will lead to a better understanding of virulence, and may also provide novel insights into the normal biological functions of E-cadherin and Met.

  12. Segrosome Complex Formation during DNA Trafficking in Bacterial Cell Division.

    PubMed

    Oliva, María A

    2016-01-01

    Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex.

  13. Bacterial Cell Wall Peptidoglycan at Single Molecule Resolution

    NASA Astrophysics Data System (ADS)

    Touhami, Ahmed; Jericho, Manfred; Matias, Valerio; Clarke, Anthony; Beveridge, Terry; Dutcher, John

    2009-03-01

    The major structural component of bacterial cell walls is the peptidoglycan sacculus, which is one of nature's strongest and largest macromolecules that maintains the large internal pressure within the cell while allowing the transport of molecules into and out of the cell and cell growth. The three-dimensional structure of this unique biopolymer is controversial, and two models have been proposed: the planar model, in which the glycan strands lie in the plane of the cell surface, and the scaffold model, in which the glycan strands lie perpendicular to the cell surface. We have used atomic force microscopy to investigate the high resolution structure of isolated, intact sacculi of Escherichia coli K12 bacteria. Atomic force microscopy-single molecule force spectroscopy was performed on single sacculi exposed to the tAmiB enzyme which cleaves the peptide-glycan bonds. Surprisingly, the measurements revealed individual strands of up to 250 nm in length. This finding combined with high resolution AFM images recorded on hydrated sacculi provide evidence for the validity of the planar model for the peptidoglycan structure in Gram-negative bacteria.

  14. Imaging the action of antimicrobial peptides on living bacterial cells

    PubMed Central

    Gee, Michelle L.; Burton, Matthew; Grevis-James, Alistair; Hossain, Mohammed Akhter; McArthur, Sally; Palombo, Enzo A.; Wade, John D.; Clayton, Andrew H. A.

    2013-01-01

    Antimicrobial peptides hold promise as broad-spectrum alternatives to conventional antibiotics. The mechanism of action of this class of peptide is a topical area of research focused predominantly on their interaction with artificial membranes. Here we compare the interaction mechanism of a model antimicrobial peptide with single artificial membranes and live bacterial cells. The interaction kinetics was imaged using time-lapse fluorescence lifetime imaging of a fluorescently-tagged melittin derivative. Interaction with the synthetic membranes resulted in membrane pore formation. In contrast, the interaction with bacteria led to transient membrane disruption and corresponding leakage of the cytoplasm, but surprisingly with a much reduced level of pore formation. The discovery that pore formation is a less significant part of lipid-peptide interaction in live bacteria highlights the mechanistic complexity of these interactions in living cells compared to simple artificial systems. PMID:23532056

  15. Stimulation of peritoneal cell arginase by bacterial lipopolysaccharides.

    PubMed

    Ryan, J L; Yohe, W B; Morrison, D C

    1980-05-01

    The conditions under which bacterial endotoxins stimulate arginase production in mouse peritoneal macrophages have been defined. Both lipid-A and lipid-A-associated protein are potent activators. Fetal calf serum and normal mouse serum enhance macrophage arginase levels in the presence and absence of lipopolysaccharide (LPS). LPS in the amount of 10(-1) microgram/ml represents a maximal stimulus for macrophage arginase production and release. Thioglycollate-elicited peritoneal cells have increased arginase activity, compared with resident cells. This activity can be stimulated further by the addition of LPS. Arginase levels may alter the outcome of in vitro immunologic processes by depleting arginine and may also serve as a useful indicator of the state of activation of macrophages.

  16. Modeling Bacterial Population Growth from Stochastic Single-Cell Dynamics

    PubMed Central

    Molina, Ignacio; Theodoropoulos, Constantinos

    2014-01-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  17. Fate of deposited cells in an aerobic binary bacterial biofilm

    SciTech Connect

    Banks, M.K.

    1989-01-01

    A biofilm is a matrix of microbial cells and their extracellular products that is associated with a solid surface. Previous studies on biofilm development have employed only dissolved compounds as growth limiting substrates, without the influence of microbial species invading from the bulk liquid. The goal of this research project was to quantify the kinetics of processes governing suspended biomass turnover in biofilm systems, and the accompanying effects of suspended cell deposition on biofilm population dynamics. Experiments were conducted with two species of bacteria, Pseudomonas putida ATCC 11172 grown on glucose, and Hyphomicrobium ZV620 grown on methanol. Cryptic growth and particulate hydrolysis studies were evaluated, using combinations of these two bacteria, by measuring the uptake of radiolabelled cell lysis products, under batch conditions. Biofilms studies were performed to investigate bacterial deposition, continual biofilm removal by shear induced erosion, and biofilm ecology. Biofilms were developed in a flow cell reactor, under laminar flow conditions. Bacterial species were differentiated by radioactively labelling each species with their carbon substrate. A mathematical model was developed to predict the biofilm ecology of mixed cultures. The equations developed predict biofilm accumulation, as well as substrate and oxygen consumption. Results indicate that cryptic growth will occur for bacteria growing on their own species soluble lysis products and in some cases, bacteria growing on the soluble lysis products of other species. Particulate hydrolysis only occurred for Pseudomonas putida growing on Pseudomonas putida lysis products, but the lack of particulate hydrolysis occurring in the other studies may have been due to the short experimental period.

  18. Modeling bacterial population growth from stochastic single-cell dynamics.

    PubMed

    Alonso, Antonio A; Molina, Ignacio; Theodoropoulos, Constantinos

    2014-09-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  19. Diverse specificity of cellulosome attachment to the bacterial cell surface

    PubMed Central

    Brás, Joana L. A.; Pinheiro, Benedita A.; Cameron, Kate; Cuskin, Fiona; Viegas, Aldino; Najmudin, Shabir; Bule, Pedro; Pires, Virginia M. R.; Romão, Maria João; Bayer, Edward A.; Spencer, Holly L.; Smith, Steven; Gilbert, Harry J.; Alves, Victor D.; Carvalho, Ana Luísa; Fontes, Carlos M. G. A.

    2016-01-01

    During the course of evolution, the cellulosome, one of Nature’s most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell. Here we have elucidated the unique molecular mechanisms used by anaerobic bacteria for cellulosome cellular attachment. The structure and biochemical analysis of five cohesin-dockerin complexes revealed that cell surface dockerins contain two cohesin-binding interfaces, which can present different or identical specificities. In contrast to the current static model, we propose that dockerins utilize multivalent modes of cohesin recognition to recruit cellulosomes to the cell surface, a mechanism that maximises substrate access while facilitating complex assembly. PMID:27924829

  20. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells

    NASA Astrophysics Data System (ADS)

    Avitabile, Concetta; D'Andrea, Luca Domenico; Romanelli, Alessandra

    2014-03-01

    Studying how antimicrobial peptides interact with bacterial cells is pivotal to understand their mechanism of action. In this paper we explored the use of Circular Dichroism to detect the secondary structure of two antimicrobial peptides, magainin 2 and cecropin A, with E. coli bacterial cells. The results of our studies allow us to gain two important information in the context of antimicrobial peptides- bacterial cells interactions: peptides fold mainly due to interaction with LPS, which is the main component of the Gram negative bacteria outer membrane and the time required for the folding on the bacterial cells depends on the peptide analyzed.

  1. An adaptor hierarchy regulates proteolysis during a bacterial cell cycle

    PubMed Central

    Joshi, Kamal Kishore; Bergé, Matthieu; Radhakrishnan, Sunish Kumar; Viollier, Patrick Henri; Chien, Peter

    2015-01-01

    Summary Regulated protein degradation is essential. The timed destruction of crucial proteins by the ClpXP protease drives cell-cycle progression in the bacterium Caulobacter crescentus. Although ClpXP is active alone, additional factors are inexplicably required for cell-cycle dependent proteolysis. Here, we show that these factors constitute an adaptor hierarchy where different substrates are destroyed based on the degree of adaptor assembly. The hierarchy builds upon priming of ClpXP by the adaptor CpdR, which promotes degradation of one class of substrates and also recruits the adaptor RcdA to degrade a second class of substrates. Adding the PopA adaptor promotes destruction of a third class of substrates, while inhibiting degradation of the second class. We dissect RcdA to generate bespoke adaptors, identifying critical substrate elements needed for RcdA recognition and uncovering additional cell-cycle dependent ClpXP substrates. Our work reveals how hierarchical adaptors and primed proteases orchestrate regulated proteolysis during bacterial cell-cycle progression. PMID:26451486

  2. Ecological implications and determination of bacterial cell surface charge in a natural bacterial community in the coastal North Sea

    NASA Astrophysics Data System (ADS)

    Stoderegger, K. E.; Herndl, G. J.

    2003-04-01

    Bacterioplankton represent the largest living surface in the world's ocean and via their surface bacteria interact with the environment. Surface properties may play a crucial role in the uptake of nutrients and in regulating the grazing pressure of potential predators. Therefore, we investigated the dynamics of hydrophilic and hydrophobic properties of the cell surface of bacterioplankton during the wax and wane of a phytoplankton bloom. A hydrophobic and a polar as well as a nucleic acid stain were applied concurrently to living samples and their intensity measured on a single cell basis using a confocal laser-scanning microscope and advanced image analysis. In an earlier study using selected bacterial strains we could distinguish 2 distinctly different groups of bacteria: A rather "active" bacterial group, showing higher overall hydrophobicity, high bacterial growth rates and at the same time increasing hydrophobicity and hydrophilicity. The other group was less hydrophobic, slowly growing, and surface charge properties did not increase steadily in batch cultures but showed two distinct peaks at the beginning and the late stationary phase. In the natural community of the coastal North Sea, hydrophobic moieties remained rather constant, while the polarity of the cell surface fluctuated. Generally, phytoplankton blooms were accompanied by an increase in bacterial abundance and a corresponding increase in hydrophilicity. Basically, the natural bacterial assemblages showed similar cell surface characteristics as the less hydrophobic group of bacterial strains. In a coastal environment with changing nutrient conditions, one would expect the more hydrophobic and fast growing species adapting fast to ambient conditions. In nutrient-rich environments increased hydrophobicity could also be advantageous for the cell, either to enhance particle attachment while under nutrient-depleted conditions increased polarity might facilitate nutrient uptake.

  3. Synthetic genomics and the construction of a synthetic bacterial cell.

    PubMed

    Glass, John I

    2012-01-01

    The first synthetic cellular organism was created in 2010 and based on a very small, very simple bacterium called Mycoplasma mycoides. The bacterium was called synthetic because its DNA genome was chemically synthesized rather than replicated from an existing template DNA, as occurs in all other known cellular life on Earth. The experiment was undertaken in order to develop a system that would allow creation of a minimal bacterial cell that could lead to a better understand of the first principles of cellular life. The effort resulted in new synthetic genomics techniques called genome assembly and genome transplantation. The ability of scientists to design and build bacteria opens new possibilities for creating microbes to solve human problems.

  4. Bacterial cell wall assembly: still an attractive antibacterial target.

    PubMed

    Bugg, Timothy D H; Braddick, Darren; Dowson, Christopher G; Roper, David I

    2011-04-01

    The development of new antibacterial agents to combat worsening antibiotic resistance is still a priority area in anti-infectives research, but in the post-genomic era it has been more difficult than expected to identify new lead compounds from high-throughput screening, and very challenging to obtain antibacterial activity for lead compounds. Bacterial cell-wall peptidoglycan biosynthesis is a well-established target for antibacterial chemotherapy, and recent developments enable the entire biosynthetic pathway to be reconstituted for detailed biochemical study and high-throughput inhibitor screening. This review article discusses recent developments in the availability of peptidoglycan biosynthetic intermediates, the identification of lead compounds for both the earlier cytoplasmic steps and the later lipid-linked steps, and the application of new methods such as structure-based drug design, phage display and surface science.

  5. Novel quorum-sensing peptides mediating interspecies bacterial cell death.

    PubMed

    Kumar, Sathish; Kolodkin-Gal, Ilana; Engelberg-Kulka, Hanna

    2013-06-04

    ABSTRACT Escherichia coli mazEF is a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) "extracellular death factor" (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity of E. coli toxin MazF. Here we discovered that E. coli mazEF-mediated cell death could be triggered by QS peptides from the supernatants (SN) of the Gram-positive bacterium Bacillus subtilis and the Gram-negative bacterium Pseudomonas aeruginosa. In the SN of B. subtilis, we found one EDF, the hexapeptide RGQQNE, called BsEDF. In the SN of P. aeruginosa, we found three EDFs: the nonapeptide INEQTVVTK, called PaEDF-1, and two hexadecapeptides, VEVSDDGSGGNTSLSQ, called PaEDF-2, and APKLSDGAAAGYVTKA, called PaEDF-3. When added to a diluted E. coli cultures, each of these peptides acted as an interspecies EDF that triggered mazEF-mediated death. Furthermore, though their sequences are very different, each of these EDFs amplified the endoribonucleolytic activity of E. coli MazF, probably by interacting with different sites on E. coli MazF. Finally, we suggest that EDFs may become the basis for a new class of antibiotics that trigger death from outside the bacterial cells. IMPORTANCE Bacteria communicate with one another via quorum-sensing signal (QS) molecules. QS provides a mechanism for bacteria to monitor each other's presence and to modulate gene expression in response to population density. Previously, we added E. coli EDF (EcEDF), the peptide NNWNN, to this list of QS molecules. Here we extended the group of QS peptides to several additional different peptides. The new EDFs are produced by two other bacteria, Bacillus subtilis and Pseudomonas aeruginosa. Thus, in this study we established a "new family of EDFs." This family provides the first example of quorum-sensing molecules participating in interspecies bacterial cell death. Furthermore, each of these peptides provides the basis of a new class of

  6. Incidence and Predictors of Bacterial infection in Febrile Children with Sickle Cell Disease.

    PubMed

    Morrissey, Benita J; Bycroft, Thomas P; Almossawi, Ofran; Wilkey, Olufunke B; Daniels, Justin G

    2015-01-01

    Children with sickle cell disease are at increased risk of developing bacteremia and other serious bacterial infections. Fever is a common symptom in sickle cell disease and can also occur with sickle cell crises and viral infections. We aimed to evaluate the incidence and predictors of bacteremia and bacterial infection in children with sickle cell disease presenting with fever to a district hospital and sickle cell center in London. A retrospective analysis was performed on all attendances of children (aged under 16 years) with sickle cell disease presenting with a fever of 38.5 °C or higher over a 1-year period. Confirmed bacterial infection was defined as bacteremia, bacterial meningitis, urinary tract infection (UTI), pneumonia, osteomyelitis or other bacterial infection with positive identification of organism. Children were defined as having a suspected bacterial infection if a bacterial infection was suspected clinically, but no organism was identified. Over a 1-year period there were 88 episodes analyzed in 59 children. Bacteremia occurred in 3.4% of episodes and confirmed bacterial infection in 7.0%. Suspected bacterial infection occurred in 33.0%. One death occurred from Salmonella typhirium septicemia. C-reactive protein (CRP) level and white blood cell (WBC) count were both significantly associated with bacterial infection (p = 0.004 and 0.02, respectively.) In conclusion, bacterial infections continue to be a significant problem in children with sickle cell disease. C-reactive protein was significantly associated with bacterial infections, and could be included in clinical risk criteria for febrile children with sickle cell disease.

  7. Differential Damage in Bacterial Cells by Microwave Radiation on the Basis of Cell Wall Structure

    PubMed Central

    Woo, Im-Sun; Rhee, In-Koo; Park, Heui-Dong

    2000-01-01

    Microwave radiation in Escherichia coli and Bacillus subtilis cell suspensions resulted in a dramatic reduction of the viable counts as well as increases in the amounts of DNA and protein released from the cells according to the increase of the final temperature of the cell suspensions. However, no significant reduction of cell density was observed in either cell suspension. It is believed that this is due to the fact that most of the bacterial cells inactivated by microwave radiation remained unlysed. Scanning electron microscopy of the microwave-heated cells revealed severe damage on the surface of most E. coli cells, yet there was no significant change observed in the B. subtilis cells. Microwave-injured E. coli cells were easily lysed in the presence of sodium dodecyl sulfate (SDS), yet B. subtilis cells were resistant to SDS. PMID:10788410

  8. Novel Quorum-Sensing Peptides Mediating Interspecies Bacterial Cell Death

    PubMed Central

    Kumar, Sathish; Kolodkin-Gal, Ilana; Engelberg-Kulka, Hanna

    2013-01-01

    ABSTRACT Escherichia coli mazEF is a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) “extracellular death factor” (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity of E. coli toxin MazF. Here we discovered that E. coli mazEF-mediated cell death could be triggered by QS peptides from the supernatants (SN) of the Gram-positive bacterium Bacillus subtilis and the Gram-negative bacterium Pseudomonas aeruginosa. In the SN of B. subtilis, we found one EDF, the hexapeptide RGQQNE, called BsEDF. In the SN of P. aeruginosa, we found three EDFs: the nonapeptide INEQTVVTK, called PaEDF-1, and two hexadecapeptides, VEVSDDGSGGNTSLSQ, called PaEDF-2, and APKLSDGAAAGYVTKA, called PaEDF-3. When added to a diluted E. coli cultures, each of these peptides acted as an interspecies EDF that triggered mazEF-mediated death. Furthermore, though their sequences are very different, each of these EDFs amplified the endoribonucleolytic activity of E. coli MazF, probably by interacting with different sites on E. coli MazF. Finally, we suggest that EDFs may become the basis for a new class of antibiotics that trigger death from outside the bacterial cells. PMID:23736285

  9. A Translocated Bacterial Protein Protects Vascular Endothelial Cells from Apoptosis

    PubMed Central

    Schmid, Michael C; Scheidegger, Florine; Dehio, Michaela; Balmelle-Devaux, Nadège; Schulein, Ralf; Guye, Patrick; Chennakesava, Cuddapah S; Biedermann, Barbara; Dehio, Christoph

    2006-01-01

    The modulation of host cell apoptosis by bacterial pathogens is of critical importance for the outcome of the infection process. The capacity of Bartonella henselae and B. quintana to cause vascular tumor formation in immunocompromised patients is linked to the inhibition of vascular endothelial cell (EC) apoptosis. Here, we show that translocation of BepA, a type IV secretion (T4S) substrate, is necessary and sufficient to inhibit EC apoptosis. Ectopic expression in ECs allowed mapping of the anti-apoptotic activity of BepA to the Bep intracellular delivery domain, which, as part of the signal for T4S, is conserved in other T4S substrates. The anti-apoptotic activity appeared to be limited to BepA orthologs of B. henselae and B. quintana and correlated with (i) protein localization to the host cell plasma membrane, (ii) elevated levels of intracellular cyclic adenosine monophosphate (cAMP), and (iii) increased expression of cAMP-responsive genes. The pharmacological elevation of cAMP levels protected ECs from apoptosis, indicating that BepA mediates anti-apoptosis by heightening cAMP levels by a plasma membrane–associated mechanism. Finally, we demonstrate that BepA mediates protection of ECs against apoptosis triggered by cytotoxic T lymphocytes, suggesting a physiological context in which the anti-apoptotic activity of BepA contributes to tumor formation in the chronically infected vascular endothelium. PMID:17121462

  10. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis.

    PubMed

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-06-23

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites.

  11. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production.

    PubMed

    Lemmer, Kimberly C; Zhang, Weiping; Langer, Samantha J; Dohnalkova, Alice C; Hu, Dehong; Lemke, Rachelle A; Piotrowski, Jeff S; Orr, Galya; Noguera, Daniel R; Donohue, Timothy J

    2017-05-23

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation in Rhodobacter sphaeroides By screening an R. sphaeroides Tn5 mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals.IMPORTANCE This paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these alterations can be

  12. Regulation of bacterial cell polarity by small GTPases.

    PubMed

    Keilberg, Daniela; Søgaard-Andersen, Lotte

    2014-04-01

    Bacteria are polarized with many proteins localizing dynamically to specific subcellular sites. Two GTPase families have important functions in the regulation of bacterial cell polarity, FlhF homologues and small GTPases of the Ras superfamily. The latter consist of only a G domain and are widespread in bacteria. The rod-shaped Myxococcus xanthus cells have two motility systems, one for gliding and one that depends on type IV pili. The function of both systems hinges on proteins that localize asymmetrically to the cell poles. During cellular reversals, these asymmetrically localized proteins are released from their respective poles and then bind to the opposite pole, resulting in an inversion of cell polarity. Here, we review genetic, cell biological, and biochemical analyses that identified two modules containing small Ras-like GTPases that regulate the dynamic polarity of motility proteins. The GTPase SofG interacts directly with the bactofilin cytoskeletal protein BacP to ensure polar localization of type IV pili proteins. In the second module, the small GTPase MglA, its cognate GTPase activating protein (GAP) MglB, and the response regulator RomR localize asymmetrically to the poles and sort dynamically localized motility proteins to the poles. During reversals, MglA, MglB, and RomR switch poles, in that way inducing the relocation of dynamically localized motility proteins. Structural analyses have demonstrated that MglB has a Roadblock/LC7 fold, the central β2 strand in MglA undergoes an unusual screw-type movement upon GTP binding, MglA contains an intrinsic Arg finger required for GTP hydrolysis, and MglA and MglB form an unusual G protein/GAP complex with a 1:2 stoichiometry.

  13. From waste to energy: First experimental bacterial fuel cells onboard the international space station

    NASA Astrophysics Data System (ADS)

    de Vet, S. J.; Rutgers, R.

    2007-09-01

    Bacterial Fuel Cells are innovative energy systems that use bacteria to transform carbohydrates anaerobically into free electrons and waste products. The bacteria deposit the electrons on the anode and hence create a potential difference between the anode and the cathode, yielding a `bacterial battery'. This principle may be favourably influenced by enhanced bacterial productivity or bacterial growth in microgravity conditions, as is shown before in several other studies on bacteria in microgravity. Nonetheless, bacterial fuel cells have not been tested in space before. Currently foreseen applications are very promising for space flight and include waste disposal in manned space vehicles. This study describes a `space-first'test of bacterial fuel cells onboard the International Space Station using the Rhodoferax ferrireducens strain. We test if it is possible to use a bacterial fuel cell in 1g and under both simulated (RPM) and real microgravity conditions. Due to differences in magnitude of the output the data had to be normalized and cumulatively plotted. In all, it can be concluded that bacterial fuel cells show similar phases in the output under different gravitational conditions. Hence it can be concluded from a biological point of view that bacterial fuel cells do operate in space.

  14. Poisons, ruffles and rockets: bacterial pathogens and the host cell cytoskeleton.

    PubMed

    Steele-Mortimer, O; Knodler, L A; Finlay, B B

    2000-02-01

    The cytoskeleton of eukaryotic cells is affected by a number of bacterial and viral pathogens. In this review we consider three recurring themes of cytoskeletal involvement in bacterial pathogenesis: 1) the effect of bacterial toxins on actin-regulating small GTP-binding proteins; 2) the invasion of non-phagocytic cells by the bacterial induction of ruffles at the plasma membrane; 3) the formation of actin tails and pedestals by intracellular and extracellular bacteria, respectively. Considerable progress has been made recently in the characterization of these processes. It is becoming clear that bacterial pathogens have developed a variety of sophisticated mechanisms for utilizing the complex cytoskeletal system of host cells. These bacterially-induced processes are now providing unique insights into the regulation of fundamental eukaryotic mechanisms.

  15. Characterization and use of crystalline bacterial cell surface layers

    NASA Astrophysics Data System (ADS)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  16. Hyperforin Exhibits Antigenotoxic Activity on Human and Bacterial Cells.

    PubMed

    Imreova, Petronela; Feruszova, Jana; Kyzek, Stanislav; Bodnarova, Kristina; Zduriencikova, Martina; Kozics, Katarina; Mucaji, Pavel; Galova, Eliska; Sevcovicova, Andrea; Miadokova, Eva; Chalupa, Ivan

    2017-01-21

    Hyperforin (HF), a substance that accumulates in the leaves and flowers of Hypericum perforatum L. (St. John's wort), consists of a phloroglucinol skeleton with lipophilic isoprene chains. HF exhibits several medicinal properties and is mainly used as an antidepressant. So far, the antigenotoxicity of HF has not been investigated at the level of primary genetic damage, gene mutations, and chromosome aberrations, simultaneously. The present work is designed to investigate the potential antigenotoxic effects of HF using three different experimental test systems. The antigenotoxic effect of HF leading to the decrease of primary/transient promutagenic genetic changes was detected by the alkaline comet assay on human lymphocytes. The HF antimutagenic effect leading to the reduction of gene mutations was assessed using the Ames test on the standard Salmonella typhimurium (TA97, TA98, and TA100) bacterial strains, and the anticlastogenic effect of HF leading to the reduction of chromosome aberrations was evaluated by the in vitro mammalian chromosome aberration test on the human tumor cell line HepG2 and the non-carcinogenic cell line VH10. Our findings provided evidence that HF showed antigenotoxic effects towards oxidative mutagen zeocin in the comet assay and diagnostic mutagen (4-nitroquinoline-1-oxide) in the Ames test. Moreover, HF exhibited an anticlastogenic effect towards benzo(a)pyrene and cisplatin in the chromosome aberration test.

  17. Mapping the bacterial cell architecture into the chromosome.

    PubMed Central

    Danchin, A; Guerdoux-Jamet, P; Moszer, I; Nitschké, P

    2000-01-01

    A genome is not a simple collection of genes. We propose here that it can be viewed as being organized as a 'celluloculus' similar to the homunculus of preformists, but pertaining to the category of programmes (or algorithms) rather than to that of architectures or structures: a significant correlation exists between the distribution of genes along the chromosome and the physical architecture of the cell. We review here data supporting this observation, stressing physical constraints operating on the cell's architecture and dynamics, and their consequences in terms of gene and genome structure. If such a correlation exists, it derives from some selection pressure: simple and general physical principles acting at the level of the cell structure are discussed. As a first case in point we see the piling up of planar modules as a stable, entropy-driven, architectural principle that could be at the root of the coupling between the architecture of the cell and the location of genes at specific places in the chromosome. We propose that the specific organization of certain genes whose products have a general tendency to form easily planar modules is a general motor for architectural organization in the bacterial cell. A second mechanism, operating at the transcription level, is described that could account for the efficient building up of complex structures. As an organizing principle we suggest that exploration by biological polymers of the vast space of possible conformation states is constrained by anchoring points. In particular, we suggest that transcription does not always allow the 5'-end of the transcript to go free and explore the many conformations available, but that, in many cases, it remains linked to the transcribing RNA polymerase complex in such a way that loops of RNA, rather than threads with a free end, explore the surrounding medium. In bacteria, extension of the loops throughout the cytoplasm would therefore be mediated by the de novo synthesis of

  18. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Nomura, Toshiyuki; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro

    2016-06-01

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells ( Escherichia coli and Lactococcus lactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  19. Production of Bacteriolytic Enzymes by Streptomyces globisporus Regulated by Exogenous Bacterial Cell Walls

    PubMed Central

    Brönneke, Volker; Fiedler, Franz

    1994-01-01

    Mutanolysin biosynthesis and pigment production in Streptomyces globisporus ATCC 21553 were stimulated by adding bacterial cell walls to the medium. The increased bacteriolytic activity in the supernatant correlated with an increased de novo synthesis of mutanolysin and was between 4- and 20-fold higher than in cultures grown without bacterial cell walls. The increase in mutanolysin synthesis was brought about by enhanced transcription of the mutanolysin gene. The stimulation was only observed in medium which contained dextrin or starch as the carbon source. Glucose abolished the stimulation and also inhibited the low constitutive synthesis of mutanolysin. The induction of lytic activity was observed to require minimally 0.4 mg of bacterial cell walls per ml, whereas 0.6 mg of bacterial cell walls per ml yielded maximal lytic activity. Further supplements of bacterial cell walls did not result in enhanced lytic activity. The stimulation could be achieved independently of the phase of growth of the Streptomyces strain. Cultures grown in the presence of bacterial cell walls exhibited a higher growth yield. However, the accelerated growth was not the reason for the increased amount of mutanolysin produced. The growth of cultures with peptidoglycan monomers added to the medium instead of cell walls was similarly increased, but an effect on the biosynthesis of mutanolysin was not observed. All bacterial cell walls tested were capable of eliciting the stimulation of lytic activity, including cell walls of archaea, which contained pseudomurein. Images PMID:16349213

  20. Raman spectroscopic identification of single bacterial cells under antibiotic influence.

    PubMed

    Münchberg, Ute; Rösch, Petra; Bauer, Michael; Popp, Jürgen

    2014-05-01

    The identification of pathogenic bacteria is a frequently required task. Current identification procedures are usually either time-consuming due to necessary cultivation steps or expensive and demanding in their application. Furthermore, previous treatment of a patient with antibiotics often renders routine analysis by culturing difficult. Since Raman microspectroscopy allows for the identification of single bacterial cells, it can be used to identify such difficult to culture bacteria. Yet until now, there have been no investigations whether antibiotic treatment of the bacteria influences the Raman spectroscopic identification. This study aims to rapidly identify bacteria that have been subjected to antibiotic treatment on single cell level with Raman microspectroscopy. Two strains of Escherichia coli and two species of Pseudomonas have been treated with four antibiotics, all targeting different sites of the bacteria. With Raman spectra from untreated bacteria, a linear discriminant analysis (LDA) model is built, which successfully identifies the species of independent untreated bacteria. Upon treatment of the bacteria with subinhibitory concentrations of ampicillin, ciprofloxacin, gentamicin, and sulfamethoxazole, the LDA model achieves species identification accuracies of 85.4, 95.3, 89.9, and 97.3 %, respectively. Increasing the antibiotic concentrations has no effect on the identification performance. An ampicillin-resistant strain of E. coli and a sample of P. aeruginosa are successfully identified as well. General representation of antibiotic stress in the training data improves species identification performance, while representation of a specific antibiotic improves strain distinction capability. In conclusion, the identification of antibiotically treated bacteria is possible with Raman microspectroscopy for diverse antibiotics on single cell level.

  1. Bacterial tracking of motile algae assisted by algal cell's vorticity field.

    PubMed

    Locsei, J T; Pedley, T J

    2009-07-01

    Previously published experimental work by other authors has shown that certain motile marine bacteria are able to track free-swimming algae by executing a zigzag path and steering toward the algae at each turn. Here, we propose that the apparent steering behaviour could be a hydrodynamic effect, whereby an algal cell's vorticity and strain-rate fields rotate a pursuing bacterial cell in the appropriate direction. Using simplified models for the bacterial and algal cells, we numerically compute the trajectory of a bacterial cell and demonstrate the plausibility of this hypothesis.

  2. Multidimensional HRMAS NMR: a platform for in vivo studies using intact bacterial cells.

    PubMed

    Li, Wei

    2006-07-01

    In vivo analysis in whole cell bacteria, especially the native tertiary structures of the bacterial cell wall, remains an unconquered frontier. The current understanding of bacterial cell wall structures has been based on destructive analysis of individual components. These in vitro results may not faithfully reflect the native structural and conformational information. Multidimensional High Resolution Magic Angle Spinning NMR (HRMAS NMR) has evolved to be a powerful technique in a variety of in vivo studies, including live bacterial cells. Existing studies of HRMAS NMR in bacteria, technical consideration of its successful application, and current limitations in studying true human pathogens are briefly reviewed in this report.

  3. Legionella pneumophila infection activates bystander cells differentially by bacterial and host cell vesicles.

    PubMed

    Jung, Anna Lena; Herkt, Christina Elena; Schulz, Christine; Bolte, Kathrin; Seidel, Kerstin; Scheller, Nicoletta; Sittka-Stark, Alexandra; Bertrams, Wilhelm; Schmeck, Bernd

    2017-07-24

    Extracellular vesicles from eukaryotic cells and outer membrane vesicles (OMVs) released from gram-negative bacteria have been described as mediators of pathogen-host interaction and intercellular communication. Legionella pneumophila (L. pneumophila) is a causative agent of severe pneumonia. The differential effect of bacterial and host cell vesicles in L. pneumophila infection is unknown so far. We infected THP-1-derived or primary human macrophages with L. pneumophila and isolated supernatant vesicles by differential centrifugation. We observed an increase of exosomes in the 100 k pellet by nanoparticle tracking analysis, electron microscopy, and protein markers. This fraction additionally contained Legionella LPS, indicating also the presence of OMVs. In contrast, vesicles in the 16 k pellet, representing microparticles, decreased during infection. The 100 k vesicle fraction activated uninfected primary human alveolar epithelial cells, A549 cells, and THP-1 cells. Epithelial cell activation was reduced by exosome depletion (anti-CD63, or GW4869), or blocking of IL-1β in the supernatant. In contrast, the response of THP-1 cells to vesicles was reduced by a TLR2-neutralizing antibody, UV-inactivation of bacteria, or - partially - RNase-treatment of vesicles. Taken together, we found that during L. pneumophila infection, neighbouring epithelial cells were predominantly activated by exosomes and cytokines, whereas myeloid cells were activated by bacterial OMVs.

  4. Molecular Architecture of the Bacterial Flagellar Motor in Cells

    PubMed Central

    2015-01-01

    The flagellum is one of the most sophisticated self-assembling molecular machines in bacteria. Powered by the proton-motive force, the flagellum rapidly rotates in either a clockwise or counterclockwise direction, which ultimately controls bacterial motility and behavior. Escherichia coli and Salmonella enterica have served as important model systems for extensive genetic, biochemical, and structural analysis of the flagellum, providing unparalleled insights into its structure, function, and gene regulation. Despite these advances, our understanding of flagellar assembly and rotational mechanisms remains incomplete, in part because of the limited structural information available regarding the intact rotor–stator complex and secretion apparatus. Cryo-electron tomography (cryo-ET) has become a valuable imaging technique capable of visualizing the intact flagellar motor in cells at molecular resolution. Because the resolution that can be achieved by cryo-ET with large bacteria (such as E. coli and S. enterica) is limited, analysis of small-diameter bacteria (including Borrelia burgdorferi and Campylobacter jejuni) can provide additional insights into the in situ structure of the flagellar motor and other cellular components. This review is focused on the application of cryo-ET, in combination with genetic and biophysical approaches, to the study of flagellar structures and its potential for improving the understanding of rotor–stator interactions, the rotational switching mechanism, and the secretion and assembly of flagellar components. PMID:24697492

  5. [Genetic transformation and fate of heterological DNA in bacterial cells].

    PubMed

    Piechowska, Mirosława

    2015-01-01

    Secretion of a metabolite enabling Streptococci to undergo genetic transformation was discovered. The metabolite combined with an optimization process were applied to increase the transformation yield about 20-fold. It was observed that large amounts of DNA exert a bactericidal effect, indicating the ability of at least 70% of cells to uptake the polymer. While studying the molecular mechanism of transformation of Bacillus subtilis it was shown that the uptaken DNA forms complexes with bacterial proteins, which hinders determination of its structure. A method was found to dissociate these complexes which enabled to determine the single-stranded structure of the uptaken DNA. Donor DNA fragments incorporated into the host DNA were of about 10 Da. Non-transforming DNA can be uptaken similarly but does not undergo incorporation into the host DNA. The selectivity of Bacillus subtilis receptors was determined towards DNA of phages containing modified bases: uracil, putrescinyl-thymine and its acetylated derivative, 5'-hydroxymethylcytosine and its glycosylated derivative and also towards double-stranded RNA of f2 phage. All these modifications were tolerated by the cellular receptors, with the exception of glycosylation and the 2'-OH group in RNA.

  6. Alternative luciferase for monitoring bacterial cells under adverse conditions.

    PubMed

    Wiles, Siouxsie; Ferguson, Kathryn; Stefanidou, Martha; Young, Douglas B; Robertson, Brian D

    2005-07-01

    The availability of cloned luciferase genes from fireflies (luc) and from bacteria (luxAB) has led to the widespread use of bioluminescence as a reporter to measure cell viability and gene expression. The most commonly occurring bioluminescence system in nature is the deep-sea imidazolopyrazine bioluminescence system. Coelenterazine is an imidazolopyrazine derivative which, when oxidized by an appropriate luciferase enzyme, produces carbon dioxide, coelenteramide, and light. The luciferase from the marine copepod Gaussia princeps (Gluc) has recently been cloned. We expressed the Gluc gene in Mycobacterium smegmatis using a shuttle vector and compared its performance with that of an existing luxAB reporter. In contrast to luxAB, the Gluc luciferase retained its luminescence output in the stationary phase of growth and exhibited enhanced stability during exposure to low pH, hydrogen peroxide, and high temperature. The work presented here demonstrated the utility of the copepod luciferase bioluminescent reporter as an alternative to bacterial luciferase, particularly for monitoring responses to environmental stress stimuli.

  7. Bacterial Colonization of Host Cells in the Absence of Cholesterol

    PubMed Central

    Gilk, Stacey D.; Cockrell, Diane C.; Luterbach, Courtney; Hansen, Bryan; Knodler, Leigh A.; Ibarra, J. Antonio; Steele-Mortimer, Olivia; Heinzen, Robert A.

    2013-01-01

    Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24−/− mouse embryonic fibroblasts (MEFs). DHCR24−/− MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24−/− MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24−/− MEFs. In contrast, C. burnetii entry was significantly decreased in −cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated αVβ3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24−/− MEFs lacked the CD63-postive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions. PMID:23358892

  8. Effects of nonionic surfactants on the UV/visible absorption of bacterial cells.

    PubMed

    Brown, D G; Jaffé, P R

    2001-09-20

    Nonionic surfactants are used in a number of different microbiological applications, including solubilization of cell membranes, washing bacterial cultures prior to experimentation, and enhancing biodegradation of low-solubility compounds. An important consideration in these applications is the potential for the surfactant to alter the cell membrane. One potential means to monitor the impact of surfactants on the bacterial cell membrane is through monitoring the absorbance spectrum of the bacterial suspension. This is due to the colloidal nature of bacteria, where the absorbance of a bacterial suspension is related to the size and refractive index of the bacterial cells. Through a systematic study it was shown that there can be a significant change in the bacterial absorbance spectrum due to the presence of nonionic surfactants, with the effect a function of surfactant structure and concentration, solution ionic strength and cation valence. The effects were most pronounced with Na(+) as the cation, with surfactants having mid-range hydrophile-lipophile balance (HLB) values, and with surfactant concentrations above the CMC. The results indicate that measurement of the absorbance spectrum of bacterial cultures can provide a means to monitor the effects of nonionic surfactants on the bacterial cell membrane. In addition, depending on the specific application, appropriate selection of surfactant structure and media composition can be made to enhance or minimize the effects. Copyright 2001 John Wiley & Sons, Inc.

  9. Direct transfer of the bacterial asparagine synthetase gene to mammalian cells.

    PubMed

    Waye, M M; Stanners, C P

    1983-01-01

    Using specific mutants as a means of identification, the bacterial protein for asparagine synthetase (Asn Syn) was shown to be antigenically and electrophoretically similar to its mammalian counterpart. This observation prompted us to attempt direct transfer of the cloned bacterial gene for the enzyme to mammalian cells. DNA from the replicative form of clone M13 OriC, containing the bacterial gene for Asn Syn, was shown to be capable of causing transformation of Jensen rat Asn Syn- cells to cells capable of growth in Asn-free medium; no prior modification of the bacterial gene was required. This relatively inefficient transformation (20 colonies/micrograms DNA/10(6) cells) was sensitive or insensitive to restriction enzyme digestion of the M13 OriC DNA in complete agreement with the known restriction map of the bacterial gene. Clones of transformed rat cells contained the bacterial DNA, which was amplified if increased levels of the enzyme were demanded and lost if selection was removed. The clones also contained polysomal bacterial RNA and a new protein with properties similar but not identical to those of the bacterial enzyme. The biological significance of this unusual degree of compatibility between the prokaryotic and eukaryotic Asn Syn gene systems is discussed.

  10. Flow Cytometric Single-Cell Identification of Populations in Synthetic Bacterial Communities.

    PubMed

    Rubbens, Peter; Props, Ruben; Boon, Nico; Waegeman, Willem

    2017-01-01

    Bacterial cells can be characterized in terms of their cell properties using flow cytometry. Flow cytometry is able to deliver multiparametric measurements of up to 50,000 cells per second. However, there has not yet been a thorough survey concerning the identification of the population to which bacterial single cells belong based on flow cytometry data. This paper not only aims to assess the quality of flow cytometry data when measuring bacterial populations, but also suggests an alternative approach for analyzing synthetic microbial communities. We created so-called in silico communities, which allow us to explore the possibilities of bacterial flow cytometry data using supervised machine learning techniques. We can identify single cells with an accuracy >90% for more than half of the communities consisting out of two bacterial populations. In order to assess to what extent an in silico community is representative for its synthetic counterpart, we created so-called abundance gradients, a combination of synthetic (i.e., in vitro) communities containing two bacterial populations in varying abundances. By showing that we are able to retrieve an abundance gradient using a combination of in silico communities and supervised machine learning techniques, we argue that in silico communities form a viable representation for synthetic bacterial communities, opening up new opportunities for the analysis of synthetic communities and bacterial flow cytometry data in general.

