Sample records for cells cell killing

  1. In vitro cytotoxicity of galvanically coupled magnesium-titanium particles on human osteosarcoma SAOS2 cells: A potential cancer therapy.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2018-04-10

    Osteosarcoma is a malignant bone cancer that occurs mostly in children and young adults. This study investigated the cytotoxicity of Mg and Mg-Ti microparticles to human osteosarcoma cells. Osteosarcoma cells were killed in a dosage-dependent manner when cells, with a cell seeding density of 30,000 cells/cm 2 , were cultured with 0 to 2500 µg/mL of Mg or Mg-Ti in cell culture media for 24-72 h. Mg-Ti killed cells more effectively, where 1250 µg/mL of Mg-Ti killed cells completely by 24 h, while 2500 µg/mL of Mg killed nearly all cells, but not all. Killing due to particle corrosion occurred mostly during the first 24 h, and so the percent cell viability between 24 and 72 h showed not much variability. However, the measurement of live and dead cell numbers, over the timeframe of 24-72 h, showed more insight, such as cell recovery. If particle concentrations were low, the number of live cells increased after 24 h, indicating cell proliferation. If particle concentrations were high, the number of live cells either remained steady or decreased, indicating cell quiescence or continued killing, respectively. Increase in the number of dead cells also indicated killing, while plateau meant discontinued killing. In addition, repeated killing of recovered cells exhibited the same dose-dependent killing profile as the initial experiment, implying little development of cell resistance to treatment. These results, together, show that osteosarcoma cells are susceptible to killing by way of exposure to corroding particles, showing highly effective killing using the galvanic couple of Mg-Ti. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  2. Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells

    PubMed Central

    Choi, Paul J.; Mitchison, Timothy J.

    2013-01-01

    Cytotoxic lymphocytes eliminate virus-infected and cancerous cells by immune recognition and killing through the perforin-granzyme pathway. Traditional killing assays measure average target cell lysis at fixed times and high effector:target ratios. Such assays obscure kinetic details that might reveal novel physiology. We engineered target cells to report on granzyme activity, used very low effector:target ratios to observe potential serial killing, and performed low magnification time-lapse imaging to reveal time-dependent statistics of natural killer (NK) killing at the single-cell level. Most kills occurred during serial killing, and a single NK cell killed up to 10 targets over a 6-h assay. The first kill was slower than subsequent kills, especially on poor targets, or when NK signaling pathways were partially inhibited. Spatial analysis showed that sequential kills were usually adjacent. We propose that NK cells integrate signals from the previous and current target, possibly by simultaneous contact. The resulting burst kinetics and spatial coordination may control the activity of NK cells in tissues. PMID:23576740

  3. Potassium Channels Mediate Killing by Human Natural Killer Cells

    NASA Astrophysics Data System (ADS)

    Schlichter, Lyanne; Sidell, Neil; Hagiwara, Susumu

    1986-01-01

    Human natural killer (NK) cells in peripheral blood spontaneously recognize and kill a wide variety of target cells. It has been suggested that ion channels are involved in the killing process because there is a Ca-dependent stage and because killing by presensitized cytotoxic T lymphocytes, which in many respects resembles NK killing, is associated with changes in K and Na transport in the target cell. However, no direct evidence exists for ion channels in NK cells or in their target cells. Using the whole-cell variation of the patch-clamp technique, we found a voltage-dependent potassium (K+) current in NK cells. The K+ current was reduced in a dose-dependent manner by the K-channel blockers 4-aminopyridine and quinidine and by the traditional Ca-channel blockers verapamil and Cd2+. We tested the effects of ion-channel blockers on killing of two commonly used target cell lines: K562, which is derived from a human myeloid leukemia, and U937, which is derived from a human histiocytic leukemia. Killing of K562 target cells, determined in a standard 51Cr-release assay, was inhibited in a dose-dependent manner by verapamil, quinidine, Cd2+, and 4-aminopyridine at concentrations comparable to those that blocked the K+ current in NK cells. In K562 target cells only a voltage-dependent Na+ current was found and it was blocked by concentrations of tetrodotoxin that had no effect on killing. Killing of U937 target cells was also inhibited by the two ion-channel blockers tested, quinidine and verapamil. In this cell line only a small K+ current was found that was similar to the one in NK cells. We could not find any evidence of a Ca2+ current in target cells or in NK cells; therefore, our results cannot explain the Ca dependence of killing. Our findings show that there are K channels in NK cells and that these channels play a necessary role in the killing process. In contrast, the endogenous channel type in the target cell is probably not a factor in determining target cell sensitivity to natural killing.

  4. Cytotoxic human peripheral blood-derived γδT cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma.

    PubMed

    Nakazawa, Tsutomu; Nakamura, Mitsutoshi; Park, Young Soo; Motoyama, Yasushi; Hironaka, Yasuo; Nishimura, Fumihiko; Nakagawa, Ichiro; Yamada, Shuichi; Matsuda, Ryosuke; Tamura, Kentaro; Sugimoto, Tadashi; Takeshima, Yasuhiro; Marutani, Akiko; Tsujimura, Takahiro; Ouji, Noriko; Ouji, Yukiteru; Yoshikawa, Masahide; Nakase, Hiroyuki

    2014-01-01

    Glioblastoma (GBM) is a highly aggressive brain tumor for which novel therapeutic approaches, such as immunotherapy, are urgently needed. Zoledronate (ZOL), an inhibitor of osteoclastic activity, is known to stimulate peripheral blood-derived γδT cells and sensitize tumors to γδT cell-mediated killing. To investigate the feasibility of γδT cell-based immunotherapy for patients with GBM, we focused on the killing of GBM cell lines by γδT cells and the molecular mechanisms involved in these cell-cell interactions. Peripheral blood mononuclear cells were expanded in ZOL and interleukin (IL)-2 for 14 days, and γδT cells were enriched in the expanded cells by the immunomagnetic depletion of αβT cells. Gliomas are resistant to NK cells but susceptible to lymphokine-activated killer cells and some cytotoxic T lymphocytes. When the γδT cell-mediated killing of three GBM cell lines (U87MG, U138MG and A172 cells) and an NK-sensitive leukemia cell line (K562 cells) were tested, 32% U87MG, 15% U138MG, 1% A172, and 50% K562 cells were killed at an effector:target ratio of 5:1. The γδT cell-mediated killing of all three GBM cell lines was significantly enhanced by ZOL and this ZOL-enhanced killing was blocked by an anti-T cell receptor (TcR) antibody. These results indicated that TcR γδ is crucial for the recognition of ZOL-treated GBM cells by γδT cells. Since the low level killing of GBM cells by the γδT cells was enhanced by ZOL, γδT cell-targeting therapy in combination with ZOL treatment could be effective for patients with GBM.

  5. Individual motile CD4+ T cells can participate in efficient multi-killing through conjugation to multiple tumor cells

    PubMed Central

    Liadi, Ivan; Singh, Harjeet; Romain, Gabrielle; Rey-Villamizar, Nicolas; Merouane, Amine; Adolacion, Jay R T.; Kebriaei, Partow; Huls, Helen; Qiu, Peng; Roysam, Badrinath; Cooper, Laurence J.N.; Varadarajan, Navin

    2015-01-01

    T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B-cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We implemented Timelapse Imaging Microscopy In Nanowell Grids (TIMING) to provide direct evidence that CD4+CAR+ T cells (CAR4 cells) can engage in multi-killing via simultaneous conjugation to multiple tumor cells. Comparisons of the CAR4 cells and CD8+CAR+ T cells (CAR8 cells) demonstrate that while CAR4 cells can participate in killing and multi-killing, they do so at slower rates, likely due to the lower Granzyme B content. Significantly, in both sets of T cells, a minor sub-population of individual T cells identified by their high motility, demonstrated efficient killing of single tumor cells. By comparing both the multi-killer and single killer CAR+ T cells it appears that the propensity and kinetics of T-cell apoptosis was modulated by the number of functional conjugations. T cells underwent rapid apoptosis, and at higher frequencies, when conjugated to single tumor cells in isolation and this effect was more pronounced on CAR8 cells. Our results suggest that the ability of CAR+ T cells to participate in multi-killing should be evaluated in the context of their ability to resist activation induced cell death (AICD). We anticipate that TIMING may be utilized to rapidly determine the potency of T-cell populations and may facilitate the design and manufacture of next-generation CAR+ T cells with improved efficacy. PMID:25711538

  6. Trogocytosis by Entamoeba histolytica contributes to cell killing and tissue invasion

    PubMed Central

    Ralston, Katherine S.; Solga, Michael D.; Mackey-Lawrence, Nicole M.; Somlata; Bhattacharya, Alok; Petri, William A.

    2014-01-01

    Summary paragraph Entamoeba histolytica is the causative agent of amoebiasis, a potentially fatal diarrheal disease in the developing world. The parasite was named “histolytica” for its ability to destroy host tissues, which is most likely driven by direct killing of human cells. The mechanism of human cell killing has been unclear, though the accepted model was that the parasites use secreted toxic effectors to kill cells prior to ingestion1. Here we report the surprising discovery that amoebae kill by biting off and ingesting distinct pieces of living human cells, resulting in intracellular calcium elevation and eventual cell death. After cell killing, amoebae detach and cease ingestion. Ingestion of bites is required for cell killing, and also contributes to invasion of intestinal tissue. The internalization of bites of living human cells is reminiscent of trogocytosis (Greek trogo–, nibble) observed between immune cells2–6, but amoebic trogocytosis differs since it results in death. The ingestion of live cell material and the rejection of corpses illuminate a stark contrast to the established model of dead cell clearance in multicellular organisms7. These findings change the paradigm for tissue destruction in amoebiasis and suggest an ancient origin of trogocytosis as a form of intercellular exchange. PMID:24717428

  7. CAR-T cells are serial killers

    PubMed Central

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-01-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours. PMID:26587330

  8. CAR-T cells are serial killers.

    PubMed

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-12-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours.

  9. Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganusov, Vitaly V

    2009-01-01

    In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targetsmore » with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the phenotype of vaccine-induced memory CD8 T cells with their killing efficacy in vivo.« less

  10. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  11. In Vivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity

    PubMed Central

    Halle, Stephan; Keyser, Kirsten Anja; Stahl, Felix Rolf; Busche, Andreas; Marquardt, Anja; Zheng, Xiang; Galla, Melanie; Heissmeyer, Vigo; Heller, Katrin; Boelter, Jasmin; Wagner, Karen; Bischoff, Yvonne; Martens, Rieke; Braun, Asolina; Werth, Kathrin; Uvarovskii, Alexey; Kempf, Harald; Meyer-Hermann, Michael; Arens, Ramon; Kremer, Melanie; Sutter, Gerd; Messerle, Martin; Förster, Reinhold

    2016-01-01

    Summary According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2–16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8+ T cell immunity. PMID:26872694

  12. Cytotoxic effect of galvanically coupled magnesium-titanium particles.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2016-01-01

    Recent work has shown that reduction reactions at metallic biomaterial surfaces can induce significant killing of cells in proximity to the surface. To exploit this phenomenon for therapeutic purposes, for example, for cancer tumor killing or antibacterial effects (amongst other applications), magnesium metal particles, galvanically coupled to titanium by sputtering, have been evaluated for their cell-killing capability (i.e. cytotoxicity). Magnesium (Mg) particles large enough to prevent particle phagocytosis were investigated, so that only electrochemical reactions, and not particle toxicity per se, caused cytotoxic effects. Titanium (Ti) coated magnesium particles, as well as magnesium-only particles were introduced into MC3T3-E1 mouse pre-osteoblast cell cultures over a range of particle concentrations, and cells were observed to die in a dosage-dependent manner. Ti-coated magnesium particles killed more cells at lower particle concentration than magnesium alone (P<0.05), although the pH measured for magnesium and magnesium-titanium had no significant difference at similar particle concentrations. Complete cell killing occurred at 750μg/ml and 1500μg/ml for Mg-Ti and Mg, respectively. Thus, this work demonstrates that galvanically coupled Mg-Ti particles have a significant cell killing capability greater than Mg alone. In addition, when the pH associated with complete killing with particles was created using NaOH only (no particles), then the percentage of cells killed was significantly less (P<0.05). Together, these findings show that pH is not the sole factor associated with cell killing and that the electrochemical reactions, including the reduction reactions, play an important role. Reduction reactions on galvanically coupled Mg-Ti and Mg particles may generate reactive oxygen intermediates that are able to kill cells in close proximity to the particles and this approach may lead to potential therapies for infection and cancer. This paper demonstrates that during active corrosion of both Mg and Mg-Ti particles cells cultured with the particles are killed in a dose-dependent particle concentration fashion. Additionally, galvanically-coupled magnesium-titanium microparticles kill cells more effectively than magnesium particles alone. The killing effect was shown to not be due to pH shifts since no differences were seen for different particle types and pH adjusted medium without particles did not exhibit the same level of killing. The significance of this work is the recognition of this killing effect with Mg particles and the potential therapeutic applications in infection control and cancer treatment that this process may provide. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Influence of anaesthetics on tumour-cell kill and repopulation in B16 melanoma treated with melphalan.

    PubMed Central

    Peacock, J. H.; Stephens, T. C.

    1978-01-01

    The influence of anaesthetics on the in vivo response of B16 melanoma to melphalan was studied using an in vitro cell-survival assay. Three anaesthetics were used, Saffan (Althesin) Sagatal (Nembutal) and Hypnorm. When Saffan was administered to tumour-bearing animals before melphalan there was a significant increase in tumour-cell kill. This effect was not observed with Sagatal or Hypnorm. Maximum increase in tumour-cell kill was achieved when Saffan was administered about 1 h before melphalan, and was dependent on Saffan dose. Clonogenic tumour-cell repopulation after melphalan was rapid (TD - 1 day) and the rate was similar from 2 levels of cell kill. When Saffan was combined with melphalan the repopulation rate was the same as with melphalan alone, and the increased cell kill was reflected in increased growth delay. The in vitro response of B16 melanoma cells to melphalan was unaltered by pretreatment with, or simultaneous exposure to Saffan. The results suggest that the mechanism of the enhanced cell kill in vivo is probably due to an indirect systemic effect, rather than a direct effect on the tumour cells. PMID:743490

  14. The effect of cell density, proximity, and time on the cytotoxicity of magnesium and galvanically coupled magnesium-titanium particles in vitro.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2018-05-01

    Magnesium (Mg) and galvanically coupled magnesium-titanium (Mg-Ti) particles in vitro have been reported previously to kill cells in a dosage-dependent manner. Mg-Ti particles kill cells more effectively than Mg alone, due to the galvanic effect of Mg and Ti. This study further investigated the in vitro cytotoxicity of Mg and Mg-Ti in terms of particle concentration, cell density, time, and proximity. Cell density has an effect on cell viability only at low particle concentrations (below 250 µg/mL), where cell viability dropped only for lower cell densities (5000-10,000 cells/cm 2 ) and not for higher cell densities (20,000-30,000 cells/cm 2 ), showing that the particles cannot kill if there are more cells present. Cytotoxicity of Mg and Mg-Ti particles is quick and temporary, where the particles kill cells only during particle corrosion (first 24 h). Depending on the percentage of surviving cells, particle concentrations, and ongoing corrosion activity, the remaining live cells either proliferated and recovered, or just remained viable and quiescent. The particle killing is also proximity-dependent, where cell viability was significantly higher for cells far away from the particles (greater than ∼1 mm) compared to those close to the particles (less than ∼1 mm). Although the increase of pH does affect cell viability negatively, it is not the sole killing factor since cell viability is significantly dependent on particle type and proximity but not pH. Mg and Mg-Ti particles used in this study are large enough to prevent direct cell phagocytosis so that the cell killing effect may be attributed to solely electrochemical reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1428-1439, 2018. © 2018 Wiley Periodicals, Inc.

  15. Stepwise cytoskeletal polarization as a series of checkpoints in innate but not adaptive cytolytic killing

    NASA Astrophysics Data System (ADS)

    Wülfing, Christoph; Purtic, Bozidar; Klem, Jennifer; Schatzle, John D.

    2003-06-01

    Cytolytic killing is a major effector mechanism in the elimination of virally infected and tumor cells. The innate cytolytic effectors, natural killer (NK) cells, and the adaptive effectors, cytotoxic T cells (CTL), despite differential immune recognition, both use the same lytic mechanism, cytolytic granule release. Using live cell video fluorescence microscopy in various primary cell models of NK cell and CTL killing, we show here that on tight target cell contact, a majority of the NK cells established cytoskeletal polarity required for effective lytic function slowly or incompletely. In contrast, CTLs established cytoskeletal polarity rapidly. In addition, NK cell killing was uniquely sensitive to minor interference with cytoskeletal dynamics. We propose that the stepwise NK cell cytoskeletal polarization constitutes a series of checkpoints in NK cell killing. In addition, the use of more deliberate progression to effector function to compensate for inferior immune recognition specificity provides a mechanistic explanation for how the same effector function can be used in the different functional contexts of the innate and adaptive immune response.

  16. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells.

    PubMed

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N -acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.

  17. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells

    PubMed Central

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. PMID:28936177

  18. Effects of murine leukemia virus env gene proteins on macrophage-mediated cytotoxicity in vitro

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Takemoto, L. J.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    F5b Tumor cells were incubated with concentrated culture supernatants taken from cells resistant (F5m) or sensitive (F5b) to contact-dependent macrophage cytotoxicity. Macrophage cell line B6MP102 and murine peritoneal macrophages killed targets incubated with supernatants taken from sensitive cells but poorly killed cells incubated in supernatants isolated from resistant cells. Membranes from cells resistant to macrophage killing, F5m, were fused into F5b cells. The fused F5b cells were killed significantly less than F5b cells fused with F5b cell membranes or untreated F5b cells. The decreased killing of F5b cells corresponded to increased concentrations of gp70(a) molecules on F5b cells. Affinity purified gp70(a) was added to cytotoxicity assays but failed to inhibit macrophage cytotoxicity. P15E molecules were detectable on both F5b and F5m cells. In addition, a synthetic peptide found to exhibit the inhibitory properties of p15E was added to cytotoxicity assays. P15E synthetic peptide also did not inhibit macrophage cytotoxicity. Therefore, env gene proteins of murine leukemia virus do not appear responsible for inducing tumor cell resistance to activated macrophage contact-dependent cytotoxicity.

  19. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcet-Palacios, Marcelo; Odemuyiwa, Solomon O.; Coughlin, Jason J.

    2008-02-15

    Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Ourmore » data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24 h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1 ng/mL of granzyme B, compared to 1.5-2.5 {mu}g/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo.« less

  20. An in vitro investigation of immunomodulatory properties of Lactobacillus plantarum and L. delbrueckii cells and their extracellular polysaccharides

    PubMed Central

    KISHIMOTO, Mana; NOMOTO, Ryohei; MIZUNO, Masashi; OSAWA, Ro

    2017-01-01

    Many probiotic lactobacilli and their extracellular polysaccharides (EPS) have beneficial immunological properties. However, it is unclear how they elicit the host immune response. We thus investigated the immunological properties of UV-killed Lactobacillus delbrueckii TU-1 and L. plantarum KM-9 cells as well as their extracellular polysaccharides (EPSs). High-performance liquid chromatography and ion exchange chromatography analyses showed that their EPSs differ in sugar composition and sugar fractionation. The immunological properties were evaluated in a semi-intestinal model using a Transwell co-culture system that employed human intestinal epithelial (Caco-2) cells on the apical side and murine macrophage (RAW264.7) cells on the basolateral side. The UV-killed cells and EPSs were added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of tumor necrosis factor-α and several cytokines released by RAW264.7 or Caco-2 cells were quantified by cytotoxic activity on L929 cells (murine fibrosarcoma cell line) and quantitative reverse-transcriptase PCR. We found that the UV-killed cells and their EPSs had immunological effects on RAW264.7 cells via Caco-2 cells. The RAW264.7 cells showed different cytokine production profiles when treated with UV-killed cells and EPSs. The UV-killed cells and EPSs promoted a Th1-type cellular response. Furthermore, we found that the UV-killed cells sent positive signals through Toll-like receptor (TLR) 2. Meanwhile, neither EPS sent a positive signal through TLR4 and TLR2. This evidence suggests that both UV-killed cells of the lactobacillus strains and their EPSs trigger a Th1-type immune response in a human host, with the former triggering the response via the TLRs expressed on its epithelium and the latter employing a mechanism yet to be determined, possibly involving a novel receptor that is designed to recognize specific patterns of repeating sugar in the EPSs. PMID:28748131

  1. An in vitro investigation of immunomodulatory properties of Lactobacillus plantarum and L. delbrueckii cells and their extracellular polysaccharides.

    PubMed

    Kishimoto, Mana; Nomoto, Ryohei; Mizuno, Masashi; Osawa, Ro

    2017-01-01

    Many probiotic lactobacilli and their extracellular polysaccharides (EPS) have beneficial immunological properties. However, it is unclear how they elicit the host immune response. We thus investigated the immunological properties of UV-killed Lactobacillus delbrueckii TU-1 and L. plantarum KM-9 cells as well as their extracellular polysaccharides (EPSs). High-performance liquid chromatography and ion exchange chromatography analyses showed that their EPSs differ in sugar composition and sugar fractionation. The immunological properties were evaluated in a semi-intestinal model using a Transwell co-culture system that employed human intestinal epithelial (Caco-2) cells on the apical side and murine macrophage (RAW264.7) cells on the basolateral side. The UV-killed cells and EPSs were added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of tumor necrosis factor-α and several cytokines released by RAW264.7 or Caco-2 cells were quantified by cytotoxic activity on L929 cells (murine fibrosarcoma cell line) and quantitative reverse-transcriptase PCR. We found that the UV-killed cells and their EPSs had immunological effects on RAW264.7 cells via Caco-2 cells. The RAW264.7 cells showed different cytokine production profiles when treated with UV-killed cells and EPSs. The UV-killed cells and EPSs promoted a Th1-type cellular response. Furthermore, we found that the UV-killed cells sent positive signals through Toll-like receptor (TLR) 2. Meanwhile, neither EPS sent a positive signal through TLR4 and TLR2. This evidence suggests that both UV-killed cells of the lactobacillus strains and their EPSs trigger a Th1-type immune response in a human host, with the former triggering the response via the TLRs expressed on its epithelium and the latter employing a mechanism yet to be determined, possibly involving a novel receptor that is designed to recognize specific patterns of repeating sugar in the EPSs.

  2. An Acidic Microenvironment Increases NK Cell Killing of Cryptococcus neoformans and Cryptococcus gattii by Enhancing Perforin Degranulation

    PubMed Central

    Islam, Anowara; Li, Shu Shun; Oykhman, Paul; Timm-McCann, Martina; Huston, Shaunna M.; Stack, Danuta; Xiang, Richard F.; Kelly, Margaret M.; Mody, Christopher H.

    2013-01-01

    Cryptococcus gattii and Cryptococcus neoformans are encapsulated yeasts that can produce a solid tumor-like mass or cryptococcoma. Analogous to malignant tumors, the microenvironment deep within a cryptococcoma is acidic, which presents unique challenges to host defense. Analogous to malignant cells, NK cells kill Cryptococcus. Thus, as in tumor defense, NK cells must kill yeast cells across a gradient from physiologic pH to less than 6 in the center of the cryptococcoma. As acidic pH inhibits anti-tumor activities of NK cells, we sought to determine if there was a similar reduction in the anticryptococcal activity of NK cells. Surprisingly, we found that both primary human NK cells and the human NK cell line, YT, have preserved or even enhanced killing of Cryptococcus in acidic, compared to physiological, pH. Studies to explore the mechanism of enhanced killing revealed that acidic pH does not increase the effector to target ratio, binding of cytolytic cells to Cryptococcus, or the active perforin content in effector cells. By contrast, perforin degranulation was greater at acidic pH, and increased degranulation was preceded by enhanced ERK1/2 phosphorylation, which is essential for killing. Moreover, using a replication defective ras1 knockout strain of Cryptococcus increased degranulation occurred during more rapid replication of the organisms. Finally, NK cells were found intimately associated with C. gattii within the cryptococcoma of a fatal infection. These results suggest that NK cells have amplified signaling, degranulation, and greater killing at low pH and when the organisms are replicating quickly, which would help maintain microbicidal host defense despite an acidic microenvironment. PMID:23853583

  3. A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica

    PubMed Central

    Sateriale, Adam; Huston, Christopher D.

    2011-01-01

    The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of Entamoeba histolytica is strongly correlated with the parasite's capacity to effectively kill and phagocytose host cells. The process by which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of the sequential model. PMID:21331284

  4. NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing

    PubMed Central

    Hsu, Hsiang-Ting; Viswanath, Dixita I.; Önfelt, Björn

    2016-01-01

    Natural killer (NK) cell activation triggers sequential cellular events leading to destruction of diseased cells. We previously identified lytic granule convergence, a dynein- and integrin signal–dependent movement of lysosome-related organelles to the microtubule-organizing center, as an early step in the cell biological process underlying NK cell cytotoxicity. Why lytic granules converge during NK cell cytotoxicity, however, remains unclear. We experimentally controlled the availability of human ligands to regulate NK cell signaling and promote granule convergence with either directed or nondirected degranulation. By the use of acoustic trap microscopy, we generated specific effector–target cell arrangements to define the impact of the two modes of degranulation. NK cells with converged granules had greater targeted and less nonspecific “bystander” killing. Additionally, NK cells in which dynein was inhibited or integrin blocked under physiological conditions demonstrated increased nondirected degranulation and bystander killing. Thus, NK cells converge lytic granules and thereby improve the efficiency of targeted killing and prevent collateral damage to neighboring healthy cells. PMID:27903610

  5. Membrane oxidation in cell delivery and cell killing applications

    PubMed Central

    Wang, Ting-Yi; Libardo, M. Daben J.; Angeles-Boza, Alfredo M.; Pellois, Jean-Philippe

    2018-01-01

    Cell delivery or cell killing processes often involve the crossing or disruption of cellular membranes. We review how, by modifying the composition and properties of membranes, membrane oxidation can be exploited to enhance the delivery of macromolecular cargos into live human cells. We also describe how membrane oxidation can be utilized to achieve efficient killing of bacteria by antimicrobial peptides. Finally, we present recent evidence highlighting how membrane oxidation is intimately engaged in natural biological processes such as antigen delivery in dendritic cells and in the killing of bacteria by human macrophages. Overall, the insights that have been recently gained in this area should facilitate the development of more effective delivery technologies and antimicrobial therapeutic approaches. PMID:28355059

  6. 40 CFR 180.1325 - Heat-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... A396 cells and spent fermentation media exemption from the requirement of a tolerance. 180.1325 Section...-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the requirement of...-killed Burkholderia spp. strain A396 cells and spent fermentation media in or on all food commodities...

  7. High vancomycin MICs within the susceptible range in Staphylococcus aureus bacteraemia isolates are associated with increased cell wall thickness and reduced intracellular killing by human phagocytes.

    PubMed

    Falcón, Rocío; Martínez, Alba; Albert, Eliseo; Madrid, Silvia; Oltra, Rosa; Giménez, Estela; Soriano, Mario; Vinuesa, Víctor; Gozalbo, Daniel; Gil, María Luisa; Navarro, David

    2016-05-01

    Vancomycin minimum inhibitory concentrations (MICs) at the upper end of the susceptible range for Staphylococcus aureus have been associated with poor clinical outcomes of bloodstream infections. We tested the hypothesis that high vancomycin MICs in S. aureus bacteraemia isolates are associated with increased cell wall thickness and suboptimal bacterial internalisation or lysis by human phagocytes. In total, 95 isolates were evaluated. Original vancomycin MICs were determined by Etest. The susceptibility of S. aureus isolates to killing by phagocytes was assessed in a human whole blood assay. Internalisation of bacterial cells by phagocytes was investigated by flow cytometry. Cell wall thickness was evaluated by transmission electron microscopy. Genotypic analysis of S. aureus isolates was performed using a DNA microarray system. Vancomycin MICs were significantly higher (P=0.006) in isolates that were killed suboptimally (killing index <60%) compared with those killed efficiently (killing index >70%) and tended to correlate inversely (P=0.08) with the killing indices. Isolates in both killing groups were internalised by human neutrophils and monocytes with comparable efficiency. The cell wall was significantly thicker (P=0.03) in isolates in the low killing group. No genotypic differences were found between the isolates in both killing groups. In summary, high vancomycin MICs in S. aureus bacteraemia isolates were associated with increased cell wall thickness and reduced intracellular killing by phagocytes. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  8. Dynamic visualization the whole process of cytotoxic T lymphocytes killing the B16 tumor cells in vitro

    NASA Astrophysics Data System (ADS)

    Qi, Shuhong; Zhang, Zhihong

    2016-03-01

    Cytotoxic T lymphocytes (CTLs) played a key role in the immune system to destroy the tumor cells. Although some mechanisms of CTLs killing the tumor cells are revealed already, the dynamic information of CTLs interaction with tumor cells are still not known very clearly. Here we used confocal microscopy to visualize the whole process of CTLs killing the tumor cells in vitro. The imaging data showed that CTLs destroyed the target tumor cells rapidly and efficiently. Several CTLs surrounded one or some tumor cells and the average time for CTLs destroying one tumor cell is just a few minutes in vitro. The study displayed the temporal events of CTLs interacting with tumor cells at the beginning and finally killing them and directly presented the efficient tumor cell cytotoxicity of the CTLs. The results helped us to deeply understand the mechanism of the CTLs destroying the tumor cells and to develop the cancer immunotherapy.

  9. Role of CD44 in lymphokine-activated killer cell-mediated killing of melanoma.

    PubMed

    Sun, Jingping; Law, Gabriela P; McKallip, Robert J

    2012-03-01

    In the current study, we examined the potential significance of CD44 expression on lymphokine-activated killer (LAK) cells in their interaction and killing of melanoma cells. Stimulation of splenocytes with IL-2 led to a significant increase in the expression of CD44 on T cells, NK cells, and NKT cells. Treatment of melanoma-bearing CD44 WT mice with IL-2 led to a significant reduction in the local tumor growth while treatment of melanoma-bearing CD44 KO mice with IL-2 was ineffective at controlling tumor growth. Furthermore, the ability of splenocytes from IL-2-treated CD44 KO mice to kill melanoma tumor targets was significantly reduced when compared to the anti-tumor activity of splenocytes from IL-2-treated CD44 WT mice. The importance of CD44 expression on the LAK cells was further confirmed by the observation that adoptively transferred CD44 WT LAK cells were significantly more effective than CD44 KO LAK cells at controlling tumor growth in vivo. Next, the significance of the increased expression of CD44 in tumor killing was examined and showed that following stimulation with IL-2, distinct populations of cells with low (CD44(lo)) or elevated (CD44(hi)) expression of CD44 are generated and that the CD44(hi) cells are responsible for killing of the melanoma cells. The reduced killing activity of the CD44 KO LAK cells did not result from reduced activation or expression of effector molecules but was due, at least in part, to a reduced ability to adhere to B16F10 tumor cells.

  10. Cryptococcus Neoformans Modulates Extracellular Killing by Neutrophils

    PubMed Central

    Qureshi, Asfia; Grey, Angus; Rose, Kristie L.; Schey, Kevin L.; Del Poeta, Maurizio

    2011-01-01

    We recently established a key role for host sphingomyelin synthase (SMS) in regulating the killing activity of neutrophils against Cryptococcus neoformans. In this paper, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and natural killer (NK) cells (Tgε26 mice). To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike Candida albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. We monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the conditioned medium and found that pre-incubation with live but not “heat-killed” fungal cells significantly inhibits further killing activity of the medium. We then studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption–ionization tissue imaging in infected lung we found that similar to previous observations in the isogenic wild-type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells, but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells. PMID:21960987

  11. A Drosera-bioinspired hydrogel for catching and killing cancer cells

    PubMed Central

    Li, Shihui; Chen, Niancao; Gaddes, Erin R.; Zhang, Xiaolong; Dong, Cheng; Wang, Yong

    2015-01-01

    A variety of bioinspired materials have been successfully synthesized to mimic the sophisticated structures or functions of biological systems. However, it is still challenging to develop materials with multiple functions that can be performed synergistically or sequentially. The purpose of this work was to demonstrate a novel bioinspired hydrogel that can interact with cancer cells, functionally similar to Drosera in catching and killing prey. This hydrogel had two layers with the top one functionalized with oligonucleotide aptamers and the bottom one functionalized with double-stranded DNA. The results show that the top hydrogel layer was able to catch target cells with high efficiency and specificity, and that the bottom hydrogel layer could sequester doxorubicin (Dox) for sustained drug release. Importantly, the released Dox could kill 90% of the cells after 1-h residence of the cells on the hydrogel. After the cell release, this bifunctional hydrogel could be regenerated for continuous cell catching and killing. Therefore, the data presented in this study has successfully demonstrated the potential of developing a material system with the functions of attracting, catching and killing diseased cells (e.g., circulating tumor cells) or even invading microorganisms (e.g., bacteria). PMID:26396063

  12. Cytotoxic Killing and Immune Evasion by Repair

    NASA Astrophysics Data System (ADS)

    Chan, Cliburn; George, Andrew J. T.; Stark, Jaroslav

    2007-07-01

    The interaction between the immune system and pathogens is a complex one, with pathogens constantly developing new ways of evading destruction by the immune system. The immune system's task is made even harder when the pathogen in question is an intra-cellular one (such as a virus or certain bacteria) and it is necessary to kill the infected host cell in order to eliminate the pathogen. This causes damage to the host, and such killing therefore needs to be carefully controlled, particularly in tissues with poor regenerative potential, or those involved in the immune response itself. Host cells therefore possess repair mechanisms which can counteract killing by immune cells. These in turn can be subverted by pathogens which up-regulate the resistance of infected cells to killing. In this paper, we explore the hypothesis that this repair process plays an important role in determining the efficacy of evasion and escape from immune control. We model a situation where cytotoxic T lymphocytes (CTL) and natural killer (NK) cells kill pathogen-infected and tumour cells by directed secretion of preformed granules containing perforin and granzymes. Resistance to such killing can be conferred by the expression of serine protease inhibitors (serpins). These are utilized by several virally infected and tumour cells, as well as playing a role in the protection of host bystander, immune and immuneprivileged cells. We build a simple stochastic model of cytotoxic killing, where serpins can neutralize granzymes stoichiometrically by forming an irreversible complex, and the survival of the cell is determined by the balance between serpin depletion and replenishment, which in its simplest form is equivalent to the well known shot noise process. We use existing analytical results for this process, and additional simulations to analyse the effects of repair on cytotoxic killing. We then extend the model to the case of a replicating target cell population, which gives a branching process coupled to shot noise. We show how the process of repair can have a major impact on the dynamics of pathogen evasion and escape of tumour cells from immune surveillance

  13. Single-hit mechanism of tumour cell killing by radiation.

    PubMed

    Chapman, J D

    2003-02-01

    To review the relative importance of the single-hit mechanism of radiation killing for tumour response to 1.8-2.0 Gy day(-1) fractions and to low dose-rate brachytherapy. Tumour cell killing by ionizing radiation is well described by the linear-quadratic equation that contains two independent components distinguished by dose kinetics. Analyses of tumour cell survival curves that contain six or more dose points usually provide good estimates of the alpha- and beta-inactivation coefficients. Superior estimates of tumour cell intrinsic radiosensitivity are obtained when synchronized populations are employed. The characteristics of single-hit inactivation of tumour cells are reviewed and compared with the characteristics of beta-inactivation. Potential molecular targets associated with single-hit inactivation are discussed along with strategies for potentiating cell killing by this mechanism. The single-hit mechanism of tumour cell killing shows no dependence on dose-rate and, consequently, no evidence of sublethal damage repair. It is uniquely potentiated by high linear-energy-transfer radiation, exhibits a smaller oxygen enhancement ratio and exhibits a larger indirect effect by hydroxyl radicals than the beta-mechanism. alpha-inactivation coefficients vary slightly throughout interphase but mitotic cells exhibit extremely high alpha-coefficients in the range of those observed for lymphocytes and some repair-deficient cells. Evidence is accumulating to suggest that chromatin in compacted form could be a radiation-hypersensitive target associated with single-hit radiation killing. Analyses of tumour cell survival curves demonstrate that it is the single-hit mechanism (alpha) that determines the majority of cell killing after doses of 2Gy and that this mechanism is highly variable between tumour cell lines. The characteristics of single-hit inactivation are qualitatively and quantitatively distinct from those of beta-inactivation. Compacted chromatin in tumour cells should be further investigated as a radiation-hypersensitive target that could be modulated for therapeutic advantage.

  14. A mathematical model of antibody-dependent cellular cytotoxicity (ADCC).

    PubMed

    Hoffman, F; Gavaghan, D; Osborne, J; Barrett, I P; You, T; Ghadially, H; Sainson, R; Wilkinson, R W; Byrne, H M

    2018-01-07

    Immunotherapies exploit the immune system to target and kill cancer cells, while sparing healthy tissue. Antibody therapies, an important class of immunotherapies, involve the binding to specific antigens on the surface of the tumour cells of antibodies that activate natural killer (NK) cells to kill the tumour cells. Preclinical assessment of molecules that may cause antibody-dependent cellular cytotoxicity (ADCC) involves co-culturing cancer cells, NK cells and antibody in vitro for several hours and measuring subsequent levels of tumour cell lysis. Here we develop a mathematical model of such an in vitro ADCC assay, formulated as a system of time-dependent ordinary differential equations and in which NK cells kill cancer cells at a rate which depends on the amount of antibody bound to each cancer cell. Numerical simulations generated using experimentally-based parameter estimates reveal that the system evolves on two timescales: a fast timescale on which antibodies bind to receptors on the surface of the tumour cells, and NK cells form complexes with the cancer cells, and a longer time-scale on which the NK cells kill the cancer cells. We construct approximate model solutions on each timescale, and show that they are in good agreement with numerical simulations of the full system. Our results show how the processes involved in ADCC change as the initial concentration of antibody and NK-cancer cell ratio are varied. We use these results to explain what information about the tumour cell kill rate can be extracted from the cytotoxicity assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Photodynamic cell-kill analysis of breast tumor cells with a tamoxifen-pyropheophorbide conjugate.

    PubMed

    Fernandez Gacio, Ana; Fernandez-Marcos, Carlos; Swamy, Narasimha; Dunn, Darra; Ray, Rahul

    2006-10-15

    We hypothesized that estrogen receptor (ER) in hormone-sensitive breast cancer cells could be targeted for selective photodynamic killing of tumor cell with antiestrogen-porphyrin conjugates by combining the over-expression of ER in hormone-sensitive breast cancer cells and tumor-retention property of porphyrin photosensitizers. In this study we describe that a tamoxifen (TAM)-pyropheophorbide conjugate that specifically binds to ER alpha, caused selective cell-kill in MCF-7 breast cancer cells upon light exposure. Therefore, it is a potential candidate for ER-targeted photodynamic therapy of cancers (PDT) of tissues and organs that respond to estrogens/antiestrogens. 2006 Wiley-Liss, Inc.

  16. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    PubMed

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  17. Trichostatin A Sensitizes Hepatocellular Carcinoma Cells to Enhanced NK Cell-mediated Killing by Regulating Immune-related Genes.

    PubMed

    Shin, Sangsu; Kim, Miok; Lee, Seon-Jin; Park, Kang-Seo; Lee, Chang Hoon

    2017-01-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The ability of HCC to avoid immune detection is considered one of the main factors making it difficult to cure. Abnormal histone deacetylation is thought to be one of the mechanisms for HCC immune escape, making histone deacetylases (HDACs) attractive targets for HCC treatment. Here, we investigated the effect of trichostatin A (TSA), a highly potent HDAC inhibitor, on HCC (HepG2) gene expression and function. A genome wide-transcriptional microarray was used to identify genes regulated by TSA in HepG2 cells. Gene Ontology was used to identify pathways regulated by TSA, and these changes were confirmed by qPCR. The effect of TSA on natural killer (NK) cell-mediated killing of HCC cell lines were analyzed by both flow cytometry and LDH cytotoxicity assay. A study was also conducted in a Balb/c nude mice xenograft model to assess the anti-tumor activity of TSA. TSA regulated the transcription of numerous innate immunity & tumor antigen recognition-associated genes, such as ULBP1 and RAET1G, in HCC cells. In vivo, TSA reduced tumor cell growth in an NK cell-dependent manner. In vitro, TSA treatment of HepG2 cells rendered them more susceptible to NK cell-mediated killing while increasing the expression of NKGD2 ligands, including ULBP1/2/3 and MICA/B. TSA also induced direct killing of HCC cells by stimulating apoptosis. TSA likely increases killing of HCC cells indirectly by increasing NK cell-directed killing and directly by increasing apoptosis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. OH radicals from the indirect actions of X-rays induce cell lethality and mediate the majority of the oxygen enhancement effect.

