Synergistic Lethality of Mifepristone and LY294002 in Ovarian Cancer Cells
Wempe, Stacy L.; Gamarra-Luques, Carlos D.; Telleria, Carlos M.
2013-01-01
We have previously shown that the antiprogestin and antiglucocorticoid mifepristone inhibits the growth of ovarian cancer cells. In this work, we hypothesized that cellular stress caused by mifepristone is limited to cytostasis and that cell killing is avoided as a consequence of the persistent activity of the PI3K/Akt survival pathway. To investigate the role of this pathway in mifepristone-induced growth inhibition, human ovarian cancer cells of various histological subtypes and genetic backgrounds were exposed to cytostatic doses of mifepristone in the presence or absence of the PI3K inhibitor, LY294002. The activation of Akt in ovarian cancer cells, as marked by its phosphorylation on Ser473, was not modified by cytostatic concentrations of mifepristone, but it was blocked upon treatment with LY294002. The combination mifepristone/LY294002, but not the individual drugs, killed ovarian cancer cells via apoptosis, as attested by genomic DNA fragmentation and cleavage of caspase-3, and the concomitant downregulation of antiapoptotic proteins Bcl-2 and XIAP. From a pharmacological standpoint, when assessing cell growth inhibition using a median-dose analysis algorithm, the interaction between mifepristone and LY294002 was synergistic. The lethality caused by the combination mifepristone/LY294004 in 2-dimensional cell cultures was recapitulated in organized, 3-dimensional spheroids. This study demonstrates that mifepristone and LY294002 when used individually cause cell growth arrest; yet, when combined, they cause lethality. PMID:23420486
[Mutagenic and antimutagenic properties of bemitil].
Seredenin, S B; Bobkov, Iu G; Durnev, A D; Dubovskaia, O Iu
1986-07-01
Complex research of the genetic activity of a new 2-mercaptobenzimidazole derivative bemythyl has shown that the drug failed to induce recessive, age-related lethal mutations in drosophila, dominant lethal mutations in germ mammalian cells and chromosomal damage in murine bone marrow cells and human peripheral blood cell cultures. The experiments on mice have demonstrated that therapeutic bemythyl doses caused a two-fold decrease in the level of aberrant cells induced by alkylating agents--fotrin and fopurin.
The effect of lonidamine (LND) on radiation and thermal responses of human and rodent cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raaphorst, G.P.; Feeley, M.M.; Danjoux, C.E.
1991-03-01
Rodent and human cells were tested for response to Lonidamine (LND) (1-(2,4 dichlorobenzyl) 1-indazol-3-carboxylic acid) combined with radiation or hyperthermia. Lonidamine exposure before, during, and after irradiation caused varying degrees of inhibition of potentially lethal damage (PLD) repair which was cell line dependent. In human glioma, melanoma, squamous cell carcinoma, and fibroblasts, LND exposure did not inhibit or only partially inhibited repair of potentially lethal damage. LND up to 100 micrograms/ml produced only a low level of toxicity in these cells and only slightly inhibited glucose consumption at the maximum concentration. In human glioma cells, LND treatment alone did notmore » inhibit PLD repair, but when combined with hyperthermia treatment at moderate levels easily achievable in the clinic, there was complete inhibition of potentially lethal damage repair. These data suggest that LND effectiveness is cell type dependent. Combinations of LND, hyperthermia, and radiation may be effective in cancer therapy especially in tumors such as glioma in which repair of potentially lethal damage may be extensive.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillies, N.E.; Obioha, F.I.
When Escherichia coli B/r were x-irradiated under anoxia in the presence of different electron-affinic sensitizers and then incubated in broth containing penicillin (at a concentration that did not kill unirradiated cells) additional killing of the bacteria occurred provided the sensitizers were of relatively high lipophilicity. The overall effect was to increase the efficiency of these sensitizers. It is concluded that sensitizer-dependent latent radiation lesions(s) are produced in membrane components of the cell envelope that interact with damage caused by penicillin in the peptidoglycan layer and this causes the additional lethality.
[Screening of full human anthrax lethal factor neutralizing antibody in transgenic mice].
Wang, Xiaolin; Chi, Xiangyang; Liu, Ju; Liu, Weicen; Liu, Shuling; Qiu, Shunfang; Wen, Zhonghua; Fan, Pengfei; Liu, Kun; Song, Xiaohong; Fu, Ling; Zhang, Jun; Yu, Changming
2016-11-25
Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. The major virulence factor of B. anthracis consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA binds with LF to form lethal toxin (LT), and PA binds with EF to form edema toxin (ET). Antibiotics is hard to work in advanced anthrax infections, because injuries and deaths of the infected are mainly caused by lethal toxin (LT). Thus, the therapeutic neutralizing antibody is the most effective treatment of anthrax. Currently most of the anthrax toxin antibodies are monoclonal antibodies (MAbs) for PA and US FDA has approved ABTHRAX humanized PA monoclonal antibody for the treatment of inhalational anthrax. Once B. anthracis was artificially reconstructed or PA had mutations within recognized neutralization epitopes, anti-PA MAbs would no longer be effective. Therefore, anti-LF MAbs is an important supplement for anthrax treatment. Most of the anti-LF antibodies are murine or chimeric antibodies. By contrast, fully human MAbs can avoid the high immunogenicity of murine antibodies. First, we used LF to immunize the transgenic mice and used fluorescent cell sorting to get antigen-specific memory B cells from transgenic mice spleen lymphocytes. By single cell PCR method, we quickly found two strains of anti-LF MAbs with binding activity, 1D7 and 2B9. Transiently transfected Expi 293F cells to obtain MAbs protein after purification. Both 1D7 and 2B9 efficiently neutralized LT in vitro, and had good synergistic effect when mixed with anti-PA MAbs. In summary, combining the advantages of transgenic mice, fluorescent cell sorting and single-cell PCR methods, this study shows new ideas and methods for the rapid screening of fully human monoclonal antibodies.
Alby, Caroline; Piquand, Kevin; Huber, Céline; Megarbané, André; Ichkou, Amale; Legendre, Marine; Pelluard, Fanny; Encha-Ravazi, Ferechté; Abi-Tayeh, Georges; Bessières, Bettina; El Chehadeh-Djebbar, Salima; Laurent, Nicole; Faivre, Laurence; Sztriha, László; Zombor, Melinda; Szabó, Hajnalka; Failler, Marion; Garfa-Traore, Meriem; Bole, Christine; Nitschké, Patrick; Nizon, Mathilde; Elkhartoufi, Nadia; Clerget-Darpoux, Françoise; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Saunier, Sophie; Cormier-Daire, Valérie; Attié-Bitach, Tania; Thomas, Sophie
2015-01-01
KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies. PMID:26166481
Boonnak, Kobporn; Vogel, Leatrice; Feldmann, Friederike; Feldmann, Heinz; Legge, Kevin L.; Subbarao, Kanta
2014-01-01
Although lymphopenia is a hallmark of severe infection with highly pathogenic H5N1 and the newly emerged H7N9 influenza viruses in humans, the mechanism(s) by which lethal H5N1 viruses cause lymphopenia in mammalian hosts remains poorly understood. Because influenza-specific T cell responses are initiated in the lung draining lymph nodes, and lymphocytes subsequently traffic to the lungs or peripheral circulation, we compared the immune responses in the lung draining lymph nodes following infection with a lethal A/HK/483/97 or non-lethal A/HK/486/97 (H5N1) virus in a mouse model. We found that lethal H5N1, but not non-lethal H5N1 virus infection in mice enhances Fas ligand (FasL) expression on plasmacytoid dendritic cells (pDCs), resulting in apoptosis of influenza-specific CD8+ T cells via a Fas-FasL mediated pathway. We also found that pDCs, but not other DC subsets, preferentially accumulate in the lung draining lymph nodes of lethal H5N1 virus-infected mice and that the induction of FasL expression on pDCs correlates with high levels of IL-12p40 monomer/homodimer in the lung draining lymph nodes. Our data suggest that one of the mechanisms of lymphopenia associated with lethal H5N1 virus infection involves a deleterious role for pDCs. PMID:24829418
Bhat, Supriya V; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E S
2018-01-01
Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro , and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force - laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage.
NASA Technical Reports Server (NTRS)
Martins, B. I.
1971-01-01
The effects of monochromatic ultrasonic waves of 0.1, 0.5, 1.0, 2.0 and, 3.3 MHz frequency on the colony-forming ability of mammalian cells (M3-1,V79, Chang's and T-1) cultured in vitro have been studied to determine the nature of the action of ultrasonic energy on biological systems at the cellular level. The combined effect of ultrasound and X-rays has also been studied. It is concluded: (1) Ultrasonic irradiation causes both lethal and sublethal damage. (2) There is a threshold dose rate for lethal effects. (3) The effectiveness of ultrasonic waves in causing cell death probably depends on the frequency and the amplitude of the waves for a given cell line, indicating a possible resonance phenomenon.
Leukotriene B4 receptor type 2 protects against pneumolysin-dependent acute lung injury.
Shigematsu, Misako; Koga, Tomoaki; Ishimori, Ayako; Saeki, Kazuko; Ishii, Yumiko; Taketomi, Yoshitaka; Ohba, Mai; Jo-Watanabe, Airi; Okuno, Toshiaki; Harada, Norihiro; Harayama, Takeshi; Shindou, Hideo; Li, Jian-Dong; Murakami, Makoto; Hoka, Sumio; Yokomizo, Takehiko
2016-10-05
Although pneumococcal infection is a serious problem worldwide and has a high mortality rate, the molecular mechanisms underlying the lethality caused by pneumococcus remain elusive. Here, we show that BLT2, a G protein-coupled receptor for leukotriene B 4 and 12(S)-hydroxyheptadecatrienoic acid (12-HHT), protects mice from lung injury caused by a pneumococcal toxin, pneumolysin (PLY). Intratracheal injection of PLY caused lethal acute lung injury (ALI) in BLT2-deficient mice, with evident vascular leakage and bronchoconstriction. Large amounts of cysteinyl leukotrienes (cysLTs), classically known as a slow reactive substance of anaphylaxis, were detected in PLY-treated lungs. PLY-dependent vascular leakage, bronchoconstriction, and death were markedly ameliorated by treatment with a CysLT1 receptor antagonist. Upon stimulation by PLY, mast cells produced cysLTs that activated CysLT1 expressed in vascular endothelial cells and bronchial smooth muscle cells, leading to lethal vascular leakage and bronchoconstriction. Treatment of mice with aspirin or loxoprofen inhibited the production of 12-HHT and increased the sensitivity toward PLY, which was also ameliorated by the CysLT1 antagonist. Thus, the present study identifies the molecular mechanism underlying PLY-dependent ALI and suggests the possible use of CysLT1 antagonists as a therapeutic tool to protect against ALI caused by pneumococcal infection.
Leukotriene B4 receptor type 2 protects against pneumolysin-dependent acute lung injury
Shigematsu, Misako; Koga, Tomoaki; Ishimori, Ayako; Saeki, Kazuko; Ishii, Yumiko; Taketomi, Yoshitaka; Ohba, Mai; Jo-Watanabe, Airi; Okuno, Toshiaki; Harada, Norihiro; Harayama, Takeshi; Shindou, Hideo; Li, Jian-Dong; Murakami, Makoto; Hoka, Sumio; Yokomizo, Takehiko
2016-01-01
Although pneumococcal infection is a serious problem worldwide and has a high mortality rate, the molecular mechanisms underlying the lethality caused by pneumococcus remain elusive. Here, we show that BLT2, a G protein-coupled receptor for leukotriene B4 and 12(S)-hydroxyheptadecatrienoic acid (12-HHT), protects mice from lung injury caused by a pneumococcal toxin, pneumolysin (PLY). Intratracheal injection of PLY caused lethal acute lung injury (ALI) in BLT2-deficient mice, with evident vascular leakage and bronchoconstriction. Large amounts of cysteinyl leukotrienes (cysLTs), classically known as a slow reactive substance of anaphylaxis, were detected in PLY-treated lungs. PLY-dependent vascular leakage, bronchoconstriction, and death were markedly ameliorated by treatment with a CysLT1 receptor antagonist. Upon stimulation by PLY, mast cells produced cysLTs that activated CysLT1 expressed in vascular endothelial cells and bronchial smooth muscle cells, leading to lethal vascular leakage and bronchoconstriction. Treatment of mice with aspirin or loxoprofen inhibited the production of 12-HHT and increased the sensitivity toward PLY, which was also ameliorated by the CysLT1 antagonist. Thus, the present study identifies the molecular mechanism underlying PLY-dependent ALI and suggests the possible use of CysLT1 antagonists as a therapeutic tool to protect against ALI caused by pneumococcal infection. PMID:27703200
SOCS3: an essential regulator of LIF receptor signaling in trophoblast giant cell differentiation
Takahashi, Yutaka; Carpino, Nick; Cross, James C.; Torres, Miguel; Parganas, Evan; Ihle, James N.
2003-01-01
Suppressor of cytokine signaling 3 (SOCS3) binds cytokine receptors and thereby suppresses cytokine signaling. Deletion of SOCS3 causes an embryonic lethality that is rescued by a tetraploid rescue approach, demonstrating an essential role in placental development and a non-essential role in embryo development. Rescued SOCS3-deficient mice show a perinatal lethality with cardiac hypertrophy. SOCS3-deficient placentas have reduced spongiotrophoblasts and increased trophoblast secondary giant cells. Enforced expression of SOCS3 in a trophoblast stem cell line (Rcho-1) suppresses giant cell differentiation. Conversely, SOCS3-deficient trophoblast stem cells differentiate more readily to giant cells in culture, demonstrating that SOCS3 negatively regulates trophoblast giant cell differentiation. Leukemia inhibitory factor (LIF) promotes giant cell differentiation in vitro, and LIF receptor (LIFR) deficiency results in loss of giant cell differentiation in vivo. Finally, LIFR deficiency rescues the SOCS3-deficient placental defect and embryonic lethality. The results establish SOCS3 as an essential regulator of LIFR signaling in trophoblast differentiation. PMID:12554639
Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C.; Sellati, Timothy J.; Harton, Jonathan A.
2016-01-01
Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566
Particle-to-PFU ratio of Ebola virus influences disease course and survival in cynomolgus macaques.
Alfson, Kendra J; Avena, Laura E; Beadles, Michael W; Staples, Hilary; Nunneley, Jerritt W; Ticer, Anysha; Dick, Edward J; Owston, Michael A; Reed, Christopher; Patterson, Jean L; Carrion, Ricardo; Griffiths, Anthony
2015-07-01
This study addresses the role of Ebola virus (EBOV) specific infectivity in virulence. Filoviruses are highly lethal, enveloped, single-stranded negative-sense RNA viruses that can cause hemorrhagic fever. No approved vaccines or therapies exist for filovirus infections, and infectious virus must be handled in maximum containment. Efficacy testing of countermeasures, in addition to investigations of pathogenicity and immune response, often requires a well-characterized animal model. For EBOV, an obstacle in performing accurate disease modeling is a poor understanding of what constitutes an infectious dose in animal models. One well-recognized consequence of viral passage in cell culture is a change in specific infectivity, often measured as a particle-to-PFU ratio. Here, we report that serial passages of EBOV in cell culture resulted in a decrease in particle-to-PFU ratio. Notably, this correlated with decreased potency in a lethal cynomolgus macaque (Macaca fascicularis) model of infection; animals were infected with the same viral dose as determined by plaque assay, but animals that received more virus particles exhibited increased disease. This suggests that some particles are unable to form a plaque in a cell culture assay but are able to result in lethal disease in vivo. These results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures. Ebola virus (EBOV) can cause severe hemorrhagic disease with a high case-fatality rate, and there are no approved vaccines or therapies. Specific infectivity can be considered the total number of viral particles per PFU, and its impact on disease is poorly understood. In stocks of most mammalian viruses, there are particles that are unable to complete an infectious cycle or unable to cause cell pathology in cultured cells. We asked if these particles cause disease in nonhuman primates by infecting monkeys with equal infectious doses of genetically identical stocks possessing either high or low specific infectivities. Interestingly, some particles that did not yield plaques in cell culture assays were able to result in lethal disease in vivo. Furthermore, the number of PFU needed to induce lethal disease in animals was very low. Our results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures.
Bhat, Supriya V.; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E. S.
2018-01-01
Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro, and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force – laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage. PMID:29472899
Alby, Caroline; Piquand, Kevin; Huber, Céline; Megarbané, André; Ichkou, Amale; Legendre, Marine; Pelluard, Fanny; Encha-Ravazi, Ferechté; Abi-Tayeh, Georges; Bessières, Bettina; El Chehadeh-Djebbar, Salima; Laurent, Nicole; Faivre, Laurence; Sztriha, László; Zombor, Melinda; Szabó, Hajnalka; Failler, Marion; Garfa-Traore, Meriem; Bole, Christine; Nitschké, Patrick; Nizon, Mathilde; Elkhartoufi, Nadia; Clerget-Darpoux, Françoise; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Saunier, Sophie; Cormier-Daire, Valérie; Attié-Bitach, Tania; Thomas, Sophie
2015-08-06
KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Behrens, Dieter; Forsgren, Eva; Fries, Ingemar; Moritz, Robin F A
2010-10-01
We compared the mortality of honeybee (Apis mellifera) drone and worker larvae from a single queen under controlled in vitro conditions following infection with Paenibacillus larvae, a bacterium causing the brood disease American Foulbrood (AFB). We also determined absolute P. larvae cell numbers and lethal titres in deceased individuals of both sexes up to 8 days post infection using quantitative real-time PCR (qPCR). Our results show that in drones the onset of infection induced mortality is delayed by 1 day, the cumulative mortality is reduced by 10% and P. larvae cell numbers are higher than in worker larvae. Since differences in bacterial cell titres between sexes can be explained by differences in body size, larval size appears to be a key parameter for a lethal threshold in AFB tolerance. Both means and variances for lethal thresholds are similar for drone and worker larvae suggesting that drone resistance phenotypes resemble those of related workers. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
CDK1 Is a Synthetic Lethal Target for KRAS Mutant Tumours
Costa-Cabral, Sara; Brough, Rachel; Konde, Asha; Aarts, Marieke; Campbell, James; Marinari, Eliana; Riffell, Jenna; Bardelli, Alberto; Torrance, Christopher; Lord, Christopher J.; Ashworth, Alan
2016-01-01
Activating KRAS mutations are found in approximately 20% of human cancers but no RAS-directed therapies are currently available. Here we describe a novel, robust, KRAS synthetic lethal interaction with the cyclin dependent kinase, CDK1. This was discovered using parallel siRNA screens in KRAS mutant and wild type colorectal isogenic tumour cells and subsequently validated in a genetically diverse panel of 26 colorectal and pancreatic tumour cell models. This established that the KRAS/CDK1 synthetic lethality applies in tumour cells with either amino acid position 12 (p.G12V, pG12D, p.G12S) or amino acid position 13 (p.G13D) KRAS mutations and can also be replicated in vivo in a xenograft model using a small molecule CDK1 inhibitor. Mechanistically, CDK1 inhibition caused a reduction in the S-phase fraction of KRAS mutant cells, an effect also characterised by modulation of Rb, a master control of the G1/S checkpoint. Taken together, these observations suggest that the KRAS/CDK1 interaction is a robust synthetic lethal effect worthy of further investigation. PMID:26881434
Third-party CD4+ invariant natural killer T cells protect from murine GVHD lethality
Schneidawind, Dominik; Baker, Jeanette; Pierini, Antonio; Buechele, Corina; Luong, Richard H.; Meyer, Everett H.
2015-01-01
Graft-versus-host disease (GVHD) is driven by extensive activation and proliferation of alloreactive donor T cells causing significant morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Invariant natural killer T (iNKT) cells are a potent immunoregulatory T-cell subset in both humans and mice. Here, we explored the role of adoptively transferred third-party CD4+ iNKT cells for protection from lethal GVHD in a murine model of allogeneic HCT across major histocompatibility barriers. We found that low numbers of CD4+ iNKT cells from third-party mice resulted in a significant survival benefit with retained graft-versus-tumor effects. In vivo expansion of alloreactive T cells was diminished while displaying a T helper cell 2-biased phenotype. Notably, CD4+ iNKT cells from third-party mice were as protective as CD4+ iNKT cells from donor mice although third-party CD4+ iNKT cells were rejected early after allogeneic HCT. Adoptive transfer of third-party CD4+ iNKT cells resulted in a robust expansion of donor CD4+CD25+FoxP3+ regulatory T cells (Tregs) that were required for protection from lethal GVHD. However, in vivo depletion of myeloid-derived suppressor cells abrogated both Treg expansion and protection from lethal GVHD. Despite the fact that iNKT cells are a rare cell population, the almost unlimited third-party availability and feasibility of in vitro expansion provide the basis for clinical translation. PMID:25795920
Clinical Management of Heat-Related Illnesses
2012-01-01
rhabdomyolysis and multiorgan dysfunction syndrome, and it may result in death from overwhelming cell necrosis caused by a lethal heat-shock exposure...complications such as rhabdomyolysis and multiorgan dysfunction syndrome, and it may result in death from overwhelming cell necrosis caused by a...acetaminophen lower Tco by normalizing the elevated hypothalamic set point that is caused by pyrogens; in heatstroke, the set point is normal, with
Differential replication of Foot-and-mouth disease viruses in mice determine lethality.
Cacciabue, Marco; García-Núñez, María Soledad; Delgado, Fernando; Currá, Anabella; Marrero, Rubén; Molinari, Paula; Rieder, Elizabeth; Carrillo, Elisa; Gismondi, María Inés
2017-09-01
Adult C57BL/6J mice have been used to study Foot-and-mouth disease virus (FMDV) biology. In this work, two variants of an FMDV A/Arg/01 strain exhibiting differential pathogenicity in adult mice were identified and characterized: a non-lethal virus (A01NL) caused mild signs of disease, whereas a lethal virus (A01L) caused death within 24-48h independently of the dose used. Both viruses caused a systemic infection with pathological changes in the exocrine pancreas. Virus A01L reached higher viral loads in plasma and organs of inoculated mice as well as increased replication in an ovine kidney cell line. Complete consensus sequences revealed 6 non-synonymous changes between A01L and A10NL genomes that might be linked to replication differences, as suggested by in silico prediction studies. Our results highlight the biological significance of discrete genomic variations and reinforce the usefulness of this animal model to study viral determinants of lethality. Copyright © 2017 Elsevier Inc. All rights reserved.
Lin, Jr-Shiuan; Szaba, Frank M; Kummer, Lawrence W; Chromy, Brett A; Smiley, Stephen T
2011-07-15
Septic bacterial pneumonias are a major cause of death worldwide. Several of the highest priority bioterror concerns, including anthrax, tularemia, and plague, are caused by bacteria that acutely infect the lung. Bacterial resistance to multiple antibiotics is increasingly common. Although vaccines may be our best defense against antibiotic-resistant bacteria, there has been little progress in the development of safe and effective vaccines for pulmonary bacterial pathogens. The Gram-negative bacterium Yersinia pestis causes pneumonic plague, an acutely lethal septic pneumonia. Historic pandemics of plague caused millions of deaths, and the plague bacilli's potential for weaponization sustains an ongoing quest for effective countermeasures. Subunit vaccines have failed, to date, to fully protect nonhuman primates. In mice, they induce the production of Abs that act in concert with type 1 cytokines to deliver high-level protection; however, the Y. pestis Ags recognized by cytokine-producing T cells have yet to be defined. In this study, we report that Y. pestis YopE is a dominant Ag recognized by CD8 T cells in C57BL/6 mice. After vaccinating with live attenuated Y. pestis and challenging intranasally with virulent plague, nearly 20% of pulmonary CD8 T cells recognize this single, highly conserved Ag. Moreover, immunizing mice with a single peptide, YopE(69-77), suffices to confer significant protection from lethal pulmonary challenge. These findings suggest YopE could be a valuable addition to subunit plague vaccines and provide a new animal model in which sensitive, pathogen-specific assays can be used to study CD8 T cell-mediated defense against acutely lethal bacterial infections of the lung.
The pathogenesis of bornaviral diseases in mammals.
Tizard, Ian; Ball, Judith; Stoica, George; Payne, Susan
2016-12-01
Natural bornavirus infections and their resulting diseases are largely restricted to horses and sheep in Central Europe. The disease also occurs naturally in cats, and can be induced experimentally in laboratory rodents and numerous other mammals. Borna disease virus-1 (BoDV-1), the cause of most cases of mammalian Borna disease, is a negative-stranded RNA virus that replicates within the nucleus of target cells. It causes severe, often lethal, encephalitis in susceptible species. Recent events, especially the discovery of numerous new species of bornaviruses in birds and a report of an acute, lethal bornaviral encephalitis in humans, apparently acquired from squirrels, have revived interest in this remarkable family of viruses. The clinical manifestations of the bornaviral diseases are highly variable. Thus, in addition to acute lethal encephalitis, they can cause persistent neurologic disease associated with diverse behavioral changes. They also cause a severe retinitis resulting in blindness. In this review, we discuss both the pathological lesions observed in mammalian bornaviral disease and the complex pathogenesis of the neurologic disease. Thus infected neurons may be destroyed by T-cell-mediated cytotoxicity. They may die as a result of excessive inflammatory cytokine release from microglia. They may also die as a result of a 'glutaminergic storm' due to a failure of infected astrocytes to regulate brain glutamate levels.
The effect of hyperthermia on the radiation response of crypt cells in mouse jejunum
NASA Technical Reports Server (NTRS)
Wilson, J. D.
1978-01-01
The effect of hyperthermia and/or gamma-radiation on the survival of intestinal crypt cells was studied in BDF sub 1 mice using a microcolony assay. Hyperthermia treatments, which in themselves caused no detectable cell lethality, inhibited the capacity of crypt cells to repair sublethal radiation damage. In addition, heat applied either before or after single radiation exposures potentiated lethal damage to crypt cells; the degree of enhancement was dependent on the time interval between treatments. At the levels of heating employed, DNA synthesis in the intestinal epithelium was significantly reduced immediately following exposure, but returned rapidly to normal levels. No further disturbances in cellular kinetics were observed for up to 10 days after heating.
Ohya, Y.; Botstein, D.
1994-01-01
Conditional-lethal mutations of the single calmodulin gene in Saccharomyces cerevisiae have been very difficult to isolate by random and systematic methods, despite the fact that deletions cause recessive lethality. We report here the isolation of numerous conditional-lethal mutants that were recovered by systematically altering phenylalanine residues. The phenylalanine residues of calmodulin were implicated in function both by structural studies of calmodulin bound to target peptides and by their extraordinary conservation in evolution. Seven single and 26 multiple Phe -> Ala mutations were constructed. Mutant phenotypes were examined in a haploid cmd1 disrupted strain under three conditions: single copy, low copy, and overexpressed. Whereas all but one of the single mutations caused no obvious phenotype, most of the multiple mutations caused obvious growth phenotypes. Five were lethal, 6 were lethal only in synthetic medium, 13 were temperature-sensitive lethal and 2 had no discernible phenotypic consequences. Overexpression of some of the mutant genes restored the phenotype to nearly wild type. Several temperature-sensitive calmodulin mutations were suppressed by elevated concentration of CaCl(2) in the medium. Mutant calmodulin protein was detected at normal levels in extracts of most of the lethal mutant cells, suggesting that the deleterious phenotypes were due to loss of the calmodulin function and not protein instability. Analysis of diploid strains heterozygous for all combinations of cmd1-ts alleles revealed four intragenic complementation groups. The contributions of individual phe->ala changes to mutant phenotypes support the idea of internal functional redundancy in the symmetrical calmodulin protein molecule. These results suggest that the several phenylalanine residues in calmodulin are required to different extents in different combinations in order to carry out each of the several essential tasks. PMID:7896089
Wu, Chenggang; Huang, I-Hsiu; Chang, Chungyu; Reardon-Robinson, Melissa Elizabeth; Das, Asis; Ton-That, Hung
2014-01-01
Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harboring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalyzed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens. PMID:25230351
Li, Ke; Yan, Huaying; Guo, Wenhao; Tang, Mei; Zhao, Xinyu; Tong, Aiping; Peng, Yong; Li, Qintong; Yuan, Zhu
2018-05-01
PTEN deficiency often causes defects in DNA damage repair. Currently, effective therapies for breast cancer are lacking. ATM is an attractive target for cancer treatment. Previous studies suggested a synthetic lethality between PTEN and PARP. However, the synthetically lethal interaction between PTEN and ATM in breast cancer has not been reported. Moreover, the mechanism remains elusive. Here, using KU-60019, an ATM kinase inhibitor, we investigated ATM inhibition as a synthetically lethal strategy to target breast cancer cells with PTEN defects. We found that KU-60019 preferentially sensitizes PTEN-deficient MDA-MB-468 breast cancer cells to cisplatin, though it also slightly enhances sensitivity of PTEN wild-type breast cancer cells. The increased cytotoxic sensitivity is associated with apoptosis, as evidenced by flow cytometry and PARP cleavage. Additionally, the increase of DNA damage accumulation due to the decreased capability of DNA repair, as indicated by γ-H2AX and Rad51 foci, also contributed to this selective cytotoxicity. Mechanistically, compared with PTEN wild-type MDA-MB-231 cells, PTEN-deficient MDA-MB-468 cells have lower level of Rad51, higher ATM kinase activity, and display the elevated level of DNA damage. Moreover, these differences could be further enlarged by cisplatin. Our findings suggest that ATM is a promising target for PTEN-defective breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
Eliminating Legionella by inhibiting BCL-XL to induce macrophage apoptosis.
Speir, Mary; Lawlor, Kate E; Glaser, Stefan P; Abraham, Gilu; Chow, Seong; Vogrin, Adam; Schulze, Keith E; Schuelein, Ralf; O'Reilly, Lorraine A; Mason, Kylie; Hartland, Elizabeth L; Lithgow, Trevor; Strasser, Andreas; Lessene, Guillaume; Huang, David C S; Vince, James E; Naderer, Thomas
2016-02-24
Human pathogenic Legionella replicate in alveolar macrophages and cause a potentially lethal form of pneumonia known as Legionnaires' disease(1). Here, we have identified a host-directed therapeutic approach to eliminate intracellular Legionella infections. We demonstrate that the genetic deletion, or pharmacological inhibition, of the host cell pro-survival protein BCL-XL induces intrinsic apoptosis of macrophages infected with virulent Legionella strains, thereby abrogating Legionella replication. BCL-XL is essential for the survival of Legionella-infected macrophages due to bacterial inhibition of host-cell protein synthesis, resulting in reduced levels of the short-lived, related BCL-2 pro-survival family member, MCL-1. Consequently, a single dose of a BCL-XL-targeted BH3-mimetic therapy, or myeloid cell-restricted deletion of BCL-XL, limits Legionella replication and prevents lethal lung infections in mice. These results indicate that repurposing BH3-mimetic compounds, originally developed to induce cancer cell apoptosis, may have efficacy in treating Legionnaires' and other diseases caused by intracellular microbes.
Shuryak, Igor; Loucas, Bradford D.; Cornforth, Michael N.
2017-01-01
Recent technological advances allow precise radiation delivery to tumor targets. As opposed to more conventional radiotherapy—where multiple small fractions are given—in some cases, the preferred course of treatment may involve only a few (or even one) large dose(s) per fraction. Under these conditions, the choice of appropriate radiobiological model complicates the tasks of predicting radiotherapy outcomes and designing new treatment regimens. The most commonly used model for this purpose is the venerable linear-quadratic (LQ) formalism as it applies to cell survival. However, predictions based on the LQ model are frequently at odds with data following very high acute doses. In particular, although the LQ predicts a continuously bending dose–response relationship for the logarithm of cell survival, empirical evidence over the high-dose region suggests that the survival response is instead log-linear with dose. Here, we show that the distribution of lethal chromosomal lesions among individual human cells (lymphocytes and fibroblasts) exposed to gamma rays and X rays is somewhat overdispersed, compared with the Poisson distribution. Further, we show that such overdispersion affects the predicted dose response for cell survival (the fraction of cells with zero lethal lesions). This causes the dose response to approximate log-linear behavior at high doses, even when the mean number of lethal lesions per cell is well fitted by the continuously curving LQ model. Accounting for overdispersion of lethal lesions provides a novel, mechanistically based explanation for the observed shapes of cell survival dose responses that, in principle, may offer a tractable and clinically useful approach for modeling the effects of high doses per fraction. PMID:29312888
Neoplastic cell transformation by high-LET radiation - Molecular mechanisms
NASA Technical Reports Server (NTRS)
Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong
1989-01-01
Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.
Czyż, Małgorzata; Toma, Monika; Gajos-Michniewicz, Anna; Majchrzak, Kinga; Hoser, Grazyna; Szemraj, Janusz; Nieborowska-Skorska, Margaret; Cheng, Phil; Gritsyuk, Daniel; Levesque, Mitchell; Dummer, Reinhard; Sliwinski, Tomasz; Skorski, Tomasz
2016-01-01
Cancer including melanoma may be “addicted” to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes. We observed that PARP1 inhibitor olaparib sensitized melanomas with reduced expression of DNA ligase 4 (LIG4) to an alkylatimg agent dacarbazine (DTIC) treatment in vitro, while normal melanocytes remained intact. PARP1 inhibition caused accumulation of DSBs, which was associated with apoptosis in LIG4 deficient melanoma cells. Our hypothesis that olaparib is synthetic lethal with LIG4 deficiency in melanoma cells was supported by selective anti-tumor effects of olaparib used either alone or in combination with dacarbazine (DTIC) in LIG4 deficient, but not LIG4 proficient cells. In addition, olaparib combined with DTIC inhibited the growth of LIG4 deficient human melanoma xenografts. This work for the first time demonstrates the effectiveness of a combination of PARP1 inhibitor olaparib and alkylating agent DTIC for treating LIG4 deficient melanomas. In addition, analysis of the TCGA and transcriptome microarray databases revealed numerous individual melanoma samples potentially displaying specific defects in DSB repair pathways, which may predispose them to synthetic lethality triggered by PARP1 inhibitor combined with a cytotoxic drug. PMID:27705909
Myxoma Virus Expressing Interleukin-15 Fails To Cause Lethal Myxomatosis in European Rabbits▿
Liu, Jia; Wennier, Sonia; Reinhard, Mary; Roy, Edward; MacNeill, Amy; McFadden, Grant
2009-01-01
Myxoma virus (MYXV) is a poxvirus pathogenic only for European rabbits, but its permissiveness in human cancer cells gives it potential as an oncolytic virus. A recombinant MYXV expressing both the tdTomato red fluorescent protein and interleukin-15 (IL-15) (vMyx-IL-15-tdTr) was constructed. Cells infected with vMyx-IL-15-tdTr secreted bioactive IL-15 and had in vitro replication kinetics similar to that of wild-type MYXV. To determine the safety of this virus for future oncolytic studies, we tested its pathogenesis in European rabbits. In vivo, vMyx-IL-15-tdTr no longer causes lethal myxomatosis. Thus, ectopic IL-15 functions as an antiviral cytokine in vivo, and vMyx-IL-15-tdTr is a safe candidate for animal studies of oncolytic virotherapy. PMID:19279088
Myxoma virus expressing interleukin-15 fails to cause lethal myxomatosis in European rabbits.
Liu, Jia; Wennier, Sonia; Reinhard, Mary; Roy, Edward; MacNeill, Amy; McFadden, Grant
2009-06-01
Myxoma virus (MYXV) is a poxvirus pathogenic only for European rabbits, but its permissiveness in human cancer cells gives it potential as an oncolytic virus. A recombinant MYXV expressing both the tdTomato red fluorescent protein and interleukin-15 (IL-15) (vMyx-IL-15-tdTr) was constructed. Cells infected with vMyx-IL-15-tdTr secreted bioactive IL-15 and had in vitro replication kinetics similar to that of wild-type MYXV. To determine the safety of this virus for future oncolytic studies, we tested its pathogenesis in European rabbits. In vivo, vMyx-IL-15-tdTr no longer causes lethal myxomatosis. Thus, ectopic IL-15 functions as an antiviral cytokine in vivo, and vMyx-IL-15-tdTr is a safe candidate for animal studies of oncolytic virotherapy.
Zhang, Donghui; Li, Yifei; Heims-Waldron, Danielle; Bezzerides, Vassilios; Guatimosim, Silvia; Guo, Yuxuan; Gu, Fei; Zhou, Pingzhu; Lin, Zhiqiang; Ma, Qing; Liu, Jianming; Wang, Da-Zhi; Pu, William T
2018-01-05
Although mitochondrial diseases often cause abnormal myocardial development, the mechanisms by which mitochondria influence heart growth and function are poorly understood. To investigate these disease mechanisms, we studied a genetic model of mitochondrial dysfunction caused by inactivation of Tfam (transcription factor A, mitochondrial), a nuclear-encoded gene that is essential for mitochondrial gene transcription and mitochondrial DNA replication. Tfam inactivation by Nkx2.5 Cre caused mitochondrial dysfunction and embryonic lethal myocardial hypoplasia. Tfam inactivation was accompanied by elevated production of reactive oxygen species (ROS) and reduced cardiomyocyte proliferation. Mosaic embryonic Tfam inactivation confirmed that the block to cardiomyocyte proliferation was cell autonomous. Transcriptional profiling by RNA-seq demonstrated the activation of the DNA damage pathway. Pharmacological inhibition of ROS or the DNA damage response pathway restored cardiomyocyte proliferation in cultured fetal cardiomyocytes. Neonatal Tfam inactivation by AAV9-cTnT-Cre caused progressive, lethal dilated cardiomyopathy. Remarkably, postnatal Tfam inactivation and disruption of mitochondrial function did not impair cardiomyocyte maturation. Rather, it elevated ROS production, activated the DNA damage response pathway, and decreased cardiomyocyte proliferation. We identified a transient window during the first postnatal week when inhibition of ROS or the DNA damage response pathway ameliorated the detrimental effect of Tfam inactivation. Mitochondrial dysfunction caused by Tfam inactivation induced ROS production, activated the DNA damage response, and caused cardiomyocyte cell cycle arrest, ultimately resulting in lethal cardiomyopathy. Normal mitochondrial function was not required for cardiomyocyte maturation. Pharmacological inhibition of ROS or DNA damage response pathways is a potential strategy to prevent cardiac dysfunction caused by some forms of mitochondrial dysfunction. © 2017 American Heart Association, Inc.
Saenz, D T; Fiskus, W; Qian, Y; Manshouri, T; Rajapakshe, K; Raina, K; Coleman, K G; Crew, A P; Shen, A; Mill, C P; Sun, B; Qiu, P; Kadia, T M; Pemmaraju, N; DiNardo, C; Kim, M-S; Nowak, A J; Coarfa, C; Crews, C M; Verstovsek, S; Bhalla, K N
2017-09-01
The PROTAC (proteolysis-targeting chimera) ARV-825 recruits bromodomain and extraterminal (BET) proteins to the E3 ubiquitin ligase cereblon, leading to degradation of BET proteins, including BRD4. Although the BET-protein inhibitor (BETi) OTX015 caused accumulation of BRD4, treatment with equimolar concentrations of ARV-825 caused sustained and profound depletion (>90%) of BRD4 and induced significantly more apoptosis in cultured and patient-derived (PD) CD34+ post-MPN sAML cells, while relatively sparing the CD34+ normal hematopoietic progenitor cells. RNA-Seq, Reverse Phase Protein Array and mass cytometry 'CyTOF' analyses demonstrated that ARV-825 caused greater perturbations in messenger RNA (mRNA) and protein expressions than OTX015 in sAML cells. Specifically, compared with OTX015, ARV-825 treatment caused more robust and sustained depletion of c-Myc, CDK4/6, JAK2, p-STAT3/5, PIM1 and Bcl-xL, while increasing the levels of p21 and p27. Compared with OTX015, PROTAC ARV-771 treatment caused greater reduction in leukemia burden and further improved survival of NSG mice engrafted with luciferase-expressing HEL92.1.7 cells. Co-treatment with ARV-825 and JAK inhibitor ruxolitinib was synergistically lethal against established and PD CD34+ sAML cells. Notably, ARV-825 induced high levels of apoptosis in the in vitro generated ruxolitinib-persister or ruxolitinib-resistant sAML cells. These findings strongly support the in vivo testing of the BRD4-PROTAC based combinations against post-MPN sAML.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Hyejin; Yoon, Min-Sik; Ryu, Kwon-Yul, E-mail: kyryu@uos.ac.kr
Highlights: •Proliferation capacity of Ubc{sup −/−} FLCs was reduced during culture in vitro. •Ubc is required for proliferation of both hepatocytes and bipotent FLEPCs. •Bipotent FLEPCs exhibit highest Ubc transcription and proliferation capacity. •Cell types responsible for Ubc{sup −/−} fetal liver developmental defect were identified. -- Abstract: We have previously demonstrated that disruption of polyubiquitin gene Ubc leads to mid-gestation embryonic lethality most likely due to a defect in fetal liver development, which can be partially rescued by ectopic expression of Ub. In a previous study, we assessed the cause of embryonic lethality with respect to the fetal liver hematopoieticmore » system. We confirmed that Ubc{sup −/−} embryonic lethality could not be attributed to impaired function of hematopoietic stem cells, which raises the question of whether or not FLECs such as hepatocytes and bile duct cells, the most abundant cell types in the liver, are affected by disruption of Ubc and contribute to embryonic lethality. To answer this, we isolated FLCs from E13.5 embryos and cultured them in vitro. We found that proliferation capacity of Ubc{sup −/−} cells was significantly reduced compared to that of control cells, especially during the early culture period, however we did not observe the increased number of apoptotic cells. Furthermore, levels of Ub conjugate, but not free Ub, decreased upon disruption of Ubc expression in FLCs, and this could not be compensated for by upregulation of other poly- or mono-ubiquitin genes. Intriguingly, the highest Ubc expression levels throughout the entire culture period were observed in bipotent FLEPCs. Hepatocytes and bipotent FLEPCs were most affected by disruption of Ubc, resulting in defective proliferation as well as reduced cell numbers in vitro. These results suggest that defective proliferation of these cell types may contribute to severe reduction of fetal liver size and potentially mid-gestation lethality of Ubc{sup −/−} embryos.« less
Wu, Chenggang; Huang, I-Hsiu; Chang, Chungyu; Reardon-Robinson, Melissa Elizabeth; Das, Asis; Ton-That, Hung
2014-12-01
Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harbouring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalysed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens. © 2014 John Wiley & Sons Ltd.
Svensson, Malin; Fast, Jonas; Mossberg, Ann-Kristin; Düringer, Caroline; Gustafsson, Lotta; Hallgren, Oskar; Brooks, Charles L; Berliner, Lawrence; Linse, Sara; Svanborg, Catharina
2003-12-01
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex of human alpha-lactalbumin and oleic acid (C18:1:9 cis) that kills tumor cells by an apoptosis-like mechanism. Previous studies have shown that a conformational change is required to form HAMLET from alpha-lactalbumin, and that a partially unfolded conformation is maintained in the HAMLET complex. This study examined if unfolding of alpha-lactalbumin is sufficient to induce cell death. We used the bovine alpha-lactalbumin Ca(2+) site mutant D87A, which is unable to bind Ca(2+), and thus remains partially unfolded regardless of solvent conditions. The D87A mutant protein was found to be inactive in the apoptosis assay, but could readily be converted to a HAMLET-like complex in the presence of oleic acid. BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) and D87A-BAMLET complexes were both able to kill tumor cells. This activity was independent of the Ca(2+)site, as HAMLET maintained a high affinity for Ca(2+) but D87A-BAMLET was active with no Ca(2+) bound. We conclude that partial unfolding of alpha-lactalbumin is necessary but not sufficient to trigger cell death, and that the activity of HAMLET is defined both by the protein and the lipid cofactor. Furthermore, a functional Ca(2+)-binding site is not required for conversion of alpha-lactalbumin to the active complex or to cause cell death. This suggests that the lipid cofactor stabilizes the altered fold without interfering with the Ca(2+)site.
Lethal effect of electric fields on isolated ventricular myocytes.
de Oliveira, Pedro Xavier; Bassani, Rosana Almada; Bassani, José Wilson Magalhães
2008-11-01
Defibrillator-type shocks may cause electric and contractile dysfunction. In this study, we determined the relationship between probability of lethal injury and electric field intensity (E in isolated rat ventricular myocytes, with emphasis on field orientation and stimulus waveform. This relationship was sigmoidal with irreversible injury for E > 50 V/cm . During both threshold and lethal stimulation, cells were twofold more sensitive to the field when it was applied longitudinally (versus transversally) to the cell major axis. For a given E, the estimated maximum variation of transmembrane potential (Delta V(max)) was greater for longitudinal stimuli, which might account for the greater sensitivity to the field. Cell death, however, occurred at lower maximum Delta V(max) values for transversal shocks. This might be explained by a less steep spatial decay of transmembrane potential predicted for transversal stimulation, which would possibly result in occurrence of electroporation in a larger membrane area. For the same stimulus duration, cells were less sensitive to field-induced injury when shocks were biphasic (versus monophasic). Ours results indicate that, although significant myocyte death may occur in the E range expected during clinical defibrillation, biphasic shocks are less likely to produce irreversible cell injury.
Marzi, Andrea; Engelmann, Flora; Feldmann, Friederike; Haberthur, Kristen; Shupert, W Lesley; Brining, Douglas; Scott, Dana P; Geisbert, Thomas W; Kawaoka, Yoshihiro; Katze, Michael G; Feldmann, Heinz; Messaoudi, Ilhem
2013-01-29
Ebola viruses cause hemorrhagic disease in humans and nonhuman primates with high fatality rates. These viruses pose a significant health concern worldwide due to the lack of approved therapeutics and vaccines as well as their potential misuse as bioterrorism agents. Although not licensed for human use, recombinant vesicular stomatitis virus (rVSV) expressing the filovirus glycoprotein (GP) has been shown to protect macaques from Ebola virus and Marburg virus infections, both prophylactically and postexposure in a homologous challenge setting. However, the immune mechanisms of protection conferred by this vaccine platform remain poorly understood. In this study, we set out to investigate the role of humoral versus cellular immunity in rVSV vaccine-mediated protection against lethal Zaire ebolavirus (ZEBOV) challenge. Groups of cynomolgus macaques were depleted of CD4+ T, CD8+ T, or CD20+ B cells before and during vaccination with rVSV/ZEBOV-GP. Unfortunately, CD20-depleted animals generated a robust IgG response. Therefore, an additional group of vaccinated animals were depleted of CD4+ T cells during challenge. All animals were subsequently challenged with a lethal dose of ZEBOV. Animals depleted of CD8+ T cells survived, suggesting a minimal role for CD8+ T cells in vaccine-mediated protection. Depletion of CD4+ T cells during vaccination caused a complete loss of glycoprotein-specific antibodies and abrogated vaccine protection. In contrast, depletion of CD4+ T cells during challenge resulted in survival of the animals, indicating a minimal role for CD4+ T-cell immunity in rVSV-mediated protection. Our results suggest that antibodies play a critical role in rVSV-mediated protection against ZEBOV.
Chromosomal Effects on Mutability in the P-M System of Hybrid Dysgenesis in DROSOPHILA MELANOGASTER
Simmons, Michael J.; Raymond, John D.; Laverty, Todd R.; Doll, Rhonda F.; Raymond, Nancy C.; Kocur, Gordon J.; Drier, Eric A.
1985-01-01
Two manifestations of hybrid dysgenesis were studied in flies with chromosomes derived from two different P strains. In one set of experiments, the occurrence of recessive X-linked lethal mutations in the germ cells of dysgenic males was monitored. In the other, the behavior of an X-linked P-element insertion mutation, sn w, was studied in dysgenic males and also in dysgenic females. The chromosomes of one P strain were more proficient at causing dysgenesis in both sets of experiments. However, there was variation among the chromosomes of each strain in regard to the ability to induce lethals or to destabilize snw. The X chromosome, especially when it came from the stronger P strain, had a pronounced effect on both measures of dysgenesis, but in combination with the major autosomes, these effects were reduced. For the stronger P strain, the autosomes by themselves contributed significantly to the production of X-linked lethals and also had large effects on the behavior of snw, but they did not act additively on these two characters. For this strain, the effects of the autosomes on the X-linked lethal mutation rate suggest that only 1/100 P element transpositions causes a recessive lethal mutation. For the weaker P strain, the autosomes had only slight effects on the behavior of snw and appeared to have negligible effects on the X-linked lethal mutation rate. Combinations of chromosomes from either the strong or the weak P strain affected both aspects of dysgenesis in a nonadditive fashion, suggesting that the P elements on these chromosomes competed with each other for transposase, the P-encoded function that triggers P element activity. Age and sex also influenced the ability of chromosomes and combinations of chromosomes to cause dysgenesis. PMID:3934034
Zahn, Roland; Gillisen, Gert; Roos, Anna; Koning, Marina; van der Helm, Esmeralda; Spek, Dirk; Weijtens, Mo; Grazia Pau, Maria; Radošević, Katarina; Weverling, Gerrit Jan; Custers, Jerome; Vellinga, Jort; Schuitemaker, Hanneke; Goudsmit, Jaap; Rodríguez, Ariane
2012-01-01
Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35) was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP) if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,), two Marburg strains (Marburg Angola and Marburg Ravn) and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26–Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years. PMID:23236343
Examining Merkel Cell Polyomavirus Minor Capsid Proteins | Center for Cancer Research
Merkel cell polyomavirus (MCV or MCPyV) is a recently discovered member of the viral family Polyomaviridae. It is a skin-dwelling polyomavirus species that appears to cause a rare but highly lethal form of skin cancer called Merkel cell carcinoma (MCC). Despite MCC being uncommon, chronic MCV infection of human skin is widespread, and most infected people have no known
A screen to identify Drosophila genes required for integrin-mediated adhesion.
Walsh, E P; Brown, N H
1998-01-01
Drosophila integrins have essential adhesive roles during development, including adhesion between the two wing surfaces. Most position-specific integrin mutations cause lethality, and clones of homozygous mutant cells in the wing do not adhere to the apposing surface, causing blisters. We have used FLP-FRT induced mitotic recombination to generate clones of randomly induced mutations in the F1 generation and screened for mutations that cause wing blisters. This phenotype is highly selective, since only 14 lethal complementation groups were identified in screens of the five major chromosome arms. Of the loci identified, 3 are PS integrin genes, 2 are blistered and bloated, and the remaining 9 appear to be newly characterized loci. All 11 nonintegrin loci are required on both sides of the wing, in contrast to integrin alpha subunit genes. Mutations in 8 loci only disrupt adhesion in the wing, similar to integrin mutations, while mutations in the 3 other loci cause additional wing defects. Mutations in 4 loci, like the strongest integrin mutations, cause a "tail-up" embryonic lethal phenotype, and mutant alleles of 1 of these loci strongly enhance an integrin mutation. Thus several of these loci are good candidates for genes encoding cytoplasmic proteins required for integrin function. PMID:9755209
Hocke, Sandra; Guo, Yang; Job, Albert; Orth, Michael; Ziesch, Andreas; Lauber, Kirsten; De Toni, Enrico N; Gress, Thomas M.; Herbst, Andreas; Göke, Burkhard; Gallmeier, Eike
2016-01-01
The phosphoinositide 3-kinase-related kinase ATR represents a central checkpoint regulator and mediator of DNA-repair. Its inhibition selectively eliminates certain subsets of cancer cells in various tumor types, but the underlying genetic determinants remain enigmatic. Here, we applied a synthetic lethal screen directed against 288 DNA-repair genes using the well-defined ATR knock-in model of DLD1 colorectal cancer cells to identify potential DNA-repair defects mediating these effects. We identified a set of DNA-repair proteins, whose knockdown selectively killed ATR-deficient cancer cells. From this set, we further investigated the profound synthetic lethal interaction between ATR and POLD1. ATR-dependent POLD1 knockdown-induced cell killing was reproducible pharmacologically in POLD1-depleted DLD1 cells and a panel of other colorectal cancer cell lines by using chemical inhibitors of ATR or its major effector kinase CHK1. Mechanistically, POLD1 depletion in ATR-deficient cells caused caspase-dependent apoptosis without preceding cell cycle arrest and increased DNA-damage along with impaired DNA-repair. Our data could have clinical implications regarding tumor genotype-based cancer therapy, as inactivating POLD1 mutations have recently been identified in small subsets of colorectal and endometrial cancers. POLD1 deficiency might thus represent a predictive marker for treatment response towards ATR- or CHK1-inhibitors that are currently tested in clinical trials. PMID:26755646
Induction of Immune Mediators in Glioma and Prostate Cancer Cells by Non-Lethal Photodynamic Therapy
Kammerer, Robert; Buchner, Alexander; Palluch, Patrick; Pongratz, Thomas; Oboukhovskij, Konstantin; Beyer, Wolfgang; Johansson, Ann; Stepp, Herbert; Baumgartner, Reinhold; Zimmermann, Wolfgang
2011-01-01
Background Photodynamic therapy (PDT) uses the combination of photosensitizing drugs and harmless light to cause selective damage to tumor cells. PDT is therefore an option for focal therapy of localized disease or for otherwise unresectable tumors. In addition, there is increasing evidence that PDT can induce systemic anti-tumor immunity, supporting control of tumor cells, which were not eliminated by the primary treatment. However, the effect of non-lethal PDT on the behavior and malignant potential of tumor cells surviving PDT is molecularly not well defined. Methodology/Principal Findings Here we have evaluated changes in the transcriptome of human glioblastoma (U87, U373) and human (PC-3, DU145) and murine prostate cancer cells (TRAMP-C1, TRAMP-C2) after non-lethal PDT in vitro and in vivo using oligonucleotide microarray analyses. We found that the overall response was similar between the different cell lines and photosensitizers both in vitro and in vivo. The most prominently upregulated genes encoded proteins that belong to pathways activated by cellular stress or are involved in cell cycle arrest. This response was similar to the rescue response of tumor cells following high-dose PDT. In contrast, tumor cells dealing with non-lethal PDT were found to significantly upregulate a number of immune genes, which included the chemokine genes CXCL2, CXCL3 and IL8/CXCL8 as well as the genes for IL6 and its receptor IL6R, which can stimulate proinflammatory reactions, while IL6 and IL6R can also enhance tumor growth. Conclusions Our results indicate that PDT can support anti-tumor immune responses and is, therefore, a rational therapy even if tumor cells cannot be completely eliminated by primary phototoxic mechanisms alone. However, non-lethal PDT can also stimulate tumor growth-promoting autocrine loops, as seen by the upregulation of IL6 and its receptor. Thus the efficacy of PDT to treat tumors may be improved by controlling unwanted and potentially deleterious growth-stimulatory pathways. PMID:21738796
Saitoh, Shohei; Fukunaga, Eri; Ohtani, Hana; Oyama, Yasuo
2015-09-01
4,5-Dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) is an antifouling agent that is an alternative to organotins such as tributyltin (TBT). Because DCOIT decreases catalase activity, it may increase the susceptibility of cells to oxidative stress. We examined the effects of DCOIT on rat thymocytes suffering from oxidative stress induced by H2O2. The simultaneous application of DCOIT and H2O2 induced a synergistic increase in cell lethality that was completely suppressed by chelating intracellular Zn(2+). Intracellular Zn(2+) concentration was increased by DCOIT at concentrations ranging from 0.1 μM to 3 μM. Although the increase in cell lethality produced by DCOIT alone was less than that produced by TBT alone, a synergistic increase was not induced by the combination of TBT and H2O2. Therefore, these results suggest that DCOIT increases vulnerability to oxidative stress and is more cytotoxic than TBT when oxidative stress is induced by H2O2. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kip, E; Nazé, F; Suin, V; Vanden Berghe, T; Francart, A; Lamoral, S; Vandenabeele, P; Beyaert, R; Van Gucht, S; Kalai, M
2017-01-01
Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn-Rotnycki-Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1 β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1 β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1 β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection.
Remo, Andrea; Manfrin, Erminia; Parcesepe, Pietro; Ferrarini, Alberto; Han, Hye Seung; Ugnius, Mickys; Laudanna, Carmelo; Simbolo, Michele; Malanga, Donatella; Mendes Oliveira, Duarte; Baritono, Elisabetta; Colangelo, Tommaso; Sabatino, Lina; Giuliani, Jacopo; Molinari, Enrico; Garonzi, Marianna; Xumerle, Luciano; Delledonne, Massimo; Giordano, Guido; Ghimenton, Claudio; Lonardo, Fortunato; D'angelo, Fulvio; Grillo, Federica; Mastracci, Luca; Viglietto, Giuseppe; Ceccarelli, Michele; Colantuoni, Vittorio; Scarpa, Aldo; Pancione, Massimo
2018-05-21
Centrosome anomalies contribute to tumorigenesis but it remains unclear how they are generated in lethal cancer phenotypes. Here, it is demonstrated that human microsatellite instable (MSI) and BRAF(V600E) mutant colorectal cancers with a lethal rhabdoid phenotype are characterized by inactivation of centrosomal functions. A splice site mutation that causes an unbalanced dosage of rootletin (CROCC), a centrosomal-linker component required for centrosome cohesion and separation at the chromosome 1p36.13 locus, resulted in abnormally shaped centrosomes in rhabdoid cells from human colon tissues. Notably, deleterious deletions at 1p36.13 were recurrent in a subgroup of BRAF(V600E) mutant and microsatellite stable (MSS) rhabdoid colorectal cancers but not in classical colorectal cancer or pediatric rhabdoid tumors. Interfering with CROCC expression in near-diploid BRAF(V600E) mutant/MSI colon cancer cells disrupts bipolar mitotic spindle architecture, promotes tetraploid segregation errors resulting in a highly aggressive rhabdoid-like phenotype in vitro. Restoring near-wild-type levels of CROCC in a metastatic model harboring 1p36.13 deletion results in correction of centrosome segregation errors and cell death, revealing a mechanism of tolerance to mitotic errors and tetraploidization promoted by deleterious 1p36.13 loss. Accordingly, cancer cells lacking 1p36.13 display far greater sensitivity to centrosome spindle pole stabilizing agents in vitro. These data shed light on a previously unknown link between centrosome cohesion defects and lethal cancer phenotypes providing new insight into pathways underlying genome instability. Mis-segregation of chromosomes is a prominent feature of chromosome instability and intra-tumoral heterogeneity recurrent in metastatic tumors for which the molecular basis is unknown. The present study provides insight into the mechanism by which defects in rootletin, a centrosome linker component causes tetraploid segregation errors and phenotypic transition to a clinically devastating form of malignant rhabdoid tumor. Copyright ©2018, American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yoo-Shin; Lee, Tae Hoon; O'Neill, Brian E., E-mail: BEOneill@houstonmethodist.org
Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models.more » In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy.« less
NASA Astrophysics Data System (ADS)
Prentice, Paul; MacDonald, Michael P.; Cuschieri, Alfred; Dholakia, Kishan; Campbell, Paul
2005-08-01
Cells that are exposed to varying amounts of ultrasonic energy in the presence of ultrasound contrast agent (UCA) may undergo either permanent cell membrane damage (lethal sonoporation), or a transient enhancement of membrane permeability (reversible or non lethal sonoporation). The merits of each mode are clear; lethal sonoporation constitutes a significant tumour therapy weapon, whilst its less intrusive counterpart, reversible sonoporation, represents an effective non-invasive targeted drug delivery technique. Our working hypothesis for understanding this problem was that the root cause and effect in sonoporation involves the interaction of individual cells with single microbubbles, and to that end we devised an experiment that facilitates video rate observation of this specific scenario under well defined optical control. Specifically, we have constructed an innovative hybridization apparatus involving holographic optical trapping of single and multiple UCA microbubbles, together with the facility to irradiate with MHz pulsed ultrasound energy in the presence cancerous cells. This approach allows the isolation of a target microbubble from a resident population and the relocation to a [controllable] predetermined position relative to a cell within a monolayer. Frame extraction from standard framing rate video microscopy demonstrates the individuality of single microbubble-cell interactions. We describe a fluorescence microscopy protocol that will allow future study of the potential to deliver molecular species to cells, the dependence of the delivery on the initial microbubble-cell distance and to determine the targeted cell survival.
Rimkus, Stacey A; Wassarman, David A
2018-01-01
Ataxia-telangiectasia (A-T) is a neurodegenerative disease caused by mutation of the A-T mutated (ATM) gene. ATM encodes a protein kinase that is activated by DNA damage and phosphorylates many proteins, including those involved in DNA repair, cell cycle control, and apoptosis. Characteristic biological and molecular functions of ATM observed in mammals are conserved in Drosophila melanogaster. As an example, conditional loss-of-function ATM alleles in flies cause progressive neurodegeneration through activation of the innate immune response. However, unlike in mammals, null alleles of ATM in flies cause lethality during development. With the goals of understanding biological and molecular roles of ATM in a whole animal and identifying candidate therapeutics for A-T, we performed a screen of 2400 compounds, including FDA-approved drugs, natural products, and bioactive compounds, for modifiers of the developmental lethality caused by a temperature-sensitive ATM allele (ATM8) that has reduced kinase activity at non-permissive temperatures. Ten compounds reproducibly suppressed the developmental lethality of ATM8 flies, including Ronnel, which is an organophosphate. Ronnel and other suppressor compounds are known to cause mitochondrial dysfunction or to inhibit the enzyme acetylcholinesterase, which controls the levels of the neurotransmitter acetylcholine, suggesting that detrimental consequences of reduced ATM kinase activity can be rescued by inhibiting the function of mitochondria or increasing acetylcholine levels. We carried out further studies of Ronnel because, unlike the other compounds that suppressed the developmental lethality of homozygous ATM8 flies, Ronnel was toxic to the development of heterozygous ATM8 flies. Ronnel did not affect the innate immune response of ATM8 flies, and it further increased the already high levels of DNA damage in brains of ATM8 flies, but its effects were not harmful to the lifespan of rescued ATM8 flies. These results provide new leads for understanding the biological and molecular roles of ATM and for the treatment of A-T.
Lagas, Jurjen S; Wagenaar, Jiri F P; Huitema, Alwin D R; Hillebrand, Michel J X; Koks, Cornelis H W; Gerdes, Victor E A; Brandjes, Desiderius P M; Beijnen, Jos H
2011-09-01
Morphine-6-glucuronide, the active metabolite of morphine, and to a lesser extent morphine itself are known to accumulate in patients with renal failure. A number of cases on non-lethal morphine toxicity in patients with renal impairment report high plasma concentrations of morphine-6-glucuronide, suggesting that this metabolite achieves sufficiently high brain concentrations to cause long-lasting respiratory depression, despite its poor central nervous system penetration. We report a lethal morphine intoxication in a 61-year-old man with sickle cell disease and renal impairment, and we measured concentrations of morphine and morphine-6-glucuronide in blood, brain and cerebrospinal fluid. There were no measurable concentrations of morphine-6-glucuronide in cerebrospinal fluid or brain tissue, despite high blood concentrations. In contrast, the relatively high morphine concentration in the brain suggests that morphine itself was responsible for the cardiorespiratory arrest in this patient. Given the fatal outcome, we recommend to avoid repeated or continuous morphine administration in renal failure.
Koide, Naoki; Morikawa, Akiko; Odkhuu, Erdenezaya; Haque, Abedul; Badamtseren, Battuvshin; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi
2012-02-01
The LPS-mediated lethality of NC/Nga mice, having fewer NKT cells, was examined by using d-galactosamine (d-GalN)-sensitization. The NC/Nga mice were not killed by a simultaneous administration of d-GalN and LPS whereas all C57BL/6 (B6) control mice were killed. The injection of d-GalN and LPS failed to elevate the levels of serum alanine aminotransferase and caspase 3 in the liver tissues of NC/Nga mice. Further, the nitric oxide (NO) level of the d-GalN- and LPS-injected NC/Nga mice was much lower than those of the B6 mice. The expression of an inducible NO synthase (iNOS) was significantly reduced in the livers of NC/Nga mice. However, there was no significant difference in LPS-induced TNF-α production between B6 mice and NC/Nga mice. The NC/Nga mice had an impaired expression of IFN-γ protein and mRNA in response to d-GalN and LPS. The pretreatment with α-galactosylceramide (α-GalCer), which activates Vα14(+) NKT cells and induces the production of IFN-γ, rendered NC/Nga mice more susceptible to the LPS-mediated lethality. The livers of NC/Nga mice had fewer NKT cells compared to B6 mice. Taken together, it is suggested that the resistance of NC/Nga mice to the LPS-mediated lethality with d-GalN sensitization depended on the impaired IFN-γ production caused by fewer NKT cells and reduced NO production that followed.
Apoptosis inducing factor (AIF) mediates lethal redox stress induced by menadione.
Wiraswati, Hesti Lina; Hangen, Emilie; Sanz, Ana Belén; Lam, Ngoc-Vy; Reinhardt, Camille; Sauvat, Allan; Mogha, Ariane; Ortiz, Alberto; Kroemer, Guido; Modjtahedi, Nazanine
2016-11-22
Mitochondrial apoptosis inducing factor (AIF) is a redox-active enzyme that participates to the biogenesis/maintenance of complex I of the respiratory chain, yet also contributes to catabolic reactions in the context of regulated cell death when AIF translocates to the cytosol and to the nucleus. Here we explore the contribution of AIF to cell death induced by menadione (2-methyl-1,4-naphtoquinone; also called vitamin K3) in conditions in which this pro-oxidant does not cause the mitochondrial release of AIF, yet causes caspase-independent cell killing. Depletion of AIF from human cancer cells reduced the cytotoxicity of menadione. This cytoprotective effect was accompanied by the maintenance of high levels of reduced glutathione (GSH), which are normally depleted by menadione. In addition, AIF depletion reduced the arylation of cellular proteins induced by menadione. This menadione-triggered arylation, which can be measured by a fluorescence assay, is completely suppressed by addition of exogenous glutathione or N-acetyl cysteine. Complex I inhibition by Rotenone did not mimic the cytoprotective action of AIF depletion. Altogether, these results are compatible with the hypothesis that mitochondrion-sessile AIF facilitates lethal redox cycling of menadione, thereby precipitating protein arylation and glutathione depletion.
Apoptosis inducing factor (AIF) mediates lethal redox stress induced by menadione
Wiraswati, Hesti Lina; Hangen, Emilie; Sanz, Ana Belén; Lam, Ngoc-Vy; Reinhardt, Camille; Sauvat, Allan; Mogha, Ariane; Ortiz, Alberto
2016-01-01
Mitochondrial apoptosis inducing factor (AIF) is a redox-active enzyme that participates to the biogenesis/maintenance of complex I of the respiratory chain, yet also contributes to catabolic reactions in the context of regulated cell death when AIF translocates to the cytosol and to the nucleus. Here we explore the contribution of AIF to cell death induced by menadione (2-methyl-1,4-naphtoquinone; also called vitamin K3) in conditions in which this pro-oxidant does not cause the mitochondrial release of AIF, yet causes caspase-independent cell killing. Depletion of AIF from human cancer cells reduced the cytotoxicity of menadione. This cytoprotective effect was accompanied by the maintenance of high levels of reduced glutathione (GSH), which are normally depleted by menadione. In addition, AIF depletion reduced the arylation of cellular proteins induced by menadione. This menadione-triggered arylation, which can be measured by a fluorescence assay, is completely suppressed by addition of exogenous glutathione or N-acetyl cysteine. Complex I inhibition by Rotenone did not mimic the cytoprotective action of AIF depletion. Altogether, these results are compatible with the hypothesis that mitochondrion-sessile AIF facilitates lethal redox cycling of menadione, thereby precipitating protein arylation and glutathione depletion. PMID:27738311
NASA Astrophysics Data System (ADS)
Guo, Huarong; Yin, Licheng; Zhang, Shicui; Feng, Wenrong
2010-09-01
The toxic mechanism of herbicide butachlor to induce extremely high lethality in marine flatfish flounder, Paralichthys Olivaceus, was analyzed by histopathological examination, antioxidant enzymes activities and ATP content assay. Histopathological examination of gill, liver and kidney of exposed fishes showed that gill was a target organ of butachlor. The butachlor seriously impaired the respiration of gills by a series of lesions such as edema, lifting and detachment of lamellar epithelium, breakdown of pillar cells, and blood congestion. The dysfunction of gill respiration caused suffocation to the exposed flounder with extremely high acute lethality. Antioxidant enzyme activity assay of the in vitro cultured flounder gill (FG) cells exposed to butachlor indicated that butachlor markedly inhibited the antioxidant enzyme activities of Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX). Furthermore, along with the decline of antioxidant enzyme activities, ATP content in the exposed FG cells decreased, too. This infers that the oxidative stress induced by butachlor can inhibit the production of cellular ATP. Similar decrease of ATP content was also observed in the exposed flounder gill tissues. Taken together, as in FG cells, butachlor possibly induced a short supply of ATP in pillar cells by inhibiting the antioxidant enzyme activities and then affecting the contractibility of the pillar cells, which in turn resulted in the blood congestion and suffocation of exposed flounder.
DNA repair deficiency sensitizes lung cancer cells to NAD+ biosynthesis blockade.
Touat, Mehdi; Sourisseau, Tony; Dorvault, Nicolas; Chabanon, Roman M; Garrido, Marlène; Morel, Daphné; Krastev, Dragomir B; Bigot, Ludovic; Adam, Julien; Frankum, Jessica R; Durand, Sylvère; Pontoizeau, Clement; Souquère, Sylvie; Kuo, Mei-Shiue; Sauvaigo, Sylvie; Mardakheh, Faraz; Sarasin, Alain; Olaussen, Ken A; Friboulet, Luc; Bouillaud, Frédéric; Pierron, Gérard; Ashworth, Alan; Lombès, Anne; Lord, Christopher J; Soria, Jean-Charles; Postel-Vinay, Sophie
2018-04-02
Synthetic lethality is an efficient mechanism-based approach to selectively target DNA repair defects. Excision repair cross-complementation group 1 (ERCC1) deficiency is frequently found in non-small-cell lung cancer (NSCLC), making this DNA repair protein an attractive target for exploiting synthetic lethal approaches in the disease. Using unbiased proteomic and metabolic high-throughput profiling on a unique in-house-generated isogenic model of ERCC1 deficiency, we found marked metabolic rewiring of ERCC1-deficient populations, including decreased levels of the metabolite NAD+ and reduced expression of the rate-limiting NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). We also found reduced NAMPT expression in NSCLC samples with low levels of ERCC1. These metabolic alterations were a primary effect of ERCC1 deficiency, and caused selective exquisite sensitivity to small-molecule NAMPT inhibitors, both in vitro - ERCC1-deficient cells being approximately 1,000 times more sensitive than ERCC1-WT cells - and in vivo. Using transmission electronic microscopy and functional metabolic studies, we found that ERCC1-deficient cells harbor mitochondrial defects. We propose a model where NAD+ acts as a regulator of ERCC1-deficient NSCLC cell fitness. These findings open therapeutic opportunities that exploit a yet-undescribed nuclear-mitochondrial synthetic lethal relationship in NSCLC models, and highlight the potential for targeting DNA repair/metabolic crosstalks for cancer therapy.
Castañaga, Luis A; Asorey, Cynthia M; Sandoval, María T; Pérez-Coll, Cristina S; Argibay, Teresa I; Herkovits, Jorge
2009-02-01
The adverse effects of ultraviolet B radiation from 547.2 to 30,096 J/m2 on morphogenesis, cell differentiation, and lethality of amphibian embryos at six developmental stages were evaluated from 24 up to 168 h postexposure. The ultraviolet B radiation lethal dose 10, 50, and 90 values were obtained for all developmental stages evaluated. The lethal dose 50 values, considered as the dose causing lethality in the 50% of the organisms exposed, in J/m2 at 168 h postexposure, ranged from 2,307 to 18,930; gill circulation and blastula were the most susceptible and resistant stages, respectively. Ultraviolet B radiation caused malformations in all developmental stages but was significantly more teratogenic at the gill circulation and complete operculum stages. Moreover, at the gill circulation stage, even the lowest dose (547.2 J/m2) resulted in malformations to 100% of embryos. The most common malformations were persistent yolk plug, bifid spine, reduced body size, delayed development, asymmetry, microcephaly and anencephaly, tail and body flexures toward the irradiated side, agenesia or partial gill development, abnormal pigment distribution, and hypermotility. The stage-dependent susceptibility to ultraviolet B radiation during amphibian embryogenesis could be explained in the framework of evoecotoxicology, considering ontogenic features as biomarkers of environmental signatures of living forms ancestors during the evolutionary process. The stage-dependent susceptibility to ultraviolet B radiation on Rhinella (Bufo) arenarum embryos for both lethal and teratogenic effects could contribute to a better understanding of the role of the increased ultraviolet B radiation on worldwide amphibian populations decline.
Steckel, Michael; Molina-Arcas, Miriam; Weigelt, Britta; Marani, Michaela; Warne, Patricia H; Kuznetsov, Hanna; Kelly, Gavin; Saunders, Becky; Howell, Michael; Downward, Julian; Hancock, David C
2012-01-01
Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy. PMID:22613949
ERIC Educational Resources Information Center
Rotman, Ella Rose
2009-01-01
Chromosomal fragmentation in "Escherichia coli" is a lethal event for the cell unless mended by the recombinational repair proteins RecA, RecBCD, and RuvABC. Certain mutations exacerbate problems that cause the cell to be dependent on the recombinational repair proteins for viability. We tested whether the absence of the MutT protein caused…
USDA-ARS?s Scientific Manuscript database
African swine fever virus (ASFV) causes a contagious and often lethal disease of feral and domestic swine. Experimental vaccines derived from naturally occurring, genetically modified or cell culture-adapted ASFV have been evaluated but no commercial vaccine is available to control African Swine Fev...