  11. Flow Cytometric Single-Cell Identification of Populations in Synthetic Bacterial Communities

    PubMed Central

    Boon, Nico; Waegeman, Willem

    2017-01-01

    Bacterial cells can be characterized in terms of their cell properties using flow cytometry. Flow cytometry is able to deliver multiparametric measurements of up to 50,000 cells per second. However, there has not yet been a thorough survey concerning the identification of the population to which bacterial single cells belong based on flow cytometry data. This paper not only aims to assess the quality of flow cytometry data when measuring bacterial populations, but also suggests an alternative approach for analyzing synthetic microbial communities. We created so-called in silico communities, which allow us to explore the possibilities of bacterial flow cytometry data using supervised machine learning techniques. We can identify single cells with an accuracy >90% for more than half of the communities consisting out of two bacterial populations. In order to assess to what extent an in silico community is representative for its synthetic counterpart, we created so-called abundance gradients, a combination of synthetic (i.e., in vitro) communities containing two bacterial populations in varying abundances. By showing that we are able to retrieve an abundance gradient using a combination of in silico communities and supervised machine learning techniques, we argue that in silico communities form a viable representation for synthetic bacterial communities, opening up new opportunities for the analysis of synthetic communities and bacterial flow cytometry data in general. PMID:28122063

  12. A novel algorithm for the determination of bacterial cell volumes that is unbiased by cell morphology.

    PubMed

    Zeder, M; Kohler, E; Zeder, L; Pernthaler, J

    2011-10-01

    The determination of cell volumes and biomass offers a means of comparing the standing stocks of auto- and heterotrophic microbes of vastly different sizes for applications including the assessment of the flux of organic carbon within aquatic ecosystems. Conclusions about the importance of particular genotypes within microbial communities (e.g., of filamentous bacteria) may strongly depend on whether their contribution to total abundance or to biomass is regarded. Fluorescence microscopy and image analysis are suitable tools for determining bacterial biomass that moreover hold the potential to replace labor-intensive manual measurements by fully automated approaches. However, the current approaches to calculate bacterial cell volumes from digital images are intrinsically biased by the models that are used to approximate the morphology of the cells. Therefore, we developed a generic contour based algorithm to reconstruct the volumes of prokaryotic cells from two-dimensional representations (i.e., microscopic images) irrespective of their shape. Geometric models of commonly encountered bacterial morphotypes were used to verify the algorithm and to compare its performance with previously described approaches. The algorithm is embedded in a freely available computer program that is able to process both raw (8-bit grayscale) and thresholded (binary) images in a fully automated manner.

  13. Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells

    PubMed Central

    Lee, Timothy K.; Meng, Kevin; Shi, Handuo; Huang, Kerwyn Casey

    2016-01-01

    The peptidoglycan cell wall is an integral organelle critical for bacterial cell shape and stability. Proper cell wall construction requires the interaction of synthesis enzymes and the cytoskeleton, but it is unclear how the activities of individual proteins are coordinated to preserve the morphology and integrity of the cell wall during growth. To elucidate this coordination, we used single-molecule imaging to follow the behaviours of the two major peptidoglycan synthases in live, elongating Escherichia coli cells and after perturbation. We observed heterogeneous localization dynamics of penicillin-binding protein (PBP) 1A, the synthase predominantly associated with cell wall elongation, with individual PBP1A molecules distributed between mobile and immobile populations. Perturbations to PBP1A activity, either directly through antibiotics or indirectly through PBP1A's interaction with its lipoprotein activator or other synthases, shifted the fraction of mobile molecules. Our results suggest that multiple levels of regulation control the activity of enzymes to coordinate peptidoglycan synthesis. PMID:27774981

  14. Epigallocatechin-3-gallate inhibits bacterial virulence and invasion of host cells.

    PubMed

    Tsou, Lun K; Yount, Jacob S; Hang, Howard C

    2017-03-10

    Increasing antibiotic resistance and beneficial effects of host microbiota has motivated the search for anti-infective agents that attenuate bacterial virulence rather than growth. For example, we discovered that specific flavonoids such as baicalein and quercetin from traditional medicinal plant extracts could attenuate Salmonella enterica serovar Typhimurium type III protein secretion and invasion of host cells. Here, we show epigallocatechin-3-gallate from green tea extracts also inhibits the activity of S. Typhimurium type III protein effectors and significantly reduces bacterial invasion into host cells. These results reveal additional dietary plant metabolites that can attenuate bacterial virulence and infection of host cells.

  15. The Biological Sensor for Detection of Bacterial Cells in Liquid Phase Based on Plate Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Borodina, Irina; Zaitsev, Boris; Shikhabudinov, Alexander; Guliy, Olga; Ignatov, Oleg; Teplykh, Andrey

    The interactions "bacterial cells - bacteriophages", "bacterial cells - antibodies" and "bacterial cells - mini- antibodies" directly in liquid phase were experimentally investigated with a help of acoustic sensor. The acoustic sensor under study represents two-channel delay line based on the plate of Y-X lithium niobate. One channel of delay line was electrically shorted, the second channel was electrically open. The liquid container was glued on plate surface between transducers of delay line. The dependencies of the change in phase and insertion loss on concentration of bacteriophages, antibodies, and mini- antibodies were obtained for both channels of delay line.

  16. Bacterial toxins fuel disease progression in cutaneous T-cell lymphoma.

    PubMed

    Willerslev-Olsen, Andreas; Krejsgaard, Thorbjørn; Lindahl, Lise M; Bonefeld, Charlotte Menne; Wasik, Mariusz A; Koralov, Sergei B; Geisler, Carsten; Kilian, Mogens; Iversen, Lars; Woetmann, Anders; Odum, Niels

    2013-08-14

    In patients with cutaneous T-cell lymphoma (CTCL) bacterial infections constitute a major clinical problem caused by compromised skin barrier and a progressive immunodeficiency. Indeed, the majority of patients with advanced disease die from infections with bacteria, e.g., Staphylococcus aureus. Bacterial toxins such as staphylococcal enterotoxins (SE) have long been suspected to be involved in the pathogenesis in CTCL. Here, we review links between bacterial infections and CTCL with focus on earlier studies addressing a direct role of SE on malignant T cells and recent data indicating novel indirect mechanisms involving SE- and cytokine-driven cross-talk between malignant- and non-malignant T cells.

  17. Nanomechanical Response of Pseudomonas aeruginosa PAO1 Bacterial Cells to Cationic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Walters, Grant; Dutcher, John

    2013-03-01

    We have used an atomic force microscopy (AFM)-based creep deformation technique to study changes to the viscoelastic properties of individual Gram-negative Pseudomonas aeruginosa PAO1 cells as a function of time of exposure to two cationic peptides: polymyxin B (PMB), a cyclic antimicrobial peptide, and the structurally-related compound, polymyxin B nonapeptide (PMBN). The measurements provide a direct measure of the mechanical integrity of the bacterial cell envelope, and the results can be understood in terms of simple viscoelastic models of arrangements of springs and dashpots, which can be ascribed to different components within the bacterial cell. Time-resolved creep deformation experiments reveal abrupt changes to the viscoelastic properties of P. aeruginosa bacterial cells after exposure to both PMB and PMBN, with quantitatively different changes for the two cationic peptides. These measurements provide new insights into the kinetics and mechanism of action of antimicrobial peptides on bacterial cells.

  18. Bacterial IMPDH gene used for the selection of mammalian cell transfectants.

    SciTech Connect

    Baccam, M.; Huberman, E.; Energy Systems

    2003-06-01

    Stable cell transfection is used for the expression of exogenous genes or cDNAs in eukaryotic cells. Selection of these transfectants requires a dominant selectable marker. A variety of such markers has been identified and is currently in use. However, many of these are not suitable for all cell types or require unique conditions. Here we describe a simple and versatile dominant selectable marker that involves bacterial IMP dehydrogenase (IMPDH), an enzyme essential for the replication of mammalian and bacterial cells. Although IMPDH is evolutionarily conserved, the bacterial enzyme is orders of magnitude more resistant to the toxic effect of the drug mycophenolic acid, which is an IMPDH inhibitor. We have demonstrated that transfection of human, monkey or Chinese hamster cell lines with an expression vector containing bacterial IMPDH and mycophenolic acid treatment resulted in the selection of colonies with a strikingly increased resistance to mycophenolic acid toxicity. Analysis of cells derived from these colonies indicated that the acquisition of this resistance was associated with bacterial IMPDH protein expression. As a proof of principle, we showed that mammalian cell transfection with a hicistronic IMPDH/GFP expression vector and mycophenolic acid treatment can he used to successfully select transfectants that express the fluorescent protein. These results indicate that bacterial IMPDH is a practical dominant selectable marker that can be used for the selection of transfectants that express exogenous genes or cDNAs in mammalian cells.

  19. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death

    PubMed Central

    Dewachter, Liselot; Verstraeten, Natalie; Fauvart, Maarten; Michiels, Jan

    2016-01-01

    The phenomenon of programmed cell death (PCD), in which cells initiate their own demise, is not restricted to multicellular organisms. Unicellular organisms, both eukaryotes and prokaryotes, also possess pathways that mediate PCD. We recently identified a PCD mechanism in Escherichia coli that is triggered by a mutant isoform of the essential GTPase ObgE (Obg of E. coli). Importantly, the PCD pathway mediated by mutant Obg (Obg*) differs fundamentally from other previously described bacterial PCD pathways and thus constitutes a new mode of PCD. ObgE was previously proposed to act as a cell cycle checkpoint protein able to halt cell division. The implication of ObgE in the regulation of PCD further increases the similarity between this protein and eukaryotic cell cycle regulators that are capable of doing both. Moreover, since Obg is conserved in eukaryotes, the elucidation of this cell death mechanism might contribute to the understanding of PCD in higher organisms. Additionally, if Obg*-mediated PCD is conserved among different bacterial species, it will be a prime target for the development of innovative antibacterials that artificially induce this pathway.

  20. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    SciTech Connect

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-Soo; Torelli, Marco; Hamers, Robert J.; Murphy, Catherine; Orr, Galya; Haynes, Christy L.

    2014-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.

  1. Dipeptide-Based Metabolic Labeling of Bacterial Cells for Endogenous Antibody Recruitment

    PubMed Central

    2016-01-01

    The number of antibiotic-resistant bacterial infections has increased dramatically over the past decade. To combat these pathogens, novel antimicrobial strategies must be explored and developed. We previously reported a strategy based on hapten-modified cell wall analogues to induce recruitment of endogenous antibodies to bacterial cell surfaces. Cell surface remodeling using unnatural single d-amino acid cell wall analogues led to modification at the C-terminus of the peptidoglycan stem peptide. During peptidoglycan processing, installed hapten-displaying amino acids can be subsequently removed by cell wall enzymes. Herein, we disclose a two-step dipeptide peptidoglycan remodeling strategy aimed at introducing haptens at an alternative site within the stem peptide to improve retention and diminish removal by cell wall enzymes. Through this redesigned strategy, we determined size constraints of peptidoglycan remodeling and applied these constraints to attain hapten–linker conjugates that produced high levels of antibody recruitment to bacterial cell surfaces. PMID:27294199

  2. Phase Diagram of Collective Motion of Bacterial Cells in a Shallow Circular Pool

    NASA Astrophysics Data System (ADS)

    Wakita, Jun-ichi; Tsukamoto, Shota; Yamamoto, Ken; Katori, Makoto; Yamada, Yasuyuki

    2015-12-01

    The collective motion of bacterial cells in a shallow circular pool is systematically studied using the bacterial species Bacillus subtilis. The ratio of cell length to pool diameter (i.e., the reduced cell length) ranges from 0.06 to 0.43 in our experiments. Bacterial cells in a circular pool show various types of collective motion depending on the cell density in the pool and the reduced cell length. The motion is classified into six types, which we call random motion, turbulent motion, one-way rotational motion, two-way rotational motion, random oscillatory motion, and ordered oscillatory motion. Two critical values of reduced cell lengths are evaluated, at which drastic changes in collective motion are induced. A phase diagram is proposed in which the six phases are arranged.

  3. A Culture-Independent Approach to Enrich Endophytic Bacterial Cells from Sugarcane Stems for Community Characterization.

    PubMed

    Dos-Santos, Carlos M; de Souza, Daniel G; Balsanelli, Eduardo; Cruz, Leonardo Magalhães; de Souza, Emanuel M; Baldani, José I; Schwab, Stefan

    2017-08-01

    Bacterial endophytes constitute a very diverse community and they confer important benefits which help to improve agricultural yield. Some of these benefits remain underexplored or little understood, mainly due to the bottlenecks associated with the plant feature, a low number of endophytic bacterial cells in relation to the plant, and difficulties in accessing these bacteria using cultivation-independent methods. Enriching endophytic bacterial cells from plant tissues, based on a non-biased, cultivation-independent physical enrichment method, may help to circumvent those problems, especially in the case of sugarcane stems, which have a high degree of interfering factors, such as polysaccharides, phenolic compounds, nucleases, and fibers. In the present study, an enrichment approach for endophytic bacterial cells from sugarcane lower stems is described. The results demonstrate that the enriched bacterial cells are suitable for endophytic community characterization. A community analysis revealed the presence of previously well-described but also novel endophytic bacteria in sugarcane tissues which may exert functions such as plant growth promotion and biological control, with a predominance of the Proteobacterial phylum, but also Actinobacteria, Bacteroidetes, and Firmicutes, among others. In addition, by comparing the present and literature data, it was possible to list the most frequently detected bacterial endophyte genera in sugarcane tissues. The presented enrichment approach paves the way for improved future research toward the assessment of endophytic bacterial community in sugarcane and other biofuel crops.

  4. Bacterial Manipulation of NK Cell Regulatory Activity Increases Susceptibility to Listeria monocytogenes Infection

    PubMed Central

    Guthrie, Brandon S.; Schmidt, Rebecca L.; Jamieson, Amanda; Merkel, Patricia; Knight, Vijaya; Cole, Caroline M.; Raulet, David H.; Lenz, Laurel L.

    2016-01-01

    Natural killer (NK) cells produce interferon (IFN)-γ and thus have been suggested to promote type I immunity during bacterial infections. Yet, Listeria monocytogenes (Lm) and some other pathogens encode proteins that cause increased NK cell activation. Here, we show that stimulation of NK cell activation increases susceptibility during Lm infection despite and independent from robust NK cell production of IFNγ. The increased susceptibility correlated with IL-10 production by responding NK cells. NK cells produced IL-10 as their IFNγ production waned and the Lm virulence protein p60 promoted induction of IL-10 production by mouse and human NK cells. NK cells consequently exerted regulatory effects to suppress accumulation and activation of inflammatory myeloid cells. Our results reveal new dimensions of the role played by NK cells during Lm infection and demonstrate the ability of this bacterial pathogen to exploit the induction of regulatory NK cell activity to increase host susceptibility. PMID:27295349

  5. Correlated Atomic Force Microscopy and Flourescence Lifetime Imaging of Live Bacterial Cells

    SciTech Connect

    Micic, Miodrag; Hu, Dehong; Suh, Yung D.; Newton, Greg J.; Romine, Margaret F.; Lu, H PETER.

    2004-04-01

    We report on the imaging of living bacterial cells by using a new correlated tapping-mode atomic force microscopy (AFM) and confocal al fluorescence lifetime imaging microscopy (FLIM). Different methods of preparing the bacterial sample were explored for optimal imaging of Gram-negative Shewanella oneidensis MR-1 cells on poly-1-lysine coated surfaces and agarose gel coated surfaces. We have found that the agarose gel containing 99% buffer can provide a local aqueous environment for single bacterial cells. Furthermore, the cell surface topography can be characterized by tapping-mode in-air AFM imaging for the single bacterial cells that are partially embedded. Using in-air rather than under-water AFM imaging of the living cells significantly enhanced the contrast and single-to-noise ration of the AFM images. Near-field AFM-tip enhanced fluorescence lifetime imaging (AFM-FLIM) holds great promise for obtaining fluorescence images beyond the optical diffraction limited spatial resolution. We have previously demonstrated near-field AFM-FLIM imaging of polymer beads beyond the diffraction limited spatial resolution. Here, as the first step of applying AFM-FLIM on imaging living bacterial cells, we demonstrate a correlated and consecutive AFM topographic imaging, fluorescence intensity imaging, and FLIM imaging to characterize cell polarity.

  6. Mechanics of swimming of multi-body bacterial swarmers using non-labeled cell tracking algorithm

    NASA Astrophysics Data System (ADS)

    Phuyal, Kiran; Kim, Min Jun

    2013-01-01

    To better understand the survival strategy of bacterial swarmers and the mechanical advantages offered by the linear chain (head-tail) attachment of the multiple bacterial bodies in an individual swarmer cell at low Reynolds number, a non-labeled cell tracking algorithm was used to quantify the mechanics of multi-body flagellated bacteria, Serratia marcescens, swimming in a motility buffer that originally exhibited the swarming motility. Swarming is a type of bacterial motility that is characterized by the collective coordinated motion of differentiated swarmer cells on a two-dimensional surface such as agar. In this study, the bacterial swarmers with multiple cell bodies (2, 3, and 4) were extracted from the swarm plate, and then tracked individually after resuspending in the motility medium. Their motion was investigated and compared with individual undifferentiated swimming bacterial cells. The swarmers when released into the motility buffer swam actively without tumbles. Their speeds, orientations, and the diffusive properties were studied by tracking the individual cell trajectories over a short distance in two-dimensional field when the cells are swimming at a constant depth in a bulk aqueous environment. At short time scales, the ballistic trajectory was dominant for both multi-body swarmers and undifferentiated cells.

  7. Mechanism of cell integration on biomaterial implant surfaces in the presence of bacterial contamination.

    PubMed

    Yue, Chongxia; van der Mei, Henny C; Kuijer, Roel; Busscher, Henk J; Rochford, Edward T J

    2015-11-01

    Bacterial contamination during biomaterial implantation is often unavoidable, yielding a combat between cells and bacteria. Here we aim to determine the modulatory function of bacterial components on stem-cell, fibroblast, and osteoblast adhesion to a titanium alloy, including the role of toll-like-receptors (TLRs). Presence of heat-sacrificed Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, or Pseudomonas aeruginosa induced dose and cell-type dependent responses. Stem-cells were most sensitive to bacterial presence, demonstrating decreased adhesion number yet increased adhesion effort with a relatively large focal adhesion contact area. Blocking TLRs had no effect on stem-cell adhesion in presence of S. aureus, but blocking both TLR2 and TLR4 induced an increased adhesion effort in presence of E. coli. Neither lipopolysaccharide, lipoteichoic acid, nor bacterial DNA provoked the same cell response as did whole bacteria. Herewith we suggest a new mechanism as to how biomaterials are integrated by cells despite the unavoidable presence of bacterial contamination. Stimulation of host cell integration of implant surfaces may open a new window to design new biomaterials with enhanced healing, thereby reducing the risk of biomaterial-associated infection of both "hardware-based" implants as well as of tissue-engineered constructs, known to suffer from similarly high infection risks as currently prevailing in "hardware-based" implants.

  8. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells

    NASA Astrophysics Data System (ADS)

    Mejías Carpio, Isis E.; Santos, Catherine M.; Wei, Xin; Rodrigues, Debora F.

    2012-07-01

    It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl-N-carbazole (PVK)-graphene oxide (GO) nanocomposite (PVK-GO), which contains only 3 wt% of GO well-dispersed in a 97 wt% PVK matrix, presents excellent antibacterial properties without significant cytotoxicity to mammalian cells. The high polymer content in this nanocomposite makes future large-scale material manufacturing possible in a high-yield process of adiabatic bulk polymerization. In this study, the toxicity of PVK-GO was assessed with planktonic microbial cells, biofilms, and NIH 3T3 fibroblast cells. The antibacterial effects were evaluated against two Gram-negative bacteria: Escherichia coli and Cupriavidus metallidurans; and two Gram-positive bacteria: Bacillus subtilis and Rhodococcus opacus. The results show that the PVK-GO nanocomposite presents higher antimicrobial effects than the pristine GO. The effectiveness of the PVK-GO in solution was demonstrated as the nanocomposite ``encapsulated'' the bacterial cells, which led to reduced microbial metabolic activity and cell death. The fact that the PVK-GO did not present significant cytotoxicity to fibroblast cells offers a great opportunity for potential applications in important biomedical and industrial fields.It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl

  9. Identification of individual biofilm-forming bacterial cells using Raman tweezers.

    PubMed

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral “Raman fingerprints” obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  10. Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing.

    PubMed

    Karas, Bogumil J; Jablanovic, Jelena; Irvine, Edward; Sun, Lijie; Ma, Li; Weyman, Philip D; Gibson, Daniel G; Glass, John I; Venter, J Craig; Hutchison, Clyde A; Smith, Hamilton O; Suzuki, Yo

    2014-04-01

    Direct cell-to-cell transfer of genomes from bacteria to yeast facilitates genome engineering for bacteria that are not amenable to genetic manipulation by allowing instead for the utilization of the powerful yeast genetic tools. Here we describe a protocol for transferring whole genomes from bacterial cells to yeast spheroplasts without any DNA purification process. The method is dependent on the treatment of the bacterial and yeast cellular mixture with PEG, which induces cell fusion, engulfment, aggregation or lysis. Over 80% of the bacterial genomes transferred in this way are complete, on the basis of structural and functional tests. Excluding the time required for preparing starting cultures and for incubating cells to form final colonies, the protocol can be completed in 3 h.

  11. Identification of individual biofilm-forming bacterial cells using Raman tweezers

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral "Raman fingerprints" obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  12. The DSF Family of Cell-Cell Signals: An Expanding Class of Bacterial Virulence Regulators.

    PubMed

    Ryan, Robert P; An, Shi-qi; Allan, John H; McCarthy, Yvonne; Dow, J Maxwell

    2015-07-01

    Many pathogenic bacteria use cell-cell signaling systems involving the synthesis and perception of diffusible signal molecules to control virulence as a response to cell density or confinement to niches. Bacteria produce signals of diverse structural classes. Signal molecules of the diffusible signal factor (DSF) family are cis-2-unsaturated fatty acids. The paradigm is cis-11-methyl-2-dodecenoic acid from Xanthomonas campestris pv. campestris (Xcc), which controls virulence in this plant pathogen. Although DSF synthesis was thought to be restricted to the xanthomonads, it is now known that structurally related molecules are produced by the unrelated bacteria Burkholderia cenocepacia and Pseudomonas aeruginosa. Furthermore, signaling involving these DSF family members contributes to bacterial virulence, formation of biofilms and antibiotic tolerance in these important human pathogens. Here we review the recent advances in understanding DSF signaling and its regulatory role in different bacteria. These advances include the description of the pathway/mechanism of DSF biosynthesis, identification of novel DSF synthases and new members of the DSF family, the demonstration of a diversity of DSF sensors to include proteins with a Per-Arnt-Sim (PAS) domain and the description of some of the signal transduction mechanisms that impinge on virulence factor expression. In addition, we address the role of DSF family signals in interspecies signaling that modulates the behavior of other microorganisms. Finally, we consider a number of recently reported approaches for the control of bacterial virulence through the modulation of DSF signaling.

  13. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

    PubMed Central

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-01-01

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites. DOI: http://dx.doi.org/10.7554/eLife.01990.001 PMID:24957336

  14. Determinants, reproducibility, and seasonal variation of bacterial cell wall components and viable counts in house dust.

    PubMed

    Leppänen, H K; Täubel, M; Roponen, M; Vepsäläinen, A; Rantakokko, P; Pekkanen, J; Nevalainen, A; von Mutius, E; Hyvärinen, A

    2015-06-01

    The objectives of this study were (i) to assess the determinants that affect concentrations of the bacterial cell wall components 3-hydroxy fatty acids (3-OH FAs) and muramic acid and of total viable bacteria and actinomycetes in house dust; and (ii) to examine the seasonal variation and reproducibility of these bacterial cell wall components in house dust. A number of lifestyle and environmental factors, mostly not consistent for different bacterial measures but commonly including the type of dwelling and farming (number of livestock), explained up to 37% of the variation of the bacterial concentrations in 212 homes in Eastern Finland. The reproducibility of 3-OH FAs and muramic acid measurements in house dust were studied in five urban homes and were found to be generally high (ICC 74-84%). Temporal variation observed in repeated sampling of the same home throughout a year was more pronounced for 3-OH FAs determinations (ICC 22%) than for muramic acid (ICC 55-66%). We conclude that determinants vary largely for different types of bacterial measurements in house dust; the measured parameters represent different aspects of the bacterial content indoors. More than one sample is needed to describe bacterial concentrations in house dust in the home environment due to large temporal variation.

  15. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens.

    PubMed

    Colonne, Punsiri M; Winchell, Caylin G; Voth, Daniel E

    2016-01-01

    Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions.

  16. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates

    NASA Astrophysics Data System (ADS)

    Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily

    2017-01-01

    Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.

  17. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    PubMed Central

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  18. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR.

    PubMed

    Romaniuk, Joseph A H; Cegelski, Lynette

    2015-10-05

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. © 2015 The Author(s).

  19. New method for estimating bacterial cell abundances in natural samples by use of sublimation.

    PubMed

    Glavin, Daniel P; Cleaves, H James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L

    2004-10-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  20. Bacterial effectors target the plant cell nucleus to subvert host transcription

    PubMed Central

    Canonne, Joanne; Rivas, Susana

    2012-01-01

    In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) directly target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells. PMID:22353865

  1. New method for estimating bacterial cell abundances in natural samples by use of sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  2. New method for estimating bacterial cell abundances in natural samples by use of sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  3. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment.

    PubMed

    Grimes, Catherine Leimkuhler; Ariyananda, Lushanti De Zoysa; Melnyk, James E; O'Shea, Erin K

    2012-08-22

    Mammalian Nod2 is an intracellular protein that is implicated in the innate immune response to the bacterial cell wall and is associated with the development of Crohn's disease, Blau syndrome, and gastrointestinal cancers. Nod2 is required for an immune response to muramyl dipeptide (MDP), an immunostimulatory fragment of bacterial cell wall, but it is not known whether MDP binds directly to Nod2. We report the expression and purification of human Nod2 from insect cells. Using novel MDP self-assembled monolayers (SAMs), we provide the first biochemical evidence for a direct, high-affinity interaction between Nod2 and MDP.

  4. [Influence of human gastrointestinal tract bacterial pathogens on host cell apoptosis].

    PubMed

    Wronowska, Weronika; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2005-01-01

    Several pathogenic bacteria are able to trigger apoptosis in the host cell, but the mechanisms by which it occurs differ, and the resulting pathology can take different courses. Induction and/or blockage of programmed cell death upon infection is a result of complex interaction of bacterial proteins with cellular proteins involved in signal transduction and apoptosis. In this review we focus on pro/anti-apoptotic activities exhibited by two enteric pathogens Salmonella enterica, Yersinia spp. and gastric pathogen Helicobacter pylori. We present current knowledge on how interaction between mammalian and bacterial cell relates to the molecular pathways of apoptosis, and what is the role of apoptosis in pathogenesis.

  5. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases

    PubMed Central

    Wheeler, Richard; Turner, Robert D.; Bailey, Richard G.; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A. S.; Hayhurst, Emma J.; Horsburgh, Malcolm; Hobbs, Jamie K.

    2015-01-01

    ABSTRACT Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. PMID:26220963

  6. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    PubMed

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis.

  7. Bacterial delivery of large intact genomic-DNA-containing BACs into mammalian cells

    PubMed Central

    Cheung, Wing; Kotzamanis, George; Abdulrazzak, Hassan; Goussard, Sylvie; Kaname, Tadashi; Kotsinas, Athanassios; Gorgoulis, Vassilis G.; Grillot-Courvalin, Catherine; Huxley, Clare

    2012-01-01

    Efficient delivery of large intact vectors into mammalian cells remains problematical. Here we evaluate delivery by bacterial invasion of two large BACs of more than 150 kb in size into various cells. First, we determined the effect of several drugs on bacterial delivery of a small plasmid into different cell lines. Most drugs tested resulted in a marginal increase of the overall efficiency of delivery in only some cell lines, except the lysosomotropic drug chloroquine, which was found to increase the efficiency of delivery by 6-fold in B16F10 cells. Bacterial invasion was found to be significantly advantageous compared with lipofection in delivering large intact BACs into mouse cells, resulting in 100% of clones containing intact DNA. Furthermore, evaluation of expression of the human hypoxanthine phosphoribosyltransferase (HPRT) gene from its genomic locus, which was present in one of the BACs, showed that single copy integrations of the HPRT-containing BAC had occurred in mouse B16F10 cells and that expression of HPRT from each human copy was 0.33 times as much as from each endogenous mouse copy. These data provide new evidence that bacterial delivery is a convenient and efficient method to transfer large intact therapeutic genes into mammalian cells. PMID:22095052

  8. Bacterial delivery of large intact genomic-DNA-containing BACs into mammalian cells.

    PubMed

    Cheung, Wing; Kotzamanis, George; Abdulrazzak, Hassan; Goussard, Sylvie; Kaname, Tadashi; Kotsinas, Athanassios; Gorgoulis, Vassilis G; Grillot-Courvalin, Catherine; Huxley, Clare

    2012-01-01

    Efficient delivery of large intact vectors into mammalian cells remains problematical. Here we evaluate delivery by bacterial invasion of two large BACs of more than 150 kb in size into various cells. First, we determined the effect of several drugs on bacterial delivery of a small plasmid into different cell lines. Most drugs tested resulted in a marginal increase of the overall efficiency of delivery in only some cell lines, except the lysosomotropic drug chloroquine, which was found to increase the efficiency of delivery by 6-fold in B16F10 cells. Bacterial invasion was found to be significantly advantageous compared with lipofection in delivering large intact BACs into mouse cells, resulting in 100% of clones containing intact DNA. Furthermore, evaluation of expression of the human hypoxanthine phosphoribosyltransferase (HPRT) gene from its genomic locus, which was present in one of the BACs, showed that single copy integrations of the HPRT-containing BAC had occurred in mouse B16F10 cells and that expression of HPRT from each human copy was 0.33 times as much as from each endogenous mouse copy. These data provide new evidence that bacterial delivery is a convenient and efficient method to transfer large intact therapeutic genes into mammalian cells.

  9. Monitoring intraspecies competition in a bacterial cell population by cocultivation of fluorescently labelled strains.

    PubMed

    Stannek, Lorena; Egelkamp, Richard; Gunka, Katrin; Commichau, Fabian M

    2014-01-18

    Many microorganisms such as bacteria proliferate extremely fast and the populations may reach high cell densities. Small fractions of cells in a population always have accumulated mutations that are either detrimental or beneficial for the cell. If the fitness effect of a mutation provides the subpopulation with a strong selective growth advantage, the individuals of this subpopulation may rapidly outcompete and even completely eliminate their immediate fellows. Thus, small genetic changes and selection-driven accumulation of cells that have acquired beneficial mutations may lead to a complete shift of the genotype of a cell population. Here we present a procedure to monitor the rapid clonal expansion and elimination of beneficial and detrimental mutations, respectively, in a bacterial cell population over time by cocultivation of fluorescently labeled individuals of the Gram-positive model bacterium Bacillus subtilis. The method is easy to perform and very illustrative to display intraspecies competition among the individuals in a bacterial cell population.

  10. Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments.

    PubMed

    Sharkey, Michael A; Chebbi, Ahmed; McDonnell, Kevin A; Staunton, Claire; Dowling, Denis P

    2015-06-07

    The focus of this research was first to determine the influence of the atmospheric plasma drive frequency on the generation of atomic oxygen species and its correlation with the reduction of bacterial load after treatment in vitro. The treatments were carried out using a helium-plasma jet source called PlasmaStream™. The susceptibility of multiple microbial cell lines was investigated in order to compare the response of gram-positive and gram-negative bacteria, as well as a yeast cell line to the atmospheric plasma treatment. It was observed for the source evaluated that at a frequency of 160 kHz, increased levels of oxygen-laden active species (i.e., OH, NO) were generated. At this frequency, the maximum level of bacterial inactivation in vitro was also achieved. Ex vivo studies (using freshly excised porcine skin as a human analog) were also carried out to verify the antibacterial effect of the plasma jet treatment at this optimal operational frequency and to investigate the effect of treatment duration on the reduction of bacterial load. The plasma jet treatment was found to yield a 4 log reduction in bacterial load after 6 min of treatment, with no observable adverse effects on the treatment surface. The gram-negative bacterial cell lines were found to be far more susceptible to the atmospheric plasma treatments than the gram-positive bacteria. Flow cytometric analysis of plasma treated bacterial cells (Escherichia coli) was conducted in order to attain a fundamental understanding of the mode of action of the treatment on bacteria at a cellular level. This study showed that after treatment with the plasma jet, E. coli cells progressed through the following steps of cell death; the inactivation of transport systems, followed by depolarization of the cytoplasmic membrane, and finally permeabilization of the cell wall.

  11. Hydrogen peroxide staining to visualize intracellular bacterial infections of seedling root cells.

    PubMed

    White, James F; Torres, Mónica S; Somu, Mohini P; Johnson, Holly; Irizarry, Ivelisse; Chen, Qiang; Zhang, Ning; Walsh, Emily; Tadych, Mariusz; Bergen, Marshall

    2014-08-01

    Visualization of bacteria in living plant cells and tissues is often problematic due to lack of stains that pass through living plant cell membranes and selectively stain bacterial cells. In this article, we report the use of 3,3'-diaminobenzidine tetrachloride (DAB) to stain hydrogen peroxide associated with bacterial invasion of eukaryotic cells. Tissues were counterstained with aniline blue/lactophenol to stain protein in bacterial cells. Using this staining method to visualize intracellular bacterial (Burkholderia gladioli) colonization of seedling roots of switch grass (Panicum virgatum), we compared bacterial free seedling roots and those inoculated with the bacterium. To further assess application of the technique in multiple species of vascular plants, we examined vascular plants for seedling root colonization by naturally occurring seed-transmitted bacteria. Colonization by bacteria was only observed to occur within epidermal (including root hairs) and cortical cells of root tissues, suggesting that bacteria may not be penetrating deeply into root tissues. DAB/peroxidase with counter stain aniline blue/lactophenol was effective in penetration of root cells to selectively stain bacteria. Furthermore, this stain combination permitted the visualization of the bacterial lysis process. Before any evidence of H2 O2 staining, intracellular bacteria were seen to stain blue for protein content with aniline blue/lactophenol. After H2 O2 staining became evident, bacteria were often swollen, without internal staining by aniline blue/lactophenol; this suggests loss of protein content. This staining method was effective for seedling root tissues; however, it was not effective at staining bacteria in shoot tissues due to poor penetration.

  12. Dynamics of phenotypic reversibility of bacterial cells with oscillating hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Nepal, Sudip; Kumar, Pradeep

    Bacterial cells encounter and respond to physiochemical fluctuations. The response depends on the extent and type of the stresses applied. The response of bacterial cells to the fluctuating stress is relatively unknown. Here, we have studied the response of wild type Escherichia coli (E. coli) under fluctuating hydrostatic pressures ranging from 1 atm to 500 atm. High pressure acts as a stress to E. coli since these bacteria are adapted to grow optimally at atmospheric pressure. Cell division of E. coli is inhibited at high pressures resulting in increase in the length of the cells. Cell-length is reversible in nature and bacterial cells revert back to normal size on a time scale that is proportional to the strength and time of continuous pressure applied upon relaxing the high pressure condition. We have studied the dynamics of cellular reversibility of E. coli under the conditions in which continuous pressure is applied and subsequently relaxed over different time scales. We have quantified the dynamics of cellular reversibility with different relaxation times. Furthermore, we propose a model to describe the reversibility of the bacterial cell with the relaxation time. Our theoretical model fits well to the experimental data. We further

  13. Development of method for evaluating cell hardness and correlation between bacterial spore hardness and durability.

    PubMed

    Nakanishi, Koichi; Kogure, Akinori; Fujii, Takenao; Kokawa, Ryohei; Deuchi, Keiji

    2012-06-07

    Despite the availability of conventional devices for making single-cell manipulations, determining the hardness of a single cell remains difficult. Here, we consider the cell to be a linear elastic body and apply Young's modulus (modulus of elasticity), which is defined as the ratio of the repulsive force (stress) in response to the applied strain. In this new method, a scanning probe microscope (SPM) is operated with a cantilever in the "contact-and-push" mode, and the cantilever is applied to the cell surface over a set distance (applied strain). We determined the hardness of the following bacterial cells: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and five Bacillus spp. In log phase, these strains had a similar Young's modulus, but Bacillus spp. spores were significantly harder than the corresponding vegetative cells. There was a positive, linear correlation between the hardness of bacterial spores and heat or ultraviolet (UV) resistance. Using this technique, the hardness of a single vegetative bacterial cell or spore could be determined based on Young's modulus. As an application of this technique, we demonstrated that the hardness of individual bacterial spores was directly proportional to heat and UV resistance, which are the conventional measures of physical durability. This technique allows the rapid and direct determination of spore durability and provides a valuable and innovative method for the evaluation of physical properties in the field of microbiology.

  14. Development of method for evaluating cell hardness and correlation between bacterial spore hardness and durability

    PubMed Central

    2012-01-01

    Background Despite the availability of conventional devices for making single-cell manipulations, determining the hardness of a single cell remains difficult. Here, we consider the cell to be a linear elastic body and apply Young’s modulus (modulus of elasticity), which is defined as the ratio of the repulsive force (stress) in response to the applied strain. In this new method, a scanning probe microscope (SPM) is operated with a cantilever in the “contact-and-push” mode, and the cantilever is applied to the cell surface over a set distance (applied strain). Results We determined the hardness of the following bacterial cells: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and five Bacillus spp. In log phase, these strains had a similar Young’s modulus, but Bacillus spp. spores were significantly harder than the corresponding vegetative cells. There was a positive, linear correlation between the hardness of bacterial spores and heat or ultraviolet (UV) resistance. Conclusions Using this technique, the hardness of a single vegetative bacterial cell or spore could be determined based on Young’s modulus. As an application of this technique, we demonstrated that the hardness of individual bacterial spores was directly proportional to heat and UV resistance, which are the conventional measures of physical durability. This technique allows the rapid and direct determination of spore durability and provides a valuable and innovative method for the evaluation of physical properties in the field of microbiology. PMID:22676476

  15. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Sangwijit, K.; Prakrajang, K.; Phanchaisri, B.; Thongkumkoon, P.; Thopan, P.; Singkarat, S.; Anuntalabhochai, S.

    2014-05-01

    As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10-20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  16. Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level.

    PubMed

    Cinquin, Bertrand; Maigre, Laure; Pinet, Elizabeth; Chevalier, Jacqueline; Stavenger, Robert A; Mills, Scott; Réfrégiers, Matthieu; Pagès, Jean-Marie

    2015-12-11

    Bacterial multidrug resistance is a significant health issue. A key challenge, particularly in Gram-negative antibacterial research, is to better understand membrane permeation of antibiotics in clinically relevant bacterial pathogens. Passing through the membrane barrier to reach the required concentration inside the bacterium is a pivotal step for most antibacterials. Spectrometric methodology has been developed to detect drugs inside bacteria and recent studies have focused on bacterial cell imaging. Ultimately, we seek to use this method to identify pharmacophoric groups which improve penetration, and therefore accumulation, of small-molecule antibiotics inside bacteria. We developed a method to quantify the time scale of antibiotic accumulation in living bacterial cells. Tunable ultraviolet excitation provided by DISCO beamline (synchrotron Soleil) combined with microscopy allows spectroscopic analysis of the antibiotic signal in individual bacterial cells. Robust controls and measurement of the crosstalk between fluorescence channels can provide real time quantification of drug. This technique represents a new method to assay drug translocation inside the cell and therefore incorporate rational drug design to impact antibiotic uptake.

  17. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    PubMed

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P < 0.05) chloral hydrate, highlighting the bacterial phenotype's impact on the bacteria-derived DBPFP. Pipe material appeared to affect the DBPFP of bacteria, with 4-28% lower bromine incorporation factor for biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights.

    PubMed

    Jiang, Chao; Caccamo, Paul D; Brun, Yves V

    2015-04-01

    How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era. © 2015 WILEY Periodicals, Inc.

  19. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells

    NASA Astrophysics Data System (ADS)

    Aguayo, S.; Donos, N.; Spratt, D.; Bozec, L.

    2015-02-01

    The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine.

  20. Biophysical Model of Bacterial Cell Interactions with Nanopatterned Cicada Wing Surfaces

    PubMed Central

    Pogodin, Sergey; Hasan, Jafar; Baulin, Vladimir A.; Webb, Hayden K.; Truong, Vi Khanh; Phong Nguyen, The Hong; Boshkovikj, Veselin; Fluke, Christopher J.; Watson, Gregory S.; Watson, Jolanta A.; Crawford, Russell J.; Ivanova, Elena P.