    PubMed

    Hirayama, Ryoichi; Ito, Atsushi; Noguchi, Miho; Matsumoto, Yoshitaka; Uzawa, Akiko; Kobashi, Gen; Okayasu, Ryuichi; Furusawa, Yoshiya

    2013-11-01

    We examined OH radical-mediated indirect actions from X irradiation on cell killing in wild-type Chinese hamster ovary cell lines (CHO and AA8) under oxic and hypoxic conditions, and compared the contribution of direct and indirect actions under both conditions. The contribution of indirect action on cell killing can be estimated from the maximum degree of protection by dimethylsulfoxide, which suppresses indirect action by quenching OH radicals without affecting the direct action of X rays on cell killing. The contributions of indirect action on cell killing of CHO cells were 76% and 50% under oxic and hypoxic conditions, respectively, and those for AA8 cells were 85% and 47%, respectively. Therefore, the indirect action on cell killing was enhanced by oxygen during X irradiation in both cell lines tested. Oxygen enhancement ratios (OERs) at the 10% survival level (D10 or LD90) for CHO and AA8 cells were 2.68 ± 0.15 and 2.76 ± 0.08, respectively. OERs were evaluated separately for indirect and direct actions, which gave the values of 3.75 and 2.01 for CHO, and 4.11 and 1.32 for AA8 cells, respectively. Thus the generally accepted OER value of ∼3 is best understood as the average of the OER values for both indirect and direct actions. These results imply that both indirect and direct actions on cell killing require oxygen for the majority of lethal DNA damage, however, oxygen plays a larger role in indirect than for direct effects. Conversely, the lethal damage induced by the direct action of X rays are less affected by oxygen concentration.

  19. Trichostatin A Sensitizes Hepatocellular Carcinoma Cells to Enhanced NK Cell-mediated Killing by Regulating Immune-related Genes

    PubMed Central

    SHIN, SANGSU; KIM, MIOK; LEE, SEON-JIN; PARK, KANG-SEO

    2017-01-01

    Background/Aim: Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The ability of HCC to avoid immune detection is considered one of the main factors making it difficult to cure. Abnormal histone deacetylation is thought to be one of the mechanisms for HCC immune escape, making histone deacetylases (HDACs) attractive targets for HCC treatment. Here, we investigated the effect of trichostatin A (TSA), a highly potent HDAC inhibitor, on HCC (HepG2) gene expression and function. Materials and Methods: A genome wide-transcriptional microarray was used to identify genes regulated by TSA in HepG2 cells. Gene Ontology was used to identify pathways regulated by TSA, and these changes were confirmed by qPCR. The effect of TSA on natural killer (NK) cell-mediated killing of HCC cell lines were analyzed by both flow cytometry and LDH cytotoxicity assay. A study was also conducted in a Balb/c nude mice xenograft model to assess the anti-tumor activity of TSA. Results: TSA regulated the transcription of numerous innate immunity & tumor antigen recognition-associated genes, such as ULBP1 and RAET1G, in HCC cells. In vivo, TSA reduced tumor cell growth in an NK cell-dependent manner. In vitro, TSA treatment of HepG2 cells rendered them more susceptible to NK cell-mediated killing while increasing the expression of NKGD2 ligands, including ULBP1/2/3 and MICA/B. TSA also induced direct killing of HCC cells by stimulating apoptosis. Conclusion: TSA likely increases killing of HCC cells indirectly by increasing NK cell-directed killing and directly by increasing apoptosis. PMID:28871002

  20. Allogeneic killing by earthworm effector cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-01-01

    We observed spontaneous allogeneic cytotoxicity by coelomocytes (Lumbricus terrestris) using three assays: trypan blue, lactate dehydrogenase release and chromium-51 release. Cell-cell contact may not be essential to effect cytotoxicity, since killing of allogeneic cells occurred in pooled allogeneic coelomic fluid derived from worms raised in two different geographic locales. We observed no significant spontaneous cytotoxicity against autogeneic target coelomocytes haptenated with 2,4,6-trinitrobenzene sulfonic acid; however, coelomocytes effected significant spontaneous cytotoxicity against haptenated allogeneic targets. These results support the view that earthworm coelomocytes can act as effector cells that can specifically kill nonself target cells.

  1. Lysosomal Signaling Enhances Mitochondria-Mediated Photodynamic Therapy in A431 Cancer Cells: Role of Iron

    PubMed Central

    Saggu, Shalini; Hung, Hsin-I; Quiogue, Geraldine; Lemasters, John J.; Nieminen, Anna-Liisa

    2015-01-01

    In photodynamic therapy (PDT), light activates a photosensitizer added to a tissue, resulting in singlet oxygen formation and cell death. The photosensitizer phthalocyanine 4 (Pc 4) localizes primarily to mitochondrial membranes in cancer cells, resulting in mitochondria-mediated cell death. The aim of this study was to determine how lysosomes contribute to PDT-induced cell killing by mitochondria-targeted photosensitizers such as Pc 4. We monitored cell killing of A431 cells after Pc 4-PDT in the presence and absence of bafilomycin, an inhibitor of the vacuolar proton pump of lysosomes and endosomes. Bafilomycin was not toxic by itself, but greatly enhanced Pc 4-PDT-induced cell killing. To investigate whether iron loading of lysosomes affects bafilomycin-induced killing, cells were incubated with ammonium ferric citrate (30 μm) for 30 h prior to PDT. Ammonium ferric citrate enhanced Pc 4 plus bafilomycin-induced cell killing without having toxicity by itself. Iron chelators (desferrioxamine and starch-desferrioxamine) and the inhibitor of the mitochondrial calcium (and ferrous iron) uniporter, Ru360, protected against Pc 4 plus bafilomycin toxicity. These results support the conclusion that chelatable iron stored in the lysosomes enhances the efficacy of bafilomycin-mediated PDT and that lysosomal disruption augments PDT with Pc 4. PMID:22220628

  2. Destruction of solid tumors by immune cells

    NASA Astrophysics Data System (ADS)

    López, Álvaro G.; Seoane, Jesús M.; Sanjuán, Miguel A. F.

    2017-03-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. In order to investigate the fractional cell kill that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic CD8+ T cells (CTLs), we present several in silico simulations and mathematical analyses. When the CTLs eradicate efficiently the tumor cells, the models predict a correlation between the morphology of the tumors and the rate at which they are lysed. However, when the effectiveness of the immune cells is decreased, the mathematical function fails to reproduce the process of lysis. This limit is thoroughly discussed and a new fractional cell kill is proposed.

  3. Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa.

    PubMed

    Brand, Alexandra; Barnes, Julia D; Mackenzie, Kevin S; Odds, Frank C; Gow, Neil A R

    2008-10-01

    The fungus, Candida albicans, and the bacterium, Pseudomonas aeruginosa, are opportunistic human pathogens that have been coisolated from diverse body sites. Pseudomonas aeruginosa suppresses C. albicans proliferation in vitro and potentially in vivo but it is the C. albicans hyphae that are killed while yeast cells are not. We show that hyphal killing involves both contact-mediated and soluble factors. Bacterial culture filtrates contained heat-labile soluble factors that killed C. albicans hyphae. In cocultures, localized points of hyphal lysis were observed, suggesting that adhesion and subsequent bacteria-mediated cell wall lysis is involved in the killing of C. albicans hyphae. The glycosylation status of the C. albicans cell wall affected the rate of contact-dependent killing because mutants with severely truncated O-linked, but not N-linked, glycans were hypersensitive to Pseudomonas-mediated killing. Deletion of HWP1, ALS3 or HYR1, which encode major hypha-associated cell wall proteins, had no effect on fungal susceptibility.

  4. GENERATION OF CYTOTOXIC LYMPHOCYTES IN MIXED LYMPHOCYTE REACTIONS

    PubMed Central

    Forman, James; Möller, Göran

    1973-01-01

    Generation of cytotoxic effector cells by a unidirectional mixed lymphocyte reaction (MLR) in the mouse H-2 system was studied using labeled YAC (H-2a) leukemia cells as targets. The responding effector cell displayed a specific cytotoxic effect against target cells of the same H-2 genotype as the stimulating cell population. Killing of syngeneic H-2 cells was not observed, even when the labeled target cells were "innocent bystanders" in cultures where specific target cells were reintroduced. Similar results were found with spleen cells taken from mice sensitized in vivo 7 days earlier. The effector cell was not an adherent cell and was not activated by supernatants from MLR. The supernatants were not cytotoxic by themselves. When concanavalin A or phytohemagglutinin was added to the cytotoxic test system, target and effector cells were agglutinated. Under these conditions, killing of H-2a target cells was observed in mixed cultures where H-2a lymphocytes were also the effector cells. These findings indicate that specifically activated, probably thymus-derived lymphocytes, can kill nonspecifically once they have been activated and providing there is close contact between effector and target cells. Thus, specificity of T cell killing appears to be restricted to recognition and subsequent binding to the targets, the actual effector phase being nonspecific. PMID:4269560

  5. Bactericidal effects of various concentrations of enrofloxacin, florfenicol, tilmicosin phosphate, and tulathromycin on clinical isolates of Mannheimia haemolytica.

    PubMed

    Blondeau, Joseph M; Shebelski, Shantelle D; Hesje, Christine K

    2015-10-01

    To determine bactericidal effects of enrofloxacin, florfenicol, tilmicosin, and tulathromycin on clinical isolates of Mannheimia haemolytica at various bacterial densities and drug concentrations. 4 unique isolates of M haemolytica recovered from clinically infected cattle. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined for each drug and isolate. Mannheimia haemolytica suspensions (10(6) to 10(9) CFUs/mL) were exposed to the determined MIC and MPC and preestablished maximum serum and tissue concentrations of each drug. Log10 reduction in viable cells (percentage of cells killed) was measured at various points. Bacterial killing at the MIC was slow and incomplete. After 2 hours of isolate exposure to the MPC and maximum serum and tissue concentrations of the tested drugs, 91% to almost 100% cell killing was achieved with enrofloxacin, compared with 8% growth to 93% cell killing with florfenicol, 199% growth to 63% cell killing with tilmicosin, and 128% growth to 43% cell killing with tulathromycin over the range of inoculum tested. For all drugs, killing of viable organisms was evident at all bacterial densities tested; however, killing was more substantial at the MPC and maximum serum and tissue drug concentrations than at the MIC and increased with duration of drug exposure. Rank order of drugs by killing potency was enrofloxacin, florfenicol, tilmicosin, and tulathromycin. Findings suggested that antimicrobial doses that equaled or exceeded the MPC provided rapid killing of M haemolytica by the tested drugs, decreasing opportunities for antimicrobial-resistant subpopulations of bacteria to develop during drug exposure.

  6. LET and ion-species dependence for cell killing and mutation induction in normal human fibroblasts.

    PubMed

    Tsuruoka, Chizuru; Suzuki, Masao; Fujitaka, Kazunobu

    2003-10-01

    We have been studying LET and ion species dependence of RBE values in cell killing and mutation induction. Normal human skin fibroblasts were irradiated with heavy-ion beams such as carbon (290 Mev/u and 135 Mev/u), neon (230 Mev/u and 400 Mev/u), silicon (490 Mev/u) and iron (500 Mev/u) ion beams, generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS). Cell killing effect was detected as reproductive cell death using a colony formation assay. Mutation induction in hprt locus was detected to measure 6-thioguanine resistant colonies. The RBE-LET curves of cell killing and mutation induction were different each ion beam. So, we plotted RBE for cell killing and mutation induction as function of Z*2/beta2 instead of LET. RBE-Z*2/beta2 curves of cell killing indicated that the discrepancy of RBE-LET curves was reconciled each ion species. But RBE-Z*2/beta2 curves of mutation induction didn't corresponded between carbon- and silicon-ion beams. These results suggested that different biological endpoints may be suitable for different physical parameter, which represent the track structure of energy deposition of ion beams.

  7. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity

    PubMed Central

    Guldevall, Karolin; Brandt, Ludwig; Forslund, Elin; Olofsson, Karl; Frisk, Thomas W.; Olofsson, Per E.; Gustafsson, Karin; Manneberg, Otto; Vanherberghen, Bruno; Brismar, Hjalmar; Kärre, Klas; Uhlin, Michael; Önfelt, Björn

    2016-01-01

    Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon–glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy. PMID:27092139

  8. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity.

    PubMed

    Ogawa, Mikako; Tomita, Yusuke; Nakamura, Yuko; Lee, Min-Jung; Lee, Sunmin; Tomita, Saori; Nagaya, Tadanobu; Sato, Kazuhide; Yamauchi, Toyohiko; Iwai, Hidenao; Kumar, Abhishek; Haystead, Timothy; Shroff, Hari; Choyke, Peter L; Trepel, Jane B; Kobayashi, Hisataka

    2017-02-07

    Immunogenic cell death (ICD) is a form of cell death that activates an adaptive immune response against dead-cell-associated antigens. Cancer cells killed via ICD can elicit antitumor immunity. ICD is efficiently induced by near-infrared photo-immunotherapy (NIR-PIT) that selectively kills target-cells on which antibody-photoabsorber conjugates bind and are activated by NIR light exposure. Advanced live cell microscopies showed that NIR-PIT caused rapid and irreversible damage to the cell membrane function leading to swelling and bursting, releasing intracellular components due to the influx of water into the cell. The process also induces relocation of ICD bio markers including calreticulin, Hsp70 and Hsp90 to the cell surface and the rapid release of immunogenic signals including ATP and HMGB1 followed by maturation of immature dendritic cells. Thus, NIR-PIT is a therapy that kills tumor cells by ICD, eliciting a host immune response against tumor.

  9. Short communication: Antiproliferative effect of wild Lactobacillus strains isolated from fermented foods on HT-29 cells.

    PubMed

    Tuo, Y F; Zhang, L W; Yi, H X; Zhang, Y C; Zhang, W Q; Han, X; Du, M; Jiao, Y H; Wang, S M

    2010-06-01

    In vitro studies, animal models, epidemiology, and human intervention studies provide evidence that some lactic acid bacteria can reduce the risk of certain cancers. In this study, heat-killed bacterial cells, genomic DNA, and cell wall of 7 wild Lactobacillus strains isolated from traditional fermented foods in western China were tested in vitro for cytotoxicity on colonic cancer cell line HT-29 by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The heat-killed bacterial cells, genomic DNA, and cell wall of the 7 strains exhibited direct antiproliferative activities against HT-29 cells. Among the strains, the cellular components of Lactobacillus coryniformis ssp. torquens T3L exerted marked antiproliferative activities against HT-29 cells. The maximum inhibition rates of HT-29 cells by the heat-killed bacterial cells (1x10(7) cfu/mL), cell wall (20 microg of protein/mL) and genomic DNA (100 microg/mL) of L. coryniformis ssp. torquens T3L were 30, 44.9, and 35.9%, respectively. The results indicate that the heat-killed bacterial cells, cell wall, and genomic DNA of the 7 wild Lactobacillus strains could inhibit the growth of HT-29 cells. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions.

    PubMed

    Wang, Tieshan; Zheng, Xinyan; Wang, Xiaoyu; Lu, Xia; Shen, Yanghao

    2017-02-01

    Uranium adsorption mechanisms of live and heat-killed Saccharomyces cerevisiae in different pH values and biomass concentrations were studied under environmentally relevant conditions. Compared with live cells, the adsorption capacity of heat-killed cells is almost one order of magnitude higher in low biomass concentration and highly acidic pH conditions. To explore the mesoscopic surface interactions between uranium and cells, the characteristic of uranium deposition was investigated by SEM-EDX, XPS and FTIR. Biosorption process of live cells was considered to be metabolism-dependent. Under stimulation by uranyl ions, live cells could gradually release phosphorus and reduce uranium from U(VI) to U(IV) to alleviate uranium toxicity. The uranyl-phosphate complexes were formed in scale-like shapes on cell surface. The metabolic detoxification mechanisms such as reduction and "self-protection" are of significance to the migration of radionuclides. In the metabolism-independent biosorption process of heat-killed cells: the cells cytomembrane was damaged by autoclaving which led to the free diffusion of phosphorous from intracellular, and the rough surface and nano-holes indicated that the dead cells provided larger contact area to precipitate U(VI) as spherical nano-particles. The high biosorption capacity of heat-killed cells makes it become a suitable biological adsorbent for uranium removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Action of caffeine on x-irradiated HeLa cells. III. enhancement of x-ray-induced killing during G/sub 2/ arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busse, P.M.; Bose, S.K.; Jones, R.W.

    1978-11-01

    The ability of caffeine to enhance the expression of potentially lethal x-ray damage in HeLa S3 cells was examined as a function of the age of the cells in the generation cycle. Synchronous populations were irradiated at different times after mitotic collection and treated for various intervals with 1 mM caffeiene, which causes negligible killing of unirradiated cells. The response was thereby determined as a function of cell age at both the time of irradiation and the time of exposure to caffeine. The amount of cell killing depends strongly on when in the cycle caffeine is present and only weaklymore » on when the cells are irradiated. If cells are irradiated in early G/sub 1/, caffeine treatment enhances killing for 2 to 3 hr. No additional enhancement is observed until 16 to 17 hr postcollection, corresponding to G/sub 2/; here they enter a second period of much greater sensitivity. Similarly, fluorodeoxyuridine resynchronized cells irradiated during S and treated with caffeine suffer no enhanced killing until they pass into this sensitive phase in G/sub 2/, approximately 7 hr after release from the fluorodeoxyuridine block. The sensitive period appears to coincide with G/sub 2/ arrest. The rate and extent of killing during this period are dependent upon the x-ray dose and the caffeine concentration. In the absence of caffeine, cells irradiated in G/sub 1/ lose sensitivity to caffeine in about 9 hr; they do so faster in G/sub 2/. It is concluded that the potentially lethal x-ray damage expressed on treatment with caffeine is retained for many hours in the presence of caffeine and is maximally manifested by G/sub 2/-arrested cells.« less

  12. Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells.

    PubMed Central

    Gillies, S D; Reilly, E B; Lo, K M; Reisfeld, R A

    1992-01-01

    A genetically engineered fusion protein consisting of a chimeric anti-ganglioside GD2 antibody (ch14.18) and interleukin 2 (IL2) was tested for its ability to enhance the killing of autologous GD2-expressing melanoma target cells by a tumor-infiltrating lymphocyte line (660 TIL). The fusion of IL2 to the carboxyl terminus of the immunoglobulin heavy chain did not reduce IL2 activity as measured in a standard proliferation assay using either mouse or human T-cell lines. Antigen-binding activity was greater than that of the native chimeric antibody. The ability of resting 660 TIL cells to kill their autologous GD2-positive target cells was enhanced if the target cells were first coated with the fusion protein. This stimulation of killing was greater than that of uncoated cells in the presence of equivalent or higher concentrations of free IL2. Such antibody-cytokine fusion proteins may prove useful in targeting the biological effect of IL2 and other cytokines to tumor cells and in this way stimulate their immune destruction. Images PMID:1741398

  13. Killing effect of TNF-mediated by conditionally replicating adenovirus on esophageal cancer and lung cancer cell lines.

    PubMed

    Jiang, Yue-Quan; Zhang, Zhi; Cai, Hua-Rong; Zhou, Hong

    2015-01-01

    The killing effect of TNF mediated by conditionally replicating adenovirus SG502 on human cancer cell lines was assessed by in vivo and in vitro experiments. The recombinant adenovirus SG502-TNF was used to infect human lung cancer cell line A549 and human esophageal cancer cell line TE-1. The expression of the exogenous gene and its inhibitory effect on the tumor cell lines were thus detected. Tumor transplantation experiment was performed in mice with the purpose of assessing the inhibitory effect of the adenovirus on tumor cells and tumor formation. The targeting of the adenovirus and the mechanism of tumor inhibition were discussed by in vivo imaging technology, HE staining and TUNEL assay. Recombinant adenovirus SG502-TNF targeted the tumor cells specifically with stable expression of TNF, which produced a killing effect on tumor cells by regulating the apoptotic signaling pathway. Recombinant adenovirus SG502-TNF possessed significant killing effect on TE-1 cells either in vivo or in vitro. This finding demonstrated the potential clinical application of adenovirus SG502.

  14. Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism

    PubMed Central

    van Dongen, Stijn; Haluck-Kangas, Ashley; Sarshad, Aishe A; Bartom, Elizabeth T; Kim, Kwang-Youn A; Scholtens, Denise M; Hafner, Markus; Zhao, Jonathan C; Murmann, Andrea E

    2017-01-01

    Over 80% of multiple-tested siRNAs and shRNAs targeting CD95 or CD95 ligand (CD95L) induce a form of cell death characterized by simultaneous activation of multiple cell death pathways preferentially killing transformed and cancer stem cells. We now show these si/shRNAs kill cancer cells through canonical RNAi by targeting the 3’UTR of critical survival genes in a unique form of off-target effect we call DISE (death induced by survival gene elimination). Drosha and Dicer-deficient cells, devoid of most miRNAs, are hypersensitive to DISE, suggesting cellular miRNAs protect cells from this form of cell death. By testing 4666 shRNAs derived from the CD95 and CD95L mRNA sequences and an unrelated control gene, Venus, we have identified many toxic sequences - most of them located in the open reading frame of CD95L. We propose that specific toxic RNAi-active sequences present in the genome can kill cancer cells. PMID:29063830

  15. γδ T cells as a potential tool in colon cancer immunotherapy.

    PubMed

    Ramutton, Thiranut; Buccheri, Simona; Dieli, Francesco; Todaro, Matilde; Stassi, Giorgio; Meraviglia, Serena

    2014-01-01

    γδ T cells are capable of recognizing tumor cells and exert potent cellular cytotoxicity against a large range of tumors, including colon cancer. However, tumors utilize numerous strategies to escape recognition or killing by patrolling γδ T cells, such a downregulation of NKG2D ligands, MICA/B and ULBPs. Therefore, the combined upregulation of T-cell receptorand NKG2D ligands on tumor cells and induction of NKG2D expression on γδ T cells may greatly enhance tumor killing and unlock the functions of γδ T cells. Here, we briefly review current data on the mechanisms of γδ T-cell recognition and killing of colon cancer cells and propose that γδ T cells may represent a promising target for the design of novel and highly innovative immunotherapy in patients with colon cancer.

  16. Cytotoxicity of ethanolic extracts of Artemisia annua to Molt-4 human leukemia cells

    USDA-ARS?s Scientific Manuscript database

    Cancer is the second cause of death in the United States, and current treatment is expensive and kills also healthy cells. Affordable alternatives that kill only cancer cells are needed. Artemisinin, extracted from the Artemisia annua, has potent anticancer activity and low toxicity to normal cell...

  17. IgM-mediated opsonization and cytotoxicity in the shark.

    PubMed

    McKinney, E C; Flajnik, M F

    1997-02-01

    Two types of cytotoxic reactions have been observed using cells from the nurse shark: spontaneous cytotoxicity mediated by cells of the macrophage lineage and antibody-dependent killing carried out by a different effector cell population. Previous data showed that removal of phagocytic cells using iron particles abolished macrophage-mediated killing, but not antibody-dependent reactions. The current study used single cell assays and showed that the effector of antibody-driven reactions was the neutrophil. Surprisingly, the mechanism of killing was shown to be phagocytosis mediated by both 7S and 19S immunoglobulin M (IgM). Reactions proceeded with as little as 0.01 microg of purified 19S or 7S IgM and were complete within 4-6 h. In contrast, purified immunoglobulin did not adsorb to macrophages and had no effect on target cell binding or cytotoxicity. Pretreatment of cells with cytochalasin D abolished the phagocytic reaction, but not spontaneous cytotoxicity. These data show that antibody-mediated killing results from opsonization and phagocytosis; the mechanism of macrophage killing is currently unknown. In addition, these data show that the shark neutrophil, not the macrophage lineage, carries a receptor for Fc mu.

  18. Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL.

    PubMed

    Bellantuono, Ilaria; Gao, Liquan; Parry, Suzanne; Marley, Steve; Dazzi, Francesco; Apperley, Jane; Goldman, John M; Stauss, Hans J

    2002-11-15

    Using the allo-restricted T-cell approach to circumvent tolerance, we have previously identified a cytotoxic T-lymphocyte (CTL) epitope in the transcription factor Wilms tumor antigen 1 (WT1) presented by HLA-A0201 (A2) class I molecules. Here we describe an additional A2-presented epitope and show that CTLs against both epitopes kill WT1-expressing leukemia cell lines. Colony-forming assays demonstrated that both types of CTL killed CD34(+) progenitor cells from A2(+) leukemia patients, but not from A2(+) healthy individuals. The long-term culture-initiating cell (LTC-IC) assay was used to analyze the killing activity of WT1-specific CTLs against the more immature fraction of CD34(+) cells. The CTLs killed LTC-ICs of patients with chronic myelogenous leukemia (CML), whereas the function of normal CD34(+) progenitor/stem cells was not inhibited. Together, the data show that CTLs specific for 2 distinct peptide epitopes of WT1 can discriminate between normal and leukemia LTC-ICs, suggesting that such CTLs have the potential to selectively kill CML progenitor/stem cells.

  19. Powerful bacterial killing by buckwheat honeys is concentration-dependent, involves complete DNA degradation and requires hydrogen peroxide.

    PubMed

    Brudzynski, Katrina; Abubaker, Kamal; Wang, Tony

    2012-01-01

    Exposure of bacterial cells to honey inhibits their growth and may cause cell death. Our previous studies showed a cause-effect relationship between hydroxyl radical generated from honey hydrogen peroxide and growth arrest. Here we explored the role of hydroxyl radicals as inducers of bacterial cells death. The bactericidal effect of ·OH on antibiotic-resistant clinical isolates of MRSA and VRE and standard bacterial strains of E. coli and B. subtiles was examined using a broth microdilution assay supplemented with 3'-(p-aminophenyl) fluorescein (APF) as the ·OH trap, followed by colony enumeration. Bactericidal activities of eight honeys (six varieties of buckwheat, blueberry and manuka honeys) were analyzed. The MBC/MIC ratio ≤4 and the killing curves indicated that honeys exhibited powerful, concentration-dependent bactericidal effect. The extent of killing depended on the ratio of honey concentration to bacterial load, indicating that honey dose was critical for its bactericidal efficacy. The killing rate and potency varied between honeys and ranged from over a 6-log(10) to 4-log(10) CFU/ml reduction of viable cells, equivalent to complete bacterial eradication. The maximal killing was associated with the extensive degradation of bacterial DNA. Honey concentration at which DNA degradation occurred correlated with cell death observed in the concentration-dependent cell-kill on agar plates. There was no quantitative relationship between the ·OH generation by honey and bactericidal effect. At the MBC, where there was no surviving cells and no DNA was visible on agarose gels, the ·OH levels were on average 2-3x lower than at Minimum Inhibitory Concentration (MICs) (p < 0.0001). Pre-treatment of honey with catalase, abolished the bactericidal effect. This raised possibilities that either the abrupt killing prevented accumulation of ·OH (dead cells did not generate ·OH) or that DNA degradation and killing is the actual footprint of ·OH action. In conclusion, honeys of buckwheat origin exhibited powerful, concentration-dependent bactericidal effect. The killing and DNA degradation showed a cause-effect relationship. Hydrogen peroxide was an active part of honey killing mechanism.

  20. Tumour volume response, initial cell kill and cellular repopulation in B16 melanoma treated with cyclophosphamide and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea.

    PubMed Central

    Stephens, T. C.; Peacock, J. H.

    1977-01-01

    The relationship between tumour volume response and cell kill in B16 melanoma following treatment in vivo with cyclophosphamide (CY) and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) was investigated. Tumour volume response, expressed as growth delay, was estimated from measurements of tumour dimensions. Depression of in vitro colony-forming ability of cells from treated tumours was used as the measure of tumour cell kill. The relationship between these parameters was clearly different for the two agents studied. CY produced more growth delay (7.5 days) per decade of tumour cell kill than CCNU (2 to 3.5 days). The possibility that this was due to a technical artefact was rejected in favour of an alternative explanation that different rates of cellular repopulation in tumours treated with CY and CCNU might be responsible. Cellular repopulation was measured directly, by performing cell-survival assays at various times after treatment with doses of CY and CCNU which produced about 3 decades of cell kill. The rate of repopulation by clonogenic cells was much slower after treatment with CY than with CCNU, and this appears to account for the longer duration of the growth delay obtained with CY. PMID:921888

  1. Flow cytometric analysis of cell killing by the jumper ant venom peptide pilosulin 1.

    PubMed

    King, M A; Wu, Q X; Donovan, G R; Baldo, B A

    1998-08-01

    Pilosulin 1 is a synthetic 56-amino acid residue polypeptide that corresponds to the largest allergenic polypeptide found in the venom of the jumper ant Myrmecia pilosula. Initial experiments showed that pilosulin 1 lysed erythrocytes and killed proliferating B cells. Herein, we describe how flow cytometry was used to investigate the cytotoxicity of the peptide for human white blood cells. Cells were labeled with fluorochrome-conjugated antibodies, incubated with the peptide and 7-aminoactinomycin D (7-AAD), and then analyzed. The effects of varying the peptide concentration, serum concentration, incubation time, and incubation temperature were measured, and the cytotoxicity of pilosulin 1 was compared with that of the bee venom peptide melittin. The antibodies and the 7-AAD enabled the identification of cell subpopulations and dead cells, respectively. It was possible, using the appropriate mix of antibodies and four-color analysis, to monitor the killing of three or more cell subpopulations simultaneously. We found that 1) pilosulin 1 killed cells within minutes, with kinetics similar to those of melittin; 2) pilosulin 1 was a slightly more potent cytotoxic agent than melittin; 3) both pilosulin 1 and melittin were more potent against mononuclear leukocytes than against granulocytes; and 4) serum inhibited killing by either peptide.

  2. Contact-dependent killing by Caulobacter crescentus via cell surface-associated, glycine zipper proteins.

    PubMed

    García-Bayona, Leonor; Guo, Monica S; Laub, Michael T

    2017-03-21

    Most bacteria are in fierce competition with other species for limited nutrients. Some bacteria can kill nearby cells by secreting bacteriocins, a diverse group of proteinaceous antimicrobials. However, bacteriocins are typically freely diffusible, and so of little value to planktonic cells in aqueous environments. Here, we identify an atypical two-protein bacteriocin in the α-proteobacterium Caulobacter crescentus that is retained on the surface of producer cells where it mediates cell contact-dependent killing. The bacteriocin-like proteins CdzC and CdzD harbor glycine-zipper motifs, often found in amyloids, and CdzC forms large, insoluble aggregates on the surface of producer cells. These aggregates can drive contact-dependent killing of other organisms, or Caulobacter cells not producing the CdzI immunity protein. The Cdz system uses a type I secretion system and is unrelated to previously described contact-dependent inhibition systems. However, Cdz-like systems are found in many bacteria, suggesting that this form of contact-dependent inhibition is common.

  3. Hypofractionation Results in Reduced Tumor Cell Kill Compared to Conventional Fractionation for Tumors With Regions of Hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, David J., E-mail: david.j.carlson@yale.ed; Yale University School of Medicine, Department of Therapeutic Radiology, New Haven, CT; Keall, Paul J.

    2011-03-15

    Purpose: Tumor hypoxia has been observed in many human cancers and is associated with treatment failure in radiation therapy. The purpose of this study is to quantify the effect of different radiation fractionation schemes on tumor cell killing, assuming a realistic distribution of tumor oxygenation. Methods and Materials: A probability density function for the partial pressure of oxygen in a tumor cell population is quantified as a function of radial distance from the capillary wall. Corresponding hypoxia reduction factors for cell killing are determined. The surviving fraction of a tumor consisting of maximally resistant cells, cells at intermediate levels ofmore » hypoxia, and normoxic cells is calculated as a function of dose per fraction for an equivalent tumor biological effective dose under normoxic conditions. Results: Increasing hypoxia as a function of distance from blood vessels results in a decrease in tumor cell killing for a typical radiotherapy fractionation scheme by a factor of 10{sup 5} over a distance of 130 {mu}m. For head-and-neck cancer and prostate cancer, the fraction of tumor clonogens killed over a full treatment course decreases by up to a factor of {approx}10{sup 3} as the dose per fraction is increased from 2 to 24 Gy and from 2 to 18 Gy, respectively. Conclusions: Hypofractionation of a radiotherapy regimen can result in a significant decrease in tumor cell killing compared to standard fractionation as a result of tumor hypoxia. There is a potential for large errors when calculating alternate fractionations using formalisms that do not account for tumor hypoxia.« less

  4. A Numerical Investigation of the Electric and Thermal Cell Kill Distributions in Electroporation-Based Therapies in Tissue

    PubMed Central

    Garcia, Paulo A.; Davalos, Rafael V.; Miklavcic, Damijan

    2014-01-01

    Electroporation-based therapies are powerful biotechnological tools for enhancing the delivery of exogeneous agents or killing tissue with pulsed electric fields (PEFs). Electrochemotherapy (ECT) and gene therapy based on gene electrotransfer (EGT) both use reversible electroporation to deliver chemotherapeutics or plasmid DNA into cells, respectively. In both ECT and EGT, the goal is to permeabilize the cell membrane while maintaining high cell viability in order to facilitate drug or gene transport into the cell cytoplasm and induce a therapeutic response. Irreversible electroporation (IRE) results in cell kill due to exposure to PEFs without drugs and is under clinical evaluation for treating otherwise unresectable tumors. These PEF therapies rely mainly on the electric field distributions and do not require changes in tissue temperature for their effectiveness. However, in immediate vicinity of the electrodes the treatment may results in cell kill due to thermal damage because of the inhomogeneous electric field distribution and high current density during the electroporation-based therapies. Therefore, the main objective of this numerical study is to evaluate the influence of pulse number and electrical conductivity in the predicted cell kill zone due to irreversible electroporation and thermal damage. Specifically, we simulated a typical IRE protocol that employs ninety 100-µs PEFs. Our results confirm that it is possible to achieve predominant cell kill due to electroporation if the PEF parameters are chosen carefully. However, if either the pulse number and/or the tissue conductivity are too high, there is also potential to achieve cell kill due to thermal damage in the immediate vicinity of the electrodes. Therefore, it is critical for physicians to be mindful of placement of electrodes with respect to critical tissue structures and treatment parameters in order to maintain the non-thermal benefits of electroporation and prevent unnecessary damage to surrounding healthy tissue, critical vascular structures, and/or adjacent organs. PMID:25115970

  5. Golden Berry-Derived 4β-hydroxywithanolide E for Selectively Killing Oral Cancer Cells by Generating ROS, DNA Damage, and Apoptotic Pathways

    PubMed Central

    Chiu, Chien-Chih; Haung, Jo-Wen; Chang, Fang-Rong; Huang, Kuang-Jing; Huang, Hsuan-Min; Huang, Hurng-Wern; Chou, Chon-Kit; Wu, Yang-Chang; Chang, Hsueh-Wei

    2013-01-01

    Background Most chemotherapeutic drugs for killing cancer cells are highly cytotoxic in normal cells, which limits their clinical applications. Therefore, a continuing challenge is identifying a drug that is hypersensitive to cancer cells but has minimal deleterious effects on healthy cells. The aims of this study were to evaluate the potential of 4β-hydroxywithanolide (4βHWE) for selectively killing cancer cells and to elucidate its related mechanisms. Methodology and Principal Findings Changes in survival, oxidative stress, DNA damage, and apoptosis signaling were compared between 4βHWE-treated oral cancer (Ca9-22) and normal fibroblast (HGF-1) cells. At 24 h and 48 h, the numbers of Ca9-22 cells were substantially decreased, but the numbers of HGF-1 cells were only slightly decreased. Additionally, the IC50 values for 4βHWE in the Ca9-22 cells were 3.6 and 1.9 µg/ml at 24 and 48 h, respectively. Time-dependent abnormal increases in ROS and dose-responsive mitochondrial depolarization can be exploited by using 4βHWE in chemotherapies for selectively killing cancer cells. Dose-dependent DNA damage measured by comet-nuclear extract assay and flow cytometry-based γ-H2AX/propidium iodide (PI) analysis showed relatively severer damage in the Ca9-22 cells. At both low and high concentrations, 4βHWE preferably perturbed the cell cycle in Ca9-22 cells by increasing the subG1 population and arrest of G1 or G2/M. Selective induction of apoptosis in Ca9-22 cells was further confirmed by Annexin V/PI assay, by preferential expression of phosphorylated ataxia-telangiectasia- and Rad3-related protein (p-ATR), and by cleavage of caspase 9, caspase 3, and poly ADP-ribose polymerase (PARP). Conclusions/Significance Together, the findings of this study, particularly the improved understanding of the selective killing mechanisms of 4βHWE, can be used to improve efficiency in killing oral cancer cells during chemoprevention and therapy. PMID:23705007

  6. Effects of Surotomycin on Clostridium difficile Viability and Toxin Production In Vitro

    PubMed Central

    Bouillaut, Laurent; McBride, Shonna; Schmidt, Diane J.; Suarez, José M.; Tzipori, Saul; Mascio, Carmela; Chesnel, Laurent

    2015-01-01

    The increasing incidence and severity of infection by Clostridium difficile have stimulated attempts to develop new antimicrobial therapies. We report here the relative abilities of two antibiotics (metronidazole and vancomycin) in current use for treating C. difficile infection and of a third antimicrobial, surotomycin, to kill C. difficile cells at various stages of development and to inhibit the production of the toxin proteins that are the major virulence factors. The results indicate that none of the drugs affects the viability of spores at 8× MIC or 80× MIC and that all of the drugs kill exponential-phase cells when provided at 8× MIC. In contrast, none of the drugs killed stationary-phase cells or inhibited toxin production when provided at 8× MIC and neither vancomycin nor metronidazole killed stationary-phase cells when provided at 80× MIC. Surotomycin, on the other hand, did kill stationary-phase cells when provided at 80× MIC but did so without inducing lysis. PMID:25941230

  7. Penile cancer

    MedlinePlus

    Cancer - penis; Squamous cell cancer - penis; Glansectomy; Partial penectomy ... cancer may include: Chemotherapy -- uses medicines to kill cancer cells Radiation -- uses high-powered x-rays to kill ...

  8. Human Natural Killer Cells Exhibit Direct Activity Against Aspergillus fumigatus Hyphae, But Not Against Resting Conidia

    PubMed Central

    Schmidt, Stanislaw; Tramsen, Lars; Hanisch, Mitra; Latgé, Jean-Paul; Huenecke, Sabine; Koehl, Ulrike

    2011-01-01

    Because natural killer (NK) cells kill tumor cells and combat infections, there is growing interest in adoptively transferring NK cells to hematopoietic stem cell recipients. Unfortunately, in humans, the activity of NK cells against Aspergillus species, the major cause of invasive fungal infection in stem cell recipients, are poorly characterized. Our results show that unstimulated and interleukin-2 prestimulated human NK cells kill Aspergillus fumigatus hyphae but do not affect resting conidia. Killing is also induced by the supernatant of prestimulated NK cells and human perforin. The high levels of interferon-γ and granulocyte macrophage colony-stimulating factor produced by prestimulated NK cells are significantly reduced by Aspergillus, indicating an immunosuppressive effect of the fungus. Whereas Aspergillus hyphae activate NK cells, resting, and germinating, conidia and conidia of ΔrodA mutants lacking the hydrophobic surface layer do not. Our results suggest that adoptively transferred human NK cells may be a potential antifungal tool in the transplantation context. PMID:21208932

  9. In Vitro Studies on Erythrosine-Based Photodynamic Therapy of Malignant and Pre-Malignant Oral Epithelial Cells

    PubMed Central

    Garg, Abhishek D.; Bose, Muthiah; Ahmed, Mohammed I.; Bonass, William A.; Wood, Simon R.

    2012-01-01

    Photodynamic Therapy (PDT) involves the administration of a tumor localizing photosensitizing agent, which upon activation with light of an appropriate wavelength leads to the destruction of the tumor cells. The aim of the present study was to determine the efficacy of erythrosine as a photosensitizer for the PDT of oral malignancies. The drug uptake kinetics of erythrosine in malignant (H357) and pre-malignant (DOK) oral epithelial cells and their susceptibility to erythrosine-based PDT was studied along with the determination of the subcellular localization of erythrosine. This was followed by initial investigations into the mechanism of cell killing induced following PDT involving both high and low concentrations of erythrosine. The results showed that at 37°C the uptake of erythrosine by both DOK and H357 cells increased in an erythrosine dose dependent manner. However, the percentage of cell killing observed following PDT differed between the 2 cell lines; a maximum of ∼80% of DOK cell killing was achieved as compared to ∼60% killing for H357 cells. Both the DOK and H357 cell types exhibited predominantly mitochondrial accumulation of erythrosine, but the mitochondrial trans-membrane potential (ΔΨm) studies showed that the H357 cells were far more resistant to the changes in ΔΨm when compared to the DOK cells and this might be a factor in the apparent relative resistance of the H357 cells to PDT. Finally, cell death morphology and caspase activity analysis studies demonstrated the occurrence of extensive necrosis with high dose PDT in DOK cells, whereas apoptosis was observed at lower doses of PDT for both cell lines. For H357 cells, high dose PDT produced both apoptotic as well as necrotic responses. This is the first instance of erythrosine-based PDT's usage for cancer cell killing. PMID:22485174

  10. Lysis of autologous human macrophages by lymphokine-activated killer cells: interaction of effector cell and target cell conjugates analyzed by scanning electron microscopy.