What makes a natural clay antibacterial?
Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.
2011-01-01
Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals.
Zhao, Yi; Zhan, Yuxia; Burke, Kathleen A; Anderson, W French
2005-04-01
Ionizing radiation-induced myeloablation can be rescued via bone marrow transplantation (BMT) or administration of cytokines if given within 2 hours after radiation exposure. There is no evidence for the existence of soluble factors that can rescue an animal after a lethal dose of radiation when administered several hours postradiation. We established a system that could test the possibility for the existence of soluble factors that could be used more than 2 hours postirradiation to rescue animals. Animals with an implanted TheraCyte immunoisolation device (TID) received lethal-dose radiation and then normal bone marrow Lin- cells were loaded into the device (thereby preventing direct interaction between donor and recipient cells). Animal survival was evaluated and stem cell activity was tested with secondary bone marrow transplantation and flow cytometry analysis. Donor cell gene expression of five antiapoptotic cytokines was examined. Bone marrow Lin- cells rescued lethally irradiated animals via soluble factor(s). Bone marrow cells from the rescued animals can rescue and repopulate secondary lethally irradiated animals. Within the first 6 hours post-lethal-dose radiation, there is no significant change of gene expression of the known radioprotective factors TPO, SCF, IL-3, Flt-3 ligand, and SDF-1. Hematopoietic stem cells can be protected in lethally irradiated animals by soluble factors produced by bone marrow Lin- cells.
Ferree, Patrick M; Gomez, Karina; Rominger, Peter; Howard, Dagnie; Kornfeld, Hannah; Barbash, Daniel A
2014-04-01
Some circularized X-Y chromosomes in Drosophila melanogaster are mitotically unstable and induce early embryonic lethality, but the genetic basis is unknown. Our experiments suggest that a large region of X-linked satellite DNA causes anaphase bridges and lethality when placed into a new heterochromatic environment within certain circularized X-Y chromosomes. These results reveal that repetitive sequences can be incompatible with one another in cis. The lethal phenotype also bears a remarkable resemblance to a case of interspecific hybrid lethality.
Booth, Laurence; Roberts, Jane L; Samuel, Peter; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul
2018-06-03
The irreversible ERBB1/2/4 inhibitor neratinib has been shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET, PDGFRα and mutant RAS proteins via autophagic degradation. Neratinib interacted in an additive to synergistic fashion with the approved PARP1 inhibitor niraparib to kill ovarian cancer cells. Neratinib and niraparib caused the ATM-dependent activation of AMPK which in turn was required to cause mTOR inactivation, ULK-1 activation and ATG13 phosphorylation. The drug combination initially increased autophagosome levels followed later by autolysosome levels. Preventing autophagosome formation by expressing activated mTOR or knocking down of Beclin1, or knock down of the autolysosome protein cathepsin B, reduced drug combination lethality. The drug combination caused an endoplasmic reticulum stress response as judged by enhanced eIF2α phosphorylation that was responsible for reducing MCL-1 and BCL-XL levels and increasing ATG5 and Beclin1 expression. Knock down of BIM, but not of BAX or BAK, reduced cell killing. Expression of activated MEK1 prevented the drug combination increasing BIM expression and reduced cell killing. Downstream of the mitochondrion, drug lethality was partially reduced by knock down of AIF, but expression of dominant negative caspase 9 was not protective. Our data demonstrate that neratinib and niraparib interact to kill ovarian cancer cells through convergent DNA damage and endoplasmic reticulum stress signaling. Cell killing required the induction of autophagy and was cathepsin B and AIF -dependent, and effector caspase independent.
The ectromelia virus SPI-2 protein causes lethal mousepox by preventing NK cell responses.
Melo-Silva, Carolina R; Tscharke, David C; Lobigs, Mario; Koskinen, Aulikki; Wong, Yik Chun; Buller, R Mark; Müllbacher, Arno; Regner, Matthias
2011-11-01
Ectromelia virus (ECTV) is a natural pathogen of mice that causes mousepox, and many of its genes have been implicated in the modulation of host immune responses. Serine protease inhibitor 2 (SPI-2) is one of these putative ECTV host response modifier proteins. SPI-2 is conserved across orthopoxviruses, but results defining its mechanism of action and in vivo function are lacking or contradictory. We studied the role of SPI-2 in mousepox by deleting the SPI-2 gene or its serine protease inhibitor reactive site. We found that SPI-2 does not affect viral replication or cell-intrinsic apoptosis pathways, since mutant viruses replicate in vitro as efficiently as wild-type virus. However, in the absence of SPI-2 protein, ECTV is attenuated in mousepox-susceptible mice, resulting in lower viral loads in the liver, decreased spleen pathology, and substantially improved host survival. This attenuation correlates with more effective immune responses in the absence of SPI-2, including an earlier serum gamma interferon (IFN-γ) response, raised serum interleukin 18 (IL-18), increased numbers of granzyme B(+) CD8(+) T cells, and, most notably, increased numbers and activation of NK cells. Both virus attenuation and the improved immune responses associated with SPI-2 deletion from ECTV are lost when mice are depleted of NK cells. Consequently, SPI-2 renders mousepox lethal in susceptible strains by preventing protective NK cell defenses.
Gallenberger, Martin; Meinel, Dominik M; Kroeber, Markus; Wegner, Michael; Milkereit, Philipp; Bösl, Michael R; Tamm, Ernst R
2011-02-01
Mutations in WD repeat domain 36 gene (WDR36) play a causative role in some forms of primary open-angle glaucoma, a leading cause of blindness worldwide. WDR36 is characterized by the presence of multiple WD40 repeats and shows homology to Utp21, an essential protein component of the yeast small subunit (SSU) processome required for maturation of 18S rRNA. To clarify the functional role of WDR36 in the mammalian organism, we generated and investigated mutant mice with a targeted deletion of Wdr36. In parallel experiments, we used RNA interference to deplete WDR36 mRNA in mouse embryos and cultured human trabecular meshwork (HTM-N) cells. Deletion of Wdr36 in the mouse caused preimplantation embryonic lethality, and essentially similar effects were observed when WDR36 mRNA was depleted in mouse embryos by RNA interference. Depletion of WDR36 mRNA in HTM-N cells caused apoptotic cell death and upregulation of mRNA for BAX, TP53 and CDKN1A. By immunocytochemistry, staining for WDR36 was observed in the nucleolus of cells, which co-localized with that of nucleolar proteins such as nucleophosmin and PWP2. In addition, recombinant and epitope-tagged WDR36 localized to the nucleolus of HTM-N cells. By northern blot analysis, a substantial decrease in 21S rRNA, the precursor of 18S rRNA, was observed following knockdown of WDR36. In addition, metabolic-labeling experiments consistently showed a delay of 18S rRNA maturation in WDR36-depleted cells. Our results provide evidence that WDR36 is an essential protein in mammalian cells which is involved in the nucleolar processing of SSU 18S rRNA.
Khoriaty, Rami; Everett, Lesley; Chase, Jennifer; Zhu, Guojing; Hoenerhoff, Mark; McKnight, Brooke; Vasievich, Matthew P.; Zhang, Bin; Tomberg, Kärt; Williams, John; Maillard, Ivan; Ginsburg, David
2016-01-01
In humans, loss of function mutations in SEC23B result in Congenital Dyserythropoietic Anemia type II (CDAII), a disease limited to defective erythroid development. Patients with two nonsense SEC23B mutations have not been reported, suggesting that complete SEC23B deficiency might be lethal. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration and that mice with hematopoietic SEC23B deficiency do not exhibit CDAII. We now show that SEC23B deficiency restricted to the pancreas is sufficient to explain the lethality observed in mice with global SEC23B-deficiency. Immunohistochemical stains demonstrate an acinar cell defect but normal islet cells. Mammalian genomes contain two Sec23 paralogs, Sec23A and Sec23B. The encoded proteins share ~85% amino acid sequence identity. We generate mice with pancreatic SEC23A deficiency and demonstrate that these mice survive normally, exhibiting normal pancreatic weights and histology. Taken together, these data demonstrate that SEC23B but not SEC23A is essential for murine pancreatic development. We also demonstrate that two BAC transgenes spanning Sec23b rescue the lethality of mice homozygous for a Sec23b gene trap allele, excluding a passenger gene mutation as the cause of the pancreatic lethality, and indicating that the regulatory elements critical for Sec23b pancreatic function reside within the BAC transgenes. PMID:27297878
Karau, Melissa J; Tilahun, Mulualem E; Krogman, Ashton; Osborne, Barbara A; Goldsby, Richard A; David, Chella S; Mandrekar, Jayawant N; Patel, Robin; Rajagopalan, Govindarajan
2017-10-03
Drugs such as linezolid that inhibit bacterial protein synthesis may be beneficial in treating infections caused by toxigenic Staphylococcus aureus. As protein synthesis inhibitors have no effect on preformed toxins, neutralization of pathogenic exotoxins with anti-toxin antibodies may be beneficial in conjunction with antibacterial therapy. Herein, we evaluated the efficacy of human-mouse chimeric high-affinity neutralizing anti-staphylococcal enterotoxin B (SEB) antibodies in the treatment of experimental pneumonia caused by SEB-producing S. aureus. Since HLA class II transgenic mice mount a stronger systemic immune response following challenge with SEB and are more susceptible to SEB-induced lethal toxic shock than conventional mice strains, HLA-DR3 transgenic mice were used. Lethal pneumonia caused by SEB-producing S. aureus in HLA-DR3 transgenic mice was characterized by robust T cell activation and elevated systemic levels of several pro-inflammatory cytokines and chemokines. Prophylactic administration of a single dose of linezolid 30 min prior to the onset of infection attenuated the systemic inflammatory response and protected from mortality whereas linezolid administered 60 min after the onset of infection failed to confer significant protection. Human-mouse chimeric high-affinity neutralizing anti-SEB antibodies alone, but not polyclonal human IgG, mitigated this response and protected from death when administered immediately after initiation of infection. Further, anti-SEB antibodies as well as intact polyclonal human IgG, but not its Fab or Fc fragments, protected from lethal pneumonia when followed with linezolid therapy 60 min later. In conclusion, neutralization of superantigens with high-affinity antibodies may have beneficial effects in pneumonia.
Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina
2008-01-01
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.
Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan
2016-01-01
Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577
Exposure to Glycolytic Carbon Sources Reveals a Novel Layer of Regulation for the MalT Regulon
Reimann, Sylvia A.; Wolfe, Alan J.
2011-01-01
Bacteria adapt to changing environments by means of tightly coordinated regulatory circuits. The use of synthetic lethality, a genetic phenomenon in which the combination of two nonlethal mutations causes cell death, facilitates identification and study of such circuitry. In this study, we show that the E. coli ompR malT con double mutant exhibits a synthetic lethal phenotype that is environmentally conditional. MalTcon, the constitutively active form of the maltose system regulator MalT, causes elevated expression of the outer membrane porin LamB, which leads to death in the absence of the osmoregulator OmpR. However, the presence and metabolism of glycolytic carbon sources, such as sorbitol, promotes viability and unveils a novel layer of regulation within the complex circuitry that controls maltose transport and metabolism. PMID:21912549
Exposure to Glycolytic Carbon Sources Reveals a Novel Layer of Regulation for the MalT Regulon.
Reimann, Sylvia A; Wolfe, Alan J
2011-01-01
Bacteria adapt to changing environments by means of tightly coordinated regulatory circuits. The use of synthetic lethality, a genetic phenomenon in which the combination of two nonlethal mutations causes cell death, facilitates identification and study of such circuitry. In this study, we show that the E. coli ompR malT(con) double mutant exhibits a synthetic lethal phenotype that is environmentally conditional. MalT(con), the constitutively active form of the maltose system regulator MalT, causes elevated expression of the outer membrane porin LamB, which leads to death in the absence of the osmoregulator OmpR. However, the presence and metabolism of glycolytic carbon sources, such as sorbitol, promotes viability and unveils a novel layer of regulation within the complex circuitry that controls maltose transport and metabolism.
Aspergillus niger produced a proteinaceous hemolysin, nigerlysinTM when incubated on sheep's blood agar at both 23° C and 37°C. Nigerlysin was purified from tryptic soy broth culture filtrate. Purified nigerlysin has a molecular weight of approximately 72 kDa, with an...
Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells
Molenaar, Jan J.; Ebus, Marli E.; Geerts, Dirk; Koster, Jan; Lamers, Fieke; Valentijn, Linda J.; Westerhout, Ellen M.; Versteeg, Rogier; Caron, Huib N.
2009-01-01
Two genes have a synthetically lethal relationship when the silencing or inhibiting of 1 gene is only lethal in the context of a mutation or activation of the second gene. This situation offers an attractive therapeutic strategy, as inhibition of such a gene will only trigger cell death in tumor cells with an activated second oncogene but spare normal cells without activation of the second oncogene. Here we present evidence that CDK2 is synthetically lethal to neuroblastoma cells with MYCN amplification and over-expression. Neuroblastomas are childhood tumors with an often lethal outcome. Twenty percent of the tumors have MYCN amplification, and these tumors are ultimately refractory to any therapy. Targeted silencing of CDK2 by 3 RNA interference techniques induced apoptosis in MYCN-amplified neuroblastoma cell lines, but not in MYCN single copy cells. Silencing of MYCN abrogated this apoptotic response in MYCN-amplified cells. Inversely, silencing of CDK2 in MYCN single copy cells did not trigger apoptosis, unless a MYCN transgene was activated. The MYCN induced apoptosis after CDK2 silencing was accompanied by nuclear stabilization of P53, and mRNA profiling showed up-regulation of P53 target genes. Silencing of P53 rescued the cells from MYCN-driven apoptosis. The synthetic lethality of CDK2 silencing in MYCN activated neuroblastoma cells can also be triggered by inhibition of CDK2 with a small molecule drug. Treatment of neuroblastoma cells with roscovitine, a CDK inhibitor, at clinically achievable concentrations induced MYCN-dependent apoptosis. The synthetically lethal relationship between CDK2 and MYCN indicates CDK2 inhibitors as potential MYCN-selective cancer therapeutics. PMID:19525400
Hemolysis-induced lethality involves inflammasome activation by heme
Dutra, Fabianno F.; Alves, Letícia S.; Rodrigues, Danielle; Fernandez, Patricia L.; de Oliveira, Rosane B.; Golenbock, Douglas T.; Zamboni, Dario S.; Bozza, Marcelo T.
2014-01-01
The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K+ efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release. PMID:25225402
Hemolysis-induced lethality involves inflammasome activation by heme.
Dutra, Fabianno F; Alves, Letícia S; Rodrigues, Danielle; Fernandez, Patricia L; de Oliveira, Rosane B; Golenbock, Douglas T; Zamboni, Dario S; Bozza, Marcelo T
2014-09-30
The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K(+) efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release.
Ndj1, a telomere-associated protein, regulates centrosome separation in budding yeast meiosis.
Li, Ping; Shao, Yize; Jin, Hui; Yu, Hong-Guo
2015-04-27
Yeast centrosomes (called spindle pole bodies [SPBs]) remain cohesive for hours during meiotic G2 when recombination takes place. In contrast, SPBs separate within minutes after duplication in vegetative cells. We report here that Ndj1, a previously known meiosis-specific telomere-associated protein, is required for protecting SPB cohesion. Ndj1 localizes to the SPB but dissociates from it ∼16 min before SPB separation. Without Ndj1, meiotic SPBs lost cohesion prematurely, whereas overproduction of Ndj1 delayed SPB separation. When produced ectopically in vegetative cells, Ndj1 caused SPB separation defects and cell lethality. Localization of Ndj1 to the SPB depended on the SUN domain protein Mps3, and removal of the N terminus of Mps3 allowed SPB separation and suppressed the lethality of NDJ1-expressing vegetative cells. Finally, we show that Ndj1 forms oligomeric complexes with Mps3, and that the Polo-like kinase Cdc5 regulates Ndj1 protein stability and SPB separation. These findings reveal the underlying mechanism that coordinates yeast centrosome dynamics with meiotic telomere movement and cell cycle progression. © 2015 Li et al.
Ndj1, a telomere-associated protein, regulates centrosome separation in budding yeast meiosis
Li, Ping; Shao, Yize; Jin, Hui
2015-01-01
Yeast centrosomes (called spindle pole bodies [SPBs]) remain cohesive for hours during meiotic G2 when recombination takes place. In contrast, SPBs separate within minutes after duplication in vegetative cells. We report here that Ndj1, a previously known meiosis-specific telomere-associated protein, is required for protecting SPB cohesion. Ndj1 localizes to the SPB but dissociates from it ∼16 min before SPB separation. Without Ndj1, meiotic SPBs lost cohesion prematurely, whereas overproduction of Ndj1 delayed SPB separation. When produced ectopically in vegetative cells, Ndj1 caused SPB separation defects and cell lethality. Localization of Ndj1 to the SPB depended on the SUN domain protein Mps3, and removal of the N terminus of Mps3 allowed SPB separation and suppressed the lethality of NDJ1-expressing vegetative cells. Finally, we show that Ndj1 forms oligomeric complexes with Mps3, and that the Polo-like kinase Cdc5 regulates Ndj1 protein stability and SPB separation. These findings reveal the underlying mechanism that coordinates yeast centrosome dynamics with meiotic telomere movement and cell cycle progression. PMID:25897084
Frische, Ester W; Pellis-van Berkel, Wendy; van Haaften, Gijs; Cuppen, Edwin; Plasterk, Ronald H A; Tijsterman, Marcel; Bos, Johannes L; Zwartkruis, Fried J T
2007-12-12
The small Ras-like GTPase Rap1 has been identified as a regulator of integrin activation and cadherin-mediated cell-cell contacts. Surprisingly, null mutants of RAP-1 in Caenorhabditis elegans are viable and fertile. In a synthetic lethal RNAi screen with C. elegans rap-1 mutants, the Ras-like GTPase ral-1 emerged as one of seven genes specifically required for viability. Depletion of exoc-8 and sec-5, encoding two putative RAL-1 effectors and members of the exocyst complex, also caused lethality of rap-1 mutants, but did not affect wild-type worms. The RAP-1 and the RAL-1/exocyst pathway appear to coordinate hypodermal cell movement and elongation during embryonic development. They mediate their effect in part through targeting the alpha-catenin homologue HMP-1 to the lateral membrane. Genetic interactions show that the RAP-1 and RAL-1/exocyst pathway also act in parallel during larval stages. Together these data provide in vivo evidence for the exocyst complex as a downstream RAL-1 effector in cell migration.
Panaroni, Cristina; Gioia, Roberta; Lupi, Anna; Besio, Roberta; Goldstein, Steven A.; Kreider, Jaclynn; Leikin, Sergey; Vera, Juan Carlos; Mertz, Edward L.; Perilli, Egon; Baruffaldi, Fabio; Villa, Isabella; Farina, Aurora; Casasco, Marco; Cetta, Giuseppe; Rossi, Antonio; Frattini, Annalisa; Marini, Joan C.; Vezzoni, Paolo
2009-01-01
Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [α1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases. PMID:19414862
Jacobson, M D; Muñoz, C X; Knox, K S; Williams, B E; Lu, L L; Cross, F R; Vallen, E A
2001-01-01
SIC1 encodes a nonessential B-type cyclin/CDK inhibitor that functions at the G1/S transition and the exit from mitosis. To understand more completely the regulation of these transitions, mutations causing synthetic lethality with sic1 Delta were isolated. In this screen, we identified a novel gene, SID2, which encodes an essential protein that appears to be required for DNA replication or repair. sid2-1 sic1 Delta strains and sid2-21 temperature-sensitive strains arrest preanaphase as large-budded cells with a single nucleus, a short spindle, and an approximately 2C DNA content. RAD9, which is necessary for the DNA damage checkpoint, is required for the preanaphase arrest of sid2-1 sic1 Delta cells. Analysis of chromosomes in mutant sid2-21 cells by field inversion gel electrophoresis suggests the presence of replication forks and bubbles at the arrest. Deleting the two S phase cyclins, CLB5 and CLB6, substantially suppresses the sid2-1 sic1 Delta inviability, while stabilizing Clb5 protein exacerbates the defects of sid2-1 sic1 Delta cells. In synchronized sid2-1 mutant strains, the onset of replication appears normal, but completion of DNA synthesis is delayed. sid2-1 mutants are sensitive to hydroxyurea indicating that sid2-1 cells may suffer DNA damage that, when combined with additional insult, leads to a decrease in viability. Consistent with this hypothesis, sid2-1 rad9 cells are dead or very slow growing even when SIC1 is expressed. PMID:11560884
Roles of HAUSP-mediated p53 regulation in central nervous system development.
Kon, N; Zhong, J; Kobayashi, Y; Li, M; Szabolcs, M; Ludwig, T; Canoll, P D; Gu, W
2011-08-01
The deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also called USP7) has a critical role in regulating the p53-Mdm2 (murine double minute 2) pathway. By using the conventional knockout approach, we previously showed that hausp inactivation leads to early embryonic lethality. To fully understand the physiological functions of hausp, we have generated mice lacking hausp specifically in the brain and examined the impacts of this manipulation on brain development. We found that deletion of hausp in neural cells resulted in neonatal lethality. The brains from these mice displayed hypoplasia and deficiencies in development, which were mainly caused by p53-mediated apoptosis. Detailed analysis also showed an increase of both p53 levels and p53-dependent transcriptional activation in hausp knockout brains. Notably, neural cell survival and brain development of hausp-mutant mice can largely be restored in the p53-null background. Nevertheless, in contrast to the case of mdm2- and mdm4 (murine double minute 4)-mutant mice, inactivation of p53 failed to completely rescue the neonatal lethality of these hausp-mutant mice. These results indicate that HAUSP-mediated p53 regulation is crucial for brain development, and also suggest that both the p53-dependent and the p53-independent functions of HAUSP contribute to the neonatal lethality of hausp-mutant mice.
Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells
Sajesh, Babu V.; McManus, Kirk J.
2015-01-01
Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study. PMID:26318585
Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells.
Sajesh, Babu V; McManus, Kirk J
2015-09-29
Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study.
Szaba, Frank M; Kummer, Lawrence W; Duso, Debra K; Koroleva, Ekaterina P; Tumanov, Alexei V; Cooper, Andrea M; Bliska, James B; Smiley, Stephen T; Lin, Jr-Shiuan
2014-05-01
Septic pneumonias resulting from bacterial infections of the lung are a leading cause of human death worldwide. Little is known about the capacity of CD8 T cell-mediated immunity to combat these infections and the types of effector functions that may be most effective. Pneumonic plague is an acutely lethal septic pneumonia caused by the Gram-negative bacterium Yersinia pestis. We recently identified a dominant and protective Y. pestis antigen, YopE69-77, recognized by CD8 T cells in C57BL/6 mice. Here, we use gene-deficient mice, Ab-mediated depletion, cell transfers, and bone marrow chimeric mice to investigate the effector functions of YopE69-77-specific CD8 T cells and their relative contributions during pulmonary Y. pestis infection. We demonstrate that YopE69-77-specific CD8 T cells exhibit perforin-dependent cytotoxicity in vivo; however, perforin is dispensable for YopE69-77-mediated protection. In contrast, YopE69-77-mediated protection is severely impaired when production of TNFα and IFNγ by CD8 T cells is simultaneously ablated. Interestingly, TNFα is absolutely required at the time of challenge infection and can be provided by either T cells or non-T cells, whereas IFNγ provided by T cells prior to challenge appears to facilitate the differentiation of optimally protective CD8 T cells. We conclude that cytokine production, not cytotoxicity, is essential for CD8 T cell-mediated control of pulmonary Y. pestis infection and we suggest that assays detecting Ag-specific TNFα production in addition to antibody titers may be useful correlates of vaccine efficacy against plague and other acutely lethal septic bacterial pneumonias.
Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R
2007-03-01
When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication.
Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R.
2007-01-01
When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication. PMID:17322384
Huang, Xiumei; Dong, Ying; Bey, Erik A; Kilgore, Jessica A; Bair, Joseph S; Li, Long-Shan; Patel, Malina; Parkinson, Elizabeth I; Wang, Yiguang; Williams, Noelle S; Gao, Jinming; Hergenrother, Paul J; Boothman, David A
2012-06-15
Agents, such as β-lapachone, that target the redox enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), to induce programmed necrosis in solid tumors have shown great promise, but more potent tumor-selective compounds are needed. Here, we report that deoxynyboquinone kills a wide spectrum of cancer cells in an NQO1-dependent manner with greater potency than β-lapachone. Deoxynyboquinone lethality relies on NQO1-dependent futile redox cycling that consumes oxygen and generates extensive reactive oxygen species (ROS). Elevated ROS levels cause extensive DNA lesions, PARP1 hyperactivation, and severe NAD+ /ATP depletion that stimulate Ca2+ -dependent programmed necrosis, unique to this new class of NQO1 "bioactivated" drugs. Short-term exposure of NQO1+ cells to deoxynyboquinone was sufficient to trigger cell death, although genetically matched NQO1- cells were unaffected. Moreover, siRNA-mediated NQO1 or PARP1 knockdown spared NQO1+ cells from short-term lethality. Pretreatment of cells with BAPTA-AM (a cytosolic Ca2+ chelator) or catalase (enzymatic H2O2 scavenger) was sufficient to rescue deoxynyboquinone-induced lethality, as noted with β-lapachone. Investigations in vivo showed equivalent antitumor efficacy of deoxynyboquinone to β-lapachone, but at a 6-fold greater potency. PARP1 hyperactivation and dramatic ATP loss were noted in the tumor, but not in the associated normal lung tissue. Our findings offer preclinical proof-of-concept for deoxynyboquinone as a potent chemotherapeutic agent for treatment of a wide spectrum of therapeutically challenging solid tumors, such as pancreatic and lung cancers.
High Risk But Not Always Lethal: The Effect of Cirrhosis on Thermally Injured Adults
2013-01-01
115 Cirrhosis is the final common pathway on the spec- trum of many types of chronic liver injury.1 In the United States, the two most common causes ... cirrhosis are bridg- ing fibrous septa, the formation of regenerative parenchymal nodules, and disruption to the entire hepatic architecture.3 This...extensive liver fibrosis is caused by the activation of the hepatic stellate cell, and this loss of hepatocellular function can lead to jaundice, edema
Unsolved mysteries: How does lipid peroxidation cause ferroptosis?
Feng, Huizhong
2018-01-01
Ferroptosis is a cell death process driven by damage to cell membranes and linked to numerous human diseases. Ferroptosis is caused by loss of activity of the key enzyme that is tasked with repairing oxidative damage to cell membranes—glutathione peroxidase 4 (GPX4). GPX4 normally removes the dangerous products of iron-dependent lipid peroxidation, protecting cell membranes from this type of damage; when GPX4 fails, ferroptosis ensues. Ferroptosis is distinct from apoptosis, necroptosis, necrosis, and other modes of cell death. Several key mysteries regarding how cells die during ferroptosis remain unsolved. First, the drivers of lipid peroxidation are not yet clear. Second, the subcellular location of lethal lipid peroxides remains an outstanding question. Finally, how exactly lipid peroxidation leads to cell death is an unsolved mystery. Answers to these questions will provide insights into the mechanisms of ferroptotic cell death and associated human diseases, as well as new therapeutic strategies for such diseases. PMID:29795546
Le Meur, Nolwenn; Gentleman, Robert
2008-01-01
Background Synthetic lethality defines a genetic interaction where the combination of mutations in two or more genes leads to cell death. The implications of synthetic lethal screens have been discussed in the context of drug development as synthetic lethal pairs could be used to selectively kill cancer cells, but leave normal cells relatively unharmed. A challenge is to assess genome-wide experimental data and integrate the results to better understand the underlying biological processes. We propose statistical and computational tools that can be used to find relationships between synthetic lethality and cellular organizational units. Results In Saccharomyces cerevisiae, we identified multi-protein complexes and pairs of multi-protein complexes that share an unusually high number of synthetic genetic interactions. As previously predicted, we found that synthetic lethality can arise from subunits of an essential multi-protein complex or between pairs of multi-protein complexes. Finally, using multi-protein complexes allowed us to take into account the pleiotropic nature of the gene products. Conclusions Modeling synthetic lethality using current estimates of the yeast interactome is an efficient approach to disentangle some of the complex molecular interactions that drive a cell. Our model in conjunction with applied statistical methods and computational methods provides new tools to better characterize synthetic genetic interactions. PMID:18789146
Disruption of TTDA Results in Complete Nucleotide Excision Repair Deficiency and Embryonic Lethality
Theil, Arjan F.; Nonnekens, Julie; Steurer, Barbara; Mari, Pierre-Olivier; de Wit, Jan; Lemaitre, Charlène; Marteijn, Jurgen A.; Raams, Anja; Maas, Alex; Vermeij, Marcel; Essers, Jeroen; Hoeijmakers, Jan H. J.; Giglia-Mari, Giuseppina; Vermeulen, Wim
2013-01-01
The ten-subunit transcription factor IIH (TFIIH) plays a crucial role in transcription and nucleotide excision repair (NER). Inactivating mutations in the smallest 8-kDa TFB5/TTDA subunit cause the neurodevelopmental progeroid repair syndrome trichothiodystrophy A (TTD-A). Previous studies have shown that TTDA is the only TFIIH subunit that appears not to be essential for NER, transcription, or viability. We studied the consequences of TTDA inactivation by generating a Ttda knock-out (Ttda−/−) mouse-model resembling TTD-A patients. Unexpectedly, Ttda−/− mice were embryonic lethal. However, in contrast to full disruption of all other TFIIH subunits, viability of Ttda−/− cells was not affected. Surprisingly, Ttda−/− cells were completely NER deficient, contrary to the incomplete NER deficiency of TTD-A patient-derived cells. We further showed that TTD-A patient mutations only partially inactivate TTDA function, explaining the relatively mild repair phenotype of TTD-A cells. Moreover, Ttda−/− cells were also highly sensitive to oxidizing agents. These findings reveal an essential role of TTDA for life, nucleotide excision repair, and oxidative DNA damage repair and identify Ttda−/− cells as a unique class of TFIIH mutants. PMID:23637614
HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.
Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina
2009-03-01
HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.
Cell Surface Changes Associated with Cellular Immune Reactions in Drosophila
NASA Astrophysics Data System (ADS)
Nappi, Anthony J.; Silvers, Michael
1984-09-01
In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts.
NASA Astrophysics Data System (ADS)
Al-Ghanim, Khalid A.; Ahmad, Zubair; Al-Kahem Al-Balawi, Hmoud F.; Al-Misned, Fahad; Maboob, Shahid; Suliman, El-Amin M.
2016-01-01
Specimens of Clarias gariepinus were treated with lethal (70, 75, 80, 85, 90, and 95 mg/L) and sub-lethal concentrations (8, 12 and 16 mg/L) of uranyl acetate, a low-radiotoxicity uranium salt. The LC 50 value was registered as 81.45 mg/L. The protein and glycogen concentrations in liver and muscles were decreased in the fish exposed to sub-lethal concentrations. The red blood cell (RBC) and white blood cell (WBC) counts, haemoglobin (Hb) concentration and haematocrit (Hct) values were decreased. Different blood indices like mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) were negatively affected. Level of plasma glucose was elevated whereas protein was decreased. The level of calcium concentration (Ca) was declined in the blood of exposed fish whereas magnesium (Mg) remains unchanged. The activity level of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) was elevated in exposed fish. These effects were more pronounced in the last period of exposure and in higher concentrations. Results of the present study indicate that uranyl acetate has adverse effects on Clarias gariepinus and causes changes in the biochemical and hematological parameters of the fish.
Gorbunova, Elena E.; Dalrymple, Nadine A.; Gavrilovskaya, Irina N.
2013-01-01
Abstract Background Hantaviruses in the Americas cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). Hantaviruses nonlytically infect microvascular and lymphatic endothelial cells and cause dramatic changes in barrier functions without disrupting the endothelium. Hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions. The endothelium of arteries, veins, and lymphatic vessels are unique and central to the function of vast pulmonary capillary beds that regulate pulmonary fluid accumulation. Results We have found that HPS-causing hantaviruses alter vascular barrier functions of microvascular and lymphatic endothelial cells by altering receptor and signaling pathway responses that serve to permit fluid tissue influx and clear tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to cause acute pulmonary edema, as well as potential therapeutic targets for reducing the severity of HPS disease. Conclusions Here we discuss interactions of HPS-causing hantaviruses with the endothelium, roles for unique lymphatic endothelial responses in HPS, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease. PMID:24024573
Mackow, Erich R; Gorbunova, Elena E; Dalrymple, Nadine A; Gavrilovskaya, Irina N
2013-09-01
Hantaviruses in the Americas cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). Hantaviruses nonlytically infect microvascular and lymphatic endothelial cells and cause dramatic changes in barrier functions without disrupting the endothelium. Hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions. The endothelium of arteries, veins, and lymphatic vessels are unique and central to the function of vast pulmonary capillary beds that regulate pulmonary fluid accumulation. We have found that HPS-causing hantaviruses alter vascular barrier functions of microvascular and lymphatic endothelial cells by altering receptor and signaling pathway responses that serve to permit fluid tissue influx and clear tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to cause acute pulmonary edema, as well as potential therapeutic targets for reducing the severity of HPS disease. Here we discuss interactions of HPS-causing hantaviruses with the endothelium, roles for unique lymphatic endothelial responses in HPS, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease.
Mechanical cell competition kills cells via induction of lethal p53 levels
Wagstaff, Laura; Goschorska, Maja; Kozyrska, Kasia; Duclos, Guillaume; Kucinski, Iwo; Chessel, Anatole; Hampton-O'Neil, Lea; Bradshaw, Charles R.; Allen, George E.; Rawlins, Emma L.; Silberzan, Pascal; Carazo Salas, Rafael E.; Piddini, Eugenia
2016-01-01
Cell competition is a quality control mechanism that eliminates unfit cells. How cells compete is poorly understood, but it is generally accepted that molecular exchange between cells signals elimination of unfit cells. Here we report an orthogonal mechanism of cell competition, whereby cells compete through mechanical insults. We show that MDCK cells silenced for the polarity gene scribble (scribKD) are hypersensitive to compaction, that interaction with wild-type cells causes their compaction and that crowding is sufficient for scribKD cell elimination. Importantly, we show that elevation of the tumour suppressor p53 is necessary and sufficient for crowding hypersensitivity. Compaction, via activation of Rho-associated kinase (ROCK) and the stress kinase p38, leads to further p53 elevation, causing cell death. Thus, in addition to molecules, cells use mechanical means to compete. Given the involvement of p53, compaction hypersensitivity may be widespread among damaged cells and offers an additional route to eliminate unfit cells. PMID:27109213
PDE5 inhibitors enhance the lethality of [pemetrexed + sorafenib
Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Dent, Paul
2017-01-01
The combination of pemetrexed and sorafenib has significant clinical activity against a wide variety of tumor types in patients and the present studies were performed to determine whether sildenafil enhances the killing potential of [pemetrexed + sorafenib]. In multiple genetically diverse lung cancer cell lines, sildenafil enhanced the lethality of [pemetrexed + sorafenib]. The three-drug combination reduced the activities of AKT, mTOR and STAT transcription factors; increased the activities of eIF2α and ULK-1; lowered the expression of MCL-1, BCL-XL, thioredoxin and SOD2; and increased the expression of Beclin1. Enhanced cell killing by sildenafil was blocked by inhibition of death receptor signaling and autophagosome formation. Enforced activation of STAT3 and AKT or inhibition of JNK significantly reduced cell killing. The enhanced cell killing caused by sildenafil was more reliant on increased PKG signaling than on the generation of nitric oxide. In vivo sildenafil enhanced the anti-tumor properties of [pemetrexed + sorafenib]. Based on our data we argue that additional clinical studies combining pemetrexed, sorafenib and sildenafil are warranted. PMID:28088782
What Makes a Natural Clay Antibacterial?
Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.
2011-01-01
Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (<200 nm), illite-smectite and reduced iron phases. The role of clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758
Frische, Ester W; Pellis-van Berkel, Wendy; van Haaften, Gijs; Cuppen, Edwin; Plasterk, Ronald H A; Tijsterman, Marcel; Bos, Johannes L; Zwartkruis, Fried J T
2007-01-01
The small Ras-like GTPase Rap1 has been identified as a regulator of integrin activation and cadherin-mediated cell–cell contacts. Surprisingly, null mutants of RAP-1 in Caenorhabditis elegans are viable and fertile. In a synthetic lethal RNAi screen with C. elegans rap-1 mutants, the Ras-like GTPase ral-1 emerged as one of seven genes specifically required for viability. Depletion of exoc-8 and sec-5, encoding two putative RAL-1 effectors and members of the exocyst complex, also caused lethality of rap-1 mutants, but did not affect wild-type worms. The RAP-1 and the RAL-1/exocyst pathway appear to coordinate hypodermal cell movement and elongation during embryonic development. They mediate their effect in part through targeting the α-catenin homologue HMP-1 to the lateral membrane. Genetic interactions show that the RAP-1 and RAL-1/exocyst pathway also act in parallel during larval stages. Together these data provide in vivo evidence for the exocyst complex as a downstream RAL-1 effector in cell migration. PMID:17989692
Booth, J Leland; Duggan, Elizabeth S; Patel, Vineet I; Langer, Marybeth; Wu, Wenxin; Braun, Armin; Coggeshall, K Mark; Metcalf, Jordan P
2016-10-01
The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores escape from the alveolus to regional lymph nodes, germinate and enter the circulatory system to cause disease. The roles of carrier cells and the effects of B. anthracis toxins in this process are unclear. We used a human lung organ culture model to measure spore uptake by antigen presenting cells (APC) and alveolar epithelial cells (AEC), spore partitioning between these cells, and the effects of B. anthracis lethal toxin and protective antigen. We repeated the study in a human A549 alveolar epithelial cell model. Most spores remained unassociated with cells, but the majority of cell-associated spores were in AEC, not in APC. Spore movement was not dependent on internalization, although the location of internalized spores changed in both cell types. Spores also internalized in a non-uniform pattern. Toxins affected neither transit of the spores nor the partitioning of spores into AEC and APC. Our results support a model of spore escape from the alveolus that involves spore clustering with transient passage through intact AEC. However, subsequent transport of spores by APC from the lung to the lymph nodes may occur. Published by Elsevier Masson SAS.
Moayeri, Mahtab; Leppla, Stephen H; Vrentas, Catherine; Pomerantsev, Andrei P; Liu, Shihui
2015-01-01
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J.; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng
2017-01-01
Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the ICK (intestinal cell kinase) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation, but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. PMID:28380258
Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng
2017-05-01
Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the intestinal cell kinase (ICK) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. © 2017 Federation of European Biochemical Societies.
Effects of BCG infection on the susceptibility of mouse macrophages to endotoxin.
Peavy, D L; Baughn, R E; Musher, D M; Musher, D M
1979-01-01
Mice infected intravenously with Mycobacterium bovis (BCG) are 100 to 1,000 times more sensitive to the lethal effects of bacterial lipopolysaccharides (LPS). Since BCG infection results in macrophage activation and LPS may cause pathophysiological effects through interaction with this cell type, it was of interest to determine whether macrophages from BCG-infected animals were more susceptible to the toxic effects of LPS in vitro. When LPS-susceptible, C57BL/6 mice were infected with BCG, a significant reduction in the 50% lethal dose of LPS was first observed after 7 days and persisted for several weeks. Macrophages from these animals had greatly increased susceptibility to LPS in vitro, which correlated with the development of acquired cellular resistance as determined by their ability to inhibit the growth of Listeria monocytogenes. In contrast, BCG infection of C3H/HeJ mice, a strain resistant to LPS, did not alter the 50% lethal dose of LPS for these animals or increase the sensitivity of their peritoneal macrophages to LPS in vitro. These results indicate that susceptibility of BCG-infected mice to the lethal effects of LPS parallels the susceptibility of their macrophages in vitro; release of vasoactive substances from LPS-susceptible activated macrophages in vivo may be, in part, responsible for lethality. PMID:378847
Zhu, Dan; Xu, Shuichan; Deyanat-Yazdi, Gordafaried; Peng, Sophie X; Barnes, Leo A; Narla, Rama Krishna; Tran, Tam; Mikolon, David; Ning, Yuhong; Shi, Tao; Jiang, Ning; Raymon, Heather K; Riggs, Jennifer R; Boylan, John F
2018-06-04
Historically, phenotypic-based drug discovery has yielded a high percentage of novel drugs while uncovering new tumor biology. CC-671 was discovered using a phenotypic screen for compounds that preferentially induced apoptosis in triple negative breast cancer cell lines while sparing luminal breast cancer cell lines. Detailed in vitro kinase profiling shows CC-671 potently and selectively inhibits two kinases-TTK and CLK2. Cellular mechanism of action studies demonstrate that CC-671 potently inhibits the phosphorylation of KNL1 and SRp75, direct TTK and CLK2 substrates, respectively. Furthermore, CC-671 causes mitotic acceleration and modification of pre-mRNA splicing leading to apoptosis, consistent with cellular TTK and CLK inhibition. Correlative analysis of genomic and potency data against a large panel of breast cancer cell lines identifies breast cancer cells with a dysfunctional G1/S checkpoint as more sensitive to CC-671, suggesting synthetic lethality between G1/S checkpoint and TTK/CLK2 inhibition. Furthermore, significant in vivo CC-671 efficacy was demonstrated in two cell line-derived and one patient tumor-derived xenograft models of TNBC following weekly dosing. These findings are the first to demonstrate the unique inhibitory combination activity of a dual TTK/CLK2 inhibitor that preferably kills TNBC cells and shows synthetic lethality with a compromised G1/S checkpoint in breast cancer cell lines. Based on these data, CC-671 was moved forward for clinical development as a potent and selective TTK/CLK2 inhibitor in a subset of TNBC patients. Copyright ©2018, American Association for Cancer Research.
New insights into the biological effects of anthrax toxins: linking cellular to organismal responses
Guichard, Annabel; Nizet, Victor; Bier, Ethan
2013-01-01
The anthrax toxins lethal toxin (LT) and edema toxin (ET), are essential virulence factors produced by B. anthracis. These toxins act during two distinct phases of anthrax infection. During the first, prodromal phase, which is often asymptomatic, anthrax toxins act on cells of the immune system to help the pathogen establish infection. Then, during the rapidly progressing (or fulminant) stage of the disease bacteria disseminate via a hematological route to various target tissues and organs, which are typically highly vascularized. As bacteria proliferate in the bloodstream LT and ET begin to accumulate rapidly reaching a critical threshold level that will cause death even when the bacterial proliferation is curtailed by antibiotics. During this final phase of infection the toxins cause an increase in vascular permeability and a decrease in function of target organs including the heart, spleen, kidney, adrenal gland, and brain. In this review, we examine the various biological effects of anthrax toxins, focusing on the fulminant stage of the disease and on mechanisms by which the two toxins may collaborate to cause cardiovascular collapse. We discuss normal mechanisms involved in maintaining vascular integrity and based on recent studies indicating that LT and ET cooperatively inhibit membrane trafficking to cell-cell junctions we explore several potential mechanisms by which the toxins may achieve their lethal effects. We also summarize the effects of other potential virulence factors secreted by B. anthracis and consider the role of toxic factors in the evolutionarily recent emergence of this devastating disease. PMID:21930233
Williams, Kinola J N; Qiu, Xiangguo; Fernando, Lisa; Jones, Steven M; Alimonti, Judie B
2015-02-01
Members of the species Zaire ebolavirus cause severe hemorrhagic fever with up to a 90% mortality rate in humans. The VSVΔG/EBOV GP vaccine has provided 100% protection in the mouse, guinea pig, and nonhuman primate (NHP) models, and has also been utilized as a post-exposure therapeutic to protect mice, guinea pigs, and NHPs from a lethal challenge of Ebola virus (EBOV). EBOV infection causes rapid mortality in human and animal models, with death occurring as early as 6 days after infection, suggesting a vital role for the innate immune system to control the infection before cells of the adaptive immune system can assume control. Natural killer (NK) cells are the predominant cell of the innate immune response, which has been shown to expand with VSVΔG/EBOV GP treatment. In the current study, an in vivo mouse model of the VSVΔG/EBOV GP post-exposure treatment was used for a mouse adapted (MA)-EBOV infection, to determine the putative VSVΔG/EBOV GP-induced protective mechanism of NK cells. NK depletion studies demonstrated that mice with NK cells survive longer in a MA-EBOV infection, which is further enhanced with VSVΔG/EBOV GP treatment. NK cell mediated cytotoxicity and IFN-γ secretion was significantly higher with VSVΔG/EBOV GP treatment. Cell mediated cytotoxicity assays and perforin knockout mice experiments suggest that there are perforin-dependent and -independent mechanisms involved. Together, these data suggest that NK cells play an important role in VSVΔG/EBOV GP-induced protection of EBOV by increasing NK cytotoxicity, and IFN-γ secretion.
EF24 induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in gastric cancer cells
Chen, Weiqian; Chen, Xi; Ying, Shilong; Feng, Zhiguo; Chen, Tongke; Ye, Qingqing; Wang, Zhe; Qiu, Chenyu; Yang, Shulin; Liang, Guang
2016-01-01
Gastric cancer (GC) is one of the leading causes of cancer mortality in the world, and finding novel agents for the treatment of advanced gastric cancer is of urgent need. Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. Although EF24 demonstrates potent anticancer efficacy in numerous types of human cancer cells, the cellular targets of EF24 have not been fully defined. We report here that EF24 may interact with the thioredoxin reductase 1 (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme, to induce reactive oxygen species (ROS)-mediated apoptosis in human gastric cancer cells. By inhibiting TrxR1 activity and increasing intracellular ROS levels, EF24 induces a lethal endoplasmic reticulum stress in human gastric cancer cells. Importantly, knockdown of TrxR1 sensitizes cells to EF24 treatment. In vivo, EF24 treatment markedly reduces the TrxR1 activity and tumor cell burden, and displays synergistic lethality with 5-FU against gastric cancer cells. Targeting TrxR1 with EF24 thus discloses a previously unrecognized mechanism underlying the biological activity of EF24, and reveals that TrxR1 is a good target for gastric cancer therapy. PMID:26919110
Expression of Hygromycin Phosphotransferase Alters Virulence of Histoplasma capsulatum▿
Smulian, A. George; Gibbons, Reta S.; Demland, Jeffery A.; Spaulding, Deborah T.; Deepe, George S.
2007-01-01
The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene. PMID:17873086
Expression of hygromycin phosphotransferase alters virulence of Histoplasma capsulatum.
Smulian, A George; Gibbons, Reta S; Demland, Jeffery A; Spaulding, Deborah T; Deepe, George S
2007-11-01
The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene.
Kintzer, Alexander F.; Sterling, Harry J.; Tang, Iok I.; Abdul-Gader, Ali; Miles, Andrew J.; Wallace, B. A.; Williams, Evan R.; Krantz, Bryan A.
2010-01-01
Anthrax is caused by strains of Bacillus anthracis that produce two key virulence factors, anthrax toxin (Atx) and a poly-γ-D-glutamic acid capsule. Atx is comprised of three-proteins: protective antigen (PA) and two enzymes, lethal factor (LF) and edema factor (EF). To disrupt cell function, these components must assemble into holotoxin complexes, which contain either a ring-shaped homooctameric or homoheptameric PA oligomer bound to multiple copies of either LF and/or EF, producing lethal toxin (LT), edema toxin, or mixtures thereof. Once a host cell endocytoses these complexes, PA converts into a membrane-inserted channel that translocates LF and EF into the cytosol. LT may assemble on host cell surfaces or extracellularly in plasma. We show that under physiological conditions in bovine plasma that LT complexes containing heptameric PA aggregate and inactivate more readily than LT complexes containing octameric PA. LT complexes containing octameric PA possess enhanced stability, channel forming activity, and macrophage cytotoxicity relative to those containing heptameric PA. Under physiological conditions, multiple biophysical probes reveal that heptameric PA can prematurely adopt the channel conformation, but octameric PA complexes remain in their soluble prechannel configuration allowing them to resist aggregation and inactivation. We conclude that PA may form an octameric oligomeric state as a means to produce a more stable and active LT complex that may circulate freely in the blood. PMID:20433851
Lethal Nipah Virus Infection Induces Rapid Overexpression of CXCL10
Mathieu, Cyrille; Guillaume, Vanessa; Sabine, Amélie; Ong, Kien Chai; Wong, Kum Thong; Legras-Lachuer, Catherine; Horvat, Branka
2012-01-01
Nipah virus (NiV) is a recently emerged zoonotic Paramyxovirus that causes regular outbreaks in East Asia with mortality rate exceeding 75%. Major cellular targets of NiV infection are endothelial cells and neurons. To better understand virus-host interaction, we analyzed the transcriptome profile of NiV infection in primary human umbilical vein endothelial cells. We further assessed some of the obtained results by in vitro and in vivo methods in a hamster model and in brain samples from NiV-infected patients. We found that NiV infection strongly induces genes involved in interferon response in endothelial cells. Among the top ten upregulated genes, we identified the chemokine CXCL10 (interferon-induced protein 10, IP-10), an important chemoattractant involved in the generation of inflammatory immune response and neurotoxicity. In NiV-infected hamsters, which develop pathology similar to what is seen in humans, expression of CXCL10 mRNA was induced in different organs with kinetics that followed NiV replication. Finally, we showed intense staining for CXCL10 in the brain of patients who succumbed to lethal NiV infection during the outbreak in Malaysia, confirming induction of this chemokine in fatal human infections. This study sheds new light on NiV pathogenesis, indicating the role of CXCL10 during the course of infection and suggests that this chemokine may serve as a potential new marker for lethal NiV encephalitis. PMID:22393386
Peripheral Blood Biomarkers of Disease Outcome in a Monkey Model of Rift Valley Fever Encephalitis.
Wonderlich, Elizabeth R; Caroline, Amy L; McMillen, Cynthia M; Walters, Aaron W; Reed, Douglas S; Barratt-Boyes, Simon M; Hartman, Amy L
2018-02-01
Rift Valley Fever (RVF) is an emerging arboviral disease of livestock and humans. Although the disease is caused by a mosquito-borne virus, humans are infected through contact with, or inhalation of, virus-laden particles from contaminated animal carcasses. Some individuals infected with RVF virus (RVFV) develop meningoencephalitis, resulting in morbidity and mortality. Little is known about the pathogenic mechanisms that lead to neurologic sequelae, and thus, animal models that represent human disease are needed. African green monkeys (AGM) exposed to aerosols containing RVFV develop a reproducibly lethal neurological disease that resembles human illness. To understand the disease process and identify biomarkers of lethality, two groups of 5 AGM were infected by inhalation with either a lethal or a sublethal dose of RVFV. Divergence between lethal and sublethal infections occurred as early as 2 days postinfection (dpi), at which point CD8 + T cells from lethally infected AGM expressed activated caspase-3 and simultaneously failed to increase levels of major histocompatibility complex (MHC) class II molecules, in contrast to surviving animals. At 4 dpi, lethally infected animals failed to demonstrate proliferation of total CD4 + and CD8 + T cells, in contrast to survivors. These marked changes in peripheral blood cells occur much earlier than more-established indicators of severe RVF disease, such as granulocytosis and fever. In addition, an early proinflammatory (gamma interferon [IFN-γ], interleukin 6 [IL-6], IL-8, monocyte chemoattractant protein 1 [MCP-1]) and antiviral (IFN-α) response was seen in survivors, while very late cytokine expression was found in animals with lethal infections. By characterizing immunological markers of lethal disease, this study furthers our understanding of RVF pathogenesis and will allow the testing of therapeutics and vaccines in the AGM model. IMPORTANCE Rift Valley Fever (RVF) is an important emerging viral disease for which we lack both an effective human vaccine and treatment. Encephalitis and neurological disease resulting from RVF lead to death or significant long-term disability for infected people. African green monkeys (AGM) develop lethal neurological disease when infected with RVF virus by inhalation. Here we report the similarities in disease course between infected AGM and humans. For the first time, we examine the peripheral immune response during the course of infection in AGM and show that there are very early differences in the immune response between animals that survive infection and those that succumb. We conclude that AGM are a novel and suitable monkey model for studying the neuropathogenesis of RVF and for testing vaccines and therapeutics against this emerging viral pathogen. Copyright © 2018 American Society for Microbiology.
Wu, Yuet; Lam, Kwok-Tai; Chow, Kin-Hung; Ho, Pak-Leung; Guan, Yi; Peiris, Joseph S. Malik
2014-01-01
ABSTRACT Secondary Streptococcus pneumoniae infection after influenza is a significant clinical complication resulting in morbidity and sometimes mortality. Prior influenza virus infection has been demonstrated to impair the macrophage and neutrophil response to the subsequent pneumococcal infection. In contrast, how a secondary pneumococcal infection after influenza can affect the adaptive immune response to the initial influenza virus infection is less well understood. Therefore, this study focuses on how secondary pneumococcal infection after influenza may impact the humoral immune response to the initial influenza virus infection in a lethal coinfection mouse model. Compared to mice infected with influenza virus alone, mice coinfected with influenza virus followed by pneumococcus had significant body weight loss and 100% mortality. In the lung, lethal coinfection significantly increased virus titers and bacterial cell counts and decreased the level of virus-specific IgG, IgM, and IgA, as well as the number of B cells, CD4 T cells, and plasma cells. Lethal coinfection significantly reduced the size and weight of spleen, as well as the number of B cells along the follicular developmental lineage. In mediastinal lymph nodes, lethal coinfection significantly decreased germinal center B cells, T follicular helper cells, and plasma cells. Adoptive transfer of influenza virus-specific immune serum to coinfected mice improved survival, suggesting the protective functions of anti-influenza virus antibodies. In conclusion, coinfection reduced the B cell response to influenza virus. This study helps us to understand the modulation of the B cell response to influenza virus during a lethal coinfection. IMPORTANCE Secondary pneumococcal infection after influenza virus infection is an important clinical issue that often results in excess mortality. Since antibodies are key mediators of protection, this study aims to examine the antibody response to influenza virus and demonstrates that lethal coinfection reduced the B cell response to influenza virus. This study helps to highlight the complexity of the modulation of the B cell response in the context of coinfection. PMID:25428873
Zucca, Elisa; Bertoletti, Federica; Wimmer, Ursula; Ferrari, Elena; Mazzini, Giuliano; Khoronenkova, Svetlana; Grosse, Nicole; van Loon, Barbara; Dianov, Grigory; Hübscher, Ulrich; Maga, Giovanni
2013-01-01
Human DNA polymerase (pol) λ functions in base excision repair and non-homologous end joining. We have previously shown that DNA pol λ is involved in accurate bypass of the two frequent oxidative lesions, 7,8-dihydro-8-oxoguanine and 1,2-dihydro-2-oxoadenine during the S phase. However, nothing is known so far about the relationship of DNA pol λ with the S phase DNA damage response checkpoint. Here, we show that a knockdown of DNA pol λ, but not of its close homologue DNA pol β, results in replication fork stress and activates the S phase checkpoint, slowing S phase progression in different human cancer cell lines. We furthermore show that DNA pol λ protects cells from oxidative DNA damage and also functions in rescuing stalled replication forks. Its absence becomes lethal for a cell when a functional checkpoint is missing, suggesting a DNA synthesis deficiency. Our results provide the first evidence, to our knowledge, that DNA pol λ is required for cell cycle progression and is functionally connected to the S phase DNA damage response machinery in cancer cells. PMID:23118481
Liu, Yang; Zhu, Yan-Hua; Mao, Cheng-Qiong; Dou, Shuang; Shen, Song; Tan, Zi-Bin; Wang, Jun
2014-10-28
There is no effective clinical therapy yet for triple-negative breast cancer (TNBC) without particular human epidermal growth factor receptor-2, estrogen and progesterone receptor expression. In this study, we report a molecularly targeted and synthetic lethality-based siRNA therapy for TNBC treatment, using cationic lipid assisted poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PLA) nanoparticles as the siRNA carrier. It is demonstrated that only in c-Myc overexpressed TNBC cells, while not in normal mammary epithelial cells, delivery of siRNA targeting cyclin-dependent kinase 1 (CDK1) with the nanoparticle carrier (NPsiCDK1) induces cell viability decreasing and cell apoptosis through RNAi-mediated CDK1 expression inhibition, indicating the synthetic lethality between c-Myc with CDK1 in TNBC cells. Moreover, systemic delivery of NPsiCDK1 is able to suppress tumor growth in mice bearing SUM149 and BT549 xenograft and cause no systemic toxicity or activate the innate immune response, suggesting the therapeutic promise with such nanoparticles carrying siCDK1 for c-Myc overexpressed triple negative breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.
Metabolic Response of Escherichia coli upon Treatment with Hypochlorite at Sub-Lethal Concentrations
Winter, Jeannette; Eisenreich, Wolfgang
2015-01-01
Hypochlorite is a reactive oxygen species that is worldwide as an antibacterial disinfectant. Hypochlorite exposure is known to cause oxidative damage to DNA and proteins. As a response to these effects, the metabolite profiles of organisms treated with sub-lethal doses of hypochlorite are assumed to be severely modified; however, the nature of these changes is hardly understood. Therefore, using nuclear magnetic resonance spectroscopy and gas chromatography-coupled mass spectrometry, we analyzed the time-dependent impact of hypochlorite exposure with a sub-lethal concentration (50 µM) on the metabolite profile of the Escherichia coli strain MG1655. Principle component analysis clearly distinguished between the metabolite profiles of bacteria treated for 0, 5,10, 20, 40, or 60 min. Major changes in the relative amounts of fatty acids, acetic acid, and formic acid occurred within the first 5 min. Comparative gas chromatography-coupled mass spectrometry analyses revealed that the amounts of free methionine and alanine were significantly decreased in the treated cells, demonstrating their susceptibility to hypochlorite exposure. The concentrations of succinate, urea, orotic acid, 2-aminobutyric acid, and 2-hydroxybutyric acid were also severely affected, indicating general changes in the metabolic network by hypochlorite. However, most metabolite levels relaxed to the reference values of untreated cells after 40–60 min, reflecting the capability of E. coli to rapidly adapt to environmental stress factors such as the presence of sub-lethal oxidant levels. PMID:25932918
Moik, Daniel; Böttcher, Anika; Makhina, Tatiana; Grashoff, Carsten; Bulus, Nada; Zent, Roy; Fässler, Reinhard
2013-01-01
Integrin-linked kinase (ILK) localizes to focal adhesions (FAs) where it regulates cell spreading, migration, and growth factor receptor signaling. Previous reports showed that overexpressed ILK in which Val386 and Thr387 were substituted with glycine residues (ILK-VT/GG) could neither interact with paxillin nor localize to FA in cells expressing endogenous wild-type ILK, implying that paxillin binding to ILK is required for its localization to FAs. Here, we show that introducing this mutation into the germ line of mice (ILK-VT/GG) caused vasculogenesis defects, resulting in a general developmental delay and death at around embryonic day 12.5. Fibroblasts isolated from ILK-VT/GG mice contained mutant ILK in FAs, showed normal adhesion to and spreading on extracellular matrix substrates but displayed impaired migration. Biochemical analysis revealed that VT/GG substitutions decreased ILK protein stability leading to decreased ILK levels and reduced binding to paxillin and α-parvin. Because paxillin depletion did not affect ILK localization to FAs, the embryonic lethality and the in vitro migration defects are likely due to the reduced levels of ILK-VT/GG and diminished binding to parvins. PMID:23658024
Adaptation and Preadaptation of Salmonella enterica to Bile
Hernández, Sara B.; Cota, Ignacio; Ducret, Adrien; Aussel, Laurent; Casadesús, Josep
2012-01-01
Bile possesses antibacterial activity because bile salts disrupt membranes, denature proteins, and damage DNA. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile. Sublethal concentrations of the bile salt sodium deoxycholate (DOC) adapt Salmonella to survive lethal concentrations of bile. Adaptation seems to be associated to multiple changes in gene expression, which include upregulation of the RpoS-dependent general stress response and other stress responses. The crucial role of the general stress response in adaptation to bile is supported by the observation that RpoS− mutants are bile-sensitive. While adaptation to bile involves a response by the bacterial population, individual cells can become bile-resistant without adaptation: plating of a non-adapted S. enterica culture on medium containing a lethal concentration of bile yields bile-resistant colonies at frequencies between 10−6 and 10−7 per cell and generation. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. A fraction of such isolates are stable, indicating that bile resistance can be acquired by mutation. Full genome sequencing of bile-resistant mutants shows that alteration of the lipopolysaccharide transport machinery is a frequent cause of mutational bile resistance. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. We propose that such isolates derive from rare cells whose physiological state permitted survival upon encountering bile. This view is supported by single cell analysis of gene expression using a microscope fluidic system: batch cultures of Salmonella contain cells that activate stress response genes in the absence of DOC. This phenomenon underscores the existence of phenotypic heterogeneity in clonal populations of bacteria and may illustrate the adaptive value of gene expression fluctuations. PMID:22275872
Li, Yue; Chen, Hung-lin; Bannick, Nadine; Henry, Michael; Holm, Adrian N.; Metwali, Ahmed; Urban, Joseph F.; Rothman, Paul B.; Weiner, George J.; Blazar, Bruce R.; Elliott, David E.; Ince, M. Nedim
2014-01-01
Donor T lymphocyte transfer with hematopoietic stem cells suppresses residual tumor growth (graft-versus-tumor; GVT) in cancer patients undergoing bone marrow transplantation (BMT). However, donor T cell reactivity to host organs causes severe and potentially lethal inflammation, called graft-versus-host disease (GVHD). High dose steroids or other immune suppressives are used to treat GVHD that have limited ability to control the inflammation while incurring long-term toxicity. Novel strategies are needed to modulate GVHD, preserve GVT and improve the outcome of BMT. Regulatory T cells (Tregs) control alloantigen-sensitized inflammation of GVHD, sustain GVT and prevent mortality in bone marrow transplantation. Helminths colonizing the alimentary tract dramatically increase the Treg activity, thereby modulating intestinal or systemic inflammatory responses. These observations led us to hypothesize that helminths can regulate GVHD and maintain GVT in mice. Acute GVHD was induced in helminth (Heligmosomoides polygyrus)-infected or uninfected Balb/C recipients of C57BL/6 donor grafts. Helminth infection suppressed donor T cell inflammatory cytokine generation along with reduction in GVHD lethality and maintenance of GVT. H. polygyrus colonization promoted the survival of TGFβ generating recipient Tregs after a conditioning regimen with total body irradiation and led to a TGFβ-dependent in vivo expansion/maturation of donor Tregs after BMT. Helminths did not control GVHD, when T cells unresponsive to TGFβ-mediated immune regulation were used as donor T lymphocytes. These results suggest that helminths suppress acute GVHD, employing regulatory T cells and TGFβ-dependent pathways in mice. Helminthic regulation of GVHD and GVT through intestinal immune conditioning may improve the outcome of BMT. PMID:25527786
Goyeneche, Alicia A; Seidel, Erin E; Telleria, Carlos M
2012-06-01
Antiprogestins have been largely utilized in reproductive medicine, yet their repositioning for oncologic use is rapidly emerging. In this study we investigated the molecular mediators of the anti-ovarian cancer activity of the structurally related antiprogestins RU-38486, ORG-31710 and CDB-2914. We studied the responses of wt p53 OV2008 and p53 null SK-OV-3 cells to varying doses of RU-38486, ORG-31710 and CDB-2914. The steroids inhibited the growth of both cell lines with a potency of RU-38486 > ORG-31710 > CDB-2914, and were cytostatic at lower doses but lethal at higher concentrations. Antiprogestin-induced lethality associated with morphological features of apoptosis, hypodiploid DNA content, DNA fragmentation, and cleavage of executer caspase substrate PARP. Cell death ensued despite RU-38486 caused transient up-regulation of anti-apoptotic Bcl-2, ORG-31710 induced transient up-regulation of inhibitor of apoptosis XIAP, and CDB-2914 up-regulated both XIAP and Bcl-2. The antiprogestins induced accumulation of Cdk inhibitors p21(cip1) and p27(kip1) and increased association of p21(cip1) and p27(kip1) with Cdk-2. They also promoted nuclear localization of p21(cip1) and p27(kip1), reduced the nuclear abundances of Cdk-2 and cyclin E, and blocked the activity of Cdk-2 in both nucleus and cytoplasm. The cytotoxic potency of the antiprogestins correlated with the magnitude of the inhibition of Cdk-2 activity, ranging from G1 cell cycle arrest towards cell death. Our results suggest that, as a consequence of their cytostatic and lethal effects, antiprogestin steroids of well-known contraceptive properties emerge as attractive new agents to be repositioned for ovarian cancer therapeutics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan
2008-03-15
Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 {mu}M) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 {mu}M) fully inhibited diclofenac-induced cell injury, suggesting thatmore » mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca{sup 2+} chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca{sup 2+}-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.« less
Tironi-Farinati, Carla; Geoghegan, Patricia A.; Cangelosi, Adriana; Pinto, Alipio; Loidl, C. Fabian; Goldstein, Jorge
2013-01-01
Infection by Shiga toxin-producing Escherichia coli causes hemorrhagic colitis, hemolytic uremic syndrome (HUS), acute renal failure, and also central nervous system complications in around 30% of the children affected. Besides, neurological deficits are one of the most unrepairable and untreatable outcomes of HUS. Study of the striatum is relevant because basal ganglia are one of the brain areas most commonly affected in patients that have suffered from HUS and since the deleterious effects of a sub-lethal dose of Shiga toxin have never been studied in the striatum, the purpose of this study was to attempt to simulate an infection by Shiga toxin-producing E. coli in a murine model. To this end, intravenous administration of a sub-lethal dose of Shiga toxin 2 (0.5 ηg per mouse) was used and the correlation between neurological manifestations and ultrastructural changes in striatal brain cells was studied in detail. Neurological manifestations included significant motor behavior abnormalities in spontaneous motor activity, gait, pelvic elevation and hind limb activity eight days after administration of the toxin. Transmission electron microscopy revealed that the toxin caused early perivascular edema two days after administration, as well as significant damage in astrocytes four days after administration and significant damage in neurons and oligodendrocytes eight days after administration. Interrupted synapses and mast cell extravasation were also found eight days after administration of the toxin. We thus conclude that the chronological order of events observed in the striatum could explain the neurological disorders found eight days after administration of the toxin. PMID:23383285
Lysosome and Phagosome Stability in Lethal Cell Injury
Hawkins, Hal K.; Ericsson, Jan L. E.; Biberfeld, Peter; Trump, Benjamin F.
1972-01-01
In two types of cell injury in a tissue culture system, the possibility was tested that lysosome rupture may be a lethal cellular reaction to injury, and thus an important general cause of irreversibility of damage in injured tissue. Prior labeling of secondary lysosomes with the fluorochrome acridine orange, or with ferritin, was used to trace changes in lysosomes after applying an injury. The metabolic inhibitors iodoacetate and cyanide were used together to block the cell's energy supply, or attachment of antiserum and subsequent complement attack were used to damage the surface membrane, producing rapid loss of cell volume control. Living cells were studied by time-lapse phase-contrast cinemicrography and fluorescence microscopy, and samples were fixed at intervals for electron microscopy. The cytolytic action of complement was lethal to sensitized cells within 2 hours, but results showed that lysosomes did not rupture for approximately 4 hours and in fact did not release the fluorescent dye until after reaching the postmortem necrotic phase of injury. Cells treated with metabolic inhibitors also showed irreversible alterations, while lysosomes remained intact and retained the ferritin marker. The fluorochrome marker, acridine orange, escaped from lysosomes early after metabolic injury, but the significance of this observation is not clear. The results are interpreted as evidence against the concept that lysosome rupture threatens the survival of injured cells. The original suicide bag mechanism of cell damage thus is apparently not operative in the systems studied. Lysosomes appear to be relatively stable organelles which, following injury of the types studied, burst only after cell death, acting then as scavengers which help to clear cellular debris. ImagesFigs 5-7Fig 18Fig 19Fig 20Figs 21-23Fig 8Fig 9Fig 10Fig 11Figs 24-27Fig 12Figs 13 and 14Fig 1Fig 2Fig 3Fig 4Fig 15Fig 16Fig 17 PMID:4340333
Uchino, Ryo; Nonaka, Yu-Ki; Horigome, Tuneyoshi; Sugiyama, Shin; Furukawa, Kazuhiro
2013-01-01
Lamins are the major components of nuclear envelope architecture, being required for both the structural and informational roles of the nuclei. Mutations of lamins cause a spectrum of diseases in humans, including muscular dystrophy. We report here that the loss of the A-type lamin gene, lamin C in Drosophila resulted in pupal metamorphic lethality caused by tendon defects, matching the characteristics of human A-type lamin revealed by Emery-Dreifuss muscular dystrophy (EDMD). In tendon cells lacking lamin C activity, overall cell morphology was affected and organization of the spectraplakin family cytoskeletal protein Shortstop which is prominently expressed in tendon cells gradually disintegrated, notably around the nucleus and in a manner correlating well with the degradation of musculature. Furthermore, lamin C null mutants were efficiently rescued by restoring lamin C expression to shortstop-expressing cells, which include tendon cells but exclude skeletal muscle cells. Thus the critical function of A-type lamin C proteins in Drosophila musculature is to maintain proper function and morphology of tendon cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Flt1/VEGFR1 heterozygosity causes transient embryonic edema.
Otowa, Yasunori; Moriwaki, Kazumasa; Sano, Keigo; Shirakabe, Masanori; Yonemura, Shigenobu; Shibuya, Masabumi; Rossant, Janet; Suda, Toshio; Kakeji, Yoshihiro; Hirashima, Masanori
2016-06-02
Vascular endothelial growth factor-A is a major player in vascular development and a potent vascular permeability factor under physiological and pathological conditions by binding to a decoy receptor Flt1 and its primary receptor Flk1. In this study, we show that Flt1 heterozygous (Flt1(+/-)) mouse embryos grow up to adult without life-threatening abnormalities but exhibit a transient embryonic edema around the nuchal and back regions, which is reminiscent of increased nuchal translucency in human fetuses. Vascular permeability is enhanced and an intricate infolding of the plasma membrane and huge vesicle-like structures are seen in Flt1(+/-) capillary endothelial cells. Flk1 tyrosine phosphorylation is elevated in Flt1(+/-) embryos, but Flk1 heterozygosity does not suppress embryonic edema caused by Flt1 heterozygosity. When Flt1 mutants are crossed with Aspp1(-/-) mice which exhibit a transient embryonic edema with delayed formation and dysfunction of lymphatic vessels, only 5.7% of Flt1(+/-); Aspp1(-/-) mice survive, compared to expected ratio (25%). Our results demonstrate that Flt1 heterozygosity causes a transient embryonic edema and can be a risk factor for embryonic lethality in combination with other mutations causing non-lethal vascular phenotype.
Chinmo prevents transformer alternative splicing to maintain male sex identity.
Grmai, Lydia; Hudry, Bruno; Miguel-Aliaga, Irene; Bach, Erika A
2018-02-01
Reproduction in sexually dimorphic animals relies on successful gamete production, executed by the germline and aided by somatic support cells. Somatic sex identity in Drosophila is instructed by sex-specific isoforms of the DMRT1 ortholog Doublesex (Dsx). Female-specific expression of Sex-lethal (Sxl) causes alternative splicing of transformer (tra) to the female isoform traF. In turn, TraF alternatively splices dsx to the female isoform dsxF. Loss of the transcriptional repressor Chinmo in male somatic stem cells (CySCs) of the testis causes them to "feminize", resembling female somatic stem cells in the ovary. This somatic sex transformation causes a collapse of germline differentiation and male infertility. We demonstrate this feminization occurs by transcriptional and post-transcriptional regulation of traF. We find that chinmo-deficient CySCs upregulate tra mRNA as well as transcripts encoding tra-splice factors Virilizer (Vir) and Female lethal (2)d (Fl(2)d). traF splicing in chinmo-deficient CySCs leads to the production of DsxF at the expense of the male isoform DsxM, and both TraF and DsxF are required for CySC sex transformation. Surprisingly, CySC feminization upon loss of chinmo does not require Sxl but does require Vir and Fl(2)d. Consistent with this, we show that both Vir and Fl(2)d are required for tra alternative splicing in the female somatic gonad. Our work reveals the need for transcriptional regulation of tra in adult male stem cells and highlights a previously unobserved Sxl-independent mechanism of traF production in vivo. In sum, transcriptional control of the sex determination hierarchy by Chinmo is critical for sex maintenance in sexually dimorphic tissues and is vital in the preservation of fertility.