    2013-01-01

    The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials. PMID:23442962

  1. Mechanisms of bacterial morphogenesis: Evolutionary cell biology approaches provide new insights

    PubMed Central

    Jiang, Chao; Caccamo, Paul D.; Brun, Yves V.

    2015-01-01

    How Darwin’s “endless forms most beautiful” have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating “evolutionary thinking” into bacterial cell biology in the genomic era. PMID:25664446

  2. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces.

    PubMed

    Pogodin, Sergey; Hasan, Jafar; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Phong Nguyen, The Hong; Boshkovikj, Veselin; Fluke, Christopher J; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P

    2013-02-19

    The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells.

    PubMed

    Aguayo, S; Donos, N; Spratt, D; Bozec, L

    2015-02-13

    The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine.

  4. Genetic Screening for Bacterial Mutants in Liquid Growth Media By Fluorescence-Activated Cell Sorting

    PubMed Central

    Abuaita, Basel H.; Withey, Jeffrey H.

    2010-01-01

    Many bacterial pathogens have defined in vitro virulence inducing conditions in liquid media which lead to production of virulence factors important during an infection. Identifying mutants that no longer respond to virulence inducing conditions will increase our understanding of bacterial pathogenesis. However, traditional genetic screens require growth on solid media. Bacteria in a single colony are in every phase of the growth curve, which complicates the analysis and make screens for growth phase-specific mutants problematic. Here, we utilize fluorescence-activated cell sorting in conjunction with random transposon mutagenesis to isolate bacteria grown in liquid media that are defective in virulence activation. This method permits analysis of an entire bacterial population in real time and selection of individual bacterial mutants with the desired gene expression profile at any time point after induction. We have used this method to identify Vibrio cholerae mutants defective in virulence induction. PMID:21094189

  5. Bacterial cell division: the mechanism and its precison.

    PubMed

    Harry, Elizabeth; Monahan, Leigh; Thompson, Lyndal

    2006-01-01

    The recent development of cell biology techniques for bacteria to allow visualization of fundamental processes in time and space, and their use in synchronous populations of cells, has resulted in a dramatic increase in our understanding of cell division and its regulation in these tiny cells. The first stage of cell division is the formation of a Z ring, composed of a polymerized tubulin-like protein, FtsZ, at the division site precisely at midcell. Several membrane-associated division proteins are then recruited to this ring to form a complex, the divisome, which causes invagination of the cell envelope layers to form a division septum. The Z ring marks the future division site, and the timing of assembly and positioning of this structure are important in determining where and when division will take place in the cell. Z ring assembly is controlled by many factors including negative regulatory mechanisms such as Min and nucleoid occlusion that influence Z ring positioning and FtsZ accessory proteins that bind to FtsZ directly and modulate its polymerization behavior. The replication status of the cell also influences the positioning of the Z ring, which may allow the tight coordination between DNA replication and cell division required to produce two identical newborn cells.

  6. Bacterial Cell-Cell Communication in the Host via RRNPP Peptide-Binding Regulators.

    PubMed

    Perez-Pascual, David; Monnet, Véronique; Gardan, Rozenn

    2016-01-01

    Human microbiomes are composed of complex and dense bacterial consortia. In these environments, bacteria are able to react quickly to change by coordinating their gene expression at the population level via small signaling molecules. In Gram-positive bacteria, cell-cell communication is mostly mediated by peptides that are released into the extracellular environment. Cell-cell communication based on these peptides is especially widespread in the group Firmicutes, in which they regulate a wide array of biological processes, including functions related to host-microbe interactions. Among the different agents of communication, the RRNPP family of cytoplasmic transcriptional regulators, together with their cognate re-internalized signaling peptides, represents a group of emerging importance. RRNPP members that have been studied so far are found mainly in species of bacilli, streptococci, and enterococci. These bacteria are characterized as both human commensal and pathogenic, and share different niches in the human body with other microorganisms. The goal of this mini-review is to present the current state of research on the biological relevance of RRNPP mechanisms in the context of the host, highlighting their specific roles in commensalism or virulence.

  7. Synthesis of bacterial magnetic particles during cell cycle of Magnetospirillum magneticum AMB-1.

    PubMed

    Yang, C D; Takeyama, H; Tanaka, T; Hasegawa, A; Matsunaga, T

    2001-01-01

    We investigated the relationship between the synthesis of bacterial magnetic particles (BMPs) and the transcription of magA gene-encoding iron transport protein using synchronous culture of Magnetospirillum magneticum AMB-1. Synchronously cultured cells were subjected to transmission electron microscopic observation and fluorescence in situ hybridization. The average number of BMPs slowly increased in the cell with increasing cell size. A sharp increase in BMPs occurred just before cell division and resulted in maximum BMP production of 30 particles/cell. The transcription of magA was regulated immediately before and after cell division.

  8. Bacterial Programmed Cell Death as a Population Phenomenon

    DTIC Science & Technology

    2013-06-11

    Moving in for the kil:Activation of an endoribonuclease toxin by quorum sensing peptide, Molecular Cell, (03 2011): . doi: 06/11/2013 11.00...shown that E. coli mazEF-mediated cell death is a population phenomenon requiring the E. coli quorum sensing factor EDF (Extracellular Death Factor... quorum - sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318: 652-655. 7) Kolodkin-Gal I, Engelberg-Kulka, H (2008

  9. Cell motility and antibiotic tolerance of bacterial swarms

    NASA Astrophysics Data System (ADS)

    Zuo, Wenlong

    Many bacteria species can move across moist surfaces in a coordinated manner known as swarming. It is reported that swarm cells show higher tolerance to a wide variety of antibiotics than planktonic cells. We used the model bacterium E. coli to study how motility affects the antibiotic tolerance of swarm cells. Our results provide new insights for the control of pathogenic invasion via regulating cell motility. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: zwlong@live.com.

  10. Production Model Press for the Preparation of Bacterial Cell Walls

    PubMed Central

    Perrine, T. D.; Ribi, E.; Maki, W.; Miller, B.; Oertli, E.

    1962-01-01

    A modification of the apparatus previously described permits the preparation of cell walls in quantity. This consists of a heavy duty, double-acting hydraulic press with motor-driven pump, and a superstrength alloy steel pressure cell which is corrosion resistant. Liquid cooling of the jet is substituted for the previously used gas cooling to minimize aerosol formation and to facilitate subsequent treatment of the products. The device produces cell walls of excellent quality in good yield. The pressure cell has been used satisfactorily up to about 60,000 psi. Design details are given. Images FIG. 1 FIG. 2 FIG. 6 PMID:14485524

  11. On the chronology and topography of bacterial cell division.

    PubMed

    Vicente, M; Palacios, P; Dopazo, A; Garrido, T; Pla, J; Aldea, M

    1991-01-01

    Gene products that play a role in the formation of cell septum should be expected to be endowed with a set of specific properties. In principle, septal proteins should be located at the cell envelope. The expression of division genes should ensure the synthesis of septal proteins at levels commensurate with the needs of cell division at different rates of cell duplication. We have results indicating that some fts genes located within the 2.5-min cluster in the Escherichia coli chromosome conform to these predictions.

  12. Photodynamic induction of a bacterial cell surface polypeptide.

    PubMed Central

    Hoober, J K

    1977-01-01

    The photodynamic action of several dyes on cells of a bacterium, tentatively identified as a species of Arthrobacter, resulted in remarkable stimulation of synthesis of a polypeptide 21,000 daltons in mass. This polypeptide resides on the cell surface and can be solubilized by sodium dodecyl sulfate without lysis of the cells. Chlorophyllin and rose bengal are effective in inducing synthesis of the polypeptide in proportion to their ability to sensitize the photooxidation of histidine. Etiolated cells of the alga Chlamydomonas reinhardtii y-1 excrete a substance into the medium that also sensitized the photoinduction of the polypeptide. Images PMID:885841

  13. Interaction of Francisella tularensis bacterial cells with dynamic speckles

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Ulyanov, Sergey S.; Sazanova, Elena V.; Zudina, Irina; Zhang, Zhihong; Sibo, Zhou; Luo, Qingming

    2006-08-01

    Influence of low-coherent speckles on the colonies grows is investigated. It has been demonstrated that effects of light on the inhibition of cells (Francisella Tularensis) are caused by speckle dynamics. The regimes of illumination of cell suspension with purpose of devitalization of hazard bacteria, caused very dangerous infections, such as tularemia, are found. Mathematical model of interaction of low-coherent laser radiation with bacteria suspension has been proposed. Computer simulations of the processes of laser-cells interaction have been carried out. Role of coherence of light in the processes of laser-cell interaction is analyzed.

  14. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    USGS Publications Warehouse

    Becker, M.W.; Collins, S.A.; Metge, D.W.; Harvey, R.W.; Shapiro, A.M.

    2004-01-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates. ?? 2003 Elsevier B.V. All rights reserved.

  15. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    NASA Astrophysics Data System (ADS)

    Becker, Matthew W.; Collins, Samantha A.; Metge, David W.; Harvey, Ronald W.; Shapiro, Allen M.

    2004-04-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates.

  16. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater.

    PubMed

    Becker, Matthew W; Collins, Samantha A; Metge, David W; Harvey, Ronald W; Shapiro, Allen M

    2004-04-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates.

  17. Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces.

    PubMed

    Wang, Liyun; Fan, Daming; Chen, Wei; Terentjev, Eugene M

    2015-10-14

    In medicine and food industry, bacterial colonisation on surfaces is a common cause of infections and severe illnesses. However, the detailed quantitative information about the dynamics and the mechanisms involved in bacterial proliferation on solid substrates is still lacking. In this study we investigated the adhesion and detachment, the individual growth and colonisation, and the cell size control of Escherichia coli (E. coli) MG1655 on polyethylene terephthalate (PET) surfaces. The results show that the bacterial growth curve on PET exhibits the distinct lag and log phases, but the generation time is more than twice longer than in bulk medium. Single cells in the lag phase are more likely to detach than clustered ones in the log phase; clustered bacteria in micro-colonies have stronger adhesive bonds with surfaces and their neighbours with the progressing colonisation. We show that the cell size is under the density-dependent pathway control: when the adherent cells are at low density, the culture medium is responsible for coordinating cell division and cell size; when the clustered cells are at high population density, we demonstrate that the effect of quorum sensing causes the cell size decrease as the cell density on surfaces increases.

  18. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation

    PubMed Central

    Boix-Amorós, Alba; Collado, Maria C.; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 106 bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, “planktonic” state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system. PMID:27148183

  19. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation.

    PubMed

    Boix-Amorós, Alba; Collado, Maria C; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 10(6) bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, "planktonic" state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system.

  20. Glycerol Monolaurate Inhibits Lipase Production by Clinical Ocular Isolates Without Affecting Bacterial Cell Viability.

    PubMed

    Flanagan, Judith Louise; Khandekar, Neeta; Zhu, Hua; Watanabe, Keizo; Markoulli, Maria; Flanagan, John Terence; Papas, Eric

    2016-02-01

    We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. Staphylococcus aureus,Staphylococcus epidermidis,Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 10(6)/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 37 °C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dose-dependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P < 0.05) lipase inhibition above concentrations of 15 μg/mL in S. aureus and was not cytotoxic up to 25 μg/mL. For S. epidermidis, GML showed significant (P < 0.05) lipase inhibition above 7.5 μg/mL. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability.

  1. A mechanistic stochastic framework for regulating bacterial cell division.

    PubMed

    Ghusinga, Khem Raj; Vargas-Garcia, Cesar A; Singh, Abhyudai

    2016-07-26

    How exponentially growing cells maintain size homeostasis is an important fundamental problem. Recent single-cell studies in prokaryotes have uncovered the adder principle, where cells add a fixed size (volume) from birth to division, irrespective of their size at birth. To mechanistically explain the adder principle, we consider a timekeeper protein that begins to get stochastically expressed after cell birth at a rate proportional to the volume. Cell-division time is formulated as the first-passage time for protein copy numbers to hit a fixed threshold. Consistent with data, the model predicts that the noise in division timing increases with size at birth. Intriguingly, our results show that the distribution of the volume added between successive cell-division events is independent of the newborn cell size. This was dramatically seen in experimental studies, where histograms of the added volume corresponding to different newborn sizes collapsed on top of each other. The model provides further insights consistent with experimental observations: the distribution of the added volume when scaled by its mean becomes invariant of the growth rate. In summary, our simple yet elegant model explains key experimental findings and suggests a mechanism for regulating both the mean and fluctuations in cell-division timing for controlling size.

  2. A mechanistic stochastic framework for regulating bacterial cell division

    PubMed Central

    Ghusinga, Khem Raj; Vargas-Garcia, Cesar A.; Singh, Abhyudai

    2016-01-01

    How exponentially growing cells maintain size homeostasis is an important fundamental problem. Recent single-cell studies in prokaryotes have uncovered the adder principle, where cells add a fixed size (volume) from birth to division, irrespective of their size at birth. To mechanistically explain the adder principle, we consider a timekeeper protein that begins to get stochastically expressed after cell birth at a rate proportional to the volume. Cell-division time is formulated as the first-passage time for protein copy numbers to hit a fixed threshold. Consistent with data, the model predicts that the noise in division timing increases with size at birth. Intriguingly, our results show that the distribution of the volume added between successive cell-division events is independent of the newborn cell size. This was dramatically seen in experimental studies, where histograms of the added volume corresponding to different newborn sizes collapsed on top of each other. The model provides further insights consistent with experimental observations: the distribution of the added volume when scaled by its mean becomes invariant of the growth rate. In summary, our simple yet elegant model explains key experimental findings and suggests a mechanism for regulating both the mean and fluctuations in cell-division timing for controlling size. PMID:27456660

  3. Enhanced metalloadsorption of bacterial cells displaying poly-His peptides

    SciTech Connect

    Sousa, C.; Cebolla, A.; Lorenzo, V. de

    1996-08-01

    The properties of Escherichia coli cells, acquired by cell surface presentation of one or two hexahistidine (His) clusters carried by the outer membrane LamB protein, have been examined. Strains producing LamB hybrids with the His chains accumulated greater than 11-fold more Cd{sup 2} than E. coli cells expressing the protein without the His insert. Furthermore, the hexa-His chains on the cell surface caused cells to adhere reversibly to a Ni{sup 2+}-containing solid matrix in a metal-dependent fashion. Thus, expression of poly-His peptides enables bacteria to act as a metalloaffinity adsorbent. These results open up the possibility for biosorption of heavy ions using engineered microorganisms. 32 refs., 3 figs.

  4. A widespread family of bacterial cell wall assembly proteins

    PubMed Central

    Kawai, Yoshikazu; Marles-Wright, Jon; Cleverley, Robert M; Emmins, Robyn; Ishikawa, Shu; Kuwano, Masayoshi; Heinz, Nadja; Bui, Nhat Khai; Hoyland, Christopher N; Ogasawara, Naotake; Lewis, Richard J; Vollmer, Waldemar; Daniel, Richard A; Errington, Jeff

    2011-01-01

    Teichoic acids and acidic capsular polysaccharides are major anionic cell wall polymers (APs) in many bacteria, with various critical cell functions, including maintenance of cell shape and structural integrity, charge and cation homeostasis, and multiple aspects of pathogenesis. We have identified the widespread LytR–Cps2A–Psr (LCP) protein family, of previously unknown function, as novel enzymes required for AP synthesis. Structural and biochemical analysis of several LCP proteins suggest that they carry out the final step of transferring APs from their lipid-linked precursor to cell wall peptidoglycan (PG). In Bacillus subtilis, LCP proteins are found in association with the MreB cytoskeleton, suggesting that MreB proteins coordinate the insertion of the major polymers, PG and AP, into the cell wall. PMID:21964069

  5. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.

    PubMed

    Stylianidou, Stella; Brennan, Connor; Nissen, Silas B; Kuwada, Nathan J; Wiggins, Paul A

    2016-11-01

    Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution.

  6. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen

    PubMed Central

    Brown, Andrew S.; Yang, Chao; Fung, Ka Yee; Bachem, Annabell; Bourges, Dorothée; Bedoui, Sammy; Hartland, Elizabeth L.; van Driel, Ian R.

    2016-01-01

    Legionella pneumophila is the causative agent of Legionnaires’ disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC), which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity. PMID:27300652

  7. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen.

    PubMed

    Brown, Andrew S; Yang, Chao; Fung, Ka Yee; Bachem, Annabell; Bourges, Dorothée; Bedoui, Sammy; Hartland, Elizabeth L; van Driel, Ian R

    2016-06-01

    Legionella pneumophila is the causative agent of Legionnaires' disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC), which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity.

  8. Bacterial activation of human natural killer cells: role of cell surface lipopolysaccharide.

    PubMed Central

    Lindemann, R A

    1988-01-01

    Culture of human peripheral blood lymphocytes with gram-negative bacteria associated with periodontal disease caused a rapid increase in the cytotoxic potential of natural killer (NK) cells. The NK cells were activated to kill NK-resistant targets, the peak cytotoxicity occurring on day 1 of culture. The addition of anti-Tac, anti-CD3, or anti-OKT-11 antibodies to block activation via the interleukin-2 (IL-2), T-cell, or E rosette receptors had a minimal effect on this inductive process. Anti-IL-2 antiserum was effective in blocking a significant amount, but not all, of the cytotoxicity in bacterium-activated cultures. Modest IL-2 production (5 to 6 National Institutes of Health units) was measured in lymphocyte cultures activated by bacteria, but proliferation was not induced during a 1-week period. When polymixin B sulfate was added to bind and block lipopolysaccharides, bacterium-induced cytotoxicity was completely abrogated for all activating bacteria. In addition, when culture supernatants from Actinobacillus actinomycetemcomitans were tested, activation still occurred. However, again, this activation was totally inhibited by polymixin B sulfate. Monocytes were also activated by bacteria to produce tumor necrosis factor (TNF). To exclude the possibility that TNF was responsible for cytotoxicity, an antiserum to TNF was added to cocultures of bacteria and lymphocytes with adherent cells removed. The antiserum had no effect on the inductive process. In addition, exogenous TNF did not kill M14 targets. These results suggest that bacterial cell surface lipopolysaccharides provide a major activation signal for NK cells to enhance cytotoxicity. PMID:2895743

  9. Cationic lipid enhances assembly of bacterial cell division protein FtsZ: a possible role of bacterial membrane in FtsZ assembly dynamics.

    PubMed

    Kuchibhatla, Anuradha; Bellare, Jayesh; Panda, Dulal

    2011-11-01

    The assembly of FtsZ plays an important role in bacterial cell division. Lipids in the bacterial cell membrane have been suggested to play a role in directing the site of FtsZ assembly. Using lipid monolayer and bilayer (liposome) systems, we directly examined the effects of cationic lipids on FtsZ assembly. We found that cationic lipids enhanced the assembly of FtsZ in association with an increase in the GTPase activity of FtsZ. The system consisting of lipid monolayer and bilayer (liposome) may mimic the bacterial membrane and therefore, the data might indicate the influence of bacterial membrane on the assembly of FtsZ protofilaments.

  10. In-vitro analysis of APA microcapsules for oral delivery of live bacterial cells.

    PubMed

    Chen, H; Ouyang, W; Jones, M; Haque, T; Lawuyi, B; Prakash, S

    2005-08-01

    Oral administration of microcapsules containing live bacterial cells has potential as an alternative therapy for several diseases. This article evaluates the suitability of the alginate-poly-L-lysine-alginate (APA) microcapsules for oral delivery of live bacterial cells, in-vitro, using a dynamic simulated human gastro-intestinal (GI) model. Results showed that the APA microcapsules were morphologically stable in the simulated stomach conditions, but did not retain their structural integrity after a 3-day exposure in simulated human GI media. The microbial populations of the tested bacterial cells and the activities of the tested enzymes in the simulated human GI suspension were not substantially altered by the presence of the APA microcapsules, suggesting that there were no significant adverse effects of oral administration of the APA microcapsules on the flora of the human gastrointestinal tract. When the APA microcapsules containing Lactobacillus plantarum 80 (LP80) were challenged in the simulated gastric medium (pH = 2.0), 80.0% of the encapsulated cells remained viable after a 5-min incubation; however, the viability decreased considerably (8.3%) after 15 min and dropped to 2.6% after 30 min and lower than 0.2% after 60 min, indicating the limitations of the currently obtainable APA membrane for oral delivery of live bacteria. Further in-vivo studies are required before conclusions can be made concerning the inadequacy of APA microcapsules for oral delivery of live bacterial cells.

  11. Contribution of phosphoglucosamine mutase to determination of bacterial cell morphology in Streptococcus gordonii.

    PubMed

    Shimazu, Kisaki; Takahashi, Yukihiro; Karibe, Hiroyuki; Mitsuhashi, Fusako; Konishi, Kiyoshi

    2012-01-01

    Phosphoglucosamine mutase (GlmM; EC 5.4.2.10) catalyzes the interconversion of glucosamine-6-phosphate to glucosamine-1-phosphate, an essential step in the biosynthetic pathway leading to the formation of the peptidoglycan precursor uridine 5'-diphospho-N-acetylglucosamine. We have recently identified the gene (glmM) encoding the enzyme of Streptococcus gordonii, an early colonizer on the human tooth and an important cause of infective endocarditis, and indicated that the glmM mutation in S. gordonii appears to influence bacterial cell growth, morphology, and sensitivity to penicillins. Moreover, the glmM mutation results in increased sensitivity to polymorphonuclear leukocyte (PMN)-dependent killing. In the present study, we observed similarities in the utilization of sugar between the wild-type strain and the glmM mutant of S. gordonii when cultivated with medium containing 0.2% glucose, fructose, lactose, or sucrose. Morphological analyses clearly indicated that the glmM mutation causes marked elongation of the streptococcal chains, enlargement of bacterial cells, increased distortion of the bacterial cell surface, and defects in cell separation. These results suggest that mutations in glmM appear to influence bacterial cell growth and morphology, independent of the carbon source.

  12. Nanoscale Electric Permittivity of Single Bacterial Cells at Gigahertz Frequencies by Scanning Microwave Microscopy.

    PubMed

    Biagi, Maria Chiara; Fabregas, Rene; Gramse, Georg; Van Der Hofstadt, Marc; Juárez, Antonio; Kienberger, Ferry; Fumagalli, Laura; Gomila, Gabriel

    2016-01-26

    We quantified the electric permittivity of single bacterial cells at microwave frequencies and nanoscale spatial resolution by means of near-field scanning microwave microscopy. To this end, calibrated complex admittance images have been obtained at ∼19 GHz and analyzed with a methodology that removes the nonlocal topographic cross-talk contributions and thus provides quantifiable intrinsic dielectric images of the bacterial cells. Results for single Escherichia coli cells provide a relative electric permittivity of ∼4 in dry conditions and ∼20 in humid conditions, with no significant loss contributions. Present findings, together with the ability of microwaves to penetrate the cell membrane, open an important avenue in the microwave label-free imaging of single cells with nanoscale spatial resolution.

  13. Enzymatic isolation of cells from bone: cytotoxic enzymes of bacterial collagenase

    SciTech Connect

    Hefley, T.; Cushing, J.; Brand, J.S.

    1981-01-01

    The enzymatic isolation of cells from fetal rat calvaria is most effectively achieved with crude Clostridium histolyticum collagenase. However, this bacterial collagenase damages the cells during the digestion of the tissue. We have used cell density, as measured by isopycnic centrifugation on polysucrose gradients, as an indicator of cell damage. There are at least two enzymes in crude bacterial collagenase capable of damaging the cells in this tissue. One of these is clostripain that has been well characterized.The other cytotoxic enzyme is uncharacterized, and its effects are not evident until the clostripain activity has been inhibited by ..cap alpha..-tosyl-lysyl chloromethane. The apparent activity of this second enzyme can be inhibited by withholding magnesium from the digestion medium and by increasing the potassium concentration of the digestion medium.

  14. The integrin-binding domain of invasin is sufficient to allow bacterial entry into mammalian cells.

    PubMed Central

    Rankin, S; Isberg, R R; Leong, J M

    1992-01-01

    Yersinia pseudotuberculosis is able to enter normally nonphagocytic host cells by multiple pathways, the most efficient of which is mediated by invasin, a 986-amino-acid bacterial outer membrane protein. It has previously been shown that the C-terminal 192 amino acids of invasin are sufficient to bind mammalian cells. To determine if additional regions of the invasin protein are necessary to promote entry, we developed a novel assay that tests the ability of various invasin derivatives to confer on Staphylococcus aureus the ability to enter animal cells. We determined that the 192-amino-acid cell-binding region of invasin, when used to coat the bacterial cell surface, was also sufficient to promote cellular penetration. These results suggest that the simple binding of invasin to its receptors is sufficient to mediate entry and that the bacterium plays a largely passive role in the entry process. Images PMID:1500198

  15. Streptomyces: a screening tool for bacterial cell division inhibitors.

    PubMed

    Jani, Charul; Tocheva, Elitza I; McAuley, Scott; Craney, Arryn; Jensen, Grant J; Nodwell, Justin

    2015-02-01

    Cell division is essential for spore formation but not for viability in the filamentous streptomycetes bacteria. Failure to complete cell division instead blocks spore formation, a phenotype that can be visualized by the absence of gray (in Streptomyces coelicolor) and green (in Streptomyces venezuelae) spore-associated pigmentation. Despite the lack of essentiality, the streptomycetes divisome is similar to that of other prokaryotes. Therefore, the chemical inhibitors of sporulation in model streptomycetes may interfere with the cell division in rod-shaped bacteria as well. To test this, we investigated 196 compounds that inhibit sporulation in S. coelicolor. We show that 19 of these compounds cause filamentous growth in Bacillus subtilis, consistent with impaired cell division. One of the compounds is a DNA-damaging agent and inhibits cell division by activating the SOS response. The remaining 18 act independently of known stress responses and may therefore act on the divisome or on divisome positioning and stability. Three of the compounds (Fil-1, Fil-2, and Fil-3) confer distinct cell division defects on B. subtilis. They also block B. subtilis sporulation, which is mechanistically unrelated to the sporulation pathway of streptomycetes but is also dependent on the divisome. We discuss ways in which these differing phenotypes can be used in screens for cell division inhibitors.

  16. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces.

    PubMed

    Hsu, Lillian C; Fang, Jean; Borca-Tasciuc, Diana A; Worobo, Randy W; Moraru, Carmen I

    2013-04-01

    Attachment and biofilm formation by bacterial pathogens on surfaces in natural, industrial, and hospital settings lead to infections and illnesses and even death. Minimizing bacterial attachment to surfaces using controlled topography could reduce the spreading of pathogens and, thus, the incidence of illnesses and subsequent human and financial losses. In this context, the attachment of key microorganisms, including Escherichia coli, Listeria innocua, and Pseudomonas fluorescens, to silica and alumina surfaces with micron and nanoscale topography was investigated. The results suggest that orientation of the attached cells occurs preferentially such as to maximize their contact area with the surface. Moreover, the bacterial cells exhibited different morphologies, including different number and size of cellular appendages, depending on the topographical details of the surface to which they attached. This suggests that bacteria may utilize different mechanisms of attachment in response to surface topography. These results are important for the design of novel microbe-repellant materials.

  17. Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol‐dependent cytolysins

    PubMed Central

    Malet, Julien Karim

    2016-01-01

    Abstract Bacterial pathogens can interfere during infection with host cell organelles, such as mitochondria, the endoplasmic reticulum‐Golgi system or nuclei. As important cellular functions are often compartmentalized in these organelles, their targeting allows pathogens to manipulate key host functions during infection. Here, we identify lysosomes as a new class of organelles targeted by the pathogenic bacterium Listeria monocytogenes. We demonstrate that extracellular Listeria, via secretion of the pore‐forming toxin listeriolysin O, alters lysosomal integrity in epithelial cells but not in macrophages. Listeriolysin O induces lysosomal membrane permeabilization and release of lysosomal content, such as cathepsins proteases, which remain transiently active in the host cytosol. We furthermore show that other bacterial pore‐forming toxins, such as perfringolysin O and pneumolysin, also induce lysosomes alteration. Together, our data unveil a novel activity of bacterial cholesterol‐dependent cytolysins. PMID:27739224

  18. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    NASA Astrophysics Data System (ADS)

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-09-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry.

  19. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    PubMed Central

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-01-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry. PMID:27596612

  20. Vehicles, Replicators, and Intercellular Movement of Genetic Information: Evolutionary Dissection of a Bacterial Cell

    PubMed Central

    Jalasvuori, Matti

    2012-01-01

    Prokaryotic biosphere is vastly diverse in many respects. Any given bacterial cell may harbor in different combinations viruses, plasmids, transposons, and other genetic elements along with their chromosome(s). These agents interact in complex environments in various ways causing multitude of phenotypic effects on their hosting cells. In this discussion I perform a dissection for a bacterial cell in order to simplify the diversity into components that may help approach the ocean of details in evolving microbial worlds. The cell itself is separated from all the genetic replicators that use the cell vehicle for preservation and propagation. I introduce a classification that groups different replicators according to their horizontal movement potential between cells and according to their effects on the fitness of their present host cells. The classification is used to discuss and improve the means by which we approach general evolutionary tendencies in microbial communities. Moreover, the classification is utilized as a tool to help formulating evolutionary hypotheses and to discuss emerging bacterial pathogens as well as to promote understanding on the average phenotypes of different replicators in general. It is also discussed that any given biosphere comprising prokaryotic cell vehicles and genetic replicators may naturally evolve to have horizontally moving replicators of various types. PMID:22567533

  1. The percentage of living bacterial cells related to organic carbon release from senescent oceanic phytoplankton

    NASA Astrophysics Data System (ADS)

    Lasternas, S.; Agustí, S.

    2014-11-01

    Bacteria recycle vast amounts of organic carbon, playing key biogeochemical and ecological roles in the ocean. Bacterioplankton dynamics are expected to be dependent on phytoplankton primary production, but there is a high diversity of processes (e.g., sloppy feeding, cell exudation, viral lysis) involved in the transfer of primary production to dissolved organic carbon available to bacteria. Here, we show the percentage of living heterotrophic bacterioplankton in the subtropical NE Atlantic Ocean in relation to phytoplankton extracellular carbon release (PER). PER represents the fraction of primary production released as dissolved organic carbon. PER variability was explained by phytoplankton cell death, with communities experiencing higher phytoplankton cell mortality showing a larger proportion of phytoplankton extracellular carbon release. Both PER and the percentage of dead phytoplankton cells increased from eutrophic to oligotrophic waters, while abundance of heterotrophic bacteria was highest in the intermediate waters. The percentage of living heterotrophic bacterial cells (range: 60-95%) increased with increasing phytoplankton extracellular carbon release from productive to oligotrophic waters in the subtropical NE Atlantic. The lower PERs, observed at the upwelling waters, have resulted in a decrease in the flux of phytoplankton dissolved organic carbon (DOC) per bacterial cell. The results highlight phytoplankton cell death as a process influencing the flow of dissolved photosynthetic carbon in this region of the subtropical NE Atlantic Ocean, and suggest a close coupling between the fraction of primary production released and heterotrophic bacterial cell survival.

  2. General Protein Diffusion Barriers create Compartments within Bacterial Cells

    PubMed Central

    Schlimpert, Susan; Klein, Eric A.; Briegel, Ariane; Hughes, Velocity; Kahnt, Jörg; Bolte, Kathrin; Maier, Uwe G.; Brun, Yves V.; Jensen, Grant J.; Gitai, Zemer; Thanbichler, Martin

    2013-01-01

    SUMMARY In eukaryotes, the differentiation of cellular extensions such as cilia or neuronal axons depends on the partitioning of proteins to distinct plasma membrane domains by specialized diffusion barriers. However, examples of this compartmentalization strategy are still missing for prokaryotes, although complex cellular architectures are widespread among this group of organisms. This study reveals the existence of a protein-mediated membrane diffusion barrier in the stalked bacterium Caulobacter crescentus. We show that the Caulobacter cell envelope is compartmentalized by macromolecular complexes that prevent the exchange of both membrane and soluble proteins between the polar stalk extension and the cell body. The barrier structures span the cross-sectional area of the stalk and comprise at least four proteins that assemble in a cell cycle-dependent manner. Their presence is critical for cellular fitness, as they minimize the effective cell volume, allowing faster adaptation to environmental changes that require de novo synthesis of envelope proteins. PMID:23201141

  3. Biogenesis of the Gram-positive bacterial cell envelope.

    PubMed

    Siegel, Sara D; Liu, Jun; Ton-That, Hung

    2016-12-01

    The Gram-positive cell envelope serves as a molecular platform for surface display of capsular polysaccharides, wall teichoic acids (WTAs), lipoteichoic acids (LTAs), lipoproteins, surface proteins and pili. WTAs, LTAs, and sortase-assembled pili are a few features that make the Gram-positive cell envelope distinct from the Gram-negative counterpart. Interestingly, a set of LytR-CpsA-Psr family proteins, found in all Gram-positives but limited to a minority of Gram-negative organisms, plays divergent functions, while decorating the cell envelope with glycans. Furthermore, a phylum of Gram-positive bacteria, the actinobacteria, appear to employ oxidative protein folding as the major folding mechanism, typically occurring in an oxidizing environment of the Gram-negative periplasm. These distinctive features will be highlighted, along with recent findings in the cell envelope biogenesis.

  4. Biosynthesis of a Fully Functional Cyclotide inside Living Bacterial Cells

    SciTech Connect

    Camarero, J A; Kimura, R H; Woo, Y; Cantor, J; Shekhtman, A

    2007-04-05

    The cyclotide MCoTI-II is a powerful trypsin inhibitor recently isolated from the seeds of Momordica cochinchinensis, a plant member of cucurbitaceae family. We report for the first time the in vivo biosynthesis of natively-folded MCoTI-II inside live E. coli cells. Our biomimetic approach involves the intracellular backbone cyclization of a linear cyclotide-intein fusion precursor mediated by a modified protein splicing domain. The cyclized peptide then spontaneously folds into its native conformation. The use of genetically engineered E. coli cells containing mutations in the glutathione and thioredoxin reductase genes considerably improves the production of folded MCoTI-II in vivo. Biochemical and structural characterization of the recombinant MCoTI-II confirmed its identity. Biosynthetic access to correctly-folded cyclotides allows the possibility of generating cell-based combinatorial libraries that can be screened inside living cells for their ability to modulate or inhibit cellular processes.

  5. Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells.

    PubMed

    Dunaj, Sara J; Vallino, Joseph J; Hines, Mark E; Gay, Marcus; Kobyljanec, Christine; Rooney-Varga, Juliette N

    2012-02-07

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful renewable resource: soil organic carbon. We analyzed bacterial community structure, MFC performance, and soil characteristics in different microhabitats within MFCs constructed from agricultural or forest soils in order to determine how soil type and bacterial dynamics influence MFC performance. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs. Bacterial community profile data indicate that the bacterial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These results suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic bacterial communities, while the quality of available organic matter may have played a significant role in supporting high performing bacterial communities.

  6. Sensing cytosolic RpsL by macrophages induces lysosomal cell death and termination of bacterial infection.

    PubMed

    Zhu, Wenhan; Tao, Lili; Quick, Marsha L; Joyce, Johanna A; Qu, Jie-Ming; Luo, Zhao-Qing

    2015-03-01

    The intracellular bacterial pathogen Legionella pneumophila provokes strong host responses and has proven to be a valuable model for the discovery of novel immunosurveillance pathways. Our previous work revealed that an environmental isolate of L. pneumophila induces a noncanonical form of cell death, leading to restriction of bacterial replication in primary mouse macrophages. Here we show that such restriction also occurs in infections with wild type clinical isolates. Importantly, we found that a lysine to arginine mutation at residue 88 (K88R) in the ribosome protein RpsL that not only confers bacterial resistance to streptomycin, but more importantly, severely attenuated the induction of host cell death and enabled L. pneumophila to replicate in primary mouse macrophages. Although conferring similar resistance to streptomycin, a K43N mutation in RpsL does not allow productive intracellular bacterial replication. Further analysis indicated that RpsL is capable of effectively inducing macrophage death via a pathway involved in lysosomal membrane permeabilization; the K88R mutant elicits similar responses but is less potent. Moreover, cathepsin B, a lysosomal protease that causes cell death after being released into the cytosol upon the loss of membrane integrity, is required for efficient RpsL-induced macrophage death. Furthermore, despite the critical role of cathepsin B in delaying RpsL-induced cell death, macrophages lacking cathepsin B do not support productive intracellular replication of L. pneumophila harboring wild type RpsL. This suggests the involvement of other yet unidentified components in the restriction of bacterial replication. Our results identified RpsL as a regulator in the interactions between bacteria such as L. pneumophila and primary mouse macrophages by triggering unique cellular pathways that restrict intracellular bacterial replication.

  7. Homeostatic Interplay between Bacterial Cell-Cell Signaling and Iron in Virulence

    PubMed Central

    Hazan, Ronen; He, Jianxin; Xiao, Gaoping; Dekimpe, Valérie; Apidianakis, Yiorgos; Lesic, Biliana; Astrakas, Christos; Déziel, Eric; Lépine, François; Rahme, Laurence G.

    2010-01-01

    Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens. PMID:20300606

  8. Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation.

    PubMed

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu

    2016-12-01

    We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process.

  9. Effects of bacterial cells and two types of extracellular polymers on bioclogging of sand columns

    NASA Astrophysics Data System (ADS)

    Xia, Lu; Zheng, Xilai; Shao, Haibing; Xin, Jia; Sun, Zhaoyue; Wang, Leyun

    2016-04-01

    Microbially induced reductions in the saturated hydraulic conductivity, Ks, of natural porous media, conventionally called bioclogging, occurs frequently in natural and engineered subsurface systems. Bioclogging can affect artificial groundwater recharge, in situ bioremediation of contaminated aquifers, or permeable reactive barriers. In this study, we designed a series of percolation experiments to simulate the growth and metabolism of bacteria in sand columns. The experimental results showed that the bacterial cell amount gradually increased to a maximum of 8.91 log10 CFU/g sand at 144 h during the bioclogging process, followed by a decrease to 7.89 log10 CFU/g sand until 336 h. The same variation pattern was found for the concentration of tightly bound extracellular polymeric substances (TB-EPS), which had a peak value of 220.76 μg/g sand at 144 h. In the same experiments, the concentration of loosely bound extracellular polymeric substances (LB-EPS) increased sharply from 54.45 to 575.57 μg/g sand in 192 h, followed by a slight decline to 505.04 μg/g sand. The increase of the bacterial cell amount along with the other two concentrations could reduce the Ks of porous media, but their relative contributions varied to a large degree during different percolation stages. At the beginning of the tests (e.g., 48 h before), bacterial cells were likely responsible for the Ks reduction of porous media because no increase was found for the other two concentrations. With the accumulation of cells and EPS production from 48 to 144 h, both were important for the reduction of Ks. However, in the late period of percolation tests from 144 to 192 h, LB-EPS was probably responsible for the further reduction of Ks, as the bacterial cell amount and TB-EPS concentration decreased. Quantitative contributions of bacterial cell amount and the two types of extracellular polymers to Ks reductions were also evaluated.

  10. Life without a cell membrane: Challenging the specificity of bacterial endophytes within Bryopsis (Bryopsidales, Chlorophyta)

    PubMed Central

    2011-01-01

    Background The siphonous green macroalga Bryopsis has some remarkable characteristics. Besides hosting a rich endophytic bacterial flora, Bryopsis also displays extraordinary wound repair and propagation mechanisms. This latter feature includes the formation of protoplasts which can survive in the absence of a cell membrane for several minutes before regenerating into new individuals. This transient 'life without a membrane' state, however, challenges the specificity of the endophytic bacterial communities present and raises the question whether these bacteria are generalists, which are repeatedly acquired from the environment, or if there is some specificity towards the Bryopsis host. Results To answer this question, we examined the temporal stability and the uniqueness of endobiotic bacterial communities within Bryopsis samples from the Mexican west coast after prolonged cultivation. DGGE analysis revealed that Bryopsis endophytic bacterial communities are rather stable and clearly distinct from the epiphytic and surrounding cultivation water bacterial communities. Although these endogenous communities consist of both facultative and obligate bacteria, results suggest that Bryopsis owns some intrinsic mechanisms to selectively maintain and/or attract specific bacteria after repeated wounding events in culture. Conclusions This suggests that Bryopsis algae seem to master transient stages of life without a cell membrane well as they harbor specific - and possibly ecological significant - endophytic bacteria. PMID:22103477

  11. Diverse uncultivated ultra-small bacterial cells in groundwater.

    PubMed

    Luef, Birgit; Frischkorn, Kyle R; Wrighton, Kelly C; Holman, Hoi-Ying N; Birarda, Giovanni; Thomas, Brian C; Singh, Andrea; Williams, Kenneth H; Siegerist, Cristina E; Tringe, Susannah G; Downing, Kenneth H; Comolli, Luis R; Banfield, Jillian F

    2015-02-27

    Bacteria from phyla lacking cultivated representatives are widespread in natural systems and some have very small genomes. Here we test the hypothesis that these cells are small and thus might be enriched by filtration for coupled genomic and ultrastructural characterization. Metagenomic analysis of groundwater that passed through a ~0.2-μm filter reveals a wide diversity of bacteria from the WWE3, OP11 and OD1 candidate phyla. Cryogenic transmission electron microscopy demonstrates that, despite morphological variation, cells consistently have small cell size (0.009±0.002 μm(3)). Ultrastructural features potentially related to cell and genome size minimization include tightly packed spirals inferred to be DNA, few densely packed ribosomes and a variety of pili-like structures that might enable inter-organism interactions that compensate for biosynthetic capacities inferred to be missing from genomic data. The results suggest that extremely small cell size is associated with these relatively common, yet little known organisms.