    PubMed

    Streck, R J; Helinski, E H; Ovak, G M; Pauly, J L

    1990-09-01

    Lymphokine (i.e., interleukin 2; IL-2)-activated killer (LAK) cells derived from normal human blood are known to destroy human tumor target cells. Accordingly, immunotherapy modalities using IL-2, either alone or in combination with LAK cells, have been evaluated for eradicating metastatic cancer. In studies conducted to characterize receptors on LAK cell membrane ultrastructures, we observed that LAK cells kill autologous human monocyte-derived macrophages (M phi). In these experiments, peripheral blood mononuclear cells of a healthy adult donor were cultured to generate LAK cells and autologous non-adherent M phi. Thereafter, conjugates were prepared by incubating for 3 h autologous populations of LAK cells and M phi. Examination of the conjugates by scanning electron microscopy (SEM) identified LAK cell-mediated killing of M phi. Moreover, SEM analysis of the LAK cell membrane architecture identified microvilli-like ultrastructures that provided a physical bridge that joined together the LAK cell and M phi. The immunological mechanism(s) underling LAK cell killing of autologous M phi is not known; nevertheless, these conjugates will provide a useful model to study membrane receptors on ultrastructures that mediate the initial stages of cytolysis that include target cell recognition and cell-to-cell adhesion. The results of our observations and the findings of other investigators who have also demonstrated LAK cell killing of autologous normal human leukocytes are discussed in the context of the association of IL-2 and IL-2-activated killer cells with side effects observed in ongoing clinical trials and with autoimmune disorders.

  11. Two-stage model of radon-induced malignant lung tumors in rats: effects of cell killing

    NASA Technical Reports Server (NTRS)

    Luebeck, E. G.; Curtis, S. B.; Cross, F. T.; Moolgavkar, S. H.

    1996-01-01

    A two-stage stochastic model of carcinogenesis is used to analyze lung tumor incidence in 3750 rats exposed to varying regimens of radon carried on a constant-concentration uranium ore dust aerosol. New to this analysis is the parameterization of the model such that cell killing by the alpha particles could be included. The model contains parameters characterizing the rate of the first mutation, the net proliferation rate of initiated cells, the ratio of the rates of cell loss (cell killing plus differentiation) and cell division, and the lag time between the appearance of the first malignant cell and the tumor. Data analysis was by standard maximum likelihood estimation techniques. Results indicate that the rate of the first mutation is dependent on radon and consistent with in vitro rates measured experimentally, and that the rate of the second mutation is not dependent on radon. An initial sharp rise in the net proliferation rate of initiated cell was found with increasing exposure rate (denoted model I), which leads to an unrealistically high cell-killing coefficient. A second model (model II) was studied, in which the initial rise was attributed to promotion via a step function, implying that it is due not to radon but to the uranium ore dust. This model resulted in values for the cell-killing coefficient consistent with those found for in vitro cells. An "inverse dose-rate" effect is seen, i.e. an increase in the lifetime probability of tumor with a decrease in exposure rate. This is attributed in large part to promotion of intermediate lesions. Since model II is preferable on biological grounds (it yields a plausible cell-killing coefficient), such as uranium ore dust. This analysis presents evidence that a two-stage model describes the data adequately and generates hypotheses regarding the mechanism of radon-induced carcinogenesis.

  12. Tumor immune evasion arises through loss of TNF sensitivity.

    PubMed

    Kearney, Conor J; Vervoort, Stephin J; Hogg, Simon J; Ramsbottom, Kelly M; Freeman, Andrew J; Lalaoui, Najoua; Pijpers, Lizzy; Michie, Jessica; Brown, Kristin K; Knight, Deborah A; Sutton, Vivien; Beavis, Paul A; Voskoboinik, Ilia; Darcy, Phil K; Silke, John; Trapani, Joseph A; Johnstone, Ricky W; Oliaro, Jane

    2018-05-18

    Immunotherapy has revolutionized outcomes for cancer patients, but the mechanisms of resistance remain poorly defined. We used a series of whole-genome clustered regularly interspaced short palindromic repeat (CRISPR)-based screens performed in vitro and in vivo to identify mechanisms of tumor immune evasion from cytotoxic lymphocytes [CD8 + T cells and natural killer (NK) cells]. Deletion of key genes within the tumor necrosis factor (TNF) signaling, interferon-γ (IFN-γ) signaling, and antigen presentation pathways provided protection of tumor cells from CD8 + T cell-mediated killing and blunted antitumor immune responses in vivo. Deletion of a number of genes in the TNF pathway also emerged as the key mechanism of immune evasion from primary NK cells. Our screens also identified that the metabolic protein 2-aminoethanethiol dioxygenase (Ado) modulates sensitivity to TNF-mediated killing by cytotoxic lymphocytes and is required for optimal control of tumors in vivo. Remarkably, we found that tumors delete the same genes when exposed to perforin-deficient CD8 + T cells, demonstrating that the dominant immune evasion strategy used by tumor cells is acquired resistance to T cell-derived cytokine-mediated antitumor effects. We demonstrate that TNF-mediated bystander killing is a potent T cell effector mechanism capable of killing antigen-negative tumor cells. In addition to highlighting the importance of TNF in CD8 + T cell- and NK cell-mediated killing of tumor cells, our study also provides a comprehensive picture of the roles of the TNF, IFN, and antigen presentation pathways in immune-mediated tumor surveillance. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab.

    PubMed

    Fujii, Rika; Friedman, Eitan R; Richards, Jacob; Tsang, Kwong Y; Heery, Christopher R; Schlom, Jeffrey; Hodge, James W

    2016-06-07

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.

  14. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab

    PubMed Central

    Fujii, Rika; Friedman, Eitan R.; Richards, Jacob; Tsang, Kwong Y.; Heery, Christopher R.; Schlom, Jeffrey; Hodge, James W.

    2016-01-01

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC. PMID:27172898

  15. A novel bispecific antibody, S-Fab, induces potent cancer cell killing.

    PubMed

    Li, Li; He, Ping; Zhou, Changhua; Jing, Li; Dong, Bin; Chen, Siqi; Zhang, Ning; Liu, Yawei; Miao, Ji; Wang, Zhong; Li, Qing

    2015-01-01

    Bispecific antibodies that engage immune cells to kill cancer cells have been actively studied in cancer immunotherapy. In this study, we present a novel bispecific format, S-Fab, fabricated by linking a single-domain anti-carcinoembryonic antigen VHH to a conventional anti-CD3 Fab. In contrast to most bispecific antibodies, the S-Fab bispecific antibody can be efficiently expressed and purified from bacteria. The purified S-Fab is stable in serum and is able to recruit T cells to drive potent cancer cell killing. In xenograft models, the S-Fab antibody suppresses tumor growth in the presence of human immune cells. Our study suggested that the bispecific S-Fab format can be applied to a wide range of immunotherapies.

  16. Design, synthesis and characterization of novel quinacrine analogs that preferentially kill cancer over non-cancer cells through the down-regulation of Bcl-2 and up-regulation of Bax and Bad.

    PubMed

    Solomon, V Raja; Almnayan, Danah; Lee, Hoyun

    2017-09-08

    Both quinacrine, which contains a 9-aminoacridine scaffold, and thiazolidin-4-one are promising anticancer leads. In an attempt to develop effective and potentially safe anticancer agents, we synthesized 23 novel hybrid compounds by linking the main structural unit of the 9-aminoacridine ring with the thiazolidin-4-one ring system, followed by examination of their anticancer effects against three human breast tumor cell lines and matching non-cancer cells. Most of the hybrid compounds showed good activities, and many of them possessed the preferential killing property against cancer over non-cancer cells. In particular, 3-[3-(6-chloro-2-methoxy-acridin-9-ylamino)-propyl]-2-(2,6-difluoro-phenyl)-thiazolidin-4-one (11; VR118) effectively killed/inhibited proliferation of cancer cells at IC 50 values in the range of 1.2-2.4 μM. Furthermore, unlike quinacrine or cisplatin, compound 11 showed strong selectivity for cancer cell killing, as it could kill cancer cells 7.6-fold (MDA-MB231 vs MCF10A) to 14.7-fold (MCF7 vs MCF10A) more effectively than matching non-cancer cells. Data from flow cytometry, TUNEL and Western blot assays showed that compound 11 kills cancer cells by apoptosis through the down-regulation of Bcl-2 (but not Bcl-X L ) survival protein and up-regulation of Bad and Bax pro-apoptotic proteins. Thus, compound 11 is a highly promising lead for an effective and potentially anticancer therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shier, W.T.

    Normally a freeze-thaw cycle is a very efficient method of killing mammalian cells. However, this report describes conditions that prevent killing of cultured mammalian cells by nucleated freezing at -24 degrees C. Optimal protection from cell killing at -24 degrees C was obtained in isotonic solutions containing an organic cryoprotectant such as dimethyl sulfoxide (DMSO; 10%, v/v), a saccharide such as sucrose over a broad concentration range from 50 to 150 mM, and glucose. Glycerol was also an effective cryoprotectant but other organic solvents were ineffective, although in some cases they appeared to protect cell membranes, while not protecting othermore » vital components. A wide variety of saccharide structures were effective at protecting cells from freeze-thaw killing, with trehalose being particularly effective. The degree of resistance to killing by a freeze-thaw cycle under these conditions varied widely among different cell lines. If toxicity of DMSO was responsible for this variability of cryoprotection, it must have been due to short-term, not longer term, toxicity of DMSO. Studies on the mechanism by which cells are protected from killing under these conditions indicated that neither vitrification of the medium nor the concentrating of components during freezing were involved. One model not eliminated by the mechanistic studies proposes that the organic solvent cryoprotectant component acts by fluidizing membranes under the thawing conditions, so that any holes produced by ice crystals propagating through membranes can reseal during the thawing process. In this model one of the mechanisms by which the saccharide component could act is by entering the cells and stabilizing vital intracellular components. Consistent with this, a freeze-thaw cycle promoted the uptake of labeled sucrose into cultured cells.« less

  18. Contact Killing of Bacteria on Copper Is Suppressed if Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions

    PubMed Central

    Mathews, Salima; Hans, Michael

    2013-01-01

    Bacteria are rapidly killed on copper surfaces, and copper ions released from the surface have been proposed to play a major role in the killing process. However, it has remained unclear whether contact of the bacteria with the copper surface is also an important factor. Using laser interference lithography, we engineered copper surfaces which were covered with a grid of an inert polymer which prevented contact of the bacteria with the surface. Using Enterococcus hirae as a model organism, we showed that the release of ionic copper from these modified surfaces was not significantly reduced. In contrast, killing of bacteria was strongly attenuated. When E. hirae cells were exposed to a solid iron surface, the loss of cell viability was the same as on glass. However, exposing cells to iron in the presence of 4 mM CuSO4 led to complete killing in 100 min. These experiments suggest that contact killing proceeds by a mechanism whereby the metal-bacterial contact damages the cell envelope, which, in turn, makes the cells susceptible to further damage by copper ions. PMID:23396344

  19. Effect of a streptococcal preparation (OK432) on natural killer activity of tumour-associated lymphoid cells in human ovarian carcinoma and on lysis of fresh ovarian tumour cells.

    PubMed Central

    Colotta, F.; Rambaldi, A.; Colombo, N.; Tabacchi, L.; Introna, M.; Mantovani, A.

    1983-01-01

    The streptococcal preparation OK432 was studied for its effects on natural killer (NK) activity of peripheral blood lymphocytes (PBL) from normal donors and from ovarian cancer patients, and of tumour-associated lymphocytes (TAL) from peritoneal effusions. OK432 augmented NK activity against the susceptible K562 line and induced killing of the relatively resistant Raji line. Freshly isolated ovarian carcinoma cells were relatively resistant to killing by unstimulated PBL and TAL. OK432 induced significant, though low, levels of cytotoxicity against 51Cr-labelled ovarian carcinoma cells. Augmentation of killing of fresh tumour cells by OK432 was best observed in a 20 h assay and both autologous and allogeneic targets were lysed. PBL were separated on discontinuous Percoll gradients. Unstimulated and OK432-boosted activity were enriched in the lower density fractions where large granular lymphocytes (LGL) and activity against K562 were found. Thus, OK432 augments NK activity of PBL and TAL in human ovarian carcinomas and induces low, but significant, levels of killing of fresh tumour cells. Effector cells involved in killing of fresh ovarian tumours copurify with LGL on discontinuous gradients of Percoll. PMID:6626452

  20. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells1

    PubMed Central

    Miller, Aaron L; Johnson, Betty H; Medh, Rheem D; Townsend, Courtney M; Thompson, E Brad

    2002-01-01

    Abstract Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone (Dex) and two polyamine inhibitors, difluoromethylornithine (DFMO) and methyl glyoxal bis guanylhydrazone (MGBG), on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity. PMID:11922393

  1. Both Leukotoxin and Poly-N-Acetylglucosamine Surface Polysaccharide Protect Aggregatibacter actinomycetemcomitans Cells from Macrophage Killing

    PubMed Central

    Venketaraman, Vishwanath; Lin, Albert K.; Le, Amy; Kachlany, Scott C.; Connell, Nancy D.; Kaplan, Jeffrey B.

    2008-01-01

    Two virulence factors produced by the periodontopathogen Aggregatibacter actinomycetemcomitans are leukotoxin, a secreted lipoprotein that kills human polymorphonuclear leukocytes and macrophages, and poly-N-acetylglucosamine (PGA), a surface polysaccharide that mediates intercellular adhesion, biofilm formation and detergent resistance. In this study we examined the roles of leukotoxin and PGA in protecting A. actinomycetemcomitans cells from killing by the human macrophage cell line THP-1. Monolayers of THP-1 cells were infected with single-cell suspensions of a wild-type A. actinomycetemcomitans strain, or of isogenic leukotoxin or PGA mutant strains. After 48 h, viable bacteria were enumerated by dilution plating, macrophage morphology was evaluated microscopically, and macrophage viability was measured by a Trypan blue dye exclusion assay. The number of A. actinomycetemcomitans CFUs increased approximately 2-fold in wells infected with the wild-type strain, but decreased by approximately 70–90% in wells infected with the leukotoxin and PGA mutant strains. Infection with the wild-type or leukotoxin mutant strain caused a significant decrease in THP-1 cell viability, whereas infection with the PGA mutant strain did not result in any detectable changes in THP-1 viability. Pre-treatment of wild-type A. actinomycetemcomitans cells with the PGA-hydrolyzing enzyme dispersin B rendered them sensitive to killing by THP-1 cells. We concluded that both leukotoxin and PGA are necessary for evasion of macrophage killing by A. actinomycetemcomitans. PMID:18573331

  2. A Lipopeptide Facilitate Induction of Mycobacterium leprae Killing in Host Cells

    PubMed Central

    Maeda, Yumi; Tamura, Toshiki; Fukutomi, Yasuo; Mukai, Tetsu; Kai, Masanori; Makino, Masahiko

    2011-01-01

    Little is known of the direct microbicidal activity of T cells in leprosy, so a lipopeptide consisting of the N-terminal 13 amino acids lipopeptide (LipoK) of a 33-kD lipoprotein of Mycobacterium leprae, was synthesized. LipoK activated M. leprae infected human dendritic cells (DCs) to induce the production of IL-12. These activated DCs stimulated autologous CD4+ or CD8+ T cells towards type 1 immune response by inducing interferon-gamma secretion. T cell proliferation was also evident from the CFSE labeling of target CD4+ or CD8+ T cells. The direct microbicidal activity of T cells in the control of M. leprae multiplication is not well understood. The present study showed significant production of granulysin, granzyme B and perforin from these activated CD4+ and CD8+ T cells when stimulated with LipoK activated, M. leprae infected DCs. Assessment of the viability of M. leprae in DCs indicated LipoK mediated T cell-dependent killing of M. leprae. Remarkably, granulysin as well as granzyme B could directly kill M. leprae in vitro. Our results provide evidence that LipoK could facilitate M. leprae killing through the production of effector molecules granulysin and granzyme B in T cells. PMID:22132248

  3. How Do CD4+ T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules?

    PubMed Central

    Haabeth, Ole Audun Werner; Tveita, Anders Aune; Fauskanger, Marte; Schjesvold, Fredrik; Lorvik, Kristina Berg; Hofgaard, Peter O.; Omholt, Hilde; Munthe, Ludvig A.; Dembic, Zlatko; Corthay, Alexandre; Bogen, Bjarne

    2014-01-01

    CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed. PMID:24782871

  4. Requirement and Redundancy of the Src Family Kinases Fyn and Lyn in Perforin-Dependent Killing of Cryptococcus neoformans by NK Cells

    PubMed Central

    Oykhman, Paul; Timm-McCann, Martina; Xiang, Richard F.; Islam, Anowara; Li, Shu Shun; Stack, Danuta; Huston, Shaunna M.; Ma, Ling Ling

    2013-01-01

    Natural killer (NK) cells directly recognize and kill fungi, such as the pathogenic fungus Cryptococcus neoformans, via cytolytic mechanisms. However, the precise signaling pathways governing this NK cell microbicidal activity and the implications for fungal recognition are still unknown. Previously, it was reported that NK cell anticryptococcal activity is mediated through a conserved phosphatidylinositol 3-kinase–extracellular signal-regulated kinase 1/2 (PI3K-ERK1/2) pathway. Using YT (a human NK-like cell line) and primary human NK cells, we sought to identify the upstream, receptor-proximal signaling elements that led to fungal cytolysis. We demonstrate that Src family kinases were activated in response to C. neoformans. Furthermore, pharmacologic inhibition with an Src kinase inhibitor blocked C. neoformans-induced downstream activation of PI3K and ERK1/2 and abrogated cryptococcal killing. At the same time, the inhibitor disrupted the polarization of perforin-containing granules toward the NK cell-cryptococcal synapse but had no effect on conjugate formation between the organism and the NK cell. Finally, small interfering RNA (siRNA) double (but not single) knockdown of two Src family kinases, Fyn and Lyn, blocked cryptococcal killing. Together these data demonstrate a mechanism whereby the Src family kinases, Fyn and Lyn, redundantly mediate anticryptococcal activity through the activation of PI3K and ERK1/2, which in turn facilitates killing by inducing the polarization of perforin-containing granules to the NK cell-cryptococcal synapse. PMID:23918783

  5. Contact-dependent killing by Caulobacter crescentus via cell surface-associated, glycine zipper proteins

    PubMed Central

    García-Bayona, Leonor; Guo, Monica S; Laub, Michael T

    2017-01-01

    Most bacteria are in fierce competition with other species for limited nutrients. Some bacteria can kill nearby cells by secreting bacteriocins, a diverse group of proteinaceous antimicrobials. However, bacteriocins are typically freely diffusible, and so of little value to planktonic cells in aqueous environments. Here, we identify an atypical two-protein bacteriocin in the α-proteobacterium Caulobacter crescentus that is retained on the surface of producer cells where it mediates cell contact-dependent killing. The bacteriocin-like proteins CdzC and CdzD harbor glycine-zipper motifs, often found in amyloids, and CdzC forms large, insoluble aggregates on the surface of producer cells. These aggregates can drive contact-dependent killing of other organisms, or Caulobacter cells not producing the CdzI immunity protein. The Cdz system uses a type I secretion system and is unrelated to previously described contact-dependent inhibition systems. However, Cdz-like systems are found in many bacteria, suggesting that this form of contact-dependent inhibition is common. DOI: http://dx.doi.org/10.7554/eLife.24869.001 PMID:28323618

  6. Sibling Rivalry in Myxococcus xanthus Is Mediated by Kin Recognition and a Polyploid Prophage.

    PubMed

    Dey, Arup; Vassallo, Christopher N; Conklin, Austin C; Pathak, Darshankumar T; Troselj, Vera; Wall, Daniel

    2016-01-19

    Myxobacteria form complex social communities that elicit multicellular behaviors. One such behavior is kin recognition, in which cells identify siblings via their polymorphic TraA cell surface receptor, to transiently fuse outer membranes and exchange their contents. In addition, outer membrane exchange (OME) regulates behaviors, such as inhibition of wild-type Myxococcus xanthus (DK1622) from swarming. Here we monitored the fate of motile cells and surprisingly found they were killed by nonmotile siblings. The kill phenotype required OME (i.e., was TraA dependent). The genetic basis of killing was traced to ancestral strains used to construct DK1622. Specifically, the kill phenotype mapped to a large "polyploid prophage," Mx alpha. Sensitive strains contained a 200-kb deletion that removed two of three Mx alpha units. To explain these results, we suggest that Mx alpha expresses a toxin-antitoxin cassette that uses the OME machinery of M. xanthus to transfer a toxin that makes the population "addicted" to Mx alpha. Thus, siblings that lost Mx alpha units (no immunity) are killed by cells that harbor the element. To test this, an Mx alpha-harboring laboratory strain was engineered (by traA allele swap) to recognize a closely related species, Myxococcus fulvus. As a result, M. fulvus, which lacks Mx alpha, was killed. These TraA-mediated antagonisms provide an explanation for how kin recognition specificity might have evolved in myxobacteria. That is, recognition specificity is determined by polymorphisms in traA, which we hypothesize were selected for because OME with non-kin leads to lethal outcomes. The transition from single cell to multicellular life is considered a major evolutionary event. Myxobacteria have successfully made this transition. For example, in response to starvation, individual cells aggregate into multicellular fruiting bodies wherein cells differentiate into spores. To build fruits, cells need to recognize their siblings, and in part, this is mediated by the TraA cell surface receptor. Surprisingly, we report that TraA recognition can also involve sibling killing. We show that killing originates from a prophage-like element that has apparently hijacked the TraA system to deliver a toxin to kin. We hypothesize that this killing system has imposed selective pressures on kin recognition, which in turn has resulted in TraA polymorphisms and hence many different recognition groups. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Sibling Rivalry in Myxococcus xanthus Is Mediated by Kin Recognition and a Polyploid Prophage

    PubMed Central

    Dey, Arup; Vassallo, Christopher N.; Conklin, Austin C.; Pathak, Darshankumar T.; Troselj, Vera

    2016-01-01

    ABSTRACT Myxobacteria form complex social communities that elicit multicellular behaviors. One such behavior is kin recognition, in which cells identify siblings via their polymorphic TraA cell surface receptor, to transiently fuse outer membranes and exchange their contents. In addition, outer membrane exchange (OME) regulates behaviors, such as inhibition of wild-type Myxococcus xanthus (DK1622) from swarming. Here we monitored the fate of motile cells and surprisingly found they were killed by nonmotile siblings. The kill phenotype required OME (i.e., was TraA dependent). The genetic basis of killing was traced to ancestral strains used to construct DK1622. Specifically, the kill phenotype mapped to a large “polyploid prophage,” Mx alpha. Sensitive strains contained a 200-kb deletion that removed two of three Mx alpha units. To explain these results, we suggest that Mx alpha expresses a toxin-antitoxin cassette that uses the OME machinery of M. xanthus to transfer a toxin that makes the population “addicted” to Mx alpha. Thus, siblings that lost Mx alpha units (no immunity) are killed by cells that harbor the element. To test this, an Mx alpha-harboring laboratory strain was engineered (by traA allele swap) to recognize a closely related species, Myxococcus fulvus. As a result, M. fulvus, which lacks Mx alpha, was killed. These TraA-mediated antagonisms provide an explanation for how kin recognition specificity might have evolved in myxobacteria. That is, recognition specificity is determined by polymorphisms in traA, which we hypothesize were selected for because OME with non-kin leads to lethal outcomes. IMPORTANCE The transition from single cell to multicellular life is considered a major evolutionary event. Myxobacteria have successfully made this transition. For example, in response to starvation, individual cells aggregate into multicellular fruiting bodies wherein cells differentiate into spores. To build fruits, cells need to recognize their siblings, and in part, this is mediated by the TraA cell surface receptor. Surprisingly, we report that TraA recognition can also involve sibling killing. We show that killing originates from a prophage-like element that has apparently hijacked the TraA system to deliver a toxin to kin. We hypothesize that this killing system has imposed selective pressures on kin recognition, which in turn has resulted in TraA polymorphisms and hence many different recognition groups. PMID:26787762

  8. HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy.

    PubMed

    Gustafsson, Lotta; Hallgren, Oskar; Mossberg, Ann-Kristin; Pettersson, Jenny; Fischer, Walter; Aronsson, Annika; Svanborg, Catharina

    2005-05-01

    New cancer treatments should aim to destroy tumor cells without disturbing normal tissue. HAMLET (human alpha-lactalbumin made lethal to tumor cells) offers a new molecular approach to solving this problem, because it induces apoptosis in tumor cells but leaves normal differentiated cells unaffected. After partial unfolding and binding to oleic acid, alpha-lactalbumin forms the HAMLET complex, which enters tumor cells and freezes their metabolic machinery. The cells proceed to fragment their DNA, and they disintegrate with apoptosis-like characteristics. HAMLET kills a wide range of malignant cells in vitro and maintains this activity in vivo in patients with skin papillomas. In addition, HAMLET has striking effects on human glioblastomas in a rat xenograft model. After convection-enhanced delivery, HAMLET diffuses throughout the brain, selectively killing tumor cells and controlling tumor progression without apparent tissue toxicity. HAMLET thus shows great promise as a new therapeutic with the advantage of selectivity for tumor cells and lack of toxicity.

  9. Controlling plasma stimulated media in cancer treatment application

    NASA Astrophysics Data System (ADS)

    Yan, Dayun; Sherman, Jonathan H.; Cheng, Xiaoqian; Ratovitski, Edward; Canady, Jerome; Keidar, Michael

    2014-12-01

    Cold atmospheric plasma (CAP) constitutes a "cocktail" of various reactive species. Accumulating evidence shows the effectiveness of CAP in killing cancer cells and decreasing the tumor size, which provides a solid basis for its potential use in cancer treatment. Currently, CAP is mainly used to directly treat cancer cells and trigger the death of cancer cells via apoptosis or necrosis. By altering the concentration of fetal bovine serum in Dulbecco's modified Eagle's medium and the temperature to store CAP stimulated media, we demonstrated controllable strategies to harness the stimulated media to kill glioblastoma cells in vitro. This study demonstrated the significant role of media in killing cancer cells via the CAP treatment.

  10. New trial evaluates investigational drug for endometrial and breast cancers | Center for Cancer Research

    Cancer.gov

    A new clinical trial is testing ONC201, an investigational drug that in laboratory studies has been shown to kill breast and endometrial cancer cells most likely by destroying mitochondria within the tumor cells. Mitochondria are the “powerhouse” of the cell, and blocking its activity may kill tumor cells and shrink tumors in human patients.

  11. Study characterizes how DNA-damaging anti-cancer drugs kill cancer cells | Center for Cancer Research

    Cancer.gov

    Patients whose cancer cells express the SLFN11 protein are more likely to respond to DNA-damaging anti-cancer drugs than those whose cancer cells don’t express SLFN11. In a new study, Center for Cancer Research investigators show how these drugs recruit SLFN11 to block replication and kill cancer cells. Read more…

  12. Mechanistic insights into selective killing of OXPHOS-dependent cancer cells by arctigenin.

    PubMed

    Brecht, Karin; Riebel, Virginie; Couttet, Philippe; Paech, Franziska; Wolf, Armin; Chibout, Salah-Dine; Pognan, Francois; Krähenbühl, Stephan; Uteng, Marianne

    2017-04-01

    Arctigenin has previously been identified as a potential anti-tumor treatment for advanced pancreatic cancer. However, the mechanism of how arctigenin kills cancer cells is not fully understood. In the present work we studied the mechanism of toxicity by arctigenin in the human pancreatic cell line, Panc-1, with special emphasis on the mitochondria. A comparison of Panc-1 cells cultured in glucose versus galactose medium was applied, allowing assessments of effects in glycolytic versus oxidative phosphorylation (OXPHOS)-dependent Panc-1 cells. For control purposes, the mitochondrial toxic response to treatment with arctigenin was compared to the anti-cancer drug, sorafenib, which is a tyrosine kinase inhibitor known for mitochondrial toxic off-target effects (Will et al., 2008). In both Panc-1 OXPHOS-dependent and glycolytic cells, arctigenin dissipated the mitochondrial membrane potential, which was demonstrated to be due to inhibition of the mitochondrial complexes II and IV. However, arctigenin selectively killed only the OXPHOS-dependent Panc-1 cells. This selective killing of OXPHOS-dependent Panc-1 cells was accompanied by generation of ER stress, mitochondrial membrane permeabilization and caspase activation leading to apoptosis and aponecrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides.

    PubMed

    Boyd, Marie; Ross, Susan C; Dorrens, Jennifer; Fullerton, Natasha E; Tan, Ker Wei; Zalutsky, Michael R; Mairs, Robert J

    2006-06-01

    Recent studies have shown that indirect effects of ionizing radiation may contribute significantly to the effectiveness of radiotherapy by sterilizing malignant cells that are not directly hit by the radiation. However, there have been few investigations of the importance of indirect effects in targeted radionuclide treatment. Our purpose was to compare the induction of bystander effects by external beam gamma-radiation with those resultant from exposure to 3 radiohaloanalogs of metaiodobenzylguanidine (MIBG): (131)I-MIBG (low-linear-energy-transfer [LET] beta-emitter), (123)I-MIBG (potentially high-LET Auger electron emitter), and meta-(211)At-astatobenzylguanidine ((211)At-MABG) (high-LET alpha-emitter). Two human tumor cell lines-UVW (glioma) and EJ138 (transitional cell carcinoma of bladder)-were transfected with the noradrenaline transporter (NAT) gene to enable active uptake of MIBG. Medium from cells that accumulated the radiopharmaceuticals or were treated with external beam radiation was transferred to cells that had not been exposed to radioactivity, and clonogenic survival was determined in donor and recipient cultures. Over the dose range 0-9 Gy of external beam radiation of donor cells, 2 Gy caused 30%-40% clonogenic cell kill in recipient cultures. This potency was maintained but not increased by higher dosage. In contrast, no corresponding saturation of bystander cell kill was observed after treatment with a range of activity concentrations of (131)I-MIBG, which resulted in up to 97% death of donor cells. Cellular uptake of (123)I-MIBG and (211)At-MABG induced increasing recipient cell kill up to levels that resulted in direct kill of 35%-70% of clonogens. Thereafter, the administration of higher activity concentrations of these high-LET emitters was inversely related to the kill of recipient cells. Over the range of activity concentrations examined, neither direct nor indirect kill was observed in cultures of cells not expressing the NAT and, thus, incapable of active uptake of MIBG. Potent toxins are generated specifically by cells that concentrate radiohalogenated MIBG. These may be LET dependent and distinct from those elicited by conventional radiotherapy.

  14. PARP Inhibitors Synergize With Loss of Checkpoint Control to Kill Mammary Carcinoma Cells

    DTIC Science & Technology

    2011-06-01

    from three studies S.E.M. B, MCF7 breast cancer and PANC -1 and MiaPaca2 pancreatic cancer cells were plated in triplicate and treated with vehicle...inhibitors to kill pancreatic carcinoma cells PANC -1 (pancreatic) and MiaPaca2 (pancreatic) carcinoma cells were plated as single cells (250–2000 cells...231 and PANC -1. Simian virus 40 large T antigen-transformed fibroblasts that are not tu- morigenic in mice were also sensitive to the drug schedule

  15. Residual chromatin breaks as biodosimetry for cell killing by carbon ions.

    PubMed

    Suzuki, M; Kase, Y; Nakano, T; Kanai, T; Ando, K

    1998-01-01

    We have studied the relationship between cell killing and the induction of residual chromatin breaks on various human cell lines and primary cultured cells obtained by biopsy from patients irradiated with either X-rays or heavy-ion beams to identify potential bio-marker of radiosensitivity for radiation-induced cell killing. The carbon-ion beams were accelerated with the Heavy Ion Medical Accelerator in Chiba (HIMAC). Six primary cultures obtained by biopsy from 6 patients with carcinoma of the cervix were irradiated with two different mono-LET beams (LET = 13 keV/micrometer, 76 keV/micrometer) and 200kV X rays. Residual chromatin breaks were measured by counting the number of non-rejoining chromatin fragments detected by the premature chromosome condensation (PCC) technique after a 24 hour post-irradiation incubation period. The induction rate of residual chromatin breaks per cell per Gy was the highest for 76 keV/micrometer beams on all of the cells. Our results indicated that cell which was more sensitive to the cell killing was similarly more susceptible to induction of residual chromatin breaks. Furthermore there is a good correlation between these two end points in various cell lines and primary cultured cells. This suggests that the detection of residual chromatin breaks by the PCC technique may be useful as a predictive assay of tumor response to cancer radiotherapy.

  16. Residual chromatin breaks as biodosimetry for cell killing by carbon ions

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Kase, Y.; Nakano, T.; Kanai, T.; Ando, K.

    1998-11-01

    We have studied the relationship between cell killing and the induction of residual chromatin breaks on various human cell lines and primary cultured cells obtained by biopsy from patients irradiated with either X-rays or heavy-ion beams to identify potential bio-marker of radiosensitivity for radiation-induced cell killing. The carbon-ion beams were accelerated with the Heavy Ion Medical Accelerator in Chiba (HIMAC). Six primary cultures obtained by biopsy from 6 patients with carcinoma of the cervix were irradiated with two different mono-LET beams (LET = 13 keV/μm, 76 keV/μm) and 200kV X rays. Residual chromatin breaks were measured by counting the number of non-rejoining chromatin fragments detected by the premature chromosome condensation (PCC) technique after a 24 hour post-irradiation incubation period. The induction rate of residual chromatin breaks per cell per Gy was the highest for 76 keV/μm beams on all of the cells. Our results indicated that cell which was more sensitive to the cell killing was similarly more susceptible to induction of residual chromatin breaks. Furthermore there is a good correlation between these two end points in various cell lines and primary cultured cells. This suggests that the detection of residual chromatin breaks by the PCC technique may be useful as a predictive assay of tumor response to cancer radiotherapy.

  17. Expression of complement membrane regulators membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59) in human malignant gliomas.

    PubMed Central

    Mäenpää, A.; Junnikkala, S.; Hakulinen, J.; Timonen, T.; Meri, S.

    1996-01-01

    Gliomas are malignant brain tumors, which, despite recent progress in surgical and radiological treatment, still have a poor prognosis. Since gliomas apparently resist immunological clearance mechanisms, we became interested in examining bow gliomas resist killing by the human complement system. The resistance of human cells to complement-mediated damage is, in large part, mediated by specific inhibitors of complement:membrane cofactor protein (CD46), decay-accelerating factor (CD55), and protectin (CD59). In the present study we examined the expression of complement regulators in 14 human glioma tumors and in 7 glioma cell lines (U251, U87, HS683, U373, U138, U118, and H2). Protectin was found to be strongly expressed by all glioma tumors and cell lines. Northern blotting analysis demonstrated the typical pattern of four to five protectin mRNAs in the glioma cells. Except for blood vessels, the expression of decay-accelerating factor was weak or absent in the tumors in situ, whereas in the cell lines its expression varied, ranging from negative to intermediate. Membrane cofactor protein was moderately expressed by all the cell lines but only weakly in the tumors. Cell-killing experiments demonstrated that the glioma cell lines were exceptionally resistant to C-mediated lysis. Five of the seven cell lines (U373, HS683, U118, U138, and H2) resisted complement lysis under conditions where most other cell lines were sensitive to killing. Neutralization experiments using specific monoclonal antibodies indicated that protectin was functionally the most important complement regulator in the glioma cells. The killing of the U87 and U251 cells could be significantly increased by a blocking anti-protectin monoclonal antibody, whereas for the other cell lines only moderate or no response was observed. The H2 cell line resisted killing by all antibodies and by complement. These results show that protectin is the most important complement regulator on human glioma cells. The exceptional complement resistance of some glioma cell lines suggests that they may utilize other, hitherto less well characterized, mechanisms to resist complement killing. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 PMID:8644856

  18. Methadone, commonly used as maintenance medication for outpatient treatment of opioid dependence, kills leukemia cells and overcomes chemoresistance.

    PubMed

    Friesen, Claudia; Roscher, Mareike; Alt, Andreas; Miltner, Erich

    2008-08-01

    The therapeutic opioid drug methadone (d,l-methadone hydrochloride) is the most commonly used maintenance medication for outpatient treatment of opioid dependence. In our study, we found that methadone is also a potent inducer of cell death in leukemia cells and we clarified the unknown mechanism of methadone-induced cell killing in leukemia cells. Methadone inhibited proliferation in leukemia cells and induced cell death through apoptosis induction and activated apoptosis pathways through the activation of caspase-9 and caspase-3, down-regulation of Bcl-x(L) and X chromosome-linked inhibitor of apoptosis, and cleavage of poly(ADP-ribose) polymerase. In addition, methadone induced cell death not only in anticancer drug-sensitive and apoptosis-sensitive leukemia cells but also in doxorubicin-resistant, multidrug-resistant, and apoptosis-resistant leukemia cells, which anticancer drugs commonly used in conventional therapies of leukemias failed to kill. Depending on caspase activation, methadone overcomes doxorubicin resistance, multidrug resistance, and apoptosis resistance in leukemia cells through activation of mitochondria. In contrast to leukemia cells, nonleukemic peripheral blood lymphocytes survived after methadone treatment. These findings show that methadone kills leukemia cells and breaks chemoresistance and apoptosis resistance. Our results suggest that methadone is a promising therapeutic approach not only for patients with opioid dependence but also for patients with leukemias and provide the foundation for new strategies using methadone as an additional anticancer drug in leukemia therapy, especially when conventional therapies are less effective.

  19. Gene therapy for human ovarian cancer cells using efficient expression of Fas gene combined with γδT cells.

    PubMed

    Lin, Jiajing; Zeng, Dingyuan; He, Hongying; Tan, Guangping; Lan, Ying; Jiang, Fuyan; Sheng, Shuting

    2017-10-01

    Low tissue specificity and efficiency of exogenous gene expression are the two major obstacles in tumor‑targeted gene therapy. The Fas cell surface death receptor (Fas)/Fas ligand pathway is one of the primary pathways responsible for the regulation of cell apoptosis. The aim of the present study was to explore whether the regulation of tumor specific promoters and a two‑step transcriptional amplification system (TSTA) assured efficient, targeted expression of their downstream Fas gene in human ovarian cancer cells, and to assess the killing effect of γδT cells on these cells with high Fas expression. Three shuttle plasmids containing different control elements of the human telomerase reverse transcriptase (hTERT) promoter and/or TSTA were constructed and packaged into adenovirus 5 (Ad5) vectors for the expression of exogenous Fas gene. The human ovarian cancer cell line SKOV3 and a control human embryonic lung fibroblast cell line were transfected with Ad5‑hTERT‑Fas or Ad5‑hTERT‑TSTA‑Fas. Fas mRNA and protein expression were examined by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. γδT lymphocytes were isolated, cultured and mixed at different ratios with SKOV3 cells with Fas expression in order to assess the killing effect of γδT cells. hTERT promoter induced the specific expression of FAS gene in SKOV3 cells, and the TSTA strategy increased FAS expression by 14.2‑fold. The killing effect of γδT cells increased with the expression level of Fas and the effector‑target cell ratio. The killing rate for SKOV3 cells with high FAS expression was 72.5% at an effector‑target cell ratio of 40:1. The regulators of hTERT promoter and TSTA assure the efficient and targeted expression of their downstream Fas gene in SKOV3 cells. The killing effect of γδT cells for ovarian cancer cells with relatively high Fas expression was improved.

  20. Killing of intrafamilial leukocytes by earthworm effector cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-01-01

    When Lumbricus and Eisenia coelomocytes are cultured together in intrafamilial xenogeneic combinations, significant cytotoxicity occurs at 24 h but not at 5 nor 72 h, as shown by trypan blue assay. In a 4.5-h assay, measuring 51Cr release, using an effector/target ratio of 25:1, unpooled cells from a single Lumbricus killed Eisenia cells at levels of 6% and 14%. However, Eisenia coelomocyte survival was high and identical in either cell-free xenogeneic (Lumbricus) coelomic fluid or in artificial medium. In this 1-way assay, earthworm (Lumbricus) coelomocytes act as effector cells that kill non-self target cells, even those of other earthworms. Comparisons with previous results reveal greater reliability and consistently repeatable results when the 51Cr release assay is used to measure cytotoxicity regardless of the targets.

  1. Monte Carlo based protocol for cell survival and tumour control probability in BNCT.

    PubMed

    Ye, S J

    1999-02-01

    A mathematical model to calculate the theoretical cell survival probability (nominally, the cell survival fraction) is developed to evaluate preclinical treatment conditions for boron neutron capture therapy (BNCT). A treatment condition is characterized by the neutron beam spectra, single or bilateral exposure, and the choice of boron carrier drug (boronophenylalanine (BPA) or boron sulfhydryl hydride (BSH)). The cell survival probability defined from Poisson statistics is expressed with the cell-killing yield, the 10B(n,alpha)7Li reaction density, and the tolerable neutron fluence. The radiation transport calculation from the neutron source to tumours is carried out using Monte Carlo methods: (i) reactor-based BNCT facility modelling to yield the neutron beam library at an irradiation port; (ii) dosimetry to limit the neutron fluence below a tolerance dose (10.5 Gy-Eq); (iii) calculation of the 10B(n,alpha)7Li reaction density in tumours. A shallow surface tumour could be effectively treated by single exposure producing an average cell survival probability of 10(-3)-10(-5) for probable ranges of the cell-killing yield for the two drugs, while a deep tumour will require bilateral exposure to achieve comparable cell kills at depth. With very pure epithermal beams eliminating thermal, low epithermal and fast neutrons, the cell survival can be decreased by factors of 2-10 compared with the unmodified neutron spectrum. A dominant effect of cell-killing yield on tumour cell survival demonstrates the importance of choice of boron carrier drug. However, these calculations do not indicate an unambiguous preference for one drug, due to the large overlap of tumour cell survival in the probable ranges of the cell-killing yield for the two drugs. The cell survival value averaged over a bulky tumour volume is used to predict the overall BNCT therapeutic efficacy, using a simple model of tumour control probability (TCP).