Chinmo prevents transformer alternative splicing to maintain male sex identity
Hudry, Bruno; Miguel-Aliaga, Irene
2018-01-01
Reproduction in sexually dimorphic animals relies on successful gamete production, executed by the germline and aided by somatic support cells. Somatic sex identity in Drosophila is instructed by sex-specific isoforms of the DMRT1 ortholog Doublesex (Dsx). Female-specific expression of Sex-lethal (Sxl) causes alternative splicing of transformer (tra) to the female isoform traF. In turn, TraF alternatively splices dsx to the female isoform dsxF. Loss of the transcriptional repressor Chinmo in male somatic stem cells (CySCs) of the testis causes them to “feminize”, resembling female somatic stem cells in the ovary. This somatic sex transformation causes a collapse of germline differentiation and male infertility. We demonstrate this feminization occurs by transcriptional and post-transcriptional regulation of traF. We find that chinmo-deficient CySCs upregulate tra mRNA as well as transcripts encoding tra-splice factors Virilizer (Vir) and Female lethal (2)d (Fl(2)d). traF splicing in chinmo-deficient CySCs leads to the production of DsxF at the expense of the male isoform DsxM, and both TraF and DsxF are required for CySC sex transformation. Surprisingly, CySC feminization upon loss of chinmo does not require Sxl but does require Vir and Fl(2)d. Consistent with this, we show that both Vir and Fl(2)d are required for tra alternative splicing in the female somatic gonad. Our work reveals the need for transcriptional regulation of tra in adult male stem cells and highlights a previously unobserved Sxl-independent mechanism of traF production in vivo. In sum, transcriptional control of the sex determination hierarchy by Chinmo is critical for sex maintenance in sexually dimorphic tissues and is vital in the preservation of fertility. PMID:29389999
CRISPR Knockout of the HuR Gene Causes a Xenograft Lethal Phenotype
Lal, Shruti; Cheung, Edwin C.; Zarei, Mahsa; Preet, Ranjan; Chand, Saswati N.; Mambelli-Lisboa, Nicole C.; Romeo, Carmella; Stout, Matthew C.; Londin, Eric; Goetz, Austin; Lowder, Cinthya Y.; Nevler, Avinoam; Yeo, Charles J.; Campbell, Paul M.; Winter, Jordan M.; Dixon, Dan A.; Brody, Jonathan R.
2017-01-01
Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer related deaths in the U.S., while colorectal cancer (CRC) is the third most common cancer. The RNA binding protein HuR (ELAVL1), supports a pro-oncogenic network in gastrointestinal (GI) cancer cells through enhanced HuR expression. Using a publically available database, HuR expression levels were determined to be increased in primary PDA and CRC tumor cohorts as compared to normal pancreas and colon tissues, respectively. CRISPR/Cas9 technology was successfully used to delete the HuR gene in both PDA (MIA PaCa-2 and Hs 766T) and CRC (HCT116) cell lines. HuR deficiency has a mild phenotype, in vitro, as HuR-deficient MIA PaCa-2 (MIA.HuR-KO(−/−)) cells had increased apoptosis when compared to isogenic wild-type (MIA.HuR-WT(+/+)) cells. Using this isogenic system, mRNAs were identified that specifically bound to HuR and were required for transforming a 2D culture into 3D (i.e., organoids). Importantly, HuR-deficient MIA PaCa-2 and Hs 766T cells were unable to engraft tumors in vivo compared to control HuR-proficient cells, demonstrating a unique xenograft lethal phenotype. While not as a dramatic phenotype, CRISPR knockout HuR HCT116 colon cancer cells (HCT.HuR-KO(−/−)) showed significantly reduced in vivo tumor growth compared to controls (HCT.HuR-WT(+/+)). Finally, HuR deletion affects KRAS activity and controls a subset of pro-oncogenic genes. Implications The work reported here supports the notion that targeting HuR is a promising therapeutic strategy to treat GI malignancies. PMID:28242812
CRISPR Knockout of the HuR Gene Causes a Xenograft Lethal Phenotype.
Lal, Shruti; Cheung, Edwin C; Zarei, Mahsa; Preet, Ranjan; Chand, Saswati N; Mambelli-Lisboa, Nicole C; Romeo, Carmella; Stout, Matthew C; Londin, Eric; Goetz, Austin; Lowder, Cinthya Y; Nevler, Avinoam; Yeo, Charles J; Campbell, Paul M; Winter, Jordan M; Dixon, Dan A; Brody, Jonathan R
2017-06-01
Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer-related deaths in the United States, whereas colorectal cancer is the third most common cancer. The RNA-binding protein HuR (ELAVL1) supports a pro-oncogenic network in gastrointestinal (GI) cancer cells through enhanced HuR expression. Using a publically available database, HuR expression levels were determined to be increased in primary PDA and colorectal cancer tumor cohorts as compared with normal pancreas and colon tissues, respectively. CRISPR/Cas9 technology was successfully used to delete the HuR gene in both PDA (MIA PaCa-2 and Hs 766T) and colorectal cancer (HCT116) cell lines. HuR deficiency has a mild phenotype, in vitro , as HuR-deficient MIA PaCa-2 (MIA.HuR-KO (-/-) ) cells had increased apoptosis when compared with isogenic wild-type (MIA.HuR-WT (+/+) ) cells. Using this isogenic system, mRNAs were identified that specifically bound to HuR and were required for transforming a two-dimensional culture into three dimensional (i.e., organoids). Importantly, HuR-deficient MIA PaCa-2 and Hs 766T cells were unable to engraft tumors in vivo compared with control HuR-proficient cells, demonstrating a unique xenograft lethal phenotype. Although not as a dramatic phenotype, CRISPR knockout HuR HCT116 colon cancer cells (HCT.HuR-KO (-/-) ) showed significantly reduced in vivo tumor growth compared with controls (HCT.HuR-WT (+/+) ). Finally, HuR deletion affects KRAS activity and controls a subset of pro-oncogenic genes. Implications: The work reported here supports the notion that targeting HuR is a promising therapeutic strategy to treat GI malignancies. Mol Cancer Res; 15(6); 696-707. ©2017 AACR . ©2017 American Association for Cancer Research.
Mice Lacking RIP3 Kinase are not Protected from Acute Radiation Syndrome.
Castle, Katherine D; Daniel, Andrea R; Moding, Everett J; Luo, Lixia; Lee, Chang-Lung; Kirsch, David G
2018-06-01
Exposure to high doses of ionizing radiation can cause lethal injury to normal tissue, thus inducing acute radiation syndrome. Acute radiation syndrome is caused by depletion of bone marrow cells (hematopoietic syndrome) and irreparable damage to the epithelial cells in the gastrointestinal tract (gastrointestinal syndrome). Although radiation initiates apoptosis in the hematopoietic and gastrointestinal compartments within the first few hours after exposure, alternative mechanisms of cell death may contribute to injury in these radiosensitive tissues. In this study, we utilized mice lacking a critical regulator of necroptosis, receptor interacting protein 3 (RIP3) kinase, to characterize the role of RIP3 in normal tissue toxicity after irradiation. Our results suggest that RIP3-mediated signaling is not a critical driver of acute radiation syndrome.
Potent antitumor activity of a urokinase-activated engineered anthrax toxin
NASA Astrophysics Data System (ADS)
Liu, Shihui; Aaronson, Hannah; Mitola, David J.; Leppla, Stephen H.; Bugge, Thomas H.
2003-01-01
The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.
[Gunshot wounds caused by non-lethal ammunition on the porcine model post-mortem].
Jabrocký, Peter; Pivko, Juraj; Vondráková, Mária; Tažký, Boris
2013-10-01
In this article we focus on the effects of so called non-lethal ammunition. We studied possible mechanism of firearm injury formation as a consequence of using firearm on the body, to present a more comprehensive material in wound ballistics. We pointed out possible actions of a projectile causes on human, respectively other animal organisms, as well as to a manner in which an injury is caused by rifles or shotguns using non-lethal ammunition with rubber projectiles. In the experiment, we have focused on macroscopic analysis of the tissue penetrated by a rubber projectile fired from a long firearm and pump-action shotgun while focusing on the anatomical-morphological analysis of entry wounds to determine the effectiveness respectively, the wounding potential of the projectile. The results of the experiment based on the macroscopic analysis of entry wounds, cavities and exit wounds, show that when a rubber projectile penetrates the body it causes loss of the tissue (i.e. the minus effect) and mechanical disruption of the tissue similar to lethal projectile. Based on the measures and ballistic computations we concluded that in specific cases, like for example in a close range hit, a penetration of vital organs can cause serious or even lethal injuries.
Ismailoglu, Ismail; Chen, Qiuying; Popowski, Melissa; Yang, Lili; Gross, Steven S.; Brivanlou, Ali H.
2014-01-01
Mutations in the Huntington locus (htt) have devastating consequences. Gain-of-poly-Q repeats in Htt protein causes Huntington's disease (HD), while htt-/- mutants display early embryonic lethality. Despite its importance, the function of Htt remains elusive. To address this, we compared more than 3,700 compounds in three syngeneic mouse embryonic stem cell (mESC) lines: htt-/-, extended poly-Q (Htt-Q140/7), and wildtype mESCs (Htt-Q7/7) using untargeted metabolite profiling. While Htt-Q140/7 cells, did not show major differences in cellular bioenergetics, we find extensive metabolic aberrations in htt-/- mESCs, including: (i) complete failure of ATP production despite preservation of the mitochondrial membrane potential; (ii) near-maximal glycolysis, with little or no glycolytic reserve; (iii) marked ketogenesis; (iv) depletion of intracellular NTPs; (v) accelerated purine biosynthesis and salvage; and (vi) loss of mitochondrial structural integrity. Together, our findings reveal that Htt is necessary for mitochondrial structure and function from the earliest stages of embryogenesis, providing a molecular explanation for htt-/- early embryonic lethality. PMID:24780625
Ismailoglu, Ismail; Chen, Qiuying; Popowski, Melissa; Yang, Lili; Gross, Steven S; Brivanlou, Ali H
2014-07-15
Mutations in the Huntington locus (htt) have devastating consequences. Gain-of-poly-Q repeats in Htt protein causes Huntington's disease (HD), while htt(-/-) mutants display early embryonic lethality. Despite its importance, the function of Htt remains elusive. To address this, we compared more than 3700 compounds in three syngeneic mouse embryonic stem cell (mESC) lines: htt(-/-), extended poly-Q (Htt-Q140/7), and wild-type mESCs (Htt-Q7/7) using untargeted metabolite profiling. While Htt-Q140/7 cells did not show major differences in cellular bioenergetics, we find extensive metabolic aberrations in htt(-/-) mESCs, including (i) complete failure of ATP production despite preservation of the mitochondrial membrane potential; (ii) near-maximal glycolysis, with little or no glycolytic reserve; (iii) marked ketogenesis; (iv) depletion of intracellular NTPs; (v) accelerated purine biosynthesis and salvage; and (vi) loss of mitochondrial structural integrity. Together, our findings reveal that Htt is necessary for mitochondrial structure and function from the earliest stages of embryogenesis, providing a molecular explanation for htt(-/-) early embryonic lethality. Copyright © 2014 Elsevier Inc. All rights reserved.
An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus.
Koehler, Alexander; Kolesnikova, Larissa; Becker, Stephan
2016-10-01
Marburg virus (MARV) causes severe, often fatal, disease in humans and transient illness in rodents. Sequential passaging of MARV in guinea pigs resulted in selection of a lethal virus containing 4 aa changes. A D184N mutation in VP40 (VP40D184N), which leads to a species-specific gain of viral fitness, and three mutations in the active site of viral RNA-dependent RNA polymerase L, which were investigated in the present study for functional significance in human and guinea pig cells. The transcription/replication activity of L mutants was strongly enhanced by a substitution at position 741 (S741C), and inhibited by other substitutions (D758A and A759D) in both species. The polymerase activity of L carrying the S741C substitution was eightfold higher in guinea pig cells than in human cells upon co-expression with VP40D184N, suggesting that the additive effect of the two mutations provides MARV a replicative advantage in the new host.
Majira, Amel; Domin, Monique; Grandjean, Olivier; Gofron, Krystyna; Houba-Hérin, Nicole
2002-10-01
A seedling lethal mutant of Nicotiana plumbaginifolia (sdl-1) was isolated by transposon tagging using a maize Dissociation (Ds) element. The insertion mutation was produced by direct co-transformation of protoplasts with two plasmids: one containing Ds and a second with an Ac transposase gene. sdl-1 seedlings exhibit several phenotypes: swollen organs, short hypocotyls in light and dark conditions, and enlarged and multinucleated cells, that altogether suggest cell growth defects. Mutant cells are able to proliferate under in vitro culture conditions. Genomic DNA sequences bordering the transposon were used to recover cDNA from the normal allele. Complementation of the mutant phenotype with the cDNA confirmed that the transposon had caused the mutation. The Ds element was inserted into the first exon of the open reading frame and the homozygous mutant lacked detectable transcript. Phenocopies of the mutant were obtained by an antisense approach. SDL-1 encodes a novel protein found in several plant genomes but apparently missingfrom animal and fungal genomes; the protein is highly conserved and has a potential plastid targeting motif.
Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome
Takemura, Naoki; Kawasaki, Takumi; Kunisawa, Jun; Sato, Shintaro; Lamichhane, Aayam; Kobiyama, Kouji; Aoshi, Taiki; Ito, Junichi; Mizuguchi, Kenji; Karuppuchamy, Thangaraj; Matsunaga, Kouta; Miyatake, Shoichiro; Mori, Nobuko; Tsujimura, Tohru; Satoh, Takashi; Kumagai, Yutaro; Kawai, Taro; Standley, Daron M.; Ishii, Ken J.; Kiyono, Hiroshi; Akira, Shizuo; Uematsu, Satoshi
2014-01-01
High-dose ionizing radiation induces severe DNA damage in the epithelial stem cells in small intestinal crypts and causes gastrointestinal syndrome (GIS). Although the tumour suppressor p53 is a primary factor inducing death of crypt cells with DNA damage, its essential role in maintaining genome stability means inhibiting p53 to prevent GIS is not a viable strategy. Here we show that the innate immune receptor Toll-like receptor 3 (TLR3) is critical for the pathogenesis of GIS. Tlr3−/− mice show substantial resistance to GIS owing to significantly reduced radiation-induced crypt cell death. Despite showing reduced crypt cell death, p53-dependent crypt cell death is not impaired in Tlr3−/− mice. p53-dependent crypt cell death causes leakage of cellular RNA, which induces extensive cell death via TLR3. An inhibitor of TLR3–RNA binding ameliorates GIS by reducing crypt cell death. Thus, we propose blocking TLR3 activation as a novel approach to treat GIS. PMID:24637670
Environmental adjuvants, apoptosis and the censorship over autoimmunity.
Rovere-Querini, Patrizia; Manfredi, Angelo A; Sabbadini, Maria Grazia
2005-11-01
Alterations during apoptosis lead to the activation of autoreactive T cells and the production of autoantibodies. This article discusses the pathogenic potential of cells dying in vivo, dissecting the role of signals that favor immune responses (adjuvants) and the influence of genetic backgrounds. Diverse factors determine whether apoptosis leads or not to a self-sustaining, clinically apparent autoimmune disease. The in vivo accumulation of uncleared dying cells per se is not sufficient to cause disease. However, dying cells are antigenic and their complementation with immune adjuvants causes lethal diseases in predisposed lupus-prone animals. At least some adjuvant signals directly target the function and the activation state of antigen presenting cells. Several laboratories are aggressively pursuing the molecular identification of endogenous adjuvants. Sodium monourate and the high mobility group B1 protein (HMGB1) are, among those identified so far, well known to rheumatologists. However, even the complementation of apoptotic cells with potent adjuvant signals fail to cause clinical autoimmunity in most strains: autoantibodies generated are transient, do not undergo to epitope/spreading and do not cause disease. Novel tools for drug development will derive from the molecular identification of the constraints that prevent autoimmunity in normal subjects.
Acute systemic DNA damage in youth does not impair immune defense with aging.
Pugh, Jason L; Foster, Sarah A; Sukhina, Alona S; Petravic, Janka; Uhrlaub, Jennifer L; Padilla-Torres, Jose; Hayashi, Tomonori; Nakachi, Kei; Smithey, Megan J; Nikolich-Žugich, Janko
2016-08-01
Aging-related decline in immunity is believed to be the main driver behind decreased vaccine efficacy and reduced resistance to infections in older adults. Unrepaired DNA damage is known to precipitate cellular senescence, which was hypothesized to be the underlying cause of certain age-related phenotypes. Consistent with this, some hallmarks of immune aging were more prevalent in individuals exposed to whole-body irradiation (WBI), which leaves no anatomical repository of undamaged hematopoietic cells. To decisively test whether and to what extent WBI in youth will leave a mark on the immune system as it ages, we exposed young male C57BL/6 mice to sublethal WBI (0.5-4 Gy), mimicking human survivor exposure during nuclear catastrophe. We followed lymphocyte homeostasis thorough the lifespan, response to vaccination, and ability to resist lethal viral challenge in the old age. None of the irradiated groups showed significant differences compared with mock-irradiated (0 Gy) animals for the parameters measured. Even the mice that received the highest dose of sublethal WBI in youth (4 Gy) exhibited equilibrated lymphocyte homeostasis, robust T- and B-cell responses to live attenuated West Nile virus (WNV) vaccine and full survival following vaccination upon lethal WNV challenge. Therefore, a single dose of nonlethal WBI in youth, resulting in widespread DNA damage and repopulation stress in hematopoietic cells, leaves no significant trace of increased immune aging in a lethal vaccine challenge model. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Huang, Juan; Jia, Renyong; Wang, Mingshu; Shu, Bing; Yu, Xia; Zhu, Dekang; Chen, Shun; Yin, Zhongqiong; Chen, Xiaoyue; Cheng, Anchun
2014-04-01
Duck plague (DP) is a severe disease caused by DP virus (DPV). Control of the disease is recognized as one of the biggest challenges in avian medicine. Vaccination is an efficient way to control DPV, and an attenuated vaccine is the main routine vaccine. The attenuated DPV vaccine strain CHa is a modified live vaccine, but the systemic and mucosal immune responses induced by this vaccine have been poorly understood. In this study, the immunogenicity and efficacy of the vaccine were evaluated after subcutaneous immunization of ducks. CD4(+) and CD8(+) T cells were counted by flow cytometry, and humoral and mucosal Ig antibodies were analyzed by enzyme-linked immunosorbent assay (ELISA). The results showed that high levels of T cells and Ig antibodies were present postimmunization and that there were more CD4(+) T cells than CD8(+) T cells. Titers of humoral IgG were higher than those of humoral IgA. Local IgA was found in each sample, whereas local IgG was found only in the spleen, thymus, bursa of Fabricius, harderian gland, liver, bile, and lung. In a protection assay, the attenuated DPV vaccine completely protected ducks against 1,000 50% lethal doses (LD50) of the lethal DPV strain CHv via oral infection. These data suggest that this subcutaneous vaccine elicits sufficient systemic and mucosal immune responses against lethal DPV challenge to be protective in ducks. This study provides broad insights into understanding the immune responses to the attenuated DPV vaccine strain CHa through subcutaneous immunization in ducks.
Davidson, Sean M; Foote, Kirsty; Kunuthur, Suma; Gosain, Raj; Tan, Noah; Tyser, Richard; Zhao, Yong Juan; Graeff, Richard; Ganesan, A; Duchen, Michael R; Patel, Sandip; Yellon, Derek M
2015-12-01
In the heart, a period of ischaemia followed by reperfusion evokes powerful cytosolic Ca(2+) oscillations that can cause lethal cell injury. These signals represent attractive cardioprotective targets, but the underlying mechanisms of genesis are ill-defined. Here, we investigated the role of the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP), which is known in several cell types to induce Ca(2+) oscillations that initiate from acidic stores such as lysosomes, likely via two-pore channels (TPCs, TPC1 and 2). An NAADP antagonist called Ned-K was developed by rational design based on a previously existing scaffold. Ned-K suppressed Ca(2+) oscillations and dramatically protected cardiomyocytes from cell death in vitro after ischaemia and reoxygenation, preventing opening of the mitochondrial permeability transition pore. Ned-K profoundly decreased infarct size in mice in vivo. Transgenic mice lacking the endo-lysosomal TPC1 were also protected from injury. NAADP signalling plays a major role in reperfusion-induced cell death and represents a potent pathway for protection against reperfusion injury. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
Davidson, Sean M.; Foote, Kirsty; Kunuthur, Suma; Gosain, Raj; Tan, Noah; Tyser, Richard; Zhao, Yong Juan; Graeff, Richard; Ganesan, A.; Duchen, Michael R.; Patel, Sandip; Yellon, Derek M.
2015-01-01
Aims In the heart, a period of ischaemia followed by reperfusion evokes powerful cytosolic Ca2+ oscillations that can cause lethal cell injury. These signals represent attractive cardioprotective targets, but the underlying mechanisms of genesis are ill-defined. Here, we investigated the role of the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP), which is known in several cell types to induce Ca2+ oscillations that initiate from acidic stores such as lysosomes, likely via two-pore channels (TPCs, TPC1 and 2). Methods and results An NAADP antagonist called Ned-K was developed by rational design based on a previously existing scaffold. Ned-K suppressed Ca2+ oscillations and dramatically protected cardiomyocytes from cell death in vitro after ischaemia and reoxygenation, preventing opening of the mitochondrial permeability transition pore. Ned-K profoundly decreased infarct size in mice in vivo. Transgenic mice lacking the endo-lysosomal TPC1 were also protected from injury. Conclusion NAADP signalling plays a major role in reperfusion-induced cell death and represents a potent pathway for protection against reperfusion injury. PMID:26395965
Park, Solip; Lehner, Ben
2015-01-01
Cancers, like many diseases, are normally caused by combinations of genetic alterations rather than by changes affecting single genes. It is well established that the genetic alterations that drive cancer often interact epistatically, having greater or weaker consequences in combination than expected from their individual effects. In a stringent statistical analysis of data from > 3,000 tumors, we find that the co-occurrence and mutual exclusivity relationships between cancer driver alterations change quite extensively in different types of cancer. This cannot be accounted for by variation in tumor heterogeneity or unrecognized cancer subtypes. Rather, it suggests that how genomic alterations interact cooperatively or partially redundantly to driver cancer changes in different types of cancers. This re-wiring of epistasis across cell types is likely to be a basic feature of genetic architecture, with important implications for understanding the evolution of multicellularity and human genetic diseases. In addition, if this plasticity of epistasis across cell types is also true for synthetic lethal interactions, a synthetic lethal strategy to kill cancer cells may frequently work in one type of cancer but prove ineffective in another. PMID:26227665
Margalit, Danielle N.; Romberg, Laura; Mets, Rebecca B.; Hebert, Alan M.; Mitchison, Timothy J.; Kirschner, Marc W.; RayChaudhuri, Debabrata
2004-01-01
FtsZ, the ancestral homolog of eukaryotic tubulins, is a GTPase that assembles into a cytokinetic ring structure essential for cell division in prokaryotic cells. Similar to tubulin, purified FtsZ polymerizes into dynamic protofilaments in the presence of GTP; polymer assembly is accompanied by GTP hydrolysis. We used a high-throughput protein-based chemical screen to identify small molecules that target assembly-dependent GTPase activity of FtsZ. Here, we report the identification of five structurally diverse compounds, named Zantrins, which inhibit FtsZ GTPase either by destabilizing the FtsZ protofilaments or by inducing filament hyperstability through increased lateral association. These two classes of FtsZ inhibitors are reminiscent of the antitubulin drugs colchicine and Taxol, respectively. We also show that Zantrins perturb FtsZ ring assembly in Escherichia coli cells and cause lethality to a variety of bacteria in broth cultures, indicating that FtsZ antagonists may serve as chemical leads for the development of new broad-spectrum antibacterial agents. Our results illustrate the utility of small-molecule chemical probes to study FtsZ polymerization dynamics and the feasibility of FtsZ as a novel therapeutic target. PMID:15289600
NASA Astrophysics Data System (ADS)
Nomura, Fumimasa; Hattori, Akihiro; Terazono, Hideyuki; Kim, Hyonchol; Odaka, Masao; Sugio, Yoshihiro; Yasuda, Kenji
2016-06-01
For the prediction of lethal arrhythmia occurrence caused by abnormality of cell-to-cell conduction, we have developed a next-generation in vitro cell-to-cell conduction assay, i.e., a quasi in vivo assay, in which the change in spatial cell-to-cell conduction is quantitatively evaluated from the change in waveforms of the convoluted electrophysiological signals from lined-up cardiomyocytes on a single closed loop of a microelectrode of 1 mm diameter and 20 µm width in a cultivation chip. To evaluate the importance of the closed-loop arrangement of cardiomyocytes for prediction, we compared the change in waveforms of convoluted signals of the responses in the closed-loop circuit arrangement with that of the response of cardiomyocyte clusters using a typical human ether a go-go related gene (hERG) ion channel blocker, E-4031. The results showed that (1) waveform prolongation and fluctuation both in the closed loops and clusters increased depending on the E-4031 concentration increase. However, (2) only the waveform signals in closed loops showed an apparent temporal change in waveforms from ventricular tachycardia (VT) to ventricular fibrillation (VF), which is similar to the most typical cell-to-cell conductance abnormality. The results indicated the usefulness of convoluted waveform signals of a closed-loop cell network for acquiring reproducible results acquisition and more detailed temporal information on cell-to-cell conduction.
Giant cell phlebitis: a potentially lethal clinical entity.
Kunieda, Takeshige; Murayama, Masanori; Ikeda, Tsuneko; Yamakita, Noriyoshi
2012-08-01
An 83-year-old woman presented to us with a 4-week history of general malaise, subjective fever and lower abdominal pain. Despite the intravenous infusion of antibiotics, her blood results and physical condition worsened, resulting in her sudden death. Autopsy study revealed that the medium-sized veins of the mesentery were infiltrated by eosinophil granulocytes, lymphocytes, macrophages and multinucleated giant cells; however, the arteries were not involved. Microscopically, venous giant cell infiltration was observed in the gastrointestinal tract, bladder, retroperitoneal tissues and myocardium. The final diagnosis was giant cell phlebitis, a rare disease of unknown aetiology. This case demonstrates for the first time that giant cell phlebitis involving extra-abdominal organs, including hearts, can cause serious morbidity.
Hersh, Bradley M; Hartwieg, Erika; Horvitz, H Robert
2002-04-02
The misregulation of programmed cell death, or apoptosis, contributes to the pathogenesis of many diseases. We used Nomarski microscopy to screen for mutants containing refractile cell corpses in a C. elegans strain in which all programmed cell death is blocked and such corpses are absent. We isolated a mutant strain that accumulates refractile bodies resembling irregular cell corpses. We rescued this mutant phenotype with the C. elegans mucolipidosis type IV (ML-IV) homolog, the recently identified cup-5 (coelomocyte-uptake defective) gene. ML-IV is a human autosomal recessive lysosomal storage disease characterized by psychomotor retardation and ophthalmological abnormalities. Our null mutations in cup-5 cause maternal-effect lethality. In addition, cup-5 mutants contain excess lysosomes in many and possibly all cell types and contain lamellar structures similar to those observed in ML-IV cell lines. The human ML-IV gene is capable of rescuing both the maternal-effect lethality and the lysosome-accumulation abnormality of cup-5 mutants. cup-5 mutants seem to contain excess apoptotic cells as detected by staining with terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling. We suggest that the increased apoptosis seen in cup-5 mutants is a secondary consequence of the lysosomal defect, and that abnormalities in apoptosis may be associated with human lysosomal storage disorders.
EF24 induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in gastric cancer cells.
Zou, Peng; Xia, Yiqun; Chen, Weiqian; Chen, Xi; Ying, Shilong; Feng, Zhiguo; Chen, Tongke; Ye, Qingqing; Wang, Zhe; Qiu, Chenyu; Yang, Shulin; Liang, Guang
2016-04-05
Gastric cancer (GC) is one of the leading causes of cancer mortality in the world, and finding novel agents for the treatment of advanced gastric cancer is of urgent need. Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. Although EF24 demonstrates potent anticancer effïcacy in numerous types of human cancer cells, the cellular targets of EF24 have not been fully deï¬ned. We report here that EF24 may interact with the thioredoxin reductase 1 (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme, to induce reactive oxygen species (ROS)-mediated apoptosis in human gastric cancer cells. By inhibiting TrxR1 activity and increasing intracellular ROS levels, EF24 induces a lethal endoplasmic reticulum stress in human gastric cancer cells. Importantly, knockdown of TrxR1 sensitizes cells to EF24 treatment. In vivo, EF24 treatment markedly reduces the TrxR1 activity and tumor cell burden, and displays synergistic lethality with 5-FU against gastric cancer cells. Targeting TrxR1 with EF24 thus discloses a previously unrecognized mechanism underlying the biological activity of EF24, and reveals that TrxR1 is a good target for gastric cancer therapy.
NASA Astrophysics Data System (ADS)
He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.
2016-12-01
Metastasis causes as many as 90% of cancer-related deaths, especially for the deadliest skin cancer, melanoma. Since hematogenous dissemination of circulating tumor cells is the major route of metastasis, detection and destruction of circulating tumor cells are vital for impeding metastasis and improving patient prognosis. Exploiting the exquisite intrinsic optical absorption contrast of circulating melanoma cells, we developed dual-wavelength photoacoustic flow cytography coupled with a nanosecond-pulsed melanoma-specific laser therapy mechanism. We have successfully achieved in vivo label-free imaging of rare single circulating melanoma cells in both arteries and veins of mice. Further, the photoacoustic signal from a circulating melanoma cell immediately hardware-triggers a lethal pinpoint laser irradiation to kill it on the spot in a thermally confined manner without causing collateral damage. A pseudo-therapy study including both in vivo and in vitro experiments demonstrated the performance and the potential clinical value of our method, which can facilitate early treatment of metastasis by clearing circulating tumor cells from vasculature.
Bhattacharjee, Sonali; Nandi, Saikat
2017-12-01
Synthetic lethality refers to a lethal phenotype that results from the simultaneous disruptions of two genes, while the disruption of either gene alone is viable. Many DNA double strand break repair (DSBR) genes have synthetic lethal relationships with oncogenes and tumor suppressor genes, which can be exploited for targeted cancer therapy, an approach referred to as combination therapy. DNA double-strand breaks (DSBs) are one of the most toxic lesions to a cell and can be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). HR and NHEJ genes are particularly attractive targets for cancer therapy because these genes have altered expression patterns in cancer cells when compared with normal cells and these genetic abnormalities can be targeted for selectively killing cancer cells. Here, we review recent advances in the development of small molecule inhibitors against HR and NHEJ genes to induce synthetic lethality and address the future directions and clinical relevance of this approach. © 2017 IUBMB Life, 69(12):929-937, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.
Kayagaki, Nobuhiko; Stowe, Irma B; Lee, Bettina L; O'Rourke, Karen; Anderson, Keith; Warming, Søren; Cuellar, Trinna; Haley, Benjamin; Roose-Girma, Merone; Phung, Qui T; Liu, Peter S; Lill, Jennie R; Li, Hong; Wu, Jiansheng; Kummerfeld, Sarah; Zhang, Juan; Lee, Wyne P; Snipas, Scott J; Salvesen, Guy S; Morris, Lucy X; Fitzgerald, Linda; Zhang, Yafei; Bertram, Edward M; Goodnow, Christopher C; Dixit, Vishva M
2015-10-29
Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1β processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1β maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1β secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.
Morais, Janne Keila S; Gomes, Valdirene M; Oliveira, José Tadeu A; Santos, Izabela S; Da Cunha, Maura; Oliveira, Hermogenes D; Oliveira, Henrique P; Sousa, Daniele O B; Vasconcelos, Ilka M
2010-10-13
Soybean toxin (SBTX) is a 44 kDa glycoprotein that is lethal to mice (LD(50) = 5.6 mg/kg). This study reports the toxicity of SBTX on pathogenic fungi and yeasts and the mechanism of its action. SBTX inhibited spore germination of Aspergillus niger and Penicillium herguei and was toxic to Candida albicans, Candida parapsilosis, Kluyveromyces marxiannus , Pichia membranifaciens, and Saccharomyces cerevisiae. In addition, SBTX hampered the growth of C. albicans and K. marxiannus and inhibited the glucose-stimulated acidification of the incubation medium by S. cerevisiae, suggesting that SBTX interferes with intracellular proton transport to the external medium. Moreover, SBTX caused cell-wall disruption, condensation/shrinkage of cytosol, pseudohyphae formation, and P. membranifaciens and C. parapsilosis cell death. SBTX is toxic to fungi at concentrations far below the dose lethal to mice and has potential in the design of new antifungal drugs or in the development of transgenic crops resistant to pathogens.
Wu, Luling; Wang, Yang; James, Tony D; Jia, Nengqin; Huang, Chusen
2018-05-29
Heat stroke is a lethal condition which can cause dysfunction in the central nervous system, multi-organ damage and even death. However, there is still limited knowledge of the detailed mechanism about the roles of lysosomes in heat stroke due to lack of effective tools. Herein, we introduce our previously developed hemicyanine with a large D-π-A structure as the key fluorophore to develop a new fluorescent probe (CPY) for ratiometric mapping of lysosomal pH changes in live cells under a heat shock stimulus.
Anthrax lethal factor inhibitors as potential countermeasure of the infection.
Kumar, B V S Suneel; Malik, Siddharth; Grandhi, Pradeep; Dayam, Raveendra; Sarma, J A R P
2014-01-01
Anthrax Lethal Factor (LF) is a zinc-dependent metalloprotease, one of the virulence factor of anthrax infection. Three forms of the anthrax infection have been identified: cutaneous (through skin), gastrointestinal (through alimentary tract), and pulmonary (by inhalation of spores). Anthrax toxin is composed of protective antigen (PA), lethal factor (LF), and edema factor (EF). Protective antigen mediates the entry of Lethal Factor/Edema Factor into the cytosol of host cells. Lethal factor (LF) inactivates mitogen-activated protein kinase kinase inducing cell death, and EF is an adenylyl cyclase impairing host defenses. In the past few years, extensive studies are undertaken to design inhibitors targeting LF. The current review focuses on the small molecule inhibitors targeting LF activity and its structure activity relationships (SAR).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, H.; Nishimoto, T.
1989-10-01
Caffeine has been reported to induce premature chromosome condensation (PCC) in S-phase cells in the presence of an inhibitor of DNA synthesis. We found that when S-phase cells are treated with caffeine and hydroxyurea after X irradiation, substantially more potentially lethal damage (PLD) is expressed, but the addition of cycloheximide, which inhibits PCC induction in S-phase cells, in the presence of caffeine and hydroxyurea reduces the expression of PLD to the same level as seen with caffeine alone. This can be interpreted to mean that the expression of PLD seen with caffeine in the absence of an inhibitor of DNAmore » synthesis is not associated with chromosome condensation. Evidence that PCC induction in S-phase cells and the influence of caffeine on PLD expression were suppressed by incubation at 40 degrees C of tsBN75 cells with a ts defect in ubiquitin-activating enzyme indicates the involvement of ubiquitin in these two processes. These observations as well as previous findings on ubiquitin suggest to us that caffeine induces changes in DNA-chromatin conformation, which are caused by induction of PCC or ubiquitination of chromosomal protein. Such changes occurring postirradiation would favor expression of PLD.« less
2018-01-01
ABSTRACT Viral pneumonias cause profound worldwide morbidity, necessitating novel strategies to prevent and treat these potentially lethal infections. Stimulation of intrinsic lung defenses via inhalation of synergistically acting Toll-like receptor (TLR) agonists protects mice broadly against pneumonia, including otherwise-lethal viral infections, providing a potential opportunity to mitigate infectious threats. As intact lung epithelial TLR signaling is required for the inducible resistance and as these cells are the principal targets of many respiratory viruses, the capacity of lung epithelial cells to be therapeutically manipulated to function as autonomous antiviral effectors was investigated. Our work revealed that mouse and human lung epithelial cells could be stimulated to generate robust antiviral responses that both reduce viral burden and enhance survival of isolated cells and intact animals. The antiviral protection required concurrent induction of epithelial reactive oxygen species (ROS) from both mitochondrial and dual oxidase sources, although neither type I interferon enrichment nor type I interferon signaling was required for the inducible protection. Taken together, these findings establish the sufficiency of lung epithelial cells to generate therapeutically inducible antiviral responses, reveal novel antiviral roles for ROS, provide mechanistic insights into inducible resistance, and may provide an opportunity to protect patients from viral pneumonia during periods of peak vulnerability. PMID:29764948
Sauerová, Pavla; Pilgrová, Tereza; Pekař, Miloslav; Hubálek Kalbáčová, Marie
2017-10-01
The cationic surfactants carbethoxypendecinium bromide (Septonex) and cetyltrimethylammonium bromide (CTAB) are known to be harmful for certain cell types (bacteria, fungi, mammal cells, etc.). Colloidal complexes of these surfactants with negatively-charged hyaluronic acid (HyA) were prepared for potential drug and/or universal delivery applications. The complexes were tested for their cytotoxic effect on different human cell types - osteoblasts, keratinocytes and fibroblasts. Both the CTAB-HyA and Septonex-HyA complexes were found to reduce the cytotoxicity induced by surfactants alone concerning all the tested concentrations. Moreover, we suggested the limits of HyA protection provided by the surfactant-HyA complexes, e.g. the importance of the amount of HyA applied. We also determined the specific sensitivity of different cell types to surfactant treatment. Keratinocytes were more sensitive to CTAB, while osteoblasts and fibroblasts were more sensitive to Septonex. Moreover, it was indirectly shown that CTAB combines lethal toxicity with cell metabolism induction, while Septonex predominantly causes lethal toxicity concerning fibroblasts. This comprehensive study of the effect of surfactant-HyA complexes on various human cell types revealed that HyA represents a useful CTAB or Septonex cytotoxic effect modulator at diverse levels. Potential applications for these complexes include drug and/or nucleic acid delivery systems, diagnostic dye carriers and cosmetics production. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterization of Neurofibromas of the Skin and Spinal Roots in a Mouse Model
2011-02-01
renewal program of stem/progenitor cells can cause tumorigenesis. By utilizing genetically engineered mouse models of neurofibromatosis type 1 (NF1...pathetic ganglia and adrenal medulla and died at birth (Gitler et al., 2003). To circumvent early lethality of the Nf1NC mice, we utilized a previously...Supplemental experimental procedures Tissue Processing For histological analysis, we utilized both paraffin sections and frozen sections. For both
Brown, Deborah M; Dilzer, Allison M; Meents, Dana L; Swain, Susan L
2006-09-01
The mechanisms whereby CD4 T cells contribute to the protective response against lethal influenza infection remain poorly characterized. To define the role of CD4 cells in protection against a highly pathogenic strain of influenza, virus-specific TCR transgenic CD4 effectors were generated in vitro and transferred into mice given lethal influenza infection. Primed CD4 effectors conferred protection against lethal infection over a broad range of viral dose. The protection mediated by CD4 effectors did not require IFN-gamma or host T cells, but did result in increased anti-influenza Ab titers compared with untreated controls. Further studies indicated that CD4-mediated protection at high doses of influenza required B cells, and that passive transfer of anti-influenza immune serum was therapeutic in B cell-deficient mice, but only when CD4 effectors were present. Primed CD4 cells also acquired perforin (Pfn)-mediated cytolytic activity during effector generation, suggesting a second mechanism used by CD4 cells to confer protection. Pfn-deficient CD4 effectors were less able to promote survival in intact BALB/c mice and were unable to provide protection in B cell-deficient mice, indicating that Ab-independent protection by CD4 effectors requires Pfn. Therefore, CD4 effectors mediate protection to lethal influenza through at least two mechanisms: Pfn-mediated cytotoxicity early in the response promoted survival independently of Ab production, whereas CD4-driven B cell responses resulted in high titer Abs that neutralized remaining virus.
Kim, Sung-Jo; Zhang, Zhongjian; Saha, Arjun; Sarkar, Chinmoy; Zhao, Zhenwen; Xu, Yan; Mukherjee, Anil B
2010-08-02
Reactive oxygen species (ROS) damage brain lipids, carbohydrates, proteins, as well as DNA and may contribute to neurodegeneration. We previously reported that ER- and oxidative stress cause neuronal apoptosis in infantile neuronal ceroid lipofuscinosis (INCL), a lethal neurodegenerative storage disease, caused by palmitoyl-protein thioesterase-1 (PPT1) deficiency. Polyunsaturated fatty acids (PUFA) are essential components of cell membrane phospholipids in the brain and excessive ROS may cause oxidative damage of PUFA leading to neuronal death. Using cultured neurons and neuroprogenitor cells from mice lacking Ppt1, which mimic INCL, we demonstrate that Ppt1-deficient neurons and neuroprogenitor cells contain high levels of ROS, which may cause peroxidation of PUFA and render them incapable of providing protection against oxidative stress. We tested whether treatment of these cells with omega-3 or omega-6 PUFA protects the neurons and neuroprogenitor cells from oxidative stress and suppress apoptosis. We report here that both omega-3 and omega-6 fatty acids protect the Ppt1-deficient cells from ER- as well as oxidative stress and suppress apoptosis. Our results suggest that PUFA supplementation may have neuroprotective effects in INCL. Published by Elsevier Ireland Ltd.
Kress, C; Vandormael-Pournin, S; Baldacci, P; Cohen-Tannoudji, M; Babinet, C
1998-12-01
The inbred mouse strain DDK carries a conditional early embryonic lethal mutation that is manifested when DDK females are crossed to males of other inbred strains but not in the corresponding reciprocal crosses. It has been shown that embryonic lethality could be assigned to a single genetic locus called Ovum mutant (Om), on Chromosome (Chr) 11 near Syca 1. In the course of our study of the molecular mechanisms underlying the embryonic lethality, we were interested in deriving an embryonic stem cell bearing the Om mutation in the homozygous state (Omd/Omd). However, it turned out that DDK is nonpermissive for ES cell establishment, with a standard protocol. Here we show that permissiveness could be obtained using Omd/Omd blastocysts with a 75% 129/Sv and 25% DDK genetic background. Several germline-competent Omd/Omd ES cell lines have been derived from blastocysts of this genotype. Such a scenario could be extended to the generation of ES cell lines bearing any mutation present in an otherwise nonpermissive mouse strain.
Improving on Army Field Gauze for Lethal Vascular Injuries: Challenges in Dressing Development
USDA-ARS?s Scientific Manuscript database
Accounting for half of all deaths, uncontrolled hemorrhage remains the leading cause of death on the battlefield. Gaining hemostatic control of lethal vascular injuries sustained in combat using topical agents remains a challenge. Recent animal testing using a lethal arterial injury model compared a...
Drugging the Cancers Addicted to DNA Repair.
Nickoloff, Jac A; Jones, Dennie; Lee, Suk-Hee; Williamson, Elizabeth A; Hromas, Robert
2017-11-01
Defects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic lethality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability beyond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways are targeted simultaneously in cancers without DNA repair defects. © The Author 2017. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beetham, K.L.; Tolmach, L.J.
1982-07-01
When HeLa S3 cells are irradiated in early G/sub 1/ with 4 Gy of 220-kV x rays and are then incubated in growth medium containing up to 5 mM caffeine, survival is reduced (as reported previously), reaching a concentration-dependent plateau. Cell killing presumably occurs as a result of the fixation of a portion of the potentially lethal damage the cells contain. These cells respond to continued treatment with caffeine at concentrations greater than 2 mM during S, but less so than during G/sub 1/. When they reach G/sub 2/ arrest, however, extensive cell killing again occurs (reported previously), presumably alsomore » the result of potentially lethal damage fixation. G/sub 1/-irradiated cultures that are treated with caffeine either continuously at a concentration in the range 1 to 5 mM, or at 10 mM for 8 hr and subsequently with the low concentration, achieve the same survival level in G/sub 2/, provided that the potentially lethal damage is not repaired during G/sub 1/ and S. Repair seems to be completely inhibited in the presence of 3 to 4 mM caffeine. The results indicate that fixation of potentially lethal damage occurs in the same sector of cells in G/sub 1/ and G/sub 2/, suggesting that the same cellular lesion gives rise to cell killing in the two phases.« less
Stevenson, Heather L; Estes, Mark D; Thirumalapura, Nagaraja R; Walker, David H; Ismail, Nahed
2010-08-01
Human monocytotropic ehrlichiosis is caused by Ehrlichia chaffeensis, a Gram-negative bacterium lacking lipopolysaccharide. We have shown that fatal murine ehrlichiosis is associated with CD8(+)T cell-mediated tissue damage, tumor necrosis factor-alpha, and interleukin (IL)-10 overproduction, and CD4(+)Th1 hyporesponsiveness. In this study, we examined the relative contributions of natural killer (NK) and NKT cells in Ehrlichia-induced toxic shock. Lethal ehrlichial infection in wild-type mice induced a decline in NKT cell numbers, and late expansion and migration of activated NK cells to the liver, a main infection site that coincided with development of hepatic injury. The spatial and temporal changes in NK and NKT cells in lethally infected mice correlated with higher NK cell cytotoxic activity, higher expression of cytotoxic molecules such as granzyme B, higher production of interferon-gamma and tumor necrosis factor-alpha, increased hepatic infiltration with CD8alphaCD11c(+) dendritic cells and CD8(+)T cells, decreased splenic CD4(+)T cells, increased serum concentrations of IL-12p40, IL-18, RANTES, and monocyte chemotactic protein-1, and elevated production of IL-18 by liver mononuclear cells compared with nonlethally infected mice. Depletion of NK cells prevented development of severe liver injury, decreased serum levels of interferon-gamma, tumor necrosis factor-alpha, and IL-10, and enhanced bacterial elimination. These data indicate that NK cells promote immunopathology and defective anti-ehrlichial immunity, possibly via decreasing the protective immune response mediated by interferon-gamma producing CD4(+)Th1 and NKT cells.
USC-087 protects Syrian hamsters against lethal challenge with human species C adenoviruses.
Toth, Karoly; Spencer, Jacqueline F; Ying, Baoling; Tollefson, Ann E; Hartline, Caroll B; Richard, Eric T; Fan, Jiajun; Lyu, Jinglei; Kashemirov, Boris A; Harteg, Cheryl; Reyna, Dawn; Lipka, Elke; Prichard, Mark N; McKenna, Charles E; Wold, William S M
2018-05-01
Human adenoviruses (AdV) cause generally mild infections of the respiratory and GI tracts as well as some other tissues. However, AdV can cause serious infection in severely immunosuppressed individuals, especially pediatric patients undergoing allogeneic hematopoietic stem cell transplantation, where mortality rates are up to 80% with disseminated disease. Despite the seriousness of AdV disease, there are no drugs approved specifically to treat AdV infections. We report here that USC-087, an N-alkyl tyrosinamide phosphonate ester prodrug of HPMPA, the adenine analog of cidofovir, is highly effective against multiple AdV types in cell culture. USC-087 is also effective against AdV-C6 in our immunosuppressed permissive Syrian hamster model. In this model, hamsters are immunosuppressed by treatment with high dose cyclophosphamide. Injection of AdV-C6 (or AdV-C5) intravenously leads to a disseminated infection that resembles the disease seen in humans, including death. We have tested the efficacy of orally-administered USC-087 against the median lethal dose of intravenously administered AdV-C6. USC-087 completely prevented or significantly decreased mortality when administered up to 4 days post challenge. USC-087 also prevented or significantly decreased liver damage caused by AdV-C6 infection, and suppressed virus replication even when administered 4 days post challenge. These results imply that USC-087 is a promising candidate for drug development against HAdV infections. Copyright © 2018 Elsevier B.V. All rights reserved.
Kreidler, Anna-Maria; Benz, Roland; Barth, Holger
2017-03-01
The pathogenic bacteria Clostridium botulinum and Bacillus anthracis produce the binary protein toxins C2 and lethal toxin (LT), respectively. These toxins consist of a binding/transport (B 7 ) component that delivers the separate enzyme (A) component into the cytosol of target cells where it modifies its specific substrate and causes cell death. The B 7 components of C2 toxin and LT, C2IIa and PA 63 , respectively, are ring-shaped heptamers that bind to their cellular receptors and form complexes with their A components C2I and lethal factor (LF), respectively. After receptor-mediated endocytosis of the toxin complexes, C2IIa and PA 63 insert into the membranes of acidified endosomes and form trans-membrane pores through which C2I and LF translocate across endosomal membranes into the cytosol. C2IIa and PA 63 also form channels in planar bilayer membranes, and we used this approach earlier to identify chloroquine as a potent blocker of C2IIa and PA 63 pores. Here, a series of chloroquine derivatives was investigated to identify more efficient toxin inhibitors with less toxic side effects. Chloroquine, primaquine, quinacrine, and fluphenazine blocked C2IIa and PA 63 pores in planar lipid bilayers and in membranes of living epithelial cells and macrophages, thereby preventing the pH-dependent membrane transport of the A components into the cytosol and protecting cells from intoxication with C2 toxin and LT. These potent inhibitors of toxin entry underline the central role of the translocation pores for cellular uptake of binary bacterial toxins and as relevant drug targets, and might be lead compounds for novel pharmacological strategies against severe enteric diseases and anthrax.
Giant cell phlebitis: a potentially lethal clinical entity
Kunieda, Takeshige; Murayama, Masanori; Ikeda, Tsuneko; Yamakita, Noriyoshi
2012-01-01
An 83-year-old woman presented to us with a 4-week history of general malaise, subjective fever and lower abdominal pain. Despite the intravenous infusion of antibiotics, her blood results and physical condition worsened, resulting in her sudden death. Autopsy study revealed that the medium-sized veins of the mesentery were infiltrated by eosinophil granulocytes, lymphocytes, macrophages and multinucleated giant cells; however, the arteries were not involved. Microscopically, venous giant cell infiltration was observed in the gastrointestinal tract, bladder, retroperitoneal tissues and myocardium. The final diagnosis was giant cell phlebitis, a rare disease of unknown aetiology. This case demonstrates for the first time that giant cell phlebitis involving extra-abdominal organs, including hearts, can cause serious morbidity. PMID:22859384
Parveen, Shagufta; Panicker, M M; Gupta, Pawan Kumar
2017-03-01
A major cause of spontaneous abortions is chromosomal abnormality of foetal cells. We report the generation of an induced pluripotent stem cell line from the fibroblasts isolated from chorionic villi of an early spontaneously aborted foetus with Turner syndrome. The Turner syndrome villus induced pluripotent stem cell line is transgene free, retains the original XO karyotype, expresses pluripotency markers and undergoes trilineage differentiation. This pluripotent stem cell model of Turner syndrome should serve as a tool to study the developmental abnormalities of foetus and placenta that lead to early embryo lethality and profound symptoms like infertility in 45 XO survivors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Mohanty, Joy G.; Nagababu, Enika; Friedman, Jeffrey S.; Rifkind, Joseph M.
2013-01-01
Among the three types of super oxide dismutases (SODs) known, SOD2 deficiency is lethal in neonatal mice owing to cardiomyopathy caused by severe oxidative damage. SOD2 is found in red blood cell (RBC) precursors, but not in mature RBCs. To investigate the potential damage to mature RBCs resulting from SOD2 deficiency in precursor cells, we studied RBCs from mice in which fetal liver stem cells deficient in SOD2 were capable of efficiently rescuing lethally irradiated host animals. These transplanted animals lack SOD2 only in hematopoietically generated cells and live longer than SOD2 knockouts. In these mice, approximately 2.8% of their total RBCs in circulation are iron-laden reticulocytes, with numerous siderocytic granules and increased protein oxidation similar to that seen in sideroblastic anemia. We have studied the RBC deformability and oxidative stress in these animals and the control group by measuring them with a microfluidic ektacytometer and assaying fluorescent heme degradation products with a fluorimeter, respectively. In addition, the rate of hemoglobin oxidation in RBCs from these mice and the control group were measured spectrophotometrically. The results show that RBCs from these SOD2-deficient mice have reduced deformability, increased heme degradation products, and an increased rate of hemoglobin oxidation compared with control animals, indicative of increased RBC oxidative stress. PMID:23142655
Guemez-Gamboa, Alicia; Nguyen, Long N; Yang, Hongbo; Zaki, Maha S; Kara, Majdi; Ben-Omran, Tawfeg; Akizu, Naiara; Rosti, Rasim Ozgur; Rosti, Basak; Scott, Eric; Schroth, Jana; Copeland, Brett; Vaux, Keith K; Cazenave-Gassiot, Amaury; Quek, Debra Q Y; Wong, Bernice H; Tan, Bryan C; Wenk, Markus R; Gunel, Murat; Gabriel, Stacey; Chi, Neil C; Silver, David L; Gleeson, Joseph G
2015-07-01
Docosahexanoic acid (DHA) is the most abundant omega-3 fatty acid in brain, and, although it is considered essential, deficiency has not been linked to disease. Despite the large mass of DHA in phospholipids, the brain does not synthesize it. DHA is imported across the blood-brain barrier (BBB) through the major facilitator superfamily domain-containing 2a (MFSD2A) protein. MFSD2A transports DHA as well as other fatty acids in the form of lysophosphatidylcholine (LPC). We identify two families displaying MFSD2A mutations in conserved residues. Affected individuals exhibited a lethal microcephaly syndrome linked to inadequate uptake of LPC lipids. The MFSD2A mutations impaired transport activity in a cell-based assay. Moreover, when expressed in mfsd2aa-morphant zebrafish, mutants failed to rescue microcephaly, BBB breakdown and lethality. Our results establish a link between transport of DHA and LPCs by MFSD2A and human brain growth and function, presenting the first evidence of monogenic disease related to transport of DHA in humans.
Sub-chronic exposure to paraoxon neither induces nor exacerbates diabetes mellitus in Wistar rat.
Nurulain, Syed M; Petroianu, Georg; Shafiullah, Mohamed; Kalász, Huba; Oz, Murat; Saeed, Tariq; Adem, Abdu; Adeghate, Ernest
2013-10-01
There is an increasing belief that organophosphorus compounds (OPCs) impair glucose homeostasis and cause hyperglycemia and diabetes mellitus. The present study was undertaken to investigate the putative diabetogenic effect of sub-lethal and sub-chronic exposure to paraoxon (POX), an extremely hazardous OPC used in pesticides. The effect of paraoxon on streptozotocin-induced diabetic rats was also examined. Each rat was injected with 100 nmol of POX 5 days per week for 6 weeks. Blood glucose levels and red blood cell acetylcholinesterase activity were measured weekly. Biochemical analysis and morphological studies were performed at the end of the experiment. The results revealed that POX neither induces nor exacerbates diabetes mellitus in experimental rats. Liver and kidney/body weight ratios revealed statistically insignificant differences when compared with controls. Biochemical analysis of urine samples showed a small but not significant increase in protein level in all groups. Urine bilirubin was significantly higher in the diabetes + POX group when compared with the control group. The number of blood cells in urine was significantly higher in the POX-treated group compared with the control group. Hyperglycemia was noted in the diabetes and diabetes + POX groups, but neither in the saline control nor in POX-treated normal rats. Electron microscopy of POX-treated pancreas did not show any morphological changes in beta cells. These results suggest that POX does not cause diabetes mellitus at sub-lethal sub-chronic exposure. Copyright © 2012 John Wiley & Sons, Ltd.
Schaefers, Matthew M.; Breshears, Laura M.; Anderson, Michele J.; Lin, Ying-Chi; Grill, Alex E.; Panyam, Jayanth; Southern, Peter J.; Schlievert, Patrick M.; Peterson, Marnie L.
2012-01-01
Staphylococcus aureus initiates infections and produces virulence factors, including superantigens (SAgs), at mucosal surfaces. The SAg, Toxic Shock Syndrome Toxin-1 (TSST-1) induces cytokine secretion from epithelial cells, antigen presenting cells (APCs) and T lymphocytes, and causes toxic shock syndrome (TSS). This study investigated the mechanism of TSST-1-induced secretion of proinflammatory cytokines from human vaginal epithelial cells (HVECs) and determined if curcumin, an anti-inflammatory agent, could reduce TSST-1-mediated pathology in a rabbit vaginal model of TSS. TSST-1 caused a significant increase in NF-κB-dependent transcription in HVECs that was associated with increased expression of TNF- α, MIP-3α, IL-6 and IL-8. Curcumin, an antagonist of NF-κB-dependent transcription, inhibited IL-8 production from ex vivo porcine vaginal explants at nontoxic doses. In a rabbit model of TSS, co-administration of curcumin with TSST-1 intravaginally reduced lethality by 60% relative to 100% lethality in rabbits receiving TSST-1 alone. In addition, TNF-α was undetectable from serum or vaginal tissue of curcumin treated rabbits that survived. These data suggest that the inflammatory response induced at the mucosal surface by TSST-1 is NF-κB dependent. In addition, the ability of curcumin to prevent TSS in vivo by co-administration with TSST-1 intravaginally suggests that the vaginal mucosal proinflammatory response to TSST-1 is important in the progression of mTSS. PMID:22431984
Improving on army field gauze for lethal vascular injuries: a progress report
USDA-ARS?s Scientific Manuscript database
Uncontrolled hemorrhage is the leading cause of death on the battlefield and second leading cause of death in civilian trauma. Recent animal testing using a lethal arterial injury model compared a variety of woven and non woven products with granular products, and found only one product (WoundStat)...
Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants
Liu, Yuanli; Zhou, Jinan; Qu, Yilin; Yang, Xinguang; Shi, Guojing; Wang, Xiuhong; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin
2016-01-01
Reactive oxygen species (ROS; superoxide, peroxide, and hydroxyl radical) are thought to contribute to the rapid bactericidal activity of diverse antimicrobial agents. The possibility has been raised that consumption of antioxidants in food may interfere with the lethal action of antimicrobials. Whether nutritional supplements containing antioxidant activity are also likely to interfere with antimicrobial lethality is unknown. To examine this possibility, resveratrol, a popular antioxidant dietary supplement, was added to cultures of Escherichia coli and Staphylococcus aureus that were then treated with antimicrobial and assayed for bacterial survival and the recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Resveratrol, at concentrations likely to be present during human consumption, caused a 2- to 3-fold reduction in killing during a 2-hr treatment with moxifloxacin or kanamycin. At higher, but still subinhibitory concentrations, resveratrol reduced antimicrobial lethality by more than 3 orders of magnitude. Resveratrol also reduced the increase in reactive oxygen species (ROS) characteristic of treatment with quinolone (oxolinic acid). These data support the general idea that the lethal activity of some antimicrobials involves ROS. Surprisingly, subinhibitory concentrations of resveratrol promoted (2- to 6-fold) the recovery of rifampicin-resistant mutants arising from the action of ciprofloxacin, kanamycin, or daptomycin. This result is consistent with resveratrol reducing ROS to sublethal levels that are still mutagenic, while the absence of resveratrol allows ROS levels to high enough to kill mutagenized cells. Suppression of antimicrobial lethality and promotion of mutant recovery by resveratrol suggests that the antioxidant may contribute to the emergence of resistance to several antimicrobials, especially if new derivatives and/or formulations of resveratrol markedly increase bioavailability. PMID:27045517
Green, Danielle E.; Rubin, Clinton T.
2014-01-01
The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation. PMID:24607941
Hagan, Mackenzie; Ashraf, Muhammad; Kim, Il-Man; Weintraub, Neal L; Tang, Yaoliang
2018-01-01
Duchenne muscular dystrophy (DMD) is a lethal muscle wasting disease caused by a lack of dystrophin, which eventually leads to apoptosis of muscle cells and impaired muscle contractility. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9) gene editing of induced pluripotent stem cells (IPSC) offers the potential to correct the DMD gene defect and create healthy IPSC for autologous cell transplantation without causing immune activation. However, IPSC carry a risk of tumor formation, which can potentially be mitigated by differentiation of IPSC into myogenic progenitor cells (MPC). We hypothesize that precise genetic editing in IPSC using CRISPR-Cas9 technology, coupled with MPC differentiation and autologous transplantation, can lead to safe and effective muscle repair. With future research, our hypothesis may provide an optimal autologous stem cell-based approach to treat the dystrophic pathology and improve the quality of life for patients with DMD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells
Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.
2008-01-01
Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement related processes. Scratch-wound healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down regulation of cellular stathmin levels and in the absence and presence of sub-lethal nitrosourea (CCNU; [1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]) concentrations. We demonstrate that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 μM, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain and that nitrosoureas may have therapeutic benefits in addition to their anti-proliferative effects. PMID:18593927
Bettaieb, Ahmed; Averill-Bates, Diana A
2015-01-01
Hyperthermia (39-45°C) has emerged as an alternate prospect for cancer therapy in combination with radiation and chemotherapy. Despite promising progress in the clinic, molecular mechanisms involved in hyperthermia-induced cell death are not clear. Hyperthermia causes protein denaturation/aggregation, which results in cell death by apoptosis and/or necrosis. Hyperthermia also induces thermotolerance, which renders cells resistant to subsequent exposure to lethal heat shock. This study investigates the role of both lethal (42-43°C) and mild (40°C) hyperthermia in regulating ER stress and ER stress-induced apoptosis in HeLa cells. The ability of mild thermotolerance induced at 40°C to alleviate either or both of these processes is also determined. Hyperthermia (42-43°C) induced ER stress, revealed by phosphorylation of PERK, eIF2α and IRE1α, cleavage of ATF6 and increased expression of BiP and sXBP1. Real-time PCR revealed that mRNA levels of ATF6, ATF4, BiP, sXBP1 and CHOP increased in cells exposed to hyperthermia. Moreover, hyperthermia caused disruption of calcium homeostasis and activated the calpain-calpastatin proteolytic system and ER resident caspase 4. Pre-exposure to mild hyperthermia (40°C) alleviated the induction of cytotoxicity and ER stress by hyperthermia (42-43°C) and protected cells against ER stress-induced apoptosis. ShRNA-mediated depletion of Hsp72 abrogated protective effects of mild thermotolerance (40°C) against heat-shock induced ER stress and sensitized cells to ER stress-mediated apoptosis. Our findings show that Hsp72 contributes to the protective effects of mild hyperthermia (40°C) against hyperthermia-induced ER stress and apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.
Marrow transplantation in the treatment of a murine heritable hemolytic anemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, J.E.; McFarland-Starr, E.C.
1989-05-15
Mice with hemolytic anemia, sphha/sphha, have extremely fragile RBCs with a lifespan of approximately one day. Neither splenectomy nor simple transplantation of normal marrow after lethal irradiation cures the anemia but instead causes rapid deterioration and death of the mutant unless additional prophylactic procedures are used. In this report, we show that normal marrow transplantation preceded by sublethal irradiation increases but does not normalize RBC count. The mutant RBCs but not all the WBCs are replaced by donor cells. Splenectomy of the improved recipient causes a dramatic decrease in RBC count, indicating that the mutant spleen is a site ofmore » donor-origin erythropoiesis as well as of RBC destruction. Injections of iron dextran did not improve RBC counts. Transplantation of primary recipient marrow cells into a secondary host with a heritable stem cell deficiency (W/Wv) corrects the defect caused by residence of the normal cells in the sphha/sphha host. The original +/+ donor cells replace the RBCs of the secondary host, and the RBC count is normalized. Results indicate that the environment in the sphha/sphha host is detrimental to normal (as well as mutant) erythroid cells but the restriction is not transmitted.« less
Tumor Targeting and Drug Delivery by Anthrax Toxin.
Bachran, Christopher; Leppla, Stephen H
2016-07-01
Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.
PARP inhibition as a prototype for synthetic lethal screens.
Liu, Xuesong
2013-01-01
Although DNA damaging chemotherapy and radiation therapy remain the main stay of current treatments for cancer patient, these therapies usually have toxic side effect and narrow therapeutic window. One of the challenges in cancer drug discovery is how to identify drugs that selectively kill cancer cells while leaving the normal cell intact. Recently, synthetic lethality has been applied to cancer drug discovery in various settings, and has become a promising approach for identifying novel agents for the treatment of cancer. A prototypical example is the synthetic lethal interaction between PARP inhibition and BRCA deficiency. PARP inhibitors represent the most advanced clinical agents targeting specifically DNA repair mechanisms in cancer therapy. In this chapter, I will review the molecular mechanism for this synthetic lethality and the clinical applications for PARP inhibitors. I will also discuss the formats of synthetic lethal screens, current progress on the utilization of these screens, and some of the advantages and challenges of synthetic lethal screens in cancer drug discovery.
Bhinder, Bhavneet; Antczak, Christophe; Ramirez, Christina N.; Shum, David; Liu-Sullivan, Nancy; Radu, Constantin; Frattini, Mark G.
2013-01-01
Abstract RNA interference technology is becoming an integral tool for target discovery and validation.; With perhaps the exception of only few studies published using arrayed short hairpin RNA (shRNA) libraries, most of the reports have been either against pooled siRNA or shRNA, or arrayed siRNA libraries. For this purpose, we have developed a workflow and performed an arrayed genome-scale shRNA lethality screen against the TRC1 library in HeLa cells. The resulting targets would be a valuable resource of candidates toward a better understanding of cellular homeostasis. Using a high-stringency hit nomination method encompassing criteria of at least three active hairpins per gene and filtered for potential off-target effects (OTEs), referred to as the Bhinder–Djaballah analysis method, we identified 1,252 lethal and 6 rescuer gene candidates, knockdown of which resulted in severe cell death or enhanced growth, respectively. Cross referencing individual hairpins with the TRC1 validated clone database, 239 of the 1,252 candidates were deemed independently validated with at least three validated clones. Through our systematic OTE analysis, we have identified 31 microRNAs (miRNAs) in lethal and 2 in rescuer genes; all having a seed heptamer mimic in the corresponding shRNA hairpins and likely cause of the OTE observed in our screen, perhaps unraveling a previously unknown plausible essentiality of these miRNAs in cellular viability. Taken together, we report on a methodology for performing large-scale arrayed shRNA screens, a comprehensive analysis method to nominate high-confidence hits, and a performance assessment of the TRC1 library highlighting the intracellular inefficiencies of shRNA processing in general. PMID:23198867
Paessler, Slobodan; Yun, Nadezhda E.; Judy, Barbara M.; Dziuba, Natallia; Zacks, Michele A.; Grund, Anna H.; Frolov, Ilya; Campbell, Gerald A.; Weaver, Scott C.; Estes, D. Mark
2007-01-01
We evaluated the safety and immunogenicity of a chimeric alphavirus vaccine candidate in mice with selective immunodeficiencies. This vaccine candidate was highly attenuated in mice with deficiencies in the B and T cell compartments, as well as in mice with deficient gamma-interferon responsiveness. However, the level of protection varied among the strains tested. Wild type mice were protected against lethal VEEV challenge. In contrast, alpha/beta (αβ) TCR-deficient mice developed lethal encephalitis following VEEV challenge, while mice deficient in gamma/delta ( γδ) T cells were protected. Surprisingly, the vaccine potency was diminished by 50% in animals lacking interferon-gamma receptor alpha chain (R1)-chain and a minority of vaccinated immunoglobulin heavy chain-deficient (μMT) mice survived challenge, which suggests that neutralizing antibody may not be absolutely required for protection. Prolonged replication of encephalitic VEEV in the brain of pre-immunized mice is not lethal and adoptive transfer experiments indicate that CD3+ T cells are required for protection. PMID:17610927
The art and science of low-energy applications in medicine: pathology perspectives
NASA Astrophysics Data System (ADS)
Thomsen, Sharon L.
2011-03-01
Applications of low energy non-ionizing irradiation result in non-lethal and lethal effects in cells, tissues and intact individuals. The effects of these applications depend on the physical parameters of the applied energies, the mechanisms of interaction of these energies on the target and the biologic status of the target. Recently, cell death has been found not to be a random accident of situation or age but a range of complicated physiological responses to various extrinsic and intrinsic events some of which are genetically programmed and/ or physiologically regulated. Therefore, cell death has been classified into three general groups: 1) Programmed cell death including apoptosis and necroptosis, cornefication and autophagy; 2) Accidental (traumatic) cell death due to the direct, immediate effects of the lethal event and 3) Necrotic cell death which is, by default, all cell death not associated with programmed or accidental cell death. Lethal low energy non-ionizing application biologic effects involve mechanisms of all three groups as compared to high energy applications that predominantly involve the mechanisms of accidental cell death. Currently, the mechanisms of all these modes of cell death are being vigorously investigated. As research and development of new low energy applications continues, the need to understand the mechanisms of cell death that they produce will be critical to the rational creation of safe, yet effective instruments.
Lipids as Tumoricidal Components of Human α-Lactalbumin Made Lethal to Tumor Cells (HAMLET)
Ho, James C. S.; Storm, Petter; Rydström, Anna; Bowen, Ben; Alsin, Fredrik; Sullivan, Louise; Ambite, Inès; Mok, K. H.; Northen, Trent; Svanborg, Catharina
2013-01-01
Long-chain fatty acids are internalized by receptor-mediated mechanisms or receptor-independent diffusion across cytoplasmic membranes and are utilized as nutrients, building blocks, and signaling intermediates. Here we describe how the association of long-chain fatty acids to a partially unfolded, extracellular protein can alter the presentation to target cells and cellular effects. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin and oleic acid (OA). As OA lacks independent tumoricidal activity at concentrations equimolar to HAMLET, the contribution of the lipid has been debated. We show by natural abundance 13C NMR that the lipid in HAMLET is deprotonated and by chromatography that oleate rather than oleic acid is the relevant HAMLET constituent. Compared with HAMLET, oleate (175 μm) showed weak effects on ion fluxes and gene expression. Unlike HAMLET, which causes metabolic paralysis, fatty acid metabolites were less strongly altered. The functional overlap increased with higher oleate concentrations (500 μm). Cellular responses to OA were weak or absent, suggesting that deprotonation favors cellular interactions of fatty acids. Fatty acids may thus exert some of their essential effects on host cells when in the deprotonated state and when presented in the context of a partially unfolded protein. PMID:23629662
Autoimmune destruction of pericytes as the cause of diabetic retinopathy.
Adams, Duncan D
2008-06-01
In diabetic retinopathy, collapse of the retinal vasculature is associated with loss of the pericytes. These are contractile cells that together with endothelial cells form the terminal arterioles of the retina. The cause of the loss of pericytes is not known. Recently, it has been discovered that type 1 diabetes is caused by forbidden clones of cytotoxic T lymphocytes, which destroy the insulin-making cells with exquisite specificity. In the light of this, I postulate that an antigenically-related forbidden clone of cytotoxic T lymphocytes selectively destroys the pericytes and that this is the cause of the vascular collapse of diabetic retinopathy. If this is so, the therapeutic implications are immense, involving a switch from ineffectual tight glycemic control to immunotherapy. This is already used as immunosuppression to prevent organ transplant rejection, and as the immune ablation and autologous bone marrow cell reconstitution that has saved the lives of patients with lethally-severe scleroderma. Once the pericyte surface auto-antigen for the T lymphocytes has been isolated, selective destruction of the pathogenic T lymphocytes would be possible by manufacture and use of cytotoxic auto-antigen complexes, which arrests progression of the retinopathy.
Amita, Krishnappa; Vijayshankar, Shivshankar; Sanjay, Manchaiah
2015-09-01
Tuberculosis (TB) and cancer are two lethal diseases causing significant morbidity and mortality in developing countries like India. Co-existence of these two disease lead to diagnostic dielemma among the clinicians. Overlapping clinical manifestations lead to delay in diagnosis. We report a case of acinic cell carcinoma -papillary cystic variant of the salivary gland and extra pulmonary tuberculosis in a young female. We emphasize the importance of the awareness of the co-existence of these two diseases and the role of fine needle aspiration cytology in the initial diagnosis.
Cases of death caused by gas or warning firearms.
Rothschild, M A; Maxeiner, H; Schneider, V
1994-01-01
Five cases of lethal injuries caused by gas or warning firearms are discussed. In one suicide case a modified weapon (elongated barrel) and steel bullets were used to fire a shot into the head, the bullets lodged in the skull and lethal bleeding resulted. In the other cases conventional gas weapons without evidence of alteration were used for contact shots; injuries were caused by the effect of propelling powder gases. Two of these cases were suicides (temporal contact shot and back of the neck contact shot), one was an accident (inguinal contact shot with lethal bleeding), and one was an attack by another person with a contact shot against the neck with bilateral tears of the hypopharynx. After successful surgery, a delayed death occurred 12 days later caused by bleeding into the airways from the ruptured external carotid artery.