  12. Bacterial Cell Surface Adsorption of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  13. Interspecies Communication between Pathogens and Immune Cells via Bacterial Membrane Vesicles

    PubMed Central

    Jurkoshek, Katerina S.; Wang, Ying; Athman, Jaffre J.; Barton, Marian R.; Wearsch, Pamela A.

    2016-01-01

    The production of extracellular vesicles is a universal mechanism for intercellular communication that is conserved across kingdoms. Prokaryotes secrete 50–250 nm membrane vesicles (MVs) in a manner that is regulated by environmental stress and is thought to promote survival. Since many types of host-derived stress are encountered during infection, this implies an important role for MV secretion in bacterial pathogenesis. Accordingly, MVs produced by gram-positive and gram-negative pathogens contain toxins, virulence factors, and other molecules that promote survival in the host. However, recent studies have also shown that bacterial MVs are enriched for molecules that stimulate innate and adaptive immune responses. As an example, MVs may serve multiple, important roles in regulating the host response to Mycobacterium tuberculosis (Mtb), an intracellular pathogen that infects lung macrophages and resides within modified phagosomes. Previously, we demonstrated that Mtb secretes MVs during infection that may modulate infected and uninfected immune cells. Our present data demonstrates that Mtb MVs inhibit the functions of macrophages and T cells, but promote Major Histocompatibility Complex (MHC) class II antigen presentation by dendritic cells. We conclude that bacterial MVs serve dual and opposing roles in the activation of and defense against host immune responses to Mtb and other bacterial pathogens. We also propose that MV secretion is a central mechanism for interspecies communication between bacteria and host cells during infection. PMID:27891500

  14. Arthrobacter Species as a Prey Cell Reservoir for Nonobligate Bacterial Predators in Soil

    DTIC Science & Technology

    1989-01-01

    species as a prey cell reservoir for nonobligate bacterial predators in soil. Can. J. Microbiol. 35 : 559--564, tine investigation at etc entreprise sur...8217 .Stieprom tice ~s species and Bad//uhs instead of’ A. glohifrbrmis. to provide 1 .0 mng/g soil did not nivoie from the soil did not interfecre because

  15. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes

    PubMed Central

    Chindera, Kantaraja; Mahato, Manohar; Kumar Sharma, Ashwani; Horsley, Harry; Kloc-Muniak, Klaudia; Kamaruzzaman, Nor Fadhilah; Kumar, Satish; McFarlane, Alexander; Stach, Jem; Bentin, Thomas; Good, Liam

    2016-01-01

    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance. PMID:26996206

  16. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    PubMed

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  17. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes.

    PubMed

    Chindera, Kantaraja; Mahato, Manohar; Sharma, Ashwani Kumar; Horsley, Harry; Kloc-Muniak, Klaudia; Kamaruzzaman, Nor Fadhilah; Kumar, Satish; McFarlane, Alexander; Stach, Jem; Bentin, Thomas; Good, Liam

    2016-03-21

    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance.

  18. Increased electrical output when a bacterial ABTS oxidizer is used in a microbial fuel cell

    USDA-ARS?s Scientific Manuscript database

    Microbial fuel cells (MFCs) are a technology that provides electrical energy from the microbial oxidation of organic compounds. Most MFCs use oxygen as the oxidant in the cathode chamber. The present study examined the formation in culture of an unidentified bacterial oxidant and investigated the ...

  19. Quantitative analysis of initial adhesion of bacterial vaginosis-associated anaerobes to ME-180 cells.

    PubMed

    Machado, António; Salgueiro, Débora; Harwich, Michael; Jefferson, Kimberly Kay; Cerca, Nuno

    2013-10-01

    Bacterial vaginosis is the leading vaginal disorder but the transition from health to this dysbiotic condition remains poorly characterized. Our goal was to quantify the ability of BV-associated anaerobes to adhere to epithelial cells in the presence of lactobacilli. Gardnerella vaginalis outcompeted Lactobacillus crispatus and Lactobacillus iners actually enhanced its adherence. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Detection of bacterial cells by impedance spectra via fluidic electrodes in a microfluidic device.

    PubMed

    Zhu, Tao; Pei, Zhenhua; Huang, Jianyong; Xiong, Chunyang; Shi, Shenggen; Fang, Jing

    2010-06-21

    In this study, a novel method for detecting bacterial cells in deionized (DI) water suspension is presented by using fluidic electrodes with a hydrodynamic focusing technique. KCl solution was utilized as both sheath flow and fluidic electrodes, and the bacterial suspension was squeezed to form three flowing layers with different conductivities on a microfluidic chip. An impedance analyzer was connected with the KCl solution through two Ag/AgCl wires to apply an AC voltage to fluidic layers within a certain frequency for impedance measurements. Porphyromonas gingivalis and Escherichia coli were detected and linear relationships were found between the impedance and the logarithmic value of the bacterial concentration in certain cell concentration ranges. It is demonstrated that bacterial detection using the microdevice is rapid and convenient, with a chip made of simple flow channels, and the detection sensitivity of cell counting can be tuned by varying the width of the sample flow layer through changing input velocities, showing a detection limit of 10(3) cells mL(-1).

  1. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy.

    PubMed

    Volle, C B; Ferguson, M A; Aidala, K E; Spain, E M; Núñez, M E

    2008-11-15

    Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation.

  2. The impact of metabolic state on Cd adsorption onto bacterial cells

    USGS Publications Warehouse

    Johnson, K.J.; Ams, D.A.; Wedel, A.N.; Szymanowski, J.E.S.; Weber, D.L.; Schneegurt, M.A.; Fein, J.B.

    2007-01-01

    This study examines the effect of bacterial metabolism on the adsorption of Cd onto Gram-positive and Gram-negative bacterial cells. Metabolically active Gram-positive cells adsorbed significantly less Cd than non-metabolizing cells. Gram-negative cells, however, showed no systematic difference in Cd adsorption between metabolizing and non-metabolizing cells. The effect of metabolism on Cd adsorption to Gram-positive cells was likely due to an influx of protons in and around the cell wall from the metabolic proton motive force, promoting competition between Cd and protons for adsorption sites on the cell wall. The relative lack of a metabolic effect on Cd adsorption onto Gram-negative compared to Gram-positive cells suggests that Cd binding in Gram-negative cells is focused in a region of the cell wall that is not reached, or is unaffected by this proton flux. Thermodynamic modeling was used to estimate that proton pumping causes the pH in the cell wall of metabolizing Gram-positive bacteria to decrease from the bulk solution value of 7.0 to approximately 5.7. ?? 2007 The Authors.

  3. Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds.

    PubMed

    Krontiras, Panagiotis; Gatenholm, Paul; Hägg, Daniel A

    2015-01-01

    There is an increased interest in developing adipose tissue for in vitro and in vivo applications. Current two-dimensional (2D) cell-culture systems of adipocytes are limited, and new methods to culture adipocytes in three-dimensional (3D) are warranted as a more life-like model to study metabolic diseases such as obesity and diabetes. In this study, we have evaluated different porous bacterial nanocellulose scaffolds for 3D adipose tissue. In an initial pilot study, we compared adipogenic differentiation of mice mesenchymal stem cells from a cell line on 2D and 3D scaffolds of bacterial nanocellulose. The 3D scaffolds were engineered by crosslinking homogenized cellulose fibrils using alginate and freeze drying the mixture to obtain a porous structure. Quenching the scaffolds in liquid nitrogen resulted in smaller pores compared to slower freezing using isopropanol. We found that on 2D surfaces, the cells were scarcely distributed and showed limited formation of lipid droplets, whereas cells grown in macroporous 3D scaffolds contained more cells growing in clusters, containing large lipid droplets. All four types of scaffolds contained a lot of adipocytes, but scaffolds with smaller pores contained larger cell clusters than scaffolds with bigger pores, with viable adipocytes present even 4 weeks after differentiation. Scaffolds with lower alginate fractions retained their pore integrity better. We conclude that 3D culturing of adipocytes in bacterial nanocellulose macroporous scaffolds is a promising method for fabrication of adipose tissue as an in vitro model for adipose biology and metabolic disease.

  4. Exploiting bacterial peptide display technology to engineer biomaterials for neural stem cell culture.

    PubMed

    Little, Lauren E; Dane, Karen Y; Daugherty, Patrick S; Healy, Kevin E; Schaffer, David V

    2011-02-01

    Stem cells are often cultured on substrates that present extracellular matrix (ECM) proteins; however, the heterogeneous and poorly defined nature of ECM proteins presents challenges both for basic biological investigation of cell-matrix investigations and translational applications of stem cells. Therefore, fully synthetic, defined materials conjugated with bioactive ligands, such as adhesive peptides, are preferable for stem cell biology and engineering. However, identifying novel ligands that engage cellular receptors can be challenging, and we have thus developed a high throughput approach to identify new adhesive ligands. We selected an unbiased bacterial peptide display library for the ability to bind adult neural stem cells (NSCs), and 44 bacterial clones expressing peptides were identified and found to bind to NSCs with high avidity. Of these clones, four contained RGD motifs commonly found in integrin binding domains, and three exhibited homology to ECM proteins. Three peptide clones were chosen for further analysis, and their synthetic analogs were adsorbed on tissue culture polystyrene (TCPS) or grafted onto an interpenetrating polymer network (IPN) for cell culture. These three peptides were found to support neural stem cell self-renewal in defined medium as well as multi-lineage differentiation. Therefore, bacterial peptide display offers unique advantages to isolate bioactive peptides from large, unbiased libraries for applications in biomaterials engineering.

  5. In situ probing the interior of single bacterial cells at nanometer scale

    NASA Astrophysics Data System (ADS)

    Liu, Boyin; Hemayet Uddin, Md; Ng, Tuck Wah; Paterson, David L.; Velkov, Tony; Li, Jian; Fu, Jing

    2014-10-01

    We report a novel approach to probe the interior of single bacterial cells at nanometre resolution by combining focused ion beam (FIB) and atomic force microscopy (AFM). After removing layers of pre-defined thickness in the order of 100 nm on the target bacterial cells with FIB milling, AFM of different modes can be employed to probe the cellular interior under both ambient and aqueous environments. Our initial investigations focused on the surface topology induced by FIB milling and the hydration effects on AFM measurements, followed by assessment of the sample protocols. With fine-tuning of the process parameters, in situ AFM probing beneath the bacterial cell wall was achieved for the first time. We further demonstrate the proposed method by performing a spatial mapping of intracellular elasticity and chemistry of the multi-drug resistant strain Klebsiella pneumoniae cells prior to and after it was exposed to the ‘last-line’ antibiotic polymyxin B. Our results revealed increased stiffness occurring in both surface and interior regions of the treated cells, suggesting loss of integrity of the outer membrane from polymyxin treatments. In addition, the hydrophobicity measurement using a functionalized AFM tip was able to highlight the evident hydrophobic portion of the cell such as the regions containing cell membrane. We expect that the proposed FIB-AFM platform will help in gaining deeper insights of bacteria-drug interactions to develop potential strategies for combating multi-drug resistance.

  6. Plasmonic imaging of protein interactions with single bacterial cells.

    PubMed

    Syal, Karan; Wang, Wei; Shan, Xiaonan; Wang, Shaopeng; Chen, Hong-Yuan; Tao, Nongjian

    2015-01-15

    Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and there is a need of techniques that can quantify interactions of bacteria with ligands at the single bacterium level. In this work, we present a label-free and real-time plasmonic imaging technique to measure the binding kinetics of ligand interactions with single bacteria, and perform statistical analysis of the heterogeneity. Using the technique, we have studied interactions of antibodies with single Escherichia coli O157:H7 cells and demonstrated a capability of determining the binding kinetic constants of single live bacteria with ligands, and quantify heterogeneity in a microbial population.

  7. Immobilisation of whole bacterial cells for anaerobic biotransformations.

    PubMed

    Raihan, S; Ahmed, N; Macaskie, L E; Lloyd, J R

    1997-04-01

    Anaerobically grown cells of Escherichia coli were immobilised within a range of entrapment matrices and packed into a column under standard conditions, and the ability of the immobilised cells to reduce nitrite (0.5 mM) was measured at a range of flow rates using sodium formate (20 mM) as the electron donor for nitrite reduction. A flow-rate/activity plot was constructed for each flow-through reactor and RA1/2 values (residence time corresponding to 50% nitrite removal) calculated for each reactor type. Cells immobilised in flat and hollow-fibre membranes were the most effective (RA1/2 = 0.35 h and 0.47 h respectively), with cells entrapped by dialysis membrane (1.53 h), alginate beads (1.93 h), Hypol foam (2.31 h) and polyacrylamide gel (50% nitrite not removed at maximum residence time tested: 4.9 h) performing progressively less effectively. Cells grown as a biofilm on a range of support materials were also tested in comparable packed-bed reactors. Cell loss from these supports was extensive and contributed to poor performance of the reactors despite high initial biomass loadings (RA1/2 values using raschig rings, coke and activated-carbon supports: 1.6 h, 2.3 h and 1.0 h respectively). Biofilms grown on Pharmacia microcarrier supports and used in packed and also fluidised beds were more stable and the performance of these reactors was superior to that of biofilm reactors using other supports, and comparable to that of the membrane reactors (RA1/2 values for Cytoline 2, Cytopore 2 and Cytodex 3: 0.76 h, 0.56 h, 0.68 h respectively).

  8. Circulating follicular helper T cells presented distinctively different responses toward bacterial antigens in primary biliary cholangitis.

    PubMed

    Zhou, Zun-Qiang; Tong, Da-Nian; Guan, Jiao; Li, Mei-Fang; Feng, Qi-Ming; Zhou, Min-Jie; Zhang, Zheng-Yun

    2017-10-01

    Primary biliary cholangitis (PBC) is a chronic and progressive cholestatic liver disease with unknown causes. The initiation of PBC is associated with bacterial infections and abnormal immune correlates, such as the presence of self-reactive anti-mitochondrial antibodies and shifted balance of T cell subsets. In particular, the CD4(+)CXCR5(+) follicular helper T (Tfh) cells are highly activated in PBC patients and are significantly associated with PBC severity, but the underlying reasons are unknown. In this study, we found that the circulating CD4(+)CXCR5(+) T cells were enriched with the interferon (IFN)-γ-secreting Th1-subtype and the interleukin (IL)-17-secreting Th17-subtype, but not the IL-4-secreting Th2 subtype. We further demonstrated that a host of microbial motifs, including Pam3CSK4, poly(I:C), LPS, imiquimod, and CpG, could significantly stimulate IFN-γ, IL-17, and/or IL-21 from circulating CD4(+)CXCR5(+) T cells in PBC patients, especially in the presence of monocytes and B cells. Whole bacterial cells of Escherichia coli, Novosphingobium aromaticivorans, and Mycobacterium gordonae, could also potently stimulate IFN-γ, IL-17, and/or IL-21 production from circulating CD4(+)CXCR5(+) T cells. But interestingly, while the whole cell could potently stimulate circulating CD4(+)CXCR5(+) T cells from both healthy controls and PBC patients, the cell protein lysate could only potently stimulate circulating CD4(+)CXCR5(+) T cells from PBC patients, but not those from healthy controls, suggesting that circulating CD4(+)CXCR5(+) T cells in PBC patients had distinctive antigen-specificity from those in healthy individuals. Together, these data demonstrated that bacterial antigen stimulation is a potential source of aberrant Tfh cell activation in PBC patients. Copyright © 2017. Published by Elsevier B.V.

  9. Human dental pulp stem cell behavior using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine.

    PubMed

    Olyveira, Gabriel Molina; Acasigua, Gerson Arisoly Xavier; Costa, Ligia Maria Manzine; Scher, Cristiane Regina; Xavier Filho, Lauro; Pranke, Patricia Helena Lucas; Basmaji, Pierre

    2013-08-01

    Adhesion and Viability study with human dental pulp stem cell using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine are presented at first time in this work. Nanotolith, are osteoinductors, i.e., they stimulate bone regeneration, enabling higher cells migration for bone tissue regeneration formation. This is mainly because nanotoliths are rich minerals present in the internal ear of bony fish. In addition, are part of a system which acts as a depth sensor and balance, acting as a sound vibrations detector and considered essential for the bone mineralization process, as in hydroxiapatites. Nanotoliths influence in bacterial cellulose was analyzed using transmission infrared spectroscopy (FTIR). Results shows that fermentation process and nanotoliths agglomeration decrease initial human dental pulp stem cell adhesion however tested bionanocomposite behavior has cell viability increase over time.

  10. DNA-crosslinker cisplatin eradicates bacterial persister cells.

    PubMed

    Chowdhury, Nityananda; Wood, Thammajun L; Martínez-Vázquez, Mariano; García-Contreras, Rodolfo; Wood, Thomas K

    2016-09-01

    For all bacteria, nearly every antimicrobial fails since a subpopulation of the bacteria enter a dormant state known as persistence, in which the antimicrobials are rendered ineffective due to the lack of metabolism. This tolerance to antibiotics makes microbial infections the leading cause of death worldwide and makes treating chronic infections, including those of wounds problematic. Here, we show that the FDA-approved anti-cancer drug cisplatin [cis-diamminodichloroplatinum(II)], which mainly forms intra-strand DNA crosslinks, eradicates Escherichia coli K-12 persister cells through a growth-independent mechanism. Additionally, cisplatin is more effective at killing Pseudomonas aeruginosa persister cells than mitomycin C, which forms inter-strand DNA crosslinks, and cisplatin eradicates the persister cells of several pathogens including enterohemorrhagic E. coli, Staphylococcus aureus, and P. aeruginosa. Cisplatin was also highly effective against clinical isolates of S. aureus and P. aeruginosa. Therefore, cisplatin has broad spectrum activity against persister cells. Biotechnol. Bioeng. 2016;113: 1984-1992. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Microfluidic Device for Automated Synchronization of Bacterial Cells

    PubMed Central

    Madren, Seth M.; Hoffman, Michelle D.; Brown, Pamela J.B.; Kysela, David T.; Brun, Yves V.; Jacobson, Stephen C.

    2012-01-01

    We report the development of an automated microfluidic “baby machine” to synchronize the bacterium Caulobacter crescentus on-chip and to move the synchronized populations downstream for analysis. The microfluidic device is fabricated from three-layers of poly(dimethylsiloxane) and has integrated pumps and valves to control the movement of cells and media. This synchronization method decreases incubation time and media consumption and improves synchrony quality compared to the conventional plate-release technique. Synchronized populations are collected from the device at intervals as short as 10 min and at any time over four days. Flow cytometry and fluorescence cell tracking are used to determine synchrony quality, and cell populations synchronized in M2G and PYE media contain >70% and >80% swarmer cells, respectively. Our on-chip method overcomes limitations with conventional physical separation methods that consume large volumes of media, require manual manipulations, have lengthy incubation times, are limited to one collection, and lack precise temporal control of collection times. PMID:23030473

  12. Microfluidic device for automated synchronization of bacterial cells.

    PubMed

    Madren, Seth M; Hoffman, Michelle D; Brown, Pamela J B; Kysela, David T; Brun, Yves V; Jacobson, Stephen C

    2012-10-16

    We report the development of an automated microfluidic "baby machine" to synchronize the bacterium Caulobacter crescentus on-chip and to move the synchronized populations downstream for analysis. The microfluidic device is fabricated from three layers of poly(dimethylsiloxane) and has integrated pumps and valves to control the movement of cells and media. This synchronization method decreases incubation time and media consumption and improves synchrony quality compared to the conventional plate-release technique. Synchronized populations are collected from the device at intervals as short as 10 min and at any time over four days. Flow cytometry and fluorescence cell tracking are used to determine synchrony quality, and cell populations synchronized in minimal growth medium with 0.2% glucose (M2G) and peptone yeast extract (PYE) medium contain >70% and >80% swarmer cells, respectively. Our on-chip method overcomes limitations with conventional physical separation methods that consume large volumes of media, require manual manipulations, have lengthy incubation times, are limited to one collection, and lack precise temporal control of collection times.

  13. Low-frequency dielectric dispersion of bacterial cell suspensions.

    PubMed

    Asami, Koji

    2014-07-01

    Dielectric spectra of Escherichia coli cells suspended in 0.1-10 mM NaCl were measured over a frequency range of 10 Hz to 10 MHz. Low-frequency dielectric dispersion, so-called the α-dispersion, was found below 10 kHz in addition to the β-dispersion, due to interfacial polarization, appearing above 100 kHz. When the cells were killed by heating at 60°C for 30 min, the β-dispersion disappeared completely, whereas the α-dispersion was little influenced. This suggests that the plasma (or inner) membranes of the dead cells are no longer the permeability barrier to small ions, and that the α-dispersion is not related to the membrane potential due to selective membrane permeability of ions. The intensity of the α-dispersion depended on both of the pH and ionic strength of the external medium, supporting the model that the α-dispersion results from the deformation of the ion clouds formed outside and inside the cell wall containing charged residues. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Production of Green Fluorescent Protein Transgenic Embryonic Stem Cells Using the GENSAT Bacterial Artificial Chromosome Library

    PubMed Central

    Tomishima, Mark J.; Hadjantonakis, Anna-Katerina; Gong, Shiaoching; Studer, Lorenz

    2010-01-01

    Transgenic green fluorescent protein (GFP) reporter embryonic stem (ES) cells are powerful tools for studying gene regulation and lineage choice during development. Here we present a rapid method for the generation of ES cells expressing GFP under the control of selected genes. Bacterial artificial chromosomes (BACs) from a previously constructed GFP transcriptional fusion library (Gene Expression Nervous System Atlas [GENSAT]) were modified for use in ES cells, and multiple BAC transgenic ES cell lines were generated. Specific GFP expression in transgenic cell lines was confirmed during neural differentiation marking neural stem cells, neuronal precursors, and glial progeny by Hes5, Dll1, and GFAP, respectively. GFP was dynamically regulated in ES cell progeny in response to soluble factors that inhibit Notch signaling and a factor that directs astroglial fate choice. Our protocols provide a simple and efficient strategy to utilize the whole GENSAT BAC library to create hundreds of novel fluorescent cell lines for use in ES cell biology. PMID:16990587

  15. Production of green fluorescent protein transgenic embryonic stem cells using the GENSAT bacterial artificial chromosome library.

    PubMed

    Tomishima, Mark J; Hadjantonakis, Anna-Katerina; Gong, Shiaoching; Studer, Lorenz

    2007-01-01

    Transgenic green fluorescent protein (GFP) reporter embryonic stem (ES) cells are powerful tools for studying gene regulation and lineage choice during development. Here we present a rapid method for the generation of ES cells expressing GFP under the control of selected genes. Bacterial artificial chromosomes (BACs) from a previously constructed GFP transcriptional fusion library (Gene Expression Nervous System Atlas [GENSAT]) were modified for use in ES cells, and multiple BAC transgenic ES cell lines were generated. Specific GFP expression in transgenic cell lines was confirmed during neural differentiation marking neural stem cells, neuronal precursors, and glial progeny by Hes5, Dll1, and GFAP, respectively. GFP was dynamically regulated in ES cell progeny in response to soluble factors that inhibit Notch signaling and a factor that directs astroglial fate choice. Our protocols provide a simple and efficient strategy to utilize the whole GENSAT BAC library to create hundreds of novel fluorescent cell lines for use in ES cell biology.

  16. Characterization of rat T-cell clones with bacterial specificity.

    PubMed Central

    Eastcott, J W; Yamashita, K; Taubman, M A; Smith, D J

    1990-01-01

    We have isolated 10 rat T-cell clones from the spleen or lymph nodes of seven different donors. These rats were immunized with 2-5 x 10(8) killed Actinobacillus actinomycetemcomitans (Aa) bacteria, injected either subcutaneously (s.c.) in complete Freund's adjuvant or intraperitoneally (i.p.) in saline. Clones studied to date have demonstrated a T-helper (Th) phenotype W3/13+, W3/25+, OX8- and OX22-. Clones were not stimulated in vitro by purified Aa-lipopolysaccharide (LPS) or heterologous Gram-negative bacteria, but proliferated when stimulated by bacteria representative of each of the three serological groups of Actinobacillus, indicating specificity for an Actinobacillus-common antigen other than LPS. One clone (A4) proliferated vigorously when stimulated with concanavalin A (Con A) in vitro, produced interleukin-2 (IL-2) and was provisionally classified as a Th1 type. This appears to be one of the few Th1-type rat clones reported. All other clones tested did not produce IL-2, exhibited B-cell help to some extent, did not induce delayed-type hypersensitivity (DTH) when injected into the footpads of naive rats along with the specific antigen, and were classified as Th2 type. Adoptive transfer of 10(6) cells of one Th2-type Aa-specific clone into syngeneic recipients resulted in a specific splenocyte in vitro response to Aa 12-14 weeks after cell transfer, indicating survival of cloned cells in recipient animals. The use of such clones in studies of experimental periodontal disease is discussed. PMID:1698711

  17. Electron microscopy study of antioxidant interaction with bacterial cells

    NASA Astrophysics Data System (ADS)

    Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.

    2000-10-01

    To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.

  18. Pseudomonas aeruginosa serA Gene Is Required for Bacterial Translocation through Caco-2 Cell Monolayers.

    PubMed

    Yasuda, Masashi; Nagata, Syouya; Yamane, Satoshi; Kunikata, Chinami; Kida, Yutaka; Kuwano, Koichi; Suezawa, Chigusa; Okuda, Jun

    2017-01-01

    To specify critical factors responsible for Pseudomonas aeruginosa penetration through the Caco-2 cell epithelial barrier, we analyzed transposon insertion mutants that demonstrated a dramatic reduction in penetration activity relative to P. aeruginosa PAO1 strain. From these strains, mutations could be grouped into five classes, specifically flagellin-associated genes, pili-associated genes, heat-shock protein genes, genes related to the glycolytic pathway, and biosynthesis-related genes. Of these mutants, we here focused on the serA mutant, as the association between this gene and penetration activity is yet unknown. Inactivation of the serA gene caused significant repression of bacterial penetration through Caco-2 cell monolayers with decreased swimming and swarming motilities, bacterial adherence, and fly mortality rate, as well as repression of ExoS secretion; however, twitching motility was not affected. Furthermore, L-serine, which is known to inhibit the D-3-phosphoglycerate dehydrogenase activity of the SerA protein, caused significant reductions in penetration through Caco-2 cell monolayers, swarming and swimming motilities, bacterial adherence to Caco-2 cells, and virulence in flies in the wild-type P. aeruginosa PAO1 strain. Together, these results suggest that serA is associated with bacterial motility and adherence, which are mediated by flagella that play a key role in the penetration of P. aeruginosa through Caco-2 cell monolayers. Oral administration of L-serine to compromised hosts might have the potential to interfere with bacterial translocation and prevent septicemia caused by P. aeruginosa through inhibition of serA function.

  19. Pseudomonas aeruginosa serA Gene Is Required for Bacterial Translocation through Caco-2 Cell Monolayers

    PubMed Central

    Yasuda, Masashi; Nagata, Syouya; Yamane, Satoshi; Kunikata, Chinami; Kida, Yutaka; Kuwano, Koichi; Suezawa, Chigusa; Okuda, Jun

    2017-01-01

    To specify critical factors responsible for Pseudomonas aeruginosa penetration through the Caco-2 cell epithelial barrier, we analyzed transposon insertion mutants that demonstrated a dramatic reduction in penetration activity relative to P. aeruginosa PAO1 strain. From these strains, mutations could be grouped into five classes, specifically flagellin-associated genes, pili-associated genes, heat-shock protein genes, genes related to the glycolytic pathway, and biosynthesis-related genes. Of these mutants, we here focused on the serA mutant, as the association between this gene and penetration activity is yet unknown. Inactivation of the serA gene caused significant repression of bacterial penetration through Caco-2 cell monolayers with decreased swimming and swarming motilities, bacterial adherence, and fly mortality rate, as well as repression of ExoS secretion; however, twitching motility was not affected. Furthermore, L-serine, which is known to inhibit the D-3-phosphoglycerate dehydrogenase activity of the SerA protein, caused significant reductions in penetration through Caco-2 cell monolayers, swarming and swimming motilities, bacterial adherence to Caco-2 cells, and virulence in flies in the wild-type P. aeruginosa PAO1 strain. Together, these results suggest that serA is associated with bacterial motility and adherence, which are mediated by flagella that play a key role in the penetration of P. aeruginosa through Caco-2 cell monolayers. Oral administration of L-serine to compromised hosts might have the potential to interfere with bacterial translocation and prevent septicemia caused by P. aeruginosa through inhibition of serA function. PMID:28046014

  20. Bacterial cell-to-cell signaling promotes the evolution of resistance to parasitic bacteriophages.

    PubMed

    Moreau, Pierre; Diggle, Stephen P; Friman, Ville-Petri

    2017-03-01

    The evolution of host-parasite interactions could be affected by intraspecies variation between different host and parasite genotypes. Here we studied how bacterial host cell-to-cell signaling affects the interaction with parasites using two bacteria-specific viruses (bacteriophages) and the host bacterium Pseudomonas aeruginosa that communicates by secreting and responding to quorum sensing (QS) signal molecules. We found that a QS-signaling proficient strain was able to evolve higher levels of resistance to phages during a short-term selection experiment. This was unlikely driven by demographic effects (mutation supply and encounter rates), as nonsignaling strains reached higher population densities in the absence of phages in our selective environment. Instead, the evolved nonsignaling strains suffered relatively higher growth reduction in the absence of the phage, which could have constrained the phage resistance evolution. Complementation experiments with synthetic signal molecules showed that the Pseudomonas quinolone signal (PQS) improved the growth of nonsignaling bacteria in the presence of a phage, while the activation of las and rhl quorum sensing systems had no effect. Together, these results suggest that QS-signaling can promote the evolution of phage resistance and that the loss of QS-signaling could be costly in the presence of phages. Phage-bacteria interactions could therefore indirectly shape the evolution of intraspecies social interactions and PQS-mediated virulence in P. aeruginosa.

  1. Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth

    NASA Astrophysics Data System (ADS)

    Ursell, Tristan

    2012-02-01

    In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.

  2. A Novel Mechanism of Bacterial Toxin Transfer within Host Blood Cell-Derived Microvesicles

    PubMed Central

    Ståhl, Anne-lie; Arvidsson, Ida; Johansson, Karl E.; Chromek, Milan; Rebetz, Johan; Loos, Sebastian; Kristoffersson, Ann-Charlotte; Békássy, Zivile D.; Mörgelin, Matthias; Karpman, Diana

    2015-01-01

    Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system. PMID:25719452

  3. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles.

    PubMed

    Ståhl, Anne-lie; Arvidsson, Ida; Johansson, Karl E; Chromek, Milan; Rebetz, Johan; Loos, Sebastian; Kristoffersson, Ann-Charlotte; Békássy, Zivile D; Mörgelin, Matthias; Karpman, Diana

    2015-02-01

    Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.

  4. Expression of bacterial superantigen genes in mice induces localized mononuclear cell inflammatory responses.

    PubMed Central

    Dow, S W; Potter, T A

    1997-01-01

    Bacterial superantigens are potent T cell activators, and superantigen proteins have been injected into mice and other animals to study T cell responses in vivo. When superantigen proteins are injected, however, the T cell stimulatory effects cannot be confined to specific tissues. Therefore, to target superantigen expression to specific tissues, we used gene transfer techniques to express bacterial superantigen genes in mammalian cells in vitro and in tissues in vivo. Murine, human, and canine cells transfected with superantigen genes in vitro all produced superantigen proteins both intracellularly and extracellularly, as assessed by bioassay, immunocytochemistry, and antigen ELISA. Superantigens produced by transfected eukaryotic cells retained their biologic specificity for T cell receptor binding. Intramuscular injection of superantigen plasmid DNA in vivo induced an intense intramuscular mononuclear cell infiltrate, an effect that could not be reproduced by intramuscular injection of superantigen protein. Intradermal and intravenous injection of superantigen DNA induced cutaneous and intrapulmonary mononuclear cell inflammatory responses, respectively. Thus, superantigen genes can be expressed by mammalian cells in vivo. Superantigen gene therapy represents a novel method of targeting localized T cell inflammatory reactions, with potential application to treatment of cancer and certain infectious diseases. PMID:9169491

  5. Cell Wall Nonlinear Elasticity and Growth Dynamics: How Do Bacterial Cells Regulate Pressure and Growth?

    NASA Astrophysics Data System (ADS)

    Deng, Yi

    In my thesis, I study intact and bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. I find strong evidence of power--law stress--stiffening in the E. coli cell wall, with an exponent of 1.22±0.12, such that the wall is significantly stiffer in intact cells (E = 23±8 MPa and 49±20 MPa in the axial and circumferential directions) than in unpressurized sacculi. These measurements also indicate that the turgor pressure in living cells E. coli is 29±3 kPa. The nonlinearity in cell elasticity serves as a plausible mechanism to balance the mechanical protection and tension measurement sensitivity of the cell envelope. I also study the growth dynamics of the Bacillus subtilis cell wall to help understand the mechanism of the spatiotemporal order of inserting new cell wall material. High density fluorescent markers are used to label the entire cell surface to capture the morphological changes of the cell surface at sub-cellular to diffraction-limited spatial resolution and sub-minute temporal resolution. This approach reveals that rod-shaped chaining B. subtilis cells grow and twist in a highly heterogeneous fashion both spatially and temporally. Regions of high growth and twisting activity have a typical length scale of 5 μm, and last for 10-40 minutes. Motivated by the quantification of the cell wall growth dynamics, two microscopy and image analysis techniques are developed and applied to broader applications beyond resolving bacterial growth. To resolve densely distributed quantum dots, we present a fast and efficient image analysis algorithm, namely Spatial Covariance Reconstruction (SCORE) microscopy that takes into account the blinking statistics of the fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging, which is at least an order of magnitude faster than single-particle localization based methods

  6. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.

    PubMed

    Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G

    2017-07-25

    We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection.IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected cells

  7. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants.

    PubMed

    Kim, Y S; Jung, H C; Pan, J G

    2000-02-01

    The bacterial surface display method was used to selectively screen for improved variants of carboxymethyl cellulase (CMCase). A library of mutated CMCase genes generated by DNA shuffling was fused to the ice nucleation protein (Inp) gene so that the resulting fusion proteins would be displayed on the bacterial cell surface. Some cells displaying mutant proteins grew more rapidly on carboxymethyl cellulose plates than controls, forming heterogeneous colonies. In contrast, cells displaying the nonmutated parent CMCase formed uniform tiny colonies. These variations in growth rate were assumed to result from altered availability of glucose caused by differences in the activity of variant CMCases at the cell surface. Staining assays indicate that large, rapidly growing colonies have increased CMCase activity. Increased CMCase activity was confirmed by assaying the specific activities of cell extracts after the expression of unfused forms of the variant genes in the cytoplasm. The best-evolved CMCases showed about a 5- and 2.2-fold increase in activity in the fused and free forms, respectively. Sequencing of nine evolved CMCase variant genes showed that most amino acid substitutions occurred within the catalytic domain of the enzyme. These results demonstrate that the bacterial surface display of enzyme libraries provides a direct way to correlate evolved enzyme activity with cell growth rates. This technique will provide a useful technology platform for directed evolution and high-throughput screening of industrial enzymes, including hydrolases.

  8. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    PubMed Central

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-01-01

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343

  9. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications.

    PubMed

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-02-19

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  10. Mutagenic effect of accelerated heavy ions on bacterial cells

    NASA Astrophysics Data System (ADS)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific

  11. Distributed Classifier Based on Genetically Engineered Bacterial Cell Cultures

    PubMed Central

    2015-01-01

    We describe a conceptual design of a distributed classifier formed by a population of genetically engineered microbial cells. The central idea is to create a complex classifier from a population of weak or simple classifiers. We create a master population of cells with randomized synthetic biosensor circuits that have a broad range of sensitivities toward chemical signals of interest that form the input vectors subject to classification. The randomized sensitivities are achieved by constructing a library of synthetic gene circuits with randomized control sequences (e.g., ribosome-binding sites) in the front element. The training procedure consists in reshaping of the master population in such a way that it collectively responds to the “positive” patterns of input signals by producing above-threshold output (e.g., fluorescent signal), and below-threshold output in case of the “negative” patterns. The population reshaping is achieved by presenting sequential examples and pruning the population using either graded selection/counterselection or by fluorescence-activated cell sorting (FACS). We demonstrate the feasibility of experimental implementation of such system computationally using a realistic model of the synthetic sensing gene circuits. PMID:25349924

  12. Cell fate regulation governed by a repurposed bacterial histidine kinase

    SciTech Connect

    Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; Mathews, Irimpan I.; Blair, Jimmy A.; Deacon, Ashley M.; Shapiro, Lucy; Stock, Ann M.

    2014-10-28

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interaction between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.

  13. Cell fate regulation governed by a repurposed bacterial histidine kinase

    DOE PAGES

    Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; ...

    2014-10-28

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interactionmore » between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.« less

  14. Induction of delayed-type hypersensitivity by the T cell line specific to bacterial peptidoglycans

    SciTech Connect

    Katsuki, M.; Kakimoto, K.; Kawata, S.; Kotani, S.; Koga, T.

    1987-12-01

    A T cell line specific for the chemically well-defined peptidoglycan of bacterial cell wall, disaccharide tetrapeptide, was established from Lewis rats immunized with the antigen covalently linked to the autologous rat serum albumin. The antigen specificity was examined with various analogues or derivatives of the peptidoglycan. The cell line was reactive to analogues with the COOH-terminal D-amino acid, but least reactive to those with L-amino acid as COOH terminus. Transferring of the T cell line into X-irradiated normal Lewis rats induced delayed-type hypersensitivity in an antigen specific manner.

  15. Computer simulation of the processes of inactivation of bacterial cells by dynamic low-coherent speckles

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Ulyanov, Sergey S.; Sazanova, Elena V.; Zhihong, Zhang; Sibo, Zhou; Luo, Qingming; Zudina, Irina; Bednov, Andrey

    2006-05-01

    Biochemical, biophysical and optical aspects of interaction of low-coherent light with bacterial cells have been discussed. Influence of low-coherent speckles on the colonies grows is investigated. It has been demonstrated that effects of light on the inhibition of cells (Francisella Tularensis) are connected with speckle dynamics. The regimes of illumination of cell suspension with purpose of devitalization of hazard bacteria, caused very dangerous infections, such as tularemia, are found. Mathematical model of interaction of low-coherent laser radiation with bacteria suspension has been proposed. Computer simulations of the processes of laser-cells interaction have been carried out.

  16. Purification of transfection-grade plasmid DNA from bacterial cells with superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chiang, Chen-Li; Sung, Ching-Shan

    2006-07-01

    The functionalized magnetic nanobeads were used to develop a rapid protocol for extracting and purifying transfection-grade plasmid DNA from bacterial culture. Nanosized superparamagnetic nanoparticles (Fe 3O 4) were prepared by chemical coprecipitation method using Fe 2+, Fe 3+ salt, and ammonium hydroxide under a nitrogen atmosphere. The surface of Fe 3O 4 nanoparticles was modified by coating with the multivalent cationic agent, polyethylenimine (PEI). The PEI-modified magnetic nanobeads were employed to simplify the purification of plasmid DNA from bacterial cells. We demonstrated a useful plasmid, pRSETB-EGFP, encoding the green fluorescent protein with T7 promoter, was amplified in DE3 strain of Escherichia coli. The loaded nanobeads are recovered by magnetically driven separation and regenerated by exposure to the elution buffer with optimal ionic strength (1.25 M) and pH (9.0). Up to approximately 819 μg of high-purity (A 260/A 280 ratio=1.86) plasmid DNA was isolated from 100 ml of overnight bacterial culture. The eluted plasmid DNA was used directly for restriction enzyme digestion, bacterial cell transformation and animal cell transfection applications with success. The PEI-modified magnetic nanobead delivers significant time-savings, overall higher yields and better transfection efficiencies compared to anion-exchange and other methods. The results presented in this report show that PEI-modified magnetic nanobeads are suitable for isolation and purification of transfection-grade plasmid DNA.