  2. CD3+ CD8+ NKG2D+ T Lymphocytes Induce Apoptosis and Necroptosis in HLA-Negative Cells via FasL-Fas Interaction.

    PubMed

    Ivanova, Olga K; Sharapova, Tatiana N; Romanova, Elena A; Soshnikova, Natalia V; Sashchenko, Lidia P; Yashin, Denis V

    2017-10-01

    An important problem in cellular immunology is to identify new populations of cytotoxic lymphocytes capable of killing tumor cells that have lost classical components of MHC-machinery and to understand mechanisms of the death of these cells. We have previously found that CD4 + CD25 + lymphocytes appear in the lymphokine-activated killer (LAK) cell culture, which carry Tag7 (PGRP-S) and FasL proteins on their surface and can kill Hsp70- and Fas-expressing HLA-negative cells. In this work, we have continued to study the mechanisms of killing of the HLA-negative tumor cells, focusing this time on the CD8 + lymphocytes. We show that after a tumor antigen contact the IL-2 activated CD8 + lymphocytes acquire ability to lyse tumor cells bearing this antigen. However, activation of the CD8 + lymphocytes in the absence of antigen causes appearance of a cytotoxic population of CD8 + NKG2D + lymphocytes, which are able to lyse HLA-negative cancer cells that have lost the classic mechanism of antigen presentation. These cells recognize the noncanonical MicA antigen on the surface of HLA-negative K562 cells but kill them via the FasL-Fas interaction, as do cytotoxic T lymphocytes. FasL presented on the lymphocyte surface can trigger both apoptosis and necroptosis. Unlike in the case of TNFR1, another cell death receptor, no switching to alternative processes has been observed upon induction of Fas-dependent cell death. It may well be that the apoptotic and necroptotic signals are transduced separately in the latter case, with the ability of FasL + lymphocytes to induce necroptosis allowing them to kill tumor cells that escape apoptosis. J. Cell. Biochem. 118: 3359-3366, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Human Monocytes in the Presence of Interferons Alpha2a and Gamma Are Potent Killers of Serous Ovarian Cancer Cell Lines in Combination with Paclitaxel and Carboplatin

    PubMed Central

    Johnson, Chase L.; Zoon, Kathryn C.

    2015-01-01

    Interferons (IFNs) play an important role in immune surveillance of tumors; however, their efficacy in the treatment of malignancies has been limited. Monocytes are mononuclear phagocytes that are critical to the generation of an innate immune response to tumors. The authors and others have shown that treatment of tumor cell lines in vitro and in vivo with human monocytes primed with type I and type II IFNs results in killing. We now expand on this work, in an extended panel of ovarian cancer cell lines. In this study, we hypothesized that there would be variable sensitivity amongst cell lines to the killing properties of monocytes and IFNs. To this end, we explored the interactions of IFN primed monocytes in conjunction with the standard of therapy for ovarian cancer, taxane, and platinum-based chemotherapeutics. Using 6 ovarian cancer cell lines, we demonstrated that there is variation from cell line to cell line in the ability of IFN-α2a and IFN-γ primed monocytes to synergistically kill target tumor cells, and further, there is an additive killing effect when target cells are treated with both IFN primed monocytes and chemotherapy. PMID:25068849

  4. Granzyme B; the chalk-mark of a cytotoxic lymphocyte

    PubMed Central

    Waterhouse, Nigel J; Sedelies, Karin A; Clarke, Chris JP

    2004-01-01

    During cytotoxic lymphocyte (CL) mediated killing of target cells, granzyme B is released from the CL into the immune synapse. Recent studies have found that ELISPOT-detection of granzyme B correlated well with conventional assays for CL mediated killing. In this way, the released granzyme B can be used to mark the spot where a target cell was murdered. We discuss the benefits and potential limitations of using this assay to measure CL mediated killing of target cells. PMID:15500699

  5. PDE5 Inhibitors Enhance Celecoxib Killing in Multiple Tumor Types

    PubMed Central

    BOOTH, LAURENCE; ROBERTS, JANE L.; CRUICKSHANKS, NICHOLA; TAVALLAI, SEYEDMEHRAD; WEBB, TIMOTHY; SAMUEL, PETER; CONLEY, ADAM; BINION, BRITTANY; YOUNG, HAROLD F.; POKLEPOVIC, ANDREW; SPIEGEL, SARAH; DENT, PAUL

    2015-01-01

    The present studies determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with a clinically relevant NSAID, celecoxib, to kill tumor cells. Celecoxib and PDE5 inhibitors interacted in a greater than additive fashion to kill multiple tumor cell types. Celecoxib and sildenafil killed ex vivo primary human glioma cells as well as their associated activated microglia. Knock down of PDE5 recapitulated the effects of PDE5 inhibitor treatment; the nitric oxide synthase inhibitor L-NAME suppressed drug combination toxicity. The effects of celecoxib were COX2 independent. Over-expression of c-FLIP-s or knock down of CD95/FADD significantly reduced killing by the drug combination. CD95 activation was dependent on nitric oxide and ceramide signaling. CD95 signaling activated the JNK pathway and inhibition of JNK suppressed cell killing. The drug combination inactivated mTOR and increased the levels of autophagy and knock down of Beclin1 or ATG5 strongly suppressed killing by the drug combination. The drug combination caused an ER stress response; knock down of IRE1α/XBP1 enhanced killing whereas knock down of eIF2α/ATF4/CHOP suppressed killing. Sildenafil and celecoxib treatment suppressed the growth of mammary tumors in vivo. Collectively our data demonstrate that clinically achievable concentrations of celecoxib and sildenafil have the potential to be a new therapeutic approach for cancer. PMID:25303541

  6. Agonist antibody that induces human malignant cells to kill one another

    PubMed Central

    Yea, Kyungmoo; Zhang, Hongkai; Xie, Jia; Jones, Teresa M.; Lin, Chih-Wei; Francesconi, Walter; Berton, Fulvia; Fallahi, Mohammad; Sauer, Karsten; Lerner, Richard A.

    2015-01-01

    An attractive, but as yet generally unrealized, approach to cancer therapy concerns discovering agents that change the state of differentiation of the cancer cells. Recently, we discovered a phenomenon that we call “receptor pleiotropism” in which agonist antibodies against known receptors induce cell fates that are very different from those induced by the natural agonist to the same receptor. Here, we show that one can take advantage of this phenomenon to convert acute myeloblastic leukemic cells into natural killer cells. Upon induction with the antibody, these leukemic cells enter into a differentiation cascade in which as many as 80% of the starting leukemic cells can be differentiated. The antibody-induced killer cells make large amounts of perforin, IFN-γ, and granzyme B and attack and kill other members of the leukemic cell population. Importantly, induction of killer cells is confined to transformed cells, in that normal bone marrow cells are not induced to form killer cells. Thus, it seems possible to use agonist antibodies to change the differentiation state of cancer cells into those that attack and kill other members of the malignant clone from which they originate. PMID:26487683

  7. Small Molecule Protection of Bone Marrow Hematopoietic Stem Cells

    DTIC Science & Technology

    2015-10-01

    several recently identified small molecules can protect hematopoietic stem cells (HSCs) from damage or killing by endogenous aldehydes . Proof-of-concept...anemia bone marrow failure CD34+ hematopoietic stem cells aldehydes formaldehyde DNA damage DNA base adduct DNA-protein crosslink mass...below. Revised Specific Aim 1: Small molecule protection of human cells from aldehyde - induced killing (in vitro studies - no mice or human subjects

  8. Ganetespib, an HSP90 inhibitor, kills Epstein-Barr virus (EBV)-infected B and T cells and reduces the percentage of EBV-infected cells in the blood.

    PubMed

    Shatzer, Amber; Ali, Mir A; Chavez, Mayra; Dowdell, Kennichi; Lee, Min-Jung; Tomita, Yusuke; El-Hariry, Iman; Trepel, Jane B; Proia, David A; Cohen, Jeffrey I

    2017-04-01

    HSP90 inhibitors have been shown to kill Epstein-Barr virus (EBV)-infected cells by reducing the level of EBV EBNA-1 and/or LMP1. We treated virus-infected cells with ganetespib, an HSP90 inhibitor currently being evaluated in multiple clinical trials for cancer and found that the drug killed EBV-positive B and T cells and reduced the level of both EBV EBNA-1 and LMP1. Treatment of cells with ganetespib also reduced the level of pAkt. Ganetespib delayed the onset of EBV-positive lymphomas and prolonged survival in SCID mice inoculated with one EBV-transformed B-cell line, but not another B-cell line. The former cell line showed lower levels of EBNA-1 after treatment with ganetespib in vitro. Treatment of a patient with T-cell chronic active EBV with ganetespib reduced the percentage of EBV-positive cells in the peripheral blood. These data indicate that HSP90 inhibitors may have a role in the therapy of certain EBV-associated diseases.

  9. Altered Dynamics of Candida albicans Phagocytosis by Macrophages and PMNs When Both Phagocyte Subsets Are Present

    PubMed Central

    Rudkin, Fiona M.; Bain, Judith M.; Walls, Catriona; Lewis, Leanne E.; Gow, Neil A. R.; Erwig, Lars P.

    2013-01-01

    ABSTRACT An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. PMID:24169578

  10. Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections.

    PubMed

    Lee, J; Choe, J; Kim, J; Oh, S; Park, S; Kim, S; Kim, Y

    2015-12-01

    This study examined the effect of feeding heat-killed Lactobacillus cells on the survival of Caenorhabditis elegans nematodes after Salmonella Typhimurium and Yersinia enterocolitica infection. The feeding of heat-killed Lactobacillus plantarum 133 (LP133) and Lactobacillus fermentum 21 (LP21) cells to nematodes was shown to significantly increase the survival rate as well as stimulate the expression of pmk-1 gene that key factor for C. elegans immunity upon infection compared with control nematodes that were only fed Escherichia coli OP50 (OP50) cells. These results suggest that heat-killed LP133 and LF21 cells exert preventive or protective effects against the Gram-negative bacteria Salm. Typhimurium and Y. enterocolitica. To better understand the mechanisms underlying the LF21-mediated and LP133-mediated protection against bacterial infection in nematodes, transcriptional profiling was performed for each experimental group. These experiments showed that genes related to energy generation and ageing, regulators of insulin/IGF-1-like signalling, DAF genes, oxidation and reduction processes, the defence response and/or the innate immune response, and neurological processes were upregulated in nematodes that had been fed heat-killed Lactobacillus cells compared with nematodes that had been fed E. coli cells. In this study, the feeding of heat-killed Lactobacillus bacteria to Caenorhabditis elegans nematodes was shown to decrease infection by Gram-negative bacteria and increase the host lifespan. C. elegans has a small, well-organized genome and is an excellent in vivo model organism; thus, these results will potentially shed light on important Lactobacillus-host interactions. © 2015 The Society for Applied Microbiology.

  11. Cytotoxic T cells use mechanical force to potentiate target cell killing

    PubMed Central

    Basu, Roshni; Whitlock, Benjamin M.; Husson, Julien; Le Floc’h, Audrey; Jin, Weiyang; Oyler-Yaniv, Alon; Dotiwala, Farokh; Giannone, Gregory; Hivroz, Claire; Biais, Nicolas; Lieberman, Judy; Kam, Lance C.; Huse, Morgan

    2016-01-01

    SUMMARY The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals. PMID:26924577

  12. Fas-Fas ligand interactions are essential for the binding to and killing of activated macrophages by gamma delta T cells.

    PubMed

    Dalton, Jane E; Howell, Gareth; Pearson, Jayne; Scott, Phillip; Carding, Simon R

    2004-09-15

    Gammadelta T cells have a direct role in resolving the host immune response to infection by eliminating populations of activated macrophages. Macrophage reactivity resides within the Vgamma1/Vdelta6.3 subset of gammadelta T cells, which have the ability to kill activated macrophages following infection with Listeria monocytogenes (Lm). However, it is not known how gammadelta T cell macrophage cytocidal activity is regulated, or what effector mechanisms gammadelta T cells use to kill activated macrophages. Using a macrophage-T cell coculture system in which peritoneal macrophages from naive or Lm-infected TCRdelta-/- mice were incubated with splenocytes from wild-type and Fas ligand (FasL)-deficient mice (gld), the ability of Vgamma1 T cells to bind macrophages was shown to be dependent upon Fas-FasL interactions. Combinations of anti-TCR and FasL Abs completely abolished binding to and killing of activated macrophages by Vgamma1 T cells. In addition, confocal microscopy showed that Fas and the TCR colocalized on Vgamma1 T cells at points of contact with macrophages. Collectively, these studies identify an accessory or coreceptor-like function for Fas-FasL that is essential for the interaction of Vgamma1 T cells with activated macrophages and their elimination during the resolution stage of pathogen-induced immune responses. Copyright 2004 The American Association of Immunologists, Inc.

  13. Clinical-scale laser-based scanning and processing of live cells: selective photothermal killing of fluorescent tumor targets for autologous stem cell transplantation

    NASA Astrophysics Data System (ADS)

    Koller, Manfred R.; Hanania, Elie G.; Eisfeld, Timothy; O'Neal, Robert A.; Khovananth, Kevin M.; Palsson, Bernhard O.

    2001-04-01

    High-dose chemotherapy, followed by autologous hematopoietic stem cell (HSC) transplantation, is widely used for the treatment of cancer. However, contaminating tumor cells within HSC harvests continue to be of major concern since re-infused tumor cells have proven to contribute to disease relapse. Many tumor purging methods have been evaluated, but all leave detectable tumor cells in the transplant and result in significant loss of HSCs. These shortcomings cause engraftment delays and compromise the therapeutic value of purging. A novel approach integrating automated scanning cytometry, image analysis, and selective laser-induced killing of labeled cells within a cell mixture is described here. Non-Hodgkin's lymphoma (NHL) cells were spiked into cell mixtures, and fluorochrome-conjugated antibodies were used to label tumor cells within the mixture. Cells were then allowed to settle on a surface, and as the surface was scanned with a fluorescence excitation source, a laser pulse was fired at every detected tumor cell using high-speed beam steering mirrors. Tumor cells were selectively killed with little effect on adjacent non-target cells, demonstrating the feasibility of this automated cell processing approach. This technology has many potential research and clinical applications, one example of which is tumor cell purging for autologous HSC transplantation.

  14. Vitamin C, a Multi-Tasking Molecule, Finds a Molecular Target in Killing Cancer Cells.

    PubMed

    Li, Robert

    2016-03-01

    Early work in the 1970s by Linus Pauling, a twice-honored Nobel laureate, led to his proposal of using high-dose vitamin C to treat cancer patients. Over the past several decades, a number of studies in animal models as well as several small-scale clinical studies have provided substantial support of Linus Pauling's early proposal. Production of reactive oxygen species (ROS) via oxidation of vitamin C appears to be a major underlying event, leading to the selective killing of cancer cells. However, it remains unclear how vitamin C selectively kills cancer cells while sparing normal cells and what the molecular targets of high-dose vitamin C are. In a recent article published in Science (2015 December 11; 350(6266):1391-6. doi: 10.1126/science.aaa5004), Yun et al. reported that vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) through an ROS-dependent mechanism. This work by Yun et al. along with other findings advances our current understanding of the molecular basis of high-dose vitamin C-mediated cancer cell killing, which will likely give an impetus to the continued research efforts aiming to further decipher the novel biochemistry of vitamin C and its unique role in cancer therapy.

  15. Abortion, embryonic stem cell research, and waste.

    PubMed

    Jensen, David A

    2008-01-01

    Can one consistently deny the permissibility of abortion while endorsing the killing of human embryos for the sake of stem cell research? The question is not trivial; for even if one accepts that abortion is prima facie wrong in all cases, there are significant differences with many of the embryos used for stem cell research from those involved in abortion--most prominently, many have been abandoned in vitro, and appear to have no reasonably likely meaningful future. On these grounds one might think to maintain a strong position against abortion but endorse killing human embryos for the sake of stem cell research and its promising benefits. I will argue, however, that these differences are not decisive. Thus, one who accepts a strong view against abortion is committed to the moral impermissibility of killing human embryos for the sake of stem cell research. I do not argue for the moral standing of either abortion or the killing of embryos for stem cell research; I only argue for the relation between the two. Thus the conclusion is relevant to those with a strong view in favor of the permissibility of killing embryos for the sake of research as much as for those who may strongly oppose abortion; neither can consider their position in isolation from the other.

  16. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells.

    PubMed

    Tang, Jen-Yang; Huang, Hurng-Wern; Wang, Hui-Ru; Chan, Ya-Ching; Haung, Jo-Wen; Shu, Chih-Wen; Wu, Yang-Chang; Chang, Hsueh-Wei

    2018-03-01

    Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells. © 2017 Wiley Periodicals, Inc.

  17. Enhanced cell killing and apoptosis of oral squamous cell carcinoma cells with ultrasound in combination with cetuximab coated albumin microbubbles.

    PubMed

    Narihira, Kyoichi; Watanabe, Akiko; Sheng, Hong; Endo, Hitomi; Feril, Loreto B; Irie, Yutaka; Ogawa, Koichi; Moosavi-Nejad, Seyedeh; Kondo, Seiji; Kikuta, Toshihiro; Tachibana, Katsuro

    2018-03-01

    Targeted microbubbles have the potential to be used for ultrasound (US) therapy and diagnosis of various cancers. In the present study, US was irradiated to oral squamous cell carcinoma cells (HSC-2) in the presence of cetuximab-coated albumin microbubbles (CCAM). Cell killing rate with US treatment at 0.9 W/cm 2 and 1.0 W/cm 2 in the presence of CCAM was greater compared to non-targeted albumin microbubbles (p < .05). On the other hand, selective cell killing was not observed in human myelomonocytic lymphoma cell line (U937) that had no affinity to cetuximab. Furthermore, US irradiation in the presence of CCAM showed a fivefold increase of cell apoptotic rate for HSC-2 cells (21.0 ± 3.8%) as compared to U937 cells (4.0 ± 0.8%). Time-signal intensity curve in a tissue phantom demonstrated clear visualisation of CCAM with conventional US imaging device. Our experiment verifies the hypothesis that CCAM was selective to HSC-2 cells and may be applied as a novel therapeutic/diagnostic microbubble for oral squamous cell carcinoma.

  18. Memory CD8+ T Cells Protect Dendritic Cells from CTL Killing1

    PubMed Central

    Watchmaker, Payal B.; Urban, Julie A.; Berk, Erik; Nakamura, Yutaro; Mailliard, Robbie B.; Watkins, Simon C.; van Ham, S. Marieke; Kalinski, Pawel

    2010-01-01

    CD8+ T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8+ T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8+ T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4+ and CD8+ T cell populations. Moreover, memory CD8+ T cells that release the DC-activating factor TNF-α before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4+ Th cells. The currently identified DC-protective function of memory CD8+ T cells helps to explain the phenomenon of CD8+ T cell memory, reduced dependence of recall responses on CD4+ T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization. PMID:18322193

  19. The oncolytic peptide LTX-315 kills cancer cells through Bax/Bak-regulated mitochondrial membrane permeabilization.

    PubMed

    Zhou, Heng; Forveille, Sabrina; Sauvat, Allan; Sica, Valentina; Izzo, Valentina; Durand, Sylvère; Müller, Kevin; Liu, Peng; Zitvogel, Laurence; Rekdal, Øystein; Kepp, Oliver; Kroemer, Guido

    2015-09-29

    LTX-315 has been developed as an amphipathic cationic peptide that kills cancer cells. Here, we investigated the putative involvement of mitochondria in the cytotoxic action of LTX-315. Subcellular fractionation of LTX-315-treated cells, followed by mass spectrometric quantification, revealed that the agent was enriched in mitochondria. LTX-315 caused an immediate arrest of mitochondrial respiration without any major uncoupling effect. Accordingly, LTX-315 disrupted the mitochondrial network, dissipated the mitochondrial inner transmembrane potential, and caused the release of mitochondrial intermembrane proteins into the cytosol. LTX-315 was relatively inefficient in stimulating mitophagy. Cells lacking the two pro-apoptotic multidomain proteins from the BCL-2 family, BAX and BAK, were less susceptible to LTX-315-mediated killing. Moreover, cells engineered to lose their mitochondria (by transfection with Parkin combined with treatment with a protonophore causing mitophagy) were relatively resistant against LTX-315, underscoring the importance of this organelle for LTX-315-mediated cytotoxicity. Altogether, these results support the notion that LTX-315 kills cancer cells by virtue of its capacity to permeabilize mitochondrial membranes.

  20. The oncolytic peptide LTX-315 kills cancer cells through Bax/Bak-regulated mitochondrial membrane permeabilization

    PubMed Central

    Zhou, Heng; Forveille, Sabrina; Sauvat, Allan; Sica, Valentina; Izzo, Valentina; Durand, Sylvère; Müller, Kevin; Liu, Peng; Zitvogel, Laurence; Rekdal, Øystein; Kepp, Oliver; Kroemer, Guido

    2015-01-01

    LTX-315 has been developed as an amphipathic cationic peptide that kills cancer cells. Here, we investigated the putative involvement of mitochondria in the cytotoxic action of LTX-315. Subcellular fractionation of LTX-315-treated cells, followed by mass spectrometric quantification, revealed that the agent was enriched in mitochondria. LTX-315 caused an immediate arrest of mitochondrial respiration without any major uncoupling effect. Accordingly, LTX-315 disrupted the mitochondrial network, dissipated the mitochondrial inner transmembrane potential, and caused the release of mitochondrial intermembrane proteins into the cytosol. LTX-315 was relatively inefficient in stimulating mitophagy. Cells lacking the two pro-apoptotic multidomain proteins from the BCL-2 family, BAX and BAK, were less susceptible to LTX-315-mediated killing. Moreover, cells engineered to lose their mitochondria (by transfection with Parkin combined with treatment with a protonophore causing mitophagy) were relatively resistant against LTX-315, underscoring the importance of this organelle for LTX-315-mediated cytotoxicity. Altogether, these results support the notion that LTX-315 kills cancer cells by virtue of its capacity to permeabilize mitochondrial membranes. PMID:26378049

  1. Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus

    NASA Astrophysics Data System (ADS)

    Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.

    2012-10-01

    Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.

  2. Homologous species restriction of the complement-mediated killing of nucleated cells.

    PubMed Central

    Yamamoto, H; Blaas, P; Nicholson-Weller, A; Hänsch, G M

    1990-01-01

    The homologous restriction of complement (C) lysis is attributed to membrane proteins: decay-accelerating factor (DAF), C8 binding protein (C8bp) and P18/CD59. Since these proteins are also expressed on peripheral blood cells, species restriction was tested for in the complement-mediated killing of antibody-coated human leucocytes by human or rabbit complement. Killing was more efficient when rabbit complement was used. Preincubation of cells with an antibody to DAF abolished the difference. When C1-7 sites were first attached to the cells and either rabbit or human C8, C9 were added, the killing of monocytes and lymphocytes was equally efficient; only in polymorphonuclear neutrophils was a higher efficiency of rabbit C8, C9 seen. Thus, in contrast to haemolysis, restriction occurred predominantly at the C3 level and the action of the terminal complement components was not inhibited. Since C8bp isolated from peripheral blood cells showed essentially similar characteristics as the erythrocyte-derived C8bp, the failure of C8bp to inhibit the action of the terminal components on nucleated cells might reflect differences of the complement membrane interactions between erythrocytes or nucleated cells, respectively. Images Figure 5 PMID:1697561

  3. The natural compound forskolin synergizes with dexamethasone to induce cell death in myeloma cells via BIM.

    PubMed

    Follin-Arbelet, Virginie; Misund, Kristine; Naderi, Elin Hallan; Ugland, Hege; Sundan, Anders; Blomhoff, Heidi Kiil

    2015-08-26

    We have previously demonstrated that activation of the cyclic adenosine monophosphate (cAMP) pathway kills multiple myeloma (MM) cells both in vitro and in vivo. In the present study we have investigated the potential of enhancing the killing of MM cell lines and primary MM cells by combining the cAMP-elevating compound forskolin with the commonly used MM therapeutic drugs melphalan, cyclophosphamide, doxorubicin, bortezomib and dexamethasone. We observed that forskolin potentiated the killing induced by all the tested agents as compared to treatment with the single agents alone. In particular, forskolin had a synergistic effect on the dexamethasone-responsive cell lines H929 and OM-2. By knocking down the proapoptotic BCL-2 family member BIM, we proved this protein to be involved in the synergistic induction of apoptosis by dexamethasone and forskolin. The ability of forskolin to maintain the killing of MM cells even at lower concentrations of the conventional agents suggests that forskolin may be used to diminish treatment-associated side effects. Our findings support a potential role of forskolin in combination with current conventional agents in the treatment of MM.

  4. The natural compound forskolin synergizes with dexamethasone to induce cell death in myeloma cells via BIM

    PubMed Central

    Follin-Arbelet, Virginie; Misund, Kristine; Hallan Naderi, Elin; Ugland, Hege; Sundan, Anders; Kiil Blomhoff, Heidi

    2015-01-01

    We have previously demonstrated that activation of the cyclic adenosine monophosphate (cAMP) pathway kills multiple myeloma (MM) cells both in vitro and in vivo. In the present study we have investigated the potential of enhancing the killing of MM cell lines and primary MM cells by combining the cAMP-elevating compound forskolin with the commonly used MM therapeutic drugs melphalan, cyclophosphamide, doxorubicin, bortezomib and dexamethasone. We observed that forskolin potentiated the killing induced by all the tested agents as compared to treatment with the single agents alone. In particular, forskolin had a synergistic effect on the dexamethasone-responsive cell lines H929 and OM-2. By knocking down the proapoptotic BCL-2 family member BIM, we proved this protein to be involved in the synergistic induction of apoptosis by dexamethasone and forskolin. The ability of forskolin to maintain the killing of MM cells even at lower concentrations of the conventional agents suggests that forskolin may be used to diminish treatment-associated side effects. Our findings support a potential role of forskolin in combination with current conventional agents in the treatment of MM. PMID:26306624

  5. Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis.

    PubMed

    San, Kaungmyat; Long, Janet; Michels, Corinne A; Gadura, Nidhi

    2015-10-01

    This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis

    PubMed Central

    San, Kaungmyat; Long, Janet; Michels, Corinne A; Gadura, Nidhi

    2015-01-01

    This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain. PMID:26185055

  7. Dynamic Analysis of Human Natural Killer Cell Response at Single-Cell Resolution in B-Cell Non-Hodgkin Lymphoma.

    PubMed

    Sarkar, Saheli; Sabhachandani, Pooja; Ravi, Dashnamoorthy; Potdar, Sayalee; Purvey, Sneha; Beheshti, Afshin; Evens, Andrew M; Konry, Tania

    2017-01-01

    Natural killer (NK) cells are phenotypically and functionally diverse lymphocytes that recognize and kill cancer cells. The susceptibility of target cancer cells to NK cell-mediated cytotoxicity depends on the strength and balance of regulatory (activating/inhibitory) ligands expressed on target cell surface. We performed gene expression arrays to determine patterns of NK cell ligands associated with B-cell non-Hodgkin lymphoma (b-NHL). Microarray analyses revealed significant upregulation of a multitude of NK-activating and costimulatory ligands across varied b-NHL cell lines and primary lymphoma cells, including ULBP1, CD72, CD48, and SLAMF6. To correlate genetic signatures with functional anti-lymphoma activity, we developed a dynamic and quantitative cytotoxicity assay in an integrated microfluidic droplet generation and docking array. Individual NK cells and target lymphoma cells were co-encapsulated in picoliter-volume droplets to facilitate monitoring of transient cellular interactions and NK cell effector outcomes at single-cell level. We identified significant variability in NK-lymphoma cell contact duration, frequency, and subsequent cytolysis. Death of lymphoma cells undergoing single contact with NK cells occurred faster than cells that made multiple short contacts. NK cells also killed target cells in droplets via contact-independent mechanisms that partially relied on calcium-dependent processes and perforin secretion, but not on cytokines (interferon-γ or tumor necrosis factor-α). We extended this technique to characterize functional heterogeneity in cytolysis of primary cells from b-NHL patients. Tumor cells from two diffuse large B-cell lymphoma patients showed similar contact durations with NK cells; primary Burkitt lymphoma cells made longer contacts and were lysed at later times. We also tested the cytotoxic efficacy of NK-92, a continuously growing NK cell line being investigated as an antitumor therapy, using our droplet-based bioassay. NK-92 cells were found to be more efficient in killing b-NHL cells compared with primary NK cells, requiring shorter contacts for faster killing activity. Taken together, our combined genetic and microfluidic analysis demonstrate b-NHL cell sensitivity to NK cell-based cytotoxicity, which was associated with significant heterogeneity in the dynamic interaction at single-cell level.

  8. Membrane Lipid Peroxidation in Copper Alloy-Mediated Contact Killing of Escherichia coli

    PubMed Central

    Hong, Robert; Kang, Tae Y.; Michels, Corinne A.

    2012-01-01

    Copper alloy surfaces are passive antimicrobial sanitizing agents that kill bacteria, fungi, and some viruses. Studies of the mechanism of contact killing in Escherichia coli implicate the membrane as the target, yet the specific component and underlying biochemistry remain unknown. This study explores the hypothesis that nonenzymatic peroxidation of membrane phospholipids is responsible for copper alloy-mediated surface killing. Lipid peroxidation was monitored with the thiobarbituric acid-reactive substances (TBARS) assay. Survival, TBARS levels, and DNA degradation were followed in cells exposed to copper alloy surfaces containing 60 to 99.90% copper or in medium containing CuSO4. In all cases, TBARS levels increased with copper exposure levels. Cells exposed to the highest copper content alloys, C11000 and C24000, exhibited novel characteristics. TBARS increased immediately at a very rapid rate but peaked at about 30 min. This peak was associated with the period of most rapid killing, loss in membrane integrity, and DNA degradation. DNA degradation is not the primary cause of copper-mediated surface killing. Cells exposed to the 60% copper alloy for 60 min had fully intact genomic DNA but no viable cells. In a fabR mutant strain with increased levels of unsaturated fatty acids, sensitivity to copper alloy surface-mediated killing increased, TBARS levels peaked earlier, and genomic DNA degradation occurred sooner than in the isogenic parental strain. Taken together, these results suggest that copper alloy surface-mediated killing of E. coli is triggered by nonenzymatic oxidative damage of membrane phospholipids that ultimately results in the loss of membrane integrity and cell death. PMID:22247141

  9. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    PubMed

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing.

    PubMed

    Pan, Deng; Kobayashi, Aya; Jiang, Peng; Ferrari de Andrade, Lucas; Tay, Rong En; Luoma, Adrienne M; Tsoucas, Daphne; Qiu, Xintao; Lim, Klothilda; Rao, Prakash; Long, Henry W; Yuan, Guo-Cheng; Doench, John; Brown, Myles; Liu, X Shirley; Wucherpfennig, Kai W

    2018-02-16

    Many human cancers are resistant to immunotherapy, for reasons that are poorly understood. We used a genome-scale CRISPR-Cas9 screen to identify mechanisms of tumor cell resistance to killing by cytotoxic T cells, the central effectors of antitumor immunity. Inactivation of >100 genes-including Pbrm1 , Arid2 , and Brd7 , which encode components of the PBAF form of the SWI/SNF chromatin remodeling complex-sensitized mouse B16F10 melanoma cells to killing by T cells. Loss of PBAF function increased tumor cell sensitivity to interferon-γ, resulting in enhanced secretion of chemokines that recruit effector T cells. Treatment-resistant tumors became responsive to immunotherapy when Pbrm1 was inactivated. In many human cancers, expression of PBRM1 and ARID2 inversely correlated with expression of T cell cytotoxicity genes, and Pbrm1 -deficient murine melanomas were more strongly infiltrated by cytotoxic T cells. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing

    PubMed Central

    Gameiro, Sofia R.; Jammed, Momodou L.; Wattenberg, Max M.; Tsang, Kwong Y.; Ferrone, Soldano; Hodge, James W.

    2014-01-01

    Radiation therapy (RT) is used for local tumor control through direct killing of tumor cells. Radiation-induced cell death can trigger tumor antigen-specific immune responses, but these are often noncurative. Radiation has been demonstrated to induce immunogenic modulation (IM) in various tumor types by altering the biology of surviving cells to render them more susceptible to T cell-mediated killing. Little is known about the mechanism(s) underlying IM elicited by sub-lethal radiation dosing. We have examined the molecular and immunogenic consequences of radiation exposure in breast, lung, and prostate human carcinoma cells. Radiation induced secretion of ATP and HMGB1 in both dying and surviving tumor cells. In vitro and in vivo tumor irradiation induced significant upregulation of multiple components of the antigen-processing machinery and calreticulin cell-surface expression. Augmented CTL lysis specific for several tumor-associated antigens was largely dictated by the presence of calreticulin on the surface of tumor cells and constituted an adaptive response to endoplasmic reticulum stress, mediated by activation of the unfolded protein response. This study provides evidence that radiation induces a continuum of immunogenic alterations in tumor biology, from immunogenic modulation to immunogenic cell death. We also expand the concept of immunogenic modulation, where surviving tumor cells recovering from radiation-induced endoplasmic reticulum stress become more sensitive to CTL killing. These observations offer a rationale for the combined use of radiation with immunotherapy, including for patients failing RT alone. PMID:24480782

  12. The Chinese Herbal Mixture Tien-Hsien Liquid Augments the Anticancer Immunity in Tumor Cell–Vaccinated Mice

    PubMed Central

    Yang, Pei-Ming; Du, Jia-Ling; Wang, George Nian-Kae; Chia, Jean-San; Hsu, Wei-Bin; Pu, Pin-Ching; Sun, Andy; Chiang, Chun-Pin; Wang, Won-Bo

    2016-01-01

    Background. The Chinese herbal mixture, Tien-Hsien liquid (THL), has been used as an anticancer dietary supplement for more than 20 years. Our previous studies have shown that THL can modulate immune responseand inhibit tumor growth. In this study, we further evaluated the effect of THL on anticancer immune response in mice vaccinated with γ-ray-irradiated tumor cells. Methods. The antitumor effect of THL was determined in mice vaccinated with low-tumorigenic CT-26-low colon cancer cells or γ-ray-irradiated high-tumorigenic CT-26-high colon cancer cells. The number of natural killer (NK) cells and T lymphocytes in the spleen was analyzed by flow cytometry. The tumor-killing activities of NK cells and cytotoxic T lymphocytes (CTLs) were analyzed by flow cytometry using YAC-1 and CT-26-high cells, respectively, as target cells. The levels of IFN-γ, IL-2, and TNF-α were determined by ELISA. Results. THL suppressed the growth of CT-26-high tumor in mice previously vaccinated with low-tumorigenic CT-26-low cells or γ-irradiated CT-26-high cells. THL increased the populations of NK cells and CD4+ T lymphocytes in the spleen and enhanced the tumor-killing activities of NK cells and CTL in mice vaccinated with γ-irradiated CT-26-high cells. THL increased the production of IFN-γ, IL-2, and TNF-α in mice vaccinated with γ-irradiated CT-26-high cells. Conclusion. THL can enhance the antitumor immune responses in mice vaccinated with killed tumor cells. These results suggest that THL may be used as a complementary medicine for cancer patients previously treated with killed tumor cell vaccines, radiotherapy, or chemotherapy. PMID:27252074

  13. Cross-Priming of Naive Cd8 T Cells against Melanoma Antigens Using Dendritic Cells Loaded with Killed Allogeneic Melanoma Cells

    PubMed Central

    Berard, Frederic; Blanco, Patrick; Davoust, Jean; Neidhart-Berard, Eve-Marie; Nouri-Shirazi, Mahyar; Taquet, Nicolas; Rimoldi, Donata; Cerottini, Jean Charles; Banchereau, Jacques; Palucka, A. Karolina

    2000-01-01

    The goal of tumor immunotherapy is to elicit immune responses against autologous tumors. It would be highly desirable that such responses include multiple T cell clones against multiple tumor antigens. This could be obtained using the antigen presenting capacity of dendritic cells (DCs) and cross-priming. That is, one could load the DC with tumor lines of any human histocompatibility leukocyte antigen (HLA) type to elicit T cell responses against the autologous tumor. In this study, we show that human DCs derived from monocytes and loaded with killed melanoma cells prime naive CD45RA+CD27+CD8+ T cells against the four shared melanoma antigens: MAGE-3, gp100, tyrosinase, and MART-1. HLA-A201+ naive T cells primed by DCs loaded with HLA-A201− melanoma cells are able to kill several HLA-A201+ melanoma targets. Cytotoxic T lymphocyte priming towards melanoma antigens is also obtained with cells from metastatic melanoma patients. This demonstration of cross-priming against shared tumor antigens builds the basis for using allogeneic tumor cell lines to deliver tumor antigens to DCs for vaccination protocols. PMID:11104796

  14. Trichinella spiralis: killing of newborn larvae by lung cells.

    PubMed

    Falduto, Guido H; Vila, Cecilia C; Saracino, María P; Calcagno, Marcela A; Venturiello, Stella M

    2015-02-01

    The migratory stage of Trichinella spiralis, the newborn larva (NBL), travels along the pulmonary microvascular system on its way to the skeletal muscle cells. The present work studies the capability of lung cells to kill NBL. For this purpose, in vitro cytotoxicity assays were performed using NBL, lung cell suspensions from Wistar rats, rat anti-NBL surface sera, and fresh serum as complement source. The cytotoxic activity of lung cells from rats infected on day 6 p.i. was compared with that from noninfected rats. Two and 20 h-old NBL (NBL2 and NBL20) were used as they had shown to exhibit different surface antigens altering their biological activity. Sera antibodies were analyzed by indirect immunofluorescence assay, and cell populations used in each assay were characterized by histological staining. The role of IgE in the cytotoxic attack against NBL was analyzed using heated serum. The FcεRI expression on cell suspensions was examined by flow cytometry. Results showed that lung cells were capable of killing NBL by antibody-dependent cell-mediated cytotoxicity (ADCC). Lung cells from infected animals yielded the highest mortality percentages of NBL, with NBL20 being the most susceptible to such attack. IgE yielded a critical role in the cytotoxic attack. Regarding the analysis of cell suspensions, cells from infected rats showed an increase in the percentage of eosinophils, neutrophils, and the number of cells expressing the FcεRI receptor. We conclude that lung cells are capable of killing NBL in the presence of specific antibodies, supporting the idea that the lung is one of the sites where the NBL death occurs due to ADCC.

  15. IFN-γ Stimulated Human Umbilical-Tissue-Derived Cells Potently Suppress NK Activation and Resist NK-Mediated Cytotoxicity In Vitro

    PubMed Central

    Noone, Cariosa; Kihm, Anthony; O'Dea, Shirley; Mahon, Bernard P.

    2013-01-01

    Umbilical cord tissue represents a unique source of cells with potential for cell therapy applications for multiple diseases. Human umbilical tissue-derived cells (hUTC) are a developmentally early stage, homogenous population of cells that are HLA-ABC dim, HLA-DR negative, and lack expression of co-stimulatory molecules in the unactivated state. The lack of HLA-DR and co-stimulatory molecule expression on unactivated hUTC may account for their reduced immunogenicity, facilitating their use in allogeneic settings. However, such approaches could be confounded by host innate cells such as natural killer (NK) cells. Here, we evaluate in vitro NK cell interactions with hUTC and compare them with human mesenchymal stem cells (MSC). Our investigations show that hUTC suppress NK activation, through prostaglandin-E2 secretion in a contact-independent manner. Prestimulation of hUTC or human MSC with interferon gamma (IFN-γ) induced expression of the tryptophan degrading enzyme indoleamine 2, 3 dioxygenase, facilitating enhanced suppression. However, resting NK cells of different killer immunoglobulin-like receptor haplotypes did not kill hUTC or MSC; only activated NK cells had the ability to kill nonstimulated hUTC and, to a lesser extent, MSC. The cell killing process involved signaling through the NKG2D receptor and the perforin/granzyme pathway; this was supported by CD54 (ICAM-1) expression by hUTC. IFN-γ-stimulated hUTC or hMSC were less susceptible to NK killing; in this case, protection was associated with elevated HLA-ABC expression. These data delineate the different mechanisms in a two-way interaction between NK cells and two distinct cell therapies, hUTC or hMSC, and how these interactions may influence their clinical applications. PMID:23795941

  16. The in vitro mitogenic response to intact bacteria by murine B cells does not predict in vivo susceptibility to Salmonella typhimurium.

    PubMed

    Elkins, K; Metcalf, E S

    1986-05-01

    We are interested in developing in vitro culture systems that will permit immune responses to intact Salmonella typhimurium, since these systems would have certain advantages over in vivo infection models for the characterization of the host's responding cell types. In this report, the in vitro proliferative response of nonimmune murine spleen cells to four different killed preparations of S. typhimurium, strain TML (TML), are examined. These studies show that UV-killed TML, heat-killed TML, glutaraldehyde-killed TML, and acetone-killed and dried TML, all elicit a nonspecific mitogenic spleen cell response in vitro, as does a live, avirulent, temperature-sensitive mutant of TML, TS27. This response reaches a maximum on day 2 after initiation of culture, which is similar to the time course of a conventional lipopolysaccharide (LPS) response. Unlike the LPS response, little 3H-thymidine incorporation is observed in low-density cultures (2 X 10(5) cells/well), which suggests a critical role for accessory cells. The responding cell types include, but are not necessarily limited to, the B-cell population. The response cannot be readily inhibited by polymyxin B, which binds specifically to the lipid A portion of LPS. Thus, the bacterial components required for mitogenicity are not yet definitively identified. A survey of the mitogenic responses of lymphocytes from various inbred mouse strains, including the C3H/HeJ LPS hyporesponsive strain, indicates that all B cells tested are capable of proliferating vigorously in response to intact TML, regardless of the in vivo susceptibility to virulent infection. These results also emphasize the importance of assessing the nonspecific components of the immune response when studying the specific immune response to intact S. typhimurium.