Lethality of First Contact Dysentery Epidemics on Pacific Islands
Shanks, G. Dennis
2016-01-01
Infectious diseases depopulated many isolated Pacific islands when they were first exposed to global pathogen circulation from the 18th century. Although the mortality was great, the lack of medical observers makes determination of what happened during these historical epidemics largely speculative. Bacillary dysentery caused by Shigella is the most likely infection causing some of the most lethal island epidemics. The fragmentary historical record is reviewed to gain insight into the possible causes of the extreme lethality that was observed during first-contact epidemics in the Pacific. Immune aspects of the early dysentery epidemics and postmeasles infection resulting in subacute inflammatory enteric disease suggest that epidemiologic isolation was the major lethality risk factor on Pacific islands in the 19th century. Other possible risk factors include human leukocyte antigen homogeneity from a founder effect and pathogen-induced derangement of immune tolerance to gut flora. If this analysis is correct, then Pacific islands are currently at no greater risk of emerging disease epidemics than other developing countries despite their dark history. PMID:27185765
Radiation-Induced Immunogenic Modulation Enhances T-Cell Killing | Center for Cancer Research
For many types of cancer, including breast, lung, and prostate carcinomas, radiation therapy is the standard of care. However, limits placed on the tolerable levels of radiation exposure coupled with heterogeneity of biological tissue result in cases where not all tumor cells receive a lethal dose of radiation. Preclinical studies have shown that exposing tumor cells to lethal
Targeted Silencing of Anthrax Toxin Receptors Protects against Anthrax Toxins*
Arévalo, Maria T.; Navarro, Ashley; Arico, Chenoa D.; Li, Junwei; Alkhatib, Omar; Chen, Shan; Diaz-Arévalo, Diana; Zeng, Mingtao
2014-01-01
Anthrax spores can be aerosolized and dispersed as a bioweapon. Current postexposure treatments are inadequate at later stages of infection, when high levels of anthrax toxins are present. Anthrax toxins enter cells via two identified anthrax toxin receptors: tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2). We hypothesized that host cells would be protected from anthrax toxins if anthrax toxin receptor expression was effectively silenced using RNA interference (RNAi) technology. Thus, anthrax toxin receptors in mouse and human macrophages were silenced using targeted siRNAs or blocked with specific antibody prior to challenge with anthrax lethal toxin. Viability assays were used to assess protection in macrophages treated with specific siRNA or antibody as compared with untreated cells. Silencing CMG2 using targeted siRNAs provided almost complete protection against anthrax lethal toxin-induced cytotoxicity and death in murine and human macrophages. The same results were obtained by prebinding cells with specific antibody prior to treatment with anthrax lethal toxin. In addition, TEM8-targeted siRNAs also offered significant protection against lethal toxin in human macrophage-like cells. Furthermore, silencing CMG2, TEM8, or both receptors in combination was also protective against MEK2 cleavage by lethal toxin or adenylyl cyclase activity by edema toxin in human kidney cells. Thus, anthrax toxin receptor-targeted RNAi has the potential to be developed as a life-saving, postexposure therapy against anthrax. PMID:24742682
Phage Lambda P Protein: Trans-Activation, Inhibition Phenotypes and their Suppression
Hayes, Sidney; Erker, Craig; Horbay, Monique A.; Marciniuk, Kristen; Wang, Wen; Hayes, Connie
2013-01-01
The initiation of bacteriophage λ replication depends upon interactions between the oriλ DNA site, phage proteins O and P, and E. coli host replication proteins. P exhibits a high affinity for DnaB, the major replicative helicase for unwinding double stranded DNA. The concept of P-lethality relates to the hypothesis that P can sequester DnaB and in turn prevent cellular replication initiation from oriC. Alternatively, it was suggested that P-lethality does not involve an interaction between P and DnaB, but is targeted to DnaA. P-lethality is assessed by examining host cells for transformation by ColE1-type plasmids that can express P, and the absence of transformants is attributed to a lethal effect of P expression. The plasmid we employed enabled conditional expression of P, where under permissive conditions, cells were efficiently transformed. We observed that ColE1 replication and plasmid establishment upon transformation is extremely sensitive to P, and distinguish this effect from P-lethality directed to cells. We show that alleles of dnaB protect the variant cells from P expression. P-dependent cellular filamentation arose in ΔrecA or lexA[Ind-] cells, defective for SOS induction. Replication propagation and restart could represent additional targets for P interference of E. coli replication, beyond the oriC-dependent initiation step. PMID:23389467
Baker, Steven F.; Martínez-Sobrido, Luis
2014-01-01
ABSTRACT The effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, new approaches for influenza vaccines that can trigger effective CD8 T cell responses have not been extensively explored. We report here the generation of single-cycle infectious influenza virus that lacks a functional hemagglutinin (HA) gene on an X31 genetic background and demonstrate its potential for triggering protective CD8 T cell immunity against heterologous influenza virus challenge. In vitro, X31-sciIV can infect MDCK cells, but infectious virions are not produced unless HA is transcomplemented. In vivo, intranasal immunization with X31-sciIV does not cause any clinical symptoms in mice but generates influenza-specific CD8 T cells in lymphoid (mediastinal lymph nodes and spleen) and nonlymphoid tissues, including lung and bronchoalveolar lavage fluid, as measured by H2-Db NP366 and PA224 tetramer staining. In addition, a significant proportion of X31-sciIV-induced antigen-specific respiratory CD8 T cells expressed VLA-1, a marker that is associated with heterologous influenza protection. Further, these influenza-specific CD8 T cells produce antiviral cytokines when stimulated with NP366 and PA224 peptides, indicating that CD8 T cells triggered by X31-sciIV are functional. When challenged with a lethal dose of heterologous PR8 virus, X31-sciIV-primed mice were fully protected from death. However, when CD8 T cells were depleted after priming or before priming, mice could not effectively control virus replication or survive the lethal challenge, indicating that X31-sciIV-induced memory CD8 T cells mediate the heterologous protection. Thus, our results demonstrate the potential for sciIV as a CD8 T cell-inducing vaccine. IMPORTANCE One of the challenges for influenza prevention is the existence of multiple influenza virus subtypes and variants and the fact that new strains can emerge yearly. Numerous studies have indicated that the effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, influenza vaccines that can trigger effective CD8 T cell responses for heterologous protection have not been developed. We report here the generation of an X31 (H3N2) virus-derived single-cycle infectious influenza virus, X31-sciIV. A one-dose immunization with X31-sciIV is capable of inducing functional influenza virus-specific CD8 T cells that can be recruited into respiratory tissues and provide protection against lethal heterologous challenge. Without these cells, protection against lethal challenge was essentially lost. Our data indicate that an influenza vaccine that primarily relies on CD8 T cells for protection could be developed. PMID:25100831
Active immunotherapy for mouse breast cancer with irradiated whole-cell vaccine expressing VEGFR2.
Yan, Heng-Xiu; Cheng, Ping; Wei, Hai-Yan; Shen, Guo-Bo; Fu, Li-Xin; Ni, Jie; Wu, Yang; Wei, Yu-Quan
2013-04-01
As tumor-associated antigens are not well characterized for the majority of human tumors, polyvalent vaccines prepared with whole-tumor antigens are an attractive approach for tumor vaccination. Vascular endothelial growth factor receptor-2 (VEGFR2), as a model antigen with which to explore the feasibility of immunotherapy, has shown great promise as a tumor vaccine. However, the efficacy of immunotherapy is often not ideal when used alone. In this study, we explored the therapeutic efficacy of an irradiated AdVEGFR2-infected cell vaccine-based immunotherapy in the weakly immunogenic and highly metastatic 4T1 murine mammary cancer model. An adenovirus encoding the VEGFR2 gene (AdVEGFR2) was constructed. Lethally irradiated, virus-infected 4T1 cells were used as vaccines. Vaccination with lethally irradiated AdVEGFR2-infected 4T1 cells inhibited subsequent tumor growth and pulmonary metastasis compared with challenge inoculations. Angiogenesis was inhibited, and the number of CD8+ T lymphocytes was increased within the tumors. Antitumor activity was also caused by the adoptive transfer of isolated spleen lymphocytes. In vitro, the expression of HMGB1 and HSP70 in the AdVEGFR2‑infected 4T1 cells was increased, and was involved in the activation of tumor antigen-specific T-cell immunity. Our results indicate that the immunotherapy based on irradiated AdVEGFR2-infected whole-cancer cell vaccines may be a potentially effective strategy for 4T1 cancer treatment.
Cadmium modulates hematopoietic stem and progenitor cells and skews toward myelopoiesis in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yandong; Yu, Xinchun
The heavy metal cadmium (Cd) is known to modulate immunity and cause osteoporosis. However, how Cd influences on hematopoiesis remain largely unknown. Herein, we show that wild-type C57BL/6 (B6) mice exposed to Cd for 3 months had expanded bone marrow (BM) populations of long-term hematopoietic stem cells (LT-HSCs), common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs), while having reduced populations of multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). A competitive mixed BM transplantation assay indicates that BM from Cd-treated mice had impaired LT-HSC ability to differentiate into mature cells. In accordance with increased myeloid progenitors and decreased lymphoid progenitors,more » the BM and spleens of Cd-treated mice had more monocytes and/or neutrophils and fewer B cells and T cells. Cd impaired the ability of the non-hematopoietic system to support LT-HSCs, in that lethally irradiated Cd-treated recipients transplanted with normal BM cells had reduced LT-HSCs after the hematopoietic system was fully reconstituted. This is consistent with reduced osteoblasts, a known critical component for HSC niche, observed in Cd-treated mice. Conversely, lethally irradiated control recipients transplanted with BM cells from Cd-treated mice had normal LT-HSC reconstitution. Furthermore, both control mice and Cd-treated mice that received Alendronate, a clinical drug used for treating osteoporosis, had BM increases of LT-HSCs. Thus, the results suggest Cd increase of LT-HSCs is due to effects on HSCs and not on osteoblasts, although, Cd causes osteoblast reduction and impaired niche function for maintaining HSCs. Furthermore, Cd skews HSCs toward myelopoiesis. - Highlights: • Cd increases the number of LT-HSCs but impairs their development. • Cd-treated hosts have compromised ability to support LT-HSCs. • Cd promotes myelopoiesis at the expense of lymphopoiesis at the MPP level.« less
Saladino, Andrew J.; Hawkins, Hal K.; Trump, Benjamin F.
1971-01-01
The effects of a cationic detergent, cetyl pyridinium chloride (CPC), on toad bladder epithelium were studied by means of electrophysiologic and sodium-flux measurements, chemical analysis, time-lapse phase-contrast cinemicrography and electron microscopy. At 10-5 M, CPC caused a rapid loss of net sodium transport as reflected by the short-circuit current (SCC) but except for striking prominence of the glycocalyx, this dose caused no ultrastructural changes for at least 18 hours. Only a moderate decrease in resistance and increase in passive sodium flux were noted. At 10-4 M, CPC caused a transient 1 to 2-minute increase in the bladder's rate of oxygen consumption followed by a decrease, and a rapid decline in SCC, followed a few minute later by a decrease in resistance accompanied by a greatly increased passive leak to sodium. A sequence of ultrastructural changes typical of other forms of lethal cell injury progressed to extensive cellular disruption by 1 hour after treatment with 10-4 M CPC. In addition, unusual surface membrane changes were observed, consisting of extensive formation of vesicles and myelin figures at the cell surface. A significant fraction of the bladder's cholesterol content appeared in the incubation medium after 10-4 M CPC treatment. With 10-3 M CPC, a similar pattern of cellular degeneration proceeded much more rapidly, and in addition, the cellular remains reorganized into complex lamellar arrays resembling phospholipid crystalloids. The results are interpreted as indicating that in addition to inhibiting net sodium transport, CPC lethally injures cells by interfering with the function of the surface membrane as a permeability barrier, and in addition, leads to a drastic structural reorganization of membrane constituents. ImagesFig 9Fig 10Fig 1Fig 2Fig 11Fig 12Fig 13Fig 5Fig 6Fig 7Fig 8Fig 14Fig 15Fig 16Fig 3Fig 4 PMID:4946878
Novel toxic shock syndrome toxin-1 amino acids required for biological activity.
Brosnahan, Amanda J; Schaefers, Matthew M; Amundson, William H; Mantz, Mary J; Squier, Christopher A; Peterson, Marnie L; Schlievert, Patrick M
2008-12-09
Superantigens interact with T lymphocytes and macrophages to cause T lymphocyte proliferation and overwhelming cytokine production, which lead to toxic shock syndrome. Staphylococcus aureus superantigen toxic shock syndrome toxin-1 is a major cause of menstrual toxic shock syndrome. In general, superantigen-secreting S. aureus remains localized at the vaginal surface, and the superantigen must therefore penetrate the vaginal mucosa to interact with underlying immune cells to cause toxic shock syndrome. A dodecapeptide region (toxic shock syndrome toxin-1 amino acids F119-D130), relatively conserved among superantigens, has been implicated in superantigen penetration of the epithelium. The purpose of this study was to determine amino acids within this dodecapeptide region that are required for interaction with vaginal epithelium. Alanine mutations were constructed in S. aureus toxic shock syndrome toxin-1 amino acids D120 to D130. All mutants maintained superantigenicity, and selected mutants were lethal when given intravenously to rabbits. Toxic shock syndrome toxin-1 induces interleukin-8 from immortalized human vaginal epithelial cells; however, three toxin mutants (S127A, T128A, and D130A) induced low levels of interleukin-8 compared to wild type toxin. When carboxy-terminal mutants (S127A to D130A) were administered vaginally to rabbits, D130A was nonlethal, while S127A and T128A demonstrated delayed lethality compared to wild type toxin. In a porcine ex vivo permeability model, mutant D130A penetrated the vaginal mucosa more quickly than wild type toxin. Toxic shock syndrome toxin-1 residue D130 may contribute to binding an epithelial receptor, which allows it to penetrate the vaginal mucosa, induce interleukin-8, and cause toxic shock syndrome.
Cytotoxicity assays with fish cells as an alternative to the acute lethality test with fish.
Segner, Helmut
2004-10-01
In ecotoxicology, in vitro assays with fish cells are currently applied for mechanistic studies, bioanalytical purposes and toxicity screening. This paper discusses the potential of cytotoxicity assays with fish cells to reduce, refine or replace acute lethality tests using fish. Basal cytotoxicity data obtained with fish cell lines or fish primary cell cultures show a reasonable to good correlation with lethality data from acute toxicity tests, with the exception of compounds that exert a specific mode of toxic action. Basal cytotoxicity data from fish cell lines also correlate well with cytotoxicity data from mammalian cell lines. However, both the piscine and mammalian in vitro assays are clearly less sensitive than the fish test. Therefore, in vivo LC50 values (concentrations of the test compounds that are lethal to 50% of the fish in the experiment within 96 hours) currently cannot be predicted from in vitro values. This in vitro-in vivo difference in sensitivity appears to be true for both fish cell lines and mammalian cell lines. Given the good in vitro-in vivo correlation in toxicity ranking, together with the clear-cut difference in sensitivity, the role of cytotoxicity assays in a tiered alternative testing strategy could be in priority setting in relation to toxic hazard and in the toxicity classification of chemicals and environmental samples.
Loss of ATM kinase activity leads to embryonic lethality in mice.
Daniel, Jeremy A; Pellegrini, Manuela; Lee, Baeck-Seung; Guo, Zhi; Filsuf, Darius; Belkina, Natalya V; You, Zhongsheng; Paull, Tanya T; Sleckman, Barry P; Feigenbaum, Lionel; Nussenzweig, André
2012-08-06
Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis.
Zhao, Jincun; Vijay, Rahul; Zhao, Jingxian; Gale, Michael; Diamond, Michael S; Perlman, Stanley
2016-08-15
West Nile virus (WNV) is the most important cause of epidemic encephalitis in North America. Innate immune responses, which are critical for control of WNV infection, are initiated by signaling through pathogen recognition receptors, RIG-I and MDA5, and their downstream adaptor molecule, MAVS. Here, we show that a deficiency of MAVS in hematopoietic cells resulted in increased mortality and delayed WNV clearance from the brain. In Mavs(-/-) mice, a dysregulated immune response was detected, characterized by a massive influx of macrophages and virus-specific T cells into the infected brain. These T cells were polyfunctional and lysed peptide-pulsed target cells in vitro However, virus-specific T cells in the brains of infected Mavs(-/-) mice exhibited lower functional avidity than those in wild-type animals, and even virus-specific memory T cells generated by prior immunization could not protect Mavs(-/-) mice from WNV-induced lethal disease. Concomitant with ineffective virus clearance, macrophage numbers were increased in the Mavs(-/-) brain, and both macrophages and microglia exhibited an activated phenotype. Microarray analyses of leukocytes in the infected Mavs(-/-) brain showed a preferential expression of genes associated with activation and inflammation. Together, these results demonstrate a critical role for MAVS in hematopoietic cells in augmenting the kinetics of WNV clearance and thereby preventing a dysregulated and pathogenic immune response. West Nile virus (WNV) is the most important cause of mosquito-transmitted encephalitis in the United States. The innate immune response is known to be critical for protection in infected mice. Here, we show that expression of MAVS, a key adaptor molecule in the RIG-I-like receptor RNA-sensing pathway, in hematopoietic cells is critical for protection from lethal WNV infection. In the absence of MAVS, there is a massive infiltration of myeloid cells and virus-specific T cells into the brain and overexuberant production of proinflammatory cytokines. These results demonstrate the important role that MAVS expression in hematopoietic cells has in regulating the inflammatory response in the WNV-infected brain. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Aung, Hsu Mon; Huangteerakul, Chananya; Panvongsa, Wittaya; Jensen, Amornrat N; Chairoungdua, Arthit; Sukrong, Suchada; Jensen, Laran T
2018-09-15
Plant materials used in this study were selected based on the ethnobotanical literature. Plants have either been utilized by Thai practitioners as alternative treatments for cancer or identified to exhibit anti-cancer properties. To screen ethnomedicinal plants using a yeast cell-based assay for synthetic lethal interactions with cells deleted for RAD1, the yeast homologue of human ERCC4 (XPF) MATERIALS AND METHODS: Ethanolic extracts from thirty-two species of medicinal plants utilized in Thai traditional medicine were screened for synthetic lethal/sick interactions using a yeast cell-based assay. Cell growth was compared between the parental strain and rad1∆ yeast following exposure to select for specific toxicity of plant extracts. Candidate extracts were further examined for the mode of action using genetic and biochemical approaches. Screening a library of ethanolic extracts from medicinal plants identified Bacopa monnieri and Colubrina asiatica as having synthetic lethal effects in the rad1∆ cells but not the parental strain. Synthetic lethal effects for B. monneiri extracts were more apparent and this plant was examined further. Genetic analysis indicates that pro-oxidant activities and defective excision repair pathways do not significantly contribute to enhanced sensitivity to B. monneiri extracts. Exposure to B. monneiri extracts resulted in nuclear fragmentation and elevated levels of ethidium bromide staining in rad1∆ yeast suggesting promotion of an apoptosis-like event. Growth inhibition also observed in the human Caco-2 cell line suggesting the effects of B. monnieri extracts on both yeast and human cells may be similar. B. monneiri extracts may have utility in treatment of colorectal cancers that exhibit deficiency in ERCC4 (XPF). Copyright © 2018 Elsevier B.V. All rights reserved.
Exoerythrocytic development of Plasmodium gallinaceum in the White Leghorn chicken☆
Frevert, Ute; Späth, Gerald F.; Yee, Herman
2008-01-01
Plasmodium gallinaceum typically causes sub-clinical disease with low mortality in its primary host, the Indian jungle fowl Gallus sonnerati. Domestic chickens of European origin, however, are highly susceptible to this avian malaria parasite. Here we describe the development of P. gallinaceum in young White Leghorn chicks with emphasis on the primary exoerythrocytic phase of the infection. Using various regimens for infection, we found that P. gallinaceum induced a transient primary exoerythrocytic infection followed by a fulminant lethal erythrocytic phase. Prerequisite for the appearance of secondary exoerythrocytic stages was the development of a certain level of parasitemia. Once established, secondary exoerythrocytic stages could be propagated from bird to bird for several generations without causing fatalities. Infected brains contained large secondary exoerythrocytic stages in capillary endothelia, while in the liver primary and secondary erythrocytic stages developed primarily in Kupffer cells and remained smaller. At later stages, livers exhibited focal hepatocyte necrosis, Kupffer cell hyperplasia, stellate cell proliferation, inflammatory cell infiltration and granuloma formation. Because P. gallinaceum selectively infected Kupffer cells in the liver and caused a histopathology strikingly similar to mammalian species, this avian Plasmodium species represents an evolutionarily closely related model for studies on the hepatic phase of mammalian malaria. PMID:18005972
NASA Technical Reports Server (NTRS)
Lett, J. T.; Peters, E. L.
1992-01-01
Until recently, OH radicals formed in bulk nuclear water were believed to be the major causes of DNA damage that results in cell death, especially for sparsely ionizing radiations. That hypothesis has now been challenged, if not refuted. Lethal genomic DNA damage is determined mainly by energy deposition in deoxyribonucleoproteins, and their hydration shells, and charge (energy) transfer processes within those structures.
A Neuron-Specific Antiviral Mechanism Prevents Lethal Flaviviral Infection of Mosquitoes
Xiao, Xiaoping; Zhang, Rudian; Pang, Xiaojing; Liang, Guodong; Wang, Penghua; Cheng, Gong
2015-01-01
Mosquitoes are natural vectors for many etiologic agents of human viral diseases. Mosquito-borne flaviviruses can persistently infect the mosquito central nervous system without causing dramatic pathology or influencing the mosquito behavior and lifespan. The mechanism by which the mosquito nervous system resists flaviviral infection is still largely unknown. Here we report that an Aedes aegypti homologue of the neural factor Hikaru genki (AaHig) efficiently restricts flavivirus infection of the central nervous system. AaHig was predominantly expressed in the mosquito nervous system and localized to the plasma membrane of neural cells. Functional blockade of AaHig enhanced Dengue virus (DENV) and Japanese encephalitis virus (JEV), but not Sindbis virus (SINV), replication in mosquito heads and consequently caused neural apoptosis and a dramatic reduction in the mosquito lifespan. Consistently, delivery of recombinant AaHig to mosquitoes reduced viral infection. Furthermore, the membrane-localized AaHig directly interfaced with a highly conserved motif in the surface envelope proteins of DENV and JEV, and consequently interrupted endocytic viral entry into mosquito cells. Loss of either plasma membrane targeting or virion-binding ability rendered AaHig nonfunctional. Interestingly, Culex pipien pallens Hig also demonstrated a prominent anti-flavivirus activity, suggesting a functionally conserved function for Hig. Our results demonstrate that an evolutionarily conserved antiviral mechanism prevents lethal flaviviral infection of the central nervous system in mosquitoes, and thus may facilitate flaviviral transmission in nature. PMID:25915054
Flora, Alyssa D; Teel, Louise D; Smith, Mark A; Sinclair, James F; Melton-Celsa, Angela R; O'Brien, Alison D
2013-01-01
Ricin is a potent toxin found in the beans of Ricinus communis and is often lethal for animals and humans when aerosolized or injected and causes significant morbidity and occasional death when ingested. Ricin has been proposed as a bioweapon because of its lethal properties, environmental stability, and accessibility. In oral intoxication, the process by which the toxin transits across intestinal mucosa is not completely understood. To address this question, we assessed the impact of ricin on the gastrointestinal tract and organs of mice after dissemination of toxin from the gut. We first showed that ricin adhered in a specific pattern to human small bowel intestinal sections, the site within the mouse gut in which a variable degree of damage has been reported by others. We then monitored the movement of ricin across polarized human HCT-8 intestinal monolayers grown in transwell inserts and in HCT-8 cell organoids. We observed that, in both systems, ricin trafficked through the cells without apparent damage until 24 hours post intoxication. We delivered a lethal dose of purified fluorescently-labeled ricin to mice by oral gavage and followed transit of the toxin from the gastrointestinal tracts to the internal organs by in vivo imaging of whole animals over time and ex vivo imaging of organs at various time points. In addition, we harvested organs from unlabeled ricin-gavaged mice and assessed them for the presence of ricin and for histological damage. Finally, we compared serum chemistry values from buffer-treated versus ricin-intoxicated animals. We conclude that ricin transverses human intestinal cells and mouse intestinal cells in situ prior to any indication of enterocyte damage and that ricin rapidly reaches the kidneys of intoxicated mice. We also propose that mice intoxicated orally with ricin likely die from distributive shock.
Flora, Alyssa D.; Teel, Louise D.; Smith, Mark A.; Sinclair, James F.; Melton-Celsa, Angela R.; O’Brien, Alison D.
2013-01-01
Ricin is a potent toxin found in the beans of Ricinus communis and is often lethal for animals and humans when aerosolized or injected and causes significant morbidity and occasional death when ingested. Ricin has been proposed as a bioweapon because of its lethal properties, environmental stability, and accessibility. In oral intoxication, the process by which the toxin transits across intestinal mucosa is not completely understood. To address this question, we assessed the impact of ricin on the gastrointestinal tract and organs of mice after dissemination of toxin from the gut. We first showed that ricin adhered in a specific pattern to human small bowel intestinal sections, the site within the mouse gut in which a variable degree of damage has been reported by others. We then monitored the movement of ricin across polarized human HCT-8 intestinal monolayers grown in transwell inserts and in HCT-8 cell organoids. We observed that, in both systems, ricin trafficked through the cells without apparent damage until 24 hours post intoxication. We delivered a lethal dose of purified fluorescently-labeled ricin to mice by oral gavage and followed transit of the toxin from the gastrointestinal tracts to the internal organs by in vivo imaging of whole animals over time and ex vivo imaging of organs at various time points. In addition, we harvested organs from unlabeled ricin-gavaged mice and assessed them for the presence of ricin and for histological damage. Finally, we compared serum chemistry values from buffer-treated versus ricin-intoxicated animals. We conclude that ricin transverses human intestinal cells and mouse intestinal cells in situ prior to any indication of enterocyte damage and that ricin rapidly reaches the kidneys of intoxicated mice. We also propose that mice intoxicated orally with ricin likely die from distributive shock. PMID:23874986
Schenk-Meuser, K; Pawlowsky, K; Kiefer, J
1992-07-15
The effectiveness of polychromatic light irradiation was investigated for haploid yeast cells. Inactivation and mutation induction were measured in both a RAD-wildtype strain and an excision-repair defective strain. The behaviour of vegetative "wet" cells was compared to that of dehydrated cells. The aim of the study was to assess the interaction of UVC with other wavelengths in cells of different states of humidity. The irradiation procedure was therefore carried out using a solar simulator either with full spectrum or with a UVC-blocking filter (modified sunlight) added. The results were analysed on the basis of separately determined action spectra. The summation of the efficiency of individual wavelengths was compared to the values obtained from polychromatic irradiation. It is shown that the effects caused by the whole-spectrum irradiation in wet cells can be predicted sufficiently from the calculation, while dried wildtype cells exhibit higher mutation rates. Thus it can be assumed that drying-specific damage leads to lethal and mutagenic lesions which are processed in different ways, causing a synergistic behaviour in mutation induction. Irradiation of vegetative cells with modified sunlight (UVC-) results in less inactivation and lower mutation rates than were calculated. From these results it can be concluded that this antagonistic behaviour is caused by the interaction of near-UV photoproducts.
Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells
Janssen, Aniek; Kops, Geert J. P. L.; Medema, René H.
2009-01-01
The mitotic checkpoint has evolved to prevent chromosome mis-segregations by delaying mitosis when unattached chromosomes are present. Inducing severe chromosome segregation errors by ablating the mitotic checkpoint causes cell death. Here we have analyzed the consequences of gradual increases in chromosome segregation errors on the viability of tumor cells and normal human fibroblasts. Partial reduction of essential mitotic checkpoint components in four tumor cell lines caused mild chromosome mis-segregations, but no lethality. These cells were, however, remarkably more sensitive to low doses of taxol, which enhanced the amount and severity of chromosome segregation errors. Sensitization to taxol was achieved by reducing levels of Mps1 or BubR1, proteins having dual roles in checkpoint activation and chromosome alignment, but not by reducing Mad2, functioning solely in the mitotic checkpoint. Moreover, we find that untransformed human fibroblasts with reduced Mps1 levels could not be sensitized to sublethal doses of taxol. Thus, targeting the mitotic checkpoint and chromosome alignment simultaneously may selectively kill tumor cells by enhancing chromosome mis-segregations. PMID:19855003
Wu, Shuyan; Yu, Pak-Lam; Wheeler, Dave; Flint, Steve
2018-06-19
The aim of this study was to determine the gene expression associated with the persistence of a Listeria monocytogenes stationary phase population when facing lethal nisin treatment METHODS: RNA Seq analysis was used for gene expression profiling of the persister cells in rich medium (persister TN) compared with untreated cells (non-persister).The results were confirmed using RT PCR. Functional genes associated with the persister populations were identified in multiple systems, such as heat shock related stress response, cell wall synthesis, ATP-binding cassette (ABC) transport system, phosphotransferase system (PTS system), and SOS/DNA repair. This study pointed to genetic regulation of persister cells exposed to lethal nisin and provides some insight into possible mechanisms of impeding bacterial persistence. Copyright © 2018. Published by Elsevier Ltd.
Valli, M; Barnes, A M; Gallanti, A; Cabral, W A; Viglio, S; Weis, M A; Makareeva, E; Eyre, D; Leikin, S; Antoniazzi, F; Marini, J C; Mottes, M
2012-11-01
Deficiency of any component of the ER-resident collagen prolyl 3-hydroxylation complex causes recessive osteogenesis imperfecta (OI). The complex modifies the α1(I)Pro986 residue and contains cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1) and cyclophilin B (CyPB). Fibroblasts normally secrete about 10% of CRTAP. Most CRTAP mutations cause a null allele and lethal type VII OI. We identified a 7-year-old Egyptian boy with non-lethal type VII OI and investigated the effects of his null CRTAP mutation on collagen biochemistry, the prolyl 3-hydroxylation complex, and collagen in extracellular matrix. The proband is homozygous for an insertion/deletion in CRTAP (c.118_133del16insTACCC). His dermal fibroblasts synthesize fully overmodified type I collagen, and 3-hydroxylate only 5% of α1(I)Pro986. CRTAP transcripts are 10% of control. CRTAP protein is absent from proband cells, with residual P3H1 and normal CyPB levels. Dermal collagen fibril diameters are significantly increased. By immunofluorescence of long-term cultures, we identified a severe deficiency (10-15% of control) of collagen deposited in extracellular matrix, with disorganization of the minimal fibrillar network. Quantitative pulse-chase experiments corroborate deficiency of matrix deposition, rather than increased matrix turnover. We conclude that defects of extracellular matrix, as well as intracellular defects in collagen modification, contribute to the pathology of type VII OI. © 2011 John Wiley & Sons A/S.
Vidanapathirana, Muditha; Ruwanpura, Rohan P; Amararatne, Sriyantha Rrg; Ratnaweera, Ajith Rhi
2016-01-01
"Injuries due to lethal weapons" has emerged as a subject of public discussion in Sri Lanka. This study was conducted to describe the nature and characteristics of injuries due to lethal weapons during civil strife and to compare those with injuries after civil strife. A cross-sectional study was conducted on patients reported with injuries caused by lethal weapons from 2004 to 2014. Periods before and after May 19, 2009 were considered as during and after civil strife periods, respectively. A total of 21,210 medico-legal examination forms were studied. There were 358 (1.7%) injuries caused by lethal weapons. Of them, 41% (n = 148) were during and 59% (n = 210) were after the civil strife. During civil strife, 63% occurred during daytime (P < 0.05). Types of lethal weapons that caused injuries were sharp weapons (n = 282), explosives (n = 49), and firearms (n = 27). Of them, 32% of during and 01% of after civil strife were explosive injuries (P < 0.01). Regarding severity, 73% of during and 57% of after civil strife injuries were severe (P < 0.05). During civil strife, 34% injuries were in lower limbs (P < 0.01) and after civil strife, 37% were in upper limbs (P < 0.05). The presence of many similarities indicated that both groups learnt their basis in a society that breeds violence. During civil strife, more injuries occurred during daytime, to lower limbs by explosive weapons and after the civil strife during nighttime, to upper limbs by nonexplosive weapons. Nonexplosive lethal weapon use after civil strife needs further investigation to develop evidence-based interventions.
Vidanapathirana, Muditha; Ruwanpura, Rohan P; Amararatne, Sriyantha RRG; Ratnaweera, Ajith RHI
2016-01-01
Background and Aims: “Injuries due to lethal weapons” has emerged as a subject of public discussion in Sri Lanka. This study was conducted to describe the nature and characteristics of injuries due to lethal weapons during civil strife and to compare those with injuries after civil strife. Methods: A cross-sectional study was conducted on patients reported with injuries caused by lethal weapons from 2004 to 2014. Periods before and after May 19, 2009 were considered as during and after civil strife periods, respectively. A total of 21,210 medico-legal examination forms were studied. Results: There were 358 (1.7%) injuries caused by lethal weapons. Of them, 41% (n = 148) were during and 59% (n = 210) were after the civil strife. During civil strife, 63% occurred during daytime (P < 0.05). Types of lethal weapons that caused injuries were sharp weapons (n = 282), explosives (n = 49), and firearms (n = 27). Of them, 32% of during and 01% of after civil strife were explosive injuries (P < 0.01). Regarding severity, 73% of during and 57% of after civil strife injuries were severe (P < 0.05). During civil strife, 34% injuries were in lower limbs (P < 0.01) and after civil strife, 37% were in upper limbs (P < 0.05). Conclusions: The presence of many similarities indicated that both groups learnt their basis in a society that breeds violence. During civil strife, more injuries occurred during daytime, to lower limbs by explosive weapons and after the civil strife during nighttime, to upper limbs by nonexplosive weapons. Nonexplosive lethal weapon use after civil strife needs further investigation to develop evidence-based interventions. PMID:27127743
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paessler, Slobodan; Yun, Nadezhda E.; Judy, Barbara M.
2007-10-25
We evaluated the safety and immunogenicity of a chimeric alphavirus vaccine candidate in mice with selective immunodeficiencies. This vaccine candidate was highly attenuated in mice with deficiencies in the B and T cell compartments, as well as in mice with deficient gamma-interferon responsiveness. However, the level of protection varied among the strains tested. Wild type mice were protected against lethal VEEV challenge. In contrast, alpha/beta ({alpha}{beta}) TCR-deficient mice developed lethal encephalitis following VEEV challenge, while mice deficient in gamma/delta ({gamma}{delta}) T cells were protected. Surprisingly, the vaccine potency was diminished by 50% in animals lacking interferon-gamma receptor alpha chain (R1)-chainmore » and a minority of vaccinated immunoglobulin heavy chain-deficient ({mu}MT) mice survived challenge, which suggests that neutralizing antibody may not be absolutely required for protection. Prolonged replication of encephalitic VEEV in the brain of pre-immunized mice is not lethal and adoptive transfer experiments indicate that CD3{sup +} T cells are required for protection.« less
Uehara, Taeko; Nakaseko, Chiaki; Hara, Satoru; Harima, Akane; Ejiri, Megumi; Yokota, Akira; Saito, Yasushi; Nishimura, Miki
2004-08-01
Chronic active Epstein-Barr virus infection (CAEBV) is a heterogeneous EBV-related disorder, ranging from mild/moderate forms to rapidly lethal disorders. The lethal form of CAEBV is characterized by multiple organ failure, hemophagocytic syndrome, and development of lymphomas. Allogeneic stem cell transplantation is considered as the only potentially curative treatment for the lethal form of CAEBV, but it is not always desirable because of the high incidence of regimen-related toxicities. A 17-year-old female with CAEBV, who was refractory to conventional therapies and considered to be unable to receive a myeloablative regimen because of multiple organ dysfunction, underwent allogeneic nonmyeloablative stem cell transplantation (allo-NST) before developing a hematological malignancy. She has been well without any signs of CAEBV for 27 months after allo-NST, and we confirmed that specific cytotoxic T lymphocyte activity against EBV was reconstituted. This outcome suggests that allo-NST can control CAEBV by reconstituting the host immunity against EBV. Copyright 2004 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lingshu; Shi, Wei; Chappell, James D.
ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) causes a highly lethal pulmonary infection with ~35% mortality. The potential for a future pandemic originating from animal reservoirs or health care-associated events is a major public health concern. There are no vaccines or therapeutic agents currently available for MERS-CoV. Using a probe-based single B cell cloning strategy, we have identified and characterized multiple neutralizing monoclonal antibodies (MAbs) specifically binding to the receptor-binding domain (RBD) or S1 (non-RBD) regions from a convalescent MERS-CoV-infected patient and from immunized rhesus macaques. RBD-specific MAbs tended to have greater neutralizing potency than non-RBD S1-specific MAbs. Six RBD-specificmore » and five S1-specific MAbs could be sorted into four RBD and three non-RBD distinct binding patterns, based on competition assays, mapping neutralization escape variants, and structural analysis. We determined cocrystal structures for two MAbs targeting the RBD from different angles and show they can bind the RBD only in the “out” position. We then showed that selected RBD-specific, non-RBD S1-specific, and S2-specific MAbs given prophylactically prevented MERS-CoV replication in lungs and protected mice from lethal challenge. Importantly, combining RBD- and non-RBD MAbs delayed the emergence of escape mutations in a cell-based virus escape assay. These studies identify MAbs targeting different antigenic sites on S that will be useful for defining mechanisms of MERS-CoV neutralization and for developing more effective interventions to prevent or treat MERS-CoV infections. IMPORTANCEMERS-CoV causes a highly lethal respiratory infection for which no vaccines or antiviral therapeutic options are currently available. Based on continuing exposure from established reservoirs in dromedary camels and bats, transmission of MERS-CoV into humans and future outbreaks are expected. Using structurally defined probes for the MERS-CoV spike glycoprotein (S), the target for neutralizing antibodies, single B cells were sorted from a convalescent human and immunized nonhuman primates (NHPs). MAbs produced from paired immunoglobulin gene sequences were mapped to multiple epitopes within and outside the receptor-binding domain (RBD) and protected against lethal MERS infection in a murine model following passive immunization. Importantly, combining MAbs targeting distinct epitopes prevented viral neutralization escape from RBD-directed MAbs. These data suggest that antibody responses to multiple domains on CoV spike protein may improve immunity and will guide future vaccine and therapeutic development efforts.« less
Telford, Bryony J; Chen, Augustine; Beetham, Henry; Frick, James; Brew, Tom P; Gould, Cathryn M; Single, Andrew; Godwin, Tanis; Simpson, Kaylene J; Guilford, Parry
2015-05-01
The CDH1 gene, which encodes the cell-to-cell adhesion protein E-cadherin, is frequently mutated in lobular breast cancer (LBC) and diffuse gastric cancer (DGC). However, because E-cadherin is a tumor suppressor protein and lost from the cancer cell, it is not a conventional drug target. To overcome this, we have taken a synthetic lethal approach to determine whether the loss of E-cadherin creates druggable vulnerabilities. We first conducted a genome-wide siRNA screen of isogenic MCF10A cells with and without CDH1 expression. Gene ontology analysis demonstrated that G-protein-coupled receptor (GPCR) signaling proteins were highly enriched among the synthetic lethal candidates. Diverse families of cytoskeletal proteins were also frequently represented. These broad classes of E-cadherin synthetic lethal hits were validated using both lentiviral-mediated shRNA knockdown and specific antagonists, including the JAK inhibitor LY2784544, Pertussis toxin, and the aurora kinase inhibitors alisertib and danusertib. Next, we conducted a 4,057 known drug screen and time course studies on the CDH1 isogenic MCF10A cell lines and identified additional drug classes with linkages to GPCR signaling and cytoskeletal function that showed evidence of E-cadherin synthetic lethality. These included multiple histone deacetylase inhibitors, including vorinostat and entinostat, PI3K inhibitors, and the tyrosine kinase inhibitors crizotinib and saracatinib. Together, these results demonstrate that E-cadherin loss creates druggable vulnerabilities that have the potential to improve the management of both sporadic and familial LBC and DGC. ©2015 American Association for Cancer Research.
Heat shock modulates the subcellular localization, stability, and activity of HIPK2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam, E-mail: sganesh@iitk.ac.in
2016-04-15
The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress – such as hypoxia, oxidative stress, or UV damage – is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 andmore » the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.« less
O'Connell, Ryan M; Chaudhuri, Aadel A; Rao, Dinesh S; Gibson, William S J; Balazs, Alejandro B; Baltimore, David
2010-08-10
The production of blood cells depends on a rare hematopoietic stem-cell (HSC) population, but the molecular mechanisms underlying HSC biology remain incompletely understood. Here, we identify a subset of microRNAs (miRNAs) that is enriched in HSCs compared with other bone-marrow cells. An in vivo gain-of-function screen found that three of these miRNAs conferred a competitive advantage to engrafting hematopoietic cells, whereas other HSC miRNAs attenuated production of blood cells. Overexpression of the most advantageous miRNA, miR-125b, caused a dose-dependent myeloproliferative disorder that progressed to a lethal myeloid leukemia in mice and also enhanced hematopoietic engraftment in human immune system mice. Our study identifies an evolutionarily conserved subset of miRNAs that is expressed in HSCs and functions to modulate hematopoietic output.
Mohni, Kareem N.; Thompson, Petria S.; Luzwick, Jessica W.; Glick, Gloria G.; Pendleton, Christopher S.; Lehmann, Brian D.; Pietenpol, Jennifer A.; Cortez, David
2015-01-01
The DNA damage response kinase ATR may be a useful cancer therapeutic target. ATR inhibition synergizes with loss of ERCC1, ATM, XRCC1 and DNA damaging chemotherapy agents. Clinical trials have begun using ATR inhibitors in combination with cisplatin. Here we report the first synthetic lethality screen with a combination treatment of an ATR inhibitor (ATRi) and cisplatin. Combination treatment with ATRi/cisplatin is synthetically lethal with loss of the TLS polymerase ζ and 53BP1. Other DNA repair pathways including homologous recombination and mismatch repair do not exhibit synthetic lethal interactions with ATRi/cisplatin, even though loss of some of these repair pathways sensitizes cells to cisplatin as a single-agent. We also report that ATRi strongly synergizes with PARP inhibition, even in homologous recombination-proficient backgrounds. Lastly, ATR inhibitors were able to resensitize cisplatin-resistant cell lines to cisplatin. These data provide a comprehensive analysis of DNA repair pathways that exhibit synthetic lethality with ATR inhibitors when combined with cisplatin chemotherapy, and will help guide patient selection strategies as ATR inhibitors progress into the cancer clinic. PMID:25965342
Radiosensitizing effects of neem (Azadirachta indica) oil.
Kumar, Ashok; Rao, A R; Kimura, H
2002-02-01
Radiosensitization by neem oil was studied using Balbc/3T3 cells and SCID cells. Neem oil enhanced the radiosensitivity of the cells when applied both during and after x-irradiation under aerobic conditions. Neem oil completely inhibited the repair of sublethal damage and potentially lethal damage repair in Balbc/3T3 cells. The cytofluorimeter data show that neem oil treatment before and after x-irradiation reduced the G(2) + M phase, thus inhibiting the expression of the radiation induced arrest of cells in the G(2) phase of the cell cycle. However, SCIK cells (derived from the SCID mouse), deficient in DSB repair, treated with neem oil did not show any enhancement in the radiosensitivity. There was no effect of neem oil on SLD repair or its inhibition in SCIK cells. These results suggest that neem oil enhanced the radiosensitivity of cells by interacting with residual damage after x-irradiation, thereby converting the sublethal damage or potentially lethal damage into lethal damage, inhibiting the double-strand break repair or reducing the G(2) phase of the cell cycle. Copyright 2002 John Wiley & Sons, Ltd.
Qiu, Ping; Li, Yan; Shiloach, Joseph; Cui, Xizhong; Sun, Junfeng; Trinh, Loc; Kubler-Kielb, Joanna; Vinogradov, Evgeny; Mani, Haresh; Al-Hamad, Mariam; Fitz, Yvonne; Eichacker, Peter Q.
2013-01-01
Background. Disseminated intravascular coagulation (DIC) appears to be important in the pathogenesis of Bacillus anthracis infection, but its causes are unclear. Although lethal toxin (LT) and edema toxin (ET) could contribute, B. anthracis cell wall peptidoglycan (PGN), not the toxins, stimulates inflammatory responses associated with DIC. Methods and Results. To better understand the pathogenesis of DIC during anthrax, we compared the effects of 24-hour infusions of PGN, LT, ET, or diluent (control) on coagulation measures 6, 24, or 48 hours after infusion initiation in 135 rats. No control recipient died. Lethality rates (approximately 30%) did not differ among PGN, LT, and ET recipients (P = .78). Thirty-three of 35 deaths (94%) occurred between 6 and 24 hours after the start of challenge. Among challenge components, PGN most consistently altered coagulation measures. Compared with control at 6 hours, PGN decreased platelet and fibrinogen levels and increased prothrombin and activated partial thromboplastin times and tissue factor, tissue factor pathway inhibitor, protein C, plasminogen activator inhibitor (PAI), and thrombin-antithrombin complex levels, whereas LT and ET only decreased the fibrinogen level or increased the PAI level (P ≤ .05). Nearly all effects associated with PGN infusion significantly differed from changes associated with toxin infusion (P ≤ .05 for all comparisons except for PAI level). Conclusion. DIC during B. anthracis infection may be related more to components such as PGN than to LT or ET. PMID:23737601
Mahanta, Sailendra; Prathap, S; Ban, Deependra Kumar; Paul, Subhankar
2017-08-01
Zinc oxide nanostructure (ZnONS) was chemically synthesized and functionalized (FZnONS BLA ) with a small protein bovine α-lactalbumin (BLA) by chemical cross-linking methods. Both nano-structures were characterized using various techniques such as electron microscopy, dynamic light scattering (DLS), UV-Vis spectroscopy, FT-IR, photo-luminescence and X-ray diffraction. Electron microscopy and DLS analysis revealed their (ZnONS and FZnONS BLA ) average size of 200nm and 450nm, respectively. When cytotoxicity of both the nanostructures were assessed in breast cancer cells MCF-7 and MDAMB231 by MTT assay and PI/Annexin V staining (FACS), FZnONS BLA demonstrated higher cell death than ZnONS primarily due to generation of intracellular reactive oxygen species (ROS). Our experimental results also suggested that such enhanced toxicity was due to the lethal structural variant of BLA in FZnONS BLA as well as higher cellular uptake than ZnONS by cancer cells. The death kinetics study with time in cancer cells further proved that FZnONS BLA caused toxicity much faster than ZnONS, thus suggested a strong role of lethal variant of BLA in FZnONS BLA as a cytotoxic agent in cancer cells. Furthermore, FZnONS BLA demonstrated excellent cytocompatibility (normal cells) and hemocompatibility compared to ZnONS. Hence, considering the biodegradable nature of ZnO nonmaterial, our results demonstrated that BLA functionalized ZnONS could be used to develop a suitable therapeutic strategy in cancer. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.
2016-04-01
Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.
Oral PEG 15-20 protects the intestine against radiation : role of lipid rafts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valuckaite, V.; Zaborina, O.; Long, J.
Intestinal injury following abdominal radiation therapy or accidental exposure remains a significant clinical problem that can result in varying degrees of mucosal destruction such as ulceration, vascular sclerosis, intestinal wall fibrosis, loss of barrier function, and even lethal gut-derived sepsis. We determined the ability of a high-molecular-weight polyethylene glycol-based copolymer, PEG 15-20, to protect the intestine against the early and late effects of radiation in mice and rats and to determine its mechanism of action by examining cultured rat intestinal epithelia. Rats were exposed to fractionated radiation in an established model of intestinal injury, whereby an intestinal segment is surgicallymore » placed into the scrotum and radiated daily. Radiation injury score was decreased in a dose-dependent manner in rats gavaged with 0.5 or 2.0 g/kg per day of PEG 15-20 (n = 9-13/group, P < 0.005). Complementary studies were performed in a novel mouse model of abdominal radiation followed by intestinal inoculation with Pseudomonas aeruginosa (P. aeruginosa), a common pathogen that causes lethal gut-derived sepsis following radiation. Mice mortality was decreased by 40% in mice drinking 1% PEG 15-20 (n = 10/group, P < 0.001). Parallel studies were performed in cultured rat intestinal epithelial cells treated with PEG 15-20 before radiation. Results demonstrated that PEG 15-20 prevented radiation-induced intestinal injury in rats, prevented apoptosis and lethal sepsis attributable to P. aeruginosa in mice, and protected cultured intestinal epithelial cells from apoptosis and microbial adherence and possible invasion. PEG 15-20 appeared to exert its protective effect via its binding to lipid rafts by preventing their coalescence, a hallmark feature in intestinal epithelial cells exposed to radiation.« less
Molecular Basis of Cardioprotective Effect of Antioxidant Vitamins in Myocardial Infarction
Rodrigo, Ramón; Feliú, Felipe; Hasson, Daniel
2013-01-01
Acute myocardial infarction (AMI) is the leading cause of mortality worldwide. Major advances in the treatment of acute coronary syndromes and myocardial infarction, using cardiologic interventions, such as thrombolysis or percutaneous coronary angioplasty (PCA) have improved the clinical outcome of patients. Nevertheless, as a consequence of these procedures, the ischemic zone is reperfused, giving rise to a lethal reperfusion event accompanied by increased production of reactive oxygen species (oxidative stress). These reactive species attack biomolecules such as lipids, DNA, and proteins enhancing the previously established tissue damage, as well as triggering cell death pathways. Studies on animal models of AMI suggest that lethal reperfusion accounts for up to 50% of the final size of a myocardial infarct, a part of the damage likely to be prevented. Although a number of strategies have been aimed at to ameliorate lethal reperfusion injury, up to date the beneficial effects in clinical settings have been disappointing. The use of antioxidant vitamins could be a suitable strategy with this purpose. In this review, we propose a systematic approach to the molecular basis of the cardioprotective effect of antioxidant vitamins in myocardial ischemia-reperfusion injury that could offer a novel therapeutic opportunity against this oxidative tissue damage. PMID:23936799
Inhibition of anthrax lethal factor by ssDNA aptamers.
Lahousse, Mieke; Park, Hae-Chul; Lee, Sang-Choon; Ha, Na-Reum; Jung, In-Pil; Schlesinger, Sara R; Shackelford, Kaylin; Yoon, Moon-Young; Kim, Sung-Kun
2018-05-15
Anthrax is caused by Bacillus anthracis, a bacterium that is able to secrete the toxins protective antigen, edema factor and lethal factor. Due to the high level of secretion from the bacteria and its severe virulence, lethal factor (LF) has been sought as a biomarker for detecting bacterial infection and as an effective target to neutralize toxicity. In this study, we found three aptamers, and binding affinity was determined by fluorescently labeled aptamers. One of the aptamers exhibited high affinity, with a K d value of 11.0 ± 2.7 nM, along with low cross reactivity relative to bovine serum albumin and protective antigen. The therapeutic functionality of the aptamer was examined by assessing the inhibition of LF protease activity against a mitogen-activated protein kinase kinase. The aptamer appears to be an effective inhibitor of LF with an IC 50 value of 15 ± 1.5 μM and approximately 85% cell viability, suggesting that this aptamer provides a potential clue for not only development of a sensitive diagnostic device of B. anthracis infection but also the design of novel inhibitors of LF. Copyright © 2018 Elsevier Inc. All rights reserved.
Scott, Veronica L; Villarreal, Daniel O; Hutnick, Natalie A; Walters, Jewell N; Ragwan, Edwin; Bdeir, Khalil; Yan, Jian; Sardesai, Niranjan Y; Finnefrock, Adam C; Casimiro, Danilo R; Weiner, David B
2015-01-01
Botulinum neurotoxins (BoNTs) are deadly, toxic proteins produced by the bacterium Clostridium botulinum that can cause significant diseases in humans. The use of the toxic substances as potential bioweapons has raised concerns by the Centers for Disease Control and Prevention and the United States Military. Currently, there is no licensed vaccine to prevent botulinum intoxication. Here we present an immunogenicity study to evaluate the efficacy of novel monovalent vaccines and a trivalent cocktail DNA vaccine targeting the heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E. These synthetic DNA vaccines induced robust humoral and polyfunctional CD4(+) T-cell responses which fully protected animals against lethal challenge after just 2 immunizations. In addition, naïve animals administered immunized sera mixed with the lethal neurotoxin were 100% protected against intoxication. The data demonstrate the protective efficacy induced by a combinative synthetic DNA vaccine approach. This study has importance for the development of vaccines that provide protective immunity against C. botulinum neurotoxins and other toxins.
Lethality of First Contact Dysentery Epidemics on Pacific Islands.
Shanks, G Dennis
2016-08-03
Infectious diseases depopulated many isolated Pacific islands when they were first exposed to global pathogen circulation from the 18th century. Although the mortality was great, the lack of medical observers makes determination of what happened during these historical epidemics largely speculative. Bacillary dysentery caused by Shigella is the most likely infection causing some of the most lethal island epidemics. The fragmentary historical record is reviewed to gain insight into the possible causes of the extreme lethality that was observed during first-contact epidemics in the Pacific. Immune aspects of the early dysentery epidemics and postmeasles infection resulting in subacute inflammatory enteric disease suggest that epidemiologic isolation was the major lethality risk factor on Pacific islands in the 19th century. Other possible risk factors include human leukocyte antigen homogeneity from a founder effect and pathogen-induced derangement of immune tolerance to gut flora. If this analysis is correct, then Pacific islands are currently at no greater risk of emerging disease epidemics than other developing countries despite their dark history. © The American Society of Tropical Medicine and Hygiene.
Wesley-Smith, James; Walters, Christina; Pammenter, N. W.
2015-01-01
Background and Aims Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than −180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Methods Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g−1 dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s−1 or programmed cooling at 3·3 °C s−1. Samples were thawed rapidly (177 °C s−1) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Key Results Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Conclusions Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small (0·2–0·4 µm) intracellular ice crystals challenges current ideas that ice causes immediate physical damage to cells. Instead, freezing stress may induce a signal for programmed cell death (PCD). Cells that form more ice crystals during cooling have faster PCD responses. PMID:25808653
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busse, P.M.; Bose, S.K.; Jones, R.W.
1978-11-01
The ability of caffeine to enhance the expression of potentially lethal x-ray damage in HeLa S3 cells was examined as a function of the age of the cells in the generation cycle. Synchronous populations were irradiated at different times after mitotic collection and treated for various intervals with 1 mM caffeiene, which causes negligible killing of unirradiated cells. The response was thereby determined as a function of cell age at both the time of irradiation and the time of exposure to caffeine. The amount of cell killing depends strongly on when in the cycle caffeine is present and only weaklymore » on when the cells are irradiated. If cells are irradiated in early G/sub 1/, caffeine treatment enhances killing for 2 to 3 hr. No additional enhancement is observed until 16 to 17 hr postcollection, corresponding to G/sub 2/; here they enter a second period of much greater sensitivity. Similarly, fluorodeoxyuridine resynchronized cells irradiated during S and treated with caffeine suffer no enhanced killing until they pass into this sensitive phase in G/sub 2/, approximately 7 hr after release from the fluorodeoxyuridine block. The sensitive period appears to coincide with G/sub 2/ arrest. The rate and extent of killing during this period are dependent upon the x-ray dose and the caffeine concentration. In the absence of caffeine, cells irradiated in G/sub 1/ lose sensitivity to caffeine in about 9 hr; they do so faster in G/sub 2/. It is concluded that the potentially lethal x-ray damage expressed on treatment with caffeine is retained for many hours in the presence of caffeine and is maximally manifested by G/sub 2/-arrested cells.« less
IL-12 is required for differentiation of pathogenic CD8+ T cell effectors that cause myocarditis
Grabie, Nir; Delfs, Michael W.; Westrich, Jason R.; Love, Victoria A.; Stavrakis, George; Ahmad, Ferhaan; Seidman, Christine E.; Seidman, Jonathan G.; Lichtman, Andrew H.
2003-01-01
Cardiac antigen–specific CD8+ T cells are involved in the autoimmune component of human myocarditis. Here, we studied the differentiation and migration of pathogenic CD8+ T cell effector cells in a new mouse model of autoimmune myocarditis. A transgenic mouse line was derived that expresses cardiac myocyte restricted membrane-bound ovalbumin (CMy-mOva). The endogenous adaptive immune system of CMy-mOva mice displays tolerance to ovalbumin. Adoptive transfer of naive CD8+ T cells from the ovalbumin-specific T cell receptor–transgenic (TCR-transgenic) OT-I strain induces myocarditis in CMy-mOva mice only after subsequent inoculation with ovalbumin-expressing vesicular stomatitis virus (VSV-Ova). OT-I effector T cells derived in vitro in the presence or absence of IL-12 were adoptively transferred into CMy-mOva mice, and the consequences were compared. Although IL-12 was not required for the generation of cytolytic and IFN-γ–producing effector T cells, only effectors primed in the presence of IL-12 infiltrated CMy-mOva hearts in significant numbers, causing lethal myocarditis. Furthermore, analysis of OT-I effectors collected from a mediastinal draining lymph node indicated that only effectors primed in vitro in the presence of IL-12 proliferated in vivo. These data demonstrate the importance of IL-12 in the differentiation of pathogenic CD8+ T cells that can cause myocarditis. PMID:12618521
The in vitro impact of toothpaste extracts on cell viability.
Cvikl, Barbara; Lussi, Adrian; Gruber, Reinhard
2015-06-01
Toothpastes contain three main components: detergents, abrasives, and fluoride. Detergents, particularly sodium lauryl sulfate, have been proposed as components that enable toothpastes to produce cytotoxic effects in vitro. However, not all toothpastes contain sodium lauryl sulfate, and almost no studies have found an association between detergents and the in vitro cytotoxicity of toothpastes. The present study examined the in vitro cytotoxicity of nine commercially available toothpastes containing four different detergents. Toothpastes were diluted in serum-free medium, centrifuged, and filter sterilized. The half-lethal concentration of the toothpaste-conditioned medium (TCM) was calculated based on the formation of formazan by gingival fibroblasts, oral squamous cell carcinoma HSC-2 cells, and L929 cells. Cell proliferation was analyzed, and live-dead staining was performed, after exposure of cells to conditioned medium prepared with 1% toothpaste (1% TCM). It was found that toothpastes containing sodium lauryl sulfate and amine fluoride strongly inhibited cell viability with the half-lethal concentration being obtained with conditioned medium prepared with approximately 1% toothpaste (1% TCM). Toothpastes containing cocamidopropyl betaine and Steareth-20 showed higher half-lethal concentration values, with the half-lethal concentration being obtained with conditioned medium prepared with 10% (10% TCM) and 70% (70% TCM) toothpaste, respectively. Proliferation and live-dead data were consistent with the cell-viability analyses. These results demonstrate that the type of detergent in toothpastes can be associated with changes in in vitro cell toxicity. © 2015 Eur J Oral Sci.
Dorca-Arévalo, Jonatan; Pauillac, Serge; Díaz-Hidalgo, Laura; Martín-Satué, Mireia; Popoff, Michel R.; Blasi, Juan
2014-01-01
Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB. PMID:25013927
Dorca-Arévalo, Jonatan; Pauillac, Serge; Díaz-Hidalgo, Laura; Martín-Satué, Mireia; Popoff, Michel R; Blasi, Juan
2014-01-01
Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB.
DNA Lesions Caused by ROS and RNOS: A Review of Interactions and Reactions Involving Guanine
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Mishra, P. C.
DNA is constantly attacked by a large number of endogenous and exogenous reactive oxygen species (ROS), reactive nitrogen oxide species (RNOS), and alkylating agents which produce a wide variety of modifications of its constituents, particularly the bases. Some of these modifications (lesions) are hazardous to normal cell functioning, and are implicated in several lethal conditions including chronic inflammatory diseases, atherosclerosis, aging, mutation, cancer, and neurodegenerative disorders, such as the Alzheimer's and Parkinson's diseases.
Loss of Roquin induces early death and immune deregulation but not autoimmunity.
Bertossi, Arianna; Aichinger, Martin; Sansonetti, Paola; Lech, Maciej; Neff, Frauke; Pal, Martin; Wunderlich, F Thomas; Anders, Hans-Joachim; Klein, Ludger; Schmidt-Supprian, Marc
2011-08-29
The substitution of one amino acid in the Roquin protein by the sanroque mutation induces a dramatic autoimmune syndrome in mice. This is believed to occur through ectopic expression of inducible T cell co-stimulator (ICOS) and unrestrained differentiation of follicular T helper cells, which induce spontaneous germinal center reactions to self-antigens. In this study, we demonstrate that tissue-specific ablation of Roquin in T or B cells, in the entire hematopoietic system, or in epithelial cells of transplanted thymi did not cause autoimmunity. Loss of Roquin induced elevated expression of ICOS through T cell-intrinsic and -extrinsic mechanisms, which itself was not sufficient to break self-tolerance. Instead, ablation of Roquin in the hematopoietic system caused defined changes in immune homeostasis, including the expansion of macrophages, eosinophils, and T cell subsets, most dramatically CD8 effector-like T cells, through cell-autonomous and nonautonomous mechanisms. Germline Roquin deficiency led to perinatal lethality, which was partially rescued on the genetic background of an outbred strain. However, not even complete absence of Roquin resulted in overt self-reactivity, suggesting that the sanroque mutation induces autoimmunity through an as yet unknown mechanism. © 2011 Bertossi et al.
Ho, James C S; Storm, Petter; Rydström, Anna; Bowen, Ben; Alsin, Fredrik; Sullivan, Louise; Ambite, Inès; Mok, K H; Northen, Trent; Svanborg, Catharina
2013-06-14
Long-chain fatty acids are internalized by receptor-mediated mechanisms or receptor-independent diffusion across cytoplasmic membranes and are utilized as nutrients, building blocks, and signaling intermediates. Here we describe how the association of long-chain fatty acids to a partially unfolded, extracellular protein can alter the presentation to target cells and cellular effects. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin and oleic acid (OA). As OA lacks independent tumoricidal activity at concentrations equimolar to HAMLET, the contribution of the lipid has been debated. We show by natural abundance (13)C NMR that the lipid in HAMLET is deprotonated and by chromatography that oleate rather than oleic acid is the relevant HAMLET constituent. Compared with HAMLET, oleate (175 μm) showed weak effects on ion fluxes and gene expression. Unlike HAMLET, which causes metabolic paralysis, fatty acid metabolites were less strongly altered. The functional overlap increased with higher oleate concentrations (500 μm). Cellular responses to OA were weak or absent, suggesting that deprotonation favors cellular interactions of fatty acids. Fatty acids may thus exert some of their essential effects on host cells when in the deprotonated state and when presented in the context of a partially unfolded protein.
NASA Astrophysics Data System (ADS)
Sinha, Subarna; Thomas, Daniel; Chan, Steven; Gao, Yang; Brunen, Diede; Torabi, Damoun; Reinisch, Andreas; Hernandez, David; Chan, Andy; Rankin, Erinn B.; Bernards, Rene; Majeti, Ravindra; Dill, David L.
2017-05-01
Two genes are synthetically lethal (SL) when defects in both are lethal to a cell but a single defect is non-lethal. SL partners of cancer mutations are of great interest as pharmacological targets; however, identifying them by cell line-based methods is challenging. Here we develop MiSL (Mining Synthetic Lethals), an algorithm that mines pan-cancer human primary tumour data to identify mutation-specific SL partners for specific cancers. We apply MiSL to 12 different cancers and predict 145,891 SL partners for 3,120 mutations, including known mutation-specific SL partners. Comparisons with functional screens show that MiSL predictions are enriched for SLs in multiple cancers. We extensively validate a SL interaction identified by MiSL between the IDH1 mutation and ACACA in leukaemia using gene targeting and patient-derived xenografts. Furthermore, we apply MiSL to pinpoint genetic biomarkers for drug sensitivity. These results demonstrate that MiSL can accelerate precision oncology by identifying mutation-specific targets and biomarkers.
O'Brien, David K; Therit, Blair H; Woodman, Michael E; Melville, Stephen B
2007-06-01
Clostridium perfringens is a common cause of the fatal disease gas gangrene (myonecrosis). Established gas gangrene is notable for a profound absence of neutrophils and monocytic cells (phagocytes), and it has been suggested that the bactericidal activities of these cells play an insignificant role in controlling the progression of the infection. However, large inocula of bacteria are needed to establish an infection in experimental animals, suggesting phagocytes may play a role in inhibiting the initiation of gangrene. Examination of tissue sections of mice infected with a lethal (1 x 10(9)) or sublethal (1 x 10(6)) inoculum of C. perfringens revealed that phagocyte infiltration in the first 3 h postinfection was inhibited with a lethal dose but not with a sublethal dose, indicating that exclusion of phagocytes begins very early in the infection cycle. Experiments in which mice were depleted of either circulating monocytes or neutrophils before infection with C. perfringens showed that monocytes play a role in inhibiting the onset of gas gangrene at intermediate inocula but, although neutrophils can slow the onset of the infection, they are not protective. These results suggest that treatments designed to increase monocyte infiltration and activate macrophages may lead to increased resistance to the initiation of gas gangrene.
Aswad, Fred; Dennert, Gunther
2006-09-01
Contact of T lymphocytes with nicotinamide adenine dinucleotide (NAD) or ATP causes cell death that requires expression of purinergic receptor P2X(7) (P2X(7)R). T cell subsets differ in their responses to NAD and ATP, which awaits a mechanistic explanation. Here, we show that sensitivity to ATP correlates with P2X(7)R expression levels in CD4 cells, CD8 cells and CD4(+)CD25(+) cells from both C57BL/6 and BALB/c mice. But P2X(7)R ligands do not only induce cell death but also shedding of CD62L. It is shown here that in CD62L(high) T cells, CD62L shedding correlates with low expression of P2X(7)Rs and lower cell death, whereas in CD62L(low) cells P2X(7)R expression and death are higher. The possibility is therefore investigated that P2X(7)Rs induce T cell activation. Experiments show that spontaneous T cell proliferation is somewhat higher in cells expressing P2X(7)Rs, but this effect we suggest is caused by P2X(7)R expression on accessory cells.
Valdez-Velazquéz, L L; Romero-Gutierrez, M T; Delgado-Enciso, I; Dobrovinskaya, O; Melnikov, V; Quintero-Hernández, V; Ceballos-Magaña, S G; Gaitan-Hinojosa, M A; Coronas, F I; Puebla-Perez, A M; Zamudio, F; De la Cruz-García, I; Vázquez-Vuelvas, O F; Soriano-Hernandez, A D; Possani, L D
2016-08-01
Centruroides tecomanus is a medically important scorpion of the state of Colima (Mexico). This communication reports the identification of venom components of this scorpion with biological activity over insects/crickets (Acheta domestica), crustaceans/fresh water shrimps (Cambarellus montezumae), and mammalians/mice (Mus musculus, strain CD1). It also describes the pharmacological effects on cell lines in culture (L5178Y cells, HeLa cells, HuTu cells and Jurkat E6-1 cells), as well as on several types of bacteria (see below). The soluble venom of this scorpion was fractionated by high-performance liquid chromatography (HPLC) and collected separately in twelve independent fractions collected over 60 min run (5 min time apart each other). The HPLC components of fraction VII were lethal to all three species used for assay. The IVth fraction had a toxic effect on freshwater shrimps. In this species, fractions VI, VII and VIII were all lethal. For crickets, fractions V and VI were toxic and fraction VII was lethal. In mouse, the lethal components were found in fraction VII, whereas fraction VIII was toxic, but not lethal, at the doses assayed. The molecular weight of peptides from the various group of fractions were identified by mass spectrometry determination. Components lethal to mice showed molecular weights from 7013 to 7487 Da. Two peptides were obtained in homogeneous form and shown to be lethal to the three species of animal used for assay. The soluble venom tested on L5178Y cell line survival was shown to be cytotoxic, at 10-100 μg/mL concentration, when compared to control murine splenocytes (p = 0.007). The soluble venom applied to Hela, Hutu and Jurkat cell lines did not show cytotoxic effects at these concentrations. On the contrary, it seems to have a proliferative effect. However the HPLC fractions I, III, VI and XII do have a cytotoxic effect on Jurkat E06-1 cells in culture at 200 μg/mL concentration. The antimicrobial activity of the venom fractions on Staphylococcus aureus (gram-positive), Escherichia coli, Pseudomonas aeruginosa y Salmonella spp (gram-negative) was measured, using the liquid inhibition growth system. The four strains of bacteria used were susceptible to fractions III and IV, affecting all four bacterial strains at concentrations below 5 μg/mL. Copyright © 2016 Elsevier Ltd. All rights reserved.
Studies on the Mode of Action of Acifluorfen-Methyl in Nonchlorophyllous Soybean Cells 1
Matringe, M.; Scalla, R.
1988-01-01
Phytotoxic effects of the herbicide acifluorfen-methyl on nonchlorophyllous soybean cells were estimated by 86Rb leakage. An action spectrum study showed maximum injury at 350 to 450 nanometers, with lesser activity between 450 and 700 nanometers. Cells treated in the dark with acifluorfen-methyl accumulated fluorescent pigments with the spectral characteristics of protoporphyrin IX. The action spectrum of acifluorfen-methyl matched the absorption spectrum of this tetrapyrrole, and the extent of cellular damage in the light was related to the degree of fluorescent pigment accumulation. We propose that the phytotoxicity of diphenyl ether herbicides could be explained by their ability to cause abnormal accumulations of tetrapyrroles, which in turn induce lethal photooxidative reactions. PMID:16665956
Tilahun, Ashenafi Y; Holz, Marah; Wu, Tsung-Teh; David, Chella S; Rajagopalan, Govindarajan
2011-02-03
Toxic shock syndrome (TSS) caused by the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes is characterized by robust T cell activation, profound elevation in systemic levels of multiple cytokines, including interferon-γ (IFN-γ), followed by multiple organ dysfunction and often death. As IFN-γ possesses pro- as well as anti-inflammatory properties, we delineated its role in the pathogenesis of TSS. Antibody-mediated in vivo neutralization of IFN-γ or targeted disruption of IFN-γ gene conferred significant protection from lethal TSS in HLA-DR3 transgenic mice. Following systemic high dose SEB challenge, whereas the HLA-DR3.IFN-γ(+/+) mice became sick and succumbed to TSS, HLA-DR3.IFN-γ(-/-) mice appeared healthy and were significantly protected from SEB-induced lethality. SEB-induced systemic cytokine storm was significantly blunted in HLA-DR3.IFN-γ(-/-) transgenic mice. Serum concentrations of several cytokines (IL-4, IL-10, IL-12p40 and IL-17) and chemokines (KC, rantes, eotaxin and MCP-1) were significantly lower in HLA-DR3.IFN-γ(-/-) transgenic mice. However, SEB-induced T cell expansion in the spleens was unaffected and expansion of SEB-reactive TCR Vβ8(+) CD4(+) and CD8(+) T cells was even more pronounced in HLA-DR3.IFN-γ(-/-) transgenic mice when compared to HLA-DR3.IFN-γ(+/+) mice. A systematic histopathological examination of several vital organs revealed that both HLA-DR3.IFN-γ(+/+) and HLA-DR3.IFN-γ(-/-) transgenic mice displayed comparable severe inflammatory changes in lungs, and liver during TSS. Remarkably, whereas the small intestines from HLA-DR3.IFN-γ(+/+) transgenic mice displayed significant pathological changes during TSS, the architecture of small intestines in HLA-DR3.IFN-γ(-/-) transgenic mice was preserved. In concordance with these histopathological changes, the gut permeability to macromolecules was dramatically increased in HLA-DR3.IFN-γ(+/+) but not HLA-DR3.IFN-γ(-/-) mice during TSS. Overall, IFN-γ seemed to play a lethal role in the immunopathogenesis of TSS by inflicting fatal small bowel pathology. Our study thus identifies the important role for IFN-γ in TSS.
Yang, Shih-Hung; Kuo, Ting-Chun; Wu, Hsu; Guo, Jhe-Cyuan; Hsu, Chiun; Hsu, Chih-Hung; Tien, Yu-Wen; Yeh, Kun-Huei; Cheng, Ann-Lii; Kuo, Sung-Hsin
2016-01-01
Pancreatic cancer is highly lethal. Current research that combines radiation with targeted therapy may dramatically improve prognosis. Cancerous cells are characterized by unstable genomes and activation of DNA repair pathways, which are indicated by increased phosphorylation of numerous factors, including H2AX, ATM, ATR, Chk1, Chk2, DNA-PKcs, Rad51, and Ku70/Ku80 heterodimers. Radiotherapy causes DNA damage. Cancer cells can be made more sensitive to the effects of radiation (radiosensitization) through inhibition of DNA repair pathways. The synergistic effects, of two or more combined non-lethal treatments, led to co-administration of chemotherapy and radiosensitization in BRCA-defective cells and patients, with promising results. ATM/Chk2 and ATR/Chk1 pathways are principal regulators of cell cycle arrest, following DNA double-strand or single-strand breaks. DNA double-stranded breaks activate DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). It forms a holoenzyme with Ku70/Ku80 heterodimers, called DNA-PK, which catalyzes the joining of nonhomologous ends. This is the primary repair pathway utilized in human cells after exposure to ionizing radiation. Radiosensitization, induced by inhibitors of ATM, ATR, Chk1, Chk2, Wee1, PP2A, or DNA-PK, has been demonstrated in preclinical pancreatic cancer studies. Clinical trials are underway. Development of agents that inhibit DNA repair pathways to be clinically used in combination with radiotherapy is warranted for the treatment of pancreatic cancer. PMID:27621574
Rytelewski, Mateusz; Ferguson, Peter J; Maleki Vareki, Saman; Figueredo, Rene; Vincent, Mark; Koropatnick, James
2013-03-12
A high mutation rate leading to tumor cell heterogeneity is a driver of malignancy in human cancers. Paradoxically, however, genomic instability can also render tumors vulnerable to therapeutic attack. Thus, targeting DNA repair may induce an intolerable level of DNA damage in tumor cells. BRCA2 mediates homologous recombination repair, and BRCA2 polymorphisms increase cancer risk. However, tumors with BRCA2 mutations respond better to chemotherapy and are associated with improved patient prognosis. Thymidylate synthase (TS) is also involved in DNA maintenance and generates cellular thymidylate. We determined that antisense downregulation of BRCA2 synergistically potentiated drugs with mechanisms of action related to BRCA2 function (cisplatin, melphalan), a phenomenon we named "complementary lethality." TS knockdown induced complementary lethality to TS-targeting drugs (5-FUdR and pemetrexed) but not DNA cross-linking agents. Combined targeting of BRCA2 and TS induced complementary lethality to both DNA-damaging and TS-targeting agents, thus creating multidrug sensitive tumors. In addition, we demonstrated for the first time that simultaneous downregulation of both targets induced combined complementary lethality to multiple mechanistically different drugs in the same cell population. In this study, we propose and define the concept of "complementary lethality" and show that actively targeting BRCA2 and TS is of potential therapeutic benefit in multidrug treatment of human tumors. This work has contributed to the development of a BRCA2-targeting antisense oligdeoxynucleotide (ASO) "BR-1" which we will test in vivo in combination with our TS-targeting ASO "SARI 83" and attempt early clinical trials in the future.Molecular Therapy - Nucleic Acids (2013) 2, e78; doi:10.1038/mtna.2013.7 published online 12 March 2013.