  17. Analysis of the Bombyx mori nucleopolyhedrovirus ie-1 promoter in insect, mammalian, plant, and bacterial cells.

    PubMed

    Fujita, Ryosuke; Ono, Chikako; Ono, Isamu; Asano, Shin-Ichiro; Bando, Hisanori

    2015-09-04

    The Bombyx mori nucleopolyhedrovirus (BmNPV) ie-1 promoter exhibits strong transcriptional activity and is used in transient foreign gene expression systems in insect cells. In a reporter assay experiment using the BmNPV ie-1 promoter, we found that it exhibited activity even in non-host mammalian BHK cells, plant BY-2 cells, and also bacterial Escherichia coli cells. An analysis using a deletion series of the BmNPV ie-1 promoter demonstrated that the core promoter region of this promoter was sufficient to display promoter activity in BHK cells, BY-2 cells, and E. coli cells, whereas upstream elements were required for higher activity in insect cells. Furthermore, we found that the BmNPV ie-1 promoter exhibited sufficient activity for a β-galactosidase assay in E. coli cells. The results obtained here suggest that the BmNPV ie-1 promoter has potential as a universal promoter for transient expression systems in insect, mammalian, plant, and bacterial cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Analysis of gene expression levels in individual bacterial cells without image segmentation

    SciTech Connect

    Kwak, In Hae; Son, Minjun; Hagen, Stephen J.

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.

  19. Comparative Analysis of UV Irradiation Effects on Escherichia coli and Pseudomonas aeruginosa Bacterial Cells Utilizing Biological and Computational Approaches.

    PubMed

    Margaryan, A; Badalyan, H; Trchounian, A

    2016-09-01

    Microorganisms have a large number of tools to withstand different, and sometimes strong, environmental stresses, including irradiation, but this ability should be further evaluated for certain applications. Growth inhibition and morphological alterations of Escherichia coli M-17 and Pseudomonas aeruginosa GRP3 wild-type cells caused by UV-A irradiation have been detected in the present study. Comparative analysis was carried out using well-established microbiological methods (determination of specific growth rate, growth lag phase duration, and colony-forming unit number-CFU) and computational approaches, employing light microscopy and digital image analysis to evaluate bacterial cell morphology. Decreases in the specific growth rate, prolonged lag-phases, and lowered CFUs were observed after 5 and 10 min of UV irradiation (approx. 40 Gy) compared to the control (nonirradiated) cells. Accordingly, two computational parameters-the average bacterial cell surface area and the bacterial cell perimeter (i.e., of the 2D projection of bacterial cells in microscopy image)-were reduced. The ratio of bacterial cell surface area (S) to the square of the perimeter (p (2) ) was reduced after 5 min of irradiation, but after 10 min of irradiation the studied bacterial cells became flat cylinders. The revealed findings are concluded to be highly useful in developing new, rapid analysis methods to monitor environmental and UV irradiation effects on bacteria and to detect bacterial cell morphology alterations.

  20. Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system.

    PubMed

    Atilano, Magda Luciana; Pereira, Pedro Matos; Vaz, Filipa; Catalão, Maria João; Reed, Patricia; Grilo, Inês Ramos; Sobral, Rita Goncalves; Ligoxygakis, Petros; Pinho, Mariana Gomes; Filipe, Sérgio Raposo

    2014-04-01

    Bacteria have to avoid recognition by the host immune system in order to establish a successful infection. Peptidoglycan, the principal constituent of virtually all bacterial surfaces, is a specific molecular signature recognized by dedicated host receptors, present in animals and plants, which trigger an immune response. Here we report that autolysins from Gram-positive pathogenic bacteria, enzymes capable of hydrolyzing peptidoglycan, have a major role in concealing this inflammatory molecule from Drosophila peptidoglycan recognition proteins (PGRPs). We show that autolysins trim the outermost peptidoglycan fragments and that in their absence bacterial virulence is impaired, as PGRPs can directly recognize leftover peptidoglycan extending beyond the external layers of bacterial proteins and polysaccharides. The activity of autolysins is not restricted to the producer cells but can also alter the surface of neighboring bacteria, facilitating the survival of the entire population in the infected host. DOI: http://dx.doi.org/10.7554/eLife.02277.001.

  1. Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system

    PubMed Central

    Atilano, Magda Luciana; Pereira, Pedro Matos; Vaz, Filipa; Catalão, Maria João; Reed, Patricia; Grilo, Inês Ramos; Sobral, Rita Gonçalves; Ligoxygakis, Petros; Pinho, Mariana Gomes; Filipe, Sérgio Raposo

    2014-01-01

    Bacteria have to avoid recognition by the host immune system in order to establish a successful infection. Peptidoglycan, the principal constituent of virtually all bacterial surfaces, is a specific molecular signature recognized by dedicated host receptors, present in animals and plants, which trigger an immune response. Here we report that autolysins from Gram-positive pathogenic bacteria, enzymes capable of hydrolyzing peptidoglycan, have a major role in concealing this inflammatory molecule from Drosophila peptidoglycan recognition proteins (PGRPs). We show that autolysins trim the outermost peptidoglycan fragments and that in their absence bacterial virulence is impaired, as PGRPs can directly recognize leftover peptidoglycan extending beyond the external layers of bacterial proteins and polysaccharides. The activity of autolysins is not restricted to the producer cells but can also alter the surface of neighboring bacteria, facilitating the survival of the entire population in the infected host. DOI: http://dx.doi.org/10.7554/eLife.02277.001 PMID:24692449

  2. Bacterial toxins can inhibit host cell autophagy through cAMP generation.

    PubMed

    Shahnazari, Shahab; Namolovan, Anton; Mogridge, Jeremy; Kim, Peter K; Brumell, John H

    2011-09-01

    Autophagy plays a significant role in innate and adaptive immune responses to microbial infection. Some pathogenic bacteria have developed strategies to evade killing by host autophagy. These include the use of 'camouflage' proteins to block targeting to the autophagy pathway and the use of pore-forming toxins to block autophagosome maturation. However, general inhibition of host autophagy by bacterial pathogens has not been observed to date. Here we demonstrate that bacterial cAMP-elevating toxins from B. anthracis and V. cholera can inhibit host anti-microbial autophagy, including autophagic targeting of S. Typhimurium and latex bead phagosomes. Autophagy inhibition required the cAMP effector protein kinase A. Formation of autophagosomes in response to rapamycin and the endogenous turnover of peroxisomes was also inhibited by cAMP-elevating toxins. These findings demonstrate that cAMP-elevating toxins, representing a large group of bacterial virulence factors, can inhibit host autophagy to suppress immune responses and modulate host cell physiology.

  3. Asynchrony in the growth and motility responses to environmental changes by individual bacterial cells

    SciTech Connect

    Umehara, Senkei; Hattori, Akihiro; Inoue, Ippei; Yasuda, Kenji . E-mail: yasuda.bmi@tmd.ac.jp

    2007-05-04

    Knowing how individual cells respond to environmental changes helps one understand phenotypic diversity in a bacterial cell population, so we simultaneously monitored the growth and motility of isolated motile Escherichia coli cells over several generations by using a method called on-chip single-cell cultivation. Starved cells quickly stopped growing but remained motile for several hours before gradually becoming immotile. When nutrients were restored the cells soon resumed their growth and proliferation but remained immotile for up to six generations. A flagella visualization assay suggested that deflagellation underlies the observed loss of motility. This set of results demonstrates that single-cell transgenerational study under well-characterized environmental conditions can provide information that will help us understand distinct functions within individual cells.

  4. On the low-frequency electrical polarization of bacterial cells in sands

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, Dimitrios; Yee, Nathan; Slater, Lee

    2005-12-01

    We performed electrical measurements on sands flushed with bacterial suspensions of varying concentration. The first experiment was conducted with Shewanella putrefaciens (biomass 0-0.5 mg/L) and the second with Escherichia coli (biomass 0-42 mg/L). We measured a biomass-dependent low-frequency (10 Hz) polarization. At cell density <12 mg/L polarization decreased (up to 60 %) relative to before introduction of cells; the decrease was greater when the sand was artificially Fe-coated to enhance the affinity of cells to the mineral surface. At cell density >12 mg/L polarization increased (up to 15%). We attribute the decrease in polarization at low cell density to alteration of the mineral-fluid interface due to mineral-cell interactions. The polarization enhancement at higher cell density is possibly a pore throat mechanism resulting from decreased ionic mobility and/or electron transfer due to cell accumulation in pores.

  5. NK cells modulate the lung dendritic cell-mediated Th1/Th17 immunity during intracellular bacterial infection.

    PubMed

    Shekhar, Sudhanshu; Peng, Ying; Gao, Xiaoling; Joyee, Antony G; Wang, Shuhe; Bai, Hong; Zhao, Lei; Yang, Jie; Yang, Xi

    2015-10-01

    The impact of the interaction between NK cells and lung dendritic cells (LDCs) on the outcome of respiratory infections is poorly understood. In this study, we investigated the effect and mechanism of NK cells on the function of LDCs during intracellular bacterial lung infection of Chlamydia muridarum in mice. We found that the naive mice receiving LDCs from C. muridarum-infected NK-cell-depleted mice (NK-LDCs) showed more serious body weight loss, bacterial burden, and pathology upon chlamydial challenge when compared with the recipients of LDCs from infected sham-treated mice (NK+LDCs). Cytokine analysis of the local tissues of the former compared with the latter exhibited lower levels of Th1 (IFN-γ) and Th17 (IL-17), but higher levels of Th2 (IL-4), cytokines. Consistently, NK-LDCs were less efficient in directing C. muridarum-specific Th1 and Th17 responses than NK+LDCs when cocultured with CD4(+) T cells. In NK cell/LDC coculture experiments, the blockade of NKG2D receptor reduced the production of IL-12p70, IL-6, and IL-23 by LDCs. The neutralization of IFN-γ in the culture decreased the production of IL-12p70 by LDCs, whereas the blockade of TNF-α resulted in diminished IL-6 production. Our findings demonstrate that NK cells modulate LDC function to elicit Th1/Th17 immunity during intracellular bacterial infection.

  6. Predominance of single bacterial cells in composting bioaerosols

    NASA Astrophysics Data System (ADS)

    Galès, Amandine; Bru-Adan, Valérie; Godon, Jean-Jacques; Delabre, Karine; Catala, Philippe; Ponthieux, Arnaud; Chevallier, Michel; Birot, Emmanuel; Steyer, Jean-Philippe; Wéry, Nathalie

    2015-04-01

    Bioaerosols emitted from composting plants have become an issue because of their potential harmful impact on public or workers' health. Accurate knowledge of the particle-size distribution in bioaerosols emitted from open-air composting facilities during operational activity is a requirement for improved modeling of air dispersal. In order to investigate the aerodynamic diameter of bacteria in composting bioaerosols this study used an Electrical Low Pressure Impactor for sampling and quantitative real-time PCR for quantification. Quantitative PCR results show that the size of bacteria peaked between 0.95 μm and 2.4 μm and that the geometric mean diameter of the bacteria was 1.3 μm. In addition, total microbial cells were counted by flow cytometry and revealed that these qPCR results corresponded to single whole bacteria. Finally, the enumeration of cultivable thermophilic microorganisms allowed us to set the upper size limit for fragments at an aerodynamic diameter of ∼0.3 μm. Particle-size distributions of microbial groups previously used to monitor composting bioaerosols were also investigated. In collected the bioaerosols, the aerodynamic diameter of the actinomycetes Saccharopolyspora rectivirgula-and-relatives and also of the fungus Aspergillus fumigatus, appeared to be consistent with a majority of individual cells. Together, this study provides the first culture-independent data on particle-size distribution of composting bioaerosols and reveals that airborne single bacteria were emitted predominantly from open-air composting facilities.

  7. A polymeric bacterial protein activates dendritic cells via TLR4.

    PubMed

    Berguer, Paula M; Mundiñano, Juliana; Piazzon, Isabel; Goldbaum, Fernando A

    2006-02-15

    The enzyme lumazine synthase from Brucella spp. (BLS) is a highly immunogenic protein that folds as a stable dimer of pentamers. It is possible to insert foreign peptides and proteins at the 10 N terminus of BLS without disrupting its general folding, and these chimeras are very efficient to elicit systemic and oral immunity without adjuvants. In this study, we show that BLS stimulates bone marrow dendritic cells from mice in vitro to up-regulate the levels of costimulatory molecules (CD40, CD80, and CD86) and major histocompatibility class II Ag. Furthermore, the mRNA levels of several chemokines are increased, and proinflammatory cytokine secretion is induced upon exposure to BLS. In vivo, BLS increases the number of dendritic cells and their expression of CD62L in the draining lymph node. All of the observed effects are dependent on TLR4, and clearly independent of LPS contamination. The described characteristics of BLS make this protein an excellent candidate for vaccine development.

  8. Bacterial DNA persists for extended periods after cell death.

    PubMed

    Young, Geoffrey; Turner, Sally; Davies, John K; Sundqvist, Göran; Figdor, David

    2007-12-01

    The fate of DNA from bacteria that infect the root canal but cannot survive is currently unknown, yet such information is essential in establishing the validity of polymerase chain reaction (PCR)-based identification methods for root canal samples. This in vitro study tested the hypothesis that PCR-detectable DNA from dead bacteria might persist after cell death and investigated the efficiency of sodium hypochlorite (NaOCl) as a field decontamination agent. Using heat-killed Enterococcus faecalis, the persistence of DNA encoding the 16S rRNA gene was monitored by PCR. While most probable number analysis showed an approximate 1000-fold decay in amplifiable template, E. faecalis DNA was still PCR-detectable 1 year after cell death. NaOCl (1%) eliminated amplifiable DNA within 60 seconds of exposure. Our findings also disclosed a previously overlooked problem of concentration-dependent inhibition of the PCR reaction by thiosulfate-inactivated NaOCl. These results highlight the challenges of reliably identifying the authentic living root canal flora with PCR techniques.

  9. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface.

    PubMed

    Siegrist, M Sloan; Swarts, Benjamin M; Fox, Douglas M; Lim, Shion An; Bertozzi, Carolyn R

    2015-03-01

    The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology.

  10. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface

    PubMed Central

    Siegrist, M. Sloan; Swarts, Benjamin M.; Fox, Douglas M.; Lim, Shion An; Bertozzi, Carolyn R.

    2015-01-01

    The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology. PMID:25725012

  11. Liberation of serotonin from rabbit blood platelets by bacterial cell walls and related compounds.

    PubMed Central

    Harada, K; Kotani, S; Takada, H; Tsujimoto, M; Hirachi, Y; Kusumoto, S; Shiba, T; Kawata, S; Yokogawa, K; Nishimura, H; Kitaura, T; Nakajima, T

    1982-01-01

    A study was made on the activity of various bacterial cell walls and peptidoglycans to liberate serotonin from rabbit blood platelets. All of the test cell walls or peptidoglycans prepared from 27 strains of 21 bacterial species were shown to cause a marked release of serotonin, regardless of differences in types of peptidoglycan and non-peptidoglycan moieties and in some biological properties. The assay made with the water-soluble "digests" of Staphylococcus epidermidis cell wall peptidoglycans, which were prepared by use of appropriate enzymes, revealed that a polymer of peptidoglycan subunits (a disaccharide-stempeptide) was definitely active in the release of serotonin, but a structural unit monomer was inactive. Among a variety of synthetic muramylpeptides and their 6-O-acyl derivatives, only 6-O-(3-hydroxy-2-docosylhexacosanoyl)-N-acetylmuramyl-L-alanyl-D-isoglutaminyl- L-lysyl-D-alanine was found to hold a strong serotonin-liberating activity. Images PMID:7129634

  12. Bacterial regulatory networks—from self-organizing molecules to cell shape and patterns in bacterial communities

    PubMed Central

    Hengge, Regine; Sourjik, Victor

    2013-01-01

    The ESF–EMBO Conference on ‘Bacterial Networks' (BacNet13) was held in March 2013, in Pultusk, Poland. It brought together 164 molecular microbiologists, bacterial systems biologists and synthetic biologists to discuss the architecture, function and dynamics of regulatory networks in bacteria. PMID:23846311

  13. Role of Moraxella catarrhalis outer membrane protein CD in bacterial cell morphology and autoaggregation.

    PubMed

    Saito, Ryoichi; Matsuoka, Shiho; Fujinami, Yuji; Nonaka, Shotaro; Ichinose, Shizuko; Kubota, Tetsuo; Okamura, Noboru

    2013-04-01

    Moraxella catarrhalis, an important pathogen in the human respiratory tract, causes otitis media and lower respiratory tract infections. M. catarrhalis outer membrane protein CD (OMPCD) is a major heat-modifiable OMP with demonstrable potential as a vaccine candidate. The gene encoding OMPCD of M. catarrhalis strains was subjected to nucleotide sequence analysis and then inactivated by insertional mutagenesis. The ompCD mutant strains exhibited a modest growth defect in comparison with the wild-type strains. In optical microscopy and scanning/transmission electron microscopy examinations, regarding morphology, the cell size and cell wall of the ompCD mutant strains were significantly larger and thinner, respectively, than those of the wild-type strain. Furthermore, the ompCD mutant strains exhibited significant autoaggregation and increased surface hydrophobicity, in addition to a reduction in the adherence to HEp-2 cells, compared to the wild-type strains. Strains repaired by replacing the mutated ompCD gene exhibited phenotypic characteristics very similar to those of the wild-type strains. These results indicate that M. catarrhalis OMPCD, in addition to its functions related to bacterial growth and adherence to human epithelial cells, plays a very important role in bacterial physiology and pathogenesis, including aspects such as stabilizing bacterial cell morphology and preventing autoaggregation by reducing surface hydrophobicity. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Thermodynamics of interactions of vancomycin and synthetic surrogates of bacterial cell wall.

    PubMed

    Rekharsky, Mikhail; Hesek, Dusan; Lee, Mijoon; Meroueh, Samy O; Inoue, Yoshihisa; Mobashery, Shahriar

    2006-06-21

    Glycopeptide antibiotics, including vancomycin, form complexes via a set of five hydrogen bonds with the acyl-l-Lys-d-Ala-d-Ala portion of the peptidyl stems of the bacterial cell wall peptidoglycan. This complexation deprives the organism from the ability to cross-link peptidyl stems of the peptidoglycan, leading to bacterial cell death. Four synthetic fragments as surrogates of the components of the bacterial cell wall have been prepared in our lab in multistep syntheses. These synthetic samples were used in investigations of the thermodynamics properties (DeltaG degrees , DeltaH degrees , and TDeltaS degrees ) for the complexation with vancomycin by isothermal titration calorimetry (ITC). Complexation with the glycopeptide analogues is largely enthalpy-driven (formation of five hydrogen bonds), and in the analogues with a single peptidyl stem, the complexation is 1:1. The complexation is more complicated with an approximately 2 kDa cell wall surrogate (compound 4), which possesses two peptidyl stems. The data were suggestive of interactions between the two vancomycin molecules, with an entropic penalty attributable to restriction of molecular movements within the complex due to restriction of motion of the highly mobile acyl-d-Ala-d-Ala moiety of the peptidyl stems. These data were reconciled with the recently determined NMR solution structure for the peptidoglycan fragment 4 and its implications for the larger cell wall.

  15. Adherence, accumulation, and cell division of a natural adherent bacterial population.

    PubMed Central

    Bloomquist, C G; Reilly, B E; Liljemark, W F

    1996-01-01

    Developing dental bacterial plaques formed in vivo on enamel surfaces were examined in specimens from 18 adult volunteers during the first day of plaque formation. An intraoral model placing enamel pieces onto teeth was used to study bacterial plaque populations developing naturally to various cell densities per square millimeter of surface area of the enamel (W. F. Liljemark, C. G. Bloomquist, C. L. Bandt, B. L. Philstrom, J. E. Hinrichs, and L. F. Wolff, Oral Microbiol. Immunol. 8:5-15, 1993). Radiolabeled nucleoside incorporation was used to measure DNA synthesis concurrent with the taking of standard viable cell counts of the plaque samples. Results showed that in vivo plaque formation began with the rapid adherence of bacteria until ca. 12 to 32% of the enamel's salivary pellicle was saturated (ca. 2.5 x 10(5) to 6.3 x 10(5) cells per mm2). The pioneer adherent species were predominantly those of the "sanguis streptococci." At the above-noted density, the bacteria present on the salivary pellicle incorporated low levels of radiolabeled nucleoside per viable cell. As bacterial numbers reached densities between 8.0 x 10(5) and 2.0 x 10(6) cells per mm2, there was a small increase in the incorporation of radiolabeled nucleosides per cell. At 2.5 x 10(6) to 4.0 x 10(6) cells per mm2 of enamel surface, there was a marked increase in the incorporation of radiolabeled nucleosides per cell which appeared to be cell-density dependent. The predominant species group in developing dental plaque films during density-dependent growth was the sanguis streptococci; however, most other species present showed similar patterns of increased DNA synthesis as the density noted above approached 2.5 x 10(6) to 4.0 x 10(6) cells per mm2. PMID:8576054

  16. Insect Gut Symbiont Susceptibility to Host Antimicrobial Peptides Caused by Alteration of the Bacterial Cell Envelope*

    PubMed Central

    Kim, Jiyeun Kate; Son, Dae Woo; Kim, Chan-Hee; Cho, Jae Hyun; Marchetti, Roberta; Silipo, Alba; Sturiale, Luisa; Park, Ha Young; Huh, Ye Rang; Nakayama, Hiroshi; Fukatsu, Takema; Molinaro, Antonio; Lee, Bok Luel

    2015-01-01

    The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis. PMID:26116716

  17. A Central Role for Carbon-Overflow Pathways in the Modulation of Bacterial Cell Death

    PubMed Central

    Thomas, Vinai Chittezham; Sadykov, Marat R.; Chaudhari, Sujata S.; Jones, Joselyn; Endres, Jennifer L.; Widhelm, Todd J.; Ahn, Jong-Sam; Jawa, Randeep S.; Zimmerman, Matthew C.; Bayles, Kenneth W.

    2014-01-01

    Similar to developmental programs in eukaryotes, the death of a subpopulation of cells is thought to benefit bacterial biofilm development. However mechanisms that mediate a tight control over cell death are not clearly understood at the population level. Here we reveal that CidR dependent pyruvate oxidase (CidC) and α-acetolactate synthase/decarboxylase (AlsSD) overflow metabolic pathways, which are active during staphylococcal biofilm development, modulate cell death to achieve optimal biofilm biomass. Whereas acetate derived from CidC activity potentiates cell death in cells by a mechanism dependent on intracellular acidification and respiratory inhibition, AlsSD activity effectively counters CidC action by diverting carbon flux towards neutral rather than acidic byproducts and consuming intracellular protons in the process. Furthermore, the physiological features that accompany metabolic activation of cell death bears remarkable similarities to hallmarks of eukaryotic programmed cell death, including the generation of reactive oxygen species and DNA damage. Finally, we demonstrate that the metabolic modulation of cell death not only affects biofilm development but also biofilm-dependent disease outcomes. Given the ubiquity of such carbon overflow pathways in diverse bacterial species, we propose that the metabolic control of cell death may be a fundamental feature of prokaryotic development. PMID:24945831

  18. Some ultrastructural information on intact, living bacterial cells and related cell-wall fragments as given by FTIR

    NASA Astrophysics Data System (ADS)

    Naumann, D.

    1984-05-01

    Living bacterial cells of Staphylococcus aureus have been measured from aqueous suspensions taking advantage of the solvent subtraction capabilities of FTIR. All spectral features, between 1800-800 cm -1, of the intact cells could be measured with a reproducibility of better than ±5% when applying strict metabolic control of cell growth and a highly standardized experimental procedure prior to IR measurements. IR bands near 1745, 1656, 1547, 1240 and 1200-1000 cm -1were tentatively assigned to: CO stretching of ester groups, amide I and amide II bands of the various peptides and proteins, asymmetric stretching of phosphate groups and complex vibrational modes resulting from polysaccharidal compounds, respectively. Absorbance subtraction of IR spectra of different intact baterial cells and cell-wall preparations yielded reasonable results on structural variations accompanying: (i) cell growth, (ii) use of different growth media, (iii) chemical treatment of cells and (iv) biochemical isolation processes of cell walls from the intact cells.

  19. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens

    PubMed Central

    Colonne, Punsiri M.; Winchell, Caylin G.; Voth, Daniel E.

    2016-01-01

    Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions. PMID:27713866

  20. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.

    PubMed

    Van Nevel, S; Koetzsch, S; Proctor, C R; Besmer, M D; Prest, E I; Vrouwenvelder, J S; Knezev, A; Boon, N; Hammes, F

    2017-04-15

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    PubMed

    Daigneault, Marc; De Silva, Thushan I; Bewley, Martin A; Preston, Julie A; Marriott, Helen M; Mitchell, Andrea M; Mitchell, Timothy J; Read, Robert C; Whyte, Moira K B; Dockrell, David H

    2012-01-01

    Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease.

  2. Residence and transit times of MinD in E. coli bacterial cells

    NASA Astrophysics Data System (ADS)

    Giuliani, Maximiliano; Kelly, Corey; Dutcher, John

    2012-02-01

    A key step in the life of a bacterial cell is its division into two daughters cells of equal size. This process is carefully controlled and regulated so that an equal partitioning of the main cell components is obtained, which is critical for the viability of the daughter cells. In E. coli this regulation is accomplished in part by the Min protein system, that determines the localization of the division machinery. Of particular interest is the MinD protein that exhibits an oscillation between the poles in the rod shaped bacteria. The oscillation relies on a ATP mediated dimerization of the MinD protein that allows its insertion into the inner membrane at one of the poles of the cell, followed by an interaction with the MinE protein, which releases the MinD from the membrane, allowing it to travel to the other pole of the cell where the cycle is repeated. We have studied the spatio-temporal characteristics of the MinD oscillation from which we extract the average times for the two main processes that determine the oscillation period: the residence time in the membrane and the transit time to travel the length of the cell. Additionally, we explore how these two timescales are affected by stresses on the bacterial cells due to unfavorable physiological conditions.

  3. Viability of adhered bacterial cells: tracking MinD protein oscillations

    NASA Astrophysics Data System (ADS)

    Barrett, Matt; Colville, Keegan; Schultz-Nielsen, Chris; Jericho, Manfred; Dutcher, John

    2010-03-01

    To study bacterial cells using atomic force microscopy, it is necessary to immobilize the cells on a substrate. Because bacterial cells and common substrates such as glass and mica have a net negative charge, positively charged polymers such as poly-L-lysine (PLL) and polyethyleneimine (PEI) are commonly used as adhesion layers. However, the use of adhesion polymers could stress the cell and even render it inviable. Viable E. coli cells use oscillations of Min proteins along the axis of the rod-shaped cells to ensure accurate cell division. By tagging MinD proteins with GFP, oscillations can be observed using fluorescence microscopy. For a healthy cell in an ideal environment, the oscillation period is measured to be ˜40 s. Prior experiments have shown that PLL increases the oscillation period significantly (up to 80%). In the present study, we have used epifluorescence and total internal reflection fluorescence (TIRF) to track MinD protein oscillations in E. coli bacteria adhered to a variety of positively charged polymers on mica as a function of polymer surface coverage.

  4. Convergent development of anodic bacterial communities in microbial fuel cells.

    PubMed

    Yates, Matthew D; Kiely, Patrick D; Call, Douglas F; Rismani-Yazdi, Hamid; Bibby, Kyle; Peccia, Jordan; Regan, John M; Logan, Bruce E

    2012-11-01

    Microbial fuel cells (MFCs) are often inoculated from a single wastewater source. The extent that the inoculum affects community development or power production is unknown. The stable anodic microbial communities in MFCs were examined using three inocula: a wastewater treatment plant sample known to produce consistent power densities, a second wastewater treatment plant sample, and an anaerobic bog sediment. The bog-inoculated MFCs initially produced higher power densities than the wastewater-inoculated MFCs, but after 20 cycles all MFCs on average converged to similar voltages (470±20 mV) and maximum power densities (590±170 mW m(-2)). The power output from replicate bog-inoculated MFCs was not significantly different, but one wastewater-inoculated MFC (UAJA3 (UAJA, University Area Joint Authority Wastewater Treatment Plant)) produced substantially less power. Denaturing gradient gel electrophoresis profiling showed a stable exoelectrogenic biofilm community in all samples after 11 cycles. After 16 cycles the predominance of Geobacter spp. in anode communities was identified using 16S rRNA gene clone libraries (58±10%), fluorescent in-situ hybridization (FISH) (63±6%) and pyrosequencing (81±4%). While the clone library analysis for the underperforming UAJA3 had a significantly lower percentage of Geobacter spp. sequences (36%), suggesting that a predominance of this microbe was needed for convergent power densities, the lower percentage of this species was not verified by FISH or pyrosequencing analyses. These results show that the predominance of Geobacter spp. in acetate-fed systems was consistent with good MFC performance and independent of the inoculum source.

  5. Convergent development of anodic bacterial communities in microbial fuel cells

    PubMed Central

    Yates, Matthew D; Kiely, Patrick D; Call, Douglas F; Rismani-Yazdi, Hamid; Bibby, Kyle; Peccia, Jordan; Regan, John M; Logan, Bruce E

    2012-01-01

    Microbial fuel cells (MFCs) are often inoculated from a single wastewater source. The extent that the inoculum affects community development or power production is unknown. The stable anodic microbial communities in MFCs were examined using three inocula: a wastewater treatment plant sample known to produce consistent power densities, a second wastewater treatment plant sample, and an anaerobic bog sediment. The bog-inoculated MFCs initially produced higher power densities than the wastewater-inoculated MFCs, but after 20 cycles all MFCs on average converged to similar voltages (470±20 mV) and maximum power densities (590±170 mW m−2). The power output from replicate bog-inoculated MFCs was not significantly different, but one wastewater-inoculated MFC (UAJA3 (UAJA, University Area Joint Authority Wastewater Treatment Plant)) produced substantially less power. Denaturing gradient gel electrophoresis profiling showed a stable exoelectrogenic biofilm community in all samples after 11 cycles. After 16 cycles the predominance of Geobacter spp. in anode communities was identified using 16S rRNA gene clone libraries (58±10%), fluorescent in-situ hybridization (FISH) (63±6%) and pyrosequencing (81±4%). While the clone library analysis for the underperforming UAJA3 had a significantly lower percentage of Geobacter spp. sequences (36%), suggesting that a predominance of this microbe was needed for convergent power densities, the lower percentage of this species was not verified by FISH or pyrosequencing analyses. These results show that the predominance of Geobacter spp. in acetate-fed systems was consistent with good MFC performance and independent of the inoculum source. PMID:22572637

  6. Cell division ring, a new cell division protein and vertical inheritance of a bacterial organelle in anammox planctomycetes.

    PubMed

    van Niftrik, Laura; Geerts, Willie J C; van Donselaar, Elly G; Humbel, Bruno M; Webb, Richard I; Harhangi, Harry R; Camp, Huub J M Op den; Fuerst, John A; Verkleij, Arie J; Jetten, Mike S M; Strous, Marc

    2009-09-01

    Anammox bacteria are members of the phylum Planctomycetes that oxidize ammonium anaerobically and produce a significant part of the atmosphere's dinitrogen gas. They contain a unique bacterial organelle, the anammoxosome, which is the locus of anammox catabolism. While studying anammox cell and anammoxosome division with transmission electron microscopy including electron tomography, we observed a cell division ring in the outermost compartment of dividing anammox cells. In most Bacteria, GTP hydrolysis drives the tubulin-analogue FtsZ to assemble into a ring-like structure at the cell division site where it functions as a scaffold for the molecular machinery that performs cell division. However, the genome of the anammox bacterium 'Candidatus Kuenenia stuttgartiensis' does not encode ftsZ. Genomic analysis of open reading frames with potential GTPase activity indicated a possible novel cell division ring gene: kustd1438, which was unrelated to ftsZ. Immunogold localization specifically localized kustd1438 to the cell division ring. Genomic analyses of other members of the phyla Planctomycetes and Chlamydiae revealed no putative functional homologues of kustd1438, suggesting that it is specific to anammox bacteria. Electron tomography also revealed that the bacterial organelle was elongated along with the rest of the cell and divided equally among daughter cells during the cell division process.

  7. The effect of natural organic matter on the adsorption of mercury to bacterial cells

    NASA Astrophysics Data System (ADS)

    Dunham-Cheatham, Sarrah; Mishra, Bhoopesh; Myneni, Satish; Fein, Jeremy B.

    2015-02-01

    We investigated the ability of non-metabolizing Bacillus subtilis, Shewanella oneidensis MR-1, and Geobacter sulfurreducens bacterial species to adsorb mercury in the absence and presence of Suwanee River fulvic acid (FA). Bulk adsorption and X-ray absorption spectroscopy (XAS) experiments were conducted at three pH conditions, and the results indicate that the presence of FA decreases the extent of Hg adsorption to biomass under all of the pH conditions studied. Hg XAS results show that the presence of FA does not alter the binding environment of Hg adsorbed onto the biomass regardless of pH or FA concentration, indicating that ternary bacteria-Hg-FA complexes do not form to an appreciable extent under the experimental conditions, and that Hg binding on the bacteria is dominated by sulfhydryl binding. We used the experimental results to calculate apparent partition coefficients, Kd, for Hg under each experimental condition. The calculations yield similar coefficients for Hg onto each of the bacterial species studies, suggesting there is no significant difference in Hg partitioning between the three bacterial species. The calculations also indicate similar coefficients for Hg-bacteria and Hg-FA complexes. S XAS measurements confirm the presence of sulfhydryl sites on both the FA and bacterial cells, and demonstrate the presence of a wide range of S moieties on the FA in contrast to the bacterial biomass, whose S sites are dominated by thiols. Our results suggest that although FA can compete with bacterial binding sites for aqueous Hg, because of the relatively similar partition coefficients for the types of sorbents, the competition is not dominated by either bacteria or FA unless the concentration of one type of site greatly exceeds that of the other.

  8. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis.

    PubMed

    Maglione, Paul J; Xu, Jiayong; Chan, John

    2007-06-01

    Though much is known about the function of T lymphocytes in the adaptive immune response against Mycobacterium tuberculosis, comparably little is understood regarding the corresponding role of B lymphocytes. Indicating B cells as components of lymphoid neogenesis during pulmonary tuberculosis, we have identified ectopic germinal centers (GCs) in the lungs of infected mice. B cells in these pulmonary lymphoid aggregates express peanut agglutinin and GL7, two markers of GC B cells, as well as CXCR5, and migrate in response to the lymphoid-associated chemokine CXCL13 ex vivo. CXCL13 is negatively regulated by the presence of B cells, as its production is elevated in lungs of B cell-deficient (B cell(-/-)) mice. Upon aerosol with 100 CFU of M. tuberculosis Erdman, B cell(-/-) mice have exacerbated immunopathology corresponding with elevated pulmonary recruitment of neutrophils. Infected B cell(-/-) mice show increased production of IL-10 in the lungs, whereas IFN-gamma, TNF-alpha, and IL-10R remain unchanged from wild type. B cell(-/-) mice have enhanced susceptibility to infection when aerogenically challenged with 300 CFU of M. tuberculosis corresponding with elevated bacterial burden in the lungs but not in the spleen or liver. Adoptive transfer of B cells complements the phenotypes of B cell(-/-) mice, confirming a role for B cells in both modulation of the host response and optimal containment of the tubercle bacillus. As components of ectopic GCs, moderators of inflammatory progression, and enhancers of local immunity against bacterial challenge, B cells may have a greater role in the host defense against M. tuberculosis than previously thought.

  9. DBIO Best Thesis Award: Mechanics, Dynamics, and Organization of the Bacterial Cytoskeleton and Cell Wall

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan

    2012-02-01

    Bacteria come in a variety of shapes. While the peptidoglycan (PG) cell wall serves as an exoskeleton that defines the static cell shape, the internal bacterial cytoskeleton mediates cell shape by recruiting PG synthesis machinery and thus defining the pattern of cell-wall synthesis. While much is known about the chemistry and biology of the cytoskeleton and cell wall, much of their biophysics, including essential aspects of the functionality, dynamics, and organization, remain unknown. This dissertation aims to elucidate the detailed biophysical mechanisms of cytoskeleton guided wall synthesis. First, I find that the bacterial cytoskeleton MreB contributes nearly as much to the rigidity of an Escherichia coli cell as the cell wall. This conclusion implies that the cytoskeletal polymer MreB applies meaningful force to the cell wall, an idea favored by theoretical modeling of wall growth, and suggests an evolutionary origin of cytoskeleton-governed cell rigidity. Second, I observe that MreB rotates around the long axis of E. coli, and the motion depends on wall synthesis. This is the first discovery of a cell-wall assembly driven molecular motor in bacteria. Third, I prove that both cell-wall synthesis and the PG network have chiral ordering, which is established by the spatial pattern of MreB. This work links the molecular structure of the cytoskeleton and of the cell wall with organismal-scale behavior. Finally, I develop a mathematical model of cytoskeleton-cell membrane interactions, which explains the preferential orientation of different cytoskeleton components in bacteria.

  10. Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction.

    PubMed

    Wilke, R N; Priebe, M; Bartels, M; Giewekemeyer, K; Diaz, A; Karvinen, P; Salditt, T

    2012-08-13

    Ptychographic coherent X-ray diffractive imaging (PCDI) has been combined with nano-focus X-ray diffraction to study the structure and density distribution of unstained and unsliced bacterial cells, using a hard X-ray beam of 6.2keV photon energy, focused to about 90nm by a Fresnel zone plate lens. While PCDI provides images of the bacteria with quantitative contrast in real space with a resolution well below the beam size at the sample, spatially resolved small angle X-ray scattering using the same Fresnel zone plate (cellular nano-diffraction) provides structural information at highest resolution in reciprocal space up to 2nm(-1). We show how the real and reciprocal space approach can be used synergistically on the same sample and with the same setup. In addition, we present 3D hard X-ray imaging of unstained bacterial cells by a combination of ptychography and tomography.

  11. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency

    PubMed Central

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A. Francis; Müller, Rolf; Zhang, Youming

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples. PMID:27095488

  12. Evaluating the toxic effect of an antimicrobial agent on single bacterial cells with optical tweezers.

    PubMed

    Samadi, Akbar; Zhang, Chensong; Chen, Joseph; Reihani, S N S; Chen, Zhigang

    2015-01-01

    We implement an optical tweezers technique to assess the effects of chemical agents on single bacterial cells. As a proof of principle, the viability of a trapped Escherichia coli bacterium is determined by monitoring its flagellar motility in the presence of varying concentrations of ethyl alcohol. We show that the "killing time" of the bacterium can be effectively identified from the correlation statistics of the positional time series recorded from the trap, while direct quantification from the time series or associated power spectra is intractable. Our results, which minimize the lethal effects of bacterial photodamage, are consistent with previous reports of ethanol toxicity that used conventional culture-based methods. This approach can be adapted to study other pairwise combinations of drugs and motile bacteria, especially to measure the response times of single cells with better precision.

  13. Regulation of bacterial virulence gene expression by cell envelope stress responses

    PubMed Central

    Flores-Kim, Josué; Darwin, Andrew J

    2014-01-01

    The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens. PMID:25603429

  14. Pore-forming bacterial toxins potently induce release of nitric oxide in porcine endothelial cells

    PubMed Central

    1993-01-01

    Nitric oxide (NO) is believed to play an important role in sepsis- related hypotension. We examined the effects of two pore-forming bacterial exotoxins, Escherichia coli hemolysin and Staphylococcus aureus alpha-toxin, on NO formation in cultured porcine pulmonary artery endothelial cells. NO was quantified using a difference- spectrophotometric method based on the rapid and stoichiometric reaction of NO with oxyhemoglobin. Endothelial cyclic guanosine monophosphate levels were also monitored. Both exotoxins increased NO synthesis in endothelial cells in a time- and dose-dependent manner to an extent exceeding that observed with the ionophore A23187 or thrombin. The capacity of exotoxins to induce NO formation may be relevant in patients with severe local or systemic bacterial infections. PMID:8391061

  15. Effect of bacterial peptidoglycan on erythrocyte death and adhesion to endothelial cells.

    PubMed

    Abed, Majed; Towhid, Syeda T; Pakladok, Tatsiana; Alesutan, Ioana; Götz, Friedrich; Gulbins, Erich; Lang, Florian

    2013-05-01

    Peptidoglycans, bacterial wall components, have previously been shown to trigger eryptosis, the suicidal erythrocyte death, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Phosphatidylserine exposing erythrocytes adhere to the vascular wall at least partially by interaction of erythrocytic phosphatidylserine with endothelial CXC chemokine ligand 16 (CXCL16). The present study explored whether peptidoglycan exposure fosters the adhesion of erythrocytes to human umbilical vein endothelial cells (HUVEC). To this end, HUVEC were treated for 48 h with peptidoglycan (10 μg/ml) and CXCL16 abundance determined by confocal microscopy and FACS analysis. Moreover, human erythrocytes were exposed for 48 h to peptidoglycan (10 μg/ml) and phosphatidylserine exposure estimated from binding of fluorescent annexin-V, cell volume from forward scatter in FACS analysis and erythrocyte adhesion to human umbilical vein endothelial cells (HUVEC) from trapping of labeled erythrocytes in a flow chamber. As a result, bacterial peptidoglycan exposure was followed by increased CXCL16 expression in HUVEC as well as erythrocyte shrinkage, phosphatidylserine exposure and adhesion to HUVEC under flow conditions at arterial shear rates. The adhesion was significantly attenuated but not abrogated in the presence of either, erythrocyte phosphatidylserine-coating annexin-V (5 μl/ml) or CXCL16 neutralizing antibody directed against endothelial CXCL16 (4 μg/ml). In conclusion, exposure to peptidoglycan increases endothelial CXCL16 expression and leads to eryptosis followed by phosphatidylserine- and CXCL16-mediated adhesion of eryptotic erythrocytes to vascular endothelial cells.