  17. Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces▿

    PubMed Central

    Quaranta, Davide; Krans, Travis; Santo, Christophe Espírito; Elowsky, Christian G.; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2011-01-01

    Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process called contact-mediated killing. Cellular copper ion homeostasis systems influenced the kinetics of contact-mediated killing in both organisms. Deregulated copper ion uptake through a hyperactive S. cerevisiae Ctr1p (ScCtr1p) copper uptake transporter in Saccharomyces resulted in faster inactivation of mutant cells than of wild-type cells. Similarly, lack of the C. albicans Crp1p (CaCrp1p) copper-efflux P-type ATPase or the metallothionein CaCup1p caused more-rapid killing of Candida mutant cells than of wild-type cells. Candida and Saccharomyces took up large quantities of copper ions as soon as they were in contact with copper surfaces, as indicated by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and by the intracellular copper ion-reporting dye coppersensor-1. Exposure to metallic copper did not cause lethality through genotoxicity, deleterious action on a cell's genetic material, as indicated by a mutation assay with Saccharomyces. Instead, toxicity mediated by metallic copper surfaces targeted membranes in both yeast species. With the use of Live/Dead staining, onset of rapid and extensive cytoplasmic membrane damage was observed in cells from copper surfaces. Fluorescence microscopy using the indicator dye DiSBaC2(3) indicated that cell membranes were depolarized. Also, during contact-mediated killing, vacuoles first became enlarged and then disappeared from the cells. Lastly, in metallic copper-stressed yeasts, oxidative stress in the cytoplasm and in mitochondria was elevated. PMID:21097600

  18. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells.

    PubMed

    Carvalho, Larissa A C; Lopes, João P P B; Kaihami, Gilberto H; Silva, Railmara P; Bruni-Cardoso, Alexandre; Baldini, Regina L; Meotti, Flavia C

    2018-06-01

    Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl - /H 2 O 2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Selective Killing of Breast Cancer Cells by Doxorubicin-Loaded Fluorescent Gold Nanoclusters: Confocal Microscopy and FRET.

    PubMed

    Chattoraj, Shyamtanu; Amin, Asif; Jana, Batakrishna; Mohapatra, Saswat; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-01-18

    Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin-loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50 =155 nm). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin-loaded AuNCs is only 40 % (IC50 =4500 nm). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490-515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10-13 . The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T cells.

    PubMed

    Battivelli, Emilie; Dahabieh, Matthew S; Abdel-Mohsen, Mohamed; Svensson, J Peter; Tojal Da Silva, Israel; Cohn, Lillian B; Gramatica, Andrea; Deeks, Steven; Greene, Warner C; Pillai, Satish K; Verdin, Eric

    2018-05-01

    Human immunodeficiency virus (HIV) infection is currently incurable, due to the persistence of latently infected cells. The 'shock and kill' approach to a cure proposes to eliminate this reservoir via transcriptional activation of latent proviruses, enabling direct or indirect killing of infected cells. Currently available latency-reversing agents (LRAs) have however proven ineffective. To understand why, we used a novel HIV reporter strain in primary CD4 + T cells and determined which latently infected cells are reactivatable by current candidate LRAs. Remarkably, none of these agents reactivated more than 5% of cells carrying a latent provirus. Sequencing analysis of reactivatable vs. non-reactivatable populations revealed that the integration sites were distinguishable in terms of chromatin functional states. Our findings challenge the feasibility of 'shock and kill', and suggest the need to explore other strategies to control the latent HIV reservoir. © 2018, Battivelli et al.

  1. Ras-related C3 Botulinum Toxin Substrate (Rac) and Src Family Kinases (SFK) Are Proximal and Essential for Phosphatidylinositol 3-Kinase (PI3K) Activation in Natural Killer (NK) Cell-mediated Direct Cytotoxicity against Cryptococcus neoformans*

    PubMed Central

    Xiang, Richard F.; Stack, Danuta; Huston, Shaunna M.; Li, Shu Shun; Ogbomo, Henry; Kyei, Stephen K.; Mody, Christopher H.

    2016-01-01

    The activity of Rac in leukocytes is essential for immunity. However, its role in NK cell-mediated anti-microbial signaling remains unclear. In this study, we investigated the role of Rac in NK cell mediated anti-cryptococcal killing. We found that Cryptococcus neoformans independently activates both Rac and SFK pathways in NK cells, and unlike in tumor killing, Cryptococcus initiated a novel Rac → PI3K → Erk cytotoxicity cascade. Remarkably, Rac was not required for conjugate formation, despite its essential role in NK cytotoxicity against C. neoformans. Taken together, our data show that, unlike observations with tumor cells, NK cells use a novel Rac cytotoxicity pathway in conjunction with SFK, to kill C. neoformans. PMID:26867574

  2. Spontaneous cytotoxic earthworm leukocytes kill K562 tumor cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-08-01

    Earthworm coelomocytes may act as effector cells which destroy targets in vitro. In a 51Cr release assay, Lumbricus coelomocyte effectors showed lytic activities of 3-14% against K562 human tumor cells when incubated 1-4 hr at 23 degrees C or 37 degrees C. Cytotoxicity was correlated with effector: target ratio. However, targets were not killed by incubating them in cell-free, 0.2 micron filtered coelomic fluid. The supernatant from coelomocytes cultured alone failed to kill K562 targets but coelomocyte lysates were toxic to target cells in a concentration-dependent manner. Coelomocytes were examined using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When effectors and targets were examined under TEM, we found close apposition of effector granulocytic coelomocytes and target cell membranes but not with coelomocytes nor eleocytes at up to 15 min incubation. By SEM, effector cells appeared not only to be in close contact with targets, but instances of target lysis were observed. These results suggest that effector cell/target cell contact is essential for cytotoxicity to occur.

  3. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J., E-mail: bnickol@lumc.edu

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cellmore » killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.« less

  4. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression.

    PubMed

    Gresnigt, Mark S; Jaeger, Martin; Subbarao Malireddi, R K; Rasid, Orhan; Jouvion, Grégory; Fitting, Catherine; Melchers, Willem J G; Kanneganti, Thirumala-Devi; Carvalho, Agostinho; Ibrahim-Granet, Oumaima; van de Veerdonk, Frank L

    2017-01-01

    One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus . When exploring the role of NOD1 in an experimental mouse model, we found that Nod1 -/- mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1 -/- mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus . Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1 -/- mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1 -/- cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus . This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host immune cells to clear the infection by increasing fungal killing and cytokine responses.

  5. Antibody-peptide-MHC fusion conjugates target non-cognate T cells to kill tumour cells.

    PubMed

    King, Ben C; Hamblin, Angela D; Savage, Philip M; Douglas, Leon R; Hansen, Ted H; French, Ruth R; Johnson, Peter W M; Glennie, Martin J

    2013-06-01

    Attempts to generate robust anti-tumour cytotoxic T lymphocyte (CTL) responses using immunotherapy are frequently thwarted by exhaustion and anergy of CTL recruited to tumour. One strategy to overcome this is to retarget a population of virus-specific CTL to kill tumour cells. Here, we describe a proof-of-principle study using a bispecific conjugate designed to retarget ovalbumin (OVA)-specific CTL to kill tumour cells via CD20. A single-chain trimer (SCT) consisting of MHCI H-2K(b)/SIINFEKL peptide/beta 2 microglobulin/BirA was expressed in bacteria, refolded and chemically conjugated to one (1:1; F2) or two (2:1; F3) anti-hCD20 Fab' fragments. In vitro, the [SCT × Fab'] (F2 and F3) redirected SIINFEKL-specific OT-I CTL to kill CD20(+) target cells, and in the presence of CD20(+) target cells to provide crosslinking, they were also able to induce proliferation of OT-I cells. In vivo, activated OT-I CTL could be retargeted to kill [SCT × Fab']-coated B cells from hCD20 transgenic (hCD20 Tg) mice and also EL4 and B16 mouse tumour cells expressing human CD20 (hCD20). Importantly, in a hCD20 Tg mouse model, [SCT × Fab'] administered systemically were able to retarget activated OT-I cells to deplete normal B cells, and their performance matched that of a bispecific antibody (BsAb) comprising anti-CD3 and anti-CD20. [SCT × Fab'] were also active therapeutically in an EL4 tumour model. Furthermore, measurement of serum cytokine levels suggests that [SCT × Fab'] are associated with a lower level of inflammatory cytokine release than the BsAb and so may be advantageous clinically in terms of reduced toxicity.

  6. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells

    PubMed Central

    Witkover, Aviva; Tanaka, Yuetsu; Fields, Paul; Bangham, Charles R. M.

    2016-01-01

    There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL) responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL), human T lymphotropic virus type-1 (HTLV-1), contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1) to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease. PMID:27893842

  7. Apoptosis induced by tumor necrosis factor-alpha in rat hepatocyte cell lines expressing hepatitis B virus.

    PubMed Central

    Guilhot, S.; Miller, T.; Cornman, G.; Isom, H. C.

    1996-01-01

    Three well differentiated SV40-immortalized rat hepatocyte cell lines, CWSV1, CWSV2, and CWSV14, and Hepatitis B Virus (HBV)-producing cell lines derived from them were examined for sensitivity to tumor necrosis factor (TNF)-alpha. CWSV1, CWSV2, and CWSV14 cells were co-transfected with a DNA construct containing a dimer of the HBV genome and the neo gene and selected in G418 to generate stable cell lines. Characterization of these cell lines indicated that they contain integrated HBV DNA, contain low molecular weight HBV DNA compatible with the presence of HBV replication intermediates, express HBV transcripts, and produce HBV proteins. The viability of CWSV1, CWSV2, and CWSV2 cells was not significantly altered when they were treated with TNF-alpha at concentrations as high as 20,000 U/ml. The HBV-expressing CWSV1 cell line, SV1di36, and the HBV-expressing CWSV14 cell line, SV14di208, were also not killed when treated with TNF-alpha. However, the HBV-expressing CWSV2 cell line, SV2di366, was extensively killed when treated with TNF-alpha at concentrations ranging from 200 to 20,000 U/ml. Analysis of several different HBV-producing CWSV2 cell lines indicated that TNF-alpha killing depended upon the level of HBV expression. The TNF-alpha-induced cell killing in high HBV-producing CWSV2 cell lines was accompanied by the presence of an oligonucleosomal DNA ladder characteristic of apoptosis. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 9 Figure 10 Figure 11 PMID:8774135

  8. Discovery of why acute lymphoblastic leukaemia cells are killed by asparaginase: Adventures of a young post-doctoral student, Bertha K Madras.

    PubMed

    Seeman, Philip

    2014-05-01

    A surprising finding was made by JG Kidd (1909-1991) that guinea pig serum could make tumours disappear in mice. A later finding made by JD Broome (1939-) showed that asparaginase could suppress or kill tumour cells. However, the major mystery was why were only tumour cells but not normal cells affected by the asparaginase? The biology underlying this mechanism was unravelled by a young post-doctoral student, Bertha K Madras (1942-) who hypothesized that cells with low asparagine synthetase are those that die following treatment with asparaginase. To test her theory, Madras developed an assay for asparagine synthetase. The hypothesis was supported by the results that cells with normal asparagine synthetase were protected, while cells with low levels of this enzyme were killed by asparaginase. The findings provide a clinical guide for the use of asparaginase in acute lymphoblastic leukaemia in children and adults. © IMechE 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Cytotoxic T Cells Use Mechanical Force to Potentiate Target Cell Killing.

    PubMed

    Basu, Roshni; Whitlock, Benjamin M; Husson, Julien; Le Floc'h, Audrey; Jin, Weiyang; Oyler-Yaniv, Alon; Dotiwala, Farokh; Giannone, Gregory; Hivroz, Claire; Biais, Nicolas; Lieberman, Judy; Kam, Lance C; Huse, Morgan

    2016-03-24

    The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The irreversible ERBB1/2/4 inhibitor neratinib interacts with the PARP1 inhibitor niraparib to kill ovarian cancer cells.

    PubMed

    Booth, Laurence; Roberts, Jane L; Samuel, Peter; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-06-03

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET, PDGFRα and mutant RAS proteins via autophagic degradation. Neratinib interacted in an additive to synergistic fashion with the approved PARP1 inhibitor niraparib to kill ovarian cancer cells. Neratinib and niraparib caused the ATM-dependent activation of AMPK which in turn was required to cause mTOR inactivation, ULK-1 activation and ATG13 phosphorylation. The drug combination initially increased autophagosome levels followed later by autolysosome levels. Preventing autophagosome formation by expressing activated mTOR or knocking down of Beclin1, or knock down of the autolysosome protein cathepsin B, reduced drug combination lethality. The drug combination caused an endoplasmic reticulum stress response as judged by enhanced eIF2α phosphorylation that was responsible for reducing MCL-1 and BCL-XL levels and increasing ATG5 and Beclin1 expression. Knock down of BIM, but not of BAX or BAK, reduced cell killing. Expression of activated MEK1 prevented the drug combination increasing BIM expression and reduced cell killing. Downstream of the mitochondrion, drug lethality was partially reduced by knock down of AIF, but expression of dominant negative caspase 9 was not protective. Our data demonstrate that neratinib and niraparib interact to kill ovarian cancer cells through convergent DNA damage and endoplasmic reticulum stress signaling. Cell killing required the induction of autophagy and was cathepsin B and AIF -dependent, and effector caspase independent.

  11. Interdisciplinary Studies on the Combat Readiness and Health Issues Faced by Military Personnel

    DTIC Science & Technology

    2008-09-01

    University of Texas T and operational at the University of Texas at Dallas Center for BrainHealth located at 2200 W. Mockingbird Lane, Dallas, Texas...cells), and the targeted cells have been efficiently killed with NIR. This work is now published (Chakravarty et al., 2008) (Appendix B...mononuclear cells bound only to the CNTs coupled to the anti-CD25 mAb. Most importantly, only the specifically targeted cells were killed after exposure to

  12. Cancer cell death processes in combining photothermal and photodynamic effects through surface plasmon resonance of gold nanoring (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    He, Yulu; Yu, Jian-He; Hsiao, Jen-Hung; Tu, Yi-Chou; Low, Meng Chun; Hua, Wei-Hsiang; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, Chih-Chung; Zhang, Zhenxi

    2017-02-01

    In combining the photothermal and photodynamic effects for killing cancer cells through the localized surface plasmon resonance (LSP) of photosensitizer-linked Au nanorings (NRIs), which are up-taken by the cells, the cells can be killed via different processes, including necrosis and apoptosis. In particular, the dominating effect, either photothermal or photodynamic effect, for cancer cell killing leading to either necrosis or apoptosis process is an important issue to be understood for improving the therapy efficiency. In this paper, we demonstrate the study results in differentiating the necrosis and apoptosis processes of cell death under different laser illumination conditions. With the LSP resonance wavelength of the Au NRIs around 1064 nm, the illumination of a 1064-nm cw laser can mainly produce the photothermal effect. The illumination of a 1064-nm fs laser can lead to LSP resonance-assisted two-photon absorption of the photosensitizer (AlPcS) for generating singlet oxygen and hence the photodynamic effect, besides the photothermal effect. Also, the illumination of a 660-nm cw laser can result in single-photon absorption of the photosensitizer for generating singlet oxygen and the photodynamic effect. By comparing the necrosis and apoptosis distributions in dead cells between the cases of different laser illumination conditions, we can differentiate the cancer cell killing processes between the photothermal effect, photodynamic effect, and the mixed effect.

  13. Bactericidal activity of juvenile chinook salmon macrophages against Aeromonas salmonicida after exposure to live or heat-killed Renibacterium salmoninarum or to soluble proteins produced by R. salmoninarum

    USGS Publications Warehouse

    Siegel, D.C.; Congleton, J.L.

    1997-01-01

    Macrophages isolated from the anterior kidney of juvenile chinook salmon Oncorhynchus tshawytscha in 96-well microtiter plates were exposed for 72 h to 0, 105, or 106 live or heat-killed Renibacterium salmoninarum cells per well or to 0, 0.1, 1.0, or 10 ??g/mL of R. salmoninarum soluble proteins. After treatment, the bactericidal activity of the macrophages against Aerornonas salmonicida was determined by a colorimetric assay based on the reduction of the tetrazolium dye MTT to formazan by viable bacteria. The MTT assay was modified to allow estimation of the percentage of bacteria killed by reference to a standard curve relating the number of bacteria added to microtiter wells to absorbance by formazan at 600 nm. The live and heat-killed R. salmoninarum treatments significantly (P < 0.001) increased killing of A. salmonicida by chinook salmon macrophages. In each of the five trials, significantly (P < 0.05) greater increases in killing occurred after exposure to 105 R. salmoninarum cells than to 106 R. salmoninarum cells per well. In contrast, treatment of macrophages with 10 ??g/mL R. salmoninarum soluble proteins significantly (P < 0.001) decreased killing of A. salmonicida, but treatment with lower doses did not. These results show that the bactericidal activity of chinook salmon macrophages is stimulated by exposure to R. salmoninarum cells at lower dose levels but inhibited by exposure to R. salmoninarum cells or soluble proteins at higher dose levels.

  14. Engineered T cells for pancreatic cancer treatment

    PubMed Central

    Katari, Usha L; Keirnan, Jacqueline M; Worth, Anna C; Hodges, Sally E; Leen, Ann M; Fisher, William E; Vera, Juan F

    2011-01-01

    Objective Conventional chemotherapy and radiotherapy produce marginal survival benefits in pancreatic cancer, underscoring the need for novel therapies. The aim of this study is to develop an adoptive T cell transfer approach to target tumours expressing prostate stem cell antigen (PSCA), a tumour-associated antigen that is frequently expressed by pancreatic cancer cells. Methods Expression of PSCA on cell lines and primary tumour samples was confirmed by immunohistochemistry. Healthy donor- and patient-derived T cells were isolated, activated in vitro using CD3/CD28, and transduced with a retroviral vector encoding a chimeric antigen receptor (CAR) targeting PSCA. The ability of these cells to kill tumour cells was analysed by chromium-51 (Cr51) release. Results Prostate stem cell antigen was expressed on >70% of the primary tumour samples screened. Activated, CAR-modified T cells could be readily generated in clinically relevant numbers and were specifically able to kill PSCA-expressing pancreatic cancer cell lines with no non-specific killing of PSCA-negative target cells, thus indicating the potential efficacy and safety of this approach. Conclusions Prostate stem cell antigen is frequently expressed on pancreatic cancer cells and can be targeted for immune-mediated destruction using CAR-modified, adoptively transferred T cells. The safety and efficacy of this approach indicate that it deserves further study and may represent a promising novel treatment for patients with pancreatic cancer. PMID:21843265

  15. Radio-sensitization of Prostate Cancer Cells by Monensin Treatment and its associated Gene Expression Profiling Changes

    NASA Technical Reports Server (NTRS)

    Zhang Ye; Rohde, Larry H.; Wu, Honglu

    2008-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. Here, we investigated the effect of monensin on sensitizing radiation mediated cell killing of two radio-resistant prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-). Treatment with monensin alone (5 micromoles-20 micromoles) showed a significant direct cell killing of Lncap (10-30%), but not PC3 cells. Monensin was also shown to successfully sensitize Lncap cells to X-ray radiation (2Gy-10Gy) mediated cell death, up to 50% of killing with the combined treatment. To better understand the mechanisms of radio-resistance of these two cell lines and their different response to monensin, the apoptosis related gene expression profiles in both cell lines were analyzed using cDNA PCR array. Without any treatment, PC3 showed a much higher expression level of antiapoptosis genes than Lncap in the BCL2 family, the caspase/card family and the TNF ligand/receptor family. At 2 hr after 20 micormolar monensin treatment alone, only the TRAF and CIDE family showed a greater induction in Lncap cells than in PC3. Exposures to 10 Gy X-rays alone of Lncap cells significantly induced gene expression levels in the death and death receptor domain family, the TNF ligand and receptor family, and apoptotic group of BCL2 family; whereas exposures of PC3 induced only the expression of genes in the anti-apoptosis group of CASP and CARD family. Furthermore, we selectively suppressed the expression of several anti-apoptosis genes (BCL-xl, Bcl2A1, BIRC2, BIRC3 and CASP2) in PC3 cells by using the siRNA treatment. Exposure to 10Gy X-rays alone showed an enhanced cell killing (about 15%) in BCL-x1 silenced cells, but not in cells with siRNA treatment targeting other anti-apoptosis genes. We also exposed PC3 cells to protons in the Bragg peak region to compare the effectiveness of cell killing of X-rays. Interestingly, in comparison to X-rays, protons significantly reduced the gene expression in the anti-apoptosis family, suggesting that proton treatment may be more effective for PC3 cells. As a conclusion, monensin was found to sensitize Lncap cells, but not PC3, and over-expression of Bcl-xl cells may be responsible for the radio- or chemo-resistance characteristics of PC3 cells.

  16. Menadione reduction by pharmacological doses of ascorbate induces an oxidative stress that kills breast cancer cells.

    PubMed

    Beck, Raphaël; Verrax, Julien; Dejeans, Nicolas; Taper, Henryk; Calderon, Pedro Buc

    2009-01-01

    Oxidative stress generated by ascorbate-driven menadione redox cycling kills MCF7 cells by a concerted mechanism including glycolysis inhibition, loss of calcium homeostasis, DNA damage and changes in mitogen activated protein kinases (MAPK) activities. Cell death is mediated by necrosis rather than apoptosis or macroautophagy. Neither 3-methyladenine nor Z-VAD affects cytotoxicity by ascorbate/menadione (Asc/Men). BAPTA-AM, by restoring cellular capacity to reduce MTT, underlines the role of calcium in the necrotic process. Oxidative stress-mediated cell death is shown by the opposite effects of N-acetylcysteine and 3-aminotriazole. Moreover, oxidative stress induces DNA damage (protein poly-ADP-ribosylation and gamma-H2AX phosphorylation) and inhibits glycolysis. Asc/Men deactivates extracellular signal-regulated kinase (ERK) while activating p38, suggesting an additional mechanism to kill MCF7 cells. Since ascorbate is taken up by cancer cells and, due to their antioxidant enzyme deficiency, oxidative stress should affect cancer cells to a greater extent than normal cells. This differential sensitivity may have clinical applications.

  17. Effect of benzalkonium chloride on viability and energy metabolism in exponential- and stationary-growth-phase cells of Listeria monocytogenes.

    PubMed

    Luppens, S B; Abee, T; Oosterom, J

    2001-04-01

    The difference in killing exponential- and stationary-phase cells of Listeria monocytogenes by benzalkonium chloride (BAC) was investigated by plate counting and linked to relevant bioenergetic parameters. At a low concentration of BAC (8 mg liter(-1)), a similar reduction in viable cell numbers was observed for stationary-phase cells and exponential-phase cells (an approximately 0.22-log unit reduction), although their membrane potential and pH gradient were dissipated. However, at higher concentrations of BAC, exponential-phase cells were more susceptible than stationary-phase cells. At 25 mg liter(-1), the difference in survival on plates was more than 3 log units. For both types of cells, killing, i.e., more than 1-log unit reduction in survival on plates, coincided with complete inhibition of acidification and respiration and total depletion of ATP pools. Killing efficiency was not influenced by the presence of glucose, brain heart infusion medium, or oxygen. Our results suggest that growth phase is one of the major factors that determine the susceptibility of L. monocytogenes to BAC.

  18. Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability

    PubMed Central

    Crocetti, Sara; Beyer, Christian; Schade, Grit; Egli, Marcel; Fröhlich, Jürg; Franco-Obregón, Alfredo

    2013-01-01

    Introduction A common drawback of many anticancer therapies is non-specificity in action of killing. We investigated the potential of ultra-low intensity and frequency pulsed electromagnetic fields (PEMFs) to kill breast cancer cells. Our criteria to accept this technology as a potentially valid therapeutic approach were: 1) cytotoxicity to breast cancer cells and; 2) that the designed fields proved innocuous to healthy cell classes that would be exposed to the PEMFs during clinical treatment. Methods MCF7 breast cancer cells and their normal counterparts, MCF10 cells, were exposed to PEMFs and cytotoxic indices measured in order to design PEMF paradigms that best kill breast cancer cells. The PEMF parameters tested were: 1) frequencies ranging from 20 to 50 Hz; 2) intensities ranging from 2 mT to 5 mT and; 3) exposure durations ranging from 30 to 90 minutes per day for up to three days to determine the optimum parameters for selective cancer cell killing. Results We observed a discrete window of vulnerability of MCF7 cells to PEMFs of 20 Hz frequency, 3 mT magnitude and exposure duration of 60 minutes per day. The cell damage accrued in response to PEMFs increased with time and gained significance after three days of consecutive daily exposure. By contrast, the PEMFs parameters determined to be most cytotoxic to breast cancer MCF-7 cells were not damaging to normal MCF-10 cells. Conclusion Based on our data it appears that PEMF-based anticancer strategies may represent a new therapeutic approach to treat breast cancer without affecting normal tissues in a manner that is non-invasive and can be potentially combined with existing anti-cancer treatments. PMID:24039828

  19. Multiple factors and processes involved in host cell killing by bacteriophage Mu: characterization and mapping.

    PubMed

    Waggoner, B T; Marrs, C F; Howe, M M; Pato, M L

    1984-07-15

    The regions of bacteriophage Mu involved in host cell killing were determined by infection of a lambda-immune host with 12 lambda pMu-transducing phages carrying different amounts of Mu DNA beginning at the left end. Infecting lambda pMu phages containing 5.0 (+/- 0.2) kb or less of the left end of Mu DNA did not kill the lambda-immune host, whereas lambda pMu containing 5.1 kb did kill, thus locating the right end of the kil gene between approximately 5.0 and 5.1 kb. For the Kil+ phages the extent of killing increased as the multiplicity of infection (m.o.i.) increased. In addition, killing was also affected by the presence of at least two other regions of Mu DNA: one, located between 5.1 and 5.8 kb, decreased the extent of killing; the other, located between 6.3 and 7.9 kb, greatly increased host cell killing. Killing was also assayed after lambda pMu infection of a lambda-immune host carrying a mini-Mu deleted for most of the B gene and the middle region of Mu DNA. Complementation of mini-Mu replication by infecting B+ lambda pMu phages resulted in killing of the lambda-immune, mini-Mu-containing host, regardless of the presence or absence of the Mu kil gene. The extent of host cell killing increased as the m.o.i. of the infecting lambda pMu increased, and was further enhanced by both the presence of the kil gene and the region located between 6.3 and 7.9 kb. These distinct processes of kil-mediated killing in the absence of replication and non-kil-mediated killing in the presence of replication were also observed after induction of replication-deficient and kil mutant prophages, respectively.

  20. Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen.

    PubMed

    Kyle, M E; Miccadei, S; Nakae, D; Farber, J L

    1987-12-31

    Superoxide dismutase, catalase and mannitol prevent the killing of cultured hepatocytes by acetaminophen in the presence of an inhibitor of glutathione reductase, BCNU. Under these conditions, the cytotoxicity of acetaminophen depends upon its metabolism, since beta-naphthoflavone, an inhibitor of mixed function oxidation, prevents the cell killing. In hepatocytes made resistant to acetaminophen by pretreatment with the ferric iron chelator, deferoxamine, addition of ferric or ferrous iron restores the sensitivity to acetaminophen. In such a situation, both superoxide dismutase and catalase prevent the killing by acetaminophen in the presence of ferric iron. By contrast, catalase, but not superoxide dismutase, prevents the cell killing dependent upon addition of ferrous iron. These results document the participation of both superoxide anion and hydrogen peroxide in the killing of cultured hepatocytes by acetaminophen and suggest that hydroxyl radicals generated by an iron catalyzed Haber-Weiss reaction mediate the cell injury.

  1. Cytolysin-dependent evasion of lysosomal killing.

    PubMed

    Håkansson, Anders; Bentley, Colette Cywes; Shakhnovic, Elizabeth A; Wessels, Michael R

    2005-04-05

    Local host defenses limit proliferation and systemic spread of pathogenic bacteria from sites of mucosal colonization. For pathogens such as streptococci that fail to grow intracellularly, internalization and killing by epithelial cells contribute to the control of bacterial growth and dissemination. Here, we show that group A Streptococcus (GAS), the agent of streptococcal sore throat and invasive soft tissue infections, evades internalization and intracellular killing by pharyngeal epithelial cells. Production of the cholesterol-binding cytotoxin streptolysin O (SLO) prevented internalization of GAS into lysosomes. In striking contrast, GAS rendered defective in production of SLO were internalized directly or rapidly transported into lysosomes, where they were killed by a pH-dependent mechanism. Because SLO is the prototype of cholesterol-dependent cytolysins produced by many Gram-positive bacteria, cytolysin-mediated evasion of lysosomal killing may be a general mechanism to protect such pathogens from clearance by host epithelial cells.

  2. [Killing effects of PWZL plasmid-mediated double suicide gene on human lens epithelium cells].

    PubMed

    Yan, Xiao-ran; Wu, Hong; Yu, Hai-tao; Wang, Xiu; Zhang, Yu

    2008-04-01

    To investigate the killing efficiency of PWZL plasmid-mediated herpes simplex virus-thymidine kinase (TK) and E. coli cytosine deaminase (CD) on human lens epithelium cells followed by the treatment of prodrugs. PWZL plasmid was used as a vehicle, to transduce double suicide genes into the human lens epithelium in vitro, then the cells were treated with fluorocytosine (5-FC) and/or ganciclovir (GCV) at different concentrations. The cell growth of the lens epithelium cells was observed by light microscope. MTT analysis was used to estimate the cell survival rate and the bystander effect was analyzed simultaneously. The significance of difference between each group was treated by statistical tests. The CD and TK gene could be joined into PWZL plasmid successfully, and did not have any special effect on normal cells. There was no significant difference in cell viability between CD-TK transfected cells and control cells. Cell viability in cells treated with prodrugs was decreased in a time-dependent manner. At the end of the experiment, cell viability was lowest in GCV 10 mg/L +5-FC 60 mg/L group, GCV 10 mg/L + 5-FC 100 mg/L group and GCV 100 mg/L + 5-FC 100 mg/L group. There were no significant differences between these three groups (X2 = 1.25 , P > 0.01). Analysis of bystander effect indicated that the cell viability in GCV 100 mg/L + 5-FC 100 mg/L group and GCV 10 mg/L +5-FC 60 mg/L group was significantly lower than that in the controls (t = 10.26, 13.16; P < 0.01). PWZL plasmid can transfect the CD and TK genes into lens epithelium cells successfully and efficiently. CD and TK genes can be expressed steadily. Transfection of double suicide gene reduces the dosage of prodrugs required for killing cells. The combination of 5-FC with GCV shows the greatest killing effect and also has the bystander effect.

  3. Killing of Saccharomyces cerevisiae by the lysosomotropic detergent N-dodecylimidazole.

    PubMed Central

    Hussain, M; Leibowitz, M J; Lenard, J

    1987-01-01

    The lysosomotropic detergent N-dodecylimidazole (C12-Im) has previously been found to kill mammalian cells by concentrating in lysosomes, followed by lysosomal disruption and release of cytotoxic enzymes into the cytoplasm. The action of C12-Im on Saccharomyces cerevisiae is described in this report. C12-Im prevented growth of colonies when present in 1% yeast extract-2% Bacto-Peptone-2% glucose plates at concentrations of 5 micrograms/ml or above, or when present in a soft agar overlay at 20 micrograms/ml. Treatment of cells suspended in glucose-containing buffer (pH 8.0, 37 degrees C) with C12-Im (6 micrograms/ml) caused greater than 95% cell death within 6 min. Dependence of killing on C12-Im concentration was sigmoidal, suggesting a cooperative mode of action. Killing was pH dependent, being much more effective at pH 8.0 than at pH 5.0. Ammonium sulfate and imidazole protected against killing if added before, but not after, the addition of C12-Im. Sensitivity to C12-Im was strongly growth dependent: the cells were most sensitive at early to mid-logarithmic phase of growth and became progressively less sensitive during progression through late logarithmic and stationary phase. Vacuolar disruption by C12-Im was demonstrated by using cells loaded with lucifer yellow CH or fluoresceinated dextran in their vacuoles; vacuoles of logarithmically growing cells were more sensitive than those of stationary-phase cells. These results suggest that vacuolar disruption by C12-Im may underlie its cytotoxic effects. Images PMID:3300529

  4. Combined effects of space flight factors and radiation on humans

    NASA Technical Reports Server (NTRS)

    Todd, P.; Pecaut, M. J.; Fleshner, M.; Clarkson, T. W. (Principal Investigator)

    1999-01-01

    The probability that a dose of ionizing radiation kills a cell is about 10,000 times the probability that the cell will be transformed to malignancy. On the other hand, the number of cells killed required to significantly impact health is about 10,000 times the number that must be transformed to cause a late malignancy. If these two risks, cell killing and malignant transformation, are about equal, then the risk that occurs during a mission is more significant than the risk that occurs after a mission. The latent period for acute irradiation effects (cell killing) is about 2-4 weeks; the latent period for malignancy is 10-20 years. If these statements are approximately true, then the impact of cell killing on health in the low-gravity environment of space flight should be examined to establish an estimate of risk. The objective of this study is to synthesize data and conclusions from three areas of space biology and environmental health to arrive at rational risk assessment for radiations received by spacecraft crews: (1) the increased physiological demands of the space flight environment; (2) the effects of the space flight environment on physiological systems; and (3) the effects of radiation on physiological systems. One physiological system has been chosen: the immune response and its components, consisting of myeloid and lymphoid proliferative cell compartments. Best-case and worst-case scenarios are considered. In the worst case, a doubling of immune-function demand, accompanied by a halving of immune capacity, would reduce the endangering dose to a crew member to around 1 Gy.

  5. Role of Oxidative Stress in the Suppression of Immune Responses in Peripheral Blood Mononuclear Cells Exposed to Combustible Tobacco Product Preparation.

    PubMed

    Arimilli, Subhashini; Schmidt, Eckhardt; Damratoski, Brad E; Prasad, G L

    2017-10-01

    Cigarette smoking is a major risk factor for several human diseases. Chronic inflammation, resulting from increased oxidative stress, has been suggested as a mechanism that contributes to the increased susceptibility of smokers to cancer and microbial infections. We have previously shown that whole-smoke conditioned medium (WS-CM) and total particulate matter (TPM) prepared from Kentucky 3R4F reference cigarettes [collectively called as combustible tobacco product preparations (TPPs)] potently suppressed agonist-stimulated cytokine secretion and target cell killing in peripheral blood mononuclear cells (PBMCs). Here we have investigated the role of oxidative stress from TPPs, which alters inflammatory responses in vitro. Particularly, we investigated the mechanisms of WS-CM-induced suppression of select cytokine secretions in Toll-like receptor (TLR) agonist-stimulated cells and target cell killing by effector cells in PBMCs. Pretreatment with N-acetyl cysteine (NAC), a precursor of reduced glutathione and an established anti-oxidant, protected against DNA damage and cytotoxicity caused by exposure to WS-CM. Similarly, secretion of tumor necrosis factor (TNF), interleukin (IL)-6, and IL-8 in response to TLR-4 stimulation was restored by pretreatment with NAC. Target cell killing, a functional measure of cytolytic cells in PBMCs, is suppressed by WS-CM. Pretreatment with NAC restored the target cell killing in WS-CM treated PBMCs. This was accompanied by higher perforin levels in the effector cell populations. Collectively, these data suggest that reducing oxidative stress caused by cigarette smoke components restores select immune responses in this ex vivo model.

  6. Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics.

    PubMed

    Cai, Jing; Lin, Yuan; Zhang, Haipeng; Liang, Jiankai; Tan, Yaqian; Cavenee, Webster K; Yan, Guangmei

    2017-06-27

    Oncolytic virotherapy is a treatment modality that uses native or genetically modified viruses that selectively replicate in and kill tumor cells. Viruses represent a type of pathogen-associated molecular pattern and thereby induce the up-regulation of dozens of cytokines via activating the host innate immune system. Second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs), which antagonize the function of inhibitor of apoptosis proteins (IAPs) and induce apoptosis, sensitize tumor cells to multiple cytokines. Therefore, we sought to determine whether SMCs sensitize tumor cells to cytokines induced by the oncolytic M1 virus, thus enhancing a bystander killing effect. Here, we report that SMCs potentiate the oncolytic effect of M1 in vitro, in vivo, and ex vivo. This strengthened oncolytic efficacy resulted from the enhanced bystander killing effect caused by the M1 virus via cytokine induction. Through a microarray analysis and subsequent validation using recombinant cytokines, we identified IL-8, IL-1A, and TRAIL as the key cytokines in the bystander killing effect. Furthermore, SMCs increased the replication of M1, and the accumulation of virus protein induced irreversible endoplasmic reticulum stress- and c-Jun N-terminal kinase-mediated apoptosis. Nevertheless, the combined treatment with M1 and SMCs had little effect on normal and human primary cells. Because SMCs selectively and significantly enhance the bystander killing effect and the replication of oncolytic virus M1 specifically in cancer cells, this combined treatment may represent a promising therapeutic strategy.

  7. The yield of DNA double strand breaks determined after exclusion of those forming from heat-labile lesions predicts tumor cell radiosensitivity to killing.

    PubMed

    Cheng, Yanlei; Li, Fanghua; Mladenov, Emil; Iliakis, George

    2015-09-01

    The radiosensitivity to killing of tumor cells and in-field normal tissue are key determinants of radiotherapy response. In vitro radiosensitivity of tumor- and normal-tissue-derived cells often predicts radiation response, but high determination cost in time and resources compromise utility as routine response-predictor. Efforts to use induction or repair of DNA double-strand-breaks (DSBs) as surrogate-predictors of cell radiosensitivity to killing have met with limited success. Here, we re-visit this issue encouraged by our recent observations that ionizing radiation (IR) induces not only promptly-forming DSBs (prDSBs), but also DSBs developing after irradiation from the conversion to breaks of thermally-labile sugar-lesions (tlDSBs). We employ pulsed-field gel-electrophoresis and flow-cytometry protocols to measure total DSBs (tDSB=prDSB+tlDSBs) and prDSBs, as well as γH2AX and parameters of chromatin structure. We report a fully unexpected and in many ways unprecedented correlation between yield of prDSBs and radiosensitivity to killing in a battery of ten tumor cell lines that is not matched by yields of tDSBs or γH2AX, and cannot be explained by simple parameters of chromatin structure. We propose the introduction of prDSBs-yield as a novel and powerful surrogate-predictor of cell radiosensitivity to killing with potential for clinical application. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Regression of experimental medulloblastoma following transfer of HER2-specific T cells.

    PubMed

    Ahmed, Nabil; Ratnayake, Maheshika; Savoldo, Barbara; Perlaky, Laszlo; Dotti, Gianpietro; Wels, Winfried S; Bhattacharjee, Meenakshi B; Gilbertson, Richard J; Shine, H David; Weiss, Heidi L; Rooney, Cliona M; Heslop, Helen E; Gottschalk, Stephen

    2007-06-15

    Medulloblastoma is a common malignant brain tumor of childhood. Human epidermal growth factor receptor 2 (HER2) is expressed by 40% of medulloblastomas and is a risk factor for poor outcome with current aggressive multimodal therapy. In contrast to breast cancer, HER2 is expressed only at low levels in medulloblastomas, rendering monoclonal antibodies ineffective. We determined if T cells grafted with a HER2-specific chimeric antigen receptor (CAR; HER2-specific T cells) recognized and killed HER2-positive medulloblastomas. Ex vivo, stimulation of HER2-specific T cells with HER2-positive medulloblastomas resulted in T-cell proliferation and secretion of IFN-gamma and interleukin 2 (IL-2) in a HER2-dependent manner. HER2-specific T cells killed autologous HER2-positive primary medulloblastoma cells and medulloblastoma cell lines in cytotoxicity assays, whereas HER2-negative tumor cells were not killed. No functional difference was observed between HER2-specific T cells generated from medulloblastoma patients and healthy donors. In vivo, the adoptive transfer of HER2-specific T cells resulted in sustained regression of established medulloblastomas in an orthotopic, xenogenic severe combined immunodeficiency model. In contrast, delivery of nontransduced T cells did not change the tumor growth pattern. Adoptive transfer of HER2-specific T cells may represent a promising immunotherapeutic approach for medulloblastoma.

  9. EGFR-targeted granzyme B expressed in NK cells enhances natural cytotoxicity and mediates specific killing of tumor cells.