Gamarra-Luques, Carlos D; Hapon, Maria B; Goyeneche, Alicia A; Telleria, Carlos M
2014-01-01
Antiprogestin compounds have been shown to be effective in blocking the growth of ovarian cancer cells of different genetic backgrounds. Herein we studied the anti-ovarian cancer effect of a series of antiprogestins sharing the chemical backbone of the most characterized antiprogestin, mifepristone, but with unique modifications in position C-17 of the steroid ring. We assessed the effect of mifepristone-like antiprogestins on the growth of ovarian cancer cells sensitive to the standard combination therapy cisplatin-paclitaxel or made double-resistant upon six cycles of pulse-selection with the drugs used at clinically relevant concentrations and exposure times. IGROV-1 and SKOV-3 cells were pulsed with 20 μM cisplatin for 1 h followed by 100 nM paclitaxel for 3 h once a week for six weeks. The cells that did not die and repopulate the culture after the chemotherapies were termed Platinum-Taxane-EScape cells (PTES). Parental cells were compared against their PTES derivatives in their responses to further platinum-taxane treatments. Moreover, both ovarian cancer cells and their PTES siblings were exposed to escalating doses of the various antiprogestin derivatives. We assessed cell growth, viability and sub-G1 DNA content using microcapillary cytometry. Cyclin-dependent kinase inhibitors p21(cip1) and p27(kip1) and cleavage of downstream caspase-3 substrate PARP were used to assess whether cell fate, as a consequence of treatment, was limited to cytostasis or progressed to lethality. Cells subjected to six pulse-selection cycles of cisplatin-paclitaxel gave rise to sibling derivatives that displayed ~2-7 fold reduction in their sensitivities to further chemotherapy. However, regardless of the sensitivity the cells developed to the combination cisplatin-paclitaxel, they displayed similar sensitivity to the antiprogestins, which blocked their growth in a dose-related manner, with lower concentrations causing cytostasis, and higher concentrations causing lethality. Antiprogestins carrying a backbone similar to mifepristone are cytotoxic to ovarian cancer cells in a manner that does not depend on the sensitivity the cells have to the standard ovarian cancer chemotherapeutics, cisplatin and paclitaxel. Thus, antiprogestin therapy could be used to treat ovarian cancer cells showing resistance to both platinum and taxanes.
2014-01-01
Background Antiprogestin compounds have been shown to be effective in blocking the growth of ovarian cancer cells of different genetic backgrounds. Herein we studied the anti-ovarian cancer effect of a series of antiprogestins sharing the chemical backbone of the most characterized antiprogestin, mifepristone, but with unique modifications in position C-17 of the steroid ring. We assessed the effect of mifepristone-like antiprogestins on the growth of ovarian cancer cells sensitive to the standard combination therapy cisplatin-paclitaxel or made double-resistant upon six cycles of pulse-selection with the drugs used at clinically relevant concentrations and exposure times. Methods IGROV-1 and SKOV-3 cells were pulsed with 20 μM cisplatin for 1 h followed by 100 nM paclitaxel for 3 h once a week for six weeks. The cells that did not die and repopulate the culture after the chemotherapies were termed Platinum-Taxane-EScape cells (PTES). Parental cells were compared against their PTES derivatives in their responses to further platinum-taxane treatments. Moreover, both ovarian cancer cells and their PTES siblings were exposed to escalating doses of the various antiprogestin derivatives. We assessed cell growth, viability and sub-G1 DNA content using microcapillary cytometry. Cyclin-dependent kinase inhibitors p21cip1 and p27kip1 and cleavage of downstream caspase-3 substrate PARP were used to assess whether cell fate, as a consequence of treatment, was limited to cytostasis or progressed to lethality. Results Cells subjected to six pulse-selection cycles of cisplatin-paclitaxel gave rise to sibling derivatives that displayed ~2-7 fold reduction in their sensitivities to further chemotherapy. However, regardless of the sensitivity the cells developed to the combination cisplatin-paclitaxel, they displayed similar sensitivity to the antiprogestins, which blocked their growth in a dose-related manner, with lower concentrations causing cytostasis, and higher concentrations causing lethality. Conclusions Antiprogestins carrying a backbone similar to mifepristone are cytotoxic to ovarian cancer cells in a manner that does not depend on the sensitivity the cells have to the standard ovarian cancer chemotherapeutics, cisplatin and paclitaxel. Thus, antiprogestin therapy could be used to treat ovarian cancer cells showing resistance to both platinum and taxanes. PMID:24795781
Photodynamic therapy (PDT) as a biological modifier
NASA Astrophysics Data System (ADS)
Obochi, Modestus; Tao, Jing-Song; Hunt, David W. C.; Levy, Julia G.
1996-04-01
The capacity of photosensitizers and light to ablate cancerous tissues and unwanted neovasculature constitutes the classical application of photodynamic therapy (PDT). Cell death results from either necrotic or apoptotic processes. The use of photosensitizers and light at doses which do not cause death has been found to affect changes in certain cell populations which profoundly effect their expression of cell surface molecules and secretion of cytokines, thereby altering the functional attributes of the treated cells. Cells of the immune system and the skin may be sensitive to modulation by 'sub-lethal PDT.' Ongoing studies have been conducted to assess, at the molecular level, changes in both lymphocytes and epidermal cells (EC) caused by treatment with low levels of benzoporphyrin derivative monoacid ring A (BPD) (a photosensitizer currently in clinical trials for cancer, psoriasis, endometriosis and age-related macular degeneration) and light. Treatment of skin with BPD and light, at levels which significantly enhanced the length of murine skin allograft acceptance, have been found to down-regulate the expression of Langerhans cell (LC) surface antigen molecules [major histocompatibility complex (MHC) class II and intracellular adhesion molecule (ICAM)-1] and the formation of some cytokines (tumor necrosis factor-alpha (TNF- (alpha) ).
Mao, Cheng-Qiong; Xiong, Meng-Hua; Liu, Yang; Shen, Song; Du, Xiao-Jiao; Yang, Xian-Zhu; Dou, Shuang; Zhang, Pei-Zhuo; Wang, Jun
2014-01-01
The KRAS mutation is present in ~20% of lung cancers and has not yet been effectively targeted for therapy. This mutation is associated with a poor prognosis in non-small-cell lung carcinomas (NSCLCs) and confers resistance to standard anticancer treatment drugs, including epidermal growth factor receptor tyrosine kinase inhibitors. In this study, we exploited a new therapeutic strategy based on the synthetic lethal interaction between cyclin-dependent kinase 4 (CDK4) downregulation and the KRAS mutation to deliver micellar nanoparticles (MNPs) containing small interfering RNA targeting CDK4 (MNPsiCDK4) for treatment in NSCLCs harboring the oncogenic KRAS mutation. Following MNPsiCDK4 administration, CDK4 expression was decreased, accompanied by inhibited cell proliferation, specifically in KRAS mutant NSCLCs. However, this intervention was harmless to normal KRAS wild-type cells, confirming the proposed mechanism of synthetic lethality. Moreover, systemic delivery of MNPsiCDK4 significantly inhibited tumor growth in an A549 NSCLC xenograft murine model, with depressed expression of CDK4 and mutational KRAS status, suggesting the therapeutic promise of MNPsiCDK4 delivery in KRAS mutant NSCLCs via a synthetic lethal interaction between KRAS and CDK4. PMID:24496383
The Klebsiella pneumoniae O Antigen Contributes to Bacteremia and Lethality during Murine Pneumonia
Shankar-Sinha, Sunita; Valencia, Gabriel A.; Janes, Brian K.; Rosenberg, Jessica K.; Whitfield, Chris; Bender, Robert A.; Standiford, Ted J.; Younger, John G.
2004-01-01
Bacterial surface carbohydrates are important pathogenic factors in gram-negative pneumonia infections. Among these factors, O antigen has been reported to protect pathogens against complement-mediated killing. To examine further the role of O antigen, we insertionally inactivated the gene encoding a galactosyltransferase necessary for serotype O1 O-antigen synthesis (wbbO) from Klebsiella pneumoniae 43816. Analysis of the mutant lipopolysaccharide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the absence of O antigen. In vitro, there were no detectable differences between wild-type K. pneumoniae and the O-antigen-deficient mutant in regard to avid binding by murine complement C3 or resistance to serum- or whole-blood-mediated killing. Nevertheless, the 72-h 50% lethal dose of the wild-type strain was 30-fold greater than that of the mutant (2 × 103 versus 6 × 104 CFU) after intratracheal injection in ICR strain mice. Despite being less lethal, the mutant organism exhibited comparable intrapulmonary proliferation at 24 h compared to the level of the wild type. Whole-lung chemokine expression (CCL3 and CXCL2) and bronchoalveolar inflammatory cell content were also similar between the two infections. However, whereas the wild-type organism produced bacteremia within 24 h of infection in every instance, bacteremia was not seen in mutant-infected mice. These results suggest that during murine pneumonia caused by K. pneumoniae, O antigen contributes to lethality by increasing the propensity for bacteremia and not by significantly changing the early course of intrapulmonary infection. PMID:14977947
Woeste, Keith E.; Kieber, Joseph J.
2000-01-01
A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors. PMID:10715329
NASA Technical Reports Server (NTRS)
Woeste, K. E.; Kieber, J. J.; Evans, M. L. (Principal Investigator)
2000-01-01
A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors.
Trivigno, Catherine; Haerry, Theodor E
2011-02-25
Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low.
Trivigno, Catherine; Haerry, Theodor E.
2011-01-01
Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low. PMID:21364917
Watson, K L; Konrad, K D; Woods, D F; Bryant, P J
1992-01-01
The tumor suppressor gene lethal(1)aberrant immune response 8 (air8) of Drosophila melanogaster encodes a homolog of the human S6 ribosomal protein. P element insertions that prevent expression of this gene cause overgrowth of the lymph glands (the hematopoietic organs), abnormal blood cell differentiation, and melanotic tumor formation. They also cause delayed development, inhibit growth of most of the larval organs, and lead to larval lethality. Mitotic recombination experiments indicate that the normal S6 gene is required for clone survival in the germ line and imaginal discs. The S6 gene produces a 1.1-kilobase transcript that is abundant throughout development in wild-type animals and in revertants derived from the insertional mutants but is barely detectable in the mutant larvae. cDNAs corresponding to this transcript show a 248-amino acid open reading frame with 75.4% identity and 94.8% similarity to both human and rat S6 ribosomal protein sequences. The results reveal a regulatory function of this ribosomal protein in the hematopoietic system of Drosophila that may be related to its developmentally regulated phosphorylation. Images PMID:1454811
CD94 is essential for NK cell-mediated resistance to a lethal viral disease
Fang, Min; Orr, Mark T.; Spee, Pieter; Egebjerg, Thomas; Lanier, Lewis L.; Sigal, Luis J.
2011-01-01
Summary It is well established that natural killer (NK) cells confer resistance to many viral diseases, but only in a few instances the molecular mechanisms whereby NK cells recognize virus-infected cells are known. Here we show that CD94, a molecule preferentially expressed by NK cells, is essential for the resistance of C57BL/6 mice to mousepox, a disease caused by the Orthopoxvirus ectromelia virus. Ectromelia virus-infected cells expressing the major histocompatibility complex (MHC) class Ib molecule Qa-1b are specifically recognized by the activating receptor formed by CD94 and NKG2E. Because CD94-NKG2 receptors and their ligands are highly conserved in rodents and humans, a similar mechanism may exist during human infections with the smallpox and monkeypox viruses, which are highly homologous to ectromelia virus. PMID:21439856
Light might directly affect retinal ganglion cell mitochondria to potentially influence function.
del Olmo-Aguado, Susana; Manso, Alberto G; Osborne, Neville N
2012-01-01
Visible light (360-760 nm) entering the eye impinges on the many ganglion cell mitochondria in the non-myelinated part of their axons. The same light also disrupts isolated mitochondrial function in vitro and kills cells in culture with the blue light component being particularly lethal whereas red light has little effect. Significantly, a defined light insult only affects the survival of fibroblasts in vitro that contain functional mitochondria supporting the view that mitochondrial photosensitizers are influenced by light. Moreover, a blue light insult to cells in culture causes a change in mitochondrial structure and membrane potential and results in a release of cytochrome c. Blue light also causes an alteration in mitochondria located components of the OXPHOS (oxidative phosphorylation system). Complexes III and IV as well as complex V are significantly upregulated whereas complexes I and II are slightly but significantly up- and downregulated, respectively. Also, blue light causes Dexras1 and reactive oxygen species to be upregulated and for mitochondrial located apoptosis-inducing factor to be activated. A blue light detrimental insult to cells in culture does not involve the activation of caspases but is known to be attenuated by necrostatin-1, typical of a death mechanism named necroptosis. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.
Shen, Song; Mao, Chong-Qiong; Yang, Xian-Zhu; Du, Xiao-Jiao; Liu, Yang; Zhu, Yan-Hua; Wang, Jun
2014-08-04
Synthetic lethal interaction provides a conceptual framework for the development of wiser cancer therapeutics. In this study, we exploited a therapeutic strategy based on the interaction between GATA binding protein 2 (GATA2) downregulation and the KRAS mutation status by delivering small interfering RNA targeting GATA2 (siGATA2) with cationic lipid-assisted polymeric nanoparticles for treatment of non-small-cell lung carcinoma (NSCLC) harboring oncogenic KRAS mutations. Nanoparticles carrying siGATA2 (NPsiGATA2) were effectively taken up by NSCLC cells and resulted in targeted gene suppression. NPsiGATA2 selectively inhibited cell proliferation and induced cell apoptosis in KRAS mutant NSCLC cells. However, this intervention was harmless to normal KRAS wild-type NSCLC cells and HL7702 hepatocytes, confirming the advantage of synthetic lethality-based therapy. Moreover, systemic delivery of NPsiGATA2 significantly inhibited tumor growth in the KRAS mutant A549 NSCLC xenograft murine model, suggesting the therapeutic promise of NPsiGATA2 delivery in KRAS mutant NSCLC therapy.
NASA Astrophysics Data System (ADS)
Lukianova-Hleb, Ekaterina Y.; Kim, Yoo-Shin; Belatsarkouski, Ihar; Hanna, Ehab Y.; Gillenwater, Ann M.; O'Neill, Brian; Lapotko, Dmitri
2016-02-01
Failure of cancer surgery to intraoperatively detect and eliminate microscopic residual disease (MRD) causes lethal recurrence and metastases, whereas removal of important normal tissues causes excessive morbidity. We report plasmonic nanobubble (PNB) surgical technology to intraoperatively detect and eliminate MRD in surgical bed. PNBs were generated in vivo in head and neck cancer cells by systemically targeting tumor with gold colloids and locally-applied near-infrared low energy short laser pulse, and were simultaneously detected with acoustic probe. In mouse models of head and neck squamous cell carcinoma, single cancer cells and MRD (undetectable with standard histological methods) were instantaneously non-invasively detected in solid tissue in surgical bed. In resectable MRD, PNB-guided surgery prevented local recurrence and delivered 100% tumor-free survival. In unresectable MRD, PNB nano-surgery improved survival by two-fold compared to standard surgery. PNB metrics correlated with the tumor recurrence rate. PNB surgical technology precisely detects and immediately eliminates MRD at macro- and micro-scale in a simple and safe intraoperative procedure.
Radiation-Induced Immunogenic Modulation Enhances T-Cell Killing | Center for Cancer Research
For many types of cancer, including breast, lung, and prostate carcinomas, radiation therapy is the standard of care. However, limits placed on the tolerable levels of radiation exposure coupled with heterogeneity of biological tissue result in cases where not all tumor cells receive a lethal dose of radiation. Preclinical studies have shown that exposing tumor cells to lethal doses of radiation can elicit cell death while inducing some antitumor immunity, described as immunogenic cell death (ICD). However, in a clinical setting, immune responses elicited by radiation alone rarely result in protective immunity, as tumor relapse often occurs.
Hiquet, Jean; Gromb-Monnoyeur, Sophie
2016-07-01
The use of Flash-Ball® as a non-lethal weapon by several special units within the police and police forces started in France in 1995. Little literature is available concerning injuries caused by Flash-Ball® shooting. However, we report the case of a healthy 34-year-old male victim of a Flash-Ball® shooting during a riot following a sports event. This young man presented serious craniocerebral injuries with a left temporal fracture, moderate cerebral oedema, fronto-temporal haemorrhagic contusion along with an extra-dural hematoma and subarachnoid hemorrhage requiring neurological and rehabilitation care for two months leaving important sequelae. Although the risk is obviously lower than with firearms, Flash-Ball® is nonetheless potentially lethal and may cause serious physical injuries, particularly after a shot to the head. © The Author(s) 2015.
Risks of non-lethal weapon use: case studies of three French victims of stinger grenades.
Scolan, V; Herry, C; Carreta, M; Stahl, C; Barret, L; Romanet, J P; Paysant, F
2012-11-30
The development of non-lethal weapons started in the 1960s. In France, they have been used by the police for about 10 years. We relate the cases of three French women, victims of stinger grenades, non-lethal weapons recently adopted by the French law enforcement to distract and disperse crowds. The three victims presented serious injuries requiring emergency surgical care. One lost her eye. Based on these cases, we discuss the lethal character of these weapons and propose measures to be taken to prevent their dramatic consequences. Although the danger is obviously less than for firearms, stinger grenades are nonetheless potentially lethal and cause serious physical injuries. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Immune Protection against Lethal Fungal-Bacterial Intra-Abdominal Infections
Lilly, Elizabeth A.; Ikeh, Melanie; Nash, Evelyn E.; Fidel, Paul L.
2018-01-01
ABSTRACT Polymicrobial intra-abdominal infections (IAIs) are clinically prevalent and cause significant morbidity and mortality, especially those involving fungi. Our laboratory developed a mouse model of IAI and demonstrated that intraperitoneal inoculation with Candida albicans or other virulent non-albicans Candida (NAC) species plus Staphylococcus aureus resulted in 70 to 80% mortality in 48 to 72 h due to robust local and systemic inflammation (sepsis). Surprisingly, inoculation with Candida dubliniensis or Candida glabrata with S. aureus resulted in minimal mortality, and rechallenge of these mice with lethal C. albicans/S. aureus (i.e., coninfection) resulted in >90% protection. The purpose of this study was to define requirements for C. dubliniensis/S. aureus-mediated protection and interrogate the mechanism of the protective response. Protection was conferred by C. dubliniensis alone or by killed C. dubliniensis plus live S. aureus. S. aureus alone was not protective, and killed S. aureus compromised C. dubliniensis-induced protection. C. dubliniensis/S. aureus also protected against lethal challenge by NAC plus S. aureus and could protect for a long-term duration (60 days between primary challenge and C. albicans/S. aureus rechallenge). Unexpectedly, mice deficient in T and B cells (Rag-1 knockouts [KO]) survived both the initial C. dubliniensis/S. aureus challenge and the C. albicans/S. aureus rechallenge, indicating that adaptive immunity did not play a role. Similarly, mice depleted of macrophages prior to rechallenge were also protected. In contrast, protection was associated with high numbers of Gr-1hi polymorphonuclear leukocytes (PMNLs) in peritoneal lavage fluid within 4 h of rechallenge, and in vivo depletion of Gr-1+ cells prior to rechallenge abrogated protection. These results suggest that Candida species can induce protection against a lethal C. albicans/S. aureus IAI that is mediated by PMNLs and postulated to be a unique form of trained innate immunity. PMID:29339423
Vergnano, Marta; Wan, Chris
2017-01-01
ABSTRACT We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. PMID:28743817
Okabe, Akishi; Urano, Yasuomi; Itoh, Sayoko; Suda, Naoto; Kotani, Rina; Nishimura, Yuki; Saito, Yoshiro; Noguchi, Noriko
2013-01-01
Lipid peroxidation products have been known to induce cellular adaptive responses and enhance tolerance against subsequent oxidative stress through up-regulation of antioxidant compounds and enzymes. 24S-hydroxycholesterol (24SOHC) which is endogenously produced oxysterol in the brain plays an important role in maintaining brain cholesterol homeostasis. In this study, we evaluated adaptive responses induced by brain-specific oxysterol 24SOHC in human neuroblastoma SH-SY5Y cells. Cells treated with 24SOHC at sub-lethal concentrations showed significant reduction in cell death induced by subsequent treatment with 7-ketocholesterol (7KC) in both undifferentiated and retinoic acid-differentiated SH-SY5Y cells. These adaptive responses were also induced by other oxysterols such as 25-hydroxycholesterol and 27-hydroxycholesterol which are known to be ligands of liver X receptor (LXR). Co-treatment of 24SOHC with 9-cis retinoic acid, a retinoid X receptor ligand, enhanced the adaptive responses. Knockdown of LXRβ by siRNA diminished the adaptive responses induced by 24SOHC almost completely. The treatment with 24SOHC induced the expression of LXR target genes, such as ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1). The 24SOHC-induced adaptive responses were significantly attenuated by siRNA for ABCG1 but not by siRNA for ABCA1. Taken together, these results strongly suggest that 24SOHC at sub-lethal concentrations induces adaptive responses via transcriptional activation of LXR signaling pathway, thereby protecting neuronal cells from subsequent 7KC-induced cytotoxicity. PMID:24371802
Shi, Wei; Vu, Therese; Boucher, Didier; Biernacka, Anna; Nde, Jules; Pandita, Raj K; Straube, Jasmin; Boyle, Glen M; Al-Ejeh, Fares; Nag, Purba; Jeffery, Jessie; Harris, Janelle L; Bain, Amanda L; Grzelak, Marta; Skrzypczak, Magdalena; Mitra, Abhishek; Dojer, Norbert; Crosetto, Nicola; Cloonan, Nicole; Becherel, Olivier J; Finnie, John; Skaar, Jeffrey R; Walkley, Carl R; Pandita, Tej K; Rowicka, Maga; Ginalski, Krzysztof; Lane, Steven W; Khanna, Kum Kum
2017-05-04
Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2 Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R -loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability. © 2017 by The American Society of Hematology.
Vu, Therese; Boucher, Didier; Biernacka, Anna; Nde, Jules; Pandita, Raj K.; Straube, Jasmin; Boyle, Glen M.; Al-Ejeh, Fares; Jeffery, Jessie; Harris, Janelle L.; Bain, Amanda L.; Grzelak, Marta; Skrzypczak, Magdalena; Mitra, Abhishek; Dojer, Norbert; Crosetto, Nicola; Cloonan, Nicole; Becherel, Olivier J.; Finnie, John; Skaar, Jeffrey R.; Walkley, Carl R.; Pandita, Tej K.; Rowicka, Maga; Ginalski, Krzysztof
2017-01-01
Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2. Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R-loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability. PMID:28270450
Fernandes, Laís S; Emerick, Guilherme L; dos Santos, Neife Aparecida G; de Paula, Eloísa Silva; Barbosa, Fernando; dos Santos, Antonio Cardozo
2015-04-01
Organophosphorus-induced delayed neuropathy (OPIDN) is a central and peripheral distal axonopathy characterized by ataxia and paralysis. Trichlorfon and acephate are two organophosphorus compounds (OPs) used worldwide as insecticide and which cause serious effects to non-target species. Despite that, the neuropathic potential of these OPs remains unclear. The present study addressed the neurotoxic effects and the neuropathic potential of trichlorfon and acephate in SH-SY5Y human neuroblastoma cells, by evaluating inhibition and aging of neuropathy target esterase (NTE), inhibition of acetylcholinesterase (AChE), neurite outgrowth, cytotoxicity and intracellular calcium. Additionally, the effects observed were compared to those of two well-studied OPs: mipafox (known as neuropathic) and paraoxon (known as non-neuropathic). Trichlorfon and mipafox presented the lowest percentage of reactivation of inhibited NTE and the lowest ratio IC50 NTE/IC50 AChE. Moreover, they caused inhibition and aging of at least 70% of the activity of NTE at sub-lethal concentrations. All these effects have been associated with induction of OPIDN. When assayed at these concentrations, trichlorfon and mipafox reduced neurite outgrowth and increased intracellular calcium, events implicated in the development of OPIDN. Acephate caused effects similar to those caused by paraoxon (non-neuropathic OP) and was only able to inhibit 70% of NTE activity at lethal concentrations. These findings suggest that trichlorfon is potentially neuropathic, whereas acephate is not. Copyright © 2015 Elsevier Ltd. All rights reserved.
Booth, Laurence; Roberts, Jane L; Poklepovic, Andrew; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dent, Paul
2017-10-27
Patients whose NSCLC tumors become afatinib resistant presently have few effective therapeutic options to extend their survival. Afatinib resistant NSCLC cells were sensitive to clinically relevant concentrations of the irreversible pan-HER inhibitor neratinib, but not by the first generation ERBB1/2/4 inhibitor lapatinib. In multiple afatinib resistant NSCLC clones, HDAC inhibitors reduced the expression of ERBB1/3/4, but activated c-SRC, which resulted in higher total levels of ERBB1/3 phosphorylation. Neratinib also rapidly reduced the expression of ERBB1/2/3/4, c-MET and of mutant K-/N-RAS; K-RAS co-localized with phosphorylated ATG13 and with cathepsin B in vesicles. Combined exposure of cells to [neratinib + HDAC inhibitors] caused inactivation of mTORC1 and mTORC2, enhanced autophagosome and subsequently autolysosome formation, and caused an additive to greater than additive induction of cell death. Knock down of Beclin1 or ATG5 prevented HDAC inhibitors or neratinib from reducing ERBB1/3/4 and K-/N-RAS expression and reduced [neratinib + HDAC inhibitor] lethality. Neratinib and HDAC inhibitors reduced the expression of multiple HDAC proteins via autophagy that was causal in the reduced expression of PD-L1, PD-L2 and ornithine decarboxylase, and increased expression of Class I MHCA. In vivo , neratinib and HDAC inhibitors interacted to suppress the growth of 4T1 mammary tumors, an effect that was enhanced by an anti-PD-1 antibody. Our data support the premises that neratinib lethality can be enhanced by HDAC inhibitors, that neratinib may be a useful therapeutic tool in afatinib resistant NSCLC, and that [neratinib + HDAC inhibitor] exposure facilitates anti-tumor immune responses.
Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Avogadri-Connors, Francesca; Cutler, Richard E.; Lalani, Alshad S.; Dent, Paul
2017-01-01
Patients whose NSCLC tumors become afatinib resistant presently have few effective therapeutic options to extend their survival. Afatinib resistant NSCLC cells were sensitive to clinically relevant concentrations of the irreversible pan-HER inhibitor neratinib, but not by the first generation ERBB1/2/4 inhibitor lapatinib. In multiple afatinib resistant NSCLC clones, HDAC inhibitors reduced the expression of ERBB1/3/4, but activated c-SRC, which resulted in higher total levels of ERBB1/3 phosphorylation. Neratinib also rapidly reduced the expression of ERBB1/2/3/4, c-MET and of mutant K-/N-RAS; K-RAS co-localized with phosphorylated ATG13 and with cathepsin B in vesicles. Combined exposure of cells to [neratinib + HDAC inhibitors] caused inactivation of mTORC1 and mTORC2, enhanced autophagosome and subsequently autolysosome formation, and caused an additive to greater than additive induction of cell death. Knock down of Beclin1 or ATG5 prevented HDAC inhibitors or neratinib from reducing ERBB1/3/4 and K-/N-RAS expression and reduced [neratinib + HDAC inhibitor] lethality. Neratinib and HDAC inhibitors reduced the expression of multiple HDAC proteins via autophagy that was causal in the reduced expression of PD-L1, PD-L2 and ornithine decarboxylase, and increased expression of Class I MHCA. In vivo, neratinib and HDAC inhibitors interacted to suppress the growth of 4T1 mammary tumors, an effect that was enhanced by an anti-PD-1 antibody. Our data support the premises that neratinib lethality can be enhanced by HDAC inhibitors, that neratinib may be a useful therapeutic tool in afatinib resistant NSCLC, and that [neratinib + HDAC inhibitor] exposure facilitates anti-tumor immune responses. PMID:29163826
Anderson, Abigail M.; Bailetti, Alessandro A.; Rodkin, Elizabeth; De, Atish; Bach, Erika A.
2017-01-01
A gain-of-function mutation in the tyrosine kinase JAK2 (JAK2V617F) causes human myeloproliferative neoplasms (MPNs). These patients present with high numbers of myeloid lineage cells and have numerous complications. Since current MPN therapies are not curative, there is a need to find new regulators and targets of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling that may represent additional clinical interventions . Drosophila melanogaster offers a low complexity model to study MPNs as JAK/STAT signaling is simplified with only one JAK [Hopscotch (Hop)] and one STAT (Stat92E). hopTumorous-lethal (Tum-l) is a gain-of-function mutation that causes dramatic expansion of myeloid cells, which then form lethal melanotic tumors. Through an F1 deficiency (Df) screen, we identified 11 suppressors and 35 enhancers of melanotic tumors in hopTum-l animals. Dfs that uncover the Hippo (Hpo) pathway genes expanded (ex) and warts (wts) strongly enhanced the hopTum-l tumor burden, as did mutations in ex, wts, and other Hpo pathway genes. Target genes of the Hpo pathway effector Yorkie (Yki) were significantly upregulated in hopTum-l blood cells, indicating that Yki signaling was increased. Ectopic hematopoietic activation of Yki in otherwise wild-type animals increased hemocyte proliferation but did not induce melanotic tumors. However, hematopoietic depletion of Yki significantly reduced the hopTum-l tumor burden, demonstrating that Yki is required for melanotic tumors in this background. These results support a model in which elevated Yki signaling increases the number of hemocytes, which become melanotic tumors as a result of elevated JAK/STAT signaling. PMID:28620086
Bey, Erik A.; Reinicke, Kathryn E.; Srougi, Melissa C.; Varnes, Marie; Anderson, Vernon; Pink, John J.; Li, Long Shan; Patel, Malina; Cao, Lifen; Moore, Zachary; Rommel, Amy; Boatman, Michael; Lewis, Cheryl; Euhus, David M.; Bornmann, William G.; Buchsbaum, Donald J.; Spitz, Douglas R.; Gao, Jinming; Boothman, David A.
2013-01-01
Improving patient outcome by personalized therapy involves a thorough understanding of an agent’s mechanism of action. β-Lapachone (clinical forms, Arq501/Arq761) has been developed to exploit dramatic cancer-specific elevations in the phase II detoxifying enzyme, NAD(P)H:quinone oxidoreductase (NQO1). NQO1 is dramatically elevated in solid cancers, including primary and metastatic (e.g., triple-negative (ER-, PR-, Her2/Neu-)) breast cancers. To define cellular factors that influence the efficacy of β-lapachone using knowledge of its mechanism of action, we confirmed that NQO1 was required for lethality and mediated a futile redox cycle where ~120 moles of superoxide were formed per mole of β-lapachone in 5 min. β-Lapachone induced reactive oxygen species (ROS), stimulated DNA single strand break-dependent PARP1 hyperactivation, caused dramatic loss of essential nucleotides (NAD+/ATP) and elicited programmed necrosis in breast cancer cells. While PARP1 hyperactivation and NQO1 expression were major determinants of β-lapachone-induced lethality, alterations in catalase expression, including treatment with exogenous enzyme, caused marked cytoprotection. Thus, catalase is an important resistance factor, and highlights H2O2 as an obligate ROS for cell death from this agent. Exogenous superoxide dismutase (SOD) enhanced catalase-induced cytoprotection. β-Lapachone-induced cell death included AIF translocation from mitochondria to nuclei, TUNEL+ staining, atypical PARP1 cleavage, and GAPDH S-nitrosylation, which were abrogated by catalase. We predict that the ratio of NQO1:catalase activities in breast cancer versus associated normal tissue are likely to be the major determinants affecting the therapeutic window of β-lapachone and other NQO1 bioactivatable drugs. PMID:23883585
MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features
Li, Xiaoran; Zhong, Yali; Lu, Jie; Axcrona, Karol; Eide, Lars; Syljuåsen, Randi G.; Peng, Qian; Wang, Junbai; Zhang, Hongquan; Goscinski, Mariusz Adam; Kvalheim, Gunnar; Nesland, Jahn M.; Suo, Zhenhe
2016-01-01
Reducing mtDNA content was considered as a critical step in the metabolism restructuring for cell stemness restoration and further neoplastic development. However, the connections between mtDNA depletion and metabolism reprograming-based cancer cell stemness in prostate cancers are still lack of studies. Here, we demonstrated that human CRPC cell line PC3 tolerated high concentration of the mtDNA replication inhibitor ethidium bromide (EtBr) and the mtDNA depletion triggered a universal metabolic remodeling process. Failure in completing that process caused lethal consequences. The mtDNA depleted (MtDP) PC3 cells could be steadily maintained in the special medium in slow cycling status. The MtDP PC3 cells contained immature mitochondria and exhibited Warburg effect. Furthermore, the MtDP PC3 cells were resistant to therapeutic treatments and contained greater cancer stem cell-like subpopulations: CD44+, ABCG2+, side-population and ALDHbright. In conclusion, these results highlight the association of mtDNA content, mitochondrial function and cancer cell stemness features. PMID:27248169
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandic, Marjana; Sepcic, Kristina; Turk, Tom
2011-08-15
APS12-2 is one in a series of synthetic analogs of the polymeric alkylpyridinium salts isolated from the marine sponge Reniera sarai. As it is a potential candidate for treating non small cell lung cancer (NSCLC), we have studied its possible toxic and lethal effects in vivo. The median lethal dose (LD{sub 50}) of APS12-2 in mice was determined to be 11.5 mg/kg. Electrocardiograms, arterial blood pressure and respiratory activity were recorded under general anesthesia in untreated, pharmacologically vagotomized and artificially ventilated rats injected with APS12-2. In one group, the in vivo effects of APS12-2 were studied on nerve-evoked muscle contraction.more » Administration of APS12-2 at a dose of 8 mg/kg caused a progressive reduction of arterial blood pressure to a mid-circulatory value, accompanied by bradycardia, myocardial ischemia, ventricular extrasystoles, and second degree atrio-ventricular block. Similar electrocardiogram and arterial blood pressure changes caused by APS12-2 (8 mg/kg) were observed in animals pretreated with atropine and in artificially ventilated animals, indicating that hypoxia and cholinergic effects do not play a crucial role in the toxicity of APS12-2. Application of APS12-2 at sublethal doses (4 and 5.5 mg/kg) caused a decrease of arterial blood pressure, followed by an increase slightly above control values. We found that APS12-2 causes lysis of rat erythrocytes in vitro, therefore it is reasonable to expect the same effect in vivo. Indeed, hyperkalemia was observed in the blood of experimental animals. Hyperkalemia probably plays an important role in APS12-2 cardiotoxicity since no evident changes in histopathology of the heart were found. However, acute lesions were observed in the pulmonary vessels of rats after application of 8 mg/kg APS12-2. Predominant effects were dilation of interalveolar blood vessels and lysis of aggregated erythrocytes within their lumina. - Highlights: > LD{sub 50} estimated in mice (11.5 mg/kg) revealed that toxicity of APS12-2 is low. > APS12-2 causes dose dependent hemolysis of rat erythrocytes in vivo and in vitro. > Cardiac arrest by APS12-2 is caused by the high blood potassium concentration. > APS12-2 causes mild acute pulmonary edema.« less
Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide
Chen, Yuan Yao; Temelli, Feral
2017-01-01
ABSTRACT High-pressure carbon dioxide processing is a promising technology for nonthermal food preservation. However, few studies have determined the lethality of high-pressure CO2 on dry bacterial cells, and the mechanism of inactivation remains unknown. This study explored the mechanisms of inactivation by using Escherichia coli AW1.7 and mutant strains differing in heat and acid resistance, in membrane composition based on disruption of the locus of heat resistance, and in genes coding for glutamate decarboxylases and cyclopropane fatty acid synthase. The levels of lethality of treatments with liquid, gaseous, and supercritical CO2 were compared. The cell counts of E. coli AW1.7 and mutants with a water activity (aW) of 1.0 were reduced by more than 3 log10 (CFU/ml) after supercritical CO2 treatment at 35°C for 15 min; increasing the pressure generally enhanced inactivation, except for E. coli AW1.7 ΔgadAB. E. coli AW1.7 Δcfa was more susceptible than E. coli AW1.7 after treatment at 10 and 40 MPa; other mutations did not affect survival. Dry cells of E. coli were resistant to treatments with supercritical and liquid CO2 at any temperature. Treatments with gaseous CO2 at 65°C were more bactericidal than those with supercritical CO2 or treatments at 65°C only. Remarkably, E. coli AW1.7 was more susceptible than E. coli AW1.7 Δcfa when subjected to the gaseous CO2 treatment. This study identified CO2-induced membrane fluidization and permeabilization as causes of supercritical mediated microbial inactivation, and diffusivity was a dominant factor for gaseous CO2. IMPORTANCE The safety of dry foods is of increasing concern for public health. Desiccated microorganisms, including pathogens, remain viable over long periods of storage and generally tolerate environmental insults that are lethal to the same organisms at high water activity. This study explored the use of high-pressure carbon dioxide to determine its lethality for dried Escherichia coli and to provide insight into the mechanisms of inactivation. The lethality of high-pressure CO2 and the mechanisms of CO2-mediated inactivation of dry E. coli depended on the physical state of CO2. Liquid and supercritical CO2 were ineffective in reducing the cell counts of dry E. coli isolates, and the effectiveness of gaseous CO2 was related to the diffusivity of CO2. Results provide a novel and alternative method for the food industry to enhance the safety of low aW products. PMID:28283526
Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide.
Chen, Yuan Yao; Temelli, Feral; Gänzle, Michael G
2017-05-15
High-pressure carbon dioxide processing is a promising technology for nonthermal food preservation. However, few studies have determined the lethality of high-pressure CO 2 on dry bacterial cells, and the mechanism of inactivation remains unknown. This study explored the mechanisms of inactivation by using Escherichia coli AW1.7 and mutant strains differing in heat and acid resistance, in membrane composition based on disruption of the locus of heat resistance, and in genes coding for glutamate decarboxylases and cyclopropane fatty acid synthase. The levels of lethality of treatments with liquid, gaseous, and supercritical CO 2 were compared. The cell counts of E. coli AW1.7 and mutants with a water activity (a W ) of 1.0 were reduced by more than 3 log 10 (CFU/ml) after supercritical CO 2 treatment at 35°C for 15 min; increasing the pressure generally enhanced inactivation, except for E. coli AW1.7 Δ gadAB E. coli AW1.7 Δ cfa was more susceptible than E. coli AW1.7 after treatment at 10 and 40 MPa; other mutations did not affect survival. Dry cells of E. coli were resistant to treatments with supercritical and liquid CO 2 at any temperature. Treatments with gaseous CO 2 at 65°C were more bactericidal than those with supercritical CO 2 or treatments at 65°C only. Remarkably, E. coli AW1.7 was more susceptible than E. coli AW1.7 Δ cfa when subjected to the gaseous CO 2 treatment. This study identified CO 2 -induced membrane fluidization and permeabilization as causes of supercritical mediated microbial inactivation, and diffusivity was a dominant factor for gaseous CO 2 IMPORTANCE The safety of dry foods is of increasing concern for public health. Desiccated microorganisms, including pathogens, remain viable over long periods of storage and generally tolerate environmental insults that are lethal to the same organisms at high water activity. This study explored the use of high-pressure carbon dioxide to determine its lethality for dried Escherichia coli and to provide insight into the mechanisms of inactivation. The lethality of high-pressure CO 2 and the mechanisms of CO 2 -mediated inactivation of dry E. coli depended on the physical state of CO 2 Liquid and supercritical CO 2 were ineffective in reducing the cell counts of dry E. coli isolates, and the effectiveness of gaseous CO 2 was related to the diffusivity of CO 2 Results provide a novel and alternative method for the food industry to enhance the safety of low a W products. Copyright © 2017 American Society for Microbiology.
Paul, James M; Toosi, Behzad; Vizeacoumar, Frederick S; Bhanumathy, Kalpana Kalyanasundaram; Li, Yue; Gerger, Courtney; El Zawily, Amr; Freywald, Tanya; Anderson, Deborah H; Mousseau, Darrell; Kanthan, Rani; Zhang, Zhaolei; Vizeacoumar, Franco J; Freywald, Andrew
2016-08-02
Application of tumor genome sequencing has identified numerous loss-of-function alterations in cancer cells. While these alterations are difficult to target using direct interventions, they may be attacked with the help of the synthetic lethality (SL) approach. In this approach, inhibition of one gene causes lethality only when another gene is also completely or partially inactivated. The EPHB6 receptor tyrosine kinase has been shown to have anti-malignant properties and to be downregulated in multiple cancers, which makes it a very attractive target for SL applications. In our work, we used a genome-wide SL screen combined with expression and interaction network analyses, and identified the SRC kinase as a SL partner of EPHB6 in triple-negative breast cancer (TNBC) cells. Our experiments also reveal that this SL interaction can be targeted by small molecule SRC inhibitors, SU6656 and KX2-391, and can be used to improve elimination of human TNBC tumors in a xenograft model. Our observations are of potential practical importance, since TNBC is an aggressive heterogeneous malignancy with a very high rate of patient mortality due to the lack of targeted therapies, and our work indicates that FDA-approved SRC inhibitors may potentially be used in a personalized manner for treating patients with EPHB6-deficient TNBC. Our findings are also of a general interest, as EPHB6 is downregulated in multiple malignancies and our data serve as a proof of principle that EPHB6 deficiency may be targeted by small molecule inhibitors in the SL approach.
Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance
Thakur, Meghna Das; Salangsang, Fernando; Landman, Allison S.; Sellers, William R.; Pryer, Nancy K.; Levesque, Mitchell P.; Dummer, Reinhard; McMahon, Martin; Stuart, Darrin D.
2014-01-01
Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, with ≥ 50% of tumours expressing the BRAF(V600E) oncoprotein1,2. Moreover, the marked tumour regression and improved survival of late-stage BRAF-mutated melanoma patients in response to treatment with vemurafenib demonstrates the essential role of oncogenic BRAF in melanoma maintenance3,4. However, as most patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s) of resistance is critical to providing improved therapy5. Here we investigate the cause and consequences of vemurafenib resistance using two independently derived primary human melanoma xeno-graft models in which drugresistanceisselected by continuous vemurafenib administration. In one of these models, resistant tumours show continued dependency on BRAF(V600E) → MEK → ERK signalling owing to elevated BRAF(V600E) expression. Most importantly, we demonstrate that vemurafenib-resistant melanomas become drug dependent for their continued proliferation, such that cessation of drug administration leads to regression of established drug-resistant tumours. We further demonstrate that a discontinuous dosing strategy, which exploits the fitness disadvantage displayed by drug-resistant cells in the absence of the drug, forestalls the onset of lethal drug-resistant disease. These data highlight the concept that drug-resistant cells may also display drug dependency, such that altered dosing may prevent the emergence of lethal drug resistance. Such observations may contribute to sustaining the durability of the vemurafenib response with the ultimate goal of curative therapy for the subset of melanoma patients with BRAF mutations. PMID:23302800
Yao, Wenwu; Kang, Jingjing; Kang, Lin; Gao, Shan; Yang, Hao; Ji, Bin; Li, Ping; Liu, Jing; Xin, Wenwen; Wang, Jinglin
2016-04-06
Epsilon toxin (ETX) is produced by toxinotypes B and D of Clostridium perfringens. It can induce lethal enterotoxemia in domestic animals, mainly in sheep, goats and cattle, causing serious economic losses to global animal husbandry. In this study, a novel and stable epsilon toxin mutant rETX(Y196E)-C, obtained by substituting the 196th tyrosine (Y196) with glutamic acid (E) and introducing of 23 amino acids long C-terminal peptide, was determined as a promising recombinant vaccine candidate against enterotoxemia. After the third vaccination, the antibody titers against recombinant wild type (rETX) could reach 1:10(5) in each immunized group, and the mice were completely protected from 100 × LD50 (50% lethal dose) of rETX challenge. The mice in 15 μg subcutaneously immunized group fully survived at the dose of 500 × LD50 of rETX challenge and 80% of mice survived at 180 μg (1000 × LD50) of rETX administration. In vitro, immune sera from 15 μg subcutaneously immunized group could completely protect MDCK cells from 16 × CT50 (50% lethal dose of cells) of rETX challenge and protect against 10 × LD50 dose (1.8 μg) of rETX challenge in mice. These data suggest that recombinant protein rETX(Y196E)-C is a potential vaccine candidate for future applied researches.
Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus.
Gomes-da-Silva, Lígia C; Zhao, Liwei; Bezu, Lucillia; Zhou, Heng; Sauvat, Allan; Liu, Peng; Durand, Sylvère; Leduc, Marion; Souquere, Sylvie; Loos, Friedemann; Mondragón, Laura; Sveinbjørnsson, Baldur; Rekdal, Øystein; Boncompain, Gaelle; Perez, Franck; Arnaut, Luis G; Kepp, Oliver; Kroemer, Guido
2018-05-28
Preclinical evidence depicts the capacity of redaporfin (Redp) to act as potent photosensitizer, causing direct antineoplastic effects as well as indirect immune-dependent destruction of malignant lesions. Here, we investigated the mechanisms through which photodynamic therapy (PDT) with redaporfin kills cancer cells. Subcellular localization and fractionation studies based on the physicochemical properties of redaporfin revealed its selective tropism for the endoplasmic reticulum (ER) and the Golgi apparatus (GA). When activated, redaporfin caused rapid reactive oxygen species-dependent perturbation of ER/GA compartments, coupled to ER stress and an inhibition of the GA-dependent secretory pathway. This led to a general inhibition of protein secretion by PDT-treated cancer cells. The ER/GA play a role upstream of mitochondria in the lethal signaling pathway triggered by redaporfin-based PDT Pharmacological perturbation of GA function or homeostasis reduces mitochondrial permeabilization. In contrast, removal of the pro-apoptotic multidomain proteins BAX and BAK or pretreatment with protease inhibitors reduced cell killing, yet left the GA perturbation unaffected. Altogether, these results point to the capacity of redaporfin to kill tumor cells via destroying ER/GA function. © 2018 The Authors.
RADIATION INDUCED VIABILITY MUTATIONS IN THE HONEY BEE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.R.
The frequency of recessive detrimental mutations expressed in the haploid drone honey bee was investigated and compared with recessive and dominant lethal mutations detected in the haploid drone and diploid worker. A single queen was inseminated by a drone homozygous for three genetic markers. Viability of progeny was determined, and hybrid daughters bearing the genetic markers were stored in colonies. The spermatheca of the queen was then irradiated with 2600 r kvp x rays. Morphological defects and viability were studied in progeny and grand-progeny. A total of 92 pairs was tested during one season. Results showed that 60.8% of themore » sperm cells receiving radiation contained at least one or more dominant lethals. Correcting for the saturation effect on the assumption of independence of each dominant lethal, an average proportion of 0.94 dominant lethals were found per cell. The average reduction in embryonic viability was 28%. Forty per cent of the queens tested contained one or more recessive lethals. Corrections in procedure and plans for future work, as well as work in progress, are described. (H.M.G.)« less
Percopo, Caroline M.; Dyer, Kimberly D.; Garcia-Crespo, Katia E.; Gabryszewski, Stanislaw J.; Shaffer, Arthur L.; Domachowske, Joseph B.; Rosenberg, Helene F.
2014-01-01
We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice (PVM), a property known as heterologous immunity. Lactobacillus-priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. As B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, here we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway immunoglobulins IgG, IgA and IgM and lung tissues with dense, B cell (B220+) enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of bronchus-associated lymphoid tissue. No B cells were detected in lung tissue of Lactobacillus-primed B-cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway immunoglobulins. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-gamma, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, L. plantarum-primed, B-cell deficient μMT and Jh mice were fully protected from an otherwise lethal PVM infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection. PMID:24748495
Percopo, Caroline M; Dyer, Kimberly D; Garcia-Crespo, Katia E; Gabryszewski, Stanislaw J; Shaffer, Arthur L; Domachowske, Joseph B; Rosenberg, Helene F
2014-06-01
We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice, a property known as heterologous immunity. Lactobacillus priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. Because B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, in this study we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway Igs IgG, IgA, and IgM and lung tissues with dense, B cell (B220(+))-enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of BALT. No B cells were detected in lung tissue of Lactobacillus-primed B cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway Igs. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-γ, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, Lactobacillus plantarum-primed, B cell-deficient μMT and Jh mice were fully protected from an otherwise lethal pneumonia virus of mice infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection.
Le Gendre, Onica; Sookdeo, Ayisha; Duliepre, Stephie-Anne; Utter, Matthew; Frias, Maria; Foster, David A
2013-05-01
mTOR has been implicated in survival signals for many human cancers. Rapamycin and TGF-β synergistically induce G1 cell-cycle arrest in several cell lines with intact TGF-β signaling pathway, which protects cells from the apoptotic effects of rapamycin during S-phase of the cell cycle. Thus, rapamycin is cytostatic in the presence of serum/TGF-β and cytotoxic in the absence of serum. However, if TGF-β signaling is defective, rapamycin induced apoptosis in both the presence and absence of serum/TGF-β in colon and breast cancer cell lines. Because genetic dysregulation of TGF-β signaling is commonly observed in pancreatic cancers-with defects in the Smad4 gene being most prevalent, we hypothesized that pancreatic cancers would display a synthetic lethality to rapamycin in the presence of serum/TGF-β. We report here that Smad4-deficient pancreatic cancer cells are killed by rapamycin in the absence of serum; however, in the presence of serum, we did not observe the predicted synthetic lethality with rapamycin. Rapamycin also induced elevated phosphorylation of the survival kinase Akt at Ser473. Suppression of rapamycin-induced Akt phosphorylation restored rapamycin sensitivity in Smad4-null, but not Smad4 wild-type pancreatic cancer cells. This study shows that the synthetic lethality to rapamycin in pancreatic cancers with defective TGF-β signaling is masked by rapamycin-induced increases in Akt phosphorylation. The implication is that a combination of approaches that suppress both Akt phosphorylation and mTOR could be effective in targeting pancreatic cancers with defective TGF-β signaling. ©2013 AACR.
Crystal Structure of Protein Reveals Target for Drugs Against Lethal MERS Virus | FNLCR Staging
A research team of scientists from the National Cancer Institute and the Frederick National Laboratory for Cancer Research recently identified the structure of a key protein of the virus that causes the highly lethal Middle East Respiratory Syndrome.
White, W. H.; Johnson, D. I.
1997-01-01
Cdc24p is the guanine-nucleotide exchange factor for the Cdc42p GTPase, which controls cell polarity in Saccharomyces cerevisiae. To identify new genes that may affect cell polarity, we characterized six UV-induced csl (CDC24 synthetic-lethal) mutants that exhibited synthetic-lethality with cdc24-4(ts) at 23°. Five mutants were not complemented by plasmid-borne CDC42, RSR1, BUD5, BEM1, BEM2, BEM3 or CLA4 genes, which are known to play a role in cell polarity. The csl3 mutant displayed phenotypes similar to those observed with calcium-sensitive, Pet(-) vma mutants defective in vacuole function. CSL5 was allelic to VMA5, the vacuolar H(+)-ATPase subunit C, and one third of csl5 cdc24-4(ts) cells were elongated or had misshapen buds. A cdc24-4(ts) Δvma5::LEU2 double mutant did not exhibit synthetic lethality, suggesting that the csl5/vma5 cdc24-4(ts) synthetic-lethality was not simply due to altered vacuole function. The cdc24-4(ts) mutant, like Δvma5::LEU2 and csl3 mutants, was sensitive to high levels of Ca(2+) as well as Na(+) in the growth media, which did not appear to be a result of a fragile cell wall because the phenotypes were not remedied by 1 M sorbitol. Our results indicated that Cdc24p was required in one V-ATPase mutant and another mutant affecting vacuole morphology, and also implicated Cdc24p in Na(+) tolerance. PMID:9286667
Cardani, Amber; Boulton, Adam; Kim, Taeg S.; Braciale, Thomas J.
2017-01-01
The Influenza A virus (IAV) is a major human pathogen that produces significant morbidity and mortality. To explore the contribution of alveolar macrophages (AlvMΦs) in regulating the severity of IAV infection we employed a murine model in which the Core Binding Factor Beta gene is conditionally disrupted in myeloid cells. These mice exhibit a selective deficiency in AlvMΦs. Following IAV infection these AlvMΦ deficient mice developed severe diffuse alveolar damage, lethal respiratory compromise, and consequent lethality. Lethal injury in these mice resulted from increased infection of their Type-1 Alveolar Epithelial Cells (T1AECs) and the subsequent elimination of the infected T1AECs by the adaptive immune T cell response. Further analysis indicated AlvMΦ-mediated suppression of the cysteinyl leukotriene (cysLT) pathway genes in T1AECs in vivo and in vitro. Inhibition of the cysLT pathway enzymes in a T1AECs cell line reduced the susceptibility of T1AECs to IAV infection, suggesting that AlvMΦ-mediated suppression of this pathway contributes to the resistance of T1AECs to IAV infection. Furthermore, inhibition of the cysLT pathway enzymes, as well as blockade of the cysteinyl leukotriene receptors in the AlvMΦ deficient mice reduced the susceptibility of their T1AECs to IAV infection and protected these mice from lethal infection. These results suggest that AlvMΦs may utilize a previously unappreciated mechanism to protect T1AECs against IAV infection, and thereby reduce the severity of infection. The findings further suggest that the cysLT pathway and the receptors for cysLT metabolites represent potential therapeutic targets in severe IAV infection. PMID:28085958
Fetal progenitor cell transplantation treats methylmalonic aciduria in a mouse model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, Nicole E., E-mail: nicole.buck@mcri.edu.au; Pennell, Samuel D.; Wood, Leonie R.
Highlights: Black-Right-Pointing-Pointer Fetal cells were transplanted into a methylmalonic acid mouse model. Black-Right-Pointing-Pointer Cell engraftment was detected in liver, spleen and bone marrow. Black-Right-Pointing-Pointer Biochemical disease correction was measured in blood samples. Black-Right-Pointing-Pointer A double dose of 5 million cells (1 week apart) proved more effective. Black-Right-Pointing-Pointer Higher levels of engraftment may be required for greater disease correction. -- Abstract: Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disordermore » using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15-17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 {+-} 156 (sham transplanted) to 338 {+-} 157 {mu}mol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 {+-} 4 (sham transplanted) to 5.3 {+-} 1.9 {mu}mol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may be required for greater disease correction; however these studies show promising results for cell transplantation biochemical correction of a metabolic disorder.« less
Interferon-induced TRAIL-independent cell death in DNase II-/- embryos.
Kitahara, Yusuke; Kawane, Kohki; Nagata, Shigekazu
2010-09-01
The chromosomal DNA of apoptotic cells and the nuclear DNA expelled from erythroid precursors is cleaved by DNase II in lysosomes after the cells or nuclei are engulfed by macrophages. DNase II(-/-) embryos suffer from lethal anemia due to IFN-beta produced in the macrophages carrying undigested DNA. Here, we show that Type I IFN induced a caspase-dependent cell death in human epithelial cells that were transformed to express a high level of IFN type I receptor. During this death process, a set of genes was strongly activated, one of which encoded TRAIL, a death ligand. A high level of TRAIL mRNA was also found in the fetal liver of the lethally anemic DNase II(-/-) embryos, and a lack of IFN type I receptor in the DNase II(-/-) IFN-IR(-/-) embryos blocked the expression of TRAIL mRNA. However, a null mutation in TRAIL did not rescue the lethal anemia of the DNase II(-/-) embryos, indicating that TRAIL is dispensable for inducing the apoptosis of erythroid cells in DNase II(-/-) embryos, and therefore, that there is a TRAIL-independent mechanism for the IFN-induced apoptosis.
Lack of centrioles and primary cilia in STIL−/− mouse embryos
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474
Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.
Examining Merkel Cell Polyomavirus Minor Capsid Proteins | Center for Cancer Research
Merkel cell polyomavirus (MCV or MCPyV) is a recently discovered member of the viral family Polyomaviridae. It is a skin-dwelling polyomavirus species that appears to cause a rare but highly lethal form of skin cancer called Merkel cell carcinoma (MCC). Despite MCC being uncommon, chronic MCV infection of human skin is widespread, and most infected people have no known symptoms. The surface of polyomavirus virions is made up of pentameric knobs of the major capsid protein VP1. VP1 enables attachment of the virus to the cell surface, permitting infectious entry and delivery of the viral genome to host cells. The VP1 protein of previously studied polyomaviruses, such as simian virus 40 and murine polyomavirus, associates with two minor capsid proteins, VP2 and VP3, which are considered to play important roles during the infectious entry process.
Petitdemange, Caroline; Becquart, Pierre; Wauquier, Nadia; Béziat, Vivien; Debré, Patrice; Leroy, Eric M; Vieillard, Vincent
2011-09-01
Chikungunya virus (CHIKV) is a worldwide emerging pathogen. In humans it causes a syndrome characterized by high fever, polyarthritis, and in some cases lethal encephalitis. Growing evidence indicates that the innate immune response plays a role in controlling CHIKV infection. We show here that CHIKV induces major but transient modifications in NK-cell phenotype and function soon after the onset of acute infection. We report a transient clonal expansion of NK cells that coexpress CD94/NKG2C and inhibitory receptors for HLA-C1 alleles and are correlated with the viral load. Functional tests reveal cytolytic capacity driven by NK cells in the absence of exogenous signals and severely impaired IFN-γ production. Collectively these data provide insight into the role of this unique subset of NK cells in controlling CHIKV infection by subset-specific expansion in response to acute infection, followed by a contraction phase after viral clearance.
Two pore channels control Ebolavirus host cell entry and are drug targets for disease treatment
Sakurai, Yasuteru; Kolokoltsov, Andrey A.; Chen, Cheng-Chang; Tidwell, Michael W.; Bauta, William E.; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A.
2015-01-01
Ebolavirus causes sporadic outbreaks of lethal hemorrhagic fever in humans with no currently approved therapy. Cells take up Ebolavirus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebolavirus entry into host cells requires the endosomal calcium channels called two pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs or small molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule we tested, inhibited infection of human macrophages, the primary target of Ebolavirus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebolavirus infection and may be effective targets for antiviral therapy. PMID:25722412
Uncoupling thermotolerance from the induction of heat shock proteins.
Smith, B J; Yaffe, M P
1991-01-01
Exposure of cells to elevated temperatures causes a rapid increase in the synthesis of heat shock proteins (hsps) and induces thermotolerance, the increased ability of cells to survive exposure to lethal temperatures; however, the connection between hsp induction and the acquisition of thermotolerance is unclear. hsp induction in the yeast Saccharomyces cerevisiae is mediated by the activation of heat-shock transcription factor, and recently we have described a mutation, hsf1-m3, in heat-shock transcription factor that prevents the factor's activation. We now demonstrate that this mutation results in a general block in heat-shock induction but does not affect the acquisition of thermotolerance. Our results indicate that high-level induction of the major hsps is not required for cells to acquire thermotolerance. Images PMID:1763024
Recent Insights into the Molecular Mechanisms Underlying Pyroptosis and Gasdermin Family Functions.
Aglietti, Robin A; Dueber, Erin C
2017-04-01
Pyroptosis is an inflammatory form of cell death that not only protects multicellular organisms from invading pathogenic bacteria and microbial infections, but can also lead to sepsis and lethal septic shock if overactivated. Here, we present an overview of recent developments within the pyroptosis field, beginning with the discovery of Gasdermin D (GSDMD) as a substrate of caspase-1 and caspase-11 upon detection of cytosolic lipopolysaccharide (LPS). Cleavage releases the N-terminal domain of GSDMD, causing it to form cytotoxic pores in the plasma membrane of cells. We further discuss the implications for the rest of the gasdermin (GSDM) family, which are emerging as mediators of programmed cell death in a variety of processes that regulate cellular differentiation and proliferation. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flaskos, J., E-mail: flaskos@vet.auth.gr; Nikolaidis, E.; Harris, W.
2011-11-15
Previous work in our laboratory has shown that sub-lethal concentrations (1-10 {mu}M) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1-10 {mu}M) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, theremore » was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH. -- Highlights: Black-Right-Pointing-Pointer Sub-lethal levels of chlorpyrifos oxon inhibit neurite outgrowth in N2a cells Black-Right-Pointing-Pointer Acetylcholinesterase exhibits sustained inhibition throughout exposure Black-Right-Pointing-Pointer The levels of neurofilament heavy chain and GAP-43 protein are reduced Black-Right-Pointing-Pointer Neurofilament heavy chain forms aggregates in cell bodies Black-Right-Pointing-Pointer Thus at least two axon-associated cytoskeletal proteins are disrupted by this agent.« less
Lucantoni, Federico; Düssmann, Heiko; Llorente-Folch, Irene; Prehn, Jochen H M
2018-05-25
Cancer cells display differences regarding their engagement of glycolytic vs. mitochondrial oxidative phosphorylation (OXPHOS) pathway. Triple negative breast cancer, an aggressive form of breast cancer, is characterized by elevated glycolysis, while estrogen receptor positive breast cancer cells rely predominantly on OXPHOS. BCL2 proteins control the process of mitochondrial outer membrane permeabilization during apoptosis, but also regulate cellular bioenergetics. Because BCL2 proteins are overexpressed in breast cancer and targetable by selective antagonists, we here analysed the effect of BCL2 and BCL(X)L selective inhibitors, Venetoclax and WEHI-539, on mitochondrial bioenergetics and cell death. Employing single cell imaging using a FRET-based mitochondrial ATP sensor, we found that MCF7 breast cancer cells supplied with mitochondrial substrates reduced their mitochondrial ATP production when treated with Venetoclax or WEHI-539 at concentrations that per se did not induce cell death. Treatments with lower concentrations of both inhibitors also reduced the length of the mitochondrial network and the dynamics, as evaluated by quantitative confocal microscopy. We next tested the hypothesis that mitochondrial ATP production inhibition with BCL2 or BCL(X)L antagonists was synthetically lethal when combined with glycolysis inhibition. Treatment with 2-deoxy-D-glucose in combination with Venetoclax or WEHI-539 synergistically reduced the cellular bioenergetics of ER+ and TNBC breast cancer cells and abolished their clonogenic potential. Synthetic lethality was also observed when cultures were grown in 3D spheres. Our findings demonstrate that BCL2 antagonists exert potent effects on cancer metabolism independent of cell death-inducing effects, and demonstrate a synthetic lethality when these are applied in combination with glycolysis inhibitors.
Lucantoni, Federico; Düssmann, Heiko; Llorente-Folch, Irene; Prehn, Jochen H.M.
2018-01-01
Cancer cells display differences regarding their engagement of glycolytic vs. mitochondrial oxidative phosphorylation (OXPHOS) pathway. Triple negative breast cancer, an aggressive form of breast cancer, is characterized by elevated glycolysis, while estrogen receptor positive breast cancer cells rely predominantly on OXPHOS. BCL2 proteins control the process of mitochondrial outer membrane permeabilization during apoptosis, but also regulate cellular bioenergetics. Because BCL2 proteins are overexpressed in breast cancer and targetable by selective antagonists, we here analysed the effect of BCL2 and BCL(X)L selective inhibitors, Venetoclax and WEHI-539, on mitochondrial bioenergetics and cell death. Employing single cell imaging using a FRET-based mitochondrial ATP sensor, we found that MCF7 breast cancer cells supplied with mitochondrial substrates reduced their mitochondrial ATP production when treated with Venetoclax or WEHI-539 at concentrations that per se did not induce cell death. Treatments with lower concentrations of both inhibitors also reduced the length of the mitochondrial network and the dynamics, as evaluated by quantitative confocal microscopy. We next tested the hypothesis that mitochondrial ATP production inhibition with BCL2 or BCL(X)L antagonists was synthetically lethal when combined with glycolysis inhibition. Treatment with 2-deoxy-D-glucose in combination with Venetoclax or WEHI-539 synergistically reduced the cellular bioenergetics of ER+ and TNBC breast cancer cells and abolished their clonogenic potential. Synthetic lethality was also observed when cultures were grown in 3D spheres. Our findings demonstrate that BCL2 antagonists exert potent effects on cancer metabolism independent of cell death-inducing effects, and demonstrate a synthetic lethality when these are applied in combination with glycolysis inhibitors. PMID:29899841
Sebastian, Jees; Swaminath, Sharmada; Nair, Rashmi Ravindran; Jakkala, Kishor; Pradhan, Atul
2016-01-01
ABSTRACT Bacterial persisters are a subpopulation of cells that can tolerate lethal concentrations of antibiotics. However, the possibility of the emergence of genetically resistant mutants from antibiotic persister cell populations, upon continued exposure to lethal concentrations of antibiotics, remained unexplored. In the present study, we found that Mycobacterium tuberculosis cells exposed continuously to lethal concentrations of rifampin (RIF) or moxifloxacin (MXF) for prolonged durations showed killing, RIF/MXF persistence, and regrowth phases. RIF-resistant or MXF-resistant mutants carrying clinically relevant mutations in the rpoB or gyrA gene, respectively, were found to emerge at high frequency from the RIF persistence phase population. A Luria-Delbruck fluctuation experiment using RIF-exposed M. tuberculosis cells showed that the rpoB mutants were not preexistent in the population but were formed de novo from the RIF persistence phase population. The RIF persistence phase M. tuberculosis cells carried elevated levels of hydroxyl radical that inflicted extensive genome-wide mutations, generating RIF-resistant mutants. Consistent with the elevated levels of hydroxyl radical-mediated genome-wide random mutagenesis, MXF-resistant M. tuberculosis gyrA de novo mutants could be selected from the RIF persistence phase cells. Thus, unlike previous studies, which showed emergence of genetically resistant mutants upon exposure of bacteria for short durations to sublethal concentrations of antibiotics, our study demonstrates that continuous prolonged exposure of M. tuberculosis cells to lethal concentrations of an antibiotic generates antibiotic persistence phase cells that form a reservoir for the generation of genetically resistant mutants to the same antibiotic or another antibiotic. These findings may have clinical significance in the emergence of drug-resistant tubercle bacilli. PMID:27895008
Effects of a Quaternary Ammonium Compound on Escherichia coli1
Ceglowski, W. S.; Lear, S. A.
1962-01-01
Increasing amounts of tetradecyldimethylbenzyl ammonium chloride (TAC) were lethal to an increasing proportion of an actively growing culture of Escherichia coli. The loss of nucleic acid material by actively growing E. coli did not appear to play a major role in the lethal effect. It was found that lag-phase cells were more sensitive than logarithmic-phase cells to the lethal effect of TAC. The effect of TAC on the lysozyme sensitivity of the test organism was compared with that obtained using disodium dihydrogen ethylenediaminetetraacetate (EDTA). Although TAC was found to render the test organism susceptible to lysozyme, the degree of lysis never reached that attained with EDTA. PMID:14019586
Linear-quadratic dose kinetics or dose-dependent repair/misrepair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braby, L.A.; Nelson, J.M.
1991-09-01
Models for the response of cells exposed to low LET radiation can be grouped into three general types on the basis of assumptions about the nature of the interaction which results in the shoulder of the survival curve. The three forms of interaction are (1) sublethal damage becoming lethal, (2) potentially lethal damage becoming irreparable, and (3) potentially lethal damage saturating'' a repair system. The effects that these three forms of interaction would have on the results of specific types of experiments are investigated. Comparisons with experimental results indicate that only the second type is significant in determining the responsemore » of typical cultured mammalian cells. 5 refs., 2 figs.« less
Transcription Regulation of HYPK by Heat Shock Factor 1
Das, Srijit; Bhattacharyya, Nitai Pada
2014-01-01
HYPK (Huntingtin Yeast Partner K) was originally identified by yeast two-hybrid assay as an interactor of Huntingtin, the protein mutated in Huntington's disease. HYPK was characterized earlier as an intrinsically unstructured protein having chaperone-like activity in vitro and in vivo. HYPK has the ability of reducing rate of aggregate formation and subsequent toxicity caused by mutant Huntingtin. Further investigation revealed that HYPK is involved in diverse cellular processes and required for normal functioning of cells. In this study we observed that hyperthermia increases HYPK expression in human and mouse cells in culture. Expression of exogenous Heat Shock Factor 1 (HSF1), upon heat treatment could induce HYPK expression, whereas HSF1 knockdown reduced endogenous as well as heat-induced HYPK expression. Putative HSF1-binding site present in the promoter of human HYPK gene was identified and validated by reporter assay. Chromatin immunoprecipitation revealed in vivo interaction of HSF1 and RNA polymerase II with HYPK promoter sequence. Additionally, acetylation of histone H4, a known epigenetic marker of inducible HSF1 binding, was observed in response to heat shock in HYPK gene promoter. Overexpression of HYPK inhibited cells from lethal heat-induced death whereas knockdown of HYPK made the cells susceptible to lethal heat shock-induced death. Apart from elevated temperature, HYPK was also upregulated by hypoxia and proteasome inhibition, two other forms of cellular stress. We concluded that chaperone-like protein HYPK is induced by cellular stress and under transcriptional regulation of HSF1. PMID:24465598
Karpurapu, Manjula; Lee, Yong Gyu; Qian, Ziqing; Wen, Jin; Ballinger, Megan N.; Rusu, Luiza; Chung, Sangwoon; Deng, Jing; Qian, Feng; Reader, Brenda F.; Nirujogi, Teja Srinivas; Park, Gye Young; Pei, Dehua; Christman, John W.
2018-01-01
Specific therapies targeting cellular and molecular events of sepsis induced Acute Lung Injury (ALI) pathogenesis are lacking. We have reported a pivotal role for Nuclear Factors of Activated T cells (NFATc3) in regulating macrophage phenotype during sepsis induced ALI and subsequent studies demonstrate that NFATc3 transcriptionally regulates macrophage CCR2 and TNFα gene expression. Mouse pulmonary microvascular endothelial cell monolayer maintained a tighter barrier function when co-cultured with LPS stimulated NFATc3 deficient macrophages whereas wild type macrophages caused leaky monolayer barrier. More importantly, NFATc3 deficient mice showed decreased neutrophilic lung inflammation, improved alveolar capillary barrier function, arterial oxygen saturation and survival benefit in lethal CLP sepsis mouse models. In addition, survival of wild type mice subjected to the lethal CLP sepsis was not improved with broad-spectrum antibiotics, whereas the survival of NFATc3 deficient mice was improved to 40–60% when treated with imipenem. Passive adoptive transfer of NFATc3 deficient macrophages conferred protection against LPS induced ALI in wild type mice. Furthermore, CP9-ZIZIT, a highly potent, cell-permeable peptide inhibitor of Calcineurin inhibited NFATc3 activation. CP9-ZIZIT effectively reduced sepsis induced inflammatory cytokines and pulmonary edema in mice. Thus, this study demonstrates that inhibition of NFATc3 activation by CP9-ZIZIT provides a potential therapeutic option for attenuating sepsis induced ALI/pulmonary edema. PMID:29535830
Developing Non-Lethal Weapons: The Human Effects Characterization Process
2015-06-01
countered more than a dozen, rock-throwing locals. After a Marine fired a 12 - gauge , non-lethal warning munition, the rock throwers fled. Similarly...extended human electromuscular incapacitation (ef- fects similar to those caused by TASER devices used by law enforcement). However, confidence must be
USDA-ARS?s Scientific Manuscript database
We evaluated the knockdown effect caused by four insecticides: alpha-cypermethrin, chlorfenapyr, pirimiphos-methyl and fipronil against Tribolium confusum and Oryzaephilus surinamensis adults. Furthermore, for the same species and insecticides, we developed a “lethality index”, to assess knockdown p...