  16. A novel bacterial tyrosine kinase essential for cell division and differentiation

    PubMed Central

    Wu, Jianguo; Ohta, Noriko; Zhao, Ji-Liang; Newton, Austin

    1999-01-01

    Protein kinases play central roles in the regulation of eukaryotic and prokaryotic cell growth, division, and differentiation. The Caulobacter crescentus divL gene encodes a novel bacterial tyrosine kinase essential for cell viability and division. Although the DivL protein is homologous to the ubiquitous bacterial histidine protein kinases (HPKs), it differs from previously studied members of this protein kinase family in that it contains a tyrosine residue (Tyr-550) in the conserved H-box instead of a histidine residue, which is the expected site of autophosphorylation. DivL is autophosphorylated on Tyr-550 in vitro, and this tyrosine residue is essential for cell viability and regulation of the cell division cycle. Purified DivL also catalyzes phosphorylation of CtrA and activates transcription in vitro of the cell cycle-regulated fliF promoter. Suppressor mutations in ctrA bypass the conditional cell division phenotype of cold-sensitive divL mutants, providing genetic evidence that DivL function in cell cycle and developmental regulation is mediated, at least in part, by the global response regulator CtrA. DivL is the only reported HPK homologue whose function has been shown to require autophosphorylation on a tyrosine, and, thus, it represents a new class of kinases within this superfamily of protein kinases. PMID:10557274

  17. The interaction of bacterial magnetosomes and human liver cancer cells in vitro

    NASA Astrophysics Data System (ADS)

    Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Yue; Pan, Weidong; Song, Tao

    2017-04-01

    As the biogenic magnetic nanomaterial, bacterial magnetic nanoparticles, namely magnetosomes, provide many advantages for potential biomedical applications. As such, interactions among magnetosomes and target cells should be elucidated to develop their bioapplications and evaluate their biocompatibilities. In this study, the interaction of magnetosomes and human liver cancer HepG2 cells was examined. Prussian blue staining revealed numerous stained particles in or on the cells. Intracellular iron concentrations, measured through inductively coupled plasma optical emission spectroscopy, increased with the increasing concentration of the magnetosomes. Transmission electron microscopy images showed that magnetosomes could be internalized in cells, mainly encapsulated in membrane vesicles, such as endosomes and lysosomes, and partly found as free particles in the cytosol. Some of the magnetosomes on cellular surfaces were encapsulated through cell membrane ruffling, which is the initiating process of endocytosis. Applying low temperature treatment and using specific endocytic inhibitors, we validated that macropinocytosis and clathrin-mediated endocytosis were involved in magnetosome uptake by HepG2 cells. Consequently, we revealed the interaction and intrinsic endocytic mechanisms of magnetosomes and HepG2 cells. This study provides a basis for the further research on bacterial magnetosome applications in liver diseases.

  18. Influence of Molecular Noise on the Growth of Single Cells and Bacterial Populations

    PubMed Central

    Schmidt, Mischa; Creutziger, Martin; Lenz, Peter

    2012-01-01

    During the last decades experimental studies have revealed that single cells of a growing bacterial population are significantly exposed to molecular noise. Important sources for noise are low levels of metabolites and enzymes that cause significant statistical variations in the outcome of biochemical reactions. In this way molecular noise affects biological processes such as nutrient uptake, chemotactic tumbling behavior, or gene expression of genetically identical cells. These processes give rise to significant cell-to-cell variations of many directly observable quantities such as protein levels, cell sizes or individual doubling times. In this study we theoretically explore if there are evolutionary benefits of noise for a growing population of bacteria. We analyze different situations where noise is either suppressed or where it affects single cell behavior. We consider two specific examples that have been experimentally observed in wild-type Escherichia coli cells: (i) the precision of division site placement (at which molecular noise is highly suppressed) and (ii) the occurrence of noise-induced phenotypic variations in fluctuating environments. Surprisingly, our analysis reveals that in these specific situations both regulatory schemes [i.e. suppression of noise in example (i) and allowance of noise in example (ii)] do not lead to an increased growth rate of the population. Assuming that the observed regulatory schemes are indeed caused by the presence of noise our findings indicate that the evolutionary benefits of noise are more subtle than a simple growth advantage for a bacterial population in nutrient rich conditions. PMID:22238678

  19. Increased Myeloid Cell Production and Lung Bacterial Clearance in Mice Exposed to Cigarette Smoke.

    PubMed

    Basilico, Paola; Cremona, Tiziana P; Oevermann, Anna; Piersigilli, Alessandra; Benarafa, Charaf

    2016-03-01

    Pneumonia is a leading cause of hospitalization in patients with chronic obstructive pulmonary disease (COPD). Although most patients with COPD are smokers, the effects of cigarette smoke exposure on clearance of lung bacterial pathogens and on immune and inflammatory responses are incompletely defined. Here, clearance of Streptococcus pneumoniae and Pseudomonas aeruginosa and associated immune responses were examined in mice exposed to cigarette smoke or after smoking cessation. Mice exposed to cigarette smoke for 6 weeks or 4 months demonstrated decreased lung bacterial burden compared with air-exposed mice when infected 16 to 24 hours after exposure. When infection was performed after smoke cessation, bacterial clearance kinetics of mice previously exposed to smoke reversed to levels comparable to those of control mice, suggesting that the observed defects were not dependent on adaptive immunological memory to bacterial determinants found in smoke. Comparing cytokine levels and myeloid cell production before infection in mice exposed to cigarette smoke with mice never exposed or after smoke cessation revealed that reduced bacterial burden was most strongly associated with higher levels of IL-1β and granulocyte-macrophage colony-stimulating factor in the lungs and with increased neutrophil reserve and monocyte turnover in the bone marrow. Using Serpinb1a-deficient mice with reduced neutrophil numbers and treatment with granulocyte colony-stimulating factor showed that increased neutrophil numbers contribute only in part to the effect of smoke on infection. Our findings indicate that cigarette smoke induces a temporary and reversible increase in clearance of lung pathogens, which correlates with local inflammation and increased myeloid cell output from the bone marrow.

  20. Ice nucleators, bacterial cells and Pseudomonas syringae in precipitation at Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Stopelli, Emiliano; Conen, Franz; Guilbaud, Caroline; Zopfi, Jakob; Alewell, Christine; Morris, Cindy E.

    2017-03-01

    Ice nucleation is a means by which the deposition of an airborne microorganism can be accelerated under favourable meteorological conditions. Analysis of 56 snow samples collected at the high-altitude observatory Jungfraujoch (3580 m a.s.l.) revealed an order-of-magnitude-larger dynamic range of ice-nucleating particles active at -8 °C (INPs-8) compared to the total number of bacterial cells (of which on average 60 % was alive). This indicates a shorter atmospheric residence time for INPs-8. Furthermore, concentrations of INPs-8 decreased much faster, with an increasing fraction of water precipitated from the air mass prior to sampling, than the number of total bacterial cells. Nevertheless, at high wind speeds (> 50 km h-1) the ratio of INPs-8 to total bacterial cells largely remained in a range between 10-2 and 10-3, independent of prior precipitation, likely because of recent injections of particles in regions upwind. Based on our field observations, we conclude that ice nucleators travel shorter legs of distance with the atmospheric water cycle than the majority of bacterial cells. A prominent ice-nucleating bacterium, Pseudomonas syringae, has been previously supposed to benefit from this behaviour as a means to spread via the atmosphere and to colonise new host plants. Therefore, we targeted this bacterium with a selective cultivation approach. P. syringae was successfully isolated for the first time at such an altitude in 3 of 13 samples analysed. Colony-forming units of this species constituted a minor fraction (10-4) of the numbers of INPs-8 in these samples. Overall, our findings expand the geographic range of habitats where this bacterium has been found and corroborate theories on its robustness in the atmosphere and its propensity to spread to colonise new habitats.

  1. A Kinase-Phosphatase Switch Transduces Environmental Information into a Bacterial Cell Cycle Circuit

    PubMed Central

    Heinrich, Kristina; Sobetzko, Patrick; Jonas, Kristina

    2016-01-01

    The bacterial cell cycle has been extensively studied under standard growth conditions. How it is modulated in response to environmental changes remains poorly understood. Here, we demonstrate that the freshwater bacterium Caulobacter crescentus blocks cell division and grows to filamentous cells in response to stress conditions affecting the cell membrane. Our data suggest that stress switches the membrane-bound cell cycle kinase CckA to its phosphatase mode, leading to the rapid dephosphorylation, inactivation and proteolysis of the master cell cycle regulator CtrA. The clearance of CtrA results in downregulation of division and morphogenesis genes and consequently a cell division block. Upon shift to non-stress conditions, cells quickly restart cell division and return to normal cell size. Our data indicate that the temporary inhibition of cell division through the regulated inactivation of CtrA constitutes a growth advantage under stress. Taken together, our work reveals a new mechanism that allows bacteria to alter their mode of proliferation in response to environmental cues by controlling the activity of a master cell cycle transcription factor. Furthermore, our results highlight the role of a bifunctional kinase in this process that integrates the cell cycle with environmental information. PMID:27941972

  2. Bacterial actin MreB assembles in complex with cell shape protein RodZ

    PubMed Central

    van den Ent, Fusinita; Johnson, Christopher M; Persons, Logan; de Boer, Piet; Löwe, Jan

    2010-01-01

    Bacterial actin homologue MreB is required for cell shape maintenance in most non-spherical bacteria, where it assembles into helical structures just underneath the cytoplasmic membrane. Proper assembly of the actin cytoskeleton requires RodZ, a conserved, bitopic membrane protein that colocalises to MreB and is essential for cell shape determination. Here, we present the first crystal structure of bacterial actin engaged with a natural partner and provide a clear functional significance of the interaction. We show that the cytoplasmic helix-turn-helix motif of Thermotoga maritima RodZ directly interacts with monomeric as well as filamentous MreB and present the crystal structure of the complex. In vitro and in vivo analyses of mutant T. maritima and Escherichia coli RodZ validate the structure and reveal the importance of the MreB–RodZ interaction in the ability of cells to propagate as rods. Furthermore, the results elucidate how the bacterial actin cytoskeleton might be anchored to the membrane to help constrain peptidoglycan synthesis in the periplasm. PMID:20168300

  3. Anhydrobiosis quotient: a novel approach to evaluate stability in desiccated bacterial cells.

    PubMed

    Hernández, A; Zamora, J; González, N; Salazar, E; Sánchez, M D C

    2009-08-01

    The major objective of this study was the development of a methodology to quantify the anhydrobiotic ability of bacteria and its application to evaluate the stability of desiccated bacterial cells using the biocontrol agent Tsukamurella paurometabola C-924 as a model of anhydrobiote. Tsukamurella paurometabola C-924 was desiccated by spray-drying. Samples of desiccated cells were stored at several temperatures and viability and residual moisture were measured at different intervals of time. The term anhydrobiosis quotient (epsilon) was defined, and a scale of anhydrobiotic ability for classifying micro-organisms in terms of tolerance to desiccation was established (1 < or = epsilon < or = 15). The anhydrobiosis quotient was used to evaluate the stability of the anhydrobiotic cells. As a main result, changes in the anhydrobiosis quotient at several temperatures were fitted using a reparameterized Weibull model, which was found to be robust for the prediction of the stability at 4 degrees C. A novel methodology was developed to evaluate the desiccated state in bacteria. The anhydrobiosis quotient allows the quantitative estimation of the anhydrobiotic ability, and the mathematical model developed allows the prediction of the desiccated state of bacterial populations. The new methodology could be applied in studying the anhydrobiosis state of bacterial populations as a predictive tool for industrial and environmental microbiology.

  4. Mineralization of Iron Oxyhydroxides in the Presence and in the Absence of Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Châtellier, X.; West, M.; Rose, J.; Fortin, D.; Leppard, G. G.; Ferris, G.

    2001-12-01

    Because of their small size, iron oxides have a large surface area per unit weight ratio and are believed to play an important role as an adsorbing phase in lake sediments for various molecules, including potentially dangerous ones like heavy metals. They have been observed to form in close association with bacterial cells, by oxidation of ferrous ions. It is thus important to determine whether the presence of the bacterial cells can affect the mineralogy and the mesoscopic structure of the Fe-oxides particles, as well as their reactivity towards heavy metals. We synthesized in the lab nanoparticles of Fe-oxides by oxidation of ferrous ions. This was done in the presence and in the absence of various bacterial strains (Escherichia coli, Bacillus subtilis, Pseudomonas Aeruginosa and Bacillus licheniformis) and of inorganic ligands (sulfate, phosphate, silicate). The Fe-oxides particles were then observed by TEM on thin sections and on whole mounts. The chemical composition was estimated by wet chemistry and by EDS. The mineralogy was determined by XRD, SAED and EXAFS. Surface area was investigated by BET. And adsorption of cadmium was also measured at various pH. We observed that the size and the morphology of the particles as well as their mesoscopic spatial organization can be affected by the presence of the cells, whereas the mineralogy is controlled by the chemistry of the solution. The adsorption isotherms of cadmium on the various Fe-oxides will be discussed at the light of these observations.

  5. Biomechanical Loading Modulates Proinflammatory and Bone Resorptive Mediators in Bacterial-Stimulated PDL Cells

    PubMed Central

    Nokhbehsaim, Marjan; Bourauel, Christoph; Jäger, Andreas; Jepsen, Søren; Rossa, Carlos; Cirelli, Joni Augusto

    2014-01-01

    The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL) cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS) of low (CTSL) and high (CTSH) magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P < 0.05) increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis. PMID:24976684

  6. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation

    PubMed Central

    Kulkarni, Sayali; Misra, Chitra Seetharam; Gupta, Alka; Ballal, Anand

    2016-01-01

    ABSTRACT Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. IMPORTANCE The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous

  7. Bench-to-bedside review: Quorum sensing and the role of cell-to-cell communication during invasive bacterial infection

    PubMed Central

    Asad, Shadaba; Opal, Steven M

    2008-01-01

    Bacteria communicate extensively with each other and employ a communal approach to facilitate survival in hostile environments. A hierarchy of cell-to-cell signaling pathways regulates bacterial growth, metabolism, biofilm formation, virulence expression, and a myriad of other essential functions in bacterial populations. The notion that bacteria can signal each other and coordinate their assault patterns against susceptible hosts is now well established. These signaling networks represent a previously unrecognized survival strategy by which bacterial pathogens evade antimicrobial defenses and overwhelm the host. These quorum sensing communication signals can transgress species barriers and even kingdom barriers. Quorum sensing molecules can regulate human transcriptional programs to the advantage of the pathogen. Human stress hormones and cytokines can be detected by bacterial quorum sensing systems. By this mechanism, the pathogen can detect the physiologically stressed host, providing an opportunity to invade when the patient is most vulnerable. These rather sophisticated, microbial communication systems may prove to be a liability to pathogens as they make convenient targets for therapeutic intervention in our continuing struggle to control microbial pathogens. PMID:19040778

  8. Targeted delivery of an ADP-ribosylating bacterial toxin into cancer cells

    PubMed Central

    Zahaf , N.-I.; Lang, A. E.; Kaiser, L.; Fichter, C. D.; Lassmann, S.; McCluskey, A.; Augspach, A.; Aktories, K.; Schmidt, G.

    2017-01-01

    The actin cytoskeleton is an attractive target for bacterial toxins. The ADP-ribosyltransferase TccC3 from the insect bacterial pathogen Photorhabdus luminescence modifies actin to force its aggregation. We intended to transport the catalytic part of this toxin preferentially into cancer cells using a toxin transporter (Protective antigen, PA) which was redirected to Epidermal Growth Factor Receptors (EGFR) or to human EGF receptors 2 (HER2), which are overexpressed in several cancer cells. Protective antigen of anthrax toxin forms a pore through which the two catalytic parts (lethal factor and edema factor) or other proteins can be transported into mammalian cells. Here, we used PA as a double mutant (N682A, D683A; mPA) which cannot bind to the two natural anthrax receptors. Each mutated monomer is fused either to EGF or to an affibody directed against the human EGF receptor 2 (HER2). We established a cellular model system composed of two cell lines representing HER2 overexpressing esophageal adenocarcinomas (EACs) and EGFR overexpressing esophageal squamous cell carcinomas (ESCCs). We studied the specificity and efficiency of the re-directed anthrax pore for transport of TccC3 toxin and established Photorhabdus luminescence TccC3 as a toxin suitable for the development of a targeted toxin selectively killing cancer cells. PMID:28128281

  9. Rapid and Scalable Preparation of Bacterial Lysates for Cell-Free Gene Expression.

    PubMed

    Didovyk, Andriy; Tonooka, Taishi; Tsimring, Lev; Hasty, Jeff

    2017-08-21

    Cell-free gene expression systems are emerging as an important platform for a diverse range of synthetic biology and biotechnology applications, including production of robust field-ready biosensors. Here, we combine programmed cellular autolysis with a freeze-thaw or freeze-dry cycle to create a practical, reproducible, and a labor- and cost-effective approach for rapid production of bacterial lysates for cell-free gene expression. Using this method, robust and highly active bacterial cell lysates can be produced without specialized equipment at a wide range of scales, making cell-free gene expression easily and broadly accessible. Moreover, live autolysis strain can be freeze-dried directly and subsequently lysed upon rehydration to produce active lysate. We demonstrate the utility of autolysates for synthetic biology by regulating protein production and degradation, implementing quorum sensing, and showing quantitative protection of linear DNA templates by GamS protein. To allow versatile and sensitive β-galactosidase (LacZ) based readout we produce autolysates with no detectable background LacZ activity and use them to produce sensitive mercury(II) biosensors with LacZ-mediated colorimetric and fluorescent outputs. The autolysis approach can facilitate wider adoption of cell-free technology for cell-free gene expression as well as other synthetic biology and biotechnology applications, such as metabolic engineering, natural product biosynthesis, or proteomics.

  10. Rumen Bacterial Degradation of Forage Cell Walls Investigated by Electron Microscopy

    PubMed Central

    Akin, Danny E.; Amos, Henry E.

    1975-01-01

    The association of rumen bacteria with specific leaf tissues of the forage grass Kentucky-31 tall fescue (Festuca arundinacea Schreb.) during in vitro degradation was investigated by transmission and scanning electron microscopy. Examination of degraded leaf cross-sections revealed differential rates of tissue degradation in that the cell walls of the mesophyll and pholem were degraded prior to those of the outer bundle sheath and epidermis. Rumen bacteria appeared to degrade the mesophyll, in some cases, and phloem without prior attachment to the plant cell walls. The degradation of bundle sheath and epidermal cell walls appeared to be preceded by attachment of bacteria to the plant cell wall. Ultrastructural features apparently involved in the adhesion of large cocci to plant cells were observed by transmission and scanning electron microscopy. The physical association between plant and rumen bacterial cells during degradation apparently varies with tissue types. Bacterial attachment, by extracellular features in some microorganisms, is required prior to degradation of the more resistant tissues. Images PMID:16350017

  11. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development

    PubMed Central

    Hill, Jennifer Hampton; Franzosa, Eric A; Huttenhower, Curtis; Guillemin, Karen

    2016-01-01

    Resident microbes play important roles in the development of the gastrointestinal tract, but their influence on other digestive organs is less well explored. Using the gnotobiotic zebrafish, we discovered that the normal expansion of the pancreatic β cell population during early larval development requires the intestinal microbiota and that specific bacterial members can restore normal β cell numbers. These bacteria share a gene that encodes a previously undescribed protein, named herein BefA (β Cell Expansion Factor A), which is sufficient to induce β cell proliferation in developing zebrafish larvae. Homologs of BefA are present in several human-associated bacterial species, and we show that they have conserved capacity to stimulate β cell proliferation in larval zebrafish. Our findings highlight a role for the microbiota in early pancreatic β cell development and suggest a possible basis for the association between low diversity childhood fecal microbiota and increased diabetes risk. DOI: http://dx.doi.org/10.7554/eLife.20145.001 PMID:27960075

  12. Spectrum of bacterial colonization associated with urothelial cells from patients with chronic lower urinary tract symptoms.

    PubMed

    Khasriya, Rajvinder; Sathiananthamoorthy, Sanchutha; Ismail, Salim; Kelsey, Michael; Wilson, Mike; Rohn, Jennifer L; Malone-Lee, James

    2013-07-01

    Chronic lower urinary tract symptoms (LUTS), such as urgency and incontinence, are common, especially among the elderly, but their etiology is often obscure. Recent studies of acute urinary tract infections implicated invasion by Escherichia coli into the cytoplasm of urothelial cells, with persistence of long-term bacterial reservoirs, but the role of infection in chronic LUTS is unknown. We conducted a large prospective study with eligible patients with LUTS and controls over a 3-year period, comparing routine urine cultures of planktonic bacteria with cultures of shed urothelial cells concentrated in centrifuged urinary sediments. This comparison revealed large numbers of bacteria undetected by routine cultures. Next, we typed the bacterial species cultured from patient and control sediments under both aerobic and anaerobic conditions, and we found that the two groups had complex but significantly distinct profiles of bacteria associated with their shed bladder epithelial cells. Strikingly, E. coli, the organism most responsible for acute urinary tract infections, was not the only or even the main offending pathogen in this more-chronic condition. Antibiotic protection assays with shed patient cells and in vitro infection studies using patient-derived strains in cell culture suggested that LUTS-associated bacteria are within or extremely closely associated with shed epithelial cells, which explains how routine cultures might fail to detect them. These data have strong implications for the need to rethink our common diagnoses and treatments of chronic urinary tract symptoms.

  13. Divalent cations enhance fluoride binding to Streptococcus mutans and Streptococcus sanguinis cells and subsequently inhibit bacterial acid production.

    PubMed

    Domon-Tawaraya, H; Nakajo, K; Washio, J; Ashizawa, T; Ichino, T; Sugawara, H; Fukumoto, S; Takahashi, N

    2013-01-01

    One preventive effect of topical fluoride application is derived from the fact that fluoride can inhibit bacterial acid production. Furthermore, divalent cations such as Ca(2+) and Mg(2+) increase the binding of fluoride to bacterial cells. These findings suggest that exposure of oral bacteria to fluoride in the presence of divalent cations increases fluoride binding to bacterial cells and subsequently enhances fluoride-induced inhibition of bacterial acid production. This study investigated the effects of fluoride exposure (0-20,000 ppm F) in the presence of Ca(2+) or Mg(2+) prior to glucose challenge on pH fall ability by bacterial sugar fermentation, as well as fluoride binding to bacterial cells by exposure to fluoride, and fluoride release from bacterial cells during bacterial sugar fermentation, using caries-related bacteria, Streptococcus mutans and Streptococcus sanguinis. The pH fall by both streptococci was inhibited by exposure to over 250 ppm F in the presence of Ca(2+) (p < 0.01), whereas in the presence of Mg(2+), the pH fall by S. mutans and S. sanguinis was inhibited after exposure to over 250 and 950 ppm F, respectively (p < 0.05). The amounts of fluoride binding to and released from streptococcal cells increased with the concentration of fluoride the cells were exposed to in the presence of Mg(2+), but were high enough even after 250 ppm F exposure in the presence of Ca(2+). The enhanced inhibition of acid production in the presence of divalent cations is probably due to the improved efficiency of fluoride binding to bacterial cells being improved via these divalent cations.

  14. Recovery of recombinant bacterial plasmids from E. coli transformed with DNA from microinjected mouse cells.

    PubMed Central

    Kretschmer, P J; Bowman, A H; Huberman, M H; Sanders-Haigh, L; Killos, L; Anderson, W F

    1981-01-01

    We have previously described the isolation of thymidine kinase positive (TK+), human beta-globin gene-containing colonies following co-microinjection of mouse TK- L cells with two recombinant pBR322 plasmids, one containing the TK gene of herpes simplex virus type I (plasmid pXl), and the second containing a human genomic DNA fragment within which is the human beta-globin gene (plasmid pRKl). DNA isolated from one such clone was used in bacterial transformation experiments with a selection for tetracycline-resistant colonies (that is, for cells containing pRKl). A total of forty-two tetracycline-resistant colonies were isolated, thirty of which contained circular pRK1 molecules identical to those originally injected. The remaining twelve colonies contained unique plasmids that were grouped into five different classes of recombinant molecules. All five of these unique recombinant classes appear to contain a common deletion endpoint occurring at a specific region of the pBR322 segment of pRKl. Four of the unique recombinant classes appear to have arisen from the deletion of a segment of a pRKl trimer or dimer molecule, while the fifth class appears to have resulted from recombination between pRKl and pXl followed by a deletion event within this recombinant. It is uncertain whether these deletions are occurring within the eukaryotic cell or upon subsequent transformation of the bacterial cell. If the latter, then the passage of the plasmid DNA through the eukaryotic cell alters a specific site of the pBR322 DNA in such a way that deletions can occur at a high frequency in this region when the plasmid DNA is introduced back into a bacterial cell. Thus, we have established a prokaryote-eukaryote-prokaryote DNA transfer and recovery system which should be useful in studies on DNA replication and the regulation of gene expression in higher eukaryotes. Images PMID:6273826

  15. [Regulation of the Z ring positioning in bacterial cell division--a review].

    PubMed

    Sang, Yu; Tao, Jing; Yao, Yufeng

    2013-04-04

    The regulatory mechanism of bacterial cell division has long been a research focus. Forming a septum at the middle of the cell, the seemingly simple process is involved by multiple regulation factors. Zring (FtsZ ring) is the skeleton of the splitting complex. The locus where Z ring is formed is not only the position the septum formed but also determines the cell division site. Formation of Zring in the incorrect location results in inequality cell division. Several cell division regulation systems have been identified, including the Min system, nucleoid occlusion and the MipZ protein which effectively prevent Zring assembly by different mechanisms, ensuring formation of the fission complex at the correct position. Recent progresses about the formation process of Zring and regulation mechanism affecting the Z-ring positioning are summarized.

  16. Humidity-dependent bacterial cells functional morphometry investigations using atomic force microscope.

    PubMed

    Nikiyan, Hike; Vasilchenko, Alexey; Deryabin, Dmitry

    2010-01-01

    The effect of a relative humidity (RH) in a range of 93-65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH cell wall structure of gram-positive and gram-negative bacterial cells.

  17. Humidity-Dependent Bacterial Cells Functional Morphometry Investigations Using Atomic Force Microscope

    PubMed Central

    Nikiyan, Hike; Vasilchenko, Alexey; Deryabin, Dmitry

    2010-01-01

    The effect of a relative humidity (RH) in a range of 93–65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH ≤ 84% RH. It is discussed the dependence of the response features on differences in cell wall structure of gram-positive and gram-negative bacterial cells. PMID:20652040

  18. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms.

    PubMed

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K; Osvath, Sarah R; Cárcamo-Oyarce, Gerardo; Gloag, Erin S; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G; Cavaliere, Rosalia; Ahrens, Christian H; Charles, Ian G; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B

    2016-04-14

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs.

  19. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms

    PubMed Central

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L.; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K.; Osvath, Sarah R.; Cárcamo-Oyarce, Gerardo; Gloag, Erin S.; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G.; Cavaliere, Rosalia; Ahrens, Christian H.; Charles, Ian G.; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B.

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  20. Synthetic inhibitors of bacterial cell division targeting the GTP-binding site of FtsZ.

    PubMed

    Ruiz-Avila, Laura B; Huecas, Sonia; Artola, Marta; Vergoñós, Albert; Ramírez-Aportela, Erney; Cercenado, Emilia; Barasoain, Isabel; Vázquez-Villa, Henar; Martín-Fontecha, Mar; Chacón, Pablo; López-Rodríguez, María L; Andreu, José M

    2013-09-20

    Cell division protein FtsZ is the organizer of the cytokinetic Z-ring in most bacteria and a target for new antibiotics. FtsZ assembles with GTP into filaments that hydrolyze the nucleotide at the association interface between monomers and then disassemble. We have replaced FtsZ's GTP with non-nucleotide synthetic inhibitors of bacterial division. We searched for these small molecules among compounds from the literature, from virtual screening (VS), and from our in-house synthetic library (UCM), employing a fluorescence anisotropy primary assay. From these screens we have identified the polyhydroxy aromatic compound UCM05 and its simplified analogue UCM44 that specifically bind to Bacillus subtilis FtsZ monomers with micromolar affinities and perturb normal assembly, as examined with light scattering, polymer sedimentation, and negative stain electron microscopy. On the other hand, these ligands induce the cooperative assembly of nucleotide-devoid archaeal FtsZ into distinct well-ordered polymers, different from GTP-induced filaments. These FtsZ inhibitors impair localization of FtsZ into the Z-ring and inhibit bacterial cell division. The chlorinated analogue UCM53 inhibits the growth of clinical isolates of antibiotic-resistant Staphylococcus aureus and Enterococcus faecalis. We suggest that these interfacial inhibitors recapitulate binding and some assembly-inducing effects of GTP but impair the correct structural dynamics of FtsZ filaments and thus inhibit bacterial division, possibly by binding to a small fraction of the FtsZ molecules in a bacterial cell, which opens a new approach to FtsZ-based antibacterial drug discovery.

  1. Imaging of Bacterial and Fungal Cells Using Fluorescent Carbon Dots Prepared from Carica papaya Juice.

    PubMed

    Kasibabu, Betha Saineelima B; D'souza, Stephanie L; Jha, Sanjay; Kailasa, Suresh Kumar

    2015-07-01

    In this paper, we have described a simple hydrothermal method for preparation of fluorescent carbon dots (C-dots) using Carica papaya juice as a precursor. The synthesized C-dots show emission peak at 461 nm with a quantum yield of 7.0 %. The biocompatible nature of C-dots was confirmed by a cytotoxicity assay on E. coli. The C-dots were used as fluorescent probes for imaging of bacterial (Bacillus subtilis) and fungal (Aspergillus aculeatus) cells and emitted green and red colors under different excitation wavelengths, which indicates that the C-dots can be used as a promising material for cell imaging.

  2. Death's toolbox: examining the molecular components of bacterial programmed cell death.

    PubMed

    Rice, Kelly C; Bayles, Kenneth W

    2003-11-01

    Programmed cell death (PCD) is a genetically determined process of cellular suicide that is activated in response to cellular stress or damage, as well as in response to the developmental signals in multicellular organisms. Although historically studied in eukaryotes, it has been proposed that PCD also functions in prokaryotes, either during the developmental life cycle of certain bacteria or to remove damaged cells from a population in response to a wide variety of stresses. This review will examine several putative examples of bacterial PCD and summarize what is known about the molecular components of these systems.

  3. Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines.

    PubMed

    Alberdi, M Pilar; Dalby, Matthew J; Rodriguez-Andres, Julio; Fazakerley, John K; Kohl, Alain; Bell-Sakyi, Lesley

    2012-06-01

    As well as being vectors of many viral, bacterial, and protozoan pathogens of medical and veterinary importance, ticks harbour a variety of microorganisms which are not known to be pathogenic for vertebrate hosts. Continuous cell lines established from ixodid and argasid ticks could be infected with such endosymbiotic bacteria and endogenous viruses, but to date very few cell lines have been examined for their presence. DNA and RNA extracted from over 50 tick cell lines deposited in the Roslin Wellcome Trust Tick Cell Biobank (http://tickcells.roslin.ac.uk) were screened for presence of bacteria and RNA viruses, respectively. Sequencing of PCR products amplified using pan-16S rRNA primers revealed the presence of DNA sequences from bacterial endosymbionts in several cell lines derived from Amblyomma and Dermacentor spp. ticks. Identification to species level was attempted using Rickettsia- and Francisella-specific primers. Pan-Nairovirus primers amplified PCR products of uncertain specificity in cell lines derived from Rhipicephalus, Hyalomma, Ixodes, Carios, and Ornithodoros spp. ticks. Further characterisation attempted with primers specific for Crimean-Congo haemorrhagic fever virus segments confirmed the absence of this arbovirus in the cells. A set of pan-Flavivirus primers did not detect endogenous viruses in any of the cell lines. Transmission electron microscopy revealed the presence of endogenous reovirus-like viruses in many of the cell lines; only 4 of these lines gave positive results with primers specific for the tick Orbivirus St Croix River virus, indicating that there may be additional, as yet undescribed 'tick-only' viruses inhabiting tick cell lines.

  4. Investigation of cell phones as a potential source of bacterial contamination in the operating room.

    PubMed

    Shakir, Irshad A; Patel, Nirav H; Chamberland, Robin R; Kaar, Scott G

    2015-02-04

    Cell phone use has become common in areas of the hospital, including the operating room. The purpose of this study was to document the frequency of bacterial contamination on the cell phones of orthopaedic surgeons in the operating room and to determine whether a standardized disinfecting protocol decreased the rate of bacterial contamination and the amount of organic material. Orthopaedic attending and resident cell phones were swabbed on the front and back in the operating room with adenosine triphosphate bioluminescence to quantify organic material contamination and culture swabs to evaluate bacterial contamination. Adenosine triphosphate was quantified with use of relative light units. One photon of light was emitted for each molecule of adenosine triphosphate. Thresholds of 250 and 500 relative light units were used. The phones were cleaned with a cleaning wipe and were retested. One week later, a final set of studies was obtained. Fifty-three participants were enrolled in this study. Pathogenic bacteria were defined as those commonly causing surgical site infections. Of fifty-three cell phones, 83% (forty-four cell phones) had pathogenic bacteria at initial testing, 8% (four cell phones) had pathogenic bacteria after disinfection, and 75% (forty cell phones) had pathogenic bacteria one week later. The mean result (and standard deviation) at initial testing was 3488 ± 2998 relative light units, which reduced after disinfection to 200 ± 123 relative light units, indicating a cleaned surface, but increased one week later to 1825 ± 1699 relative light units, indicating a poorly cleaned surface. The cell phones of orthopaedic surgeons had a high rate of pathogenic bacteria and organic material contamination. Both were decreased after a single disinfecting process. However, recontamination occurred. It seems prudent to routinely disinfect them or avoid their use in the operating room. The current study investigates orthopaedic surgeons' cell phones as a

  5. Process to Selectively Distinguish Viable from Non-Viable Bacterial Cells

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Bernardini, Jame N.; Stam, Christina N.

    2010-01-01

    The combination of ethidium monoazide (EMA) and post-fragmentation, randomly primed DNA amplification technologies will enhance the analytical capability to discern viable from non-viable bacterial cells in spacecraft-related samples. Intercalating agents have been widely used since the inception of molecular biology to stain and visualize nucleic acids. Only recently, intercalating agents such as EMA have been exploited to selectively distinguish viable from dead bacterial cells. Intercalating dyes can only penetrate the membranes of dead cells. Once through the membrane and actually inside the cell, they intercalate DNA and, upon photolysis with visible light, produce stable DNA monoadducts. Once the DNA is crosslinked, it becomes insoluble and unable to be fragmented for post-fragmentation, randomly primed DNA library formation. Viable organisms DNA remains unaffected by the intercalating agents, allowing for amplification via post-fragmentation, randomly primed technologies. This results in the ability to carry out downstream nucleic acid-based analyses on viable microbes to the exclusion of all non-viable cells.

  6. Structural Insights into Protein-Protein Interactions Involved in Bacterial Cell Wall Biogenesis.

    PubMed

    Laddomada, Federica; Miyachiro, Mayara M; Dessen, Andréa

    2016-04-28

    The bacterial cell wall is essential for survival, and proteins that participate in its biosynthesis have been the targets of antibiotic development efforts for decades. The biosynthesis of its main component, the peptidoglycan, involves the coordinated action of proteins that are involved in multi-member complexes which are essential for cell division (the "divisome") and/or cell wall elongation (the "elongasome"), in the case of rod-shaped cells. Our knowledge regarding these interactions has greatly benefitted from the visualization of different aspects of the bacterial cell wall and its cytoskeleton by cryoelectron microscopy and tomography, as well as genetic and biochemical screens that have complemented information from high resolution crystal structures of protein complexes involved in divisome or elongasome formation. This review summarizes structural and functional aspects of protein complexes involved in the cytoplasmic and membrane-related steps of peptidoglycan biosynthesis, with a particular focus on protein-protein interactions whereby disruption could lead to the development of novel antibacterial strategies.

  7. Structural Insights into Protein-Protein Interactions Involved in Bacterial Cell Wall Biogenesis

    PubMed Central

    Laddomada, Federica; Miyachiro, Mayara M.; Dessen, Andréa

    2016-01-01

    The bacterial cell wall is essential for survival, and proteins that participate in its biosynthesis have been the targets of antibiotic development efforts for decades. The biosynthesis of its main component, the peptidoglycan, involves the coordinated action of proteins that are involved in multi-member complexes which are essential for cell division (the “divisome”) and/or cell wall elongation (the “elongasome”), in the case of rod-shaped cells. Our knowledge regarding these interactions has greatly benefitted from the visualization of different aspects of the bacterial cell wall and its cytoskeleton by cryoelectron microscopy and tomography, as well as genetic and biochemical screens that have complemented information from high resolution crystal structures of protein complexes involved in divisome or elongasome formation. This review summarizes structural and functional aspects of protein complexes involved in the cytoplasmic and membrane-related steps of peptidoglycan biosynthesis, with a particular focus on protein-protein interactions whereby disruption could lead to the development of novel antibacterial strategies. PMID:27136593

  8. Condensation of FtsZ filaments can drive bacterial cell division.

    PubMed

    Lan, Ganhui; Daniels, Brian R; Dobrowsky, Terrence M; Wirtz, Denis; Sun, Sean X

    2009-01-06

    Forces are important in biological systems for accomplishing key cell functions, such as motility, organelle transport, and cell division. Currently, known force generation mechanisms typically involve motor proteins. In bacterial cells, no known motor proteins are involved in cell division. Instead, a division ring (Z-ring) consists of mostly FtsZ, FtsA, and ZipA is used to exerting a contractile force. The mechanism of force generation in bacterial cell division is unknown. Using computational modeling, we show that Z-ring formation results from the colocalization of FtsZ and FtsA mediated by the favorable alignment of FtsZ polymers. The model predicts that the Z-ring undergoes a condensation transition from a low-density state to a high-density state and generates a sufficient contractile force to achieve division. FtsZ GTP hydrolysis facilitates monomer turnover during the condensation transition, but does not directly generate forces. In vivo fluorescence measurements show that FtsZ density increases during division, in accord with model results. The mechanism is akin to van der Waals picture of gas-liquid condensation, and shows that organisms can exploit microphase transitions to generate mechanical forces.