    PubMed

    Oberoi, Pranav; Jabulowsky, Robert A; Bähr-Mahmud, Hayat; Wels, Winfried S

    2013-01-01

    Natural killer (NK) cells are highly specialized effectors of the innate immune system that hold promise for adoptive cancer immunotherapy. Their cell killing activity is primarily mediated by the pro-apoptotic serine protease granzyme B (GrB), which enters targets cells with the help of the pore-forming protein perforin. We investigated expression of a chimeric GrB fusion protein in NK cells as a means to augment their antitumoral activity. For selective targeting to tumor cells, we fused the epidermal growth factor receptor (EGFR) peptide ligand transforming growth factor α (TGFα) to human pre-pro-GrB. Established human NKL natural killer cells transduced with a lentiviral vector expressed this GrB-TGFα (GrB-T) molecule in amounts comparable to endogenous wildtype GrB. Activation of the genetically modified NK cells by cognate target cells resulted in the release of GrB-T together with endogenous granzymes and perforin, which augmented the effector cells' natural cytotoxicity against NK-sensitive tumor cells. Likewise, GrB-T was released into the extracellular space upon induction of degranulation with PMA and ionomycin. Secreted GrB-T fusion protein displayed specific binding to EGFR-overexpressing tumor cells, enzymatic activity, and selective target cell killing in the presence of an endosomolytic activity. Our data demonstrate that ectopic expression of a targeted GrB fusion protein in NK cells is feasible and can enhance antitumoral activity of the effector cells.

  10. Evaluation of the effects of a plasma activated medium on cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohades, S.; Laroussi, M., E-mail: mlarouss@odu.edu; Sears, J.

    2015-12-15

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma tomore » a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.« less

  11. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, Harry A.; Gadbois, Donna M.; Tobey, Robert A.; Bradbury, E. Morton

    1993-01-01

    A G.sub.1 phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G.sub.1 phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G.sub.1 cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G.sub.1 phase, suggesting that such G.sub.1 phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  12. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1993-02-09

    A G[sub 1] phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G[sub 1] phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G[sub 1] cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G[sub 1] phase, suggesting that such G[sub 1] phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  13. Photoexcited quantum dots for killing multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant

    2016-05-01

    Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

  14. Immune Interventions to Eliminate the HIV Reservoir.

    PubMed

    Hsu, Denise C; Ananworanich, Jintanat

    2017-10-26

    Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.

  15. Killing multiple myeloma cells with the small molecule 3-bromopyruvate: implications for therapy.

    PubMed

    Majkowska-Skrobek, Grażyna; Augustyniak, Daria; Lis, Paweł; Bartkowiak, Anna; Gonchar, Mykhailo; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2014-07-01

    The small molecule 3-bromopyruvate (3-BP), which has emerged recently as the first member of a new class of potent anticancer agents, was tested for its capacity to kill multiple myeloma (MM) cancer cells. Human MM cells (RPMI 8226) begin to lose viability significantly within 8 h of incubation in the presence of 3-BP. The Km (0.3 mmol/l) for intracellular accumulation of 3-BP in MM cells is 24 times lower than that in control cells (7.2 mmol/l). Therefore, the uptake of 3-BP by MM cells is significantly higher than that by peripheral blood mononuclear cells. Further, the IC50 values for human MM cells and control peripheral blood mononuclear cells are 24 and 58 µmol/l, respectively. Therefore, specificity and selectivity of 3-BP toward MM cancer cells are evident on the basis of the above. In MM cells the transcription levels of the gene encoding the monocarboxylate transporter MCT1 is significantly amplified compared with control cells. The level of intracellular ATP in MM cells decreases by over 90% within 1 h after addition of 100 µmol/l 3-BP. The cytotoxicity of 3-BP, exemplified by a marked decrease in viability of MM cells, is potentiated by the inhibitor of glutathione synthesis buthionine sulfoximine. In addition, the lack of mutagenicity and its superior capacity relative to Glivec to kill MM cancer cells are presented in this study.

  16. Detection of Wilms' tumor antigen--specific CTL in tumor-draining lymph nodes of patients with early breast cancer.

    PubMed

    Gillmore, Roopinder; Xue, Shao-An; Holler, Angelika; Kaeda, Jaspal; Hadjiminas, Dimitri; Healy, Vourneen; Dina, Roberto; Parry, Suzanne C; Bellantuono, Ilaria; Ghani, Yasmeen; Coombes, R Charles; Waxman, Jonathan; Stauss, Hans J

    2006-01-01

    The Wilms' tumor antigen (WT1) is overexpressed in approximately 90% of breast tumors and, thus, is a potential target antigen for the immunotherapy of breast cancer. We have tested the working hypotheses that WT1 can be immunogenic in patients with breast cancer and can stimulate CTL of sufficient avidity to kill tumor cells. Paired tumor-draining lymph node and peripheral blood samples were analyzed from five HLA-A2-positive patients with stage I/II breast cancer. Fluorescent HLA-A*0201/WT1 tetramers were used to quantify WT1-specific CTL and the functional capacity of the CTL was assessed using cytotoxicity assays and intracellular cytokine staining. WT1 tetramer-binding T cells expanded from all lymph node samples but none of the corresponding peripheral blood samples. Functional assays were carried out on T cells from the patient who had yielded the highest frequency of HLA-A*0201/WT1 tetramer-positive cells. The cytotoxicity assays showed WT1 peptide--specific killing activity of the CTL, whereas intracellular cytokine staining confirmed that the tetramer--positive T cells produced IFN-gamma after stimulation with WT1 peptide. These WT1-specific T cells killed HLA-A2-positive breast cancer cell lines treated with IFN-gamma but no killing was observed with untreated tumor cells. These results show that WT1-specific CTL can be expanded from the tumor-draining lymph nodes of breast cancer patients and that they can display peptide-specific effector function. However, the CTL only killed IFN-gamma-treated tumor targets expressing high levels of HLA-A2 and not tumor cells with low HLA expression. This suggests that induction of autologous WT1-specific CTL may offer only limited tumor protection and that strategies that allow a high level of peptide/MHC complex presentation and/or improve CTL avidity may be required.

  17. Can dendritic cells improve whole cancer cell vaccines based on immunogenically killed cancer cells?

    PubMed Central

    Cicchelero, Laetitia; Denies, Sofie; Devriendt, Bert; de Rooster, Hilde; Sanders, Niek N

    2015-01-01

    Immunogenic cell death (ICD) offers interesting opportunities in cancer cell (CC) vaccine manufacture, as it increases the immunogenicity of the dead CC. Furthermore, fusion of CCs with dendritic cells (DCs) is considered a superior method for generating whole CC vaccines. Therefore, in this work, we determined in naive mice whether immunogenically killed CCs per se (CC vaccine) elicit an antitumoral immune response different from the response observed when immunogenically killed CCs are associated with DCs through fusion (fusion vaccine) or through co-incubation (co-incubation vaccine). After tumor inoculation, the type of immune response in the prophylactically vaccinated mice differed between the groups. In more detail, fusion vaccines elicited a humoral anticancer response, whereas the co-incubation and CC vaccine mainly induced a cellular response. Despite these differences, all three approaches offered a prophylactic protection against tumor development in the murine mammary carcinoma model. In summary, it can be concluded that whole CC vaccines based on immunogenically killed CCs may not necessarily require association with DCs to elicit a protective anticancer immune response. If this finding can be endorsed in other cancer models, the manufacture of CC vaccines would greatly benefit from this new insight, as production of DC-based vaccines is laborious, time-consuming and expensive. PMID:26587315

  18. Adoptive transfer of natural killer cells promotes the anti-tumor efficacy of T cells.

    PubMed

    Goding, Stephen R; Yu, Shaohong; Bailey, Lisa M; Lotze, Michael T; Basse, Per H

    2017-04-01

    The density of NK cells in tumors correlates positively with prognosis in many types of cancers. The average number of infiltrating NK cells is, however, quite modest (approximately 30 NK cells/sq.mm), even in tumors deemed to have a "high" density of infiltrating NK cells. It is unclear how such low numbers of tumor-infiltrating NK cells can influence outcome. Here, we used ovalbumin-expressing tumor cell lines and TCR transgenic, OVA-specific cytotoxic T lymphocytes (OT-I-CTLs) to determine whether the simultaneous attack by anti-tumor CTLs and IL-2-activated NK (A-NK) cells synergistically increases the overall tumor cell kill and whether upregulation of tumor MHC class-I by NK cell-derived interferon-gamma (IFNγ) improves tumor-recognition and kill by anti-tumor CTLs. At equal E:T ratios, A-NK cells killed OVA-expressing tumor cells better than OT-I-CTLs. The cytotoxicity against OVA-expressing tumor cells increased by combining OT-I-CTLs and A-NK cells, but the increase was additive rather than synergistic. A-NK cells adenovirally-transduced to produce IL-12 (A-NK IL-12 ) produced high amounts of IFNγ. The addition of a low number of A-NK IL-12 cells to OT-I-CTLs resulted in a synergistic, albeit modest, increase in overall cytotoxicity. Pre-treatment of tumor cells with NK cell-conditioned medium increased tumor MHC expression and sensitivity to CTL-mediated killing. Pre-treatment of CTLs with NK cell-conditioned medium had no effect on CTL cytotoxicity. In vivo, MHC class-I expression by OVA-expressing B16 melanoma lung metastases increased significantly within 24-48h after adoptive transfer of A-NK IL-12 cells. OT-I-CTLs and A-NK IL-12 cells localized selectively and equally well into OVA-expressing B16 lung metastases and treatment of mice bearing 7-days-old OVA-B16 lung metastases with both A-NK IL-12 cells and OT-I-CTLs lead to a significant prolongation of survival. Thus, an important function of tumor-infiltrating NK cells may be to increase tumor cell expression of MHC class-I through secretion of IFNγ, to prepare them for recognition by tumor-specific CTLs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    PubMed

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  20. Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time

    PubMed Central

    Rudd-Schmidt, Jesse A.; Lopez, Jamie A.; Ramsbottom, Kelly M.; Mannering, Stuart I.; Andrews, Daniel M.; Voskoboinik, Ilia

    2015-01-01

    Failure of cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells to kill target cells by perforin (Prf)/granzyme (Gzm)-induced apoptosis causes severe immune dysregulation. In familial hemophagocytic lymphohistiocytosis, Prf-deficient infants suffer a fatal “cytokine storm” resulting from macrophage overactivation, but the link to failed target cell death is not understood. We show that prolonged target cell survival greatly amplifies the quanta of inflammatory cytokines secreted by CTLs/NK cells and that interferon-γ (IFN-γ) directly invokes the activation and secondary overproduction of proinflammatory IL-6 from naive macrophages. Furthermore, using live cell microscopy to visualize hundreds of synapses formed between wild-type, Prf-null, or GzmA/B-null CTLs/NK cells and their targets in real time, we show that hypersecretion of IL-2, TNF, IFN-γ, and various chemokines is linked to failed disengagement of Prf- or Gzm-deficient lymphocytes from their targets, with mean synapse time increased fivefold, from ∼8 to >40 min. Surprisingly, the signal for detachment arose from the dying target cell and was caspase dependent, as delaying target cell death with various forms of caspase blockade also prevented their disengagement from fully competent CTLs/NK cells and caused cytokine hypersecretion. Our findings provide the cellular mechanism through which failed killing by lymphocytes causes systemic inflammation involving recruitment and activation of myeloid cells. PMID:25732304

  1. Spatially Fractionated Radiation Induces Cytotoxicity and Changes in Gene Expression in Bystander and Radiation Adjacent Murine Carcinoma Cells

    PubMed Central

    Asur, Rajalakshmi S.; Sharma, Sunil; Chang, Ching-Wei; Penagaricano, Jose; Kommuru, Indira M.; Moros, Eduardo G.; Corry, Peter M.; Griffin, Robert J.

    2012-01-01

    Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied. The occurrence of GRID-induced bystander gene expression changes in significant numbers of DNA damage and cellular stress response signaling genes, providing molecular evidence for possible mechanisms of bystander cell killing. PMID:22559204

  2. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression

    PubMed Central

    Gresnigt, Mark S.; Jaeger, Martin; Subbarao Malireddi, R. K.; Rasid, Orhan; Jouvion, Grégory; Fitting, Catherine; Melchers, Willem J. G.; Kanneganti, Thirumala-Devi; Carvalho, Agostinho; Ibrahim-Granet, Oumaima; van de Veerdonk, Frank L.

    2017-01-01

    One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus. When exploring the role of NOD1 in an experimental mouse model, we found that Nod1−/− mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1−/− mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus. Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1−/− mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1−/− cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus. This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host immune cells to clear the infection by increasing fungal killing and cytokine responses. PMID:29326692

  3. Altered dynamics of Candida albicans phagocytosis by macrophages and PMNs when both phagocyte subsets are present.

    PubMed

    Rudkin, Fiona M; Bain, Judith M; Walls, Catriona; Lewis, Leanne E; Gow, Neil A R; Erwig, Lars P

    2013-10-29

    An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. Extensive work investigating fungal cell phagocytosis by macrophages and PMNs of the innate immune system has been carried out. These studies have been informative but have examined this phenomenon only when one phagocyte subset is present. The current study employed live-cell video microscopy to break down C. albicans phagocytosis into its component parts and examine the effect of a single phagocyte subset, versus a mixed phagocyte population, on these individual stages. Through this approach, we identified that the rate of fungal cell engulfment and rate of phagocyte killing altered significantly when both macrophages and PMNs were incubated in coculture with C. albicans compared to the rate of either phagocyte subset incubated alone with the fungus. This research highlights the significance of studying pathogen-host cell interactions with a combination of phagocytes in order to gain a greater understanding of the interactions that occur between cells of the host immune system in response to fungal invasion.

  4. Selective killing of hepatocellular carcinoma HepG2 cells by three-dimensional nanographene nanoparticles based on triptycene

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoqin; Gan, Lu; Liu, Ying; Zhang, Chun; Yong, Tuying; Wang, Ziyi; Xu, Huibi; Yang, Xiangliang

    2015-03-01

    Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702 cells. NG nanoparticle-induced ROS result in apoptosis induction and the decrease in mitochondrial membrane potential in HepG2 cells. Moreover, IKK/nuclear factor-κB (NF-κB) signaling is found to be activated by NG nanoparticle-induced ROS and serves to antagonize NG nanoparticle-induced apoptosis in HepG2 cells. Our studies show that the distinct behaviors of cellular uptake and ROS-mediated cytotoxicity are responsible for the selective killing of HepG2 cells. This study provides a foundation for understanding the mechanism of selective induction of apoptosis in cancer cells by NG nanoparticles and designing more effective chemotherapeutical agents.Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702 cells. NG nanoparticle-induced ROS result in apoptosis induction and the decrease in mitochondrial membrane potential in HepG2 cells. Moreover, IKK/nuclear factor-κB (NF-κB) signaling is found to be activated by NG nanoparticle-induced ROS and serves to antagonize NG nanoparticle-induced apoptosis in HepG2 cells. Our studies show that the distinct behaviors of cellular uptake and ROS-mediated cytotoxicity are responsible for the selective killing of HepG2 cells. This study provides a foundation for understanding the mechanism of selective induction of apoptosis in cancer cells by NG nanoparticles and designing more effective chemotherapeutical agents. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07248k

  5. Polysaccharide nano-vesicular multidrug carriers for synergistic killing of cancer cells.

    PubMed

    Pramod, P S; Shah, Ruchira; Chaphekar, Sonali; Balasubramanian, Nagaraj; Jayakannan, Manickam

    2014-10-21

    Multi-drug delivery based on polymer nano-scaffolds is an essential protocol to be developed for better administration of anticancer drugs to enhance their therapeutic efficacies against cancer cells. Here, we report dual delivery polysaccharide nano-vesicles that are capable of loading and delivering both water soluble and water insoluble drugs together in a single polymer scaffold. The selective rupture of the nano-vesicular assembly under intracellular enzyme conditions allowed the simultaneous delivery of a hydrophobic drug camptothecin (CPT) and hydrophilic drug doxorubicin (DOX) supporting their synergistic killing of breast and colon cancer cells. The polysaccharide nano-vesicles have allowed us to address a few important questions regarding the need for multiple drug administration in cancer cells including (a) the role of simultaneous drug release, (b) antagonistic versus synergistic effects of drug combinations and (c) how these are affected by the ratio of drugs. Further, evaluation of the role of caveolae in endocytosis of these polymer scaffolds was also made. The vesicular scaffolds were found to preserve and deliver DOX resulting in 50-60% better killing of cancer cells than the free drug. Additionally, dual loaded nano-vesicles when compared to drug cocktails with individual drugs in separate nano-vesicles (at comparable molar ratios) suggest the relative drug concentration following release and mode of delivery to be both important in cancer cell killing. Results from these experiments have revealed newly developed polysaccharide nano-vesicles loaded with DOX and CPT drugs as potential candidates for improved breast cancer cell killing. Thus, these custom-designed polysaccharide nano-vesicles provide a new perspective on multi-anticancer drug delivery systems and their efficacy.

  6. Protecting the normal in order to better kill the cancer

    PubMed Central

    Liu, Bingya; Ezeogu, Lewis; Zellmer, Lucas; Yu, Baofa; Xu, Ningzhi; Joshua Liao, Dezhong

    2015-01-01

    Chemotherapy is the only option for oncologists when a cancer has widely spread to different body sites. However, almost all currently available chemotherapeutic drugs will eventually encounter resistance after their initial positive effect, mainly because cancer cells develop genetic alterations, collectively coined herein as mutations, to adapt to the therapy. Some patients may still respond to a second chemo drug, but few cases respond to a third one. Since it takes time for cancer cells to develop new mutations and then select those life-sustaining ones via clonal expansion, “run against time for mutations to emerge” should be a crucial principle for treatment of those currently incurable cancers. Since cancer cells constantly change to adapt to the therapy whereas normal cells are stable, it may be a better strategy to shift our focus from killing cancer cells per se to protecting normal cells from chemotherapeutic toxicity. This new strategy requires the development of new drugs that are nongenotoxic and can quickly, in just hours or days, kill cancer cells without leaving the still-alive cells with time to develop mutations, and that should have their toxicities confined to only one or few organs, so that specific protections can be developed and applied. PMID:26177855

  7. Kill: boosting HIV-specific immune responses.

    PubMed

    Trautmann, Lydie

    2016-07-01

    Increasing evidence suggests that purging the latent HIV reservoir in virally suppressed individuals will require both the induction of viral replication from its latent state and the elimination of these reactivated HIV-infected cells ('Shock and Kill' strategy). Boosting potent HIV-specific CD8 T cells is a promising way to achieve an HIV cure. Recent studies provided the rationale for developing immune interventions to increase the numbers, function and location of HIV-specific CD8 T cells to purge HIV reservoirs. Multiple approaches are being evaluated including very early suppression of HIV replication in acute infection, adoptive cell transfer, therapeutic vaccination or use of immunomodulatory molecules. New assays to measure the killing and antiviral function of induced HIV-specific CD8 T cells have been developed to assess the efficacy of these new approaches. The strategies combining HIV reactivation and immunobased therapies to boost HIV-specific CD8 T cells can be tested in in-vivo and in-silico models to accelerate the design of new clinical trials. New immunobased strategies are explored to boost HIV-specific CD8 T cells able to purge the HIV-infected cells with the ultimate goal of achieving spontaneous control of viral replication without antiretroviral treatment.

  8. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications.

    PubMed

    Carlsten, Mattias; Childs, Richard W

    2015-01-01

    Given their rapid and efficient capacity to recognize and kill tumor cells, natural killer (NK) cells represent a unique immune cell to genetically reprogram in an effort to improve the outcome of cell-based cancer immunotherapy. However, technical and biological challenges associated with gene delivery into NK cells have significantly tempered this approach. Recent advances in viral transduction and electroporation have now allowed detailed characterization of genetically modified NK cells and provided a better understanding for how these cells can be utilized in the clinic to optimize their capacity to induce tumor regression in vivo. Improving NK cell persistence in vivo via autocrine IL-2 and IL-15 stimulation, enhancing tumor targeting by silencing inhibitory NK cell receptors such as NKG2A, and redirecting tumor killing via chimeric antigen receptors, all represent approaches that hold promise in preclinical studies. This review focuses on available methods for genetic reprograming of NK cells and the advantages and challenges associated with each method. It also gives an overview of strategies for genetic reprograming of NK cells that have been evaluated to date and an outlook on how these strategies may be best utilized in clinical protocols. With the recent advances in our understanding of the complex biological networks that regulate the ability of NK cells to target and kill tumors in vivo, we foresee genetic engineering as an obligatory pathway required to exploit the full potential of NK-cell based immunotherapy in the clinic.

  9. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Anh; Bortolazzo, Anthony; White, J. Brandon, E-mail: Brandon.White@sjsu.edu

    Highlights: Black-Right-Pointing-Pointer Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. Black-Right-Pointing-Pointer Quercetin forms a heterodimer through oxidation in media with serum. Black-Right-Pointing-Pointer The quercetin heterodimer does not kill MDA-MB-231 cells. Black-Right-Pointing-Pointer Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. Black-Right-Pointing-Pointer Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetinmore » has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.« less

  10. Ion transport: Tipping a cell's ionic balance

    NASA Astrophysics Data System (ADS)

    Davis, Jeffery T.

    2014-10-01

    A synthetic compound that transports chloride across membranes can kill both normal cells and cancer cells in vitro. The transporter works together with sodium channels to move NaCl into the cells, which triggers cell death.

  11. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis.

    PubMed

    Bonne-Année, Sandra; Kerepesi, Laura A; Hess, Jessica A; Wesolowski, Jordan; Paumet, Fabienne; Lok, James B; Nolan, Thomas J; Abraham, David

    2014-06-01

    Neutrophils are multifaceted cells that are often the immune system's first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis

    PubMed Central

    Bonne-Année, Sandra; Kerepesi, Laura A.; Hess, Jessica A.; Wesolowski, Jordan; Paumet, Fabienne; Lok, James B.; Nolan, Thomas J.; Abraham, David

    2014-01-01

    Neutrophils are multifaceted cells that are often the immune system’s first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system. PMID:24642003

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafat, M; Bazalova, M; Palma, B

    Purpose: To characterize the effect of very rapid dose delivery as compared to conventional therapeutic irradiation times on clonogenic cell survival. Methods: We used a Varian Trilogy linear accelerator to deliver doses up to 10 Gy using a 6 MV SRS photon beam. We irradiated four cancer cell lines in times ranging from 30 sec to 30 min. We also used a Varian TrueBeam linear accelerator to deliver 9 MeV electrons at 10 Gy in 10 s to 30 min to determine the effect of irradiation time on cell survival. We then evaluated the effect of using 60 and 120more » MeV electrons on cell survival using the Next Linear Collider Test Accelerator (NLCTA) beam line at the SLAC National Accelerator Laboratory. During irradiation, adherent cells were maintained at 37oC with 20%O2/5%CO2. Clonogenic assays were completed following irradiation to determine changes in cell survival due to dose delivery time and beam quality, and the survival data were fitted with the linear-quadratic model. Results: Cell lines varied in radiosensitivity, ranging from two to four logs of cell kill at 10 Gy for both conventional and very rapid irradiation. Delivering radiation in shorter times decreased survival in all cell lines. Log differences in cell kill ranged from 0.2 to 0.7 at 10 Gy for the short compared to the long irradiation time. Cell kill differences between short and long irradiations were more pronounced as doses increased for all cell lines. Conclusion: Our findings suggest that shortening delivery of therapeutic radiation doses to less than 1 minute may improve tumor cell kill. This study demonstrates the potential advantage of technologies under development to deliver stereotactic ablative radiation doses very rapidly. Bill Loo and Peter Maxim have received Honoraria from Varian and Research Support from Varian and RaySearch.« less

  14. Regulatable killing of eukaryotic cells by the prokaryotic proteins Kid and Kis

    PubMed Central

    de la Cueva-Méndez, Guillermo; Mills, Anthony D.; Clay-Farrace, Lorena; Díaz-Orejas, Ramón; Laskey, Ronald A.

    2003-01-01

    Plasmid R1 inhibits growth of bacteria by synthesizing an inhibitor of cell proliferation, Kid, and a neutralizing antidote, Kis, which binds tightly to the toxin. Here we report that this toxin and antidote, which have evolved to function in bacteria, also function efficiently in a wide range of eukaryotes. Kid inhibits cell proliferation in yeast, Xenopus laevis and human cells, whilst Kis protects. Moreover, we show that Kid triggers apoptosis in human cells. These effects can be regulated in vivo by modulating the relative amounts of antidote and toxin using inducible eukaryotic promoters for independent transcriptional control of their genes. These findings allow highly regulatable, selective killing of eukaryotic cells, and could be applied to eliminate cancer cells or specific cell lineages in development. PMID:12514130

  15. T cells raised against allogeneic HLA-A2/CD20 kill primary follicular lymphoma and acute lymphoblastic leukemia cells.

    PubMed

    Abrahamsen, Ingerid Weum; Kjellevoll, Synneva; Greve-Isdahl, Margrethe; Mensali, Nadia; Wälchli, Sébastien; Kumari, Shraddha; Loland, Beate Fossum; Egeland, Torstein; Kolstad, Arne; Olweus, Johanna

    2012-04-15

    T cells mediating a graft-versus-leukemia/lymphoma effects without causing graft-versus-host disease would greatly improve the safety and applicability of hematopoietic stem cell transplantation. We recently demonstrated that highly peptide- and HLA-specific T cells can readily be generated against allogeneic HLA-A*02:01 in complex with a peptide from the B cell-restricted protein CD20. Here, we show that such CD20-specific T cells can easily be induced from naïve precursors in cord blood, demonstrating that they do not represent cross-reactive memory cells. The cells displayed high avidity and mediated potent cytotoxic effects on cells from patients with the CD20(pos) B cell malignancies follicular lymphoma (FL) and acute lymphoblastic leukemia (ALL). However, the cytotoxicity was consistently lower for cells from two of the ALL patients. The ALL cells that were less efficiently killed did not display lower surface expression of CD20 or HLA-A*02:01, or mutations in the CD20 sequence. Peptide pulsing fully restored the levels of cytotoxicity, indicating that they are indeed susceptible to T cell-mediated killing. Adoptive transfer of CD20-specific T cells to an HLA-A*02:01(pos) patient requires an HLA-A*02:01(neg) , but otherwise HLA identical, donor. A search clarified that donors meeting these criteria can be readily identified even for patients with rare haplotypes. The results bear further promise for the clinical utility of CD20-specific T cells in B cell malignancies. Copyright © 2011 UICC.

  16. Impaired plasmacytoid dendritic cell (PDC)-NK cell activity in viremic human immunodeficiency virus infection attributable to impairments in both PDC and NK cell function.

    PubMed

    Conry, Sara J; Milkovich, Kimberly A; Yonkers, Nicole L; Rodriguez, Benigno; Bernstein, Helene B; Asaad, Robert; Heinzel, Frederick P; Tary-Lehmann, Magdalena; Lederman, Michael M; Anthony, Donald D

    2009-11-01

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections impair plasmacytoid dendritic cell (PDC) and natural killer (NK) cell subset numbers and functions, though little is known about PDC-NK cell interactions during these infections. We evaluated PDC-dependent NK cell killing and gamma interferon (IFN-gamma) and granzyme B production, using peripheral blood mononuclear cell (PBMC)-based and purified cell assays of samples from HCV- and HIV-infected subjects. CpG-enhanced PBMC killing and IFN-gamma and granzyme B activity (dependent on PDC and NK cells) were impaired in viremic HIV infection. In purified PDC-NK cell culture experiments, CpG-enhanced, PDC-dependent NK cell activity was cell contact and IFN-alpha dependent, and this activity was impaired in viremic HIV infection but not in HCV infection. In heterologous PDC-NK cell assays, impaired PDC-NK cell killing activity was largely attributable to an NK cell defect, while impaired PDC-NK cell IFN-gamma-producing activity was attributable to both PDC and NK cell defects. Additionally, the response of NK cells to direct IFN-alpha stimulation was defective in viremic HIV infection, and this defect was not attributable to diminished IFN-alpha receptor expression, though IFN-alpha receptor and NKP30 expression was closely associated with killer activity in viremic HIV infection but not in healthy controls. These data indicate that during uncontrolled HIV infection, PDC-dependent NK cell function is impaired, which is in large part attributable to defective IFN-alpha-induced NK cell activity and not to altered IFN-alpha receptor, NKP30, NKP44, NKP46, or NKG2D expression.

  17. THE COMPARATIVE RESISTANCE OF BACTERIA AND HUMAN TISSUE CELLS TO CERTAIN COMMON ANTISEPTICS

    PubMed Central

    Lambert, Robert A.

    1916-01-01

    The comparative resistance of bacteria and human tissue cells to antiseptics and other chemicals may be easily tested by tissue cultures under conditions which approximate those found in the living body. A comparative study shows that while human cells (connective tissue and wandering cells) are highly resistant to many antiseptics, they are in general more easily killed than bacteria (Staphylococcus aureus). Of the antiseptics tested, which include mercuric chloride, iodine, potassium mercuric iodide, phenol, tricresol, hydrogen peroxide, hypochlorites (Dakin's solution), argyrol, and alcohol, the one which approaches most closely the ideal disinfectant is iodine, which kills bacteria in strengths that do not seriously injure connective tissue cells or wandering cells. PMID:19868066

  18. Designing primers and evaluation of the efficiency of propidium monoazide - Quantitative polymerase chain reaction for counting the viable cells of Lactobacillus gasseri and Lactobacillus salivarius.

    PubMed

    Lai, Chieh-Hsien; Wu, Sih-Rong; Pang, Jen-Chieh; Ramireddy, Latha; Chiang, Yu-Cheng; Lin, Chien-Ku; Tsen, Hau-Yang

    2017-07-01

    The purpose of this study is to evaluate the efficiency of using propidium monoazide (PMA) real-time quantitative polymerase chain reaction (qPCR) to count the viable cells of Lactobacillus gasseri and Lactobacillus salivarius in probiotic products. Based on the internal transcription spacer and 23S rRNA genes, two primer sets specific for these two Lactobacillus species were designed. For a probiotic product, the total deMan Rogosa Sharpe plate count was 8.65±0.69 log CFU/g, while for qPCR, the cell counts of L. gasseri and L. salivarius were 8.39±0.14 log CFU/g and 8.57±0.24 log CFU/g, respectively. Under the same conditions, for its heat-killed product, qPCR counts for L. gasseri and L. salivarius were 6.70±0.16 log cells/g and 7.67±0.20 log cells/g, while PMA-qPCR counts were 5.33±0.18 log cells/g and 5.05±0.23 log cells/g, respectively. For cell dilutions with a viable cell count of 8.5 log CFU/mL for L. gasseri and L. salivarius, after heat killing, the PMA-qPCR count for both Lactobacillus species was near 5.5 log cells/mL. When the PMA-qPCR counts of these cell dilutions were compared before and after heat killing, although some DNA might be lost during the heat killing, significant qPCR signals from dead cells, i.e., about 4-5 log cells/mL, could not be reduced by PMA treatment. Increasing PMA concentrations from 100 μM to 200 μM or light exposure time from 5 minutes to 15 minutes had no or, if any, only minor effect on the reduction of qPCR signals from their dead cells. Thus, to differentiate viable lactic acid bacterial cells from dead cells using the PMA-qPCR method, the efficiency of PMA to reduce the qPCR signals from dead cells should be notable. Copyright © 2016. Published by Elsevier B.V.

  19. Effect of primycin on growth-arrested cultures and cell integrity of Staphylococcus aureus.

    PubMed

    Feiszt, Péter; Schneider, György; Emődy, Levente

    2017-06-01

    Bactericidal effect against non-dividing bacteria is a very advantageous, but rare characteristic among antimicrobial agents, mostly possessed by those affecting the cell membrane. These kinds of agents can kill bacterial cells without lysis. We assessed these characteristics on primycin, a topical anti-staphylococcal agent highly effective against prevalent multiresistant strains, as it also acts on the cell membrane. In time-kill studies, primycin preserved its bactericidal activity against growth-arrested Staphylococcus aureus cultures. The bactericidal action was slower against growth-arrested cultures compared to the exponentially growing ones to different extents depending on the manner of arrest. The bactericidal effect was less influenced by stringent response and by protein synthesis inhibition, proving that it does not depend on metabolic activity. In contrast, uncoupling of the membrane potential predominantly slowed, and low temperature almost stopped killing of bacteria. In consideration of published data, these facts suggest that the antibacterial action of primycin involves disrupting of the membrane potential, and is predominantly influenced by the membrane fluidity. Optical density measurements and transmission electron microscopy verified that primycin kills bacterial cells without lysis. These results reveal favorable characteristics of primycin and point to, and broaden the knowledge on its membrane-targeted effect.

  20. Interferon-gamma enhances radiation-induced cell death via downregulation of Chk1

    PubMed Central

    Kim, Kwang Seok; Choi, Kyu Jin; Bae, Sangwoo

    2012-01-01

    Interferon-gamma (IFNγ) is a cytokine with roles in immune responses as well as in tumor control. Interferon is often used in cancer treatment together with other therapies. Here we report a novel approach to enhancement of cancer cell killing by combined treatment of IFNγ with ionizing radiation. We found that IFNγ treatment alone in HeLa cells induced phosphorylation of Chk1 in a time- and dose-dependent manner, and resulted in cell arrest. Moreover IFNγ treatment was correlated with attenuation of Chk1 as the treatment shortened protein half-life of Chk1. As Chk1 is an essential cell cycle regulator for viability after DNA damage, attenuation of Chk1 by IFNγ pre-treatment in HeLa cells resulted in increased cell death following ionizing radiation about 2-folds than ionizing radiation treatment alone whereas IFNγ treatment alone had little effect on cell death. X-linked inhibitor of apoptosis-associated factor 1 (XAF1), an IFN-induced gene, seems to partly regulate IFNγ-induced Chk1 destabilization and radiation sensitivity because transient depletion of XAF1 by siRNA prevented IFNγ-induced Chk1 attenuation and partly protected cells from IFNγ-enhanced radiation cell killing. Therefore the results provide a novel rationale to combine IFNγ pretreatment and DNA-damaging anti-cancer drugs such as ionizing radiation to enhance cancer cell killing. PMID:22825336

  1. Ruxolitinib synergizes with DMF to kill via BIM+BAD-induced mitochondrial dysfunction and via reduced SOD2/TRX expression and ROS.

    PubMed

    Tavallai, Mehrad; Booth, Laurence; Roberts, Jane L; McGuire, William P; Poklepovic, Andrew; Dent, Paul

    2016-04-05

    We determined whether the myelofibrosis drug ruxolitinib, an inhibitor of Janus kinases 1/2 (JAK1 and JAK2), could interact with the multiple sclerosis drug dimethyl-fumarate (DMF) to kill tumor cells; studies used the in vivo active form of the drug, mono-methyl fumarate (MMF). Ruxolitinib interacted with MMF to kill brain, breast, lung and ovarian cancer cells, and enhanced the lethality of standard of care therapies such as paclitaxel and temozolomide. MMF also interacted with other FDA approved drugs to kill tumor cells including Celebrex® and Gilenya®. The combination of [ruxolitinib + MMF] inactivated ERK1/2, AKT, STAT3 and STAT5; reduced expression of MCL-1, BCL-XL, SOD2 and TRX; increased BIM expression; decreased BAD S112 S136 phosphorylation; and enhanced pro-caspase 3 cleavage. Expression of activated forms of STAT3, MEK1 or AKT each significantly reduced drug combination lethality; prevented BAD S112 S136 dephosphorylation and decreased BIM expression; and preserved TRX, SOD2, MCL-1 and BCL-XL expression. The drug combination increased the levels of reactive oxygen species in cells, and over-expression of TRX or SOD2 prevented drug combination tumor cell killing. Over-expression of BCL-XL or knock down of BAX, BIM, BAD or apoptosis inducing factor (AIF) protected tumor cells. The drug combination increased AIF : HSP70 co-localization in the cytosol but this event did not prevent AIF : eIF3A association in the nucleus.

  2. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells

    PubMed Central

    Romain, Gabrielle; Senyukov, Vladimir; Rey-Villamizar, Nicolas; Merouane, Amine; Kelton, William; Liadi, Ivan; Mahendra, Ankit; Charab, Wissam; Georgiou, George; Roysam, Badrinath; Lee, Dean A.

    2014-01-01

    The efficacy of most therapeutic monoclonal antibodies (mAbs) targeting tumor antigens results primarily from their ability to elicit potent cytotoxicity through effector-mediated functions. We have engineered the fragment crystallizable (Fc) region of the immunoglobulin G (IgG) mAb, HuM195, targeting the leukemic antigen CD33, by introducing the triple mutation Ser293Asp/Ala330Leu/Ile332Glu (DLE), and developed Time-lapse Imaging Microscopy in Nanowell Grids to analyze antibody-dependent cell-mediated cytotoxicity kinetics of thousands of individual natural killer (NK) cells and mAb-coated target cells. We demonstrate that the DLE-HuM195 antibody increases both the quality and the quantity of NK cell-mediated antibody-dependent cytotoxicity by endowing more NK cells to participate in cytotoxicity via accrued CD16-mediated signaling and by increasing serial killing of target cells. NK cells encountering targets coated with DLE-HuM195 induce rapid target cell apoptosis by promoting simultaneous conjugates to multiple target cells and induce apoptosis in twice the number of target cells within the same period as the wild-type mAb. Enhanced target killing was also associated with increased frequency of NK cells undergoing apoptosis, but this effect was donor-dependent. Antibody-based therapies targeting tumor antigens will benefit from a better understanding of cell-mediated tumor elimination, and our work opens further opportunities for the therapeutic targeting of CD33 in the treatment of acute myeloid leukemia. PMID:25232058

  3. Three distinct cell phenotypes of induced-TNF cytotoxicity and their relationship to apoptosis

    NASA Technical Reports Server (NTRS)

    Woods, K. M.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We have identified three distinct cell phenotypes with respect to the conditions under which cells became susceptible to TNF-mediated lysis. These conditions include: 1) treatment with the protein synthesis inhibitor, cycloheximide; 2) contact with activated macrophages, and 3) infection with vaccinia virus. Whereas vaccinia virus-infected 3T3 cells became sensitive to soluble TNF, F5b cells required contact with activated macrophages. We showed that the "macrophage-resistant" F5m cells did not become sensitive to TNF or to killing by activated macrophages after infection with vaccinia virus. Therefore, vaccinia infection does not sensitize all cells to TNF. We also determined the pathways of lysis for cells after sensitization. Whereas 3T3, LM929, and F5b cells were killed by the process of necrosis, F5m cells lysis was characterized by the release of low mol wt DNA fragments (apoptosis).

  4. Cancer cell-selective killing polymer/copper combination.

    PubMed

    He, Huacheng; Altomare, Diego; Ozer, Ufuk; Xu, Hanwen; Creek, Kim; Chen, Hexin; Xu, Peisheng

    2016-01-01

    Chemotherapy has been adopted for cancer treatment for decades. However, its efficacy and safety are frequently compromised by the multidrug-resistance of cancer cells and the poor cancer cell selectivity of anticancer drugs. Hereby, we report a combination of a pyridine-2-thiol containing polymer and copper which can effectively kill a wide spectrum of cancer cells, including drug resistant cancer cells, while sparing normal cells. The polymer nanoparticle enters cells via an exofacial thiol facilitated route, and releases active pyridine-2-thiol with the help of intracellularly elevated glutathione (GSH). Due to their high GSH level, cancer cells are more vulnerable to the polymer/copper combination. In addition, RNA microarray analysis revealed that the treatment can reverse cancer cells' upregulated oncogenes (CIRBP and STMN1) and downregulated tumor suppressor genes (CDKN1C and GADD45B) to further enhance the selectivity for cancer cells.

  5. [Research on cells ablation characters by laser plasma].

    PubMed

    Han, Jing-hua; Zhang, Xin-gang; Cai, Xiao-tang; Duan, Tao; Feng, Guo-ying; Yang, Li-ming; Zhang, Ya-jun; Wang, Shao-peng; Li, Shi-wen

    2012-08-01

    The study on the mechanism of laser ablated cells is of importance to laser surgery and killing harmful cells. Three radiation modes were researched on the ablation characteristics of onion epidermal cells under: laser direct irradiation, focused irradiation and the laser plasma radiation. Based on the thermodynamic properties of the laser irradiation, the cell temperature rise and phase change have been analyzed. The experiments show that the cells damage under direct irradiation is not obvious at all, but the focused irradiation can cause cells to split and moisture removal. The removal shape is circular with larger area and rough fracture edges. The theoretical analysis found out that the laser plasma effects play a key role in the laser ablation. The thermal effects, radiation ionization and shock waves can increase the deposition of laser pulses energy and impact peeling of the cells, which will greatly increase the scope and efficiency of cell killing and is suitable for the cell destruction.

  6. Cultured Chinese hamster cells undergo apoptosis after exposure to cold but nonfreezing temperatures.

    PubMed

    Nagle, W A; Soloff, B L; Moss, A J; Henle, K J

    1990-08-01

    Cultured Chinese hamster V79 fibroblast cells at the transition from logarithmic to stationary growth have been shown to undergo apoptosis (programmed cell death) after cold shock [B. L. Soloff, W. A. Nagle, A. J. Moss, Jr., K. J. Henle, and J. T. Crawford, Biochem. Biophys. Res. Commun. 145, 876-883 (1987)]. In this report, we show that about 95% of the cell population was susceptible to cold-induced apoptosis, and the amount of cell killing was dependent on the duration of hypothermia. Cells treated for 0-90 min at 0 degrees C exhibited an exponential survival curve with a D0 of 32 min; thus, even short exposures to the cold (e.g., 5 min) produced measurable cell killing. The cold-induced injury was not produced by freezing, because similar results were observed at 6 degrees C, and cell killing was not influenced by the cryoprotective agent dimethyl sulfoxide. Cold-induced apoptosis was inhibited by rewarming at 23 degrees C, compared to 37 degrees C, by inhibitors of macromolecular synthesis, such as cycloheximide, and by 0.8 mM zinc sulfate. The results suggest that apoptosis represents a new manifestation of cell injury after brief exposure to 0-6 degrees C hypothermia.