Synthetic Lethality Reveals Mechanisms of Mycobacterium tuberculosis Resistance to β-Lactams
Lun, Shichun; Miranda, David; Kubler, Andre; Guo, Haidan; Maiga, Mariama C.; Winglee, Kathryn; Pelly, Shaaretha
2014-01-01
ABSTRACT Most β-lactam antibiotics are ineffective against Mycobacterium tuberculosis due to the microbe’s innate resistance. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has prompted interest to repurpose this class of drugs. To identify the genetic determinants of innate β-lactam resistance, we carried out a synthetic lethality screen on a transposon mutant library for susceptibility to imipenem, a carbapenem β-lactam antibiotic. Mutations in 74 unique genes demonstrated synthetic lethality. The majority of mutations were in genes associated with cell wall biosynthesis. A second quantitative real-time PCR (qPCR)-based synthetic lethality screen of randomly selected mutants confirmed the role of cell wall biosynthesis in β-lactam resistance. The global transcriptional response of the bacterium to β-lactams was investigated, and changes in levels of expression of cell wall biosynthetic genes were identified. Finally, we validated these screens in vivo using the MT1616 transposon mutant, which lacks a functional acyl-transferase gene. Mice infected with the mutant responded to β-lactam treatment with a 100-fold decrease in bacillary lung burden over 4 weeks, while the numbers of organisms in the lungs of mice infected with wild-type bacilli proliferated. These findings reveal a road map of genes required for β-lactam resistance and validate synthetic lethality screening as a promising tool for repurposing existing classes of licensed, safe, well-characterized antimicrobials against tuberculosis. PMID:25227469
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiueh, C.C.; Andoh, Tsugunobu; Chock, P. Boon
2005-09-01
Hormesis, a stress tolerance, can be induced by ischemic preconditioning stress. In addition to preconditioning, it may be induced by other means, such as gas anesthetics. Preconditioning mechanisms, which may be mediated by reprogramming survival genes and proteins, are obscure. A known neurotoxicant, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), causes less neurotoxicity in the mice that are preconditioned. Pharmacological evidences suggest that the signaling pathway of {center_dot}NO-cGMP-PKG (protein kinase G) may mediate preconditioning phenomenon. We developed a human SH-SY5Y cell model for investigating {sup {center_dot}}NO-mediated signaling pathway, gene regulation, and protein expression following a sublethal preconditioning stress caused by a brief 2-h serum deprivation.more » Preconditioned human SH-SY5Y cells are more resistant against severe oxidative stress and apoptosis caused by lethal serum deprivation and 1-mehtyl-4-phenylpyridinium (MPP{sup +}). Both sublethal and lethal oxidative stress caused by serum withdrawal increased neuronal nitric oxide synthase (nNOS/NOS1) expression and {sup {center_dot}}NO levels to a similar extent. In addition to free radical scavengers, inhibition of nNOS, guanylyl cyclase, and PKG blocks hormesis induced by preconditioning. S-nitrosothiols and 6-Br-cGMP produce a cytoprotection mimicking the action of preconditioning tolerance. There are two distinct cGMP-mediated survival pathways: (i) the up-regulation of a redox protein thioredoxin (Trx) for elevating mitochondrial levels of antioxidant protein Mn superoxide dismutase (MnSOD) and antiapoptotic protein Bcl-2, and (ii) the activation of mitochondrial ATP-sensitive potassium channels [K(ATP)]. Preconditioning induction of Trx increased tolerance against MPP{sup +}, which was blocked by Trx mRNA antisense oligonucleotide and Trx reductase inhibitor. It is concluded that Trx plays a pivotal role in {sup {center_dot}}NO-dependent preconditioning hormesis against MPTP/MPP{sup +}.« less
Cheng, Zhe; Liu, Fan; Li, Xiu; Dai, Mengya; Wu, Jianjian; Guo, Xinrui; Tian, Huimin; Heng, Zhijie; Lu, Ying; Chai, Xiaoli; Wang, Yanhai
2017-02-01
Larvae of the tapeworm E. multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. A population of stem cell-like cells, the germinative cells, is considered to drive the larval growth and development within the host. The molecular mechanisms controlling the behavior of germinative cells are largely unknown. Using in vitro cultivation systems we show here that the EGFR/ERK signaling in the parasite can promote germinative cell proliferation in response to addition of human EGF, resulting in stimulated growth and development of the metacestode larvae. Inhibition of the signaling by either the EGFR inhibitors CI-1033 and BIBW2992 or the MEK/ERK inhibitor U0126 impairs germinative cell proliferation and larval growth. These data demonstrate the contribution of EGF-mediated EGFR/ERK signaling to the regulation of germinative cells in E. multilocularis, and suggest the EGFR/ERK signaling as a potential therapeutic target for AE and perhaps other human cestodiasis.
Tyro3 Family-Mediated Cell Entry of Ebola and Marburg Viruses
Shimojima, Masayuki; Takada, Ayato; Ebihara, Hideki; Neumann, Gabriele; Fujioka, Kouki; Irimura, Tatsuro; Jones, Steven; Feldmann, Heinz; Kawaoka, Yoshihiro
2006-01-01
Filoviruses, represented by the genera Ebolavirus and Marburgvirus, cause a lethal hemorrhagic fever in humans and in nonhuman primates. Although filovirus can replicate in various tissues or cell types in these animals, the molecular mechanisms of its broad tropism remain poorly understood. Here we show the involvement of members of the Tyro3 receptor tyrosine kinase family—Axl, Dtk, and Mer—in cell entry of filoviruses. Ectopic expression of these family members in lymphoid cells, which otherwise are highly resistant to filovirus infection, enhanced infection by pseudotype viruses carrying filovirus glycoproteins on their envelopes. This enhancement was reduced by antibodies to Tyro3 family members, Gas6 ligand, or soluble ectodomains of the members. Live Ebola viruses infected both Axl- and Dtk-expressing cells more efficiently than control cells. Antibody to Axl inhibited infection of pseudotype viruses in a number of Axl-positive cell lines. These results implicate each Tyro3 family member as a cell entry factor in filovirus infection. PMID:17005688
Hammerbeck, Christopher D.; Hooper, Jay W.
2011-01-01
Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). In hamsters, ANDV causes a respiratory distress syndrome closely resembling human HPS. The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, T cell immunopathology has been implicated on the basis of circumstantial and corollary evidence. Here, we show that following ANDV challenge, hamster T cell activation corresponds with the onset of disease. However, treatment with cyclophosphamide or specific T cell depletion does not impact the course of disease or alter the number of surviving animals, despite significant reductions in T cell number. These data demonstrate, for the first time, that T cells are not required for hantavirus pathogenesis in the hamster model of human HPS. Depletion of T cells from Syrian hamsters did not significantly influence early events in disease progression. Moreover, these data argue for a mechanism of hantavirus-induced vascular permeability that does not involve T cell immunopathology. PMID:21775442
Hammerbeck, Christopher D; Hooper, Jay W
2011-10-01
Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). In hamsters, ANDV causes a respiratory distress syndrome closely resembling human HPS. The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, T cell immunopathology has been implicated on the basis of circumstantial and corollary evidence. Here, we show that following ANDV challenge, hamster T cell activation corresponds with the onset of disease. However, treatment with cyclophosphamide or specific T cell depletion does not impact the course of disease or alter the number of surviving animals, despite significant reductions in T cell number. These data demonstrate, for the first time, that T cells are not required for hantavirus pathogenesis in the hamster model of human HPS. Depletion of T cells from Syrian hamsters did not significantly influence early events in disease progression. Moreover, these data argue for a mechanism of hantavirus-induced vascular permeability that does not involve T cell immunopathology.
Metastatic potential of tumor-initiating cells in solid tumors.
Adhikari, Amit S; Agarwal, Neeraj; Iwakuma, Tomoo
2011-01-01
The lethality of cancer is mainly caused by its properties of metastasis, drug resistance, and subsequent recurrence. Understanding the mechanisms governing these properties and developing novel strategies to overcome them will greatly improve the survival of cancer patients. Recent findings suggest that tumors are comprised of heterogeneous cell populations, and only a small fraction of these are tumorigenic with the ability to self-renew and produce phenotypically diverse tumor cell populations. Cells in this fraction are called tumor-initiating cells (TICs) or cancer stem cells (CSCs). TICs have been identified from many types of cancer. They share several similarities with normal adult stem cells including sphere-forming ability, self-renewability, and expression of stem cell surface markers and transcription factors. TICs have also been proposed to be responsible for cancer metastasis, however, scarce evidence for their metastatic potential has been provided. In this review article, we have attempted to summarize the studies which have examined the metastatic potential of TICs in solid tumors.
Wesley-Smith, James; Walters, Christina; Pammenter, N W; Berjak, Patricia
2015-05-01
Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than -180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g(-1) dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s(-1) or programmed cooling at 3·3 °C s(-1). Samples were thawed rapidly (177 °C s(-1)) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small (0·2-0·4 µm) intracellular ice crystals challenges current ideas that ice causes immediate physical damage to cells. Instead, freezing stress may induce a signal for programmed cell death (PCD). Cells that form more ice crystals during cooling have faster PCD responses. Published by Oxford University Press on behalf of the Annals of Botany Company 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Wright, Daniel William; Nowak, Barbara; Oppedal, Frode; Crosbie, Phil; Stien, Lars Helge; Dempster, Tim
2018-06-25
Freshwater bathing is one of the main treatment options available against amoebic gill disease (AGD) affecting multiple fish hosts in mariculture systems. Prevailing freshwater treatments are designed to be long enough to kill Neoparamoeba perurans, the ectoparasite causing AGD, which may select for freshwater tolerance. Here, we tested whether using shorter, sublethal freshwater treatment durations are a viable alternative to lethal ones for N. perurans (2-4 hr). Under in vitro conditions, gill-isolated N. perurans attached to plastic substrate in sea water lifted off after ≥2 min in freshwater, but survival was not impacted until 60 min. In an in vivo experiment, AGD-affected Atlantic salmon Salmo salar subjected daily to 30 min (sublethal to N. perurans) and 120 min (lethal to N. perurans) freshwater treatments for 6 days consistently reduced N. perurans cell numbers on gills (based on qPCR analysis) compared to daily 3 min freshwater or seawater treatments for 6 days. Our results suggest that targeting cell detachment rather than cell death with repeated freshwater treatments of shorter duration than typical baths could be used in AGD management. However, the consequences of modifying the intensity of freshwater treatment regimes on freshwater tolerance evolution in N. perurans populations require careful consideration. © 2018 John Wiley & Sons Ltd.
Enriched expression of the ciliopathy gene Ick in cell proliferating regions of adult mice.
Tsutsumi, Ryotaro; Chaya, Taro; Furukawa, Takahisa
2018-04-07
Cilia are essential for sensory and motile functions across species. In humans, ciliary dysfunction causes "ciliopathies", which show severe developmental abnormalities in various tissues. Several missense mutations in intestinal cell kinase (ICK) gene lead to endocrine-cerebro-osteodysplasia syndrome or short rib-polydactyly syndrome, lethal recessive developmental ciliopathies. We and others previously reported that Ick-deficient mice exhibit neonatal lethality with developmental defects. Mechanistically, Ick regulates intraflagellar transport and cilia length at ciliary tips. Although Ick plays important roles during mammalian development, roles of Ick at the adult stage are poorly understood. In the current study, we investigated the Ick gene expression in adult mouse tissues. RT-PCR analysis showed that Ick is ubiquitously expressed, with enrichment in the retina, brain, lung, intestine, and reproductive system. In the adult brain, we found that Ick expression is enriched in the walls of the lateral ventricle, in the rostral migratory stream of the olfactory bulb, and in the subgranular zone of the hippocampal dentate gyrus by in situ hybridization analysis. We also observed that Ick staining pattern is similar to pachytene spermatocyte to spermatid markers in the mature testis and to an intestinal stem cell marker in the adult small intestine. These results suggest that Ick is expressed in proliferating regions in the adult mouse brain, testis, and intestine. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ogawa, Emiyu; Takenoya, Hiromi; Arai, Tsunenori
2016-03-01
We have proposed to apply the photosensitization reaction in myocardium interstitial fluid using talaporfin sodium to realize less-heated electrical conduction block for a tachyarrhythmia treatment: PD Ablation®. The cytotoxicity of the extracellular photosensitization reaction efficiency may change by the talaporfin sodium binding with serum proteins. These binding would change with solution temperature. We investigated the binding behavior of talaporfin sodium with human serum albumin (HSA), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) changing solution temperature from 17 to 37°C. We also studied the photocytotoxicity change by solution temperature of 17 and 37°C measuring cell lethality by WST assay using fetal bovine serum. The binding ratio of talaporfin sodium with HDL and LDL decreased 6.3% and 12.8% with temperature increasing from 17 to 37°C. There was no significant difference in the case of HSA. The cell lethality was increased about 30% with temperature increasing from 17 to 37°C. The myocardium tissue temperature increase was reported that less than 5°C in the case of our PD Ablation®. We think that the photocytotoxicity change by these temperature increasing would be negligible in our PD Ablation®. We suggest that the temperature maintaining would be necessary to keep the photocytotoxicity efficiency in the case of the open surgery that would cause the tissue surface temperature decreasing.
Boczonadi, Veronika; Müller, Juliane S.; Pyle, Angela; Munkley, Jennifer; Dor, Talya; Quartararo, Jade; Ferrero, Ileana; Karcagi, Veronika; Giunta, Michele; Polvikoski, Tuomo; Birchall, Daniel; Princzinger, Agota; Cinnamon, Yuval; Lützkendorf, Susanne; Piko, Henriett; Reza, Mojgan; Florez, Laura; Santibanez-Koref, Mauro; Griffin, Helen; Schuelke, Markus; Elpeleg, Orly; Kalaydjieva, Luba; Lochmüller, Hanns; Elliott, David J.; Chinnery, Patrick F.; Edvardson, Shimon; Horvath, Rita
2014-01-01
The exosome is a multi-protein complex, required for the degradation of AU-rich element (ARE) containing messenger RNAs (mRNAs). EXOSC8 is an essential protein of the exosome core, as its depletion causes a severe growth defect in yeast. Here we show that homozygous missense mutations in EXOSC8 cause progressive and lethal neurological disease in 22 infants from three independent pedigrees. Affected individuals have cerebellar and corpus callosum hypoplasia, abnormal myelination of the central nervous system or spinal motor neuron disease. Experimental downregulation of EXOSC8 in human oligodendroglia cells and in zebrafish induce a specific increase in ARE mRNAs encoding myelin proteins, showing that the imbalanced supply of myelin proteins causes the disruption of myelin, and explaining the clinical presentation. These findings show the central role of the exosomal pathway in neurodegenerative disease. PMID:24989451
Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis.
Koyanagi, Naoto; Imai, Takahiko; Shindo, Keiko; Sato, Ayuko; Fujii, Wataru; Ichinohe, Takeshi; Takemura, Naoki; Kakuta, Shigeru; Uematsu, Satoshi; Kiyono, Hiroshi; Maruzuru, Yuhei; Arii, Jun; Kato, Akihisa; Kawaguchi, Yasushi
2017-10-02
Herpes simplex virus-1 (HSV-1) is the most common cause of sporadic viral encephalitis, which can be lethal or result in severe neurological defects even with antiviral therapy. While HSV-1 causes encephalitis in spite of HSV-1-specific humoral and cellular immunity, the mechanism by which HSV-1 evades the immune system in the central nervous system (CNS) remains unknown. Here we describe a strategy by which HSV-1 avoids immune targeting in the CNS. The HSV-1 UL13 kinase promotes evasion of HSV-1-specific CD8+ T cell accumulation in infection sites by downregulating expression of the CD8+ T cell attractant chemokine CXCL9 in the CNS of infected mice, leading to increased HSV-1 mortality due to encephalitis. Direct injection of CXCL9 into the CNS infection site enhanced HSV-1-specific CD8+ T cell accumulation, leading to marked improvements in the survival of infected mice. This previously uncharacterized strategy for HSV-1 evasion of CD8+ T cell accumulation in the CNS has important implications for understanding the pathogenesis and clinical treatment of HSV-1 encephalitis.
Characterization of Pancreatic Cancer Cell Thermal Response to Heat Ablation or Cryoablation.
Baumann, Kenneth W; Baust, John M; Snyder, Kristi K; Baust, John G; Van Buskirk, Robert G
2017-08-01
One of the most lethal carcinomas is pancreatic cancer. As standard treatment using chemotherapy and radiation has shown limited success, thermal regimens (cryotherapy or heat ablation) are emerging as viable alternatives. Although promising, our understanding of pancreatic cancer response to thermal ablation remains limited. In this study, we investigated the thermal responses of 2 pancreatic cancer cell lines in an effort to identify the minimum lethal temperature needed for complete cell death to provide guidance for in vivo applications. PANC-1 and BxPC-3 were frozen (-10°C to -25°C) or heated (45°C-50°C) in single and repeated exposure regimes. Posttreatment survival and recovery were analyzed using alamarBlue assay over a 7-day interval. Modes of cell death were assessed using fluorescence microscopy (calcein acetoxymethyl ester/propidium iodide) and flow cytometry (YO-PRO-1/propidium iodide). Freezing to -10°C resulted in minimal cell death. Exposure to -15°C had a mild impact on PANC-1 survival (93%), whereas BxPC-3 was more severely damaged (33%). Exposure to -20°C caused a significant reduction in viability (PANC-1 = 23%; BxPC-3 = 2%) whereas -25°C yielded complete death. Double freezing exposure was more effective than single exposure. Repeat exposure to -15°C resulted in complete death of BxPC-3, whereas -20°C severely impacted PANC-1 (7%). Heating to 45°C resulted in minimum cell death. Exposure to 48°C yielded a slight increase in cell loss (PANC-1 = 85%; BxPC-3 = 98%). Exposure to 50°C caused a significant decline (PANC-1 = 70%; BxPC-3 = 9%) with continued deterioration to 0%. Double heating to 45°C resulted in similar effects observed in single exposures, whereas repeated 48°C resulted in significant increases in cell death (PANC-1 = 68%; BxPC-3 = 29%). In conclusion, we observed that pancreatic cancer cells were completely destroyed at temperatures <-25°C or >50°C using single thermal exposures. Repeated exposures resulted in increased cell death at less extreme temperatures. Our data suggest that thermal ablation strategies (heat or cryoablation) may represent a viable technique for the treatment of pancreatic cancer.
Genetics Home Reference: Amish lethal microcephaly
... occurs in approximately 1 in 500 newborns in the Old Order Amish population of Pennsylvania. It has not been found outside this population. Related Information What information about a genetic condition can statistics provide? Why ... in the SLC25A19 gene cause Amish lethal microcephaly . The SLC25A19 ...
Ote, Manabu; Ueyama, Morio; Yamamoto, Daisuke
2016-09-12
Wolbachia, endosymbiotic bacteria prevalent in invertebrates, manipulate their hosts in a variety of ways: they induce cytoplasmic incompatibility, male lethality, male-to-female transformation, and parthenogenesis. However, little is known about the molecular basis for host manipulation by these bacteria. In Drosophila melanogaster, Wolbachia infection makes otherwise sterile Sex-lethal (Sxl) mutant females capable of producing mature eggs. Through a functional genomic screen for Wolbachia genes with growth-inhibitory effects when expressed in cultured Drosophila cells, we identified the gene WD1278 encoding a novel protein we call toxic manipulator of oogenesis (TomO), which phenocopies some of the Wolbachia effects in Sxl mutant D. melanogaster females. We demonstrate that TomO enhances the maintenance of germ stem cells (GSCs) by elevating Nanos (Nos) expression via its interaction with nos mRNA, ultimately leading to the restoration of germ cell production in Sxl mutant females that are otherwise without GSCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Salgado-Pabón, Wilmara; Breshears, Laura; Spaulding, Adam R.; Merriman, Joseph A.; Stach, Christopher S.; Horswill, Alexander R.; Peterson, Marnie L.; Schlievert, Patrick M.
2013-01-01
ABSTRACT Infective endocarditis and kidney infections are serious complications of Staphylococcus aureus sepsis. We investigated the role of superantigens (SAgs) in the development of lethal sepsis, infective endocarditis, and kidney infections. SAgs cause toxic shock syndrome, but it is unclear if SAgs contribute to infective endocarditis and kidney infections secondary to sepsis. We show in the methicillin-resistant S. aureus strain MW2 that lethal sepsis, infective endocarditis, and kidney infections in rabbits are critically dependent on high-level SAgs. In contrast, the isogenic strain lacking staphylococcal enterotoxin C (SEC), the major SAg in this strain, is attenuated in virulence, while complementation restores disease production. SAgs’ role in infective endocarditis appears to be both superantigenicity and direct endothelial cell stimulation. Maintenance of elevated blood pressure by fluid therapy significantly protects from infective endocarditis, possibly through preventing bacterial accumulation on valves and increased SAg elimination. These data should facilitate better methods to manage these serious illnesses. PMID:23963178
Inhibition of isoleucyl-tRNA synthetase as a potential treatment for human African Trypanosomiasis.
Cestari, Igor; Stuart, Kenneth
2013-05-17
Trypanosoma brucei sp. causes human African trypanosomiasis (HAT; African sleeping sickness). The parasites initially proliferate in the hemolymphatic system and then invade the central nervous system, which is lethal if not treated. New drugs are needed for HAT because the approved drugs are few, toxic, and difficult to administer, and drug resistance is spreading. We showed by RNAi knockdown that T. brucei isoleucyl-tRNA synthetase is essential for the parasites in vitro and in vivo in a mouse model of infection. By structure prediction and experimental analysis, we also identified small molecules that inhibit recombinant isoleucyl-tRNA synthetase and that are lethal to the parasites in vitro and highly selective compared with mammalian cells. One of these molecules acts as a competitive inhibitor of the enzyme and cures mice of the infection. Because members of this class of molecules are known to cross the blood-brain barrier in humans and to be tolerated, they may be attractive as leading candidates for drug development for HAT.
Inhibition of Isoleucyl-tRNA Synthetase as a Potential Treatment for Human African Trypanosomiasis*
Cestari, Igor; Stuart, Kenneth
2013-01-01
Trypanosoma brucei sp. causes human African trypanosomiasis (HAT; African sleeping sickness). The parasites initially proliferate in the hemolymphatic system and then invade the central nervous system, which is lethal if not treated. New drugs are needed for HAT because the approved drugs are few, toxic, and difficult to administer, and drug resistance is spreading. We showed by RNAi knockdown that T. brucei isoleucyl-tRNA synthetase is essential for the parasites in vitro and in vivo in a mouse model of infection. By structure prediction and experimental analysis, we also identified small molecules that inhibit recombinant isoleucyl-tRNA synthetase and that are lethal to the parasites in vitro and highly selective compared with mammalian cells. One of these molecules acts as a competitive inhibitor of the enzyme and cures mice of the infection. Because members of this class of molecules are known to cross the blood-brain barrier in humans and to be tolerated, they may be attractive as leading candidates for drug development for HAT. PMID:23548908
The use of bacteria for detecting toxic effects of pollutants in soil and water
NASA Astrophysics Data System (ADS)
Obiakor, Maximilian; Wilson, Susan; Tighe, Matthew; Pereg, Lily
2017-04-01
Microbial abundance and diversity are essential for sustaining soil structure and function and have been strongly linked to human health and wellbeing. Antimony (Sb) in the environment can present an ecological hazard and depending on concentration can be lethal. The toxic effects of Sb(III) and Sb(V) on the model soil bacterium Azospirillum brasilense Sp7 were assessed in exposure-dose-response assays and water samples from an Sb contaminated creek were analyzed for bacterial mortality. In both cases, Sb(III) and Sb(V) greatly affected the survival of A. brasilense Sp7 cells. The Sb(III) had a greater toxic effect than Sb(V) at all concentrations tested. Critical concentrations of Sb also caused variant colonies to appear, indicating both acute and sub-lethal effects, which were dose and time dependent. This work demonstrates the usefulness of A. brasilense as an indicator species to detect harmful effects of an environmental pollutant of emerging concern.
Beuchat, Larry R; Pettigrew, Charles A; Tremblay, Mario E; Roselle, Brian J; Scouten, Alan J
2004-08-01
Chlorine, ClO2, and a commercial raw fruit and vegetable sanitizer were evaluated for their effectiveness in killing vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis. The ultimate goal was to use one or both species as a potential surrogate(s) for Bacillus anthracis in studies that focus on determining the efficacy of sanitizers in killing the pathogen on food contact surfaces and foods. Treatment with alkaline (pH 10.5 to 11.0) ClO2 (200 microg/ml) produced by electrochemical technologies reduced populations of a five-strain mixture of vegetative cells and a five-strain mixture of spores of B. cereus by more than 5.4 and more than 6.4 log CFU/ml respectively, within 5 min. This finding compares with respective reductions of 4.5 and 1.8 log CFU/ml resulting from treatment with 200 microg/ml of chlorine. Treatment with a 1.5% acidified (pH 3.0) solution of Fit powder product was less effective, causing 2.5- and 0.4-log CFU/ml reductions in the number of B. cereus cells and spores, respectively. Treatment with alkaline ClO2 (85 microg/ml), acidified (pH 3.4) ClO2 (85 microg/ml), and a mixture of ClO2 (85 microg/ml) and Fit powder product (0.5%) (pH 3.5) caused reductions in vegetative cell/spore populations of more than 5.3/5.6, 5.3/5.7, and 5.3/6.0 log CFU/ml, respectively. Treatment of B. cereus and B. thuringiensis spores in a medium (3.4 mg/ml of organic and inorganic solids) in which cells had grown and produced spores with an equal volume of alkaline (pH 12.1) ClO2 (400 microg/ml) for 30 min reduced populations by 4.6 and 5.2 log CFU/ml, respectively, indicating high lethality in the presence of materials other than spores that would potentially react with and neutralize the sporicidal activity of ClO2.
Conditional lethality strains for the biological control of Anastrepha species
USDA-ARS?s Scientific Manuscript database
Pro-apoptotic cell death genes are promising candidates for biologically-based autocidal control of pest insects as demonstrated by tetracycline (tet)-suppressible systems for conditional embryonic lethality in Drosophila melanogaster (Dm) and the medfly, Ceratitis capitata (Cc). However, for medfly...
Lillo, O L; Severgnini, A A; Nunes, E M
1997-11-01
The mutagenic interactions of ultraviolet light and bleomycin in haploid populations of Saccharomyces cerevisiae were analyzed. Survival and mutation frequency as a function of different bleomycin concentrations after one conditioning dose of UV radiation were determined. Furthermore, corresponding interaction functions and sensitization factors were calculated. A synergistic interaction between UV light and bleomycin was shown for both lethal and mutagenic events when the cells were in nutrient broth during the treatments. Conversely, the interaction between UV light and bleomycin was antagonistic when the cells were in deionized water during the treatment. The magnitude of lethal and mutagenic interactions depends on dose, and thus presumably on the number of lesions. The observed interactions between UV light and bleomycin suggest that the mechanism that is most likely involved is the induction of repair systems with different error probabilities during the delay of cell division.
Endocardial Hippo signaling regulates myocardial growth and cardiogenesis.
Artap, Stanley; Manderfield, Lauren J; Smith, Cheryl L; Poleshko, Andrey; Aghajanian, Haig; See, Kelvin; Li, Li; Jain, Rajan; Epstein, Jonathan A
2018-08-01
The Hippo signaling pathway has been implicated in control of cell and organ size, proliferation, and endothelial-mesenchymal transformation. This pathway impacts upon two partially redundant transcription cofactors, Yap and Taz, that interact with other factors, including members of the Tead family, to affect expression of downstream genes. Yap and Taz have been shown to regulate, in a cell-autonomous manner, myocardial proliferation, myocardial hypertrophy, regenerative potential, and overall size of the heart. Here, we show that Yap and Taz also play an instructive, non-cell-autonomous role in the endocardium of the developing heart to regulate myocardial growth through release of the paracrine factor, neuregulin. Without endocardial Yap and Taz, myocardial growth is impaired causing early post-natal lethality. Thus, the Hippo signaling pathway regulates cell size via both cell-autonomous and non-cell-autonomous mechanisms. Furthermore, these data suggest that Hippo may regulate organ size via a sensing and paracrine function in endothelial cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Bovi, Thaís S; Zaluski, Rodrigo; Orsi, Ricardo O
2018-01-01
This study evaluated the in vitro toxicity and motor activity changes in African-derived adult honey bees (Apis mellifera L.) exposed to lethal or sublethal doses of the insecticides fipronil and imidacloprid. Mortality of bees was assessed to determine the ingestion and contact lethal dose for 24 h using probit analysis. Motor activities in bees exposed to lethal (LD50) and sublethal doses (1/500th of the lethal dose) of both insecticides were evaluated in a behavioral observation box at 1 and 4 h. Ingestion and contact lethal doses of fipronil were 0.2316 ? 0.0626 and 0.0080 ? 0.0021 μg/bee, respectively. Ingestion and contact lethal doses of imidacloprid were 0.1079 ? 0.0375 and 0.0308 ? 0.0218 μg/bee, respectively. Motor function of bees exposed to lethal doses of fipronil and imidacloprid was impaired; exposure to sublethal doses of fipronil but not imidacloprid impaired motor function. The insecticides evaluated in this study were highly toxic to African-derived A. mellifera and caused impaired motor function in these pollinators.
An unusual autopsy case of lethal hypothermia exacerbated by body lice-induced severe anemia.
Nara, Akina; Nagai, Hisashi; Yamaguchi, Rutsuko; Makino, Yohsuke; Chiba, Fumiko; Yoshida, Ken-ichi; Yajima, Daisuke; Iwase, Hirotaro
2016-05-01
Pediculus humanus humanus (known as body lice) are commonly found in the folds of clothes, and can cause skin disorders when they feed on human blood, resulting in an itching sensation. Body lice are known as vectors of infectious diseases, including typhus, recurrent fever, and trench fever. An infestation with blood-sucking body lice induces severe cutaneous pruritus, and this skin disorder is known as "vagabond's disease." A body lice infestation is sometimes complicated with iron deficiency anemia. In the present case, a man in his late 70s died of lethal hypothermia in the outdoors during the winter season. The case history and autopsy findings revealed that the cause of the lethal hypothermia was iron deficiency anemia, which was associated with a prolonged infestation of blood-sucking body lice. Also, he had vagabond's disease because the skin on his body was abnormal and highly pigmented. This is an unusual autopsy case since the body lice contributed to the cause of the death.
Rubber bullet injury: case report with autopsy observation and literature review.
Kobayashi, Masahiko; Mellen, Paul F
2009-09-01
Rubber bullets are one of the less-lethal (nonlethal) weapons, which are increasingly used to incapacitate dangerous individuals, avoiding use of firearms. An autopsy examination of a man who was shot with improved rubber bullets revealed that the bullet caused pulmonary contusion. The bullet was 30 g in weight and consisted of a sponge foam nose with 40-mm diameter and a plastic body. He was not incapacitated and died of suicidal gunshot wound. The case raised a question as to how severe an injury is necessary to deter a person without causing death. A variety of rubber bullets have been used in the world, and they have occasionally produced severe or lethal injuries. A review of the literature demonstrated that the feature of injuries appeared to be related to the type of missile. It becomes more important for a forensic pathologist to be familiar with rubber bullets and injuries caused by them as the use of less-lethal weapon increases.
Immune Protection against Lethal Fungal-Bacterial Intra-Abdominal Infections.
Lilly, Elizabeth A; Ikeh, Melanie; Nash, Evelyn E; Fidel, Paul L; Noverr, Mairi C
2018-01-16
Polymicrobial intra-abdominal infections (IAIs) are clinically prevalent and cause significant morbidity and mortality, especially those involving fungi. Our laboratory developed a mouse model of IAI and demonstrated that intraperitoneal inoculation with Candida albicans or other virulent non- albicans Candida (NAC) species plus Staphylococcus aureus resulted in 70 to 80% mortality in 48 to 72 h due to robust local and systemic inflammation (sepsis). Surprisingly, inoculation with Candida dubliniensis or Candida glabrata with S. aureus resulted in minimal mortality, and rechallenge of these mice with lethal C. albicans / S. aureus (i.e., coninfection) resulted in >90% protection. The purpose of this study was to define requirements for C. dubliniensis / S. aureus -mediated protection and interrogate the mechanism of the protective response. Protection was conferred by C. dubliniensis alone or by killed C. dubliniensis plus live S. aureus S. aureus alone was not protective, and killed S. aureus compromised C. dubliniensis -induced protection. C. dubliniensis / S. aureus also protected against lethal challenge by NAC plus S. aureus and could protect for a long-term duration (60 days between primary challenge and C. albicans/S. aureus rechallenge). Unexpectedly, mice deficient in T and B cells (Rag-1 knockouts [KO]) survived both the initial C. dubliniensis/S. aureus challenge and the C. albicans/S. aureus rechallenge, indicating that adaptive immunity did not play a role. Similarly, mice depleted of macrophages prior to rechallenge were also protected. In contrast, protection was associated with high numbers of Gr-1 hi polymorphonuclear leukocytes (PMNLs) in peritoneal lavage fluid within 4 h of rechallenge, and in vivo depletion of Gr-1 + cells prior to rechallenge abrogated protection. These results suggest that Candida species can induce protection against a lethal C. albicans / S. aureus IAI that is mediated by PMNLs and postulated to be a unique form of trained innate immunity. IMPORTANCE Polymicrobial intra-abdominal infections are clinically devastating infections with high mortality rates, particularly those involving fungal pathogens, including Candida species. Even in patients receiving aggressive antimicrobial therapy, mortality rates remain unacceptably high. There are no available vaccines against IAI, which is complicated by the polymicrobial nature of the infection. IAI leads to lethal systemic inflammation (sepsis), which is difficult to target pharmacologically, as components of the inflammatory response are also needed to control the infection. Our studies demonstrate that prior inoculation with low-virulence Candida species provides strong protection against subsequent lethal infection with C. albicans and S. aureus Surprisingly, protection is long-lived but not mediated by adaptive (specific) immunity. Instead, protection is dependent on cells of the innate immune system (nonspecific immunity) and provides protection against other virulent Candida species. This discovery implies that a form of trained innate immunity may be clinically effective against polymicrobial IAI. Copyright © 2018 Lilly et al.
Mouse model for acute Epstein-Barr virus infection.
Wirtz, Tristan; Weber, Timm; Kracker, Sven; Sommermann, Thomas; Rajewsky, Klaus; Yasuda, Tomoharu
2016-11-29
Epstein-Barr Virus (EBV) infects human B cells and drives them into continuous proliferation. Two key viral factors in this process are the latent membrane proteins LMP1 and LMP2A, which mimic constitutively activated CD40 receptor and B-cell receptor signaling, respectively. EBV-infected B cells elicit a powerful T-cell response that clears the infected B cells and leads to life-long immunity. Insufficient immune surveillance of EBV-infected B cells causes life-threatening lymphoproliferative disorders, including mostly germinal center (GC)-derived B-cell lymphomas. We have modeled acute EBV infection of naive and GC B cells in mice through timed expression of LMP1 and LMP2A. Although lethal when induced in all B cells, induction of LMP1 and LMP2A in just a small fraction of naive B cells initiated a phase of rapid B-cell expansion followed by a proliferative T-cell response, clearing the LMP-expressing B cells. Interfering with T-cell activity prevented clearance of LMP-expressing B cells. This was also true for perforin deficiency, which in the human causes a life-threatening EBV-related immunoproliferative syndrome. LMP expression in GC B cells impeded the GC reaction but, upon loss of T-cell surveillance, led to fatal B-cell expansion. Thus, timed expression of LMP1 together with LMP2A in subsets of mouse B cells allows one to study major clinically relevant features of human EBV infection in vivo, opening the way to new therapeutic approaches.
Krebs, Philippe; Fan, Weiwei; Chen, Yen-Hui; Tobita, Kimimasa; Downes, Michael R.; Wood, Malcolm R.; Sun, Lei; Xia, Yu; Ding, Ning; Spaeth, Jason M.; Moresco, Eva Marie Y.; Boyer, Thomas G.; Lo, Cecilia Wen Ya; Yen, Jeffrey; Evans, Ronald M.; Beutler, Bruce
2011-01-01
Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2–3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention. PMID:22106289
Garner, Austin G; Kenney, Amanda M; Fishman, Lila; Sweigart, Andrea L
2016-07-01
In flowering plants, F1 hybrid seed lethality is a common outcome of crosses between closely related diploid species, but the genetic basis of this early-acting and potentially widespread form of postzygotic reproductive isolation is largely unknown. We intercrossed two closely related species of monkeyflower, Mimulus guttatus and Mimulus tilingii, to characterize the mechanisms and strength of postzygotic reproductive isolation. Then, using a reciprocal backcross design, we performed high-resolution genetic mapping to determine the genetic architecture of hybrid seed lethality and directly test for loci with parent-of-origin effects. We found that F1 hybrid seed lethality is an exceptionally strong isolating barrier between Mimulus species, with reciprocal crosses producing < 1% viable seeds. This form of postzygotic reproductive isolation appears to be highly polygenic, indicating that multiple incompatibility loci have accumulated rapidly between these closely related Mimulus species. It is also primarily caused by genetic loci with parent-of-origin effects, suggesting a possible role for imprinted genes in the evolution of Mimulus hybrid seed lethality. Our findings suggest that divergence in loci with parent-of-origin effects, which is probably driven by genomic coevolution within lineages, might be an important source of hybrid incompatibilities between flowering plant species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Intrinsic resistance to the lethal effects of x-irradiation in insect and arachnid cells
Koval, Thomas M.
1983-01-01
Twelve cell lines representing 10 genera of three orders (Diptera, Lepidoptera, and Orthoptera) of the class Insecta and one cell line (Acarina) from the class Arachnida were examined to discern their sensitivity to the lethal effects of x-irradiation. Radiosensitivity was measured by a combination of colony formation and population growth curve techniques. Each of these arthropod cell lines is significantly more radioresistant than mammalian cells, though the degree of resistance varies greatly with order. Dipteran cells are 3 to 9 times and lepidopteran cells 52 to 104 times more radioresistant than mammalian cells. Orthopteran and acarine cells are intermediate in radiosensitivity between dipteran and lepidopteran cells. These cells, especially the lepidopteran, should be valuable in determining the molecular nature of repair mechanisms that result in resistance to ionizing radiation. PMID:16593348
Seegmiller, Robert E.; Bomsta, Brandon D.; Bridgewater, Laura C.; Niederhauser, Cindy M.; Montaño, Carolina; Sudweeks, Sterling; Eyre, David R.; Fernandes, Russell J.
2008-01-01
The disproportionate micromelia (Dmm) mouse has a mutation in the C-propeptide coding region of the Col2a1 gene that causes lethal dwarfism when homozygous (Dmm/Dmm) but causes only mild dwarfism observable ∼1-week postpartum when heterozygous (Dmm/+). The purpose of this study was 2-fold: first, to analyze and quantify morphological changes that precede the expression of mild dwarfism in Dmm/+ animals, and second, to compare morphological alterations between Dmm/+ and Dmm/Dmm fetal cartilage that may correlate with the marked skeletal differences between mild and lethal dwarfism. Light and electron transmission microscopy were used to visualize structure of chondrocytes and extracellular matrix (ECM) of fetal rib cartilage. Both Dmm/+ and Dmm/Dmm fetal rib cartilage had significantly larger chondrocytes, greater cell density, and less ECM per unit area than +/+ littermates. Quantitative RT-PCR showed a decrease in aggrecan mRNA in Dmm/+ vs +/+ cartilage. Furthermore, the cytoplasm of chondrocytes in Dmm/+ and Dmm/Dmm cartilage was occupied by significantly more distended rough endoplasmic reticulum (RER) compared with wild-type chondrocytes. Fibril diameters and packing densities of +/+ and Dmm/+ cartilage were similar, but Dmm/Dmm cartilage showed thinner, sparsely distributed fibrils. These findings support the prevailing hypothesis that a C-propeptide mutation could interrupt the normal assembly and secretion of Type II procollagen trimers, resulting in a buildup of proα1(II) chains in the RER and a reduced rate of matrix synthesis. Thus, intracellular entrapment of proα1(II) seems to be primarily responsible for the dominant-negative effect of the Dmm mutation in the expression of dwarfism. (J Histochem Cytochem 56:1003–1011, 2008) PMID:18678883
Seegmiller, Robert E; Bomsta, Brandon D; Bridgewater, Laura C; Niederhauser, Cindy M; Montaño, Carolina; Sudweeks, Sterling; Eyre, David R; Fernandes, Russell J
2008-11-01
The disproportionate micromelia (Dmm) mouse has a mutation in the C-propeptide coding region of the Col2a1 gene that causes lethal dwarfism when homozygous (Dmm/Dmm) but causes only mild dwarfism observable approximately 1-week postpartum when heterozygous (Dmm/+). The purpose of this study was 2-fold: first, to analyze and quantify morphological changes that precede the expression of mild dwarfism in Dmm/+ animals, and second, to compare morphological alterations between Dmm/+ and Dmm/Dmm fetal cartilage that may correlate with the marked skeletal differences between mild and lethal dwarfism. Light and electron transmission microscopy were used to visualize structure of chondrocytes and extracellular matrix (ECM) of fetal rib cartilage. Both Dmm/+ and Dmm/Dmm fetal rib cartilage had significantly larger chondrocytes, greater cell density, and less ECM per unit area than +/+ littermates. Quantitative RT-PCR showed a decrease in aggrecan mRNA in Dmm/+ vs +/+ cartilage. Furthermore, the cytoplasm of chondrocytes in Dmm/+ and Dmm/Dmm cartilage was occupied by significantly more distended rough endoplasmic reticulum (RER) compared with wild-type chondrocytes. Fibril diameters and packing densities of +/+ and Dmm/+ cartilage were similar, but Dmm/Dmm cartilage showed thinner, sparsely distributed fibrils. These findings support the prevailing hypothesis that a C-propeptide mutation could interrupt the normal assembly and secretion of Type II procollagen trimers, resulting in a buildup of proalpha1(II) chains in the RER and a reduced rate of matrix synthesis. Thus, intracellular entrapment of proalpha1(II) seems to be primarily responsible for the dominant-negative effect of the Dmm mutation in the expression of dwarfism.
Chemiexcitation and Its Implications for Disease.
Brash, Douglas E; Goncalves, Leticia C P; Bechara, Etelvino J H
2018-06-01
Quantum mechanics rarely extends to molecular medicine. Recently, the pigment melanin was found to be susceptible to chemiexcitation, in which an electron is chemically excited to a high-energy molecular orbital. In invertebrates, chemiexcitation causes bioluminescence; in mammals, a higher-energy process involving melanin transfers energy to DNA without photons, creating the lethal and mutagenic cyclobutane pyrimidine dimer that can cause melanoma. This process is initiated by NO and O 2 - radicals, the formation of which can be triggered by ultraviolet light or inflammation. Several chronic diseases share two properties: inflammation generates these radicals across the tissue, and the diseased cells lie near melanin. We propose that chemiexcitation may be an upstream event in numerous human diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.
MUTYH mediates the toxicity of combined DNA 6-thioguanine and UVA radiation.
Grasso, Francesca; Ruggieri, Vitalba; De Luca, Gabriele; Leopardi, Paola; Mancuso, Maria Teresa; Casorelli, Ida; Pichierri, Pietro; Karran, Peter; Bignami, Margherita
2015-04-10
The therapeutic thiopurines, including the immunosuppressant azathioprine (Aza) cause the accumulation of the UVA photosensitizer 6-thioguanine (6-TG) in the DNA of the patients' cells. DNA 6-TG and UVA are synergistically cytotoxic and their interaction causes oxidative damage. The MUTYH DNA glycosylase participates in the base excision repair of oxidized DNA bases. Using Mutyh-nullmouse fibroblasts (MEFs) we examined whether MUTYH provides protection against the lethal effects of combined DNA 6-TG/UVA. Surprisingly, Mutyh-null MEFs were more resistant than wild-type MEFs, despite accumulating higher levels of DNA 8-oxo-7,8-dihydroguanine (8-oxoG).Their enhanced 6-TG/UVA resistance reflected the absence of the MUTYH protein and MEFs expressing enzymatically-dead human variants were as sensitive as wild-type cells. Consistent with their enhanced resistance, Mutyh-null cells sustained fewer DNA strand breaks and lower levels of chromosomal damage after 6-TG/UVA. Although 6-TG/UVA treatment caused early checkpoint activation irrespective of the MUTYH status, Mutyh-null cells failed to arrest in S-phase at late time points. MUTYH-dependent toxicity was also apparent in vivo. Mutyh-/- mice survived better than wild-type during a 12-month chronicexposure to Aza/UVA treatments that significantly increased levels of skin DNA 8-oxoG. Two squamous cell skin carcinomas arose in Aza/UVA treated Mutyh-/- mice whereas similarly treated wild-type animals remained tumor-free.
Inhibition of the lethality of Shiga-like toxin-1 by functional gold nanoparticles.
Li, Chun-Hsien; Bai, Yi-Ling; Chen, Yu-Chie
2018-02-15
Escherichia coli O157:H7 is a pathogen, which can generate Shiga-like toxins (SLTs) and cause hemolytic-uremic syndrome. Foodborne illness outbreaks caused by E. coli O157:H7 have become a global issue. Since SLTs are quite toxic, effective medicines that can reduce the damage caused by SLTs should be explored. SLTs consist of a single A and five B subunits, which can inhibit ribosome activity for protein synthesis and bind with the cell membrane of host cells, respectively. Pigeon ovalbumin (POA), i.e. a glycoprotein, is abundant in pigeon egg white (PEW) proteins. The structure of POA contains Gal-α(1→4)-Gal-β(1→4)-GlcNAc ligands, which have binding affinity toward the B subunit in SLT type-1 (SLT-1B). POA immobilized gold nanoparticles (POA-Au NPs) can be generated by reacting PEW proteins with aqueous tetrachloroauric acid in one-pot. The generated POA-Au NPs have been demonstrated to have selective trapping-capacity toward SLT-1B previously. Herein, we explore that POA-Au NPs can be used as protective agents to neutralize the toxicity of SLT-1 in SLT-1-infected model cells. The results show that the cells can be completely rescued when a sufficient amount of POA-Au NPs is used to treat the SLT-1-infected cells within 1 h.
Epstein-Barr virus infection and related hematological diseases.
Sawada, Akihisa
2016-01-01
Once the Epstein-Barr virus (EBV) has infected a person, it then latently infects B cells. This latent infection lasts a lifetime. However, EBV can infect T or NK cells (T/NK cells) in rare cases. Therefore, EBV causes various hematological diseases. Among these diseases, CAEBV is regarded as the most problematic because, although it is not particularly uncommon, the diagnostic tests for this disease are not covered by health insurance, a serious illness in the "non-active" periods is lacking, and the appropriate motivation for early initiation of treatment can easily be lost. However, the symptoms may suddenly change; and if the manifestations are resistant when such exacerbation occurs, CAEBC is potentially lethal. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only cure. Once the diagnosis has been made, earlier treatment initiation, safer bridging to allogeneic HSCT with multi-drug chemotherapy, and then, planned HSCT can be completed more safely and thereby achieve a better outcome.
Development of a broad-spectrum antiviral with activity against Ebola virus.
Aman, M Javad; Kinch, Michael S; Warfield, Kelly; Warren, Travis; Yunus, Abdul; Enterlein, Sven; Stavale, Eric; Wang, Peifang; Chang, Shaojing; Tang, Qingsong; Porter, Kevin; Goldblatt, Michael; Bavari, Sina
2009-09-01
We report herein the identification of a small molecule therapeutic, FGI-106, which displays potent and broad-spectrum inhibition of lethal viral hemorrhagic fevers pathogens, including Ebola, Rift Valley and Dengue Fever viruses, in cell-based assays. Using mouse models of Ebola virus, we further demonstrate that FGI-106 can protect animals from an otherwise lethal infection when used either in a prophylactic or therapeutic setting. A single treatment, administered 1 day after infection, is sufficient to protect animals from lethal Ebola virus challenge. Cell-based assays also identified inhibitory activity against divergent virus families, which supports a hypothesis that FGI-106 interferes with a common pathway utilized by different viruses. These findings suggest FGI-106 may provide an opportunity for targeting viral diseases.
Rezende-Neto, Joao; Silva, Fabriccio DF; Porto, Leonardo BO; Teixeira, Luiz C; Tien, Homer; Rizoli, Sandro B
2009-01-01
We present the case of a patient who sustained a penetrating injury to the chest caused by an attenuated energy rubber bullet and review the literature on thoracic injuries caused by plastic and rubber "less-lethal" munitions. The patient of this report underwent a right thoracotomy to extract the projectile as well as a wedge resection of the injured lung parenchyma. This case demonstrates that even supposedly safe riot control munition fired at close range, at the torso, can provoke serious injury. Therefore a thorough investigation and close clinical supervision are justified. PMID:19555511
Rezende-Neto, Joao; Silva, Fabriccio Df; Porto, Leonardo Bo; Teixeira, Luiz C; Tien, Homer; Rizoli, Sandro B
2009-06-26
We present the case of a patient who sustained a penetrating injury to the chest caused by an attenuated energy rubber bullet and review the literature on thoracic injuries caused by plastic and rubber "less-lethal" munitions. The patient of this report underwent a right thoracotomy to extract the projectile as well as a wedge resection of the injured lung parenchyma. This case demonstrates that even supposedly safe riot control munition fired at close range, at the torso, can provoke serious injury. Therefore a thorough investigation and close clinical supervision are justified.
Abbotts, Rachel; Jewell, Rosalyn; Nsengimana, Jérémie; Maloney, David J; Simeonov, Anton; Seedhouse, Claire; Elliott, Faye; Laye, Jon; Walker, Christy; Jadhav, Ajit; Grabowska, Anna; Ball, Graham; Patel, Poulam M; Newton-Bishop, Julia; Wilson, David M; Madhusudan, Srinivasan
2014-05-30
Phosphatase and tensin homolog (PTEN) loss is associated with genomic instability. APE1 is a key player in DNA base excision repair (BER) and an emerging drug target in cancer. We have developed small molecule inhibitors against APE1 repair nuclease activity. In the current study we explored a synthetic lethal relationship between PTEN and APE1 in melanoma. Clinicopathological significance of PTEN mRNA and APE1 mRNA expression was investigated in 191 human melanomas. Preclinically, PTEN-deficient BRAF-mutated (UACC62, HT144, and SKMel28), PTEN-proficient BRAF-wildtype (MeWo), and doxycycline-inducible PTEN-knockout BRAF-wildtype MeWo melanoma cells were DNA repair expression profiled and investigated for synthetic lethality using a panel of four prototypical APE1 inhibitors. In human tumours, low PTEN mRNA and high APE1 mRNA was significantly associated with reduced relapse free and overall survival. Pre-clinically, compared to PTEN-proficient cells, PTEN-deficient cells displayed impaired expression of genes involved in DNA double strand break (DSB) repair. Synthetic lethality in PTEN-deficient cells was evidenced by increased sensitivity, accumulation of DSBs and induction of apoptosis following treatment with APE1 inhibitors. We conclude that PTEN deficiency is not only a promising biomarker in melanoma, but can also be targeted by a synthetic lethality strategy using inhibitors of BER, such as those targeting APE1.
Ren, Zhiguang; Zhao, Yongkun; Liu, Jing; Ji, Xianliang; Meng, Lingnan; Wang, Tiecheng; Sun, Weiyang; Zhang, Kun; Sang, Xiaoyu; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Hualei; Yang, Songtao; Yang, Zhengyan; Ma, Yuanfang; Gao, Yuwei; Xia, Xianzhu
2018-05-01
The H7N9 influenza virus epidemic has been associated with a high mortality rate in China. Therefore, to prevent the H7N9 virus from causing further damage, developing a safe and effective vaccine is necessary. In this study, a vaccine candidate consisting of virus-like particles (VLPs) based on H7N9 A/Shanghai/2/2013 and containing hemagglutinin (HA), neuraminidase (NA), and matrix protein (M1) was successfully produced using a baculovirus (BV) expression system. Immunization experiments showed that strong humoral and cellular immune responses could be induced by the developed VLPs when administered via either the intramuscular (IM) or intranasal (IN) immunization routes. Notably, VLPs administered via both immunization routes provided 100% protection against lethal infection caused by the H7N9 virus. The IN immunization with 40μg of H7N9 VLPs induced strong lung IgA and lung tissue resident memory (TRM) cell-mediated local immune responses. These results provide evidence for the development of an effective preventive vaccine against the H7N9 virus based on VLPs administered through both the IM and IN immunization routes. Copyright © 2017. Published by Elsevier B.V.
Lee, Sang Joon; Seo, Eunseok; Cho, Yonghyun
2013-12-01
Many antimalarial drugs kill malaria parasites, but antimalarial drug resistance (ADR) and toxicity to normal cells limit their usefulness. To solve this problem, we suggest a new therapy for drug-resistant malaria. The approach consists of data integration and inference through homology analysis of yeast-human-Plasmodium. If one gene of a Plasmodium synthetic lethal (SL) gene pair has a mutation that causes ADR, a drug targeting the other gene of the SL pair might be used as an effective treatment for drug-resistant strains of malaria. A simple computational tool to analyze the inferred SL genes of Plasmodium species (malaria parasites Plasmodium falciparum and Plasmodium vivax for human malarial therapy, and rodent parasite Plasmodium berghei for in vivo studies of human malarias) was established to identify SL genes that can be used as drug targets. Information on SL gene pairs with ADR genes and their first neighbors was inferred from yeast SL genes to search for pertinent antimalarial drug targets. We not only suggest drug target gene candidates for further experimental validation, but also provide information on new usage for already-described drugs. The proposed specific antimalarial drug candidates can be inferred by searching drugs that cause a fitness defect in yeast SL genes.
Quantitative high throughput screening identifies inhibitors of anthrax-induced cell death
Zhu, Ping Jun; Hobson, Peyton; Southall, Noel; Qiu, Cunping; Thomas, Craig J.; Lu, Jiamo; Inglese, James; Zheng, Wei; Leppla, Stephen H.; Bugge, Thomas H.; Austin, Christopher P.; Liu, Shihui
2009-01-01
Here, we report the results of a quantitative high-throughput screen (qHTS) measuring the endocytosis and translocation of a β-lactamase-fused-lethal factor and the identification of small molecules capable of obstructing the process of anthrax toxin internalization. Several small molecules protect RAW264.7 macrophages and CHO cells from anthrax lethal toxin and protected cells from an LF-Pseudomonas exotoxin fusion protein and diphtheria toxin. Further efforts demonstrated that these compounds impaired the PA heptamer pre-pore to pore conversion in cells expressing the CMG2 receptor, but not the related TEM8 receptor, indicating that these compounds likely interfere with toxin internalization. PMID:19540764
Fiskus, Warren; Saba, Nakhle; Shen, Min; Ghias, Mondana; Liu, Jinyun; Gupta, Soumyasri Das; Chauhan, Lata; Rao, Rekha; Gunewardena, Sumedha; Schorno, Kevin; Austin, Christopher P.; Maddocks, Kami; Byrd, John; Melnick, Ari; Huang, Peng; Wiestner, Adrian; Bhalla, Kapil N.
2014-01-01
Chronic lymphocytic leukemia (CLL) exhibits high remission rates after initial chemoimmunotherapy, but with relapses with treatment, refractory disease is the most common outcome, especially in CLL with the deletion of chromosome 11q or 17p. In addressing the need of treatments for relapsed disease, we report the identification of an existing U.S. Food and Drug Administration-approved small-molecule drug to repurpose for CLL treatment. Auranofin (Ridaura) is approved for use in treating rheumatoid arthritis, but it exhibited preclinical efficacy in CLL cells. By inhibiting thioredoxin reductase activity and increasing intracellular reactive oxygen species levels, auranofin induced a lethal endoplasmic reticulum stress response in cultured and primary CLL cells. In addition, auranofin displayed synergistic lethality with heme oxygenase-1 and glutamate-cysteine ligase inhibitors against CLL cells. Auranofin overcame apoptosis resistance mediated by protective stromal cells, and it also killed primary CLL cells with deletion of chromosome 11q or 17p. In TCL-1 transgenic mice, an in vivo model of CLL, auranofin treatment markedly reduced tumor cell burden and improved mouse survival. Our results provide a rationale to reposition the approved drug auranofin for clinical evaluation in the therapy of CLL. PMID:24599128
Nieborowska-Skorska, Margaret; Sullivan, Katherine; Dasgupta, Yashodhara; Podszywalow-Bartnicka, Paulina; Maifrede, Silvia; Di Marcantonio, Daniela; Bolton-Gillespie, Elisabeth; Cramer-Morales, Kimberly; Lee, Jaewong; Li, Min; Slupianek, Artur; Gritsyuk, Daniel; Cerny-Reiterer, Sabine; Seferynska, Ilona; Bullinger, Lars; Gorbunova, Vera; Piwocka, Katarzyna; Valent, Peter; Civin, Curt I.; Muschen, Markus; Dick, John E.; Wang, Jean C.Y.; Bhatia, Smita; Bhatia, Ravi; Eppert, Kolja; Minden, Mark D.; Sykes, Stephen M.
2017-01-01
Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase–mediated (DNA-PK–mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK–deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK–deficient quiescent leukemia cells and BRCA/DNA-PK–deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs. In conclusion, GEMA-guided targeting of PARP1 resulted in dual cellular synthetic lethality in quiescent and proliferating immature leukemia cells, and is thus a potential approach to eradicate leukemia stem and progenitor cells that are responsible for initiation and manifestation of the disease. Further, an analysis of The Cancer Genome Atlas database indicated that this personalized medicine approach could also be applied to treat numerous solid tumors from individual patients. PMID:28481221
When a Fly Has to Fly to Reproduce: Selection against Conditional Recessive Lethals in "Drosophila"
ERIC Educational Resources Information Center
Plunkett, Andrea D.; Yampolsky, Lev Y.
2010-01-01
We propose an experimental model suitable for demonstrating allele frequency change in Drosophila melanogaster populations caused by selection against an easily scorable conditional lethal, namely recessive flightless alleles such as apterous and vestigial. Homozygotes for these alleles are excluded from reproduction because the food source used…
Tilahun, Ashenafi Y.; Holz, Marah; Wu, Tsung-Teh; David, Chella S.; Rajagopalan, Govindarajan
2011-01-01
Toxic shock syndrome (TSS) caused by the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes is characterized by robust T cell activation, profound elevation in systemic levels of multiple cytokines, including interferon-γ (IFN-γ), followed by multiple organ dysfunction and often death. As IFN-γ possesses pro- as well as anti-inflammatory properties, we delineated its role in the pathogenesis of TSS. Antibody-mediated in vivo neutralization of IFN-γ or targeted disruption of IFN-γ gene conferred significant protection from lethal TSS in HLA-DR3 transgenic mice. Following systemic high dose SEB challenge, whereas the HLA-DR3.IFN-γ+/+ mice became sick and succumbed to TSS, HLA-DR3.IFN-γ−/− mice appeared healthy and were significantly protected from SEB-induced lethality. SEB-induced systemic cytokine storm was significantly blunted in HLA-DR3.IFN-γ−/− transgenic mice. Serum concentrations of several cytokines (IL-4, IL-10, IL-12p40 and IL-17) and chemokines (KC, rantes, eotaxin and MCP-1) were significantly lower in HLA-DR3.IFN-γ−/− transgenic mice. However, SEB-induced T cell expansion in the spleens was unaffected and expansion of SEB-reactive TCR Vβ8+ CD4+ and CD8+ T cells was even more pronounced in HLA-DR3.IFN-γ−/− transgenic mice when compared to HLA-DR3.IFN-γ+/+ mice. A systematic histopathological examination of several vital organs revealed that both HLA-DR3.IFN-γ+/+ and HLA-DR3.IFN-γ−/− transgenic mice displayed comparable severe inflammatory changes in lungs, and liver during TSS. Remarkably, whereas the small intestines from HLA-DR3.IFN-γ+/+ transgenic mice displayed significant pathological changes during TSS, the architecture of small intestines in HLA-DR3.IFN-γ−/− transgenic mice was preserved. In concordance with these histopathological changes, the gut permeability to macromolecules was dramatically increased in HLA-DR3.IFN-γ+/+ but not HLA-DR3.IFN-γ−/− mice during TSS. Overall, IFN-γ seemed to play a lethal role in the immunopathogenesis of TSS by inflicting fatal small bowel pathology. Our study thus identifies the important role for IFN-γ in TSS. PMID:21304813
Gresser, Amy L.; Gutzwiller, Lisa M.; Gauck, Mackenzie K.; Hartenstein, Volker; Cook, Tiffany A.; Gebelein, Brian
2015-01-01
Organismal growth regulation requires the interaction of multiple metabolic, hormonal and neuronal pathways. While the molecular basis for many of these are well characterized, less is known about the developmental origins of growth regulatory structures and the mechanisms governing control of feeding and satiety. For these reasons, new tools and approaches are needed to link the specification and maturation of discrete cell populations with their subsequent regulatory roles. In this study, we characterize a rhomboid enhancer element that selectively labels four Drosophila embryonic neural precursors. These precursors give rise to the hypopharyngeal sensory organ of the peripheral nervous system and a subset of neurons in the deutocerebral region of the embryonic central nervous system. Post embryogenesis, the rhomboid enhancer is active in a subset of cells within the larval pharyngeal epithelium. Enhancer-targeted toxin expression alters the morphology of the sense organ and results in impaired larval growth, developmental delay, defective anterior spiracle eversion and lethality. Limiting the duration of toxin expression reveals differences in the critical periods for these effects. Embryonic expression causes developmental defects and partially penetrant pre-pupal lethality. Survivors of embryonic expression, however, ultimately become viable adults. In contrast, post-embryonic toxin expression results in fully penetrant lethality. To better define the larval growth defect, we used a variety of assays to demonstrate that toxin-targeted larvae are capable of locating, ingesting and clearing food and they exhibit normal food search behaviors. Strikingly, however, following food exposure these larvae show a rapid decrease in consumption suggesting a satiety-like phenomenon that correlates with the period of impaired larval growth. Together, these data suggest a critical role for these enhancer-defined lineages in regulating feeding, growth and viability. PMID:26252385
Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification
Regard, Jean B.; Malhotra, Deepti; Gvozdenovic-Jeremic, Jelena; Josey, Michelle; Chen, Min; Weinstein, Lee S.; Lu, Jianming; Shore, Eileen M.; Kaplan, Frederick S.; Yang, Yingzi
2014-01-01
Bone formation is exquisitely controlled in space and time. Heterotopic ossification (HO), the pathologic formation of extra-skeletal bone, occurs as a common complication of trauma or in genetic disorders and can be disabling and lethal. However, the underlying molecular mechanisms are largely unknown. Here we demonstrate that Gαs restricts bone formation to the skeleton by inhibiting Hedgehog (Hh) signaling in mesenchymal progenitor cells. In progressive osseous heteroplasia (POH), a human disease caused by null mutations in GNAS that encodes Gαs, HH signaling is upregulated in ectopic osteoblasts and progenitor cells. Ectopic Hh signaling is sufficient to induce HO, while Hh signaling inhibition blocks HO in animal models. As our previous work has shown that GNAS gain of function mutations upregulate WNT/β-Catenin signaling in fibrous dysplasia (FD), our findings identify Gαs as a critical regulator of osteoblast differentiation by maintaining a balance between two key signaling pathways: Wnt/β-catenin and Hh. HH signaling inhibitors developed for cancer therapy may be repurposed to treat HO and other diseases caused by GNAS inactivation. PMID:24076664
Lee, Changkeun; Kwon, Bong-Oh; Hong, Seongjin; Noh, Junsung; Lee, Junghyun; Ryu, Jongseong; Kang, Seong-Gil; Khim, Jong Seong
2018-06-06
The potential leakage from marine CO 2 storage sites is of increasing concern, but few studies have evaluated the probable adverse effects on marine organisms. Fish, one of the top predators in marine environments, should be an essential representative species used for water column toxicity testing in response to waterborne CO 2 exposure. In the present study, we conducted fish life cycle toxicity tests to fully elucidate CO 2 toxicity mechanism effects. We tested sub-lethal and lethal toxicities of elevated CO 2 concentrations on marine medaka (Oryzias melastigma) at different developmental stages. At each developmental stage, the test species was exposed to varying concentrations of gaseous CO 2 (control air, 5%, 10%, 20%, and 30%), with 96 h of exposure at 0-4 d (early stage), 4-8 d (middle stage), and 8-12 d (late stage). Sub-lethal and lethal effects, including early developmental delays, cardiac edema, tail abnormalities, abnormal pigmentation, and mortality were monitored daily during the 14 d exposure period. At the embryonic stage, significant sub-lethal and lethal effects were observed at pH < 6.30. Hypercapnia can cause long-term and/or delayed developmental embryonic problems, even after transfer back to clean seawater. At fish juvenile and adult stages, significant mortality was observed at pH < 5.70, indicating elevated CO 2 exposure might cause various adverse effects, even during short-term exposure periods. It should be noted the early embryonic stage was found more sensitive to CO 2 exposure than other developmental stages of the fish life cycle. Overall, the present study provided baseline information for potential adverse effects of high CO 2 concentration exposure on fish developmental processes at different life cycle stages in marine ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xu, Chunling; Wang, Jiafeng; Gao, Ye; Lin, Huangyu; Du, Lin; Yang, Shanshan; Long, Simei; She, Zhigang; Cai, Xiaoling; Zhou, Shining; Lu, Yongjun
2010-05-01
Bostrycin is an anthracenedione with phytotoxic and antibacterial activity that belongs to the large family of quinones. We have isolated bostrycin from the secondary metabolites of a mangrove endophytic fungus, no. 1403, collected from the South China Sea. Using the yeast Saccharomyces cerevisiae as a model, we show that bostrycin inhibits cell proliferation by blocking the cell cycle at G1 phase and ultimately leads to cell death in a time- and dose-dependent manner. Bostrycin-induced lethal cytotoxicity is accompanied with increased levels of intracellular reactive oxygen species and hallmarks of apoptosis such as chromatin condensation, DNA fragmentation and externalization of phosphatidylserine. We further show that bostrycin decreases mitochondrial membrane electric potential and causes mitochondrial destruction during the progression of cell death. Bostrycin-induced cell death was promoted in YCA1 null yeast strain but was partially rescued in AIF1 null mutant both in fermentative and respiratory media, strongly indicating that bostrycin induces apoptosis in yeast cells through a mitochondria-mediated but caspase-independent pathway.
Paust, Silke; Gill, Harvinder S; Wang, Bao-Zhong; Flynn, Michael P; Moseman, E Ashley; Senman, Balimkiz; Szczepanik, Marian; Telenti, Amalio; Askenase, Philip W; Compans, Richard W; von Andrian, Ulrich H
2010-12-01
Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell-expressed CXCR6.
HOXA5 plays tissue-specific roles in the developing respiratory system.
Landry-Truchon, Kim; Houde, Nicolas; Boucherat, Olivier; Joncas, France-Hélène; Dasen, Jeremy S; Philippidou, Polyxeni; Mansfield, Jennifer H; Jeannotte, Lucie
2017-10-01
Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract. © 2017. Published by The Company of Biologists Ltd.
Virus-like particle-based vaccine against coxsackievirus A6 protects mice against lethal infections.
Shen, Chaoyun; Ku, Zhiqiang; Zhou, Yu; Li, Dapeng; Wang, Lili; Lan, Ke; Liu, Qingwei; Huang, Zhong
2016-07-25
Coxsackievirus A6 (CA6) is emerging as one of the major causative agents of hand, foot, and mouth disease (HFMD) worldwide. However, no vaccine is currently available for preventing CA6 infection. Here, we report the development of a virus-like particle (VLP)-based recombinant vaccine for CA6. We produced CA6 VLPs in insect cells by infecting the cells with a baculovirus coexpressing the genes encoding CA6 P1 and 3CD. Biochemical analyses showed that the produced VLPs consisted of VP0, VP1, and VP3 capsid subunit proteins generated by the cleavage of P1 by 3CD. Mice immunized with these VLPs produced CA6-specific serum antibodies. Passive transfer of antisera from CA6 VLP-immunized mice protected recipient mice from lethal infections caused by homologous and heterologous CA6 strains. Moreover, active immunization of mice with CA6 VLPs efficiently conferred protection against both homologous and heterologous CA6 infections. These results suggested that CA6 VLP-based recombinant vaccine is a promising candidate vaccine for preventing CA6 infection and can be incorporated into a multivalent HFMD vaccine formulation to achieve broad-spectrum and effective prevention of this disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mani, Jiju; Jin, Nan; Schmitt, Michael
2014-10-01
Immunosuppression of patients after hematopoietic stem cell or kidney transplantation potentially leads to reactivation of JC and BK polyomaviruses. In hematopoietic stem cell transplantation, the reactivation rate of BKV can be up to 60%, resulting in severe complications of the urogenital tract, particularly hemorrhagic cystitis and renal dysfunction. After kidney transplantation, BKV reactivation can cause a loss of the graft. JCV can cause progressive multifocal leukoencephalopathy, a lethal disease. Adoptive transfer of donor-derived polyomavirus-specific T cells is an attractive and promising treatment that restores virus-specific cellular immunity. Pioneering work in the early 1990s on the reconstitution of cellular immunity against cytomegalovirus and recent development in the field of monitoring and isolation of antigen-specific T cells paved the way toward a personalized T-cell therapy. Multimer technology and magnetic beads are available to produce untouched T cells in a single-step, good manufacturing practice-compliant procedure. Another exciting aspect of T-cell therapy against polyomaviruses is the fact that both JCV and BKV can be targeted simultaneously because of their high sequence homology. Finally, "designer T cells" can be redirected to recognize polyomavirus antigens with high-affinity T-cell receptors. This review summarizes the state-of-the art technologies and gives an outlook of future developments in the field. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
[Characteristics of traumatic death of people in high mountains].
Mechukaev, A A; Mechukaev, A M
2006-01-01
Lethal accidents with tourists who died of trauma in high mountains of Kabardino-Balkaria were retrospectively studied for the period from 1978 to 2003. The victims were 163 males and 17 females aged 14-72 years. Among causes of death most prevalent was a step-by-step blunt mechanical trauma as a result of falling from a great height. In such conditions the body obtains great kinetic energy causing a severe, often lethal, craniocerebral injury with destruction of the brain, blunt injury of the chest, thoracic and other organs.
Barnes, Aileen M.; Cabral, Wayne A.; Weis, MaryAnn; Makareeva, Elena; Mertz, Edward L.; Leikin, Sergey; Eyre, David; Trujillo, Carlos; Marini, Joan C.
2012-01-01
Recessive osteogenesis imperfecta (OI) is caused by defects in genes whose products interact with type I collagen for modification and/or folding. We identified a Palestinian pedigree with moderate and lethal forms of recessive OI caused by mutations in FKBP10 or PPIB, which encode endoplasmic reticulum resident chaperone/isomerases FKBP65 and CyPB, respectively. In one pedigree branch, both parents carry a deletion in PPIB (c.563_566delACAG), causing lethal type IX OI in their two children. In another branch, a child with moderate type XI OI has a homozygous FKBP10 mutation (c.1271_1272delCCinsA). Proband FKBP10 transcripts are 4% of control and FKBP65 protein is absent from proband cells. Proband collagen electrophoresis reveals slight band broadening, compatible with ≈10% overmodification. Normal chain incorporation, helix folding, and collagen Tm support a minimal general collagen chaperone role for FKBP65. However, there is a dramatic decrease in collagen deposited in culture despite normal collagen secretion. Mass spectrometry reveals absence of hydroxylation of the collagen telopeptide lysine involved in cross-linking, suggesting that FKBP65 is required for lysyl hydroxylase activity or access to type I collagen telopeptide lysines, perhaps through its function as a peptidylprolyl isomerase. Proband collagen to organics ratio in matrix is approximately 30% of normal in Raman spectra. Immunofluorescence shows sparse, disorganized collagen fibrils in proband matrix. PMID:22718341
Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G
2017-07-25
We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected cells recover. Despite the importance of this process, the broader impact of bacterial nucleotides on the functioning of eukaryotic cells remains poorly defined. To address this, we genetically modified cells of the eukaryote Saccharomyces cerevisiae (baker's yeast) to produce three of these molecules (cdiAMP, cdiGMP, and ppGpp) and used the engineered strains as model systems to characterize the effects of the molecules on the cells. In addition to demonstrating that the nucleotides are each capable of adversely affecting yeast cell function and growth, we also identified the cellular functions important for mitigating the damage caused, suggesting possible modes of action. This study expands our understanding of the molecular interactions that can take place between bacterial and eukaryotic cells. Copyright © 2017 Hesketh et al.
Cytotoxic responses of selected insecticides in chick ganglia cultures.