  9. IL-1R signaling enables bystander cells to overcome bacterial blockade of host protein synthesis

    PubMed Central

    Copenhaver, Alan M.; Casson, Cierra N.; Nguyen, Hieu T.; Duda, Matthew M.; Shin, Sunny

    2015-01-01

    The innate immune system is critical for host defense against microbial pathogens, yet many pathogens express virulence factors that impair immune function. Here, we used the bacterial pathogen Legionella pneumophila to understand how the immune system successfully overcomes pathogen subversion mechanisms. L. pneumophila replicates within macrophages by using a type IV secretion system to translocate bacterial effectors into the host cell cytosol. As a consequence of effector delivery, host protein synthesis is blocked at several steps, including translation initiation and elongation. Despite this translation block, infected cells robustly produce proinflammatory cytokines, but the basis for this is poorly understood. By using a reporter system that specifically discriminates between infected and uninfected cells within a population, we demonstrate here that infected macrophages produced IL-1α and IL-1β, but were poor producers of IL-6, TNF, and IL-12, which are critical mediators of host protection. Uninfected bystander cells robustly produced IL-6, TNF, and IL-12, and this bystander response required IL-1 receptor (IL-1R) signaling during early pulmonary infection. Our data demonstrate functional heterogeneity in production of critical protective cytokines and suggest that collaboration between infected and uninfected cells enables the immune system to bypass pathogen-mediated translation inhibition to generate an effective immune response. PMID:26034289

  10. Bacterial Infection Elicits Heat Shock Protein 72 Release from Pleural Mesothelial Cells

    PubMed Central

    Varano della Vergiliana, Julius F.; Lansley, Sally M.; Porcel, Jose M.; Bielsa, Silvia; Brown, Jeremy S.; Creaney, Jenette; Temple, Suzanna E. L.; Waterer, Grant W.; Lee, Y. C. Gary

    2013-01-01

    Heat shock protein 70 (HSP70) has been implicated in infection-related processes and has been found in body fluids during infection. This study aimed to determine whether pleural mesothelial cells release HSP70 in response to bacterial infection in vitro and in mouse models of serosal infection. In addition, the in vitro cytokine effects of the HSP70 isoform, Hsp72, on mesothelial cells were examined. Further, Hsp72 was measured in human pleural effusions and levels compared between non-infectious and infectious patients to determine the diagnostic accuracy of pleural fluid Hsp72 compared to traditional pleural fluid parameters. We showed that mesothelial release of Hsp72 was significantly raised when cells were treated with live and heat-killed Streptococcus pneumoniae. In mice, intraperitoneal injection of S. pneumoniae stimulated a 2-fold increase in Hsp72 levels in peritoneal lavage (p<0.01). Extracellular Hsp72 did not induce or inhibit mediator release from cultured mesothelial cells. Hsp72 levels were significantly higher in effusions of infectious origin compared to non-infectious effusions (p<0.05). The data establish that pleural mesothelial cells can release Hsp72 in response to bacterial infection and levels are raised in infectious pleural effusions. The biological role of HSP70 in pleural infection warrants exploration. PMID:23704948

  11. IL-1R signaling enables bystander cells to overcome bacterial blockade of host protein synthesis.

    PubMed

    Copenhaver, Alan M; Casson, Cierra N; Nguyen, Hieu T; Duda, Matthew M; Shin, Sunny

    2015-06-16

    The innate immune system is critical for host defense against microbial pathogens, yet many pathogens express virulence factors that impair immune function. Here, we used the bacterial pathogen Legionella pneumophila to understand how the immune system successfully overcomes pathogen subversion mechanisms. L. pneumophila replicates within macrophages by using a type IV secretion system to translocate bacterial effectors into the host cell cytosol. As a consequence of effector delivery, host protein synthesis is blocked at several steps, including translation initiation and elongation. Despite this translation block, infected cells robustly produce proinflammatory cytokines, but the basis for this is poorly understood. By using a reporter system that specifically discriminates between infected and uninfected cells within a population, we demonstrate here that infected macrophages produced IL-1α and IL-1β, but were poor producers of IL-6, TNF, and IL-12, which are critical mediators of host protection. Uninfected bystander cells robustly produced IL-6, TNF, and IL-12, and this bystander response required IL-1 receptor (IL-1R) signaling during early pulmonary infection. Our data demonstrate functional heterogeneity in production of critical protective cytokines and suggest that collaboration between infected and uninfected cells enables the immune system to bypass pathogen-mediated translation inhibition to generate an effective immune response.

  12. Graphene-Iodine Nanocomposites: Highly Potent Bacterial Inhibitors that are Bio-compatible with Human Cells

    PubMed Central

    Some, Surajit; Sohn, Ji Soo; Kim, Junmoo; Lee, Su-Hyun; Lee, Su Chan; Lee, Jungpyo; Shackery, Iman; Kim, Sang Kyum; Kim, So Hyun; Choi, Nakwon; Cho, Il-Joo; Jung, Hyo-Il; Kang, Shinill; Jun, Seong Chan

    2016-01-01

    Graphene-composites, capable of inhibiting bacterial growth which is also bio-compatible with human cells have been highly sought after. Here we report for the first time the preparation of new graphene-iodine nano-composites via electrostatic interactions between positively charged graphene derivatives and triiodide anions. The resulting composites were characterized by X-ray photoemission spectroscopy, UV-spectroscopy, Raman spectroscopy and Scanning electron microscopy. The antibacterial potential of these graphene-iodine composites against Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus mirobilis, Staphylococcus aureus, and E. coli was investigated. In addition, the cytotoxicity of the nanocomposite with human cells [human white blood cells (WBC), HeLa, MDA-MB-231, Fibroblast (primary human keratinocyte) and Keratinocyte (immortalized fibroblast)], was assessed. DGO (Double-oxidizes graphene oxide) was prepared by the additional oxidation of GO (graphene oxide). This generates more oxygen containing functional groups that can readily trap more H+, thus generating a positively charged surface area under highly acidic conditions. This step allowed bonding with a greater number of anionic triiodides and generated the most potent antibacterial agent among graphene-iodine and as-made povidone-iodine (PVP-I) composites also exhibited nontoxic to human cells culture. Thus, these nano-composites can be used to inhibit the growth of various bacterial species. Importantly, they are also very low-cytotoxic to human cells culture. PMID:26843066

  13. Graphene-Iodine Nanocomposites: Highly Potent Bacterial Inhibitors that are Bio-compatible with Human Cells.

    PubMed

    Some, Surajit; Sohn, Ji Soo; Kim, Junmoo; Lee, Su-Hyun; Lee, Su Chan; Lee, Jungpyo; Shackery, Iman; Kim, Sang Kyum; Kim, So Hyun; Choi, Nakwon; Cho, Il-Joo; Jung, Hyo-Il; Kang, Shinill; Jun, Seong Chan

    2016-02-04

    Graphene-composites, capable of inhibiting bacterial growth which is also bio-compatible with human cells have been highly sought after. Here we report for the first time the preparation of new graphene-iodine nano-composites via electrostatic interactions between positively charged graphene derivatives and triiodide anions. The resulting composites were characterized by X-ray photoemission spectroscopy, UV-spectroscopy, Raman spectroscopy and Scanning electron microscopy. The antibacterial potential of these graphene-iodine composites against Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus mirobilis, Staphylococcus aureus, and E. coli was investigated. In addition, the cytotoxicity of the nanocomposite with human cells [human white blood cells (WBC), HeLa, MDA-MB-231, Fibroblast (primary human keratinocyte) and Keratinocyte (immortalized fibroblast)], was assessed. DGO (Double-oxidizes graphene oxide) was prepared by the additional oxidation of GO (graphene oxide). This generates more oxygen containing functional groups that can readily trap more H(+), thus generating a positively charged surface area under highly acidic conditions. This step allowed bonding with a greater number of anionic triiodides and generated the most potent antibacterial agent among graphene-iodine and as-made povidone-iodine (PVP-I) composites also exhibited nontoxic to human cells culture. Thus, these nano-composites can be used to inhibit the growth of various bacterial species. Importantly, they are also very low-cytotoxic to human cells culture.

  14. Differentiation of epithelial cells to M cells in response to bacterial colonization on the follicle-associated epithelium of Peyer's patch in rat small intestine.

    PubMed

    Chin, Keigi; Onishi, Sachiko; Yuji, Midori; Inamoto, Tetsurou; Qi, Wang-Mei; Warita, Katsuhiko; Yokoyama, Toshifumi; Hoshi, Nobuhiko; Kitagawa, Hiroshi

    2006-10-01

    To clarify the relationship between M cells and intestinal microflora, histoplanimetrical investigation into the bacterial colonization and the differentiation to M cells was carried out in rat Peyer's patch under physiological conditions. The follicle-associated epithelium (FAE), except for the narrow area of apical region, was closely covered with both neighboring intestinal villi and a thick mucous layer, the latter of which also filled the intervillous spaces as well as the space between the FAE and the neighboring intestinal villi. Indigenous bacteria adhered almost constantly to the narrow areas of apical regions of both intestinal villi and the FAE. Bacterial colonies were occasionally located on the basal to middle region of FAE, where M cells also appeared, forming large pockets. When bacterial colonies were located on the basal to middle region of FAE, bacteria with the same morphological characteristics also proliferated in the intervillous spaces neighboring the Peyer's patch. In cases with no bacterial colonies on the basal to middle region of FAE, however, M cells were rare in the FAE. Histoplanimetrical analysis showed the similar distribution pattern of bacterial colonies on the FAE and M cells in the FAE. M cells ultrastructurally engulfed indigenous bacteria, which were then transported to the pockets. These results suggest that indigenous bacterial colonization on the FAE stimulates the differentiation of M cells in the FAE under physiological conditions. The uptake of bacteria by M cells might contribute the regulation of the development of indigenous bacterial colonies in the small intestine.

  15. Targeting Bacterial Cell Wall Peptidoglycan Synthesis by Inhibition of Glycosyltransferase Activity.

    PubMed

    Mesleh, Michael F; Rajaratnam, Premraj; Conrad, Mary; Chandrasekaran, Vasu; Liu, Christopher M; Pandya, Bhaumik A; Hwang, You Seok; Rye, Peter T; Muldoon, Craig; Becker, Bernd; Zuegg, Johannes; Meutermans, Wim; Moy, Terence I

    2016-02-01

    Synthesis of bacterial cell wall peptidoglycan requires glycosyltransferase enzymes that transfer the disaccharide-peptide from lipid II onto the growing glycan chain. The polymerization of the glycan chain precedes cross-linking by penicillin-binding proteins and is essential for growth for key bacterial pathogens. As such, bacterial cell wall glycosyltransferases are an attractive target for antibiotic drug discovery. However, significant challenges to the development of inhibitors for these targets include the development of suitable assays and chemical matter that is suited to the nature of the binding site. We developed glycosyltransferase enzymatic activity and binding assays using the natural products moenomycin and vancomycin as model inhibitors. In addition, we designed a library of disaccharide compounds based on the minimum moenomycin fragment with peptidoglycan glycosyltransferase inhibitory activity and based on a more drug-like and synthetically versatile disaccharide building block. A subset of these disaccharide compounds bound and inhibited the glycosyltransferase enzymes, and these compounds could serve as chemical entry points for antibiotic development.

  16. Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls

    NASA Astrophysics Data System (ADS)

    Yusupov, M.; Neyts, E. C.; Khalilov, U.; Snoeckx, R.; van Duin, A. C. T.; Bogaerts, A.

    2012-09-01

    In recent years there has been growing interest in the use of low-temperature atmospheric pressure plasmas for biomedical applications. Currently, however, there is very little fundamental knowledge regarding the relevant interaction mechanisms of plasma species with living cells. In this paper, we investigate the interaction of important plasma species, such as O3, O2 and O atoms, with bacterial peptidoglycan (or murein) by means of reactive molecular dynamics simulations. Specifically, we use the peptidoglycan structure to model the gram-positive bacterium Staphylococcus aureus murein. Peptidoglycan is the outer protective barrier in bacteria and can therefore interact directly with plasma species. Our results demonstrate that among the species mentioned above, O3 molecules and especially O atoms can break important bonds of the peptidoglycan structure (i.e. C-O, C-N and C-C bonds), which subsequently leads to the destruction of the bacterial cell wall. This study is important for gaining a fundamental insight into the chemical damaging mechanisms of the bacterial peptidoglycan structure on the atomic scale.

  17. Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering

    PubMed Central

    Drescher, Knut; Dunkel, Jörn; Cisneros, Luis H.; Ganguly, Sujoy; Goldstein, Raymond E.

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell–cell and cell–surface scattering—the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell–cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dominance of short-range forces closely links collective motion in bacterial suspensions to self-organization in driven granular systems, assemblages of biofilaments, and animal flocks. For the scattering of bacteria with surfaces, long-range fluid dynamical interactions are also shown to be negligible before collisions; however, once the bacterium swims along the surface within a few microns after an aligning collision, hydrodynamic effects can contribute to the experimentally observed, long residence times. Because these results are based on purely mechanical properties, they apply to a wide range of microorganisms. PMID:21690349

  18. Distinguishing activity decay and cell death from bacterial decay for two types of methanogens.

    PubMed

    Hao, Xiaodi; Cai, Zhengqing; Fu, Kunming; Zhao, Dongye

    2012-03-15

    As bacterial decay consists of cell death and activity decay, and the corresponding information about AOB/NOB, OHO, PAOs and GAOs has been experimentally acquired, another functional type of bacteria in biological wastewater treatment, methanogens, remains to be investigated, to gather the same information, which is extremely important for such bacteria with low growth rates. With successfully selection and enrichment of both aceticlastic and hydrogenotrophic methanogens, and by means of measuring specific methane activity (SMA) and hydrogen consumption rate (HCR), a series of decay experiments and molecular techniques such as FISH verification and LIVE/DEAD staining revealed, identified and calculated the decay and death rates of both aceticlastic and hydrogenotrophic methanogens respectively. The results indicated that the decay rates of aceticlastic and hydrogenotrophic methanogens were 0.070 and 0.034 d(-1) respectively, and the death rates were thus calculated at 0.022 and 0.016 d(-1) respectively. For this reason, cell deaths were only responsible for 31% and 47% of the total bacterial decay of aceticlastic and hydrogenotrophic methanogens, and activity decays actually contributed significantly to the total bacterial decay, respectively at 69% and 53%.

  19. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    PubMed Central

    Vergnano, Marta; Wan, Chris

    2017-01-01

    ABSTRACT We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. PMID:28743817

  20. Application of gelatin-coated magnetic particles for isolation of genomic DNA from bacterial cells.

    PubMed

    Intorasoot, Sorasak; Srirung, Rujira; Intorasoot, Amornrat; Ngamratanapaiboon, Surachai

    2009-03-15

    Gelatin-coated magnetic particles were implemented for bacterial genomic DNA isolation in this study. Based on structural differences in the cell wall, the standard strains Staphylococcus aureus and Escherichia coli were selected. The quantity, quality, and timing process for DNA extraction using gelatin-coated magnetite were compared to reference phenol-chloroform extraction and a commercially available kit. Approximately twice as much DNA was recovered with the use of coated magnetite, providing greater yields than other DNA extraction methods. In addition, the DNA quality was determined using 16S ribosomal DNA (rDNA) gene amplification by polymerase chain reaction (PCR). The described technique is rapid, simple, and a well-suited method to use with PCR for diagnosis of bacterial infections.

  1. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries

    NASA Astrophysics Data System (ADS)

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-01

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  2. Crystal structure of MraY, an essential membrane enzyme for bacterial cell wall synthesis.

    PubMed

    Chung, Ben C; Zhao, Jinshi; Gillespie, Robert A; Kwon, Do-Yeon; Guan, Ziqiang; Hong, Jiyong; Zhou, Pei; Lee, Seok-Yong

    2013-08-30

    MraY (phospho-MurNAc-pentapeptide translocase) is an integral membrane enzyme that catalyzes an essential step of bacterial cell wall biosynthesis: the transfer of the peptidoglycan precursor phospho-MurNAc-pentapeptide to the lipid carrier undecaprenyl phosphate. MraY has long been considered a promising target for the development of antibiotics, but the lack of a structure has hindered mechanistic understanding of this critical enzyme and the enzyme superfamily in general. The superfamily includes enzymes involved in bacterial lipopolysaccharide/teichoic acid formation and eukaryotic N-linked glycosylation, modifications that are central in many biological processes. We present the crystal structure of MraY from Aquifex aeolicus (MraYAA) at 3.3 Å resolution, which allows us to visualize the overall architecture, locate Mg(2+) within the active site, and provide a structural basis of catalysis for this class of enzyme.

  3. Crystal Structure of MraY, an Essential Membrane Enzyme for Bacterial Cell Wall Synthesis

    PubMed Central

    Chung, Ben C.; Kwon, Do-Yeon; Guan, Ziqiang; Hong, Jiyong; Zhou, Pei; Lee, Seok-Yong

    2013-01-01

    MraY (phospho-MurNAc-pentapeptide translocase) is an integral membrane enzyme that catalyzes an essential step of bacterial cell wall biosynthesis: the transfer of the peptidoglycan precursor phospho-MurNAc-pentapeptide to the lipid carrier undecaprenyl phosphate. MraY has long been considered a promising target for the development of antibiotics, but the lack of a structure has hindered mechanistic understanding of this critical enzyme and the enzyme superfamily in general. The superfamily includes enzymes involved in bacterial lipopolysaccharide/teichoic acid formation and eukaryotic N-linked glycosylation, modifications that are central in many biological processes. We present the crystal structure of MraY from Aquifex aeolicus (MraYAA) at 3.3 Å resolution, which allows us to visualize the overall architecture, locate Mg2+ within the active site, and provide a structural basis of catalysis for this class of enzyme. PMID:23990562

  4. Behind the lines–actions of bacterial type III effector proteins in plant cells

    PubMed Central

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:28201715

  5. Artificial neural network study of whole-cell bacterial bioreporter response determined using fluorescence flow cytometry.

    PubMed

    Busam, Sirisha; McNabb, Maia; Wackwitz, Anke; Senevirathna, Wasana; Beggah, Siham; Meer, Jan Roelof van der; Wells, Mona; Breuer, Uta; Harms, Hauke

    2007-12-01

    Genetically engineered bioreporters are an excellent complement to traditional methods of chemical analysis. The application of fluorescence flow cytometry to detection of bioreporter response enables rapid and efficient characterization of bacterial bioreporter population response on a single-cell basis. In the present study, intrapopulation response variability was used to obtain higher analytical sensitivity and precision. We have analyzed flow cytometric data for an arsenic-sensitive bacterial bioreporter using an artificial neural network-based adaptive clustering approach (a single-layer perceptron model). Results for this approach are far superior to other methods that we have applied to this fluorescent bioreporter (e.g., the arsenic detection limit is 0.01 microM, substantially lower than for other detection methods/algorithms). The approach is highly efficient computationally and can be implemented on a real-time basis, thus having potential for future development of high-throughput screening applications.

  6. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries.

    PubMed

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-14

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  7. Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Baogang; Liu, Ye; Tong, Shuang; Zheng, Maosheng; Zhao, Yinxin; Tian, Caixing; Liu, Hengyuan; Feng, Chuanping

    2014-12-01

    Electricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly as electrical stimulation means for enhancement of bacterial denitrification to remove nitrate effectively from groundwater. With maximum power density of 502.5 mW m-2 and voltage outputs ranging from 500 mV to 700 mV, the nitrate removal is accelerated, with less intermediates accumulation, compared with control sets without electrical stimulation. Denitrification bacteria proliferations and activities are promoted as its number and Adenosine-5'-triphosphate (ATP) concentration increased one order of magnitude (3.5 × 107 in per milliliter biofilm solution) and about 1.5 folds, respectively. Effects of electricity from MFCs on enhancement of bacterial behaviors are demonstrated for the first time. These results indicate that MFCs can be applied in the in-situ bioremediation of nitrate polluted groundwater for efficiency improvement.

  8. Effect of viral and bacterial pneumonias on cell-mediated immunity in humans.

    PubMed Central

    Kauffman, C A; Linnemann, C C; Schiff, G M; Phair, J P

    1976-01-01

    Cell-mediated immunity (CMI) was assessed during infection and after convalescence in 12 patients with influenza pneumonia and 10 patients with bacterial pneumonia. The patients with influenza pneumonia had a marked impairment of skin test reactivity, and their lymphocytes showed a diminished response to phytohemagglutinin and streptokinase-streptodornase stimulation in vitro. Suppression of CMI was related to the severity of the pneumonia. Patients with bacterial pneumonia showed as great a suppression of the response to phytohemagglutinin and streptokinase-streptodornase as the patients with viral pneumonia. All parameters of CMI returned to normal in both groups after convalescence. The depression of CMI could not be related to a decrease in the number of thymus-derived lymphocytes or to serum-suppressive factors in these patients. PMID:1082445

  9. High-throughput viability assay using an autonomously bioluminescent cell line with a bacterial Lux reporter.

    PubMed

    Class, Bradley; Thorne, Natasha; Aguisanda, Francis; Southall, Noel; McKew, John C; Zheng, Wei

    2015-04-01

    Cell viability assays are extensively used to determine cell health, evaluate growth conditions, and assess compound cytotoxicity. Most existing assays are endpoint assays, in which data are collected at one time point after termination of the experiment. The time point at which toxicity of a compound is evident, however, depends on the mechanism of that compound. An ideal cell viability assay allows the determination of compound toxicity kinetically without having to terminate the assay prematurely. We optimized and validated a reagent-addition-free cell viability assay using an autoluminescent HEK293 cell line that stably expresses bacterial luciferase and all substrates necessary for bioluminescence. This cell viability assay can be used for real-time, long-term measurement of compound cytotoxicity in live cells with a signal-to-basal ratio of 20- to 200-fold and Z-factors of ~0.6 after 24-, 48- 72-, or 96-h incubation with compound. We also found that the potencies of nine cytotoxic compounds correlated well with those measured by four other commonly used cell viability assays. The results demonstrated that this kinetic cell viability assay using the HEK293(lux) autoluminescent cell line is useful for high-throughput evaluation of compound cytotoxicity.

  10. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization

    PubMed Central

    Ursell, Tristan S.; Nguyen, Jeffrey; Monds, Russell D.; Colavin, Alexandre; Billings, Gabriel; Ouzounov, Nikolay; Gitai, Zemer; Shaevitz, Joshua W.; Huang, Kerwyn Casey

    2014-01-01

    Cells typically maintain characteristic shapes, but the mechanisms of self-organization for robust morphological maintenance remain unclear in most systems. Precise regulation of rod-like shape in Escherichia coli cells requires the MreB actin-like cytoskeleton, but the mechanism by which MreB maintains rod-like shape is unknown. Here, we use time-lapse and 3D imaging coupled with computational analysis to map the growth, geometry, and cytoskeletal organization of single bacterial cells at subcellular resolution. Our results demonstrate that feedback between cell geometry and MreB localization maintains rod-like cell shape by targeting cell wall growth to regions of negative cell wall curvature. Pulse-chase labeling indicates that growth is heterogeneous and correlates spatially and temporally with MreB localization, whereas MreB inhibition results in more homogeneous growth, including growth in polar regions previously thought to be inert. Biophysical simulations establish that curvature feedback on the localization of cell wall growth is an effective mechanism for cell straightening and suggest that surface deformations caused by cell wall insertion could direct circumferential motion of MreB. Our work shows that MreB orchestrates persistent, heterogeneous growth at the subcellular scale, enabling robust, uniform growth at the cellular scale without requiring global organization. PMID:24550515

  11. INFLUENCE OF THE PHYSICAL STATE OF THE BACTERIAL CELL MEMBRANE UPON THE RATE OF RESPIRATION.

    PubMed

    HENNEMAN, D H; UMBREIT, W W

    1964-06-01

    Henneman, Dorothy H. (Rutgers, The State University, New Brunswick, N.J.), and W. W. Umbreit. Influence of the physical state of the bacterial cell membrane upon the rate of respiration. J. Bacteriol. 87:1274-1280. 1964.-NaCl and KCl in concentrations of the order of 0.2 to 0.5 m inhibit the respiration of Escherichia coli B and other gram-negative organisms. Cell-free enzymes concerned in respiration and prepared from the same organisms are not inhibited by these salts, whereas these same enzymes tested in intact cells are. The physical state of the cell membrane appears to be a factor controlling its respiratory activity.

  12. Quorum sensing peptides mediating interspecies bacterial cell death as a novel class of antimicrobial agents.

    PubMed

    Kumar, Sathish; Engelberg-Kulka, Hanna

    2014-10-01

    mazEF is a toxin-antitoxin stress-induced module which is abundant on the chromosome of most bacteria including pathogens and most extensively studied in Escherichia coli. E. coli mazEF mediated cell death is a population phenomenon requiring the quorum-sensing (QS) 'Extracellular Death Factor' (EDF), the E. coli peptide NNWNN. E. coli mazEF-mediated cell death can also be triggered by different QS peptides secreted by the Gram positive bacterium Bacillus subtilis and the Gram negative bacterium Pseudomonas aeruginosa. Thus, the different EDFs belong to a family of QS peptides that mediates interspecies cell death. We suggest that members of the EDF family may become the basis for a novel class of antimicrobial agents to trigger death from outside the bacterial cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery

    PubMed Central

    Cho, Hongbaek; Uehara, Tsuyoshi; Bernhardt, Thomas G.

    2014-01-01

    SUMMARY Penicillin and related beta-lactams comprise one of our oldest and most widely used antibiotic therapies. These drugs have long been known to target enzymes called penicillin-binding proteins (PBPs) that build the bacterial cell wall. Investigating the downstream consequences of target inhibition and how they contribute to the lethal action of these important drugs, we demonstrate that beta-lactams do more than just inhibit the PBPs as is commonly believed. Rather, they induce a toxic malfunctioning of their target biosynthetic machinery involving a futile cycle of cell wall synthesis and degradation, thereby depleting cellular resources and bolstering their killing activity. Characterization of this mode of action additionally revealed a quality-control function for enzymes that cleave bonds in the cell wall matrix. The results thus provide insight into the mechanism of cell wall assembly and suggest how best to interfere with the process for future antibiotic development. PMID:25480295

  14. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery.

    PubMed

    Cho, Hongbaek; Uehara, Tsuyoshi; Bernhardt, Thomas G

    2014-12-04

    Penicillin and related beta-lactams comprise one of our oldest and most widely used antibiotic therapies. These drugs have long been known to target enzymes called penicillin-binding proteins (PBPs) that build the bacterial cell wall. Investigating the downstream consequences of target inhibition and how they contribute to the lethal action of these important drugs, we demonstrate that beta-lactams do more than just inhibit the PBPs as is commonly believed. Rather, they induce a toxic malfunctioning of their target biosynthetic machinery involving a futile cycle of cell wall synthesis and degradation, thereby depleting cellular resources and bolstering their killing activity. Characterization of this mode of action additionally revealed a quality control function for enzymes that cleave bonds in the cell wall matrix. The results thus provide insight into the mechanism of cell wall assembly and suggest how best to interfere with the process for future antibiotic development. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Physical impaction injury effects on bacterial cells during spread plating influenced by cell characteristics of the organisms.

    PubMed

    Thomas, P; Mujawar, M M; Sekhar, A C; Upreti, R

    2014-04-01

    To understand the factors that contribute to the variations in colony-forming units (CFU) in different bacteria during spread plating. Employing a mix culture of vegetative cells of ten organisms varying in cell characteristics (Gram reaction, cell shape and cell size), spread plating to the extent of just drying the agar surface (50-60 s) was tested in comparison with the alternate spotting-and-tilt-spreading (SATS) approach where 100 μl inoculum was distributed by mere tilting of plate after spotting as 20-25 microdrops. The former imparted a significant reduction in CFU by 20% over the spreader-independent SATS approach. Extending the testing to single organisms, Gram-negative proteobacteria with relatively larger cells (Escherichia, Enterobacter, Agrobacterium, Ralstonia, Pantoea, Pseudomonas and Sphingomonas spp.) showed significant CFU reduction with spread plating except for slow-growing Methylobacterium sp., while those with small rods (Xenophilus sp.) and cocci (Acinetobacter sp.) were less affected. Among Gram-positive nonspore formers, Staphylococcus epidermidis showed significant CFU reduction while Staphylococcus haemolyticus and actinobacteria (Microbacterium, Cellulosimicrobium and Brachybacterium spp.) with small rods/cocci were unaffected. Vegetative cells of Bacillus pumilus and B. subtilis were generally unaffected while others with larger rods (B. thuringiensis, Brevibacillus, Lysinibacillus and Paenibacillus spp.) were significantly affected. A simulated plating study coupled with live-dead bacterial staining endorsed the chances of cell disruption with spreader impaction in afflicted organisms. Significant reduction in CFU could occur during spread plating due to physical impaction injury to bacterial cells depending on the spreader usage and the variable effects on different organisms are determined by Gram reaction, cell size and cell shape. The inoculum spreader could impart physical disruption of vegetative cells against a hard surface

  16. Desulfurization activity and reusability of magnetite nanoparticle-coated Rhodococcus erythropolis FMF and R. erythropolis IGTS8 bacterial cells.

    PubMed

    Bardania, Hassan; Raheb, Jamshid; Mohammad-Beigi, Hossein; Rasekh, Behnam; Arpanaei, Ayyoob

    2013-01-01

    The application of Fe3 O4 nanoparticles to the separation of desulfurizing bacterial cells and their influence on the desulfurization activity and reusability of the two bacterial strains Rhodococcus erythropolis FMF and R. erythropolis IGTS8 were investigated. Magnetite nanoparticles were synthesized via the reverse coprecipitation method. Transmission electron microscopy (TEM) images showed that the magnetite nanoparticles had sizes of 5.35 ± 1.13 (F1 nanoparticles) and 8.74 ± 1.18 nm (F2 nanoparticles) when glycine was added during the synthesis of nanoparticles and when it was absent from the reaction mixture, respectively. Glycine was added after the synthesis of both F1 and F2 nanoparticles to stabilize the nanoparticle dispersion. TEM images of cells treated with magnetite nanoparticles indicated that F1 nanoparticles were immobilized on the surface of bacterial cells more evenly than the F2 nanoparticles. Desulfurization activities of the F1 magnetite nanoparticle-coated R. erythropolis FMF and R. erythropolis IGTS8 cells (with sulfur-removal percentage values of 70 ± 4 and 73 ± 3, respectively), as examined with the spectrophotometric Gibbs assay (based on dibenzothiophene degradation and sulfur-removal percentage), were not significantly different from those for the free bacterial cells (67 ± 3 and 69 ± 4, respectively). These results indicate that magnetite nanoparticles cannot affect the desulfurization activity of cells examined in this work. Isolation of bacterial cells from the suspension using a magnet and evaluation of desulfurization activity of separated cells showed that Fe3 O4 nanoparticles can provide a high-efficiency recovery of bacterial cells from a suspension, with the reused magnetite nanoparticle-coated bacterial cells being able to maintain their desulfurization activity efficiently. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  17. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.

    PubMed

    Takahashi, Hiroki; Ayala, Isabel; Bardet, Michel; De Paëpe, Gaël; Simorre, Jean-Pierre; Hediger, Sabine

    2013-04-03

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.

  18. Synovial fluid antigen-presenting cells unmask peripheral blood T cell responses to bacterial antigens in inflammatory arthritis.

    PubMed Central

    Life, P F; Viner, N J; Bacon, P A; Gaston, J S

    1990-01-01

    We and others have previously shown that synovial fluid (SF) mononuclear cells (MC) from patients with both reactive arthritis and other inflammatory arthritides proliferate in vitro in response to bacteria clinically associated with the triggering of reactive arthritis. In all cases, such SFMC responses are greater than the corresponding peripheral blood (PB) MC responses, often markedly so, and the mechanism for this is unclear. We have investigated this phenomenon by comparing the relative abilities of irradiated non-T cells derived from PB and SF to support autologous T cell responses to ReA-associated bacteria. Seven patients whose SFMC had been shown previously to respond to bacteria were studied. We demonstrate antigen-specific responses of PB T cells to bacteria in the presence of SF non-T cells which are in marked contrast to the minimal responses of either unfractionated PBMC or PB T cells reconstituted with PB non-T cells. We also show that PB, but not SF T cells respond strongly to autologous SF non-T cells in the absence of antigen or mitogen. These findings demonstrate that SF antigen-presenting cells (APC) are potent activators of PB T cells. We conclude that the contrasting responses of SFMC and PBMC to bacterial antigens may be accounted for at least in part by an enhanced ability of SF APC to support T cell proliferative responses. PMID:2311298

  19. Nonperturbative imaging of nucleoid morphology in live bacterial cells during an antimicrobial peptide attack.

    PubMed

    Bakshi, Somenath; Choi, Heejun; Rangarajan, Nambirajan; Barns, Kenneth J; Bratton, Benjamin P; Weisshaar, James C

    2014-08-01

    Studies of time-dependent drug and environmental effects on single, live bacterial cells would benefit significantly from a permeable, nonperturbative, long-lived fluorescent stain specific to the nucleoids (chromosomal DNA). The ideal stain would not affect cell growth rate or nucleoid morphology and dynamics, even during laser illumination for hundreds of camera frames. In this study, time-dependent, single-cell fluorescence imaging with laser excitation and a sensitive electron-multiplying charge-coupled-device (EMCCD) camera critically tested the utility of "dead-cell stains" (SYTOX orange and SYTOX green) and "live-cell stains" (DRAQ5 and SYTO 61) and also 4',6-diamidino-2-phenylindole (DAPI). Surprisingly, the dead-cell stains were nearly ideal for imaging live Escherichia coli, while the live-cell stains and DAPI caused nucleoid expansion and, in some cases, cell permeabilization and the halting of growth. SYTOX orange performed well for both the Gram-negative E. coli and the Gram-positive Bacillus subtilis. In an initial application, we used two-color fluorescence imaging to show that the antimicrobial peptide cecropin A destroyed nucleoid-ribosome segregation over 20 min after permeabilization of the E. coli cytoplasmic membrane, reminiscent of the long-term effects of the drug rifampin. In contrast, the human cathelicidin LL-37, while similar to cecropin A in structure, length, charge, and the ability to permeabilize bacterial membranes, had no observable effect on nucleoid-ribosome segregation. Possible underlying causes are suggested. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Does penile tourniquet application alter bacterial adhesion to rat urethral cells: an in vitro study.

    PubMed

    Boybeyi-Turer, Ozlem; Kacmaz, Birgul; Arat, Esra; Atasoy, Pınar; Kisa, Ucler; Gunal, Yasemin Dere; Aslan, Mustafa Kemal; Soyer, Tutku

    2017-06-28

    To investigate the effects of penile tourniquet (PT) application on bacterial adhesion to urothelium. Fifty-six rats were allocated into control group (CG), sham group (SG), PT group (PTG). No intervention was applied in CG. A 5mm-length urethral repair was performed in SG and PTG. In PTG, a 10-min duration of PT was applied during the procedure and the tissue oxygenation monitor was used to adjust the same degree of ischemia in all subjects. Samples were examined for wound healing parameters and tissue levels of inflammatory markers, eNOS, e-selectin, and ICAM-1antibodies. The adhesion of Escherichia coli to urothelium was investigated with in vitro adhesion assay. Inflammation was higher and wound healing was worse in SG than CG and in PTG in comparison to CG and SG (p<0.05). The endothelial damage, as shown by eNOS expression, was significantly higher in PTG compared to CG and SG (p<0.05). The staining with ICAM-1 and e-selectin antibodies, showing increased inflammatory response to bacterial adhesion, was significantly higher in PTG compared to CG and SG (p<0.05). In vitro urethral cell proliferation was achieved only in CG and SG revealing significantly increased adhesion in SG compared to CG (p<0.05). The PT application caused endothelial corruption and prevented cell proliferation in cell culture. The PT application does not improve wound healing and increases bacterial adhesion molecules in penile tissue. The in vitro assays showed that PT causes severe endothelial damage and inhibits endothelial cell proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Increased expression of BDNF and proliferation of dentate granule cells after bacterial meningitis.

    PubMed

    Tauber, Simone C; Stadelmann, Christine; Spreer, Annette; Brück, Wolfgang; Nau, Roland; Gerber, Joachim

    2005-09-01

    Proliferation and differentiation of neural progenitor cells is increased after bacterial meningitis. To identify endogenous factors involved in neurogenesis, expression of brain-derived neurotrophic factor (BDNF), TrkB, nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) was investigated. C57BL/6 mice were infected by intracerebral injection of Streptococcus pneumoniae. Mice were killed 30 hours later or treated with ceftriaxone and killed 4 days after infection. Hippocampal BDNF mRNA levels were increased 2.4-fold 4 days after infection (p = 0.026). Similarly, BDNF protein levels in the hippocampal formation were higher in infected mice than in control animals (p = 0.0003). This was accompanied by an elevated proliferation of dentate granule cells (p = 0.0002). BDNF protein was located predominantly in the hippocampal CA3/4 area and the hilus of the dentate gyrus. The density of dentate granule cells expressing the BDNF receptor TrkB as well as mRNA levels of TrkB in the hippocampal formation were increased 4 days after infection (p = 0.027 and 0.0048, respectively). Conversely, NGF mRNA levels at 30 hours after infection were reduced by approximately 50% (p = 0.004). No significant changes in GDNF expression were observed. In conclusion, increased synthesis of BDNF and TrkB suggests a contribution of this neurotrophic factor to neurogenesis after bacterial meningitis.

  2. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.

    PubMed

    Malanovic, Nermina; Lohner, Karl

    2016-05-01

    A number of cationic antimicrobial peptides, effectors of innate immunity, are supposed to act at the cytoplasmic membrane leading to permeabilization and eventually membrane disruption. Thereby, interaction of antimicrobial peptides with anionic membrane phospholipids is considered to be a key factor in killing of bacteria. Recently, evidence was provided that killing takes place only when bacterial cell membranes are completely saturated with peptides. This adds to an ongoing debate, which role cell wall components such as peptidoglycan, lipoteichoic acid and lipopolysaccharide may play in the killing event, i.e. if they rather entrap or facilitate antimicrobial peptides access to the cytoplasmic membrane. Therefore, in this review we focused on the impact of Gram-positive cell wall components for the mode of action and activity of antimicrobial peptides as well as in innate immunity. This led us to conclude that interaction of antimicrobial peptides with peptidoglycan may not contribute to a reduction of their antimicrobial activity, whereas interaction with anionic lipoteichoic acids may reduce the local concentration of antimicrobial peptides on the cytoplasmic membrane necessary for sufficient destabilization of the membranes and bacterial killing. Further affinity studies of antimicrobial peptides toward the different cell wall as well as membrane components will be needed to address this problem on a quantitative level. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  3. Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells.

    PubMed

    Jin, Ding Jun; Mata Martin, Carmen; Sun, Zhe; Cagliero, Cedric; Zhou, Yan Ning

    2017-02-01

    We have learned a great deal about RNA polymerase (RNA Pol), transcription factors, and the transcriptional regulation mechanisms in prokaryotes for specific genes, operons, or transcriptomes. However, we have only begun to understand how the transcription machinery is three-dimensionally (3D) organized into bacterial chromosome territories to orchestrate the transcription process and to maintain harmony with the replication machinery in the cell. Much progress has been made recently in our understanding of the spatial organization of the transcription machinery in fast-growing Escherichia coli cells using state-of-the-art superresolution imaging techniques. Co-imaging of RNA polymerase (RNA Pol) with DNA and transcription elongation factors involved in ribosomal RNA (rRNA) synthesis, and ribosome biogenesis has revealed similarities between bacteria and eukaryotes in the spatial organization of the transcription machinery for growth genes, most of which are rRNA genes. Evidence supports the notion that RNA Pol molecules are concentrated, forming foci at the clustering of rRNA operons resembling the eukaryotic nucleolus. RNA Pol foci are proposed to be active transcription factories for both rRNA genes expression and ribosome biogenesis to support maximal growth in optimal growing conditions. Thus, in fast-growing bacterial cells, RNA Pol foci mimic eukaryotic Pol I activity, and transcription factories resemble nucleolus-like compartmentation. In addition, the transcription and replication machineries are mostly segregated in space to avoid the conflict between the two major cellular functions in fast-growing cells.

  4. Isolation of bacterial strains colonizable in mosquito larval guts as novel host cells for mosquito control.

    PubMed

    Luxananil, P; Atomi, H; Panyim, S; Imanaka, T

    2001-01-01

    We screened for microorganisms that can be utilized as new host cells for mosquito larvicides. As long persistence in the environment is required of host cells, we examined the bacterial populations in the guts of mosquito larvae collected from natural breeding habitats. Larvae of Aedes aegypti and Culex quinquefasciatus were examined, and Bacillus species, particularly Bacillus cereus, were found to be the dominant bacterial species in their guts. To investigate the relationship between these Bacillus strains and the mosquito larvae, we re-introduced the bacteria into larvae of Aedes aegypti, C. quinquefasciatus and another common mosquito strain, Anopheles dirus. The cell numbers of Bacillus cereus strains Ae10 and Cx5 in the guts were consistent throughout a 7-d period without food supplementation, suggesting that these strains were able to colonize in the guts of the larvae. To confirm this, we introduced a plasmid containing a kanamycin resistance marker into Ae10 and Cx5 and fed these recombinant strains to C. quinquefasciatus larvae. Even when food was supplemented for 7 d, the recombinant strains, particularly Ae10, were still found in the guts. Under similar conditions, B. thuringiensis serovar israelensis c4Q2-72 was hardly detectable after 2 d, while Escherichia coli could not be detected at all. Their stable retention in mosquito larvae guts and the feasibility of genetic manipulation indicates these strains possess high potential as novel host cells for application in mosquito control.

  5. Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells

    NASA Astrophysics Data System (ADS)

    Chadha, S.; Nelson, W. H.; Sperry, J. F.