  7. Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice.

    PubMed

    Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E

    2018-04-23

    Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective.

  8. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  9. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  10. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  11. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  12. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  13. Cross–dressers turn on T cells

    PubMed Central

    YEWDELL, JONATHAN W.; DOLAN, BRIAN P.

    2012-01-01

    Memory T cells remember viruses from previous infections, providing immunity by facilitating the killing of infected cells. For this, they exploit cross-dressing, the transfer of antigens between antigen-presenting cells. PMID:21455165

  14. Both necrosis and apoptosis contribute to HIV-1-induced killing of CD4 cells

    NASA Technical Reports Server (NTRS)

    Plymale, D. R.; Tang, D. S.; Comardelle, A. M.; Fermin, C. D.; Lewis, D. E.; Garry, R. F.

    1999-01-01

    BACKGROUND: Data currently available on HIV-1-induced cytopathology is unclear regarding the mechanism of cell killing. OBJECTIVE: To clarify the extent to which apoptosis or necrosis is involved in HIV-1-induced cell death in view of conflicting existing data. METHODS: T lymphoblastoid cells or peripheral blood mononuclear cells were infected by various strains of HIV-1 and the numbers of apoptotic or necrotic cells were quantified at various times after infection using video-image analysis techniques; the results were compared with the amount of fragmented DNA using a quantitative method. Measurement of mitochondrial transmembrane potential (deltapsi(m)) and intracellular calcium concentrations [Ca2+]i was performed with fluorescent probes and fluorescence concentration analysis (FCA). RESULTS: Although lymphoblastoid and monocytoid cells acutely infected by HIV-1 had increased levels of fragmented DNA, a marker of apoptotic cell death, few (<12%) had condensed chromatin and fragmented nuclei, the morphological features of apoptosis. The predominant alterations in acutely infected cells were distended endoplasmic reticulum and abnormal mitochondria; these ultrastructural changes are consistent with necrosis, although some infected cells simultaneously displayed features of both necrosis and apoptosis. Viability of cells persistently infected by HIV-1 was only minimally reduced from that of uninfected cells. This reduction was accounted for by an increased propensity of the persistently infected cells to die by apoptosis. Alterations in [Ca2+]i and deltapsi(m) occurred in both acutely and persistently infected cells. CONCLUSION: Both necrosis and apoptosis contribute to HIV-1-induced killing of CD4 cells.

  15. The Herpes Simplex Virus Type 1 Latency-Associated Transcript Can Protect Neuron-Derived C1300 and Neuro2A Cells from Granzyme B-Induced Apoptosis and CD8 T-Cell Killing▿

    PubMed Central

    Jiang, Xianzhi; Alami Chentoufi, Aziz; Hsiang, Chinhui; Carpenter, Dale; Osorio, Nelson; BenMohamed, Lbachir; Fraser, Nigel W.; Jones, Clinton; Wechsler, Steven L.

    2011-01-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is the only HSV-1 gene transcript abundantly expressed throughout latency. LAT null mutants have a significantly reduced reactivation phenotype. LAT's antiapoptosis activity is the major LAT factor involved in supporting the wild-type reactivation phenotype. During HSV-1 latency, some ganglionic neurons are surrounded by CD8 T cells, and it has been proposed that these CD8 T cells help maintain HSV-1 latency by suppressing viral reactivations. Surprisingly, despite injection of cytotoxic lytic granules by these CD8 T cells into latently infected neurons, neither apoptosis nor neuronal cell death appears to occur. We hypothesized that protection of latently infected neurons against cytotoxic CD8 T-cell killing is due to LAT's antiapoptosis activity. Since CD8 T-cell cytotoxic lytic granule-mediated apoptosis is critically dependent on granzyme B (GrB), we examined LAT's ability to block GrB-induced apoptosis. We report here that (i) LAT can interfere with GrB-induced apoptosis in cell cultures, (ii) LAT can block GrB-induced cleavage (activation) of caspase-3 both in cell culture and in a cell-free in vitro cell extract assay, and (iii) LAT can protect C1300 and Neuro2A cells from cytotoxic CD8 T-cell killing in vitro. These findings support the hypothesis that LAT's antiapoptosis activity can protect latently infected neurons from being killed by CD8 T-cell lytic granules in vivo. PMID:21177822

  16. Action of caffeine on x-irradiated HeLa cells. IV. Progression delays and enhanced cell killing at high caffeine concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolmach, L.J.; Busse, P.M.

    1980-05-01

    The response of x-irradiated and unirradiated HeLa S3 cells to treatment with caffeine at concentrations between 1 and 10 nM has been examined with respect to both delay in progression through the cell generation cycle and enhancement of the expression of potentially lethal x-ray damage. Progression is delayed in a concentration-dependent fashion: the generation time is doubled at about 4 mM. The duration of G/sub 1/ is lengthened, and the rate of DNA synthesis is reduced, although the kinetics are different in the two phases; the rate of DNA synthesis is usually unaffected at 1 or 2 mM, while theremore » is no concentration threshold for the slowing of progression through G/sub 1/. Progression through G/sub 2/ appears to be unaffected by concentrations up to at least 10 mM. Killing of irradiated cells in G/sub 2/ is somewhat greater after treatment with the higher caffeine concentrations than reported previously for 1 mM. Moreover, an additional mode of killing is observed in irradiated G/sub 1/ cells which had been found previously to be only slightly affected by 1 mM caffeine; they suffer extensive killing at concentrations above 5 mM. The time-survival curves for irradiated, caffeine-treated G/sub 1/ and G/sub 2/ cells have characteristically different shapes. The dose-survival curves for cells treated with the higher caffeine concentrations display steeper terminal slopes and narrower shoulders.« less

  17. The PCC assay can be used to predict radiosensitivity in biopsy cultures irradiated with different types of radiation.

    PubMed

    Suzuki, Masao; Tsuruoka, Chizuru; Nakano, Takashi; Ohno, Tatsuya; Furusawa, Yoshiya; Okayasu, Ryuichi

    2006-12-01

    The aim of this study was to identify potential biomarkers for radiosensitivity using the relationship between cell killing and the yield of excess chromatin fragments detected with the premature chromosome condensation (PCC) technique. This method was applied to primary cultured cells obtained from biopsies from patients. Six primary culture biopsies were obtained from 6 patients with carcinoma of the cervix before starting radiotherapy. The cultures were irradiated with two different LET carbon-ion beams (LET = 13 keV/microm, 77.1+/-2.8 keV/microm) and 200 kV X-rays. The carbon-ion beams were produced by Heavy Ion Medical Accelerator in Chiba (HIMAC). PCC was performed using the polyethylene glycol-mediated cell fusion technique. The yield of excess chromatin fragments were measured by counting the number of unrejoined chromatin fragments detected with the PCC technique after a 24-h post-irradiation incubation period. Obtained results indicated that cultures which were more sensitive to killing were also more susceptible to the induction of excess chromatin fragments. Furthermore there was a good correlation between cell killing and excess chromatin fragments among the 6 cell cultures examined. There is also evidence that the induction of excess chromatin fragments increased with increasing LET as well as cell-killing effect in the same cell culture. The data reported here support the idea that the yield of excess chromatin fragments detected with the PCC technique might be useful for predicting the radiosensitivity of cells contained in tumor tissue, and to predict responses to different radiation types.

  18. Comparison of sorafenib-loaded poly (lactic/glycolic) acid and DPPC liposome nanoparticles in the in vitro treatment of renal cell carcinoma.

    PubMed

    Liu, James; Boonkaew, Benjawan; Arora, Jaspreet; Mandava, Sree Harsha; Maddox, Michael M; Chava, Srinivas; Callaghan, Cameron; He, Jibao; Dash, Srikanta; John, Vijay T; Lee, Benjamin R

    2015-03-01

    The objective of this study is to develop and compare several Sorafenib-loaded biocompatible nanoparticle models in order to optimize drug delivery and tumor cellular kill thereby improving the quality of Sorafenib-regimented chemotherapy. Sorafenib-loaded poly (lactic-co-glycolic) acid (PLGA), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes, and hydrophobically modified chitosan (HMC)-coated DPPC liposomes were evaluated for several characteristics including zeta potential, drug loading, and release profile. Cytotoxicity and uptake trials were also studied using cell line RCC 786-0, a human metastatic clear cell histology renal cell carcinoma cell line. Sorafenib-loaded PLGA particles and HMC-coated DPPC liposomes exhibited significantly improved cell kill compared to Sorafenib alone at lower concentrations, namely 10-15 and 5-15 μM from 24 to 96 h, respectively. At maximum dosage and time (15 μM and 96 h), Sorafenib-loaded PLGA and HMC-coated liposomes killed 88.3 ± 1.8% and 98 ± 1.1% of all tumor cells, significant values compared with Sorafenib 81.8 ± 1.7% (p < 0.01). Likewise, HMC coating substantially improved cell kill for liposome model for all concentrations (5-15 μM) and at time points (24-96 h) (p < 0.01). PLGA and HMC-coated liposomes are promising platforms for drug delivery of Sorafenib. Because of different particle characteristics of PLGA and liposomes, each model can be further developed for unique clinical modalities. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Sildenafil (Viagra) sensitizes prostate cancer cells to doxorubicin-mediated apoptosis through CD95

    PubMed Central

    Das, Anindita; Durrant, David; Mitchell, Clint; Dent, Paul; Batra, Surinder K.; Kukreja, Rakesh C.

    2016-01-01

    We previously reported that Sildenafil enhances apoptosis and antitumor efficacy of doxorubicin (DOX) while attenuating its cardiotoxic effect in prostate cancer. In the present study, we investigated the mechanism by which sildenafil sensitizes DOX in killing of prostate cancer (PCa) cells, DU145. The death receptor Fas (APO-1 or CD95) induces apoptosis in many carcinoma cells, which is negatively regulated by anti-apoptotic molecules such as FLIP (Fas-associated death domain (FADD) interleukin-1-converting enzyme (FLICE)-like inhibitory protein). Co-treatment of PCa cells with sildenafil and DOX for 48 hours showed reduced expression of both long and short forms of FLIP (FLIP-L and -S) as compared to individual drug treatment. Over-expression of FLIP-s with an adenoviral vector attentuated the enhanced cell-killing effect of DOX and sildenafil. Colony formation assays also confirmed that FLIP-S over-expression inhibited the DOX and sildenafil-induced synergistic killing effect as compared to the cells infected with an empty vector. Moreover, siRNA knock-down of CD95 abolished the effect of sildenafil in enhancing DOX lethality in cells, but had no effect on cell killing after treatment with a single agent. Sildenafil co-treatment with DOX inhibited DOX-induced NF-κB activity by reducing phosphorylation of IκB and nuclear translocation of the p65 subunit, in addition to down regulation of FAP-1 (Fas associated phosphatase-1, a known inhibitor of CD95-mediated apoptosis) expression. This data provides evidence that the CD95 is a key regulator of sildenafil and DOX mediated enhanced cell death in prostate cancer. PMID:26716643

  20. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells.

    PubMed

    Adigbli, D K; Wilson, D G G; Farooqui, N; Sousi, E; Risley, P; Taylor, I; Macrobert, A J; Loizidou, M

    2007-08-20

    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone (MTZ, chemotherapeutic) plus illumination potentiates cytotoxicity in MDR cancer cells. We mapped the extent of intracellular co-localisation of drug/photosensitiser. We determined whether PCI altered drug-excreting efflux pump P-glycoprotein (Pgp) expression or function in MDR cells. Bladder and breast cancer cells and their Pgp-overexpressing MDR subclones (MGHU1, MGHU1/R, MCF-7, MCF-7/R) were given hypericin/MTZ combinations, with/without blue-light illumination. Pilot experiments determined appropriate sublethal doses for each. Viability was determined by the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide assay. Intracellular localisation was mapped by confocal microscopy. Pgp expression was detected by immunofluorescence and Pgp function investigated by Rhodamine123 efflux on confocal microscopy. MTZ alone (0.1-0.2 microg ml(-1)) killed up to 89% of drug-sensitive cells; MDR cells exhibited less cytotoxicity (6-28%). Hypericin (0.1-0.2 microM) effects were similar for all cells; light illumination caused none or minimal toxicity. In combination, MTZ /hypericin plus illumination, potentiated MDR cell killing, vs hypericin or MTZ alone. (MGHU1/R: 38.65 and 36.63% increase, P<0.05; MCF-7/R: 80.2 and 46.1% increase, P<0.001). Illumination of combined MTZ/hypericin increased killing by 28.15% (P<0.05 MGHU1/R) compared to dark controls. Intracytoplasmic vesicular co-localisation of MTZ/hypericin was evident before illumination and at serial times post-illumination. MTZ was always found in sensitive cell nuclei, but not in dark resistant cell nuclei. In illuminated resistant cells there was some mobilisation of MTZ into the nucleus. Pgp expression remained unchanged, regardless of drug exposure. Pgp efflux was blocked by the Pgp inhibitor verapamil (positive control) but not impeded by hypericin. The increased killing of MDR cancer cells demonstrated is consistent with PCI. PCI is a promising technique for enhancing treatment efficacy.

  1. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells

    PubMed Central

    Adigbli, D K; Wilson, D G G; Farooqui, N; Sousi, E; Risley, P; Taylor, I; MacRobert, A J; Loizidou, M

    2007-01-01

    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone (MTZ, chemotherapeutic) plus illumination potentiates cytotoxicity in MDR cancer cells. We mapped the extent of intracellular co-localisation of drug/photosensitiser. We determined whether PCI altered drug-excreting efflux pump P-glycoprotein (Pgp) expression or function in MDR cells. Bladder and breast cancer cells and their Pgp-overexpressing MDR subclones (MGHU1, MGHU1/R, MCF-7, MCF-7/R) were given hypericin/MTZ combinations, with/without blue-light illumination. Pilot experiments determined appropriate sublethal doses for each. Viability was determined by the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide assay. Intracellular localisation was mapped by confocal microscopy. Pgp expression was detected by immunofluorescence and Pgp function investigated by Rhodamine123 efflux on confocal microscopy. MTZ alone (0.1–0.2 μg ml−1) killed up to 89% of drug-sensitive cells; MDR cells exhibited less cytotoxicity (6–28%). Hypericin (0.1–0.2 μM) effects were similar for all cells; light illumination caused none or minimal toxicity. In combination, MTZ /hypericin plus illumination, potentiated MDR cell killing, vs hypericin or MTZ alone. (MGHU1/R: 38.65 and 36.63% increase, P<0.05; MCF-7/R: 80.2 and 46.1% increase, P<0.001). Illumination of combined MTZ/hypericin increased killing by 28.15% (P<0.05 MGHU1/R) compared to dark controls. Intracytoplasmic vesicular co-localisation of MTZ/hypericin was evident before illumination and at serial times post-illumination. MTZ was always found in sensitive cell nuclei, but not in dark resistant cell nuclei. In illuminated resistant cells there was some mobilisation of MTZ into the nucleus. Pgp expression remained unchanged, regardless of drug exposure. Pgp efflux was blocked by the Pgp inhibitor verapamil (positive control) but not impeded by hypericin. The increased killing of MDR cancer cells demonstrated is consistent with PCI. PCI is a promising technique for enhancing treatment efficacy. PMID:17667930

  2. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  3. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  4. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  5. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  6. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  7. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  8. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  9. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  10. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  11. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  12. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  13. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  14. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  15. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  16. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  17. Classification of human natural killer cells based on migration behavior and cytotoxic response.

    PubMed

    Vanherberghen, Bruno; Olofsson, Per E; Forslund, Elin; Sternberg-Simon, Michal; Khorshidi, Mohammad Ali; Pacouret, Simon; Guldevall, Karolin; Enqvist, Monika; Malmberg, Karl-Johan; Mehr, Ramit; Önfelt, Björn

    2013-02-21

    Despite intense scrutiny of the molecular interactions between natural killer (NK) and target cells, few studies have been devoted to dissection of the basic functional heterogeneity in individual NK cell behavior. Using a microchip-based, time-lapse imaging approach allowing the entire contact history of each NK cell to be recorded, in the present study, we were able to quantify how the cytotoxic response varied between individual NK cells. Strikingly, approximately half of the NK cells did not kill any target cells at all, whereas a minority of NK cells was responsible for a majority of the target cell deaths. These dynamic cytotoxicity data allowed categorization of NK cells into 5 distinct classes. A small but particularly active subclass of NK cells killed several target cells in a consecutive fashion. These "serial killers" delivered their lytic hits faster and induced faster target cell death than other NK cells. Fast, necrotic target cell death was correlated with the amount of perforin released by the NK cells. Our data are consistent with a model in which a small fraction of NK cells drives tumor elimination and inflammation.

  18. Persistence of viral infection despite similar killing efficacy of antiviral CD8(+) T cells during acute and chronic phases of infection.

    PubMed

    Ganusov, Vitaly V; Lukacher, Aron E; Byers, Anthony M

    2010-09-15

    Why some viruses establish chronic infections while others do not is poorly understood. One possibility is that the host's immune response is impaired during chronic infections and is unable to clear the virus from the host. In this report, we use a recently proposed framework to estimate the per capita killing efficacy of CD8(+) T cells, specific for the polyoma virus (PyV), which establishes a chronic infection in mice. Surprisingly, the estimated per cell killing efficacy of PyV-specific effector CD8(+) T cells during the acute phase of the infection was very similar to the efficacy of effector CD8(+) T cells specific to lymphocytic choriomeningitis virus (LCMV-Armstrong), which is cleared from the host. Our results suggest that persistence of PyV does not result from the generation of an inefficient PyV-specific CD8(+) T cell response, and that other host or viral factors are responsible for the ability of PyV to establish chronic infection. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Comparison of the killing effects between nitrogen-doped and pure TiO2 on HeLa cells with visible light irradiation

    PubMed Central

    2013-01-01

    The killing effect of nitrogen-doped titanium dioxide (N-TiO2) nanoparticles on human cervical carcinoma (HeLa) cells by visible light photodynamic therapy (PDT) was higher than that of TiO2 nanoparticles. To study the mechanism of the killing effect, the reactive oxygen species produced by the visible-light-activated N-TiO2 and pure-TiO2 were evaluated and compared. The changes of the cellular parameters, such as the mitochondrial membrane potential (MMP), intracellular Ca2+, and nitrogen monoxide (NO) concentrations after PDT were measured and compared for N-TiO2- and TiO2-treated HeLa cells. The N-TiO2 resulted in more loss of MMP and higher increase of Ca2+ and NO in HeLa cells than pure TiO2. The cell morphology changes with time were also examined by a confocal microscope. The cells incubated with N-TiO2 exhibited serious distortion and membrane breakage at 60 min after the PDT. PMID:23433090

  20. Efficient killing effect of osteosarcoma cells by cinobufacini and cisplatin in combination.

    PubMed

    Huang, Tao; Gong, Wei-Hua; Li, Xiu-Cheng; Zou, Chun-Ping; Jiang, Guang-Jian; Li, Xu-Hui; Qian, Hao

    2012-01-01

    To study the killing effects on osteosarcoma cells of cinobufacini and cisplatin in combination and the related mechanisms so as to explore the chemotherapeutic method with integrated traditional Chinese and Western medicines. Cinobufacini and cisplatin were applied to OS732 cells singly or jointly and survival rates were measured by MTT assay. Changes in cellular shape were observed with inverted phase contrast and fluorescence microscopy and apoptosis rates were analyzed with flow cytometry (FCM). Immunocytochemistry were used to examine the Fas expression of OS732 cells. The combination of cinobufacini and cisplatin had the effect of up-regulating Fas expression and inducing apoptosis. The survival rate of combined application of 100 μg/ml cinobufacini and 1 μg/ml cisplatin on OS-732 cells was significantly lower than with either of the agents alone (p<0.01). Changes in cellular shape and apoptotic rates also indicated the apoptosis-inducing effects of combined application were much enhanced. The combination of cinobufacini and cisplatin demonstrated strong killing effects on OS-732 cells which might be related to up-regulation of Fas expression.

  1. Mitochondrial control of cell death induced by hyperosmotic stress.

    PubMed

    Criollo, Alfredo; Galluzzi, Lorenzo; Maiuri, M Chiara; Tasdemir, Ezgi; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-X(L) sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control.

  2. Effects of pre-radiation exposure to LLLT of normal and malignant cells.

    PubMed

    Barasch, Andrei; Raber-Durlacher, Judith; Epstein, Joel B; Carroll, James

    2016-06-01

    Low-level laser therapy (LLLT) efficacy for the prevention of cancer treatment-induced oral mucositis (OM) has been amply described. However, potential protection of malignant cells remains a legitimate concern for clinicians. We tested LLLT-induced protection from ionizing radiation killing in both malignant and normal cells. We treated six groups each of normal human lymphoblasts (TK6) and human leukemia cells (HL60) with He-Ne LLLT (632.8 nm, 35 mW, CW, 1 cm(2), 35 mW/cm(2) for 3-343 s, 0.1-12 J/cm(2)) prior to exposure to ionizing radiation (IR). Cells were then incubated and counted daily to determine their survival. Optimization of IR dose and incubation time was established prior to testing the effect of LLLT. Growth curves for both cell lines showed significant declines after exposure to 50-200 cGy IR when compared to controls. Pre-radiation exposure to LLLT (4.0 J/cm(2)) followed by 1-h incubation blocked this decline in TK6 but not in HL60 cells. The latter cells were sensitized to the killing effects of IR in a dose-dependent manner. This study shows that pre-IR LLLT treatment results in a differential response of normal vs. malignant cells, suggesting that LLLT does not confer protection and may even sensitize cancer cells to IR killing.

  3. Non-Covalent Functionalization of Carbon Nanovectors with an Antibody Enables Targeted Drug Delivery

    PubMed Central

    Berlin, Jacob M.; Pham, Tam T.; Sano, Daisuke; Mohamedali, Khalid A.; Marcano, Daniela C.; Myers, Jeffrey N.; Tour, James M.

    2011-01-01

    Current chemotherapeutics are characterized by efficient tumor cell-killing and severe side effects mostly derived from off target toxicity. Hence targeted delivery of these drugs to tumor cells is actively sought. We previously demonstrated that poly(ethylene glycol)-functionalized carbon nanovectors are able to sequester paclitaxel, a widely used hydrophobic cancer drug, by simple physisorption and deliver the drug for killing of cancer cells. The cell-killing when these drug-loaded carbon nanoparticles were used was equivalent to when a commercial formulation of paclitaxel was used. Here we show that by further mixing the drug-loaded nanoparticles with Cetuximab, a monoclonal antibody that recognizes the epidermal growth factor receptor (EGFR), paclitaxel is preferentially targeted to EGFR+ tumor cells in vitro. This supports progressing to in vivo studies. Moreover, the construct is unusual in that all three components are assembled through non-covalent interactions. Such non-covalent assembly could enable high-throughput screening of drug/antibody combinations. PMID:21736358

  4. Regulatory T cell effects in antitumor laser immunotherapy: a mathematical model and analysis

    NASA Astrophysics Data System (ADS)

    Dawkins, Bryan A.; Laverty, Sean M.

    2016-03-01

    Regulatory T cells (Tregs) have tremendous influence on treatment outcomes in patients receiving immunotherapy for cancerous tumors. We present a mathematical model incorporating the primary cellular and molecular components of antitumor laser immunotherapy. We explicitly model developmental classes of dendritic cells (DCs), cytotoxic T cells (CTLs), primary and metastatic tumor cells, and tumor antigen. Regulatory T cells have been shown to kill antigen presenting cells, to influence dendritic cell maturation and migration, to kill activated killer CTLs in the tumor microenvironment, and to influence CTL proliferation. Since Tregs affect explicitly modeled cells, but we do not explicitly model dynamics of Treg themselves, we use model parameters to analyze effects of Treg immunosuppressive activity. We will outline a systematic method for assigning clinical outcomes to model simulations and use this condition to associate simulated patient treatment outcome with Treg activity.

  5. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis.

    PubMed

    Matlung, Hanke L; Babes, Liane; Zhao, Xi Wen; van Houdt, Michel; Treffers, Louise W; van Rees, Dieke J; Franke, Katka; Schornagel, Karin; Verkuijlen, Paul; Janssen, Hans; Halonen, Pasi; Lieftink, Cor; Beijersbergen, Roderick L; Leusen, Jeanette H W; Boelens, Jaap J; Kuhnle, Ingrid; van der Werff Ten Bosch, Jutte; Seeger, Karl; Rutella, Sergio; Pagliara, Daria; Matozaki, Takashi; Suzuki, Eiji; Menke-van der Houven van Oordt, Catharina Willemien; van Bruggen, Robin; Roos, Dirk; van Lier, Rene A W; Kuijpers, Taco W; Kubes, Paul; van den Berg, Timo K

    2018-06-26

    Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPα checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPα interactions. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  6. Candida albicans Adheres to Chitin by Recognizing N-acetylglucosamine (GlcNAc).

    PubMed

    Ishijima, Sanae A; Yamada, Tsuyoshi; Maruyama, Naho; Abe, Shigeru

    2017-01-01

    The binding of Candida albicans cells to chitin was examined in a cell-binding assay. Microscopic observations indicated that both living and heat-killed Candida cells bound to chitin-coated substrates. C. albicans preferentially bound to chitin-coated plastic plates over chitosan-coated and uncoated plates. We prepared 125 I-labeled Candida cells for quantitative analysis of their binding to chitin. Heat-killed 125 I-labeled Candida cells bound to chitin-coated plates in a time-dependent manner until 1.5 hours after start of incubation at 4℃. The binding of 125 I-labeled Candida cells to chitin-coated plates was inhibited by adding unlabeled living or unlabeled heat-killed Candida cells. The binding of Candida to chitin was also reduced by addition of 25 mg/ml chitin or chitosan up to 10%. N-acetylglucosamine (GlcNAc), which is a constituent of chitin, inhibited binding of Candida to chitin in a dose-dependent manner between 12.5 and 200 mM. Glucosamine, which is a constituent of chitosan, showed no such inhibitory effect. These findings suggest that the binding of Candida to chitin may be mediated by recognition of GlcNAc.

  7. Mediation of host immune responses after immunization of neonatal calves with a heat-killed Mycobacterium avium subsp. paratuberculosis vaccine

    USDA-ARS?s Scientific Manuscript database

    A major drawback of current whole-cell vaccines for Mycobacterium avium subsp. paratuberculosis(MAP) is the interference with diagnostic tests for bovine tuberculosis and paratuberculosis. The current study was designed to explore effects of immunization with a heat-killed whole cell vaccine (Mycop...

  8. PDE5 inhibitors enhance the lethality of [pemetrexed + sorafenib

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Dent, Paul

    2017-01-01

    The combination of pemetrexed and sorafenib has significant clinical activity against a wide variety of tumor types in patients and the present studies were performed to determine whether sildenafil enhances the killing potential of [pemetrexed + sorafenib]. In multiple genetically diverse lung cancer cell lines, sildenafil enhanced the lethality of [pemetrexed + sorafenib]. The three-drug combination reduced the activities of AKT, mTOR and STAT transcription factors; increased the activities of eIF2α and ULK-1; lowered the expression of MCL-1, BCL-XL, thioredoxin and SOD2; and increased the expression of Beclin1. Enhanced cell killing by sildenafil was blocked by inhibition of death receptor signaling and autophagosome formation. Enforced activation of STAT3 and AKT or inhibition of JNK significantly reduced cell killing. The enhanced cell killing caused by sildenafil was more reliant on increased PKG signaling than on the generation of nitric oxide. In vivo sildenafil enhanced the anti-tumor properties of [pemetrexed + sorafenib]. Based on our data we argue that additional clinical studies combining pemetrexed, sorafenib and sildenafil are warranted. PMID:28088782

  9. Pyroptotic cells externalize eat-me and release find-me signals and are efficiently engulfed by macrophages.

    PubMed

    Wang, Qiang; Imamura, Ryu; Motani, Kou; Kushiyama, Hiroko; Nagata, Shigekazu; Suda, Takashi

    2013-06-01

    Pathogenic intracellular bacteria often hijack macrophages for their propagation. The infected macrophages release IL-1β and IL-18 and simultaneously commit suicide, which is called pyroptosis; both responses require caspase-1. Here, we found that pyroptotic cells induced by microbial infection were efficiently engulfed by human monocytic THP-1-cell-derived macrophages or mouse peritoneal macrophages. This engulfment was inhibited by the D89E mutant of milk fat globule (MFG) epidermal growth factor (EGF) factor 8 (MFG-E8; a phosphatidylserine-binding protein) that has been shown previously to inhibit phosphatidylserine-dependent engulfment of apoptotic cells by macrophages, suggesting that the engulfment of pyroptotic cells by macrophages was also phosphatidylserine dependent. Using a pair of cell lines that respectively exhibited pyroptosis or apoptosis after muramyl dipeptide treatment, we showed that both pyroptotic and apoptotic cells bound to a T-cell immunoglobulin and mucin domain-containing 4 (Tim4; another phosphatidylserine-binding protein)-coated plate, whereas heat-killed necrotic cells did not, indicating that phosphatidylserine was externalized in pyroptosis and apoptosis but not in accidental necrosis. Macrophages engulfed apoptotic cells most efficiently, followed by pyroptotic and then heat-killed necrotic cells. Pyroptotic cells also released a macrophage attractant(s), 'find-me' signal, whose activity was diminished by apyrase that degrades nucleoside triphosphate to nucleoside monophosphate. Heat-killed necrotic cells and pyroptotic cells released ATP much more efficiently than apoptotic cells. These results suggest that pyroptotic cells, like apoptotic cells, actively induce phagocytosis by macrophages using 'eat-me' and find-me signals. Based on these results, a possible role of coordinated induction of pyroptosis and inflammatory cytokine production is discussed.

  10. Low concentrations of the soy phytoestrogen genistein induce proteinase inhibitor 9 and block killing of breast cancer cells by immune cells.

    PubMed

    Jiang, Xinguo; Patterson, Nicole M; Ling, Yan; Xie, Jianwei; Helferich, William G; Shapiro, David J

    2008-11-01

    The risks and benefits of diets and supplements containing the estrogenic soy isoflavone genistein are not well established. We report that 10 nm genistein potently induces the granzyme B inhibitor, proteinase inhibitor 9 (PI-9) in MCF-7 human breast cancer cells. By inducing PI-9, genistein inhibits the ability of human natural killer (NK) cells to lyse the target breast cancer cells. In ERalphaHA cells, stably transfected MCF-7 cells, which contain elevated levels of estrogen receptor-alpha (ERalpha), 100 pm genistein or 17beta-estradiol potently induce PI-9 and prevent NK cells from killing the target breast cancer cells. The concentrations of genistein that fully induce PI-9 in MCF-7 cells, and in ERalphaHA cells, are far lower than those previously reported to elicit estrogenic responses through ERalpha. Because 4-hydroxytamoxifen, raloxifene, and ICI 182,780/Faslodex all block genistein induction of PI-9 and elevated levels of ERalpha enhance induction of PI-9, genistein acts via ERalpha to induce PI-9. Increasing levels of ERalpha in breast cancer cells results in a progressive increase in induction of PI-9 by genistein and in the cell's ability to evade killing by NK cells. Moderate levels of dietary genistein and soy flour effectively induce PI-9 in human breast cancers grown in ovariectomized athymic mice. A significant population consumes levels of genistein in soy products that may be high enough to induce PI-9, perhaps potentiating the survival of some preexisting breast cancers by enabling them to evade immunosurveillance.

  11. Importance of the autocontrol crossmatch in human renal transplantation.

    PubMed

    Cross, D E; Greiner, R; Whittier, F C

    1976-04-01

    The killing of donor cells in the standard lymphocyte crossmatch is considered strong evidence for preformed antibodies in the recipients's serum. Moreover, it is generally accepted that presensitization has occurred if any of the stored sera kill the donor cells. In our hands, if either the current or the stored sera kill the donor cells, it precludes transplantation. In nine cases we discovered that the recipient's sera also killed the recipient's own lymphocytes, a positive autocontrol test, indicating that factors other than conventional preformed cytotoxic antibodies were responsible for the positive standard crossmatch. The nine patients who demonstrated a positive standard crossmatch and a positive autocontrol for those sera received cadaver allografts. None of the kidneys were rejected hyperacutely and all are functioning adequately. We conclude that the autocontrol crossmatch is an important adjunct for uncovering false positive reactions in the standard lymphocyte crossmatch test.

  12. Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression.

    PubMed

    Lanuza, Pilar M; Vigueras, Alan; Olivan, Sara; Prats, Anne C; Costas, Santiago; Llamazares, Guillermo; Sanchez-Martinez, Diego; Ayuso, José María; Fernandez, Luis; Ochoa, Ignacio; Pardo, Julián

    2018-01-01

    Haploidentical Natural Killer (NK) cells have been shown as an effective and safe alternative for the treatment of haematological malignancies with poor prognosis for which traditional therapies are ineffective. In contrast to haematological cancer cells, that mainly grow as single suspension cells, solid carcinomas are characterised by a tridimensional (3D) architecture that provide specific surviving advantages and resistance against chemo- and radiotherapy. However, little is known about the impact of 3D growth on solid cancer immunotherapy especially adoptive NK cell transfer. We have recently developed a protocol to activate ex vivo human primary NK cells using B lymphoblastic cell lines, which generates NK cells able to overcome chemoresistance in haematological cancer cells. Here we have analysed the activity of these allogeneic NK cells against colorectal (CRC) human cell lines growing in 3D spheroid culture and correlated with the expression of some of the main ligands regulating NK cell activity. Our results indicate that activated NK cells efficiently kill colorectal tumour cell spheroids in both 2D and 3D cultures. Notably, although 3D CRC cell cultures favoured the expression of the inhibitory immune checkpoint PD-L1, it did not correlate with increased resistance to NK cells. Finally, we have analysed in detail the infiltration of NK cells in 3D spheroids by microscopy and found that at low NK cell density, cell death is not observed although NK cells are able to infiltrate into the spheroid. In contrast, higher densities promote tumoural cell death before infiltration can be detected. These findings show that highly dense activated human primary NK cells efficiently kill colorectal carcinoma cells growing in 3D cultures independently of PD-L1 expression and suggest that the use of allogeneic activated NK cells could be beneficial for the treatment of colorectal carcinoma.

  13. Kinetics of killing Listeria monocytogenes by macrophages: rapid killing accompanying phagocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, W.A.

    1983-08-01

    The kinetics of bactericidal activity of activated macrophages can be precisely described by a mathematical model in which phagocytosis, killing, digestion, and release of degraded bacterial material are considered to occur continuously. To gain a better understanding of these events, I have determined the period of time between first contact of bacteria with macrophages and the onset of killing. Activated rat peritoneal macrophages were incubated for various times up to 15 min with Listeria monocytogenes previously labeled with /sup 3/H-thymidine and the unassociated bacteria removed by two centrifugations through a density interface. Both cell-associated radioactivity and cell-associated viable bacteria, determinedmore » as colony forming units after sonication of the cell pellet, increased with time of incubation. However, the specific viability of these bacteria, expressed as the ratio of number of viable bacteria per unit radioactivity declined with time, as an approximate inverse exponential, after a lag period of 2.9 +/- 0.8 min. Evidence is given that other possible causes for this decline in specific viability, other than death of the bacteria, such as preferential ingestion of dead Listeria, clumping of bacteria, variations in autolytic activity, or release of Listericidins are unlikely. I conclude therefore that activated macrophages kill Listeria approximately 3 min after the cell and the bacterium first make contact.« less

  14. Photomedicine and Stem Cells; The Janus face of photodynamic therapy (PDT) to kill cancer stem cells, and photobiomodulation (PBM) to stimulate normal stem cells

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi; Hamblin, Michael R.

    2017-12-01

    Janus, the ancient Roman god depicted with two faces is an appropriate metaphor for light therapy. In the right photodynamic therapy conditions, light is able to kill nearly anything that is living such as cancers, microorganisms, parasites, and more. On the opposite face, light of the correct wavelength and proper dose (photobiomodulation) can heal, regenerate, protect, revitalize and restore any kind of dead, damaged, stressed, dying, degenerating cells, tissue, or organ system. This book discusses both sides of Janus' face in regards to light therapy.

  15. Galectin-3 Inhibits Galectin-8/Parkin-Mediated Ubiquitination of Group A Streptococcus.

    PubMed

    Cheng, Yi-Lin; Wu, Yan-Wei; Kuo, Chih-Feng; Lu, Shiou-Ling; Liu, Fu-Tong; Anderson, Robert; Lin, Chiou-Feng; Liu, Yi-Ling; Wang, Wan-Yu; Chen, Ying-Da; Zheng, Po-Xing; Wu, Jiunn-Jong; Lin, Yee-Shin

    2017-07-25

    Group A streptococcus (GAS) is an important human pathogen that causes a wide variety of cutaneous and systemic infections. Although originally thought to be an extracellular bacterium, numerous studies have demonstrated that GAS can trigger internalization into nonimmune cells to escape from immune surveillance or antibiotic-mediated killing. Epithelial cells possess a defense mechanism involving autophagy-mediated targeting and killing of GAS within lysosome-fused autophagosomes. In endothelial cells, in contrast, we previously showed that autophagy is not sufficient for GAS killing. In the present study, we showed higher galectin-3 (Gal-3) expression and lower Gal-8 expression in endothelial cells than in epithelial cells. The recruitment of Gal-3 to GAS is higher and the recruitment of Gal-8 to GAS is lower in endothelial cells than in epithelial cells. We further showed that Gal-3 promotes GAS replication and diminishes the recruitment of Gal-8 and ubiquitin, the latter of which is a critical protein for autophagy sequestration. After knockdown of Gal-3 in endothelial cells, the colocalization of Gal-8, parkin, and ubiquitin-decorated GAS is significantly increased, as is the interaction of Gal-8 and parkin, an E3 ligase. Furthermore, inhibition of Gal-8 in epithelial cells attenuates recruitment of parkin; both Gal-8 and parkin contribute to ubiquitin recruitment and GAS elimination. Animal studies confirmed that Gal-3-knockout mice develop less-severe skin damage and that GAS replication can be detected only in the air pouch and not in organs and endothelial cells. These results demonstrate that Gal-3 inhibits ubiquitin recruitment by blocking Gal-8 and parkin recruitment, resulting in GAS replication in endothelial cells. IMPORTANCE In epithelial cells, GAS can be efficiently killed within the lysosome-fused autophaosome compartment. However, we previously showed that, in spite of LC-3 recruitment, the autophagic machinery is not sufficient for GAS killing in endothelial cells. In this report, we provide the first evidence that Gal-3, highly expressed in endothelial cells, blocks the tagging of ubiquitin to GAS by inhibiting recruitment of Gal-8 and parkin, leading to an enhancement of GAS replication. We also provide the first demonstration that Gal-8 can interact with parkin, the critical E3 ligase, for resistance to intracellular bacteria by facilitating the decoration of bacteria with ubiquitin chains. Our findings reveal that differential levels of Gal-3 and Gal-8 expression and recruitment to GAS between epithelial cells and endothelial cells may contribute to the different outcomes of GAS elimination or survival and growth of GAS in these two types of cells. Copyright © 2017 Cheng et al.