Sharma, R P; Obersteiner, E J
1981-01-01
Various agricultural chemicals, e.g. pesticides, are known to cause different toxic effects in man and animals. Some of these produce responses involving the nervous tissue. Total of 52 such chemicals, representing organophosphates, carbamates and other miscellaneous insecticides were evaluated to determine their relative cytotoxic effects in avian dorsal root ganglia cultures. Many of these chemicals caused a slight stimulation of cellular growth at very low concentrations. At toxic concentrations, a dose-related but nonspecific inhibition of cell growth occurred. The cytotoxic changes included the decreased migration of cells from the culture implant, varicosities in and shortening of various cells and vacuolization and rounding of neuroglial cells. At high concentrations, pigmentary degeneration and complete abolition of cell growth were observed. The toxic effects were numerically scored in a random blind fashion and the concentrations of individual chemicals to produce a half maximal effect (IC50) in culture were determined from the dose-response curves. The IC50 values for various chemicals ranged from approximately 10(-6) M for compounds like methylparathion, diazinon, paraoxon and Vendex to greater than 10(-2) M for chlorpyriphos and methylchlorpyriphos. No significant correlations of nerve fiber or glial cell cytotoxicity were apparent with other toxic or physico-chemical properties such as lethal dose in animals, cholinesterase inhibition, lipophilicity or water solubility of chemicals. Clinically neurotoxic and nonneurotoxic compounds caused similar cytotoxic effects in ganglia cultures. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:7272842
Egawa, Kazutaka; Shimojima, Masayuki; Taniguchi, Satoshi; Nagata, Noriyo; Tani, Hideki; Yoshikawa, Tomoki; Kurosu, Takeshi; Watanabe, Shumpei; Fukushi, Shuetsu; Saijo, Masayuki
2017-12-01
Cases of acute respiratory tract infection caused by Pteropine orthoreovirus (PRV) of the genus Orthoreovirus (family: Reoviridae) have been reported in Southeast Asia, where it was isolated from humans and bats. It is possible that PRV-associated respiratory infections might be prevalent in Southeast Asia. The clinical course of PRV is not fully elucidated. The virulence, pathology, and pathogenesis of two PRV strains, a human-borne PRV strain (isolated from a patient, who returned to Japan from Bali, Indonesia in 2007) and a bat-borne PRV (isolated from a bat [Eonycteris spelaea] in the Philippines in 2013) were investigated in BALB/c mice using virological, pathological, and immunological study methods. The intranasal inoculation of BALB/c mice with human-borne PRV caused respiratory infection. In addition, all mice with immunity induced by pre-inoculation with a non-lethal dose of PRV were completely protected against lethal PRV infection. Mice treated with antiserum with neutralizing antibody activity after inoculation with a lethal dose of PRV showed a reduced fatality rate. In this mouse model, bat-borne PRV caused respiratory infection similar to human-borne PRV. PRV caused lethal respiratory disease in an animal model of PRV infection, in which BALB/c mice were used. The BALB/c mouse model might help to accelerate research on the virulence of PRV and be useful for evaluating the efficacy of therapeutic agents and vaccines for the treatment and prevention of PRV infection. PRV was shown for the first time to be a causative virus of respiratory disease on the basis of Koch's postulations by the additional demonstration that PRV caused respiratory disease in mice through their intranasal inoculation with PRV.
Ozmen, Murat; Güngördü, Abbas; Erdemoglu, Sema; Ozmen, Nesrin; Asilturk, Meltem
2015-08-01
The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO2. Undoped and Mn-doped TiO2 nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV-vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO2 was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO2 nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO2 increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2-4h of degradation. However, biochemical assays showed that both Mn-doped TiO2 and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped TiO2 should be considered due to nanomaterial applications and for spilled nanoparticles in an aquatic ecosystem. Also, the risk of nanoparticles should be considered using indicator reference biochemical markers to verify the environmental health impacts. Copyright © 2015 Elsevier B.V. All rights reserved.
DNA replication error-induced extinction of diploid yeast.
Herr, Alan J; Kennedy, Scott R; Knowels, Gary M; Schultz, Eric M; Preston, Bradley D
2014-03-01
Genetic defects in DNA polymerase accuracy, proofreading, or mismatch repair (MMR) induce mutator phenotypes that accelerate adaptation of microbes and tumor cells. Certain combinations of mutator alleles synergistically increase mutation rates to levels that drive extinction of haploid cells. The maximum tolerated mutation rate of diploid cells is unknown. Here, we define the threshold for replication error-induced extinction (EEX) of diploid Saccharomyces cerevisiae. Double-mutant pol3 alleles that carry mutations for defective DNA polymerase-δ proofreading (pol3-01) and accuracy (pol3-L612M or pol3-L612G) induce strong mutator phenotypes in heterozygous diploids (POL3/pol3-01,L612M or POL3/pol3-01,L612G). Both pol3-01,L612M and pol3-01,L612G alleles are lethal in the homozygous state; cells with pol3-01,L612M divide up to 10 times before arresting at random stages in the cell cycle. Antimutator eex mutations in the pol3 alleles suppress this lethality (pol3-01,L612M,eex or pol3-01,L612G,eex). MMR defects synergize with pol3-01,L612M,eex and pol3-01,L612G,eex alleles, increasing mutation rates and impairing growth. Conversely, inactivation of the Dun1 S-phase checkpoint kinase suppresses strong pol3-01,L612M,eex and pol3-01,L612G,eex mutator phenotypes as well as the lethal pol3-01,L612M phenotype. Our results reveal that the lethal error threshold in diploids is 10 times higher than in haploids and likely determined by homozygous inactivation of essential genes. Pronounced loss of fitness occurs at mutation rates well below the lethal threshold, suggesting that mutator-driven cancers may be susceptible to drugs that exacerbate replication errors.
Yang, Qianyi; Nasir, Amjad M; Coyne, Robert S; Forney, James D
2015-12-01
Ubc9p is the sole E2-conjugating enzyme for SUMOylation, and its proper function is required for regulating key nuclear events such as transcription, DNA repair, and mitosis. In Tetrahymena thermophila, the genome is separated into a diploid germ line micronucleus (MIC) that divides by mitosis and a polyploid somatic macronucleus (MAC) that divides amitotically. This unusual nuclear organization provides novel opportunities for the study of SUMOylation and Ubc9p function. We identified the UBC9 gene and demonstrated that its complete deletion from both MIC and MAC genomes is lethal. Rescue of the lethal phenotype with a GFP-UBC9 fusion gene driven by a metallothionein promoter generated a cell line with CdCl2-dependent expression of green fluorescent protein (GFP)-Ubc9p. Depletion of Ubc9p in vegetative cells resulted in the loss of MICs, but MACs continued to divide. In contrast, expression of catalytically inactive Ubc9p resulted in the accumulation of multiple MICs. Critical roles for Ubc9p were also identified during the sexual life cycle of Tetrahymena. Cell lines that were depleted for Ubc9p did not form mating pairs and therefore could not complete any of the subsequent stages of conjugation, including meiosis and macronuclear development. Mating between cells expressing catalytically inactive Ubc9p resulted in arrest during macronuclear development, consistent with our observation that Ubc9p accumulates in the developing macronucleus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
DeZwaan, Todd M.; Ellingson, Eric; Pellman, David; Roof, David M.
1997-01-01
Spindle orientation and nuclear migration are crucial events in cell growth and differentiation of many eukaryotes. Here we show that KIP3, the sixth and final kinesin-related gene in Saccharomyces cerevisiae, is required for migration of the nucleus to the bud site in preparation for mitosis. The position of the nucleus in the cell and the orientation of the mitotic spindle was examined by microscopy of fixed cells and by time-lapse microscopy of individual live cells. Mutations in KIP3 and in the dynein heavy chain gene defined two distinct phases of nuclear migration: a KIP3-dependent movement of the nucleus toward the incipient bud site and a dynein-dependent translocation of the nucleus through the bud neck during anaphase. Loss of KIP3 function disrupts the unidirectional movement of the nucleus toward the bud and mitotic spindle orientation, causing large oscillations in nuclear position. The oscillatory motions sometimes brought the nucleus in close proximity to the bud neck, possibly accounting for the viability of a kip3 null mutant. The kip3 null mutant exhibits normal translocation of the nucleus through the neck and normal spindle pole separation kinetics during anaphase. Simultaneous loss of KIP3 and kinesin-related KAR3 function, or of KIP3 and dynein function, is lethal but does not block any additional detectable movement. This suggests that the lethality is due to the combination of sequential and possibly overlapping defects. Epitope-tagged Kip3p localizes to astral and central spindle microtubules and is also present throughout the cytoplasm and nucleus. PMID:9281581
[Research progress on ebola virus glycoprotein].
Ding, Guo-Yong; Wang, Zhi-Yu; Gao, Lu; Jiang, Bao-Fa
2013-03-01
Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.
USDA-ARS?s Scientific Manuscript database
The redabay ambrosia beetle, Xyleborus glabratus, carries a phytopathogenic symbiont, Raffaelea lauricola, which causes laurel wilt, a lethal vascular disease of some Lauraceae species. Both X. glabratus and R. lauricola are natives of Asia that recently invaded much of the coastal plain of the sout...
Survival and dominant transmission of "lethal" platyspondylic dwarfism of the "West coast" types.
Omran, H; Uhl, M; Brandis, M; Wolff, G
2000-03-01
Torrance, San Diego, and Luton types ("West coast" types) of neonatal platyspondylic short-limbed dwarfism are suspected to be caused by dominant mutations that are obligatorily lethal. We report on an affected mother, who passed the disease to her daughter, confirming dominant disease transmission. Survival of the mother indicates a wider phenotypic spectrum.
USDA-ARS?s Scientific Manuscript database
The redbay ambrosia beetle (RAB), Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae) vectors the fungal pathogen, Raffaelea lauricola, which causes laurel wilt (LW), a lethal disease of trees in the family Lauraceae, including the most commercially important crop in this family, avocado, Pe...
The Prevalence, Lethality and Intent of Suicide Attempts among Adolescents.
ERIC Educational Resources Information Center
Andrews, Judy A.; Lewinsohn, Peter M.
Although suicide is the second leading cause of death among adolescents in the United States, little is known about the prevalence or characteristics of suicide attempts among adolescents. Data from 1,710 adolescents attending 9 high schools in 5 communities were examined to determine the prevalence of suicide attempts and the lethality and intent…
Grillo-Hill, Bree K; Choi, Changhoon; Jimenez-Vidal, Maite; Barber, Diane L
2015-01-01
Intracellular pH (pHi) dynamics is increasingly recognized as an important regulator of a range of normal and pathological cell behaviors. Notably, increased pHi is now acknowledged as a conserved characteristic of cancers and in cell models is confirmed to increase proliferation and migration as well as limit apoptosis. However, the significance of increased pHi for cancer in vivo remains unresolved. Using Drosophila melanogaster, we show that increased pHi is sufficient to induce dysplasia in the absence of other transforming cues and potentiates growth and invasion with oncogenic Ras. Using a genetically encoded biosensor we also confirm increased pHi in situ. Moreover, in Drosophila models and clonal human mammary cells we show that limiting H+ efflux with oncogenic Raf or Ras induces acidosis and synthetic lethality. Further, we show lethality in invasive primary tumor cell lines with inhibiting H+ efflux. Synthetic lethality with reduced H+ efflux and activated oncogene expression could be exploited therapeutically to restrain cancer progression while limiting off-target effects. DOI: http://dx.doi.org/10.7554/eLife.03270.001 PMID:25793441
Kang, Moon Cheol; Choi, Dong-Hoon; Choi, Young Woo; Park, Seong Jeong; Namkoong, Hong; Park, Ki Seok; Ahn, So-Shin; Surh, Charles D; Yoon, Sun-Woo; Kim, Doo-Jin; Choi, Jung-ah; Park, Yunji; Sung, Young Chul; Lee, Seung-Woo
2015-12-09
Influenza A virus (IAV) infection frequently causes hospitalization and mortality due to severe immunopathology. Annual vaccination and antiviral drugs are the current countermeasures against IAV infection, but they have a limited efficacy against new IAV variants. Here, we show that intranasal pretreatment with Fc-fused interleukin-7 (IL-7-mFc) protects mice from lethal IAV infections. The protective activity of IL-7-mFc relies on transcytosis via neonatal Fc receptor (FcRn) in the lung and lasts for several weeks. Introduction of IL-7-mFc alters pulmonary immune environments, leading to recruitment of T cells from circulation and their subsequent residency as tissue-resident memory-like T (TRM-like) cells. IL-7-mFc-primed pulmonary TRM-like cells contribute to protection upon IAV infection by dual modes. First, TRM-like cells, although not antigen specific but polyclonal, attenuate viral replication at the early phase of IAV infection. Second, TRM-like cells augment expansion of IAV-specific cytotoxic T lymphocytes (CTLs), in particular at the late phase of infection, which directly control viruses. Thus, accelerated viral clearance facilitated by pulmonary T cells, which are either antigen specific or not, alleviates immunopathology in the lung and mortality from IAV infection. Depleting a subset of pulmonary T cells indicates that both CD4 and CD8 T cells contribute to protection from IAV, although IL-7-primed CD4 T cells have a more prominent role. Collectively, we propose intranasal IL-7-mFc pretreatment as an effective means for generating protective immunity against IAV infections, which could be applied to a potential prophylaxis for influenza pandemics in the future. The major consequence of a highly pathogenic IAV infection is severe pulmonary inflammation, which can result in organ failure and death at worst. Although vaccines for seasonal IAVs are effective, frequent variation of surface viral proteins hampers development of protective immunity. In this study, we demonstrated that intranasal IL-7-mFc pretreatment protected immunologically naive mice from lethal IAV infections. Intranasal pretreatment with IL-7-mFc induced an infiltration of T cells in the lung, which reside as effector/memory T cells with lung-retentive markers. Those IL-7-primed pulmonary T cells contributed to development of protective immunity upon IAV infection, reducing pulmonary immunopathology while increasing IAV-specific cytotoxic T lymphocytes. Since a single treatment with IL-7-mFc was effective in the protection against multiple strains of IAV for an extended period of time, our findings suggest a possibility that IL-7-mFc treatment, as a potential prophylaxis, can be developed for controlling highly pathogenic IAV infections. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Prehn, Richmond T
2007-05-04
TUMOR PROGRESSION: In many (perhaps in all) tumor systems, a malignant cancer is preceded by a benign lesion. Most benign lesions do not transform to malignancy and many regress. The final transformative step to malignancy differs from the preceding steps in, among other things, that it often occurs in the absence of the original carcinogenic stimulus. Relatively low titers of specific immune reactants are known to stimulate, but cell-to-cell or cell-to-matrix interactions appear to be major inhibitors of tumor-growth. Therefore, it seems reasonable to hypothesize that the mechanism of immunostimulation may be an interference with cell-to-cell or cell-to-matrix communication by a sub-lethal immune-reaction. While the above hypothesis remains unproven, some evidence suggests that immunity may have a major facilitating effect on tumor growth especially at the time of malignant transformation. There is even some evidence suggesting that transformation in vivo may seldom occur in the absence of immunostimulation of the premalignant lesion. Positive selection by the immune reaction may be the reason that tumors are immunogenic.
Tributyltin induces Yca1p-dependent cell death of yeast Saccharomyces cerevisiae.
Chahomchuen, Thippayarat; Akiyama, Koichi; Sekito, Takayuki; Sugimoto, Naoko; Okabe, Masaaki; Nishimoto, Sogo; Sugahara, Takuya; Kakinuma, Yoshimi
2009-10-01
Tributyltin chloride (TBT), an environmental pollutant, is toxic to a variety of eukaryotic and prokaryotic organisms. Although it has been reported that TBT induces apoptotic cell death in mammalian, the action of TBT on eukaryotic microorganisms has not yet been fully investigated. In this study we examined the mechanism involved in cell death caused by TBT exposure in Saccharomyces cerevisiae. The median lethal concentration of TBT was 10 microM for the parent strain BY4741 and 3 microM for the pdr5Delta mutant defective in a major multidrug transporter, respectively. Fluorescence microscopic observations revealed nuclear condensation and chromatin fragmentation in cells treated with TBT indicating that cells underwent an apoptosis-like cell dearth. TBT-induced cell death was suppressed by deletion of the yca1 gene encoding a homologue of the mammalian caspase. In parallel, reactive oxygen species (ROS) were produced by TBT. These results suggest that TBT induces apoptosis-like cell death in yeast via an Yca1p-dependent pathway possibly downstream of the ROS production. This is the first report on TBT-induced apoptotic cell death in yeast.
Marlin, Jerry W; Chang, Yu-Wen E; Ober, Margaret; Handy, Amy; Xu, Wenhao; Jakobi, Rolf
2011-06-01
p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.
Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina
2004-03-15
Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.
Li, Yue; Chen, Hung-Lin; Bannick, Nadine; Henry, Michael; Holm, Adrian N; Metwali, Ahmed; Urban, Joseph F; Rothman, Paul B; Weiner, George J; Blazar, Bruce R; Elliott, David E; Ince, M Nedim
2015-02-01
Donor T lymphocyte transfer with hematopoietic stem cells suppresses residual tumor growth (graft-versus-tumor [GVT]) in cancer patients undergoing bone marrow transplantation (BMT). However, donor T cell reactivity to host organs causes severe and potentially lethal inflammation called graft-versus-host disease (GVHD). High-dose steroids or other immunosuppressive drugs are used to treat GVHD that have limited ability to control the inflammation while incurring long-term toxicity. Novel strategies are needed to modulate GVHD, preserve GVT, and improve the outcome of BMT. Regulatory T cells (Tregs) control alloantigen-sensitized inflammation of GVHD, sustain GVT, and prevent mortality in BMT. Helminths colonizing the alimentary tract dramatically increase the Treg activity, thereby modulating intestinal or systemic inflammatory responses. These observations led us to hypothesize that helminths can regulate GVHD and maintain GVT in mice. Acute GVHD was induced in helminth (Heligmosomoides polygyrus)-infected or uninfected BALB/c recipients of C57BL/6 donor grafts. Helminth infection suppressed donor T cell inflammatory cytokine generation and reduced GVHD-related mortality, but maintained GVT. H. polygyrus colonization promoted the survival of TGF-β-generating recipient Tregs after a conditioning regimen with total body irradiation and led to a TGF-β-dependent in vivo expansion/maturation of donor Tregs after BMT. Helminths did not control GVHD when T cells unresponsive to TGF-β-mediated immune regulation were used as donor T lymphocytes. These results suggest that helminths suppress acute GVHD using Tregs and TGF-β-dependent pathways in mice. Helminthic regulation of GVHD and GVT through intestinal immune conditioning may improve the outcome of BMT. Copyright © 2015 by The American Association of Immunologists, Inc.
A comparative study of proliferative nodules and lethal melanomas in congenital nevi from children.
Yélamos, Oriol; Arva, Nicoleta C; Obregon, Roxana; Yazdan, Pedram; Wagner, Annette; Guitart, Joan; Gerami, Pedram
2015-03-01
Differentiating proliferative nodules (PNs) from melanomas arising in congenital nevi (CN) is a considerable challenge for dermatopathologists. Most of the specimens dermatopathologists assess that deal with this differential diagnosis involve proliferations of melanocytes arising in the dermis. In this study, we compare the clinical, histologic, and molecular findings of these 2 conditions. In our database, we found 22 examples of PNs arising in the dermis of CN and 2 cases of lethal melanomas arising from the dermis/epidermis of CN of children. Importantly, we found that among dermal melanocytic proliferations arising from CN in children, PNs are far more common than lethal melanomas. Clinically, multiplicity of lesions favored a diagnosis of PNs, whereas ulceration was infrequent in PNs compared with lethal melanomas. Histologically, PNs showed several distinct patterns including expansile nodules of epithelioid melanocytes with mitotic counts lower than that seen in the melanomas (1.67 vs. 12.5 mitoses/mm), a small round blue cell pattern often highly mitotically active, neurocristic-like, blue nevus-like, a nevoid melanoma-like pattern, or an undifferentiated spindle cell pattern. The lethal melanomas both featured expansile nodules of epithelioid melanocytes with high mitotic counts (range, 5 to 20 mitoses/mm) and an ulcerated overlying epidermis. At the molecular level, the PNs showed mostly whole chromosomal copy number aberrations, which in some cases were accompanied by rare partial chromosomal aberrations, whereas both lethal melanomas showed highly elevated copy number aberrations involving 6p25 without gains of the long arm of chromosome 6.
Intraoperative diagnostics and elimination of residual microtumours with plasmonic nanobubbles
NASA Astrophysics Data System (ADS)
Lukianova-Hleb, Ekaterina Y.; Kim, Yoo-Shin; Belatsarkouski, Ihor; Gillenwater, Ann M.; O'Neill, Brian E.; Lapotko, Dmitri O.
2016-06-01
Failure of cancer surgery to intraoperatively detect and eliminate microscopic residual disease (MRD) causes lethal recurrence and metastases, and the removal of important normal tissues causes excessive morbidity. Here, we show that a plasmonic nanobubble (PNB), a non-stationary laser pulse-activated nanoevent, intraoperatively detects and eliminates MRD in the surgical bed. PNBs were generated in vivo in head and neck cancer cells by systemically targeting tumours with gold colloids and locally applying near-infrared, low-energy short laser pulses, and were simultaneously detected with an acoustic probe. In mouse models, between 3 and 30 residual cancer cells and MRD (undetectable with current methods) were non-invasively detected up to 4 mm deep in the surgical bed within 1 ms. In resectable MRD, PNB-guided surgery prevented local recurrence and delivered 100% tumour-free survival. In unresectable MRD, PNB nanosurgery improved survival twofold compared with standard surgery. Our results show that PNB-guided surgery and nanosurgery can rapidly and precisely detect and remove MRD in simple intraoperative procedures.
Kemp, Michael G.; Sancar, Aziz
2016-01-01
ATR (ataxia telangiectasia and Rad-3-related) is a protein kinase that maintains genome stability and halts cell cycle phase transitions in response to DNA lesions that block DNA polymerase movement. These DNA replication-associated features of ATR function have led to the emergence of ATR kinase inhibitors as potential adjuvants for DNA-damaging cancer chemotherapeutics. However, whether ATR affects the genotoxic stress response in non-replicating, non-cycling cells is currently unknown. We therefore used chemical inhibition of ATR kinase activity to examine the role of ATR in quiescent human cells. Although ATR inhibition had no obvious effects on the viability of non-cycling cells, inhibition of ATR partially protected non-replicating cells from the lethal effects of UV and UV mimetics. Analyses of various DNA damage response signaling pathways demonstrated that ATR inhibition reduced the activation of apoptotic signaling by these agents in non-cycling cells. The pro-apoptosis/cell death function of ATR is likely due to transcription stress because the lethal effects of compounds that block RNA polymerase movement were reduced in the presence of an ATR inhibitor. These results therefore suggest that whereas DNA polymerase stalling at DNA lesions activates ATR to protect cell viability and prevent apoptosis, the stalling of RNA polymerases instead activates ATR to induce an apoptotic form of cell death in non-cycling cells. These results have important implications regarding the use of ATR inhibitors in cancer chemotherapy regimens. PMID:26940878
Santander, Javier; Xin, Wei; Yang, Zhao; Curtiss, Roy
2010-01-01
asdA mutants of Gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd+ plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd+ plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric Gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd+ expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd+ vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd+ plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry. PMID:21209920
Santander, Javier; Xin, Wei; Yang, Zhao; Curtiss, Roy
2010-12-29
asdA mutants of gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd(+) plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd(+) plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd(+) expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd(+) vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd(+) plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry.
Accelerated hematopoietic toxicity by high energy (56)Fe radiation.
Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A; Kallakury, Bhaskar V S; Kolesnick, Richard; Cole, Michael F; Fornace, Albert J
2012-03-01
There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or X-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. C57BL/6J mice were irradiated with (56)Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of (56)Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Although onset was more rapid, (56)Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)(50/30) (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy, respectively, with relative biologic effectiveness for (56)Fe ions of 1.25 and 1.06 for protons. (56)Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity.
Karauzum, Hatice; Chen, Gang; Abaandou, Laura; Mahmoudieh, Mahta; Boroun, Atefeh R.; Shulenin, Sergey; Devi, V. Sathya; Stavale, Eric; Warfield, Kelly L.; Zeitlin, Larry; Roy, Chad J.; Sidhu, Sachdev S.; Aman, M. Javad
2012-01-01
Staphylococcal enterotoxin B (SEB) is a potent toxin that can cause toxic shock syndrome and act as a lethal and incapacitating agent when used as a bioweapon. There are currently no vaccines or immunotherapeutics available against this toxin. Using phage display technology, human antigen-binding fragments (Fabs) were selected against SEB, and proteins were produced in Escherichia coli cells and characterized for their binding affinity and their toxin neutralizing activity in vitro and in vivo. Highly protective Fabs were converted into full-length IgGs and produced in mammalian cells. Additionally, the production of anti-SEB antibodies was explored in the Nicotiana benthamiana plant expression system. Affinity maturation was performed to produce optimized lead anti-SEB antibody candidates with subnanomolar affinities. IgGs produced in N. benthamiana showed characteristics comparable with those of counterparts produced in mammalian cells. IgGs were tested for their therapeutic efficacy in the mouse toxic shock model using different challenge doses of SEB and a treatment with 200 μg of IgGs 1 h after SEB challenge. The lead candidates displayed full protection from lethal challenge over a wide range of SEB challenge doses. Furthermore, mice that were treated with anti-SEB IgG had significantly lower IFNγ and IL-2 levels in serum compared with mock-treated mice. In summary, these anti-SEB monoclonal antibodies represent excellent therapeutic candidates for further preclinical and clinical development. PMID:22645125
Accelerated Hematopoietic Toxicity by High Energy 56Fe Radiation
Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A.; Kallakury, Bhaskar V. S.; Kolesnick, Richard; Cole, Michael F.; Fornace, Albert J.
2013-01-01
Purpose There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or x-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. Methods C57BL/6J mice were irradiated with 56Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of 56Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Results Although onset was more rapid, 56Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)50/30 (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy respectively with relative biologic effectiveness for 56Fe ions of 1.25 and 1.06 for protons. Conclusions 56Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity. PMID:22077279
Hirouchi, Tokuhisa; Ito, Koichi; Nakano, Manabu; Monzen, Satoru; Yoshino, Hironori; Chiba, Mitsuru; Hazawa, Masaharu; Nakano, Akira; Ishikawa, Junya; Yamaguchi, Masaru; Tanaka, Kimio; Kashiwakura, Ikuo
2015-01-01
It is important to establish an easy-to-use therapeutic protocol for the emergency medical care of patients involved in radiation accidents to reduce the radiation-related casualties. The present study aimed to establish an optimum therapeutic protocol using currently approved pharmaceutical drugs to increase the survival of victims exposed to lethal radiation. Different combinations of four drugs-recombinant human erythropoietin (EPO), granulocyte-colony stimulating factor (G-CSF), c-mpl receptor agonist romiplostim (RP) and nandrolone decanoate (ND)-were administered to mice within 2 h after exposure to a lethal 7 Gy dose of γ-irradiation. On day 30 after irradiation, the condition of the mice was analyzed using various hematological parameters, such as the number of peripheral blood cells, bone marrow cells, hematopoietic progenitor cells and the expression of cell surface antigens. Approximately 10% of the untreated irradiated control mice survived for 21 days, but all of the control mice died by day 30. The combined administration of G-CSF, EPO and RP for five days immediately after irradiation led to a complete survival of the irradiated mice until day 30. However, the treatment with G-CSF, EPO and RP with ND led to only 75% survival at day 30. The hematological analyses showed that the numbers of almost all of hematopoietic cells in the surviving mice treated with effective medications recovered to the levels of non-irradiated mice. The present findings show that the combination of G-CSF, EPO and RP may be a useful countermeasure for victims exposed to accidental lethal irradiation.
Lethal Dysregulation of Energy Metabolism During Embryonic Vitamin E Deficiency
McDougall, Melissa; Choi, Jaewoo; Kim, Hye-Kyeong; Bobe, Gerd; Stevens, J. Frederik; Cadenas, Enrique; Tanguay, Robert; Traber, Maret G.
2017-01-01
Vitamin E (α-tocopherol, VitE) was discovered in 1922 for its role in preventing embryonic mortality. We investigated the underlying mechanisms causing lethality using targeted metabolomics analyses of zebrafish VitE-deficient embryos over five days of development, which coincided with their increased morbidity and mortality. VitE deficiency resulted in peroxidation of docosahexaenoic acid (DHA), depleting DHA-containing phospholipids, especially phosphatidylcholine, which also caused choline depletion. This increased lipid peroxidation also increased NADPH oxidation, which depleted glucose by shunting it to the pentose phosphate pathway. VitE deficiency was associated with mitochondrial dysfunction with concomitant impairment of energy homeostasis. The observed morbidity and mortality outcomes could be attenuated, but not fully reversed, by glucose injection into VitE-deficient embryos at developmental day one. Thus, embryonic VitE deficiency in vertebrates leads to a metabolic reprogramming that adversely affects methyl donor status and cellular energy homeostasis with lethal outcomes. PMID:28095320
Hewish, M; Martin, S A; Elliott, R; Cunningham, D; Lord, C J; Ashworth, A
2013-01-01
Background: DNA mismatch repair deficiency is present in a significant proportion of a number of solid tumours and is associated with distinct clinical behaviour. Methods: To identify the therapeutic agents that might show selectivity for mismatch repair-deficient tumour cells, we screened a pair of isogenic MLH1-deficient and MLH1-proficient tumour cell lines with a library of clinically used drugs. To test the generality of hits in the screen, selective agents were retested in cells deficient in the MSH2 mismatch repair gene. Results: We identified cytarabine and other related cytosine-based nucleoside analogues as being selectively toxic to MLH1 and MSH2-deficient tumour cells. The selective cytotoxicity we observed was likely caused by increased levels of cellular oxidative stress, as it could be abrogated by antioxidants. Conclusion: We propose that cytarabine-based chemotherapy regimens may represent a tumour-selective treatment strategy for mismatch repair-deficient cancers. PMID:23361057
Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J
2009-12-01
Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.
Endothelial cell cytotoxicity of cotton bracts tannin and aqueous cotton bracts extract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.M.; Hanson, M.N.; Rohrbach, M.S.
1986-04-01
Using an in vitro cytotoxicity assay based on the release of /sup 51/Cr from cultured porcine thoracic aortic and pulmonary arterial endothelial cells, we have demonstrated that cotton bracts tannin is a potent endothelial cell cytotoxin. It produces dose-dependent lethal injury to both types of endothelial cells with the aortic cells, being somewhat more sensitive to tannin-mediated injury than the pulmonary arterial cells. Cytotoxic injury to the cells was biphasic. During the first 3 hr of exposure to tannin, no lethal injury was detected. However, during this period, profound changes in morphology were observed suggesting sublethal injury to the cellsmore » preceded the ultimate toxic damage. Comparison of the cytotoxicity dose curves for aqueous bracts extracts with those for tannin demonstrated that tannin was major cytotoxin present in bracts.« less
Gaidamakov, Sergei; Maximova, Olga A.; Chon, Hyongi; Blewett, Nathan H.; Wang, Hongsheng; Crawford, Amanda K.; Day, Amanda; Tulchin, Natalie; Crouch, Robert J.; Morse, Herbert C.; Blitzer, Robert D.
2014-01-01
La antigen (Sjögren's syndrome antigen B) is a phosphoprotein associated with nascent precursor tRNAs and other RNAs, and it is targeted by autoantibodies in patients with Sjögren's syndrome, systemic lupus erythematosus, and neonatal lupus. Increased levels of La are associated with leukemias and other cancers, and various viruses usurp La to promote their replication. Yeast cells (Saccharomyces cerevisiae and Schizosaccharomyces pombe) genetically depleted of La grow and proliferate, whereas deletion from mice causes early embryonic lethality, raising the question of whether La is required by mammalian cells generally or only to surpass a developmental stage. We developed a conditional La allele and used it in mice that express Cre recombinase in either B cell progenitors or the forebrain. B cell Mb1Cre La-deleted mice produce no B cells. Consistent with αCamKII Cre, which induces deletion in hippocampal CA1 cells in the third postnatal week and later throughout the neocortex, brains develop normally in La-deleted mice until ∼5 weeks and then lose a large amount of forebrain cells and mass, with evidence of altered pre-tRNA processing. The data indicate that La is required not only in proliferating cells but also in nondividing postmitotic cells. Thus, La is essential in different cell types and required for normal development of various tissue types. PMID:24190965
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimura, Hiroaki
Mating pheromones, a- and {alpha}-factors, arrest the division of cells of opposite mating types, {alpha} and a cells, respectively. The author has isolated a sterile mutant of Saccharomyces cerevisiae using EMS that is defective in division arrest in response to {alpha}-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18, and dac1). Although dac2 cells had no phenotype in the absence ofmore » pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.« less
Li, Xiu; Dai, Mengya; Wu, Jianjian; Guo, Xinrui; Tian, Huimin; Heng, Zhijie; Lu, Ying; Chai, Xiaoli
2017-01-01
Background Larvae of the tapeworm E. multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. A population of stem cell-like cells, the germinative cells, is considered to drive the larval growth and development within the host. The molecular mechanisms controlling the behavior of germinative cells are largely unknown. Methodology/Principal findings Using in vitro cultivation systems we show here that the EGFR/ERK signaling in the parasite can promote germinative cell proliferation in response to addition of human EGF, resulting in stimulated growth and development of the metacestode larvae. Inhibition of the signaling by either the EGFR inhibitors CI-1033 and BIBW2992 or the MEK/ERK inhibitor U0126 impairs germinative cell proliferation and larval growth. Conclusions/Significance These data demonstrate the contribution of EGF-mediated EGFR/ERK signaling to the regulation of germinative cells in E. multilocularis, and suggest the EGFR/ERK signaling as a potential therapeutic target for AE and perhaps other human cestodiasis. PMID:28241017
Low power lasers on genomic stability.
Trajano, Larissa Alexsandra da Silva Neto; Sergio, Luiz Philippe da Silva; Stumbo, Ana Carolina; Mencalha, Andre Luiz; Fonseca, Adenilson de Souza da
2018-03-01
Exposure of cells to genotoxic agents causes modifications in DNA, resulting to alterations in the genome. To reduce genomic instability, cells have DNA damage responses in which DNA repair proteins remove these lesions. Excessive free radicals cause DNA damages, repaired by base excision repair and nucleotide excision repair pathways. When non-oxidative lesions occur, genomic stability is maintained through checkpoints in which the cell cycle stops and DNA repair occurs. Telomere shortening is related to the development of various diseases, such as cancer. Low power lasers are used for treatment of a number of diseases, but they are also suggested to cause DNA damages at sub-lethal levels and alter transcript levels from DNA repair genes. This review focuses on genomic and telomere stabilization modulation as possible targets to improve therapeutic protocols based on low power lasers. Several studies have been carried out to evaluate the laser-induced effects on genome and telomere stabilization suggesting that exposure to these lasers modulates DNA repair mechanisms, telomere maintenance and genomic stabilization. Although the mechanisms are not well understood yet, low power lasers could be effective against DNA harmful agents by induction of DNA repair mechanisms and modulation of telomere maintenance and genomic stability. Copyright © 2018 Elsevier B.V. All rights reserved.
Xie, Yufen; Wang, Yingchun; Sun, Tong; Wang, Fangfei; Trostinskaia, Anna; Puscheck, Elizabeth; Rappolee, Daniel A
2005-05-01
Mitogen-activated protein kinase (MAPK) signaling pathways play an important role in controlling embryonic proliferation and differentiation. It has been demonstrated that sequential lipophilic signal transduction mediators that participate in the MAPK pathway are null post-implantation lethal. It is not clear why the lethality of these null mutants arises after implantation and not before. One hypothesis is that the gene product of these post-implantation lethal null mutants are not present before implantation in normal embryos and do not have function until after implantation. To test this hypothesis, we selected a set of lipophilic genes mediating MAPK signal transduction pathways whose null mutants result in early peri-implantation or placental lethality. These included FRS2alpha, GAB1, GRB2, SOS1, Raf-B, and Raf1. Products of these selected genes were detected and their locations and functions indicated by indirect immunocytochemistry and Western blotting for proteins and RT-polymerase chain reaction (PCR) for mRNA transcription. We report here that all six signal mediators are detected at the protein level in preimplantation mouse embryo, placental trophoblasts, and in cultured trophoblast stem cells (TSC). Proteins are all detected in E3.5 embryos at a time when the first known mitogenic intercellular communication has been documented. mRNA transcripts of two post-implantation null mutant genes are expressed in mouse preimplantation embryos and unfertilized eggs. These mRNA transcripts were detected as maternal mRNA in unfertilized eggs that could delay the lethality of null mutants. All of the proteins were detected in the cytoplasm or in the cell membrane. This study of spatial and temporal expression revealed that all of these six null mutants post-implantation genes in MAPK pathway are expressed and, where tested, phosphorylated/activated proteins are detected in the blastocyst. Studies on RNA expression using RT-PCR suggest that maternal RNA could play an important role in delaying the presence of the lethal phenotype of null mutations. Copyright (c) 2005 Wiley-Liss, Inc.
Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination.
Betz, U A; Vosshenrich, C A; Rajewsky, K; Müller, W
1996-10-01
The analysis of gene function based on the generation of mutant mice by homologous recombination in embryonic stem cells is limited if gene disruption results in embryonic lethality. Mosaic mice, which contain a certain proportion of mutant cells in all organs, allow lethality to be circumvented and the potential of mutant cells to contribute to different cell lineages to be analyzed. To generate mosaic animals, we used the bacteriophage P1-derived Cre-loxP recombination system, which allows gene alteration by Cre-mediated deletion of loxP-flanked gene segments. We generated nestin-cre transgenic mouse lines, which expressed the Cre recombinase under the control of the rat nestin promoter and its second intron enhancer. In crosses to animals carrying a loxP-flanked target gene, partial deletion of the loxP-flanked allele occurred before day 10.5 post coitum and was detectable in all adult organs examined, including germ-line cells. Using this approach, we generated mosaic mice containing cells deficient in the gamma-chain of the interleukin-2 receptor (IL-2R gamma); in these animals, the IL-2R gamma-deficient cells were underrepresented in the thymus and spleen. Because mice deficient in DNA polymerase beta die perinatally, we studied the effects of DNA polymerase beta deficiency in mosaic animals. We found that some of the mosaic polymerase beta-deficient animals were viable, but were often reduced in size and weight. The fraction of DNA polymerase beta-deficient cells in mosaic embryos decreased during embryonic development, presumably because wild-type cells had a competitive advantage. The nestin-cre transgenic mice can be used to generate mosaic animals in which target genes are mutated by Cre-mediated recombination of loxP-flanked target genes. By using mosaic animals, embryonic lethality can be bypassed and cell lineages for whose development a given target gene is critical can be identified. In the case of DNA polymerase beta, deficient cells are already selected against during embryonic development, demonstrating the general importance of this protein in multiple cell types.
Identification of essential genes and synthetic lethal gene combinations in Escherichia coli K-12.
Mori, Hirotada; Baba, Tomoya; Yokoyama, Katsushi; Takeuchi, Rikiya; Nomura, Wataru; Makishi, Kazuichi; Otsuka, Yuta; Dose, Hitomi; Wanner, Barry L
2015-01-01
Here we describe the systematic identification of single genes and gene pairs, whose knockout causes lethality in Escherichia coli K-12. During construction of precise single-gene knockout library of E. coli K-12, we identified 328 essential gene candidates for growth in complex (LB) medium. Upon establishment of the Keio single-gene deletion library, we undertook the development of the ASKA single-gene deletion library carrying a different antibiotic resistance. In addition, we developed tools for identification of synthetic lethal gene combinations by systematic construction of double-gene knockout mutants. We introduce these methods herein.
Chloroquine Improves Survival and Hematopoietic Recovery After Lethal Low-Dose-Rate Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim Yiting; Hedayati, Mohammad; Merchant, Akil A.
2012-11-01
Purpose: We have previously shown that the antimalarial agent chloroquine can abrogate the lethal cellular effects of low-dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials: C57BL/6 mice were irradiated with a total of 12.8 Gy delivered at 9.4 cGy/hour. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 {mu}g per 17 g of body weight, 24 hours and 4 hoursmore » before irradiation. Bone marrow cells isolated from tibia, fibula, and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retroorbital injection. Chimerism was assessed by flow cytometry. In vitro methylcellulose colony-forming assay of whole bone marrow cells and fluorescence activated cell sorting analysis of lineage depleted cells were used to assess the effect of chloroquine on progenitor cells. Results: Mice pretreated with chloroquine before radiation exhibited a significantly higher survival rate than did mice treated with radiation alone (80% vs. 31%, p = 0.0026). Chloroquine administration before radiation did not affect the survival of ATM null mice (p = 0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after transplantation (4.2% vs. 0.4%, p = 0.015). Conclusion: Chloroquine administration before radiation had a significant effect on the survival of normal but not ATM null mice, strongly suggesting that the in vivo effect, like the in vitro effect, is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR-irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection against the harmful effects of LDR radiation.« less
Genet, Stefan C; Maeda, Junko; Fujisawa, Hiroshi; Yurkon, Charles R; Fujii, Yoshihiro; Romero, Ashley M; Genik, Paula C; Fujimori, Akira; Kitamura, Hisashi; Kato, Takamitsu A
2012-11-01
Charged particle therapy utilizing protons or carbon ions has been rapidly intensifying over recent years. The present study was designed to jointly investigate these two charged particle treatment modalities with respect to modeled anatomical depth-dependent dose and linear energy transfer (LET) deliveries to cells with either normal or compromised DNA repair phenotypes. We compared cellular lethality in response to dose, LET and Bragg peak location for accelerated protons and carbon ions at 70 and 290 MeV/n, respectively. A novel experimental live cell irradiation OptiCell™ in vitro culture system using three different Chinese hamster ovary (CHO) cells as a mammalian model was conducted. A wild-type DNA repair-competent CHO cell line (CHO 10B2) was compared to two other CHO cell lines (51D1 and xrs5), each genetically deficient with respect to one of the two major DNA repair pathways (homologous recombination and non-homologous end joining pathways, respectively) following genotoxic insults. We found that wild-type and homologous recombination-deficient (Rad51D) cellular lethality was dependent on both the dose and LET of the carbon ions, whereas it was only dependent on dose for protons. The non-homologous end joining deficient cell line (Ku80 mutant) showed nearly identical dose-response profiles for both carbon ions and protons. Our results show that the increasingly used modality of carbon ions as charged particle therapy is advantageous to protons in a radiotherapeutic context, primarily for tumor cells proficient in non-homologous end joining DNA repair where cellular lethality is dependent not only on the dose as in the case of more common photon therapeutic modalities, but more importantly on the carbon ion LETs. Genetic characterization of patient tumors would be key to individualize and optimize the selection of radiation modality, clinical outcome and treatment cost.
Newton, Teresa; Boogaard, Michael A.; Gray, Brian R.; Hubert, Terrance D.; Schloesser, Nicholas
2017-01-01
The invasive sea lamprey (Petromyzon marinus) poses a substantial threat to fish communities in the Great Lakes. Efforts to control sea lamprey populations typically involve treating tributary streams with lampricides on a recurring cycle. The presence of a substantial population of larval sea lampreys in the aquatic corridor between Lakes Huron and Erie prompted managers to propose a treatment using the granular formulation of Bayluscide® that targets larval sea lampreys that reside in sediments. However, these treatments could cause adverse effects on native freshwater mussels—imperiled animals that also reside in sediments. We estimated the risk of mortality and sub-lethal effects among eight species of adult and sub-adult mussels exposed to Bayluscide® for durations up to 8 h to mimic field applications. Mortality was appreciable in some species, especially in sub-adults (range, 23–51%). The lethal and sub-lethal effects were positively associated with the duration of exposure in most species and life stage combinations. Estimates of the median time of exposure that resulted in lethal and sub-lethal effects suggest that sub-adults were often affected by Bayluscide® earlier than adults. Siphoning activity and burrowing position of mussels during exposure may have moderated the uptake of Bayluscide® and may have influenced lethal and sub-lethal responses. Given that the various species and life stages were differentially affected, it will be difficult to predict the effects of Bayluscide® treatments on mussels.
USDA-ARS?s Scientific Manuscript database
A haplotype on cattle chromosome 5 carrying a recessive lethal allele was found to originate in a Holstein-Friesian foundation sire. Resequencing led to the identification of a stop-gain mutation in exon 11 of APAF1, a gene known to cause embryonic lethality and neurodevelopmental abnormalities in ...
Differential replication of foot-and-mouth disease viruses in mice determine lethality
USDA-ARS?s Scientific Manuscript database
Adult C57BL/6J mice have been used to study foot-and-mouth disease virus (FMDV) biology. In this work, two variants of an FMDV A/Arg/01 strain exhibiting differential pathogenicity in adult mice were identified and characterized: a non-lethal virus (A01NL) caused mild signs of disease, whereas a let...
MUTYH mediates the toxicity of combined DNA 6-thioguanine and UVA radiation
De Luca, Gabriele; Leopardi, Paola; Mancuso, Maria Teresa; Casorelli, Ida; Pichierri, Pietro; Karran, Peter; Bignami, Margherita
2015-01-01
The therapeutic thiopurines, including the immunosuppressant azathioprine (Aza) cause the accumulation of the UVA photosensitizer 6-thioguanine (6-TG) in the DNA of the patients' cells. DNA 6-TG and UVA are synergistically cytotoxic and their interaction causes oxidative damage. The MUTYH DNA glycosylase participates in the base excision repair of oxidized DNA bases. Using Mutyh-nullmouse fibroblasts (MEFs) we examined whether MUTYH provides protection against the lethal effects of combined DNA 6-TG/UVA. Surprisingly, Mutyh-null MEFs were more resistant than wild-type MEFs, despite accumulating higher levels of DNA 8-oxo-7,8-dihydroguanine (8-oxoG). Their enhanced 6-TG/UVA resistance reflected the absence of the MUTYH protein and MEFs expressing enzymatically-dead human variants were as sensitive as wild-type cells. Consistent with their enhanced resistance, Mutyh-null cells sustained fewer DNA strand breaks and lower levels of chromosomal damage after 6-TG/UVA. Although 6-TG/UVA treatment caused early checkpoint activation irrespective of the MUTYH status, Mutyh-null cells failed to arrest in S-phase at late time points. MUTYH-dependent toxicity was also apparent in vivo. Mutyh−/−mice survived better than wild-type during a 12-month chronicexposure to Aza/UVA treatments that significantly increased levels of skin DNA 8-oxoG. Two squamous cell skin carcinomas arose in Aza/UVA treated Mutyh−/− mice whereas similarly treated wild-type animals remained tumor-free. PMID:25638157
Rouxel, Ronan Nicolas; Svitek, Nicholas; von Messling, Veronika
2009-08-06
CDV infects a broad range of carnivores, and over the past decades it has caused outbreaks in a variety of wild carnivore populations. Since the currently available live-attenuated vaccine is not sufficiently safe in these highly susceptible species, we produced a chimeric virus combining the replication complex of the measles Moraten vaccine strain with the envelope of a recent CDV wild type isolate. The resulting virus did not cause disease or immunosuppression in ferrets and conferred protection from challenge with a lethal wild type strain, demonstrating its potential value for wildlife conservation efforts.
Significance of Rib Fractures Potentially Caused by Blunt Impact Non Lethal Weapons
2017-03-01
Center Drive Alexandria, Virginia 22311-1882 I N S T I T U T E F O R D E F E N S E A N A L Y S E S Significance of Rib Fractures Potentially...F E N S E A N A L Y S E S IDA Document D-8277 Significance of Rib Fractures Potentially Caused by Blunt-Impact Non-Lethal Weapons Shelley M. Cazares...deterrent by inducing pain or muscle spasm at the site of impact of the affected individual. These weapons may induce rib fractures —the focus of this
A Role for NKG2D in NK Cell–Mediated Resistance to Poxvirus Disease
Fang, Min; Lanier, Lewis L; Sigal, Luis J
2008-01-01
Ectromelia virus (ECTV) is an orthopoxvirus (OPV) that causes mousepox, the murine equivalent of human smallpox. C57BL/6 (B6) mice are naturally resistant to mousepox due to the concerted action of innate and adaptive immune responses. Previous studies have shown that natural killer (NK) cells are a component of innate immunity that is essential for the B6 mice resistance to mousepox. However, the mechanism of NK cell–mediated resistance to OPV disease remains undefined. Here we show that B6 mice resistance to mousepox requires the direct cytolytic function of NK cells, as well as their ability to boost the T cell response. Furthermore, we show that the activating receptor NKG2D is required for optimal NK cell–mediated resistance to disease and lethality. Together, our results have important implication towards the understanding of natural resistance to pathogenic viral infections. PMID:18266471
Sakurai, Yasuteru; Kolokoltsov, Andrey A; Chen, Cheng-Chang; Tidwell, Michael W; Bauta, William E; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A
2015-02-27
Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy. Copyright © 2015, American Association for the Advancement of Science.
Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice.
Yamamoto, Kenta; Wang, Yunyue; Jiang, Wenxia; Liu, Xiangyu; Dubois, Richard L; Lin, Chyuan-Sheng; Ludwig, Thomas; Bakkenist, Christopher J; Zha, Shan
2012-08-06
Ataxia telangiectasia (A-T) mutated (ATM) kinase orchestrates deoxyribonucleic acid (DNA) damage responses by phosphorylating numerous substrates implicated in DNA repair and cell cycle checkpoint activation. A-T patients and mouse models that express no ATM protein undergo normal embryonic development but exhibit pleiotropic DNA repair defects. In this paper, we report that mice carrying homozygous kinase-dead mutations in Atm (Atm(KD/KD)) died during early embryonic development. Atm(KD/-) cells exhibited proliferation defects and genomic instability, especially chromatid breaks, at levels higher than Atm(-/-) cells. Despite this increased genomic instability, Atm(KD/-) lymphocytes progressed through variable, diversity, and joining recombination and immunoglobulin class switch recombination, two events requiring nonhomologous end joining, at levels comparable to Atm(-/-) lymphocytes. Together, these results reveal an essential function of ATM during embryogenesis and an important function of catalytically inactive ATM protein in DNA repair.
Role of T3SS-1 SipD Protein in Protecting Mice against Non-typhoidal Salmonella Typhimurium
Jneid, Bakhos; Moreau, Karine; Plaisance, Marc; Rouaix, Audrey; Dano, Julie
2016-01-01
Background Salmonella enterica species are enteric pathogens that cause severe diseases ranging from self-limiting gastroenteritis to enteric fever and sepsis in humans. These infectious diseases are still the major cause of morbidity and mortality in low-income countries, especially in children younger than 5 years and immunocompromised adults. Vaccines targeting typhoidal diseases are already marketed, but none protect against non-typhoidal Salmonella. The existence of multiple non-typhoidal Salmonella serotypes as well as emerging antibiotic resistance highlight the need for development of a broad-spectrum protective vaccine. All Salmonella spp. utilize two type III Secretion Systems (T3SS 1 and 2) to initiate infection, allow replication in phagocytic cells and induce systemic disease. T3SS-1, which is essential to invade epithelial cells and cross the barrier, forms an extracellular needle and syringe necessary to inject effector proteins into the host cell. PrgI and SipD form, respectively, the T3SS-1 needle and the tip complex at the top of the needle. Because they are common and highly conserved in all virulent Salmonella spp., they might be ideal candidate antigens for a subunit-based, broad-spectrum vaccine. Principal Findings We investigated the immunogenicity and protective efficacy of PrgI and SipD administered by subcutaneous, intranasal and oral routes, alone or combined, in a mouse model of Salmonella intestinal challenge. Robust IgG (in all immunization routes) and IgA (in intranasal and oral immunization routes) antibody responses were induced against both proteins, particularly SipD. Mice orally immunized with SipD alone or SipD combined with PrgI were protected against lethal intestinal challenge with Salmonella Typhimurium (100 Lethal Dose 50%) depending on antigen, route and adjuvant. Conclusions and Significance Salmonella T3SS SipD is a promising antigen for the development of a protective Salmonella vaccine, and could be developed for vaccination in tropical endemic areas to control infant mortality. PMID:27992422
Carballo, José Luis; Hernández-Inda, Zaira L; Pérez, Pilar; García-Grávalos, María D
2002-01-01
Background The brine shrimp lethality assay is considered a useful tool for preliminary assessment of toxicity. It has also been suggested for screening pharmacological activities in plant extracts. However, we think that it is necessary to evaluate the suitability of the brine shrimp methods before they are used as a general bio-assay to test natural marine products for pharmacological activity. Material and Methods The bioactivity of the isopropanolic (2-PrOH) extracts of 14 species of marine invertebrates and 6 species of macroalgae was evaluated with the shrimp lethality assay (lethality assay), as well as with another assay based on the inhibition of hatching of the cyst (hatchability assay). The extracts were also assayed for cytotoxicity against two human cell lines, lung carcinoma A-549 and colon carcinoma HT-29, in order to assess the sensitivity of the shrimp assays to detect cytotoxic activity. Results Two sponges (Hyatella sp, Dysidea sp.), two gorgonians (Pacifigorgia adamsii, Muricea sp.), one tunicate (Polyclinum laxum), and three echinoderms (Holothuria impatiens, Pseudoconus californica and Pharia pyramidata) showed a strong cytostatic (growth inhibition) and cytotoxic effect. The hatchability assay showed a strong activity in 4 of the species active against the two human cell lines tested (Hyatella sp, Dysidea sp., Pacifigorgia adamsii and Muricea sp.), and the lethality assay also showed a high lethality in 4 of them (Pacifigorgia adamsii, Muricea sp., Polyclinum laxum, and Pharia pyramidata). Each bioassay detected activity in 50% of the species that were considered active against the two human cell lines tested. However, the simultaneous use of both bioassays increased the percentage to 75%. Conclusions Our results seem consistent with the correlation previously established between cytotoxicity and brine shrimp lethality in plant extracts. We suggest using both bioassays simultaneously to test natural marine products for pharmacological activity. PMID:12270067
Brudno, Jennifer N; Somerville, Robert P T; Shi, Victoria; Rose, Jeremy J; Halverson, David C; Fowler, Daniel H; Gea-Banacloche, Juan C; Pavletic, Steven Z; Hickstein, Dennis D; Lu, Tangying L; Feldman, Steven A; Iwamoto, Alexander T; Kurlander, Roger; Maric, Irina; Goy, Andre; Hansen, Brenna G; Wilder, Jennifer S; Blacklock-Schuver, Bazetta; Hakim, Frances T; Rosenberg, Steven A; Gress, Ronald E; Kochenderfer, James N
2016-04-01
Progressive malignancy is the leading cause of death after allogeneic hematopoietic stem-cell transplantation (alloHSCT). After alloHSCT, B-cell malignancies often are treated with unmanipulated donor lymphocyte infusions (DLIs) from the transplant donor. DLIs frequently are not effective at eradicating malignancy and often cause graft-versus-host disease, a potentially lethal immune response against normal recipient tissues. We conducted a clinical trial of allogeneic T cells genetically engineered to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. Patients with B-cell malignancies that had progressed after alloHSCT received a single infusion of CAR T cells. No chemotherapy or other therapies were administered. The T cells were obtained from each recipient's alloHSCT donor. Eight of 20 treated patients obtained remission, which included six complete remissions (CRs) and two partial remissions. The response rate was highest for acute lymphoblastic leukemia, with four of five patients obtaining minimal residual disease-negative CR. Responses also occurred in chronic lymphocytic leukemia and lymphoma. The longest ongoing CR was more than 30 months in a patient with chronic lymphocytic leukemia. New-onset acute graft-versus-host disease after CAR T-cell infusion developed in none of the patients. Toxicities included fever, tachycardia, and hypotension. Peak blood CAR T-cell levels were higher in patients who obtained remissions than in those who did not. Programmed cell death protein-1 expression was significantly elevated on CAR T cells after infusion. Presence of blood B cells before CAR T-cell infusion was associated with higher postinfusion CAR T-cell levels. Allogeneic anti-CD19 CAR T cells can effectively treat B-cell malignancies that progress after alloHSCT. The findings point toward a future when antigen-specific T-cell therapies will play a central role in alloHSCT. © 2016 by American Society of Clinical Oncology.
Improved pertussis vaccines based on adjuvants that induce cell-mediated immunity.
Allen, Aideen C; Mills, Kingston H G
2014-10-01
Bordetella pertussis is a Gram-negative bacterium that causes the severe and sometimes lethal respiratory disease whooping cough in infants and children. There has been a recent resurgence in the number of cases of pertussis in several countries with high vaccine coverage. This has been linked with waning or ineffective immunity induced by current acellular pertussis vaccines. These acellular pertussis vaccines are formulated with alum as the adjuvant, which promotes strong antibody responses but is less effective at inducing Th1-type responses crucial for effective bacterial clearance. Studies in animal models have demonstrated that replacing alum with alternative adjuvants, such as toll-like receptor agonists, can promote more robust cell-mediated immunity and confer a high level of protection against infection following respiratory challenge.
Bergmann, Carsten; Fliegauf, Manfred; Brüchle, Nadina Ortiz; Frank, Valeska; Olbrich, Heike; Kirschner, Jan; Schermer, Bernhard; Schmedding, Ingolf; Kispert, Andreas; Kränzlin, Bettina; Nürnberg, Gudrun; Becker, Christian; Grimm, Tiemo; Girschick, Gundula; Lynch, Sally A.; Kelehan, Peter; Senderek, Jan; Neuhaus, Thomas J.; Stallmach, Thomas; Zentgraf, Hanswalter; Nürnberg, Peter; Gretz, Norbert; Lo, Cecilia; Lienkamp, Soeren; Schäfer, Tobias; Walz, Gerd; Benzing, Thomas; Zerres, Klaus; Omran, Heymut
2008-01-01
Many genetic diseases have been linked to the dysfunction of primary cilia, which occur nearly ubiquitously in the body and act as solitary cellular mechanosensory organelles. The list of clinical manifestations and affected tissues in cilia-related disorders (ciliopathies) such as nephronophthisis is broad and has been attributed to the wide expression pattern of ciliary proteins. However, little is known about the molecular mechanisms leading to this dramatic diversity of phenotypes. We recently reported hypomorphic NPHP3 mutations in children and young adults with isolated nephronophthisis and associated hepatic fibrosis or tapetoretinal degeneration. Here, we chose a combinatorial approach in mice and humans to define the phenotypic spectrum of NPHP3/Nphp3 mutations and the role of the nephrocystin-3 protein. We demonstrate that the pcy mutation generates a hypomorphic Nphp3 allele that is responsible for the cystic kidney disease phenotype, whereas complete loss of Nphp3 function results in situs inversus, congenital heart defects, and embryonic lethality in mice. In humans, we show that NPHP3 mutations can cause a broad clinical spectrum of early embryonic patterning defects comprising situs inversus, polydactyly, central nervous system malformations, structural heart defects, preauricular fistulas, and a wide range of congenital anomalies of the kidney and urinary tract (CAKUT). On the functional level, we show that nephrocystin-3 directly interacts with inversin and can inhibit like inversin canonical Wnt signaling, whereas nephrocystin-3 deficiency leads in Xenopus laevis to typical planar cell polarity defects, suggesting a role in the control of canonical and noncanonical (planar cell polarity) Wnt signaling. PMID:18371931
Oda, Shun-Ichiro; Noda, Takeshi; Wijesinghe, Kaveesha J; Halfmann, Peter; Bornholdt, Zachary A; Abelson, Dafna M; Armbrust, Tammy; Stahelin, Robert V; Kawaoka, Yoshihiro; Saphire, Erica Ollmann
2016-02-15
Marburg virus (MARV), a member of the filovirus family, causes severe hemorrhagic fever with up to 90% lethality. MARV matrix protein VP40 is essential for assembly and release of newly copied viruses and also suppresses immune signaling in the infected cell. Here we report the crystal structure of MARV VP40. We found that MARV VP40 forms a dimer in solution, mediated by N-terminal domains, and that formation of this dimer is essential for budding of virus-like particles. We also found the N-terminal domain to be necessary and sufficient for immune antagonism. The C-terminal domains of MARV VP40 are dispensable for immunosuppression but are required for virus assembly. The C-terminal domains are only 16% identical to those of Ebola virus, differ in structure from those of Ebola virus, and form a distinct broad and flat cationic surface that likely interacts with the cell membrane during virus assembly. Marburg virus, a cousin of Ebola virus, causes severe hemorrhagic fever, with up to 90% lethality seen in recent outbreaks. Molecular structures and visual images of the proteins of Marburg virus are essential for the development of antiviral drugs. One key protein in the Marburg virus life cycle is VP40, which both assembles the virus and suppresses the immune system. Here we provide the molecular structure of Marburg virus VP40, illustrate differences from VP40 of Ebola virus, and reveal surfaces by which Marburg VP40 assembles progeny and suppresses immune function. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Schütz, Ekkehard; Wehrhahn, Christin; Wanjek, Marius; Bortfeld, Ralf; Wemheuer, Wilhelm E.; Beck, Julia; Brenig, Bertram
2016-01-01
Background With the availability of massive SNP data for several economically important cattle breeds, haplotype tests have been performed to identify unknown recessive disorders. A number of so-called lethal haplotypes, have been uncovered in Holstein Friesian cattle and, for at least seven of these, the causative mutations have been identified in candidate genes. However, several lethal haplotypes still remain elusive. Here we report the molecular genetic causes of lethal haplotype 5 (HH5) and cholesterol deficiency (CDH). A targeted enrichment for the known genomic regions, followed by massive parallel sequencing was used to interrogate for causative mutations in a case/control approach. Methods Targeted enrichment for the known genomic regions, followed by massive parallel sequencing was used in a case/control approach. PCRs for the causing mutations were developed and compared to routine imputing in 2,100 (HH5) and 3,100 (CDH) cattle. Results HH5 is caused by a deletion of 138kbp, spanning position 93,233kb to 93,371kb on chromosome 9 (BTA9), harboring only dimethyl-adenosine transferase 1 (TFB1M). The deletion breakpoints are flanked by bovine long interspersed nuclear elements Bov-B (upstream) and L1ME3 (downstream), suggesting a homologous recombination/deletion event. TFB1M di-methylates adenine residues in the hairpin loop at the 3’-end of mitochondrial 12S rRNA, being essential for synthesis and function of the small ribosomal subunit of mitochondria. Homozygous TFB1M-/- mice reportedly exhibit embryonal lethality with developmental defects. A 2.8% allelic frequency was determined for the German HF population. CDH results from a 1.3kbp insertion of an endogenous retrovirus (ERV2-1-LTR_BT) into exon 5 of the APOB gene at BTA11:77,959kb. The insertion is flanked by 6bp target site duplications as described for insertions mediated by retroviral integrases. A premature stop codon in the open reading frame of APOB is generated, resulting in a truncation of the protein to a length of only <140 amino acids. Such early truncations have been shown to cause an inability of chylomicron excretion from intestinal cells, resulting in malabsorption of cholesterol. The allelic frequency of this mutation in the German HF population was 6.7%, which is substantially higher than reported so far. Compared to PCR assays inferring the genetic variants directly, the routine imputing used so far showed a diagnostic sensitivity of as low as 91% (HH5) and 88% (CDH), with a high specificity for both (≥99.7%). Conclusion With the availability of direct genetic tests it will now be possible to more effectively reduce the carrier frequency and ultimately eliminate the disorders from the HF populations. Beside this, the fact that repetitive genomic elements (RE) are involved in both diseases, underline the evolutionary importance of RE, which can be detrimental as here, but also advantageous over generations. PMID:27128314
Leung, Ada W Y; Hung, Stacy S; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A; Aparicio, Samuel; Stirling, Peter C; Steidl, Christian; Bally, Marcel B
2016-01-01
Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell's ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both datasets, warranting further research into combinations of cisplatin and therapeutics targeting these pathways.
Role of natural killer cells in innate protection against lethal ebola virus infection.
Warfield, Kelly L; Perkins, Jeremy G; Swenson, Dana L; Deal, Emily M; Bosio, Catharine M; Aman, M Javad; Yokoyama, Wayne M; Young, Howard A; Bavari, Sina
2004-07-19
Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1-3 d before Ebola virus infection rapidly induced protective immunity. VLP injection enhanced the numbers of natural killer (NK) cells in lymphoid tissues. In contrast to live Ebola virus, VLP treatment of NK cells enhanced cytokine secretion and cytolytic activity against NK-sensitive targets. Unlike wild-type mice, treatment of NK-deficient or -depleted mice with VLPs had no protective effect against Ebola virus infection and NK cells treated with VLPs protected against Ebola virus infection when adoptively transferred to naive mice. The mechanism of NK cell-mediated protection clearly depended on perforin, but not interferon-gamma secretion. Particles containing only VP40 were sufficient to induce NK cell responses and provide protection from infection in the absence of the viral GP. These findings revealed a decisive role for NK cells during lethal Ebola virus infection. This work should open new doors for better understanding of Ebola virus pathogenesis and direct the development of immunotherapeutics, which target the innate immune system, for treatment of Ebola virus infection.
Zhang, Xixi; Fan, Cunxian; Zhang, Haiwei; Zhao, Qun; Liu, Yongbo; Xu, Chengxian; Xie, Qun; Wu, Xiaoxia; Yu, Xianjun; Zhang, Jianke; Zhang, Haibing
2016-09-20
MLKL, a key component downstream of RIPK3, is suggested to be a terminal executor of necroptosis. Genetic studies have revealed that Ripk3 ablation rescues embryonic lethality in Fadd- or Caspase-8-deficient mice. Given that RIPK3 has also been implicated in non-necroptotic pathways including apoptosis and inflammatory signaling, it remains unclear whether the lethality in Fadd(-/-) mice is indeed caused by necropotosis. Here, we show that genetic deletion of Mlkl rescues the developmental defect in Fadd-deficient mice and that Fadd(-/-)Mlkl(-/-) mice are viable and fertile. Mlkl(-/-)Fadd(-/-) mice display significantly accelerated lymphoproliferative disease characterized by lymphadenopathy and splenomegaly when compared to Ripk3(-/-)Fadd(-/-) mice. Mlkl(-/-)Fadd(-/-) bone-marrow-derived macrophages and dendritic cells have impaired NLRP3 inflammasome activation associated with defects in ASC speck formation and NF-κB-dependent NLRP3 transcription. Our findings reveal that MLKL and FADD play critical roles in preventing lymphoproliferative disease and activating the NLRP3 inflammasome. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Ruwona, Tinashe B; Xu, Haiyue; Li, Junwei; Diaz-Arévalo, Diana; Kumar, Amit; Zeng, Mingtao; Cui, Zhengrong
2016-05-03
Botulinum neurotoxin (BoNT) is a lethal neurotoxin, for which there is currently not an approved vaccine. Recent efforts in developing vaccine candidates against botulism have been directed at the heavy chain fragment of BoNT, because antibodies against this region have been shown to prevent BoNT from binding to its receptor and thus to nerve cell surface, offering protection against BoNT intoxication. In the present study, it was shown that immunization with plasmid DNA that encodes the 50 KDa C-terminal fragment of the heavy chain of BoNT serotype C (i.e., BoNT/C-Hc50) and is carried by cationic poly (lactic-co-glycolic) acid (PLGA) nanoparticles induces stronger BoNT/C-specific antibody responses, as compared to immunization with the plasmid alone. Importantly, the antibodies have BoNT/C-neutralizing activity, protecting the immunized mice from a lethal dose of BoNT/C challenge. A plasmid DNA vaccine encoding the Hc50 fragments of BoNT serotypes that cause human botulism may represent a viable vaccine candidate for protecting against botulinum neurotoxin intoxication.
Hong, Hyun-Ki; Donaghy, Ludovic; Kang, Chang-Keun; Kang, Hyun-Sil; Lee, Hee-Jung; Park, Heung-Sik; Choi, Kwang-Sik
2016-07-15
Two years after the Hebei Spirit oil spill occurred off the west coast of Korea, we determined sub-lethal effects of the spilled oil on hemocyte parameters of Ruditapes philippinarum in the damaged areas. Clams in the spilled sites displayed unusually high proportion of granulocytes, which may result in higher phagocytosis capacity and reactive oxygen species production. Hemocytes in clams from the polluted sites also displayed less DNA damage and mortality than in the control site, possibly due to a faster phagocytosis of the impaired cells. Glycogen, the major energetic reserve, was depleted in clams from the spilled sites, potentially due to energetic consumption for maintenance of a large pool of granulocytes, detoxification processes and oxidative stress. Modified hemocyte parameters in clams in the spilled area, may reflect sub-lethal physiological stresses caused by the residual oils in the sediment, in conjunction with environmental modifications such as food availability and pathogens pattern. Copyright © 2016 Elsevier Ltd. All rights reserved.
A self-lysis pathway that enhances the virulence of a pathogenic bacterium.
McFarland, Kirsty A; Dolben, Emily L; LeRoux, Michele; Kambara, Tracy K; Ramsey, Kathryn M; Kirkpatrick, Robin L; Mougous, Joseph D; Hogan, Deborah A; Dove, Simon L
2015-07-07
In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system.
Depalo, Laura; Lanzoni, Alberto; Masetti, Antonio; Pasqualini, Edison; Burgio, Giovanni
2017-12-05
Conventional insecticide assays, which measure the effects of insecticide exposure on short-term mortality, overlook important traits, including persistence of toxicity or sub-lethal effects. Therefore, such approaches are especially inadequate for prediction of the overall impact of insecticides on beneficial arthropods. In this study, the side effects of four modern insecticides (chlorantraniliprole, emamectin benzoate, spinosad, and spirotetramat) on Adalia bipunctata (L.) (Coleoptera: Coccinellidae) were evaluated under laboratory conditions by exposition on treated potted plants. In addition to investigation of acute toxicity and persistence of harmful activity in both larvae and adults of A. bipunctata, demographic parameters were evaluated, to provide a comprehensive picture of the nontarget effects of these products. Field doses of the four insecticides caused detrimental effects to A. bipunctata; but in different ways. Overall, spinosad showed the best toxicological profile among the products tested. Emamectin benzoate could be considered a low-risk insecticide, but had high persistence. Chlorantraniliprole exhibited lethal effects on early instar larvae and adults, along with a long-lasting activity, instead spirotetramat showed a low impact on larval and adult mortality and can be considered a short-lived insecticide. However, demographic analysis demonstrated that chlorantraniliprole and spirotetramat caused sub-lethal effects. Our findings highlight that sole assessment of mortality can lead to underestimation of the full impact of pesticides on nontarget insects. Demographic analysis was demonstrated to be a sensitive method for detection of the sub-lethal effects of insecticides on A. bipunctata, and this approach should be considered for evaluation of insecticide selectivity. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
SCHISTOSOMIASIS: AGE OF SNAILS AND SUSCEPTIBILITY TO X-IRRADIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szumlewicz, A.P.
1964-04-17
Studies on sensitivity of Australorbis glabratus to x rays have defined the chronological and physiological age at which the snail is most sensitive to radiation damage. Results showed that the dose producing 50-percent mortality at 30 days after irradiation increased with age but that at 90 days it was practically constant from 2 to 210 days of age. In view of the avaiIable data on recovery from radiation damage caused by doses from 6000 to 9000 roentgens it is suggested that doses above those causing 50% lethality at 60 days but below those causing 50% lethality for 30 days shouldmore » be considered in setting up radiation barriers to cortrol snails in water-distribution systems. (auth)« less
Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen
2015-12-22
Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.
A Family of Indoles Regulate Virulence and Shiga Toxin Production in Pathogenic E. coli
Izrayelit, Yevgeniy; Bhatt, Shantanu; Cartwright, Emily; Wang, Wei; Swimm, Alyson I.; Benian, Guy M.; Schroeder, Frank C.; Kalman, Daniel
2013-01-01
Enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC) are intestinal pathogens that cause food and water-borne disease in humans. Using biochemical methods and NMR-based comparative metabolomics in conjunction with the nematode Caenorhabditis elegans, we developed a bioassay to identify secreted small molecules produced by these pathogens. We identified indole, indole-3-carboxaldehyde (ICA), and indole-3-acetic acid (IAA), as factors that only in combination are sufficient to kill C. elegans. Importantly, although lethal to C. elegans, these molecules downregulate several bacterial processes important for pathogenesis in mammals. These include motility, biofilm formation and production of Shiga toxins. Some pathogenic E. coli strains are known to contain a Locus of Enterocyte Effacement (LEE), which encodes virulence factors that cause “attaching and effacing” (A/E) lesions in mammals, including formation of actin pedestals. We found that these indole derivatives also downregulate production of LEE virulence factors and inhibit pedestal formation on mammalian cells. Finally, upon oral administration, ICA inhibited virulence and promoted survival in a lethal mouse infection model. In summary, the C. elegans model in conjunction with metabolomics has facilitated identification of a family of indole derivatives that broadly regulate physiology in E. coli, and virulence in pathogenic strains. These molecules may enable development of new therapeutics that interfere with bacterial small-molecule signaling. PMID:23372726
Spencer, Careni; Lombaard, Hendrik; Wise, Amy; Krause, Amanda; Robertson, Stephen P
2018-04-01
Melnick-Needles syndrome (MNS; MIM 309350) is an X-linked skeletal dysplasia caused by mutations in FLNA. Females with the condition present with characteristic facial features, short stature, skeletal anomalies, including poorly modeled and sclerotic bones, and structural abnormalities such as cardiac and urological defects. Previously males were thought to present with either a mild phenotype compatible with life or a severe lethal presentation depending on the maternal phenotype. The discovery of a limited number of mutations in FLNA as the cause of the condition has clarified the molecular basis of the disorder, but only a very small number of severely affected males have been reported with MNS. Furthermore, no mildly affected males have been described with a molecular confirmation of the condition. In this report, we describe the clinical and molecular findings of a mildly affected mother with MNS and her severely affected son. They shared a well-documented disease-causing variant in FLNA, p.(Ala1188Thr), one of two highly recurrent mutations leading to the disorder. This is only the fourth report of a male with perinatal lethal MNS and a molecular confirmation; it is the first description of this specific mutation in a male. © 2018 Wiley Periodicals, Inc.