    1993-11-01

    The construction of a practical UV micro-Raman spectrograph capable of selective excitation of bacterial cells and other microscopic samples has been described. A reflective objective is used to focus cw laser light on a sample and at the same time collect the scattered light at 180°. With the aid of a quartz lens the image produced is focused on the slits of a spectrograph equipped with a single 2400 grooves/mm grating optimized for 250 nm. Spectra were detected by means of a blue-intensified diode array detector. Resonance Raman spectra of Bacillus subtilis and Flavobacterium capsulatum excited by the 257.2 nm output of a cw laser were recorded in the 900-1800 cm-1 region. Bacterial cells were immobilized on a quartz plate by means of polylysine and were counted visually. Cooling was required to retard sample degradation. Sample sizes ranged from 1 to 50 cells with excitation times varying from 15 to 180 s. Excellent spectra have been obtained from 20 cells in 15 s using a spectrograph having only 3% throughput.

  6. Effect of bacterial cell-free supernatants on infectivity of norovirus surrogates.

    PubMed

    Shearer, Adrienne E H; Hoover, Dallas G; Kniel, Kalmia E

    2014-01-01

    Bacterial metabolic products were evaluated for inhibitory effects on viral propagation in cell culture. Cell-free supernatants (CFS) were prepared from growth of Enterococcus faecalis ATCC 19433, Pseudomonas fluorescens ATCC 13525, Escherichia coli 08, Staphylococcus epidermidis ATCC 12228, Bacillus subtilis 168, Bacillus coagulans 185A, B. coagulans 7050, Clostridium sporogenes PA3679, and a commercial probiotic mixture of Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium bifidum, Lactobacillus salivarius, and Streptococcus thermophilus in microbiological medium or milk. The inhibitory effects of CFS on the propagation of murine norovirus 1 and Tulane virus in RAW 264.7 and LLCMK2 cells, respectively, were evaluated in the continuous presence of CFS or after exposure of host cells to CFS. Slight inhibition of viral propagation was observed for murine norovirus and Tulane virus in the continuous presence of CFS of B. subtilis 168 and E. faecalis 19433, respectively. CFS cytotoxicity was also determined by microscopic examination. Virus persisted in the CFS that demonstrated cytotoxic effects, suggesting a lack of direct effect of CFS on virions. The viral propagation indicates a general lack of competitive inhibition by bacterial extracellular products and bears significance in understanding the persistence of virus in food and human systems shared by bacteria that are recognized for their colonization and competitive capabilities.

  7. Lidocaine suppresses mouse Peyer’s patch T cell functions and induces bacterial translocation

    PubMed Central

    Kawasaki, Takashi; Kawasaki, Chika; Sata, Takeyoshi; Chaudry, Irshad H.

    2010-01-01

    The gastrointestinal mucosa is an important route of entry for microbial pathogens. The immune cells of Peyer’s patch (PP) compartments contribute to the active immune response against infection. Although local anesthetics are widely used in clinical practice, it remains unclear whether local anesthetics such as lidocaine affect PP T cell functions. The aim of this study was to examine if lidocaine has any effects on mouse PP T cell functions. To test this, freshly isolated mouse Peyer’s patch T cells were incubated with lidocaine. The effects of lidocaine on concanavalin A-stimulated PP T cell proliferation and cytokine production were assessed. The effect of lidocaine on PP T cell mitogen-activated protein kinase (MAPK) activation was also assessed. The results indicate that lidocaine suppresses cell proliferation, cytokine production, and MAPK activation in PP T cells. Furthermore, we found that the chronic in vivo exposure to lidocaine increases bacterial accumulation in PP. The enhanced immunosuppressive effects of lidocaine on PP T cell functions could contribute to the host’s enhanced susceptibility to infection. PMID:20466400

  8. Pretreatment of Epithelial Cells with Rifaximin Alters Bacterial Attachment and Internalization Profiles▿

    PubMed Central

    Brown, Eric L.; Xue, Qiong; Jiang, Zhi-Dong; Xu, Yi; DuPont, Herbert L.

    2010-01-01

    Rifaximin is a poorly absorbed semisynthetic antibiotic derivative of rifampin licensed for use in the treatment of traveler's diarrhea. Rifaximin reduces the symptoms of enteric infection, often without pathogen eradication and with limited effects on intestinal flora. Epithelial cells (HEp-2 [laryngeal], HCT-8 [ileocecal], A549 [lung], and HeLa [cervical]) were pretreated with rifaximin (or control antibiotics) prior to the addition of enteroaggregative Escherichia coli (EAEC). EAEC adherence was significantly reduced following rifaximin pretreatment compared to pretreatment with rifampin or doxycycline for three of the four cell lines tested. The rifaximin-mediated changes to epithelial cells were explored further by testing the attachment and internalization of either Bacillus anthracis or Shigella sonnei into A549 or HeLa cells, respectively. The attachment and internalization of B. anthracis were significantly reduced following rifaximin pretreatment. In contrast, neither the attachment nor the internalization of S. sonnei was affected by rifaximin pretreatment of HeLa cells, suggesting that rifaximin-mediated modulation of host cell physiology affected bacteria utilizing distinct attachment/internalization mechanisms differently. In addition, rifaximin pretreatment of HEp-2 cells led to reduced concentrations of inflammatory cytokines from uninfected cells. The study provides evidence that rifaximin-mediated changes in epithelial cell physiology are associated with changes in bacterial attachment/internalization and reduced inflammatory cytokine release. PMID:19858255

  9. Coordinating bacterial cell division with nutrient availability: a role for glycolysis.

    PubMed

    Monahan, Leigh G; Hajduk, Isabella V; Blaber, Sinead P; Charles, Ian G; Harry, Elizabeth J

    2014-05-13

    Cell division in bacteria is driven by a cytoskeletal ring structure, the Z ring, composed of polymers of the tubulin-like protein FtsZ. Z-ring formation must be tightly regulated to ensure faithful cell division, and several mechanisms that influence the positioning and timing of Z-ring assembly have been described. Another important but as yet poorly understood aspect of cell division regulation is the need to coordinate division with cell growth and nutrient availability. In this study, we demonstrated for the first time that cell division is intimately linked to central carbon metabolism in the model Gram-positive bacterium Bacillus subtilis. We showed that a deletion of the gene encoding pyruvate kinase (pyk), which produces pyruvate in the final reaction of glycolysis, rescues the assembly defect of a temperature-sensitive ftsZ mutant and has significant effects on Z-ring formation in wild-type B. subtilis cells. Addition of exogenous pyruvate restores normal division in the absence of the pyruvate kinase enzyme, implicating pyruvate as a key metabolite in the coordination of bacterial growth and division. Our results support a model in which pyruvate levels are coupled to Z-ring assembly via an enzyme that actually metabolizes pyruvate, the E1α subunit of pyruvate dehydrogenase. We have shown that this protein localizes over the nucleoid in a pyruvate-dependent manner and may stimulate more efficient Z-ring formation at the cell center under nutrient-rich conditions, when cells must divide more frequently. How bacteria coordinate cell cycle processes with nutrient availability and growth is a fundamental yet unresolved question in microbiology. Recent breakthroughs have revealed that nutritional information can be transmitted directly from metabolic pathways to the cell cycle machinery and that this can serve as a mechanism for fine-tuning cell cycle processes in response to changes in environmental conditions. Here we identified a novel link between

  10. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    PubMed

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm(2)) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce.

  11. BT-benzo-29 inhibits bacterial cell proliferation by perturbing FtsZ assembly.

    PubMed

    Ray, Shashikant; Jindal, Bhavya; Kunal, Kishore; Surolia, Avadhesha; Panda, Dulal

    2015-10-01

    We have identified a potent antibacterial agent N-(4-sec-butylphenyl)-2-(thiophen-2-yl)-1H-benzo[d]imidazole-4-carboxamide (BT-benzo-29) from a library of benzimidazole derivatives that stalled bacterial division by inhibiting FtsZ assembly. A short (5 min) exposure of BT-benzo-29 disassembled the cytokinetic Z-ring in Bacillus subtilis cells without affecting the cell length and nucleoids. BT-benzo-29 also perturbed the localization of early and late division proteins such as FtsA, ZapA and SepF at the mid-cell. Further, BT-benzo-29 bound to FtsZ with a dissociation constant of 24 ± 3 μm and inhibited the assembly and GTPase activity of purified FtsZ. A docking analysis suggested that BT-benzo-29 may bind to FtsZ at the C-terminal domain near the T7 loop. BT-benzo-29 displayed significantly weaker inhibitory effects on the assembly and GTPase activity of two mutants (L272A and V275A) of FtsZ supporting the prediction of the docking analysis. Further, BT-benzo-29 did not appear to inhibit DNA duplication and nucleoid segregation and it did not perturb the membrane potential of B. subtilis cells. The results suggested that BT-benzo-29 exerts its potent antibacterial activity by inhibiting FtsZ assembly. Interestingly, BT-benzo-29 did not affect the membrane integrity of mammalian red blood cells. BT-benzo-29 bound to tubulin with a much weaker affinity than FtsZ and exerted significantly weaker effects on mammalian cells than on the bacterial cells indicating that the compound may have a strong antibacterial potential.

  12. A20 Curtails Primary but Augments Secondary CD8+ T Cell Responses in Intracellular Bacterial Infection

    PubMed Central

    Just, Sissy; Nishanth, Gopala; Buchbinder, Jörn H.; Wang, Xu; Naumann, Michael; Lavrik, Inna; Schlüter, Dirk

    2016-01-01

    The ubiquitin-modifying enzyme A20, an important negative feedback regulator of NF-κB, impairs the expansion of tumor-specific CD8+ T cells but augments the proliferation of autoimmune CD4+ T cells. To study the T cell-specific function of A20 in bacterial infection, we infected T cell-specific A20 knockout (CD4-Cre A20fl/fl) and control mice with Listeria monocytogenes. A20-deficient pathogen-specific CD8+ T cells expanded stronger resulting in improved pathogen control at day 7 p.i. Imaging flow cytometry revealed that A20-deficient Listeria-specific CD8+ T cells underwent increased apoptosis and necroptosis resulting in reduced numbers of memory CD8+ T cells. In contrast, the primary CD4+ T cell response was A20-independent. Upon secondary infection, the increase and function of pathogen-specific CD8+ T cells, as well as pathogen control were significantly impaired in CD4-Cre A20fl/fl mice. In vitro, apoptosis and necroptosis of Listeria-specific A20-deficient CD8+ T cells were strongly induced as demonstrated by increased caspase-3/7 activity, RIPK1/RIPK3 complex formation and more morphologically apoptotic and necroptotic CD8+ T cells. In vitro, A20 limited CD95L and TNF-induced caspase3/7 activation. In conclusion, T cell-specific A20 limited the expansion but reduced apoptosis and necroptosis of Listeria-specific CD8+ T cells, resulting in an impaired pathogen control in primary but improved clearance in secondary infection. PMID:28004776

  13. Bovine papillomavirus vector that propagates as a plasmid in both mouse and bacterial cells.

    PubMed

    DiMaio, D; Treisman, R; Maniatis, T

    1982-07-01

    We report the construction of a bovine papillomavirus (BPV)-derived recombinant plasmid that propagates as an extrachromosomal element in both mouse and bacterial cells. Plasmids composed of a subgenomic transforming fragment of BPV DNA, a deletion derivative of pBR322, and a 7.6-kilobase fragment of DNA from the human beta-globin gene cluster efficiently induce focus formation on mouse C127 cells. BPV-beta-globin hybrids are maintained in the transformed cells as plasmids with a copy number of about 10-30 per cell. Plasmids indistinguishable from the input DNA have been recovered by transformation of bacteria with low molecular weight DNA from transformed mouse cells. The human beta-globin gene linked to BPV DNA is transcribed from its own promoter at a high level in these cells. The expression of BPV-linked cellular genes in conjunction with the ability to shuttle DNA between bacteria and mammalian cells may provide a rapid means of analyzing and recovering genes that confer an identifiable phenotype upon mammalian cells.

  14. Computational assessment of the stiffness of the Gram-negative bacterial cell wall

    NASA Astrophysics Data System (ADS)

    Sinha, Sandhya; Zhao, Yao; Huang, K. C.

    2010-03-01

    The bacterial cytoplasm exists in a state of constant metabolic activity, leading to a turgor pressure across the membrane that measures an atmosphere or more. For most bacteria, the peptidoglycan cell wall bears this stress and is also a primary determinant of the cell's shape. In this work, we investigate how the elastic properties of Gram-negative cell walls emerge from the molecular organization of the peptidoglycan network by studying the structure of a mechanical model of the cell wall under the computational application of several types of strain. Experimental evidence has suggested that the Young's modulus of the cell wall increases nonlinearly with the turgor pressure. We have conducted simulations to determine what intrinsic physical characteristics of the molecular components of the cell wall, including bending, tension, and anisotropy, are necessary and sufficient for recapitulating the nonlinear rise in stiffness. Furthermore, we have modeled the effect of missing springs on the elastic response of the cell-wall network to bridge the gap between molecular organization and a continuum model of cell-wall elasticity.

  15. Nod1 and Nod2 enhance TLR-mediated invariant NKT cell activation during bacterial infection.

    PubMed

    Selvanantham, Thirumahal; Escalante, Nichole K; Cruz Tleugabulova, Mayra; Fiévé, Stephanie; Girardin, Stephen E; Philpott, Dana J; Mallevaey, Thierry

    2013-12-01

    Invariant NKT (iNKT) cells act at the crossroad between innate and adaptive immunity and are important players in the defense against microbial pathogens. iNKT cells can detect pathogens that trigger innate receptors (e.g., TLRs, Rig-I, Dectin-1) within APCs, with the consequential induction of CD1d-mediated Ag presentation and release of proinflammatory cytokines. We show that the cytosolic peptidoglycan-sensing receptors Nod1 and Nod2 are necessary for optimal IFN-γ production by iNKT cells, as well as NK cells. In the absence of Nod1 and Nod2, iNKT cells had a blunted IFN-γ response following infection by Salmonella enterica serovar Typhimurium and Listeria monocytogenes. For Gram-negative bacteria, we reveal a synergy between Nod1/2 and TLR4 in dendritic cells that potentiates IL-12 production and, ultimately, activates iNKT cells. These findings suggest that multiple innate pathways can cooperate to regulate iNKT cell activation during bacterial infection.

  16. Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy

    SciTech Connect

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn; Zhang, Miqin

    2005-08-10

    Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.

  17. Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments

    PubMed Central

    Yang, Desirée C.; Blair, Kris M.

    2016-01-01

    SUMMARY Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition. PMID:26864431

  18. Invariant natural killer T cells: boon or bane in immunity to intracellular bacterial infections?

    PubMed

    Shekhar, Sudhanshu; Joyee, Antony George; Yang, Xi

    2014-01-01

    Invariant natural killer T (iNKT) cells represent a specialized subset of innate lymphocytes that recognize lipid and glycolipid antigens presented to them by nonclassical MHC-I CD1d molecules and are able to rapidly secrete copious amounts of a variety of cytokines. iNKT cells possess the ability to modulate innate as well as adaptive immune responses against various pathogens. Intracellular bacteria are one of the most clinically significant human pathogens that effectively evade the immune system and cause a myriad of diseases of public health concern globally. Emerging evidence suggests that iNKT cells can confer immunity to intracellular bacteria but also inflict pathology in certain cases. We summarize the current knowledge on the contribution of iNKT cells in the host defense against intracellular bacterial infections, with a focus on the underlying mechanisms by which these cells induce protective or pathogenic reactions including the pathways of direct action (acting on infected cells) and indirect action (modulating dendritic, NK and T cells). The rational exploitation of iNKT cells for prophylactic and therapeutic purposes awaits a profound understanding of their functional biology.

  19. The General Phosphotransferase System Proteins Localize to Sites of Strong Negative Curvature in Bacterial Cells

    PubMed Central

    Govindarajan, Sutharsan; Elisha, Yair; Nevo-Dinur, Keren; Amster-Choder, Orna

    2013-01-01

    ABSTRACT The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved “pole-like” sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. PMID:24129255

  20. Mechanosensitive channels and bacterial cell wall integrity: does life end with a bang or a whimper?

    PubMed

    Reuter, Marcel; Hayward, Nicholas J; Black, Susan S; Miller, Samantha; Dryden, David T F; Booth, Ian R

    2014-02-06

    Mechanogated channels are fundamental components of bacterial cells that enable retention of physical integrity during extreme increases in cell turgor. Optical tweezers combined with microfluidics have been used to study the fate of individual Escherichia coli cells lacking such channels when subjected to a bursting stress caused by increased turgor. Fluorescence-activated cell sorting and electron microscopy complement these studies. These analyses show that lysis occurs with a high probability, but the precise path differs between individual cells. By monitoring the loss of cytoplasmic green fluorescent protein, we have determined that some cells release this protein but remain phase dark (granular) consistent with the retention of the majority of large proteins. By contrast, most cells suffer cataclysmic wall failure leading to loss of granularity but with the retention of DNA and overall cell shape (protein-depleted ghosts). The time span of these events induced by hypo-osmotic shock varies but is of the order of milliseconds. The data are interpreted in terms of the timing of mechanosensitive channel gating relative to osmotically induced water influx.

  1. Ion Channels Activated by Mechanical Forces in Bacterial and Eukaryotic Cells.

    PubMed

    Sokabe, Masahiro; Sawada, Yasuyuki; Kobayashi, Takeshi

    2015-01-01

    Since the first discovery of mechanosensitive ion channel (MSC) in non-sensory cells in 1984, a variety of MSCs has been identified both in prokaryotic and eukaryotic cells. One of the central issues concerning MSCs is to understand the molecular and biophysical mechanisms of how mechanical forces activate/open MSCs. It has been well established that prokaryotic (mostly bacterial) MSCs are activated exclusively by membrane tension. Thus the problem to be solved with prokaryotic MSCs is the mechanisms how the MSC proteins receive tensile forces from the lipid bilayer and utilize them for channel opening. On the other hand, the activation of many eukaryotic MSCs crucially depends on tension in the actin cytoskeleton. By using the actin cytoskeleton as a force sensing antenna, eukaryotic MSCs have obtained sophisticated functions such as remote force sensing and force-direction sensing, which bacterial MSCs do not have. Actin cytoskeletons also give eukaryotic MSCs an interesting and important function called "active touch sensing", by which cells can sense rigidity of their substrates. The contractile actin cytoskeleton stress fiber (SF) anchors its each end to a focal adhesion (FA) and pulls the substrate to generate substrate-rigidity-dependent stresses in the FA. It has been found that those stresses are sensed by some Ca2+-permeable MSCs existing in the vicinity of FAs, thus the MSCs work as a substrate rigidity sensor that can transduce the rigidity into intracellular Ca2+ levels. This short review, roughly constituting of two parts, deals with molecular and biophysical mechanisms underlying the MSC activation process mostly based on our recent studies; (1) structure-function in bacterial MSCs activation at the atomic level, and (2) roles of actin cytoskeletons in the activation of eukaryotic MSCs.

  2. Phylogenetic and Metagenomic Analyses of Substrate-Dependent Bacterial Temporal Dynamics in Microbial Fuel Cells

    PubMed Central

    Zhang, Husen; Chen, Xi; Braithwaite, Daniel; He, Zhen

    2014-01-01

    Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate. PMID:25202990

  3. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.

    PubMed

    Brutesco, Catherine; Prévéral, Sandra; Escoffier, Camille; Descamps, Elodie C T; Prudent, Elsa; Cayron, Julien; Dumas, Louis; Ricquebourg, Manon; Adryanczyk-Perrier, Géraldine; de Groot, Arjan; Garcia, Daniel; Rodrigue, Agnès; Pignol, David; Ginet, Nicolas

    2017-01-01

    Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible Pars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.

  4. FACTORS WHICH MODIFY THE EFFECT OF SODIUM AND POTASSIUM ON BACTERIAL CELL MEMBRANES.

    PubMed

    HENNEMAN, D H; UMBREIT, W W

    1964-06-01

    Henneman, Dorothy H. (Rutgers, The State University, New Brunswick, N.J.), and W. W. Umbreit. Factors which modify the effect of sodium and potassium on bacterial cell membranes. J. Bacteriol. 87:1266-1273. 1964.-Suspensions of Escherichia coli B, when placed in 0.2 to 0.5 m solutions of NaCl, KCl, or LiCl, show an increased turbidity. With NaCl, this increased turbidity is stable with time; with KCl and LiCl, it is gradually lost. The stability to NaCl with time is due to substances removable from the cell by incubation in phosphate buffer; these materials exist in water washings from such phosphate-incubated cells.

  5. Characterization of colicin M and its orthologs targeting bacterial cell wall peptidoglycan biosynthesis.

    PubMed

    Barreteau, Hélène; El Ghachi, Meriem; Barnéoud-Arnoulet, Aurélie; Sacco, Emmanuelle; Touzé, Thierry; Duché, Denis; Gérard, Fabien; Brooks, Mark; Patin, Delphine; Bouhss, Ahmed; Blanot, Didier; van Tilbeurgh, Herman; Arthur, Michel; Lloubès, Roland; Mengin-Lecreulx, Dominique

    2012-06-01

    For a long time, colicin M was known for killing susceptible Escherichia coli cells by interfering with cell wall peptidoglycan biosynthesis, but its precise mode of action was only recently elucidated: this bacterial toxin was demonstrated to be an enzyme that catalyzes the specific degradation of peptidoglycan lipid intermediate II, thereby provoking the arrest of peptidoglycan synthesis and cell lysis. The discovery of this activity renewed the interest in this colicin and opened the way for biochemical and structural analyses of this new class of enzyme (phosphoesterase). The identification of a few orthologs produced by pathogenic strains of Pseudomonas further enlarged the field of investigation. The present article aims at reviewing recently acquired knowledge on the biology of this small family of bacteriocins.

  6. Localization of a bacterial group II intron-encoded protein in human cells

    PubMed Central

    Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; Pérez, José Luis García; Toro, Nicolás

    2015-01-01

    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells. PMID:26244523

  7. Localization of a bacterial group II intron-encoded protein in human cells.

    PubMed

    Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; García Pérez, José Luis; Toro, Nicolás

    2015-08-05

    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells.

  8. Quantifying Multistate Cytoplasmic Molecular Diffusion in Bacterial Cells via Inverse Transform of Confined Displacement Distribution

    PubMed Central

    2016-01-01

    Single-molecule tracking (SMT) of fluorescently tagged cytoplasmic proteins can provide valuable information on the underlying biological processes in living cells via subsequent analysis of the displacement distributions; however, the confinement effect originated from the small size of a bacterial cell skews the protein’s displacement distribution and complicates the quantification of the intrinsic diffusive behaviors. Using the inverse transformation method, we convert the skewed displacement distribution (for both 2D and 3D imaging conditions) back to that in free space for systems containing one or multiple (non)interconverting Brownian diffusion states, from which we can reliably extract the number of diffusion states as well as their intrinsic diffusion coefficients and respective fractional populations. We further demonstrate a successful application to experimental SMT data of a transcription factor in living E. coli cells. This work allows a direct quantitative connection between cytoplasmic SMT data with diffusion theory for analyzing molecular diffusive behavior in live bacteria. PMID:26491971

  9. Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623.

    PubMed

    Dayal, Manmeet Singh; Goswami, Navendu; Sahai, Anshuman; Jain, Vibhor; Mathur, Garima; Mathur, Ashwani

    2013-04-15

    Acetobacter aceti MTCC 2623 was studied as an alternative microbial source for bacterial cellulose (BC) production. Effect of media components on cell growth rate, BC production and cellulose characteristics were studied. FTIR results showed significant variations in cellulose characteristics produced by A. aceti in different media. Results have shown the role of fermentation time on crystallinity ratio of BC in different media. Further, effect of six different media components on cell growth and BC production was studied using fractional factorial design. Citric acid was found to be the most significant media component for cell growth rate (95% confidence level, R(2)=0.95). However, direct role of these parameters on cellulose production was not established (p-value>0.05). Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Two small GTPases act in concert with the bactofilin cytoskeleton to regulate dynamic bacterial cell polarity.

    PubMed

    Bulyha, Iryna; Lindow, Steffi; Lin, Lin; Bolte, Kathrin; Wuichet, Kristin; Kahnt, Jörg; van der Does, Chris; Thanbichler, Martin; Søgaard-Andersen, Lotte

    2013-04-29

    Cell polarity is essential for many bacterial activities, but the mechanisms responsible for its establishment are poorly understood. In Myxococcus xanthus, the type IV pili (T4P) motor ATPases PilB and PilT localize to opposite cell poles and switch poles during cellular reversals. We demonstrate that polar localization of PilB and PilT depends on the small GTPase SofG and BacP, a bactofilin cytoskeletal protein. Polymeric BacP localizes in both subpolar regions. SofG interacts directly with polymeric BacP and associates with one of these patches, forming a cluster that shuttles to the pole to establish localization of PilB and PilT at the same pole. Next, the small GTPase MglA sorts PilB and PilT to opposite poles to establish their correct polarity. During reversals, the Frz chemosensory system induces the inversion of PilB and PilT polarity. Thus, three hierarchically organized systems function in a cascade to regulate dynamic bacterial cell polarity.

  11. Oncostatin M production by human dendritic cells in response to bacterial products.

    PubMed

    Suda, Takafumi; Chida, Kingo; Todate, Akihito; Ide, Kyotaro; Asada, Kazuhiro; Nakamura, Yutaro; Suzuki, Kenichiro; Kuwata, Hirofumi; Nakamura, Hirotoshi

    2002-03-21

    Oncostatin M (OSM) is a pleiomorphic cytokine that belongs to the IL-6 cytokine family. It is produced by activated T cells and monocytes/macrophages and plays an important role in the process of inflammatory responses. Although dendritic cells (DCs) have been shown to secrete a variety of cytokines, it is not elucidated whether DCs are able to produce OSM. To clarify this, using human DCs derived from peripheral blood cells, we measured the protein levels of OSM in the supernatants of DC cultures by ELISA and examined the expression of OSM mRNA by RT-PCR after stimulation with lipopolysaccharide (LPS) or fixed Staphylococcus aureus (SACS). Upon stimulation with bacterial products, DCs secreted a large amount of OSM protein in a dose- and time-dependent manner. Concomitantly, the expression of OSM mRNA by DCs was markedly up-regulated. Compared the ability of DCs to produce OSM with that of monocytes, which are major producers of OSM, DCs released significantly higher amounts of OSM protein in the culture supernatants than monocytes. These findings indicate for the first time that human monocyte-derived DCs can synthesize and secrete large amounts of OSM in response to bacterial products, suggesting that OSM produced by DCs at infectious sites may play a role in modulating inflammatory responses.

  12. Probing Induced Structural Changes in Biomimetic Bacterial Cell Membrane Interactions with Divalent Cations

    SciTech Connect

    Holt, Allison M; Standaert, Robert F; Jubb, Aaron M; Katsaras, John; Johs, Alexander

    2017-01-01

    Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HII phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.

  13. Cell density and non-equilibrium sorption effects on bacterial dispersal in groundwater microcosms

    SciTech Connect

    Lindqvist, R.; Enfield, C.G.

    1992-01-01

    The relative importance of dispersion, physical straining, nonequilibrium sorption, and cell density on the dispersal of bacteria was examined in saturated, flow-dynamic sand columns. The bacterial breakthrough as a result of different size distributions of sand particles was followed by measuring the effluent concentration of (3)H-adenosine-labelled cells of a Bacillus sp. and an Enterobacter sp. strain suspended in ground-water. The breakthrough curves were compared with theoretical curves predicted from an advective-dispersive equilibrium sorption model (ADS), an ADS model with a first order sink term for irreversible cell reactions, a two-site model (equilibrium and nonequilibrium sorption sites), and a filtration model. Bacterial sand:water isotherms were linear in the experimental concentration range but had positive intercepts. The partition coefficients ranged from 15 to 0.4 for the Bacillus sp., and 120 to 0.4 for a Pseudomonas sp., and decreased with increasing particle size of the dominant fraction. In a kinetic study, the partition coefficient for the Enterobacter sp. in the smaller particle sand was 63 after one hour, but had decreased to 9 after 19 hours.

  14. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis.

    PubMed

    Manuse, Sylvie; Fleurie, Aurore; Zucchini, Laure; Lesterlin, Christian; Grangeasse, Christophe

    2016-01-01

    Bacteria possess a repertoire of versatile protein kinases modulating diverse aspects of their physiology by phosphorylating proteins on various amino acids including histidine, cysteine, aspartic acid, arginine, serine, threonine and tyrosine. One class of membrane serine/threonine protein kinases possesses a catalytic domain sharing a common fold with eukaryotic protein kinases and an extracellular mosaic domain found in bacteria only, named PASTA for 'Penicillin binding proteins And Serine/Threonine kinase Associated'. Over the last decade, evidence has been accumulating that these protein kinases are involved in cell division, morphogenesis and developmental processes in Firmicutes and Actinobacteria. However, observations differ from one species to another suggesting that a general mechanism of activation of their kinase activity is unlikely and that species-specific regulation of cell division is at play. In this review, we survey the latest research on the structural aspects and the cellular functions of bacterial serine/threonine kinases with PASTA motifs to illustrate the diversity of the regulatory mechanisms controlling bacterial cell division and morphogenesis.

  15. Phytochemicals as inhibitors of bacterial cell division protein FtsZ: coumarins are promising candidates.

    PubMed

    Duggirala, Sridevi; Nankar, Rakesh P; Rajendran, Selvakumar; Doble, Mukesh

    2014-09-01

    Naturally occurring phytochemicals with reported antibacterial activity were screened for their ability to inhibit the bacterial cell division protein Escherichia coli FtsZ. Among the representative compounds, coumarins inhibit the GTPase and polymerization activities of this protein effectively. Further screening with ten coumarin analogs we identified two promising candidates, scopoletin and daphnetin. The former is found to inhibit the GTPase activity of the protein in a noncompetitive manner. Docking of these coumarins with the modeled protein indicate that they bind to T7 loop, which is different from the GTP-binding site (active site), thereby supporting the experimental data. Lowest binding energy is obtained with scopoletin. 3D QSAR indicates the need for groups such as hydroxyl, diethyl, or dimethyl amino in the 7th carbon for enhanced activity. None of the coumarins exhibited cytotoxicity against NIH/3T3 and human embryonic kidney cell lines. The length of Bacillus subtilis increases in the presence of these compounds probably due to the lack of septum formation. Results of this study indicate the role of coumarins in halting the first step of bacterial cell division process.

  16. Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells.

    PubMed

    Muir, Elizabeth M; Fyfe, Ian; Gardiner, Sonya; Li, Li; Warren, Philippa; Fawcett, James W; Keynes, Roger J; Rogers, John H

    2010-01-15

    Although many eukaryotic proteins have been secreted by transfected bacterial cells, little is known about how a bacterial protein is treated as it passes through the secretory pathway when expressed in a eukaryotic cell. The eukaryotic N-glycosylation system could interfere with folding and secretion of prokaryotic proteins whose sequence has not been adapted for glycosylation in structurally appropriate locations. Here we show that such interference does indeed occur for chondroitinase ABC from the bacterium Proteus vulgaris, and can be overcome by eliminating potential N-glycosylation sites. Chondroitinase ABC was heavily glycosylated when expressed in mammalian cells or in a mammalian translation system, and this process prevented secretion of functional enzyme. Directed mutagenesis of selected N-glycosylation sites allowed efficient secretion of active chondroitinase. As these proteoglycans are known to inhibit regeneration of axons in the mammalian central nervous system, the modified chondroitinase gene is a potential tool for gene therapy to promote neural regeneration, ultimately in human spinal cord injury.

  17. Identification of Bacterial Cell Wall Lyases via Pseudo Amino Acid Composition.

    PubMed

    Chen, Xin-Xin; Tang, Hua; Li, Wen-Chao; Wu, Hao; Chen, Wei; Ding, Hui; Lin, Hao

    2016-01-01

    Owing to the abuse of antibiotics, drug resistance of pathogenic bacteria becomes more and more serious. Therefore, it is interesting to develop a more reasonable way to solve this issue. Because they can destroy the bacterial cell structure and then kill the infectious bacterium, the bacterial cell wall lyases are suitable candidates of antibacteria sources. Thus, it is urgent to develop an accurate and efficient computational method to predict the lyases. Based on the consideration, in this paper, a set of objective and rigorous data was collected by searching through the Universal Protein Resource (the UniProt database), whereafter a feature selection technique based on the analysis of variance (ANOVA) was used to acquire optimal feature subset. Finally, the support vector machine (SVM) was used to perform prediction. The jackknife cross-validated results showed that the optimal average accuracy of 84.82% was achieved with the sensitivity of 76.47% and the specificity of 93.16%. For the convenience of other scholars, we built a free online server called Lypred. We believe that Lypred will become a practical tool for the research of cell wall lyases and development of antimicrobial agents.

  18. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology

    PubMed Central

    Ittig, Simon J.; Schmutz, Christoph; Kasper, Christoph A.; Amstutz, Marlise; Schmidt, Alexander; Sauteur, Loïc; Vigano, M. Alessandra; Low, Shyan Huey; Affolter, Markus; Cornelis, Guy R.; Nigg, Erich A.

    2015-01-01

    Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network. PMID:26598622

  19. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells.

    PubMed

    Baldikova, Eva; Pospiskova, Kristyna; Ladakis, Dimitrios; Kookos, Ioannis K; Koutinas, Apostolis A; Safarikova, Mirka; Safarik, Ivo

    2017-02-01

    Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was magnetically modified using perchloric acid stabilized magnetic fluid. Magnetic bacterial cellulose (MBC) was used as a carrier for the immobilization of affinity ligands, enzymes and cells. MBC with immobilized reactive copper phthalocyanine dye was an efficient adsorbent for crystal violet removal; the maximum adsorption capacity was 388mg/g. Kinetic and thermodynamic parameters were also determined. Model biocatalysts, namely bovine pancreas trypsin and Saccharomyces cerevisiae cells were immobilized on MBC using several strategies including adsorption with subsequent cross-linking with glutaraldehyde and covalent binding on previously activated MBC using sodium periodate or 1,4-butanediol diglycidyl ether. Immobilized yeast cells retained approximately 90% of their initial activity after 6 repeated cycles of sucrose solution hydrolysis. Trypsin covalently bound after MBC periodate activation was very stable during operational stability testing; it could be repeatedly used for ten cycles of low molecular weight substrate hydrolysis without loss of its initial activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Identification of Bacterial Cell Wall Lyases via Pseudo Amino Acid Composition

    PubMed Central

    Tang, Hua; Li, Wen-Chao; Wu, Hao; Ding, Hui

    2016-01-01

    Owing to the abuse of antibiotics, drug resistance of pathogenic bacteria becomes more and more serious. Therefore, it is interesting to develop a more reasonable way to solve this issue. Because they can destroy the bacterial cell structure and then kill the infectious bacterium, the bacterial cell wall lyases are suitable candidates of antibacteria sources. Thus, it is urgent to develop an accurate and efficient computational method to predict the lyases. Based on the consideration, in this paper, a set of objective and rigorous data was collected by searching through the Universal Protein Resource (the UniProt database), whereafter a feature selection technique based on the analysis of variance (ANOVA) was used to acquire optimal feature subset. Finally, the support vector machine (SVM) was used to perform prediction. The jackknife cross-validated results showed that the optimal average accuracy of 84.82% was achieved with the sensitivity of 76.47% and the specificity of 93.16%. For the convenience of other scholars, we built a free online server called Lypred. We believe that Lypred will become a practical tool for the research of cell wall lyases and development of antimicrobial agents. PMID:27437396

  1. Cytokines and progenitor cells of granulocytopoiesis in peripheral blood of patients with bacterial infections.

    PubMed Central

    Selig, C; Nothdurft, W

    1995-01-01

    To investigate the physiological role of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the adaptation mechanisms of myelopoiesis to enhanced demand, we studied both cytokines and their myeloid target cells in hematologically healthy patients suffering from acute bacterial infections. Endogenous serum levels of G-CSF and GM-CSF, granulocyte-macrophage colony-forming cell (GM-CFC) concentrations, and differential counts were determined for the peripheral blood of 57 patients with clinically apparent bacterial infections (26 males and 31 females aged 16 to 89 years) and 18 healthy controls (8 males and 10 females aged 23 to 84 years). Patients were selected for acute-phase protein and at least two additional clinical signs reflecting a bacterial infection. Patients showed significantly higher numbers of myeloid progenitor cells than controls (median, 68 versus 26 GM-CFC/ml; P < or = 0.01). G-CSF but not GM-CSF levels were found to be elevated (> or = 50 to 863 pg/ml). In the acute stage of infection, progenitor and cytokine levels were not influenced by gender, differences in therapy, or localization of the infection. Progenitor and G-CSF levels were not associated with absolute neutrophil counts or C-reactive protein. However, a negative correlation between number of GM-CFC per milliliter and age (R = -0.47; P < or = 0.001) and an inverse relationship between the incidence of high GM-CFC concentrations and elevated G-CSF levels (phi = -0.34; P < or = 0.01) were found. Combining both parameters into a cytokine-progenitor pattern, we observed a highly significant age-dependent response of myelopoiesis to inflammation (P < or = 0.001). Younger patients had high progenitor counts (> 75 GM-CFC/ml) associated with G-CSF levels below 50 pg/ml, whereas for the older patients, the reverse pattern was predominant. The results indicate that the age-dependent myelopoietic response to acute bacterial infections is

  2. Role of Sulfhydryl Sites on Bacterial Cell Walls in the Biosorption, Mobility and Bioavailability of Mercury and Uranium

    SciTech Connect

    Myneni, Satish C.; Mishra, Bhoopesh; Fein, Jeremy

    2009-04-01

    The goal of this exploratory study is to provide a quantitative and mechanistic understanding of the impact of bacterial sulfhydryl groups on the bacterial uptake, speciation, methylation and bioavailability of Hg and redox changes of uranium. The relative concentration and reactivity of different functional groups present on bacterial surfaces will be determined, enabling quantitative predictions of the role of biosorption of Hg under the physicochemical conditions found at contaminated DOE sites.The hypotheses we propose to test in this investigation are as follows- 1) Sulfhydryl groups on bacterial cell surfaces modify Hg speciation and solubility, and play an important role, specifically in the sub-micromolar concentration ranges of metals in the natural and contaminated systems. 2) Sulfhydryl binding of Hg on bacterial surfaces significantly influences Hg transport into the cell and the methylation rates by the bacteria. 3) Sulfhydryls on cell membranes can interact with hexavalent uranium and convert to insoluble tetravalent species. 4) Bacterial sulfhydryl surface groups are inducible by the presence of metals during cell growth. Our studies focused on the first hypothesis, and we examined the nature of sulfhydryl sites on three representative bacterial species: Bacillus subtilis, a common gram-positive aerobic soil species; Shewanella oneidensis, a facultative gram-negative surface water species; and Geobacter sulfurreducens, an anaerobic iron-reducing gram-negative species that is capable of Hg methylation; and at a range of Hg concentration (and Hg:bacterial concentration ratio) in which these sites become important. A summary of our findings is as follows- Hg adsorbs more extensively to bacteria than other metals. Hg adsorption also varies strongly with pH and chloride concentration, with maximum adsorption occurring under circumneutral pH conditions for both Cl-bearing and Cl-free systems. Under these conditions, all bacterial species tested exhibit

  3. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide.

    PubMed

    Nocker, Andreas; Camper, Anne K

    2006-03-01

    The distinction between viable and dead bacterial cells poses a major challenge in microbial diagnostics. Due to the persistence of DNA in the environment after cells have lost viability, DNA-based quantification methods overestimate the number of viable cells in mixed populations or even lead to false-positive results in the absence of viable cells. On the other hand, RNA-based diagnostic methods, which circumvent this problem, are technically demanding and suffer from some drawbacks. A promising and easy-to-use alternative utilizing the DNA-intercalating dye ethidium monoazide bromide (EMA) was published recently. This chemical is known to penetrate only into "dead" cells with compromised cell membrane integrity. Subsequent photoinduced cross-linking was reported to inhibit PCR amplification of DNA from dead cells. We provide evidence here that in addition to inhibition of amplification, most of the DNA from dead cells is actually lost during the DNA extraction procedure, probably together with cell debris which goes into the pellet fraction. Exposure of bacteria to increasing stress and higher proportions of dead cells in defined populations led to increasing loss of genomic DNA. Experiments were performed using Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium as model pathogens and using real-time PCR for their quantification. Results showed that EMA treatment of mixed populations of these two species provides a valuable tool for selective removal of DNA of nonviable cells by using conventional extraction protocols. Furthermore, we provide evidence that prior to denaturing gradient gel electrophoresis, EMA treatment of a mature mixed-population drinking-water biofilm containing a substantial proportion of dead cells can result in community fingerprints dramatically different from those for an untreated biofilm. The interpretation of such fingerprints can have important implications in the field of microbial ecology.

  4. Contribution of bacterial cells to lacustrine organic matter based on amino sugars and D-amino acids