Espinha, Gisele; Osaki, Juliana Harumi; Costa, Erico Tosoni; Forti, Fabio Luis
2016-01-01
Ultraviolet radiation is the main cause of DNA damage to melanocytes and development of melanoma, one of the most lethal human cancers, which leads to metastasis due to uncontrolled cell proliferation and migration. These phenotypes are mediated by RhoA, a GTPase overexpressed or overactivated in highly aggressive metastatic tumors that plays regulatory roles in cell cycle progression and cytoskeleton remodeling. This work explores whether the effects of UV on DNA damage, motility, proliferation, and survival of human metastatic melanoma cells are mediated by the RhoA pathway. Mutant cells expressing dominant-negative (MeWo-RhoA-N19) or constitutively active RhoA (MeWo-RhoA-V14) were generated and subjected to UV radiation. A slight reduction in migration and invasion was observed in MeWo and MeWo-RhoA-V14 cells but not in MeWo-RhoA-N19 cells, which presented inefficient motility and invasiveness associated with stress fibers fragmentation. Proliferation and survival of RhoA-deficient cells were drastically reduced by UV compared to cells displaying normal or high RhoA activity, suggesting increased sensitivity to UV. Loss of RhoA activity also caused less efficient DNA repair, with elevated levels of DNA lesions such as strand breaks and cyclobutane pyrimidine dimers (CPDs). Thus, RhoA mediates genomic stability and represents a potential target for sensitizing metastatic tumors to genotoxic agents. PMID:26823948
Judged Frequency of Lethal Events.
ERIC Educational Resources Information Center
Lichtenstein, Sarah; And Others
1978-01-01
College student and adult subjects were studied in five experimental formats to gauge how well people can estimate the frequency of death from specific causes. Subjects tended to overestimate the rate of rare causes, underestimate likely causes, and be influenced by drama or vividness. (Author/SJL)
Gordillo, Gayle M.; Biswas, Ayan; Khanna, Savita; Spieldenner, James M.; Pan, Xueliang; Sen, Chandan K.
2016-01-01
Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. PMID:26961872
Brocato, Rebecca L.; Hammerbeck, Christopher D.; Bell, Todd M.; Wells, Jay B.; Queen, Laurie A.
2014-01-01
Sin Nombre virus (SNV) is a rodent-borne hantavirus that causes hantavirus pulmonary syndrome (HPS) predominantly in North America. SNV infection of immunocompetent hamsters results in an asymptomatic infection; the only lethal disease model for a pathogenic hantavirus is Andes virus (ANDV) infection of Syrian hamsters. Efforts to create a lethal SNV disease model in hamsters by repeatedly passaging virus through the hamster have demonstrated increased dissemination of the virus but no signs of disease. In this study, we demonstrate that immunosuppression of hamsters through the administration of a combination of dexamethasone and cyclophosphamide, followed by infection with SNV, results in a vascular leak syndrome that accurately mimics both HPS disease in humans and ANDV infection of hamsters. Immunosuppressed hamsters infected with SNV have a mean number of days to death of 13 and display clinical signs associated with HPS, including pulmonary edema. Viral antigen was widely detectable throughout the pulmonary endothelium. Histologic analysis of lung sections showed marked inflammation and edema within the alveolar septa of SNV-infected hamsters, results which are similar to what is exhibited by hamsters infected with ANDV. Importantly, SNV-specific neutralizing polyclonal antibody administered 5 days after SNV infection conferred significant protection against disease. This experiment not only demonstrated that the disease was caused by SNV, it also demonstrated the utility of this animal model for testing candidate medical countermeasures. This is the first report of lethal disease caused by SNV in an adult small-animal model. PMID:24198421
Brocato, Rebecca L; Hammerbeck, Christopher D; Bell, Todd M; Wells, Jay B; Queen, Laurie A; Hooper, Jay W
2014-01-01
Sin Nombre virus (SNV) is a rodent-borne hantavirus that causes hantavirus pulmonary syndrome (HPS) predominantly in North America. SNV infection of immunocompetent hamsters results in an asymptomatic infection; the only lethal disease model for a pathogenic hantavirus is Andes virus (ANDV) infection of Syrian hamsters. Efforts to create a lethal SNV disease model in hamsters by repeatedly passaging virus through the hamster have demonstrated increased dissemination of the virus but no signs of disease. In this study, we demonstrate that immunosuppression of hamsters through the administration of a combination of dexamethasone and cyclophosphamide, followed by infection with SNV, results in a vascular leak syndrome that accurately mimics both HPS disease in humans and ANDV infection of hamsters. Immunosuppressed hamsters infected with SNV have a mean number of days to death of 13 and display clinical signs associated with HPS, including pulmonary edema. Viral antigen was widely detectable throughout the pulmonary endothelium. Histologic analysis of lung sections showed marked inflammation and edema within the alveolar septa of SNV-infected hamsters, results which are similar to what is exhibited by hamsters infected with ANDV. Importantly, SNV-specific neutralizing polyclonal antibody administered 5 days after SNV infection conferred significant protection against disease. This experiment not only demonstrated that the disease was caused by SNV, it also demonstrated the utility of this animal model for testing candidate medical countermeasures. This is the first report of lethal disease caused by SNV in an adult small-animal model.
Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram
2016-04-01
Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. Copyright © 2015 John Wiley & Sons, Ltd.
Propst, Crystal N.; Pylypko, Stephanie L.; Blower, Ryan J.; Ahmad, Saira; Mansoor, Mohammad; van Hoek, Monique L.
2016-01-01
Francisella (F.) philomiragia is a Gram-negative bacterium with a preference for brackish environments that has been implicated in causing bacterial infections in near-drowning victims. The purpose of this study was to characterize the ability of F. philomiragia to infect cultured mammalian cells, a commonly used invertebrate model, and, finally, to characterize the ability of F. philomiragia to infect BALB/c mice via the pulmonary (intranasal) route of infection. This study shows that F. philomiragia infects J774A.1 murine macrophage cells, HepG2 cells and A549 human Type II alveolar epithelial cells. However, replication rates vary depending on strain at 24 h. F. philomiragia infection after 24 h was found to be cytotoxic in human U937 macrophage-like cells and J774A.1 cells. This is in contrast to the findings that F. philomiragia was non-cytotoxic to human hepatocellular carcinoma cells, HepG2 cells and A549 cells. Differential cytotoxicity is a point for further study. Here, it was demonstrated that F. philomiragia grown in host-adapted conditions (BHI, pH 6.8) is sensitive to levofloxacin but shows increased resistance to the human cathelicidin LL-37 and murine cathelicidin mCRAMP when compared to related the Francisella species, F. tularensis subsp. novicida and F. tularensis subsp. LVS. Previous findings that LL-37 is strongly upregulated in A549 cells following F. tularensis subsp. novicida infection suggest that the level of antimicrobial peptide expression is not sufficient in cells to eradicate the intracellular bacteria. Finally, this study demonstrates that F. philomiragia is lethal in two in vivo models; Galleria mellonella via hemocoel injection, with a LD50 of 1.8 × 103, and BALB/c mice by intranasal infection, with a LD50 of 3.45 × 103. In conclusion, F. philomiragia may be a useful model organism to study the genus Francisella, particularly for those researchers with interest in studying microbial ecology or environmental strains of Francisella. Additionally, the Biosafety level 2 status of F. philomiragia makes it an attractive model for virulence and pathogenesis studies. PMID:27252681
Boronat, Susanna; Domènech, Alba; Carmona, Mercè; García-Santamarina, Sarela; Bañó, M Carmen; Ayté, José; Hidalgo, Elena
2017-06-01
The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.
Song, Haifeng; Janosko, Krisztina; Johnson, Reed F.; Qin, Jing; Josleyn, Nicole; Jett, Catherine; Byrum, Russell; Claire, Marisa St.; Dyall, Julie; Blaney, Joseph E.; Jennings, Gerald; Jahrling, Peter B.
2013-01-01
Infection of non-human primates (NHPs) such as rhesus and cynomolgus macaques with monkeypox virus (MPXV) or cowpox virus (CPXV) serve as models to study poxvirus pathogenesis and to evaluate vaccines and anti-orthopox therapeutics. Intravenous inoculation of macaques with high dose of MPXV (>1–2×107 PFU) or CPXV (>102 PFU) results in 80% to 100% mortality and 66 to 100% mortality respectively. Here we report that NHPs with positive detection of poxvirus antigens in immune cells by flow cytometric staining, especially in monocytes and granulocytes succumbed to virus infection and that early positive pox staining is a strong predictor for lethality. Samples from four independent studies were analyzed. Eighteen NHPs from three different experiments were inoculated with two different MPXV strains at lethal doses. Ten NHPs displayed positive pox-staining and all 10 NHPs reached moribund endpoint. In contrast, none of the three NHPs that survived anticipated lethal virus dose showed apparent virus staining in the monocytes and granulocytes. In addition, three NHPs that were challenged with a lethal dose of MPXV and received cidofovir treatment were pox-antigen negative and all three NHPs survived. Furthermore, data from a CPXV study also demonstrated that 6/9 NHPs were pox-antigen staining positive and all 6 NHPs reached euthanasia endpoint, while the three survivors were pox-antigen staining negative. Thus, we conclude that monitoring pox-antigen staining in immune cells can be used as a biomarker to predict the prognosis of virus infection. Future studies should focus on the mechanisms and implications of the pox-infection of immune cells and the correlation between pox-antigen detection in immune cells and disease progression in human poxviral infection. PMID:23577120
Leung, Ada W. Y.; Hung, Stacy S.; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A.; Aparicio, Samuel; Stirling, Peter C.; Steidl, Christian; Bally, Marcel B.
2016-01-01
Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell’s ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both datasets, warranting further research into combinations of cisplatin and therapeutics targeting these pathways. PMID:26938915
Lethal cellular changes induced by near ultraviolet radiation.
Tyrrell, R M
1979-01-01
There is clear evidence that significant quantities of lesions are induced in DNA by near-UV radiation and that these lesions, although susceptible to repair, may lead to cell death because of the simultaneous disruption of DNA repair systems by the same wavelengths. No particular DNA lesion can be linked to cell death in wild type strains. However, there are good grounds for speculating that a type of near-UV lesion exists which is rapidly "fixed" as a lethal event in cells as a result of the oxygen-dependent disruption of repair. There is a strong indication that the relative ability of various near-UV wavelengths to sensitize cells to heat, chemicals or other radiations is directly related to their efficiency in disrupting DNA repair systems in general. Some important specific questions remain. For example, it is important to ask why breaks formed at 365 nm and 405 nm, although apparently requiring a pol dependent pathway for their repair, do not produce the predicted lethal biological action in the strains tested. In general terms it is hoped to provide more comprehensive physico-chemical data in support of, or contradicting, the proposed model.
Dinges, Martin M.; Schlievert, Patrick M.
2001-01-01
The superantigenic function of toxic shock syndrome toxin 1 (TSST-1) is generally regarded as an important determinant of its lethal effects in humans or experimental animals. This study examined the role of superantigenicity in a BALB/c mouse model of lethal TSST-1-induced hypersensitivity to lipopolysaccharide (LPS). In this model, TSST-1 greatly potentiated both LPS-induced lethality, as well as LPS-induced serum tumor necrosis factor alpha (TNF-α) activity. Although BALB/c-SCID mice were resistant to these LPS enhancement effects of TSST-1, BALB/c-SCID mice reconstituted with T cells were completely susceptible to the enhancement effect of TSST-1 on LPS-induced serum TNF-α. Mice pretreated with cyclosporine (Cs) or neutralizing antibodies against gamma interferon (IFN-γ) did not develop lethal LPS hypersensitivity when injected with TSST-1, and these agents reduced the enhancement effect of TSST-1 on LPS-induced serum TNF-α by 99 and 85%, respectively. Cs pretreatment also completely inhibited the known capacity of TSST-1 to amplify LPS-induced levels of IFN-γ in serum. In contrast, mice given Cs after a priming injection of TSST-1, but before LPS, still exhibited lethal hypersensitivity to LPS. Cs given after TSST-1 also did not inhibit enhancement of LPS-induced serum TNF-α by TSST-1 but inhibited the enhancement effect of TSST-1 on LPS-induced serum IFN-γ by 50%. These experiments support the theory that TSST-1-induced hypersensitivity to LPS is mediated primarily by IFN-γ derived from superantigen-activated T cells. PMID:11179286
Pikarsky, Eli; Ronen, Ariel; Abramowitz, Julia; Levavi-Sivan, Berta; Hutoran, Marina; Shapira, Yechiam; Steinitz, Michael; Perelberg, Ayana; Soffer, Dov; Kotler, Moshe
2004-09-01
A lethal disease of koi and common carp (species Cyprinus carpio) has afflicted many fish farms worldwide since 1998, causing severe financial losses. Morbidity and mortality are restricted to common carp and koi and appear in spring and autumn, when water temperatures are 18 to 28 degrees C. We have isolated the virus causing the disease from sick fish, propagated it in koi fin cell culture, and shown that virus from a single clone causes lethal disease in carp and koi upon infection. Intraperitoneal virus injection or bathing the fish in virus-containing water kills 85 to 100% of the fish within 7 to 21 days. This virus is similar to the previously reported koi herpesvirus; however, it has characteristics inconsistent with the herpesvirus family, and thus we have called it carp interstitial nephritis and gill necrosis virus. We examined the pathobiology of this disease in carp by using immunohistochemistry and PCR. We found large amounts of the virus in the kidneys of sick fish and smaller amounts in liver and brain. A rapid increase in the viral load in the kidneys was detected by using both immunofluorescence and semiquantitative PCR. Histological analyses of fish at various times after infection revealed signs of interstitial nephritis as early as 2 days postinfection, which increased in severity up to 10 days postinfection. There was severe gill disease evidenced by loss of villi with accompanying inflammation in the gill rakers. Minimal focal inflammation was noted in livers and brains. This report describes the etiology and pathology of a recently described viral agent in fish.
Pikarsky, Eli; Ronen, Ariel; Abramowitz, Julia; Levavi-Sivan, Berta; Hutoran, Marina; Shapira, Yechiam; Steinitz, Michael; Perelberg, Ayana; Soffer, Dov; Kotler, Moshe
2004-01-01
A lethal disease of koi and common carp (species Cyprinus carpio) has afflicted many fish farms worldwide since 1998, causing severe financial losses. Morbidity and mortality are restricted to common carp and koi and appear in spring and autumn, when water temperatures are 18 to 28°C. We have isolated the virus causing the disease from sick fish, propagated it in koi fin cell culture, and shown that virus from a single clone causes lethal disease in carp and koi upon infection. Intraperitoneal virus injection or bathing the fish in virus-containing water kills 85 to 100% of the fish within 7 to 21 days. This virus is similar to the previously reported koi herpesvirus; however, it has characteristics inconsistent with the herpesvirus family, and thus we have called it carp interstitial nephritis and gill necrosis virus. We examined the pathobiology of this disease in carp by using immunohistochemistry and PCR. We found large amounts of the virus in the kidneys of sick fish and smaller amounts in liver and brain. A rapid increase in the viral load in the kidneys was detected by using both immunofluorescence and semiquantitative PCR. Histological analyses of fish at various times after infection revealed signs of interstitial nephritis as early as 2 days postinfection, which increased in severity up to 10 days postinfection. There was severe gill disease evidenced by loss of villi with accompanying inflammation in the gill rakers. Minimal focal inflammation was noted in livers and brains. This report describes the etiology and pathology of a recently described viral agent in fish. PMID:15308746
A sweet new role for LCP enzymes in protein glycosylation
Amer, Brendan R.; Clubb, Robert T.
2014-11-21
The peptidoglycan that surrounds Gram-positive bacteria is affixed with a range of macromolecules that enable the microbe to effectively interact with its environment. Distinct enzymes decorate the cell wall with proteins and glycopolymers. Sortase enzymes covalently attach proteins to the peptidoglycan, while LytRCpsA-Psr (LCP) proteins are thought to attach teichoic acid polymers and capsular polysaccharides. Ton-That and colleagues have discovered a new glycosylation pathway in the oral bacterium Actinomyces oris in which sortase and LCP enzymes operate on the same protein substrate. The A. oris LCP protein has a novel function, acting on the cell surface to transfer glycan macromoleculesmore » to a protein, which is then attached to the cell wall by a sortase. The reactions are tightly coupled, as elimination of the sortase causes the lethal accumulation of glycosylated protein in the membrane. Furthermore, since sortase enzymes are attractive drug targets, this novel finding may provide a convenient cell-based tool to discover inhibitors of this important enzyme family.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amer, Brendan R.; Clubb, Robert T.
The peptidoglycan that surrounds Gram-positive bacteria is affixed with a range of macromolecules that enable the microbe to effectively interact with its environment. Distinct enzymes decorate the cell wall with proteins and glycopolymers. Sortase enzymes covalently attach proteins to the peptidoglycan, while LytRCpsA-Psr (LCP) proteins are thought to attach teichoic acid polymers and capsular polysaccharides. Ton-That and colleagues have discovered a new glycosylation pathway in the oral bacterium Actinomyces oris in which sortase and LCP enzymes operate on the same protein substrate. The A. oris LCP protein has a novel function, acting on the cell surface to transfer glycan macromoleculesmore » to a protein, which is then attached to the cell wall by a sortase. The reactions are tightly coupled, as elimination of the sortase causes the lethal accumulation of glycosylated protein in the membrane. Furthermore, since sortase enzymes are attractive drug targets, this novel finding may provide a convenient cell-based tool to discover inhibitors of this important enzyme family.« less
Tumor Microenvironment, a Paradigm in Hepatocellular Carcinoma Progression and Therapy
Tahmasebi Birgani, Maryam; Carloni, Vinicio
2017-01-01
Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the human population. Different etiological factors such as hepatitis B and C virus, alcohol and diabetes cause liver injury followed by inflammation, necrosis and hepatocytes proliferation. Continuous cycles of this destructive–regenerative process culminates in liver cirrhosis which is characterized by regenerating nodules that progress to dysplastic nodules and ultimately HCC. Despite its significance, there is only an elemental understanding of the pathogenetic mechanisms, and there are only limited therapeutic options. Therefore, the study of the involved molecular mechanisms can open a new insight to define more effective treatment strategies. A variety of alterations have been reported in HCC patients, particularly the cancer-associated microenvironment components including immune cells, fibroblast cells, endothelial cells and extracellular matrix can support the neoplastic cells to proliferate, growth and invade. This review summarizes the current state of knowledge and highlights the principal challenges that are relevant to controlling this milieu. PMID:28216578
Membrane Repair: Mechanisms and Pathophysiology
Cooper, Sandra T.; McNeil, Paul L.
2015-01-01
Eukaryotic cells have been confronted throughout their evolution with potentially lethal plasma membrane injuries, including those caused by osmotic stress, by infection from bacterial toxins and parasites, and by mechanical and ischemic stress. The wounded cell can survive if a rapid repair response is mounted that restores boundary integrity. Calcium has been identified as the key trigger to activate an effective membrane repair response that utilizes exocytosis and endocytosis to repair a membrane tear, or remove a membrane pore. We here review what is known about the cellular and molecular mechanisms of membrane repair, with particular emphasis on the relevance of repair as it relates to disease pathologies. Collective evidence reveals membrane repair employs primitive yet robust molecular machinery, such as vesicle fusion and contractile rings, processes evolutionarily honed for simplicity and success. Yet to be fully understood is whether core membrane repair machinery exists in all cells, or whether evolutionary adaptation has resulted in multiple compensatory repair pathways that specialize in different tissues and cells within our body. PMID:26336031
Characterization of Reemerging Chikungunya Virus
Sourisseau, Marion; Schilte, Clémentine; Casartelli, Nicoletta; Trouillet, Céline; Guivel-Benhassine, Florence; Rudnicka, Dominika; Sol-Foulon, Nathalie; Roux, Karin Le; Prevost, Marie-Christine; Fsihi, Hafida; Frenkiel, Marie-Pascale; Blanchet, Fabien; Afonso, Philippe V; Ceccaldi, Pierre-Emmanuel; Ozden, Simona; Gessain, Antoine; Schuffenecker, Isabelle; Verhasselt, Bruno; Zamborlini, Alessia; Saïb, Ali; Rey, Felix A; Arenzana-Seisdedos, Fernando; Desprès, Philippe; Michault, Alain; Albert, Matthew L; Schwartz, Olivier
2007-01-01
An unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains. Human epithelial and endothelial cells, primary fibroblasts and, to a lesser extent, monocyte-derived macrophages, were susceptible to infection and allowed viral production. In contrast, CHIKV did not replicate in lymphoid and monocytoid cell lines, primary lymphocytes and monocytes, or monocyte-derived dendritic cells. CHIKV replication was cytopathic and associated with an induction of apoptosis in infected cells. Chloroquine, bafilomycin-A1, and short hairpin RNAs against dynamin-2 inhibited viral production, indicating that viral entry occurs through pH-dependent endocytosis. CHIKV was highly sensitive to the antiviral activity of type I and II interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host. PMID:17604450
Photodynamic Treatment versus Antibiotic Treatment on Helicobacter pylori Using RAPD-PCR
NASA Astrophysics Data System (ADS)
El-Batanouny, M. H.; Amin, R. M.; Ibrahium, M. K.; El Gohary, S.; Naga, M. I.; Salama, M. S.
2009-09-01
Helicobacter pylori is one of the most common causes of chronic bacterial infections in humans and is important in the pathogenesis of gastrointestinal disease, such as duodenal ulcer, gastric ulcer, Gastric adenocarcinoma, and lymphoma. Gastric adenocarcinoma remains one of the leading causes of cancer death in the world. The objective of this study was to assess the effect of photodynamic treatment and medication treatment of Helicobacter pylori using RAPD-PCR. The lethal photosensitization effect was determined by mixing suspensions of H.pylori with Toluidine blue O (TBO) and plating out on blood agar before irradiation with Helium neon (He-Ne) 632.8 nm. The susceptibility of Helicobacter pylori isolates to metronidazole and azithromycin were examined by E-test. Nine random primers were used to screen genetic polymorphism in DNA of different H.pylori groups. Six of them produced RAPD products while three failed to generate any product. The resulting data showed that, although the overall genetic differences between control groups and laser treated groups was higher than that between control groups and azithromycin treated groups yet it still law genetic variability. The main cause of cell death of PDT using TBO as a photosensitizer was mainly cell wall and cytoplasmic membrane.
Mhaske, Pallavi V.; Levit, Noah A.; Li, Leping; Wang, Hong-Zhan; Lee, Jack R.; Shuja, Zunaira; Brink, Peter R.
2013-01-01
Mutations in the human gene encoding connexin 26 (Cx26 or GJB2) cause either nonsyndromic deafness or syndromic deafness associated with skin diseases. That distinct clinical disorders can be caused by different mutations within the same gene suggests that different channel activities influence the ear and skin. Here we use three different expression systems to examine the functional characteristics of two Cx26 mutations causing either mild (Cx26-D50A) or lethal (Cx26-A88V) keratitis-ichthyosis-deafness (KID) syndrome. In either cRNA-injected Xenopus oocytes, transfected HeLa cells, or transfected primary human keratinocytes, we show that both Cx26-D50A and Cx26-A88V form active hemichannels that significantly increase membrane current flow compared with wild-type Cx26. This increased membrane current accelerated cell death in low extracellular calcium solutions and was not due to increased mutant protein expression. Elevated mutant hemichannel currents could be blocked by increased extracellular calcium concentration. These results show that these two mutations exhibit a shared gain of functional activity and support the hypothesis that increased hemichannel activity is a common feature of human Cx26 mutations responsible for KID syndrome. PMID:23447037
Bhatnagar, R; Batra, S
2001-01-01
Anthrax is primarily a disease of herbivores caused by gram-positive, aerobic, spore-forming Bacillus anthracis. Humans are accidental hosts through the food of animal origin and animal products. Anthrax is prevelant in most parts of the globe, and cases of anthrax have been reported from almost every country. Three forms of the disease have been recognized: cutaneous (through skin), gastrointestinal (through alimentary tract), and pulmonary (by inhalation of spores). The major virulence factors of Bacillus anthracis are a poly-D glutamic acid capsule and a three-component protein exotoxin. The genes coding for the toxin and the enzymes responsible for capsule production are carried on plasmid pXO1 and pXO2, respectively. The three proteins of the exotoxin are protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa). The toxins follow the A-B model with PA being the B moeity and LF/EF, the alternative A moeities. LF and EF are individually nontoxic, but in combination with PA form two toxins causing different pathogenic responses in animals and cultured cells. PA + LF forms the lethal toxin and PA + EF forms the edema toxin. During the process of intoxication, PA binds to the cell surface receptor and is cleaved at the sequence RKKR (167) by cell surface proteases such as furin generating a cell-bound, C-terminal 63 kDa protein (PA63). PA63 possesses a binding site to which LF or EF bind with high affinity. The complex is then internalized by receptor-mediated endocytosis. Acidification of the vesicle leads to instertion of PA63 into the endosomal membrane and translocation of LF/EF across the bilayer into the cytosol where they exert their toxic effects. EF has a calcium- and calmodulin-dependent adenylate cyclase activity. Recent reports indicate that LF is a protease that cleaves the amino terminus of mitogen-activated protein kinase kinases 1 and 2 (MAPKK1 and 2), and this cleavage inactivates MAPKK1 and thus inhibits the mitogen-activated protein kinase signal transduction pathway. We describe in detail the studies so far done on unraveling the molecular mechanisms of pathogenesis of Bacillus anthracis.
Anaerobic Killing of Oral Streptococci by Reduced, Transition Metal Cations
Dunning, J. C.; Ma, Y.; Marquis, R. E.
1998-01-01
Reduced, transition metal cations commonly enhance oxidative damage to cells caused by hydroperoxides formed as a result of oxygen metabolism or added externally. As expected, the cations Fe2+ and Cu+ enhanced killing of Streptococcus mutans GS-5 by hydroperoxides. However, unexpectedly, they also induced lethal damage under fully anaerobic conditions in a glove box with no exposure to O2 or hydroperoxides from initial treatment with the cations. Sensitivities to anaerobic killing by Fe2+ varied among the organisms tested. The oral streptococci Streptococcus gordonii ATCC 10558, Streptococcus rattus FA-1, and Streptococcus sanguis NCTC 10904 were approximately as sensitive as S. mutans GS-5. Enterococcus hirae ATCC 9790, Actinomyces viscosus OMZ105E, and Actinomyces naeslundii WVU45 had intermediate sensitivity, while Lactobacillus casei ATCC 4646 and Escherichia coli B were insensitive. Killing of S. mutans GS-5 in response to millimolar levels of added Fe2+ occurred over a wide range of temperatures and pH. The organism was able to take up ferrous iron, but ferric reductase activity could not be detected. Chelators, uric acid, and thiocyanate were not effective inhibitors of the lethal damage. Sulfhydryl compounds, ferricyanide, and ferrocyanide were protective if added prior to Fe2+ exposure. Fe2+, but not Fe3+, acted to reduce the acid tolerance of glycolysis by intact cells of S. mutans. The reduction in acid tolerance appeared to be related directly to Fe2+ inhibition of F-ATPase, which could be assayed with permeabilized cells, isolated membranes, or F1 enzyme separated from membranes. Cu+ and Cu2+ also inhibited F-ATPase and sensitized glycolysis by intact cells to acid. All of these damaging actions occurred anaerobically and thus did not appear to involve reactive oxygen species. PMID:9435058
Mishra, Bibhuti B.; Li, Qun; Steichen, Anthony L.; Binstock, Brandilyn J.; Metzger, Dennis W.; Teale, Judy M.; Sharma, Jyotika
2013-01-01
Sepsis is a complex immune disorder with a mortality rate of 20–50% and currently has no therapeutic interventions. It is thus critical to identify and characterize molecules/factors responsible for its development. We have recently shown that pulmonary infection with Francisella results in sepsis development. As extensive cell death is a prominent feature of sepsis, we hypothesized that host endogenous molecules called alarmins released from dead or dying host cells cause a hyperinflammatory response culminating in sepsis development. In the current study we investigated the role of galectin-3, a mammalian β-galactoside binding lectin, as an alarmin in sepsis development during F. novicida infection. We observed an upregulated expression and extracellular release of galectin-3 in the lungs of mice undergoing lethal pulmonary infection with virulent strain of F. novicida but not in those infected with a non-lethal, attenuated strain of the bacteria. In comparison with their wild-type C57Bl/6 counterparts, F. novicida infected galectin-3 deficient (galectin-3−/−) mice demonstrated significantly reduced leukocyte infiltration, particularly neutrophils in their lungs. They also exhibited a marked decrease in inflammatory cytokines, vascular injury markers, and neutrophil-associated inflammatory mediators. Concomitantly, in-vitro pre-treatment of primary neutrophils and macrophages with recombinant galectin-3 augmented F. novicida-induced activation of these cells. Correlating with the reduced inflammatory response, F. novicida infected galectin-3−/− mice exhibited improved lung architecture with reduced cell death and improved survival over wild-type mice, despite similar bacterial burden. Collectively, these findings suggest that galectin-3 functions as an alarmin by augmenting the inflammatory response in sepsis development during pulmonary F. novicida infection. PMID:23527230
Booth, Laurence; Roberts, Jane L; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul
2018-03-04
The irreversible ERBB1/2/4 inhibitor, neratinib, down-regulates the expression of ERBB1/2/4 as well as the levels of MCL-1 and BCL-XL. Venetoclax (ABT199) is a BCL-2 inhibitor. At physiologic concentrations neratinib interacted in a synergistic fashion with venetoclax to kill HER2 + and TNBC mammary carcinoma cells. This was associated with the drug-combination: reducing the expression and phosphorylation of ERBB1/2/3; in an eIF2α-dependent fashion reducing the expression of MCL-1 and BCL-XL and increasing the expression of Beclin1 and ATG5; and increasing the activity of the ATM-AMPKα-ULK1 S317 pathway which was causal in the formation of toxic autophagosomes. Although knock down of BAX or BAK reduced drug combination lethality, knock down of BAX and BAK did not prevent the drug combination from increasing autophagosome and autolysosome formation. Knock down of ATM, AMPKα, Beclin1 or over-expression of activated mTOR prevented the induction of autophagy and in parallel suppressed tumor cell killing. Knock down of ATM, AMPKα, Beclin1 or cathepsin B prevented the drug-induced activation of BAX and BAK whereas knock down of BID was only partially inhibitory. A 3-day transient exposure of established estrogen-independent HER2 + BT474 mammary tumors to neratinib or venetoclax did not significantly alter tumor growth whereas exposure to [neratinib + venetoclax] caused a significant 7-day suppression of growth by day 19. The drug combination neither altered animal body mass nor behavior. We conclude that venetoclax enhances neratinib lethality by facilitating toxic BH3 domain protein activation via autophagy which enhances the efficacy of neratinib to promote greater levels of cell killing.
Kantara, Carla; Moya, Stephanie M.; Houchen, Courtney W.; Umar, Shahid; Ullrich, Robert L.; Singh, Pomila; Carney, Darrell H.
2015-01-01
In recent years, increasing threats of radiation exposure and nuclear disasters have become a significant concern for the United States and countries worldwide. Exposure to high doses of radiation triggers a number of potentially lethal effects. Among the most severe is the gastrointestinal (GI) toxicity syndrome caused by the destruction of the intestinal barrier, resulting in bacterial translocation, systemic bacteremia, sepsis and death. The lack of effective radioprotective agents capable of mitigating radiation-induced damage has prompted a search for novel countermeasures that can mitigate the effects of radiation post-exposure, accelerate tissue repair in radiation-exposed individuals, and prevent mortality. We report that a single injection of regenerative peptide TP508 (rusalatide acetate, Chrysalin®) 24h after lethal radiation exposure (9Gy, LD100/15) appears to significantly increase survival and delay mortality by mitigating radiation-induced intestinal and colonic toxicity. TP508 treatment post-exposure prevents the disintegration of gastrointestinal crypts, stimulates the expression of adherens junction protein E-cadherin, activates crypt cell proliferation, and decreases apoptosis. TP508 post-exposure treatment also up-regulates the expression of DCLK1 and LGR5 markers of stem cells that have been shown to be responsible for maintaining and regenerating intestinal crypts. Thus, TP508 appears to mitigate the effects of GI toxicity by activating radioresistant stem cells and increasing the stemness potential of crypts to maintain and restore intestinal integrity. These results suggest that TP508 may be an effective emergency nuclear countermeasure that could be delivered within 24h post-exposure to increase survival and delay mortality, giving victims time to reach clinical sites for advanced medical treatment. PMID:26280221
Shannon, Maeve; Green, Brian; Willars, Gary; Wilson, Jodie; Matthews, Natalie; Lamb, Joanna; Gillespie, Anna; Connolly, Lisa
2017-01-04
Monosodium glutamate (MSG) is a suspected obesogen with epidemiological evidence positively correlating consumption to increased body mass index and higher prevalence of metabolic syndrome. ELISA and high content analysis (HCA) were employed to examine the disruptive effects of MSG on the secretion of enteroendocrine hormone glucagon-like peptide-1 (GLP-1) and GLP-1 receptor (GLP-1R), respectively. Following 3h MSG exposure of the enteroendocrine pGIP/neo: STC-1 cell line model (500μg/ml) significantly increased GLP-1 secretion (1.8 fold; P≤0.001), however, 72h exposure (500μg/ml) caused a 1.8 fold decline (P≤0.05). Also, 3h MSG exposure (0.5-500μg/ml) did not induce any cytotoxicity (including multiple pre-lethal markers) but 72h exposure at 250-500μg/ml, decreased cell number (11.8-26.7%; P≤0.05), increased nuclear area (23.9-29.8%; P≤0.001) and decreased mitochondrial membrane potential (13-21.6%; P≤0.05). At 500μg/ml, MSG increased mitochondrial mass by 16.3% (P≤0.01). MSG did not agonise or antagonise internalisation of the GLP-1R expressed recombinantly in U2OS cells, following GLP-1 stimulation. In conclusion, 72h exposure of an enteroendocrine cell line at dietary levels of MSG, results in pre-lethal cytotoxicity and decline in GLP-1 secretion. These adverse events may play a role in the pathogenesis of obesity as outlined in the obesogen hypothesis by impairing GLP-1 secretion, related satiety responses and glucose-stimulated insulin release. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hoang, David T; Iczkowski, Kenneth A; Kilari, Deepak; See, William; Nevalainen, Marja T
2017-01-01
Despite aggressive treatment for localized cancer, prostate cancer (PC) remains a leading cause of cancer-related death for American men due to a subset of patients progressing to lethal and incurable metastatic castrate-resistant prostate cancer (CRPC). Organ-confined PC is treated by surgery or radiation with or without androgen deprivation therapy (ADT), while options for locally advanced and disseminated PC include radiation combined with ADT, or systemic treatments including chemotherapy. Progression to CRPC results from failure of ADT, which targets the androgen receptor (AR) signaling axis and inhibits AR-driven proliferation and survival pathways. The exact mechanisms underlying the transition from androgen-dependent PC to CRPC remain incompletely understood. Reactivation of AR has been shown to occur in CRPC despite depletion of circulating androgens by ADT. At the same time, the presence of AR-negative cell populations in CRPC has also been identified. While AR signaling has been proposed as the primary driver of CRPC, AR-independent signaling pathways may represent additional mechanisms underlying CRPC progression. Identification of new therapeutic strategies to target both AR-positive and AR-negative PC cell populations and, thereby, AR-driven as well as non-AR-driven PC cell growth and survival mechanisms would provide a two-pronged approach to eliminate CRPC cells with potential for synthetic lethality. In this review, we provide an overview of AR-dependent and AR-independent molecular mechanisms which drive CRPC, with special emphasis on the role of the Jak2-Stat5a/b signaling pathway in promoting castrate-resistant growth of PC through both AR-dependent and AR-independent mechanisms. PMID:27741508
Puthia, Manoj; Storm, Petter; Nadeem, Aftab; Hsiung, Sabrina; Svanborg, Catharina
2014-01-01
Most colon cancers start with dysregulated Wnt/β-catenin signalling and remain a major therapeutic challenge. Examining whether HAMLET (human α-lactalbumin made lethal to tumour cells) may be used for colon cancer treatment is logical, based on the properties of the complex and its biological context. To investigate if HAMLET can be used for colon cancer treatment and prevention. Apc(Min)(/+) mice, which carry mutations relevant to hereditary and sporadic human colorectal tumours, were used as a model for human disease. HAMLET was given perorally in therapeutic and prophylactic regimens. Tumour burden and animal survival of HAMLET-treated and sham-fed mice were compared. Tissue analysis focused on Wnt/β-catenin signalling, proliferation markers and gene expression, using microarrays, immunoblotting, immunohistochemistry and ELISA. Confocal microscopy, reporter assay, immunoprecipitation, immunoblotting, ion flux assays and holographic imaging were used to determine effects on colon cancer cells. Peroral HAMLET administration reduced tumour progression and mortality in Apc(Min)(/+) mice. HAMLET accumulated specifically in tumour tissue, reduced β-catenin and related tumour markers. Gene expression analysis detected inhibition of Wnt signalling and a shift to a more differentiated phenotype. In colon cancer cells with APC mutations, HAMLET altered β-catenin integrity and localisation through an ion channel-dependent pathway, defining a new mechanism for controlling β-catenin signalling. Remarkably, supplying HAMLET to the drinking water from the time of weaning also significantly prevented tumour development. These data identify HAMLET as a new, peroral agent for colon cancer prevention and treatment, especially needed in people carrying APC mutations, where colon cancer remains a leading cause of death.
Puthia, Manoj; Storm, Petter; Nadeem, Aftab; Hsiung, Sabrina; Svanborg, Catharina
2014-01-01
Background Most colon cancers start with dysregulated Wnt/β-catenin signalling and remain a major therapeutic challenge. Examining whether HAMLET (human α-lactalbumin made lethal to tumour cells) may be used for colon cancer treatment is logical, based on the properties of the complex and its biological context. Objective To investigate if HAMLET can be used for colon cancer treatment and prevention. ApcMin/+ mice, which carry mutations relevant to hereditary and sporadic human colorectal tumours, were used as a model for human disease. Method HAMLET was given perorally in therapeutic and prophylactic regimens. Tumour burden and animal survival of HAMLET-treated and sham-fed mice were compared. Tissue analysis focused on Wnt/β-catenin signalling, proliferation markers and gene expression, using microarrays, immunoblotting, immunohistochemistry and ELISA. Confocal microscopy, reporter assay, immunoprecipitation, immunoblotting, ion flux assays and holographic imaging were used to determine effects on colon cancer cells. Results Peroral HAMLET administration reduced tumour progression and mortality in ApcMin/+ mice. HAMLET accumulated specifically in tumour tissue, reduced β-catenin and related tumour markers. Gene expression analysis detected inhibition of Wnt signalling and a shift to a more differentiated phenotype. In colon cancer cells with APC mutations, HAMLET altered β-catenin integrity and localisation through an ion channel-dependent pathway, defining a new mechanism for controlling β-catenin signalling. Remarkably, supplying HAMLET to the drinking water from the time of weaning also significantly prevented tumour development. Conclusions These data identify HAMLET as a new, peroral agent for colon cancer prevention and treatment, especially needed in people carrying APC mutations, where colon cancer remains a leading cause of death. PMID:23348960
Ceramide induced mitophagy and tumor suppression
Dany, Mohammed; Ogretmen, Besim
2015-01-01
Sphingolipids are bioactive lipid effectors, which are involved in the regulation of various cellular signaling pathways. Sphingolipids play essential roles in controlling cell inflammation, proliferation, death, migration, senescence, metastasis and autophagy. Alterations in sphingolipid metabolism has been also implicated in many human cancers. Macroautophagy (referred to here as autophagy) is a form of nonselective sequestering of cytosolic materials by double membrane structures, autophagosomes, which can be either protective or lethal for cells. Ceramide, a central molecule of sphingolipid metabolism is involved in the regulation of autophagy at various levels, including the induction of lethal mitophagy, a selective autophagy process to target and eliminate damaged mitochondria. In this review, we focused on recent studies with regard to the regulation of autophagy, in particular lethal mitophagy, by ceramide, and aimed at providing discussion points for various context-dependent roles and mechanisms of action of ceramide in controlling mitophagy. PMID:25634657
Bhardwaj, Sharonlin; Varma, Seema
2018-03-01
Tumor lysis syndrome is a serious and sometimes lethal complication of cancer treatment that is comprised of a set of metabolic disturbances along with clinical manifestations. Initiating chemotherapy in bulky, rapidly proliferating tumors causes rapid cell turnover that in turn releases metabolites into circulation that give rise to metabolic derangements that can be dangerous. This syndrome is usually seen in high-grade hematological malignancies. Less commonly, tumor lysis syndrome can present in solid tumors and even rarely in genitourinary tumors. In this report, the authors describe a specific case of tumor lysis syndrome in a patient with metastatic prostate cancer following treatment with docetaxel.
Beggs, W H
1984-01-01
It was shown that tioconazole possesses an important property not shared by ketoconazole and miconazole, its well-known relatives in the imidazole group of antifungal drugs. At a concentration of 3.8 X 10(-5) M, tioconazole, like miconazole, caused rapid 2- to 3-log reductions in CFU per milliliter when added to late-logarithmic-phase Candida albicans or Candida parapsilosis cells. Only tioconazole, however, exerted similar reductions when added to diluted stationary-phase cultures. This growth-phase-independent lethal action has important clinical implications and may explain the superior performance of tioconazole, which was observed in earlier comparative drug studies. PMID:6097174
Sasmito, Ediati; Mulyadi, Sri Mulyani; Hertiani, Triana; Fathdhieny, Annisa Qisthia; Witsqa, Ade Azka Surya; Laksono, Yogi Sotya
2017-09-01
Doxorubicin is widely used as a chemotherapeutic drug despite having many side effects. It may cause the dysfunction of macrophage, decreasing proliferation of lymphocytes, decreasing CD4+/CD8+ ratio and inducing hepatotoxicity. Doxorubicin inhibits the growth of Vero, HeLa, and T47D cell lines, and also induces a resistance of MCF-7 cells. Previous studies showed that ethanolic extract and ethyl acetate fraction of ant-plant (Myrmecodia tuberose Jack) hipocotyl could increase macrophage phagocytosis activity and lymphocyte proliferation in vitro. Therefore, antplant is a potential immune stimulator. Combinational treatment of non n-hexane fraction (NHF) of ant-plant with doxorubicin did not affect the doxorubicin's potency. Nevertheless, increased lymphocyte viability induced by doxorubicin in varied dosages of NHF that lethal to HeLa, MCF-7 and T47D cells. Moreover, on Vero cells, doxorubicin became less toxic when induced together with NHF. Thus, NHF of ant-plant is potential to be proposed as doxorubicin co-chemotherapeutic agent against cancer cells.
Madadkar Haghjou, Maryam; Colville, Louise; Smirnoff, Nicholas
2014-11-01
The effect of cold pretreatment on menadione tolerance was investigated in the cells of the marine microalga, Dunaliella viridis. In addition, the involvement of ascorbate and glutathione in the response to menadione stress was tested by treating cell suspensions with l-galactono-1,4-lactone, an ascorbate precursor, and buthionine sulfoximine, an inhibitor of glutathione synthesis. Menadione was highly toxic to non cold-pretreated cells, and caused a large decrease in cell number. Cold pretreatment alleviated menadione toxicity and cold pretreated cells accumulated lower levels of reactive oxygen species, and had enhanced antioxidant capacity due to increased levels of β-carotene, reduced ascorbate and total glutathione compared to non cold-pretreated cells. Cold pretreatment also altered the response to l-galactono-1,4-lactone and buthionine sulfoximine treatments. Combined l-galactono-1,4-lactone and menadione treatment was lethal in non-cold pretreated cells, but in cold-pretreated cells it had a positive effect on cell numbers compared to menadione alone. Overall, exposure of Dunaliella cells to cold stress enhanced tolerance to subsequent oxidative stress induced by menadione. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Heritable non-lethal damage to cultured human cells irradiated with heavy ions.
Walker, James T; Todd, Paul; Walker, Olivia A
2002-12-01
During interplanetary flights the nuclei of all of a crew member's cells could be traversed by at least one high-LET (Linear Energy Transfer) cosmic-ray particle. In mammalian cells irradiated in vitro about 1 in 10,000 of the surviving cells traversed by heavy particles is transformed to malignancy or mutated. What, if anything, happens to the remaining >99% of surviving cells? A retrospective analysis of archived data and samples from heavy-ion irradiation experiments with cultured human cells in vitro indicated that heavy ions caused a dose- and LET-dependent reduction in growth rates of progeny of irradiated cells, based on colony-size distributions. The maximum action cross section for this effect is between 100 and 300 microm2, at least as large as the cell nuclear area and up to 3 times the cross section for cell killing. Thus, heritable slow growth is the most prevalent effect of high-LET radiations on cultured animal cells, which may have implications for crew health during deep space travel. The views expressed in this article are those of the author(s) and do not necessarily reflect the views or policies of the USEPA.
Hirayama, Ryoichi; Ito, Atsushi; Noguchi, Miho; Matsumoto, Yoshitaka; Uzawa, Akiko; Kobashi, Gen; Okayasu, Ryuichi; Furusawa, Yoshiya
2013-11-01
We examined OH radical-mediated indirect actions from X irradiation on cell killing in wild-type Chinese hamster ovary cell lines (CHO and AA8) under oxic and hypoxic conditions, and compared the contribution of direct and indirect actions under both conditions. The contribution of indirect action on cell killing can be estimated from the maximum degree of protection by dimethylsulfoxide, which suppresses indirect action by quenching OH radicals without affecting the direct action of X rays on cell killing. The contributions of indirect action on cell killing of CHO cells were 76% and 50% under oxic and hypoxic conditions, respectively, and those for AA8 cells were 85% and 47%, respectively. Therefore, the indirect action on cell killing was enhanced by oxygen during X irradiation in both cell lines tested. Oxygen enhancement ratios (OERs) at the 10% survival level (D10 or LD90) for CHO and AA8 cells were 2.68 ± 0.15 and 2.76 ± 0.08, respectively. OERs were evaluated separately for indirect and direct actions, which gave the values of 3.75 and 2.01 for CHO, and 4.11 and 1.32 for AA8 cells, respectively. Thus the generally accepted OER value of ∼3 is best understood as the average of the OER values for both indirect and direct actions. These results imply that both indirect and direct actions on cell killing require oxygen for the majority of lethal DNA damage, however, oxygen plays a larger role in indirect than for direct effects. Conversely, the lethal damage induced by the direct action of X rays are less affected by oxygen concentration.
Identification of lethal reactions in the Esherichia coli metabolic network: Graph theory approach
NASA Astrophysics Data System (ADS)
Ghim, C.-M.; Goh, K.-I.; Kahng, B.; Kim, D.
2004-03-01
As a first step toward holistic modeling of cells, we analyze the biochemical reactions occurring in the genome-scale metabolism of Esherichia coli. To this end, we construct a directed bipartite graph by assigning metabolite or reaction to each node. We apply various measures of centrality, a well-known concept in the graph theory, and their modifications to the metabolic network, finding that there exist lethal reactions involved in the central metabolism. Such lethal reactions or associated enzymes under diverse environments in silico are identified and compared with earlier results obtained from flux balance analysis.
Li, Tianwei; Zhao, Hongtao; Hung, Guo-Chiuan; Han, Jing; Tsai, Shien; Li, Bingjie; Zhang, Jing; Puri, Raj K; Lo, Shyh-Ching
2012-12-01
Organophosphates (OPs) are toxic chemicals commonly used as pesticides and herbicides. Some OPs are highly toxic to humans and have been used in warfare and terrorist attacks. In order to elucidate the molecular mechanisms of injury caused by OPs, the differentially expressed genes were analyzed in human SK-N-SH neuroblastoma cells induced by three OPs. The SK-N-SH cells were treated with one of the three OPs, chlorpyrifos, dichlorvos or methamidophos at LC20 (high-dose), the concentration causing 20% cell death, as well as 1/20 of LC20 (low-dose), a sub-lethal concentration with no detectable cell death, for 24 h. The genome-wide gene changes were identified by Agilent Microarray System, and analyzed by microarray analysis tools. The analysis revealed neuroblastoma cells treated with the high doses of all three OPs markedly activated cell apoptosis and inhibited cell growth and proliferation genes, which would most likely lead to the process of cell death. Interestingly, the analysis also revealed significant decrease in expressions of many genes in a specific spliceosome pathway in cells treated with the low doses of all three different OPs. The change of spliceosome pathway may represent an important mechanism of injury in neuronal cells exposed to low doses of various OPs. In addition to unraveling a potentially different form of OP pathogenesis, this finding could provide a new diagnostic marker in assessing OP-associated injury in cells or tissues. In addition, these results could also contribute to the development of new prevention and/or therapeutic regimens against OP toxicity.
SMK-1/PPH-4.1–mediated silencing of the CHK-1 response to DNA damage in early C. elegans embryos
Kim, Seung-Hwan; Holway, Antonia H.; Wolff, Suzanne; Dillin, Andrew; Michael, W. Matthew
2007-01-01
During early embryogenesis in Caenorhabditis elegans, the ATL-1–CHK-1 (ataxia telangiectasia mutated and Rad3 related–Chk1) checkpoint controls the timing of cell division in the future germ line, or P lineage, of the animal. Activation of the CHK-1 pathway by its canonical stimulus DNA damage is actively suppressed in early embryos so that P lineage cell divisions may occur on schedule. We recently found that the rad-2 mutation alleviates this checkpoint silent DNA damage response and, by doing so, causes damage-dependent delays in early embryonic cell cycle progression and subsequent lethality. In this study, we report that mutations in the smk-1 gene cause the rad-2 phenotype. SMK-1 is a regulatory subunit of the PPH-4.1 (protein phosphatase 4) protein phosphatase, and we show that SMK-1 recruits PPH-4.1 to replicating chromatin, where it silences the CHK-1 response to DNA damage. These results identify the SMK-1–PPH-4.1 complex as a critical regulator of the CHK-1 pathway in a developmentally relevant context. PMID:17908915
Morris, Winston E; Goldstein, Jorge; Redondo, Leandro M; Cangelosi, Adriana; Geoghegan, Patricia; Brocco, Marcela; Loidl, Fabián C; Fernandez-Miyakawa, Mariano E
2017-05-01
Clostridium perfringens epsilon toxin (ETX), the most potent toxin produced by this bacteria, plays a key role in the pathogenesis of enterotoxaemia in ruminants, causing brain edema and encephalomalacia. Studies of animals suffering from ETX intoxication describe severe neurological disorders that are thought to be the result of vasogenic brain edemas and indirect neuronal toxicity, killing oligodendrocytes but not astrocytes, microglia, or neurons in vitro. In this study, by means of intravenous and intracerebroventricular delivery of sub-lethal concentrations of ETX, the histological and ultrastructural changes of the brain were studied in rats and mice. Histological analysis showed degenerative changes in neurons from the cortex, hippocampus, striatum and hypothalamus. Ultrastructurally, necrotic neurons and apoptotic cells were observed in these same areas, among axons with accumulation of neurofilaments and demyelination as well as synaptic stripping. Lesions observed in the brain after sub-lethal exposure to ETX, result in permanent behavioral changes in animals surviving ETX exposure, as observed individually in several animals and assessed in the Inclined Plane Test and the Wire Hang Test. Pharmacological studies showed that dexamethasone and reserpine but not ketamine or riluzole were able to reduce the brain lesions and the lethality of ETX. Cytotoxicity was not observed upon neuronal primary cultures in vitro. Therefore, we hypothesize that ETX can affect the brain of animals independently of death, producing changes on neurons or glia as the result of complex interactions, independently of ETX-BBB interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
The skeletal phenotype of achondrogenesis type 1A is caused exclusively by cartilage defects.
Bird, Ian M; Kim, Susie H; Schweppe, Devin K; Caetano-Lopes, Joana; Robling, Alexander G; Charles, Julia F; Gygi, Steven P; Warman, Matthew L; Smits, Patrick J
2018-01-08
Inactivating mutations in the ubiquitously expressed membrane trafficking component GMAP-210 (encoded by Trip11 ) cause achondrogenesis type 1A (ACG1A). ACG1A is surprisingly tissue specific, mainly affecting cartilage development. Bone development is also abnormal, but as chondrogenesis and osteogenesis are closely coupled, this could be a secondary consequence of the cartilage defect. A possible explanation for the tissue specificity of ACG1A is that cartilage and bone are highly secretory tissues with a high use of the membrane trafficking machinery. The perinatal lethality of ACG1A prevents investigating this hypothesis. We therefore generated mice with conditional Trip11 knockout alleles and inactivated Trip11 in chondrocytes, osteoblasts, osteoclasts and pancreas acinar cells, all highly secretory cell types. We discovered that the ACG1A skeletal phenotype is solely due to absence of GMAP-210 in chondrocytes. Mice lacking GMAP-210 in osteoblasts, osteoclasts and acinar cells were normal. When we inactivated Trip11 in primary chondrocyte cultures, GMAP-210 deficiency affected trafficking of a subset of chondrocyte-expressed proteins rather than globally impairing membrane trafficking. Thus, GMAP-210 is essential for trafficking specific cargoes in chondrocytes but is dispensable in other highly secretory cells. © 2018. Published by The Company of Biologists Ltd.
Cheng, Zhe; Tian, Huimin; Chu, Hongran; Wu, Jianjian; Li, Yingying; Wang, Yanhai
2014-03-21
Tributyltin (TBT), one of the environmental pollutants, has been shown to impact the reproduction of animals. However, due to the lack of appropriate animal model, analysis of the affected molecular pathways in germ cells is lagging and has been particularly challenging. In the present study, we investigated the effects of tributyltin chloride (TBTCL) on the nematode Caenorhabditis elegans germline. We show that exposure of C. elegans to TBTCL causes significantly elevated level of sterility and embryonic lethality. TBTCL exposure results in an increased number of meiotic DNA double-strand breaks in germ cells, subsequently leading to activated DNA damage checkpoint. Exposing C. elegans to TBTCL causes dose- and time-dependent germline apoptosis. This apoptotic response was blocked in loss-of-function mutants of hus-1 (op241), mrt-2 (e2663) and p53/cep-1 (gk138), indicating that checkpoints and p53 are essential for mediating TBTCL-induced germ cell apoptosis. Moreover, TBTCL exposure can inhibit germ cell proliferation, which is also mediated by the conserved checkpoint pathway. We thereby propose that TBT exhibits its effects on the germline by inducing DNA damage and impaired maintenance of genomic integrity. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Lee, Jocelyn A; Wang, Zhengqi; Sambo, Danielle; Bunting, Kevin D; Pallas, David C
2018-05-07
Leucine Carboxyl Methyltransferase-1 (LCMT-1) 3 methylates the carboxy-terminal leucine α-carboxyl group of the catalytic subunits of the protein phosphatase 2A (PP2A) subfamily of protein phosphatases, PP2Ac, PP4c, and PP6c. LCMT-1 differentially regulates the formation and function of a subset of the heterotrimeric complexes that PP2A and PP4 form with their regulatory subunits. Global LCMT-1 knockout causes embryonic lethality in mice, but LCMT-1 function in development is unknown. In the current study, we analyzed the effects of global LCMT-1 loss on embryonic development. LCMT-1 knockout causes loss of PP2Ac methylation, indicating that LCMT-1 is the sole PP2Ac methyltransferase. PP2A heterotrimers containing the Bα and Bδ B-type subunits are dramatically reduced in whole embryos, and the steady-state levels of PP2Ac and the PP2A structural A subunit are also down ~30%. Strikingly, global loss of LCMT-1 causes severe defects in fetal hematopoiesis and death by embryonic day 16.5 (E16.5). Fetal livers of homozygous lcmt-1 knockout embryos display hypocellularity, elevated apoptosis, and greatly reduced numbers of hematopoietic stem and progenitor cell-enriched Kit + Lin - Sca1 + (KLS) cells. The percent cycling cells and mitotic indexes of wild-type and lcmt-1 knockout fetal liver cells are similar, suggesting that hypocellularity may be due to a combination of apoptosis and/or defects in specification, self-renewal, or survival of stem cells. Indicative of a possible intrinsic defect in stem cells, non-competitive and competitive transplantation experiments reveal that lcmt-1 loss causes a severe multi-lineage hematopoietic repopulating defect. Therefore, this study reveals a novel role for LCMT-1 as a key player in fetal liver hematopoiesis. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Phenazine derivatives cause proteotoxicity and stress in C. elegans
Ray, Arpita; Rentas, Courtney; Caldwell, Guy A.; Caldwell, Kim A.
2014-01-01
It is widely recognized that bacterial metabolites have toxic effects in animal systems. Phenazines are a common bacterial metabolite within the redox-active exotoxin class. These compounds have been shown to be toxic to the soil invertebrate Caenorhabditis elegans with the capability of causing oxidative stress and lethality. Here we report that chronic, low-level exposure to three separate phenazine molecules (phenazine-1-carboxylic acid, pyocyanin and 1-hydroxyphenazine) upregulated ER stress response and enhanced expression of a superoxide dismutase reporter in vivo. Exposure to these molecules also increased of polyglutamine and α-synuclein in the bodywall muscle cells of C. elegans. Exposure of worms to these phenazines caused additional sensitivity in dopamine neurons expressing wild-type α-synuclein, indicating a possible defect in protein homeostasis. The addition of an anti-oxidant failed to rescue the neurotoxic and protein aggregation phenotypes caused by these compounds. Thus, increased production of superoxide radicals that occurs in whole animals in response to these phenazines appears independent from the toxicity phenotype observed. Collectively, these data provide cause for further consideration of the neurodegenerative impact of phenazines. PMID:25304539
Caì, Yíngyún; Postnikova, Elena N; Bernbaum, John G; Yú, Shu Qìng; Mazur, Steven; Deiuliis, Nicole M; Radoshitzky, Sheli R; Lackemeyer, Matthew G; McCluskey, Adam; Robinson, Phillip J; Haucke, Volker; Wahl-Jensen, Victoria; Bailey, Adam L; Lauck, Michael; Friedrich, Thomas C; O'Connor, David H; Goldberg, Tony L; Jahrling, Peter B; Kuhn, Jens H
2015-01-01
Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-β-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin-independent endocytosis, likely with the help of a cellular surface protein. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
2012-01-01
Background Outbreaks of infectious diseases by microbial pathogens can cause substantial losses of stock in aquaculture systems. There are several ways to eliminate these pathogens including the use of antibiotics, biocides and conventional disinfectants, but these leave undesirable chemical residues. Conversely, using sunlight for disinfection has the advantage of leaving no chemical residue and is particularly suited to countries with sunny climates. Titanium dioxide (TiO2) is a photocatalyst that increases the effectiveness of solar disinfection. In recent years, several different types of solar photocatalytic reactors coated with TiO2 have been developed for waste water and drinking water treatment. In this study a thin-film fixed-bed reactor (TFFBR), designed as a sloping flat plate reactor coated with P25 DEGUSSA TiO2, was used. Results The level of inactivation of the aquaculture pathogen Aeromonas hydrophila ATCC 35654 was determined after travelling across the TFFBR under various natural sunlight conditions (300-1200 W m-2), at 3 different flow rates (4.8, 8.4 and 16.8 L h-1). Bacterial numbers were determined by conventional plate counting using selective agar media, cultured (i) under conventional aerobic conditions to detect healthy cells and (ii) under conditions designed to neutralise reactive oxygen species (agar medium supplemented with the peroxide scavenger sodium pyruvate at 0.05% w/v, incubated under anaerobic conditions), to detect both healthy and sub-lethally injured (oxygen-sensitive) cells. The results clearly demonstrate that high sunlight intensities (≥ 600 W m-2) and low flow rates (4.8 L h-1) provided optimum conditions for inactivation of A. hydrophila ATCC 3564, with greater overall inactivation and fewer sub-lethally injured cells than at low sunlight intensities or high flow rates. Low sunlight intensities resulted in reduced overall inactivation and greater sub-lethal injury at all flow rates. Conclusions This is the first demonstration of the effectiveness of the TFFBR in the inactivation of Aeromonas hydrophila at high sunlight intensities, providing proof-of-concept for the application of solar photocatalysis in aquaculture systems. PMID:22243515
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giggleman, M.A.; Fitzpatrick, L.C.; Goven, A.J.
Earthworms, Lumbricus terrestris, exposed for 96 h to filter paper saturated with five nominal concentrations of pentachlorophenol, exhibited a 50% lethal concentration (LC50) of 25.0 {micro}g PCP/cm{sup 2} and corresponding whole worm body burden-based 50% lethal dose (LD50) of 877.7 {micro}g PCP/g dry mass. Linear regression modeling showed that worms increased body concentrations (BC = {micro}g PCP/g dry tissue mass) with increasing exposure concentrations (EC) according to BC = 113.5 + 29.5EC. Phagocytosis of yeast cells by immunoactive coelomocytes was suppressed only at body concentrations (863.3 {micro}g PCP/g dry mass) that approximated the calculated LD50 and overlapped those demonstrating lethality,more » indicating a sharp transition between sublethal and lethal toxicity. An exposure concentration of 15 {micro}g PCP/cm{sup 2} produced significant suppression of phagocytosis of yeast cells by immunoactive coelomocytes. However, the average measured body burden from this group approximated the estimated LD50, indicating a sharp toxic response slope. Exposure to 10 {micro}g PCP/cm{sup 2} with a corresponding body concentration of 501.3 {micro}g PCP/g dry mass did not affect phagocytosis. The importance of body burden data is emphasized.« less
Giraud, T; Jonot, O; Shykoff, J A
2006-05-01
Microbotryum violaceum is a fungus that causes the sterilizing anther smut disease in Caryophyllaceae. Its diploid teliospores normally produce equal proportions of haploid sporidia of its two mating types. However natural populations contain high frequencies of individuals producing sporidia of only one mating type ('biased strains'). This mating type-ratio bias is caused by deleterious alleles at haploid phase ('haplo-lethals') linked to the mating type locus that can be transmitted only by intra-tetrad selfing. We used experimental inoculations to test some of the hypotheses proposed to explain the maintenance of haplo-lethals. We found a disadvantage of biased strains in infection ability and high intra-tetrad mating rates. Biased strains had no higher competitive ability nor shorter latency and their higher spore production per flower appeared insufficient to compensate their disadvantages. These findings were only consistent with the hypothesis that haplo-lethals are maintained under a metapopulation structure because of high intra-tetrad selfing rates, founder effects and selection at the population level.
Lethal Anaphylactic Reaction to Intravenous Gelatin in the Course of Surgery.
Ventura Spagnolo, Elvira; Calapai, Gioacchino; Minciullo, Paola L; Mannucci, Carmen; Asmundo, Alessio; Gangemi, Sebastiano
Plasma volume expanders (PVEs) are widely used to increase circulating blood volume. Gelatins used as PVEs are heterogeneous mixtures of polypeptides, usually prepared by hydrolysis of bovine collagen containing large amounts of proline and hydroxyproline residues. It has been shown that gelatins can cause anaphylactic reactions. We describe the case of a 73-year-old man who during surgery for intestinal obstruction presented a lethal anaphylactic reaction after the administration of a PVE containing gelatin lysate. The reaction occurred 10 minutes after the start of plasma expander infusion. Then, patient became comatose, and he died without awakening after 76 days. Necroptic aspects and histologic evaluation suggested the occurrence of anaphylactic reaction. According to pharmacovigilance algorithm, the causality relationship between PVE administration and adverse reaction has been considered as probable. We described a new lethal adverse reaction caused by PVEs containing gelatin. It is currently considered a very rare event, but we believe that it represents an important signal suggesting for a critical surveillance comprising a complete evaluation of individual's allergic susceptibility.
Twenhafel, N A; Shaia, C I; Bunton, T E; Shamblin, J D; Wollen, S E; Pitt, L M; Sizemore, D R; Ogg, M M; Johnston, S C
2015-01-01
Eight guinea pigs were aerosolized with guinea pig-adapted Zaire ebolavirus (variant: Mayinga) and developed lethal interstitial pneumonia that was distinct from lesions described in guinea pigs challenged subcutaneously, nonhuman primates challenged by the aerosol route, and natural infection in humans. Guinea pigs succumbed with significant pathologic changes primarily restricted to the lungs. Intracytoplasmic inclusion bodies were observed in many alveolar macrophages. Perivasculitis was noted within the lungs. These changes are unlike those of documented subcutaneously challenged guinea pigs and aerosolized filoviral infections in nonhuman primates and human cases. Similar to findings in subcutaneously challenged guinea pigs, there were only mild lesions in the liver and spleen. To our knowledge, this is the first report of aerosol challenge of guinea pigs with guinea pig-adapted Zaire ebolavirus (variant: Mayinga). Before choosing this model for use in aerosolized ebolavirus studies, scientists and pathologists should be aware that aerosolized guinea pig-adapted Zaire ebolavirus (variant: Mayinga) causes lethal pneumonia in guinea pigs. © The Author(s) 2014.
Myc requires RhoA/SRF to reprogram glutamine metabolism.
Haikala, Heidi M; Marques, Elsa; Turunen, Mikko; Klefström, Juha
2018-05-04
RhoA regulates actin cytoskeleton but recent evidence suggest a role for this conserved Rho GTPase also in other cellular processes, including transcriptional control of cell proliferation and survival. Interestingy, loss of RhoA is synthetic lethal with oncogenic Myc, a master transcription factor that turns on anabolic metabolism to promote cell growth in many cancers. We show evidence indicating that the synthetic lethal interaction between RhoA loss and Myc arises from deficiency in glutamine utilization, resulting from impaired co-regulation of glutaminase expression and anaplerosis by Myc and RhoA - serum response factor (SRF) pathway. The results suggest metabolic coordination between Myc and RhoA/SRF in sustaining cancer cell viability and indicate RhoA/SRF as a potential vulnerability in cancer cells for therapeutic targeting.
Guo, Mei; Dong, Zheng; Qiao, Jianhui; Yu, Changlin; Sun, Qiyun; Hu, Kaixun; Liu, Guangxian; Wei, Li; Yao, Bo; Man, Qiuhong; Sun, Xuedong; Liu, Zhiqing; Song, Zhiwu; Yu, Chengze; Chen, Ying; Luo, Qingliang; Liu, Sugang; Ai, Hui-Sheng
2014-03-01
This is a case report of a 32-year-old man exposed to a total body dose of 14.5 Gy γ-radiation in a lethal (60)Co-source irradiation accident in 2008 in China. Frequent nausea, vomiting and marked neutropenia and lymphopenia were observed from 30 min to 45 h after exposure. HLA-mismatched peripheral blood stem cell transplantation combined with infusion of mesenchymal stem cells was used at Day 7. Rapid hematopoietic recovery, stable donor engraftment and healing of radioactive skin ulceration were achieved during Days 18-36. The patient finally developed intestinal obstruction and died of multi-organ failure on Day 62, although intestinal obstruction was successfully released by emergency bowel resection.
NASA Astrophysics Data System (ADS)
Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy
2000-07-01
Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.
Drosophila Lyra mutations are gain-of-function mutations of senseless
NASA Technical Reports Server (NTRS)
Nolo, R.; Abbott, L. A.; Bellen, H. J.
2001-01-01
The Lyra mutation was first described by Jerry Coyne in 1935. Lyra causes recessive pupal lethality and adult heterozygous Lyra mutants exhibit a dominant loss of the anterior and posterior wing margins. Unlike many mutations that cause loss of wing tissue (e.g., scalloped, Beadex, cut, and apterous-Xasta), Lyra wing discs do not exhibit increased necrotic or apoptotic cell death, nor do they show altered BrdU incorporation. However, during wing disc eversion, loss of the anterior and posterior wing margins is apparent. We have previously shown that senseless, a gene that is necessary and sufficient for peripheral nervous system (PNS) development, is allelic to Lyra. Here we show by several genetic criteria that Lyra alleles are neomorphic alleles of senseless that cause ectopic expression of SENSELESS in the wing pouch. Similarly, overexpression of SENSELESS in the wing disc causes loss of wing margin tissue, thereby mimicking the Lyra phenotype. Lyra mutants display aberrant expression of DELTA, VESTIGIAL, WINGLESS, and CUT. As in Lyra mutants, overexpression of SENSELESS in some areas of the wing pouch also leads to loss of WINGLESS and CUT. In summary, our data indicate that overexpression of SENSELESS causes a severe reduction in NOTCH signaling that in turn may lead to decreased transcription of several key genes required for wing development, leading to a failure in cell proliferation and loss of wing margin tissue.
Liu, Ye V.; Massare, Michael J.; Barnard, Dale L.; Kort, Thomas; Nathan, Margret; Wang, Lei; Smith, Gale
2011-01-01
SARS-CoV was the cause of the global pandemic in 2003 that infected over 8000 people in 8 months. Vaccines against SARS are still not available. We developed a novel method to produce high levels of a recombinant SARS virus-like particles (VLPs) vaccine containing the SARS spike (S) protein and the influenza M1 protein using the baculovirus insect cell expression system. These chimeric SARS VLPs have a similar size and morphology to the wild type SARS-CoV. We tested the immunogenicity and protective efficacy of purified chimeric SARS VLPs and full length SARS S protein vaccines in a mouse lethal challenge model. The SARS VLP vaccine, containing 0.8 μg of SARS S protein, completely protected mice from death when administered intramuscular (IM) or intranasal (IN) routes in the absence of an adjuvant. Likewise, the SARS VLP vaccine, containing 4 μg of S protein without adjuvant, reduced lung virus titer to below detectable level, protected mice from weight loss, and elicited a high level of neutralizing antibodies against SARS-CoV. Sf9 cell-produced full length purified SARS S protein was also an effective vaccine against SARS-CoV but only when co-administered IM with aluminum hydroxide. SARS-CoV VLPs are highly immunogenic and induce neutralizing antibodies and provide protection against lethal challenge. Sf9 cell-based VLP vaccines are a potential tool to provide protection against novel pandemic agents. PMID:21762752
Rac1 modulates cardiomyocyte adhesion during mouse embryonic development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Issa, Radwan, E-mail: rabuissa@umich.edu
2015-01-24
Highlights: • Conditional knockout of Rac1 using Nkx2.5 Cre line is lethal at E13.5. • The myocardium of the mutant is thin and disorganized. • The phenotype is not due to cardiomyocyte low proliferation or apoptosis. • The phenotype is due to specific defect in cardiomyocyte adhesion. - Abstract: Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normallymore » until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell–cell and/or cellmatrix adhesion during cardiac development.« less
Metal Ions, Not Metal-Catalyzed Oxidative Stress, Cause Clay Leachate Antibacterial Activity
Otto, Caitlin C.; Koehl, Jennifer L.; Solanky, Dipesh; Haydel, Shelley E.
2014-01-01
Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4–5), generate reactive oxygen species (ROS) and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions. PMID:25502790
Repair-dependent cell radiation survival and transformation: an integrated theory.
Sutherland, John C
2014-09-07
The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete sigmodial dose-response data for neoplastic transformations can be fit using the repair-dependent functions with all parameters determined only from transformation frequency data.
Ren, Xiaomeng; Ustiyan, Vladimir; Pradhan, Arun; Cai, Yuqi; Havrilak, Jamie A; Bolte, Craig S; Shannon, John M; Kalin, Tanya V; Kalinichenko, Vladimir V
2014-09-26
Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis. Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1. FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and vascular endothelial growth factor signaling. © 2014 American Heart Association, Inc.
Staley, Elizabeth M.; Tanner, Scott M.; Daft, Joseph G.; Stanus, Andrea L.; Martin, Steven M.; Lorenz, Robin G.
2013-01-01
Bone marrow reconstitution is utilized as a tool for disease treatment and as a research technique to elucidate the function of bone marrow derived cells. Clinically successful engraftment is indicated by the development of a functioning immune repertoire. In research, reconstitution is considered successful if >85% of splenic leukocytes are of donor origins. Previous work suggests that splenic reconstitution may not be indicative of reconstitution in the mucosa. We sought to evaluate mucosal reconstitution in animals following a standard bone marrow eradication and reconstitution technique. Bone marrow was harvested from adult B6.SJL donor mice (CD45.1) and injected via either the retro-orbital or intraperitoneal route into lethally irradiated B6 (CD45.2) adult or neonatal recipients respectively. Expression of CD45 by flow cytometry was used to calculate reconstitution with respect to immune compartment and cell type. In reconstituted adult animals 93.2±1.5% of splenic leukocytes expressed the donor CD45.1 antigen thus meeting the standard definition of reconstitution, however only 58.6±13.6% of intestinal lamina propria lymphocytes and 52.4±16.0% of intestinal intraepithelial lymphocytes were of donor origin, confirming splenic reconstitution fails to represent peripheral immune reconstitution. T-cells in the gastrointestinal tract are the most poorly reconstituted, while B-cells appear to be almost universally replaced by donor cells. The inadequate mucosal reconstitution was not corrected by evaluating later timepoints or by performing the bone marrow transfer during the neonatal period. This demonstration that substantial host T-cells remain in the intestinal mucosa after a “successful” bone marrow transplantation should cause a re-evaluation of data from research bone marrow chimera experiments, as well as the mechanisms for complications after clinical bone marrow transplantation. PMID:23334064