  16. Polysaccharide nano-vesicular multidrug carriers for synergistic killing of cancer cells

    NASA Astrophysics Data System (ADS)

    Pramod, P. S.; Shah, Ruchira; Chaphekar, Sonali; Balasubramanian, Nagaraj; Jayakannan, Manickam

    2014-09-01

    Multi-drug delivery based on polymer nano-scaffolds is an essential protocol to be developed for better administration of anticancer drugs to enhance their therapeutic efficacies against cancer cells. Here, we report dual delivery polysaccharide nano-vesicles that are capable of loading and delivering both water soluble and water insoluble drugs together in a single polymer scaffold. The selective rupture of the nano-vesicular assembly under intracellular enzyme conditions allowed the simultaneous delivery of a hydrophobic drug camptothecin (CPT) and hydrophilic drug doxorubicin (DOX) supporting their synergistic killing of breast and colon cancer cells. The polysaccharide nano-vesicles have allowed us to address a few important questions regarding the need for multiple drug administration in cancer cells including (a) the role of simultaneous drug release, (b) antagonistic versus synergistic effects of drug combinations and (c) how these are affected by the ratio of drugs. Further, evaluation of the role of caveolae in endocytosis of these polymer scaffolds was also made. The vesicular scaffolds were found to preserve and deliver DOX resulting in 50-60% better killing of cancer cells than the free drug. Additionally, dual loaded nano-vesicles when compared to drug cocktails with individual drugs in separate nano-vesicles (at comparable molar ratios) suggest the relative drug concentration following release and mode of delivery to be both important in cancer cell killing. Results from these experiments have revealed newly developed polysaccharide nano-vesicles loaded with DOX and CPT drugs as potential candidates for improved breast cancer cell killing. Thus, these custom-designed polysaccharide nano-vesicles provide a new perspective on multi-anticancer drug delivery systems and their efficacy.Multi-drug delivery based on polymer nano-scaffolds is an essential protocol to be developed for better administration of anticancer drugs to enhance their therapeutic efficacies against cancer cells. Here, we report dual delivery polysaccharide nano-vesicles that are capable of loading and delivering both water soluble and water insoluble drugs together in a single polymer scaffold. The selective rupture of the nano-vesicular assembly under intracellular enzyme conditions allowed the simultaneous delivery of a hydrophobic drug camptothecin (CPT) and hydrophilic drug doxorubicin (DOX) supporting their synergistic killing of breast and colon cancer cells. The polysaccharide nano-vesicles have allowed us to address a few important questions regarding the need for multiple drug administration in cancer cells including (a) the role of simultaneous drug release, (b) antagonistic versus synergistic effects of drug combinations and (c) how these are affected by the ratio of drugs. Further, evaluation of the role of caveolae in endocytosis of these polymer scaffolds was also made. The vesicular scaffolds were found to preserve and deliver DOX resulting in 50-60% better killing of cancer cells than the free drug. Additionally, dual loaded nano-vesicles when compared to drug cocktails with individual drugs in separate nano-vesicles (at comparable molar ratios) suggest the relative drug concentration following release and mode of delivery to be both important in cancer cell killing. Results from these experiments have revealed newly developed polysaccharide nano-vesicles loaded with DOX and CPT drugs as potential candidates for improved breast cancer cell killing. Thus, these custom-designed polysaccharide nano-vesicles provide a new perspective on multi-anticancer drug delivery systems and their efficacy. Electronic supplementary information (ESI) available: Synthesis scheme, DLS histogram, FE-SEM image, AFM image, TEM image of DEX-PDP-5, AFM image of VDOX+CPT, AFM image of VDOX, characterization of VCPT, characterization of VRHO, DOX nuclear localization, characterization of dual drug loaded vesicles, fluorescent microscopic image of VDOX-CPT, cumulative drug release profile from dual drug loaded vesicles, rate constant determination, and cumulative release profile of DOX and CPT from VDOX+CPT (1 : 4). See DOI: 10.1039/c4nr03514c

  17. Hydrodynamic cavitation kills prostate cells and ablates benign prostatic hyperplasia tissue.

    PubMed

    Itah, Zeynep; Oral, Ozlem; Perk, Osman Yavuz; Sesen, Muhsincan; Demir, Ebru; Erbil, Secil; Dogan-Ekici, A Isin; Ekici, Sinan; Kosar, Ali; Gozuacik, Devrim

    2013-11-01

    Hydrodynamic cavitation is a physical phenomenon characterized by vaporization and bubble formation in liquids under low local pressures, and their implosion following their release to a higher pressure environment. Collapse of the bubbles releases high energy and may cause damage to exposed surfaces. We recently designed a set-up to exploit the destructive nature of hydrodynamic cavitation for biomedical purposes. We have previously shown that hydrodynamic cavitation could kill leukemia cells and erode kidney stones. In this study, we analyzed the effects of cavitation on prostate cells and benign prostatic hyperplasia (BPH) tissue. We showed that hydrodynamic cavitation could kill prostate cells in a pressure- and time-dependent manner. Cavitation did not lead to programmed cell death, i.e. classical apoptosis or autophagy activation. Following the application of cavitation, we observed no prominent DNA damage and cells did not arrest in the cell cycle. Hence, we concluded that cavitation forces directly damaged the cells, leading to their pulverization. Upon application to BPH tissues from patients, cavitation could lead to a significant level of tissue destruction. Therefore similar to ultrasonic cavitation, we propose that hydrodynamic cavitation has the potential to be exploited and developed as an approach for the ablation of aberrant pathological tissues, including BPH.

  18. Anti-leukemia activity of a bacterial toxin with natural specificity for LFA-1 on white blood cells

    PubMed Central

    Kachlany, Scott C.; Schwartz, Amy B.; Balashova, Nataliya V.; Hioe, Catarina E.; Tuen, Michael; Le, Amy; Kaur, Manpreet; Mei, Yongyi; Rao, Jia

    2009-01-01

    The oral bacterium, Aggregatibacter actinomycetemcomitans, produces a leukotoxin (LtxA) that is specific for white blood cells (WBCs) from humans and Old World primates by interacting with lymphocyte function antigen-1 (LFA-1) on susceptible cells. To determine if LtxA could be used as a therapeutic agent for the treatment of WBC diseases, we tested the in vitro and in vivo anti-leukemia activity of the toxin. LtxA kills human malignant WBC lines and primary leukemia cells from acute myeloid leukemia patients, but healthy peripheral blood mononuclear cells (PBMCs) are relatively resistant to LtxA-mediated cytotoxicity. Levels of LFA-1 on cell lines correlated with killing by LtxA and the toxin preferentially killed cells expressing the activated form of LFA-1. In a SCID mouse model for human leukemia, LtxA had potent therapeutic value resulting in long-term survival in LtxA-treated mice. Intravenous infusion of LtxA into a rhesus macaque resulted in a drop in WBC counts at early times post-infusion; however, red blood cells, platelets, hemoglobin and blood chemistry values remained unaffected. Thus, LtxA may be an effective and safe novel therapeutic agent for the treatment of hematologic malignancies. PMID:19747730

  19. A repetitive mutation and selection system for bacterial evolution to increase the specific affinity to pancreatic cancer cells.

    PubMed

    Osawa, Masaki

    2018-01-01

    It is difficult to target and kill cancer cells. One possible approach is to mutate bacteria to enhance their binding to cancer cells. In the present study, Gram-negative Escherichia coli and Gram-positive Bacillus subtilis were randomly mutated, and then were positively and negatively selected for binding cancer vs normal cells. With repetitive mutation and selection both bacteria successfully evolved to increase affinity to the pancreatic cancer cell line (Mia PaCa-2) but not normal cells (HPDE: immortalized human pancreatic ductal epithelial cells). The mutant E. coli and B. subtilis strains bound to Mia PaCa-2 cells about 10 and 25 times more than to HPDE cells. The selected E. coli strain had mutations in biofilm-related genes and the regulatory region for a type I pilus gene. Consistent with type I pili involvement, mannose could inhibit the binding to cells. The results suggest that weak but specific binding is involved in the initial step of adhesion. To test their ability to kill Mia PaCa-2 cells, hemolysin was expressed in the mutant strain. The hemolysin released from the mutant strain was active and could kill Mia PaCa-2 cells. In the case of B. subtilis, the initial binding to the cells was a weak interaction of the leading pole of the motile bacteria. The frequency of this interaction to Mia PaCa-2 cells dramatically increased in the evolved mutant strain. This mutant strain could also specifically invade beneath Mia PaCa-2 cells and settle there. This type of mutation/selection strategy may be applicable to other combinations of cancer cells and bacterial species.

  20. A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells

    PubMed Central

    2011-01-01

    Background Transferrin receptor (TfR) is a cell membrane-associated glycoprotein involved in the cellular uptake of iron and the regulation of cell growth. Recent studies have shown the elevated expression levels of TfR on cancer cells compared with normal cells. The elevated expression levels of this receptor in malignancies, which is the accessible extracellular protein, can be a fascinating target for the treatment of cancer. We have recently designed novel type of immunotoxin, termed "hybrid peptide", which is chemically synthesized and is composed of target-binding peptide and lytic peptide containing cationic-rich amino acids components that disintegrates the cell membrane for the cancer cell killing. The lytic peptide is newly designed to induce rapid killing of cancer cells due to conformational change. In this study, we designed TfR binding peptide connected with this novel lytic peptide and assessed the cytotoxic activity in vitro and in vivo. Methods In vitro: We assessed the cytotoxicity of TfR-lytic hybrid peptide for 12 cancer and 2 normal cell lines. The specificity for TfR is demonstrated by competitive assay using TfR antibody and siRNA. In addition, we performed analysis of confocal fluorescence microscopy and apoptosis assay by Annexin-V binding, caspase activity, and JC-1 staining to assess the change in mitochondria membrane potential. In vivo: TfR-lytic was administered intravenously in an athymic mice model with MDA-MB-231 cells. After three weeks tumor sections were histologically analyzed. Results The TfR-lytic hybrid peptide showed cytotoxic activity in 12 cancer cell lines, with IC50 values as low as 4.0-9.3 μM. Normal cells were less sensitive to this molecule, with IC50 values > 50 μM. Competition assay using TfR antibody and knockdown of this receptor by siRNA confirmed the specificity of the TfR-lytic hybrid peptide. In addition, it was revealed that this molecule can disintegrate the cell membrane of T47D cancer cells just in 10 min, to effectively kill these cells and induce approximately 80% apoptotic cell death but not in normal cells. The intravenous administration of TfR-lytic peptide in the athymic mice model significantly inhibited tumor progression. Conclusions TfR-lytic peptide might provide a potent and selective anticancer therapy for patients. PMID:21849092

  1. Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice

    PubMed Central

    Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E

    2018-01-01

    Abstract Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective. PMID:29471332

  2. Effect of octenidine hydrochloride on planktonic cells and biofilms of Listeria monocytogenes.

    PubMed

    Amalaradjou, Mary Anne Roshni; Norris, Carol E; Venkitanarayanan, Kumar

    2009-06-01

    Listeria monocytogenes is a food-borne pathogen capable of forming biofilms and persisting in food processing environments for extended periods of time, thereby potentially contaminating foods. The efficacy of octenidine hydrochloride (OH) for inactivating planktonic cells and preformed biofilms of L. monocytogenes was investigated at 37, 21, 8, and 4 degrees C in the presence and absence of organic matter (rehydrated nonfat dry milk). OH rapidly killed planktonic cells and biofilms of L. monocytogenes at all four temperatures. Moreover, OH was equally effective in killing L. monocytogenes biofilms on polystyrene and stainless steel matrices in the presence and absence of organic matter. The results underscore OH's ability to prevent establishment of L. monocytogenes biofilms by rapidly killing planktonic cells and to eliminate preformed biofilms, thus suggesting that it could be used as a disinfectant to prevent L. monocytogenes from persisting in food processing environments.

  3. Effect of Octenidine Hydrochloride on Planktonic Cells and Biofilms of Listeria monocytogenes▿

    PubMed Central

    Amalaradjou, Mary Anne Roshni; Norris, Carol E.; Venkitanarayanan, Kumar

    2009-01-01

    Listeria monocytogenes is a food-borne pathogen capable of forming biofilms and persisting in food processing environments for extended periods of time, thereby potentially contaminating foods. The efficacy of octenidine hydrochloride (OH) for inactivating planktonic cells and preformed biofilms of L. monocytogenes was investigated at 37, 21, 8, and 4°C in the presence and absence of organic matter (rehydrated nonfat dry milk). OH rapidly killed planktonic cells and biofilms of L. monocytogenes at all four temperatures. Moreover, OH was equally effective in killing L. monocytogenes biofilms on polystyrene and stainless steel matrices in the presence and absence of organic matter. The results underscore OH's ability to prevent establishment of L. monocytogenes biofilms by rapidly killing planktonic cells and to eliminate preformed biofilms, thus suggesting that it could be used as a disinfectant to prevent L. monocytogenes from persisting in food processing environments. PMID:19376913

  4. Immunology: Exhausted T cells perk up

    NASA Astrophysics Data System (ADS)

    Williams, Matthew A.; Bevan, Michael J.

    2006-02-01

    During persistent infections, the immune cells responsible for killing infected cells and maintaining inflammation gradually stop functioning, allowing the pathogen to thrive. But can this process be reversed?

  5. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage.

    PubMed

    Santo, Christophe Espírito; Quaranta, Davide; Grass, Gregor

    2012-03-01

    Recently, copper (Cu) in its metallic form has regained interest for its antimicrobial properties. Use of metallic Cu surfaces in worldwide hospital trials resulted in remarkable reductions in surface contaminations. Yet, our understanding of why microbes are killed upon contact to the metal is still limited and different modes of action have been proposed. This knowledge, however, is crucial for sustained use of such surfaces in hospitals and other hygiene-sensitive areas. Here, we report on the molecular mechanisms by which the Gram-positive Staphylococcus haemolyticus is inactivated by metallic Cu. Staphylococcus haemolyticus was killed within minutes on Cu but not on stainless steel demonstrating the antimicrobial efficacy of metallic Cu. Inductively coupled plasma mass spectroscopy (ICP-MS) analysis and in vivo staining with Coppersensor-1 indicated that cells accumulated large amounts of Cu ions from metallic Cu surfaces contributing to lethal damage. Mutation rates of Cu- or steel-exposed cells were similarly low. Instead, live/dead staining indicated cell membrane damage in Cu- but not steel-exposed cells. These findings support a model of the cellular targets of metallic Cu toxicity in bacteria, which suggests that metallic Cu is not genotoxic and does not kill via DNA damage. In contrast, membranes constitute the likely Achilles' heel of Cu surface-exposed cells.

  6. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage

    PubMed Central

    Santo, Christophe Espírito; Quaranta, Davide; Grass, Gregor

    2012-01-01

    Recently, copper (Cu) in its metallic form has regained interest for its antimicrobial properties. Use of metallic Cu surfaces in worldwide hospital trials resulted in remarkable reductions in surface contaminations. Yet, our understanding of why microbes are killed upon contact to the metal is still limited and different modes of action have been proposed. This knowledge, however, is crucial for sustained use of such surfaces in hospitals and other hygiene-sensitive areas. Here, we report on the molecular mechanisms by which the Gram-positive Staphylococcus haemolyticus is inactivated by metallic Cu. Staphylococcus haemolyticus was killed within minutes on Cu but not on stainless steel demonstrating the antimicrobial efficacy of metallic Cu. Inductively coupled plasma mass spectroscopy (ICP-MS) analysis and in vivo staining with Coppersensor-1 indicated that cells accumulated large amounts of Cu ions from metallic Cu surfaces contributing to lethal damage. Mutation rates of Cu- or steel-exposed cells were similarly low. Instead, live/dead staining indicated cell membrane damage in Cu- but not steel-exposed cells. These findings support a model of the cellular targets of metallic Cu toxicity in bacteria, which suggests that metallic Cu is not genotoxic and does not kill via DNA damage. In contrast, membranes constitute the likely Achilles’ heel of Cu surface-exposed cells. PMID:22950011

  7. Pathogen-Specific T Cell Polyfunctionality Is a Correlate of T Cell Efficacy and Immune Protection

    PubMed Central

    Boyd, Anders; Almeida, Jorge R.; Darrah, Patricia A.; Sauce, Delphine; Seder, Robert A.; Appay, Victor; Gorochov, Guy; Larsen, Martin

    2015-01-01

    Introduction Understanding the factors that delineate the efficacy of T cell responses towards pathogens is crucial for our ability to develop potent therapies against infectious diseases. Multidimensional evaluation of T cell functionality at the single-cell level enables exhaustive analysis of combinatorial functional properties, hence polyfunctionality. We have recently invented an algorithm that quantifies polyfunctionality, the Polyfunctionality Index (Larsen et al. PLoS One 2012). Here we demonstrate that quantitative assessment of T cell polyfunctionality correlates with T cell efficacy measured as the capacity to kill target cells in vitro and control infection in vivo. Methods We employed the polyfunctionality index on two datasets selected for their unique ability to evaluate the polyfunctional imprint on T cell efficacy. 1) HIV-specific CD8+ T cells and 2) Leishmania major-specific CD4+ T cells were analysed for their capacity to secrete multiple effector molecules, kill target cells and control infection. Briefly, employing the Polyfunctionality Index algorithm we determined the parameter estimates resulting in optimal correlation between T cell polyfunctionality and T cell efficacy. Results T cell polyfunctionality is correlated with T cell efficacy measured as 1) target killing (r=0.807, P<0.0001) and 2) lesion size upon challenge with Leishmania major (r=-0.50, P=0.004). Contrary to an approach relying on the Polyfunctionality Index algorithm, quantitative evaluation of T cell polyfunctionality traditionally ignores the gradual contribution of more or less polyfunctional T cells. Indeed, comparing both approaches we show that optimal description of T cell efficacy is obtained when gradually integrating all levels of polyfunctionality in accordance with the Polyfunctionality Index. Conclusions Our study presents a generalizable methodology to objectively evaluate the impact of polyfunctionality on T cell efficacy. We show that T cell polyfunctionality is a superior correlate of T cell efficacy both in vitro and in vivo as compared with response size. Therefore, future immunotherapies should aim to increase T cell polyfunctionality. PMID:26046523

  8. Insufficient natural killer cell responses against retroviruses: how to improve NK cell killing of retrovirus-infected cells.

    PubMed

    Littwitz-Salomon, Elisabeth; Dittmer, Ulf; Sutter, Kathrin

    2016-11-08

    Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.

  9. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  10. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  11. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  12. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  13. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  14. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    PubMed

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to <10 cGy h(-1) and involve multiple patients to detect patient variability. Results may suggest a preference for high dose rate brachytherapy or LDR brachytherapy without permanent retention of the implant seeds (hence the dose rates in peripheral tissues and organs remain above IDRE thresholds).

  15. Two-Phase Bactericidal Mechanism of Silver Nanoparticles against Burkholderia pseudomallei

    PubMed Central

    Hongsing, Nuttaya; Thammawithan, Saengrawee; Daduang, Sakda; Klaynongsruang, Sompong; Tuanyok, Apichai; Patramanon, Rina

    2016-01-01

    Silver nanoparticles (AgNPs) have a strong antimicrobial activity against a variety of pathogenic bacteria. The killing mechanism of AgNPs involves direct physical membrane destruction and subsequent molecular damage from both AgNPs and released Ag+. Burkholderia pseudomallei is the causative agent of melioidosis, an endemic infectious disease primarily found in northern Australia and Southeast Asia. B. pseudomallei is intrinsically resistant to most common antibiotics. In this study, the antimicrobial activity and mechanism of AgNPs (10–20 nm) against B. pseudomallei were investigated. The MIC and MBC for nine B. pseudomallei strains ranged from 32–48 μg/mL and 96–128 μg/mL, respectively. Concentrations of AgNPs less than 256 μg/mL were not toxic to human red blood cells. AgNPs exhibited a two-phase mechanism: cell death induction and ROS induction. The first phase was a rapid killing step within 5 min, causing the direct damage of the cytoplasmic membrane of the bacterial cells, as observed by a time-kill assay and fluorescence microscopy. During the period of 5–30 min, the cell surface charge was rapidly neutralized from -8.73 and -7.74 to 2.85 and 2.94 mV in two isolates of B. pseudomallei, as revealed by zeta potential measurement. Energy-dispersive X-ray (EDX) spectroscopy showed the silver element deposited on the bacterial membrane, and TEM micrographs of the AgNP-treated B. pseudomallei cells showed severe membrane damage and cytosolic leakage at 1/5 MIC and cell bursting at MBC. During the killing effect the released Ag+ from AgNPs was only 3.9% from the starting AgNPs concentration as observed with ICP-OES experiment. In the second phase, the ROS induction occurred 1–4 hr after the AgNP treatment. Altogether, we provide direct kinetic evidence of the AgNPs killing mechanism, by which cell death is separable from the ROS induction and AgNPs mainly contributes in the killing action. AgNPs may be considered a potential candidate to develop a novel alternative agent for melioidosis treatment with fast action. PMID:27977746

  16. Combinatorial BTK and MALT1 inhibition augments killing of CD79 mutant diffuse large B cell lymphoma

    PubMed Central

    Nagel, Daniel; Bognar, Miriam; Eitelhuber, Andrea C.; Kutzner, Kerstin; Vincendeau, Michelle; Krappmann, Daniel

    2015-01-01

    Survival of activated B cell-subtype (ABC) of diffuse large B cell lymphoma (DLBCL) is driven by chronic B cell receptor (BCR) signaling that activates the canonical NF-κB pathway. Inhibition of BTK by Ibrutinib has been shown to kill ABC DLBCL cells that carry activating mutations in the BCR adaptor CD79. However, mutations in BTK or in downstream components such as CARMA1/CARD11 can render lymphomas Ibrutinib resistant. Therefore, we assessed here the simultaneous inhibition of BTK and the protease MALT1 that acts downstream of CARMA1 and is essential for ABC DLBCL tumor growth. We show that in CD79 mutant cells BTK is a crucial upstream regulator of MALT1, but dispensable in CARMA1 mutant ABC DLBCL. Combined inhibition of BTK by Ibrutinib and MALT1 by S-Mepazine additively impaired MALT1 cleavage activity and expression of NF-κB pro-survival factors. Thereby, combinatorial Ibrutinib and S-Mepazine treatment enhanced killing of CD79 mutant ABC DLBCL cells. Moreover, while expression of oncogenic CARMA1 in CD79 mutant cells conferred Ibrutinib resistance, double mutant cells were still sensitive to MALT1 inhibition by S-Mepazine. Thus, based on the genetic background combinatorial BTK and MALT1 inhibition may improve effectiveness of therapeutic treatment and reduce the chances for the development of drug resistances. PMID:26540570

  17. Chinese Medicine Amygdalin and β-Glucosidase Combined with Antibody Enzymatic Prodrug System As A Feasible Antitumor Therapy.

    PubMed

    Li, Yun-Long; Li, Qiao-Xing; Liu, Rui-Jiang; Shen, Xiang-Qian

    2018-03-01

    Amarogentin is an efficacious Chinese herbal medicine and a component of the bitter apricot kernel. It is commonly used as an expectorant and supplementary anti-cancer drug. β-Glucosidase is an enzyme that hydrolyzes the glycosidic bond between aryl and saccharide groups to release glucose. Upon their interaction, β-glucosidase catalyzes amarogentin to produce considerable amounts of hydrocyanic acid, which inhibits cytochrome C oxidase, the terminal enzyme in the mitochondrial respiration chain, and suspends adenosine triphosphate synthesis, resulting in cell death. Hydrocyanic acid is a cell-cycle-stage-nonspecific agent that kills cancer cells. Thus, β-glucosidase can be coupled with a tumor-specific monoclonal antibody. β-Glucosidase can combine with cancer-cell-surface antigens and specifically convert amarogentin to an active drug that acts on cancer cells and the surrounding antibodies to achieve a killing effect. β-Glucosidase is injected intravenously and recognizes cancer-cell-surface antigens with the help of an antibody. The prodrug amarogentin is infused after β-glucosidase has reached the target position. Coupling of cell membrane peptides with β-glucosidase allows the enzyme to penetrate capillary endothelial cells and clear extracellular deep solid tumors to kill the cells therein. The Chinese medicine amarogentin and β-glucosidase will become an important treatment for various tumors when an appropriate monoclonal antibody is developed.

  18. Designing and building oncolytic viruses

    PubMed Central

    Maroun, Justin; Muñoz-Alía, Miguel; Ammayappan, Arun; Schulze, Autumn; Peng, Kah-Whye; Russell, Stephen

    2017-01-01

    Oncolytic viruses (OVs) are engineered and/or evolved to propagate selectively in cancerous tissues. They have a dual mechanism of action; direct killing of infected cancer cells cross-primes anticancer immunity to boost the killing of uninfected cancer cells. The goal of the field is to develop OVs that are easily manufactured, efficiently delivered to disseminated sites of cancer growth, undergo rapid intratumoral spread, selectively kill tumor cells, cause no collateral damage and pose no risk of transmission in the population. Here we discuss the many virus engineering strategies that are being pursued to optimize delivery, intratumoral spread and safety of OVs derived from different virus families. With continued progress, OVs have the potential to transform the paradigm of cancer care. PMID:29387140

  19. Clarithromycin accumulation by phagocytes and its effect on killing of Aggregatibacter actinomycetemcomitans.

    PubMed

    Iskandar, Irma; Walters, John D

    2011-03-01

    Clarithromycin inhibits several periodontal pathogens and is concentrated inside gingival fibroblasts and epithelial cells by an active transporter. We hypothesized that polymorphonuclear leukocytes (PMNs) and less mature myeloid cells possess a similar transporter for clarithromycin. It is feasible that clarithromycin accumulation inside PMNs could enhance their ability to kill Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans). To test the first hypothesis, purified PMNs and cultured HL-60 cells were incubated with [(3)H]-clarithromycin. Clarithromycin transport was assayed by measuring changes in cell-associated radioactivity over time. The second hypothesis was examined with PMNs loaded by incubation with clarithromycin (5 μg/ml). Opsonized bacteria were incubated at 37°C with control and clarithromycin-loaded PMNs. Mature human PMNs, HL-60 cells differentiated into granulocytes, and undifferentiated HL-60 cells all took up clarithromycin in a saturable manner. The kinetics of uptake by all yielded linear Lineweaver-Burk plots. HL-60 granulocytes transported clarithromycin with a K(m) of ≈250 μg/ml and a V(max) of 473 ng/min/10(6) cells, which were not significantly different from the values obtained with PMNs. At steady state, clarithromycin levels inside HL-60 granulocytes and PMNs were 28- to 71-fold higher than extracellular levels. Clarithromycin-loaded PMNs killed significantly more A. actinomycetemcomitans and achieved shorter half-times for killing than control PMNs when assayed at a bacteria-to-PMN ratio of 100:1 (P <0.04). At a ratio of 30:1, these differences were not consistently significant. PMNs and less mature myeloid cells possess a transporter that takes up and concentrates clarithromycin. This system could help PMNs cope with an overwhelming infection by A. actinomycetemcomitans.

  20. Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy.

    PubMed

    Lubin, Martin; Lubin, Adam

    2009-05-29

    The gene for methylthioadenosine phosphorylase (MTAP) lies on 9p21, close to the gene CDKN2A that encodes the tumor suppressor proteins p16 and p14ARF. MTAP and CDKN2A are homozygously co-deleted, with a frequency of 35 to 70%, in lung and pancreatic cancer, glioblastoma, osteosarcoma, soft-tissue sarcoma, mesothelioma, and T-cell acute lymphoblastic leukemia. In normal cells, but not in tumor cells lacking MTAP, MTAP cleaves the natural substrate, 5'-deoxy-5'-methylthioadenosine (MTA), to adenine and 5-methylthioribose-1-phosphate (MTR-1-P), which are then converted to adenine nucleotides and methionine. This distinct difference between normal MTAP-positive cells and tumor MTAP-negative cells led to several proposals for therapy. We offer a novel strategy in which both MTA and a toxic adenine analog, such as 2,6-diaminopurine (DAP), 6-methylpurine (MeP), or 2-fluoroadenine (F-Ade), are administered. In MTAP-positive cells, abundant adenine, generated from supplied MTA, competitively blocks the conversion of an analog, by adenine phosphoribosyltransferase (APRT), to its active nucleotide form. In MTAP-negative tumor cells, the supplied MTA cannot generate adenine; hence conversion of the analog is not blocked. We show that this combination treatment--adenine analog plus MTA--kills MTAP-negative A549 lung tumor cells, while MTAP-positive human fibroblasts (HF) are protected. In co-cultures of the breast tumor cell line, MCF-7, and HF cells, MCF-7 is inhibited or killed, while HF cells proliferate robustly. 5-Fluorouracil (5-FU) and 6-thioguanine (6-TG) may also be used with our strategy. Though neither analog is activated by APRT, in MTAP-positive cells, adenine produced from supplied MTA blocks conversion of 5-FU and 6-TG to their toxic nucleotide forms by competing for 5-phosphoribosyl-1-pyrophosphate (PRPP). The combination of MTA with 5-FU or 6-TG, in the treatment of MTAP-negative tumors, may produce a significantly improved therapeutic index. We describe a selective strategy to kill tumor cells lacking MTAP.

  1. Toxin Kid uncouples DNA replication and cell division to enforce retention of plasmid R1 in Escherichia coli cells.

    PubMed

    Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A; Agu, Chukwuma A; Wang, Xindan; Bernal, Juan A; Sherratt, David J; de la Cueva-Méndez, Guillermo

    2014-02-18

    Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid-bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs.

  2. Toxin Kid uncouples DNA replication and cell division to enforce retention of plasmid R1 in Escherichia coli cells

    PubMed Central

    Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A.; Agu, Chukwuma A.; Wang, Xindan; Bernal, Juan A.; Sherratt, David J.; de la Cueva-Méndez, Guillermo

    2014-01-01

    Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid–bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs. PMID:24449860

  3. Hypoxia Induced Impairment of NK Cell Cytotoxicity against Multiple Myeloma Can Be Overcome by IL-2 Activation of the NK Cells

    PubMed Central

    Sarkar, Subhashis; Germeraad, Wilfred T. V.; Rouschop, Kasper M. A.; Steeghs, Elisabeth M. P.; van Gelder, Michel; Bos, Gerard M. J.; Wieten, Lotte

    2013-01-01

    Background Multiple Myeloma (MM) is an incurable plasma cell malignancy residing within the bone marrow (BM). We aim to develop allogeneic Natural Killer (NK) cell immunotherapy for MM. As the BM contains hypoxic regions and the tumor environment can be immunosuppressive, we hypothesized that hypoxia inhibits NK cell anti-MM responses. Methods NK cells were isolated from healthy donors by negative selection and NK cell function and phenotype were examined at oxygen levels representative of hypoxic BM using flowcytometry. Additionally, NK cells were activated with IL-2 to enhance NK cell cytotoxicity under hypoxia. Results Hypoxia reduced NK cell killing of MM cell lines in an oxygen dependent manner. Under hypoxia, NK cells maintained their ability to degranulate in response to target cells, though, the percentage of degranulating NK cells was slightly reduced. Adaptation of NK- or MM cells to hypoxia was not required, hence, the oxygen level during the killing process was critical. Hypoxia did not alter surface expression of NK cell ligands (HLA-ABC, -E, MICA/B and ULBP1-2) and receptors (KIR, NKG2A/C, DNAM-1, NCRs and 2B4). It did, however, decrease expression of the activating NKG2D receptor and of intracellular perforin and granzyme B. Pre-activation of NK cells by IL-2 abrogated the detrimental effects of hypoxia and increased NKG2D expression. This emphasized that activated NK cells can mediate anti-MM effects, even under hypoxic conditions. Conclusions Hypoxia abolishes the killing potential of NK cells against multiple myeloma, which can be restored by IL-2 activation. Our study shows that for the design of NK cell-based immunotherapy it is necessary to study biological interactions between NK- and tumor cells also under hypoxic conditions. PMID:23724099

  4. A new fluorescent test for cell vitality using calcofluor white M2R.

    PubMed

    Fischer, J M; Peterson, C A; Bols, N C

    1985-03-01

    The fluorescent fabric-brightener dye, Calcofluor white M2R (CFW), can be used to distinguish between living and dead cells from a variety of animal and plant sources. CFW does not stain living mouse fibroblasts or trout red blood cells and stains only the cell walls in living cells from the epidermis of onion bulb scale, staminal hairs of Tradescantia, and longitudinal sections of broad bean stems and roots. Heat-killed plant or animal cells are recognized by their lightly stained cytoplasm and brightly stained nuclei. The optimum staining concentrations were very low (0.01% to 0.03%) and nontoxic. Using onion scale epidermis in which some cells had been killed by heating as a test system, and the plasmolysis-deplasmolysis rection as the ultimate test for cell vitality, results from CFW staining correctly predicted cell vitality for about 98% of the cells tested. This success rate was comparable to those for Evans blue, uranin or neutral red in this test system.

  5. Cell-mediated immunity in herpes simplex virus-infected mice: functional analysis of lymph node cells during periods of acute and latent infection, with reference to cytotoxic and memory cells.

    PubMed

    Nash, A A; Quartey-Papafio, R; Wildy, P

    1980-08-01

    The functional characteristics of lymphoid cells were investigated during acute and latent infection of mice with herpes simplex virus (HSV). Cytotoxic T cells were found in the draining lymph node (DLN) 4 days p.i. and had reached maximum activity between 6 and 9 days. After the 12th day and during the period of latent infection (> 20 days) no cytotoxic cell activity was observed. Cytotoxic activity could only be detected when the lymphoid cells had been cultured for a period of 3 days. In general, the cell killing was specific for syngeneic infected target cells, although some killing of uninfected targets was observed. In contrast to the cytotoxic response, DLN cells responding to HSV in a proliferation assay were detected towards the end of the acute phase and at lease up to 9 months thereafter. The significance of these observations for the pathogenesis of HSV is discussed.

  6. Monoclonal TCR-redirected tumor cell killing.

    PubMed

    Liddy, Nathaniel; Bossi, Giovanna; Adams, Katherine J; Lissina, Anna; Mahon, Tara M; Hassan, Namir J; Gavarret, Jessie; Bianchi, Frayne C; Pumphrey, Nicholas J; Ladell, Kristin; Gostick, Emma; Sewell, Andrew K; Lissin, Nikolai M; Harwood, Naomi E; Molloy, Peter E; Li, Yi; Cameron, Brian J; Sami, Malkit; Baston, Emma E; Todorov, Penio T; Paston, Samantha J; Dennis, Rebecca E; Harper, Jane V; Dunn, Steve M; Ashfield, Rebecca; Johnson, Andy; McGrath, Yvonne; Plesa, Gabriela; June, Carl H; Kalos, Michael; Price, David A; Vuidepot, Annelise; Williams, Daniel D; Sutton, Deborah H; Jakobsen, Bent K

    2012-06-01

    T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)–mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.

  7. Behavior of Paramecium sp. in solutions containing Sr and Pb: Do Paramecium sp. alter chemical forms of those metals?

    NASA Astrophysics Data System (ADS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Koka, Masahi; Satoh, Takahiro; Kamiya, Tomihiro

    2011-10-01

    The behavior of Paramecium sp. (Paramecium bursaria) in aqueous solutions containing Sr and Pb was investigated to determine the role of protozoa in the migration of radionuclides in the environment. Precultured living cells of P. bursaria were exposed to aqueous solutions containing 0.01 or 0.05 mM Sr or Pb at pH 7 for 24 h. For comparison, pre-killed cells were treated with the metal solutions in the same way. Two-dimensional elemental mappings of cells were obtained by micro-PIXE. Aquatic species of Sr and Pb were analyzed by size exclusion chromatography (SEC) coupled online to ultraviolet (UV) spectroscopy and inductivity coupled plasma mass spectroscopy (ICP-MS). The amounts of Sr adsorbed or taken up by the cells surviving for 24 h and adsorbed on pre-killed cells were below the detection limit. Cells of P. bursaria adsorbed or took up a fraction of Pb. The Pb adsorbed or taken up by the cells surviving for 24 h in the Pb solution was barely detectable, while the Pb adsorbed on pre-killed cells was clearly mappable. These findings suggest that living cells of P. bursaria have functions that reduce adsorption or uptake of Pb on the cells. Quantitative and SEC-UV-ICP-MS analyses of the Sr and Pb in aqueous phases showed no clear evidences that living cells of P. bursaria alter the chemical form of Sr or Pb remaining in the aqueous phases after the cell-solution contact.

  8. ONC201 kills breast cancer cells in vitro by targeting mitochondria.

    PubMed

    Greer, Yoshimi Endo; Porat-Shliom, Natalie; Nagashima, Kunio; Stuelten, Christina; Crooks, Dan; Koparde, Vishal N; Gilbert, Samuel F; Islam, Celia; Ubaldini, Ashley; Ji, Yun; Gattinoni, Luca; Soheilian, Ferri; Wang, Xiantao; Hafner, Markus; Shetty, Jyoti; Tran, Bao; Jailwala, Parthav; Cam, Maggie; Lang, Martin; Voeller, Donna; Reinhold, William C; Rajapakse, Vinodh; Pommier, Yves; Weigert, Roberto; Linehan, W Marston; Lipkowitz, Stanley

    2018-04-06

    We report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines. ONC201 attenuated cell viability in all cancer cell lines tested. Unexpectedly, ONC201 toxicity was not dependent on either TRAIL receptors nor caspases. Time-lapse live cell imaging revealed that ONC201 induces cell membrane ballooning followed by rupture, distinct from the morphology of cells undergoing apoptosis. Further investigation found that ONC201 induces phosphorylation of AMP-dependent kinase and ATP loss. Cytotoxicity and ATP depletion were significantly enhanced in the absence of glucose, suggesting that ONC201 targets mitochondrial respiration. Further analysis indicated that ONC201 indirectly inhibits mitochondrial respiration. Confocal and electron microscopic analysis demonstrated that ONC201 triggers mitochondrial structural damage and functional impairment. Moreover, ONC201 decreased mitochondrial DNA (mtDNA). RNAseq analysis revealed that ONC201 suppresses expression of multiple mtDNA-encoded genes and nuclear-encoded mitochondrial genes involved in oxidative phosphorylation and other mitochondrial functions. Importantly, fumarate hydratase deficient cancer cells and multiple cancer cell lines with reduced amounts of mtDNA were resistant to ONC201. These results indicate that cells not dependent on mitochondrial respiration are ONC201-resistant. Our data demonstrate that ONC201 kills cancer cells by disrupting mitochondrial function and further suggests that cancer cells that are dependent on glycolysis will be resistant to ONC201.

  9. ONC201 kills breast cancer cells in vitro by targeting mitochondria

    PubMed Central

    Greer, Yoshimi Endo; Porat-Shliom, Natalie; Nagashima, Kunio; Stuelten, Christina; Crooks, Dan; Koparde, Vishal N.; Gilbert, Samuel F.; Islam, Celia; Ubaldini, Ashley; Ji, Yun; Gattinoni, Luca; Soheilian, Ferri; Wang, Xiantao; Hafner, Markus; Shetty, Jyoti; Tran, Bao; Jailwala, Parthav; Cam, Maggie; Lang, Martin; Voeller, Donna; Reinhold, William C.; Rajapakse, Vinodh; Pommier, Yves; Weigert, Roberto; Linehan, W. Marston; Lipkowitz, Stanley

    2018-01-01

    We report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines. ONC201 attenuated cell viability in all cancer cell lines tested. Unexpectedly, ONC201 toxicity was not dependent on either TRAIL receptors nor caspases. Time-lapse live cell imaging revealed that ONC201 induces cell membrane ballooning followed by rupture, distinct from the morphology of cells undergoing apoptosis. Further investigation found that ONC201 induces phosphorylation of AMP-dependent kinase and ATP loss. Cytotoxicity and ATP depletion were significantly enhanced in the absence of glucose, suggesting that ONC201 targets mitochondrial respiration. Further analysis indicated that ONC201 indirectly inhibits mitochondrial respiration. Confocal and electron microscopic analysis demonstrated that ONC201 triggers mitochondrial structural damage and functional impairment. Moreover, ONC201 decreased mitochondrial DNA (mtDNA). RNAseq analysis revealed that ONC201 suppresses expression of multiple mtDNA-encoded genes and nuclear-encoded mitochondrial genes involved in oxidative phosphorylation and other mitochondrial functions. Importantly, fumarate hydratase deficient cancer cells and multiple cancer cell lines with reduced amounts of mtDNA were resistant to ONC201. These results indicate that cells not dependent on mitochondrial respiration are ONC201-resistant. Our data demonstrate that ONC201 kills cancer cells by disrupting mitochondrial function and further suggests that cancer cells that are dependent on glycolysis will be resistant to ONC201. PMID:29719618

  10. Anti-melanoma activity of the 9.2.27PE immunotoxin in dacarbazine resistant cells.

    PubMed

    Risberg, Karianne; Fodstad, Oystein; Andersson, Yvonne

    2010-04-01

    We have earlier shown that the 9.2.27 Pseudomonas Exotoxin A (PE) immunotoxin (IT) efficiently kills melanoma cells through inhibition of protein synthesis followed by some morphologic and biochemical features of apoptosis, a different cell killing mechanism than the one caused by Dacarbazine (DTIC), a chemotherapeutic drug used to treat malignant melanoma. To examine whether induced DTIC resistance also is a determining factor for the effectiveness of 9.2.27PE IT, we developed a DTIC resistant subline, FEMX-200DR, from the DTIC sensitive cell line FEMX. The cell variants were treated with 9.2.27PE, an IT binding to the high molecular weight-melanoma associated antigen (HMW-MAA) expressed on most malignant melanoma cells. The IT was equally effective in killing the FEMX-200DR and the FEMX cells, and the cell death was primarily caused by inhibition of protein synthesis. The DNA repair enzyme and apoptotic marker PARP, a substrate of caspase-3, was inactivated, although we observed only a minor activation of caspase-3 and caspase-8, intracellular proteases involved in apoptosis. In addition to being DTIC resistant, the FEMX-200DR cells were also more resistant to apoptosis than the parent cells as a 3 times higher concentration of the apoptotic inducer Staurosporine was needed to obtain IC50. Furthermore, in early passage malignant melanoma cell lines established from lymph node metastases, the 9.2.27PE caused a time-dependent and dose-dependent decrease in cell viability independent of their DTIC sensitivity. These findings show that the 9.2.27PE IT efficiently can cause cell death in malignant melanoma cells independent of their level of resistance to apoptosis and DTIC.

  11. Altering calcium influx for selective destruction of breast tumor.

    PubMed

    Yu, Han-Gang; McLaughlin, Sarah; Newman, Mackenzie; Brundage, Kathleen; Ammer, Amanda; Martin, Karen; Coad, James

    2017-03-04

    Human triple-negative breast cancer has limited therapeutic choices. Breast tumor cells have depolarized plasma membrane potential. Using this unique electrical property, we aim to develop an effective selective killing of triple-negative breast cancer. We used an engineered L-type voltage-gated calcium channel (Cec), activated by membrane depolarization without inactivation, to induce excessive calcium influx in breast tumor cells. Patch clamp and flow cytometry were used in testing the killing selectivity and efficiency of human breast tumor cells in vitro. Bioluminescence and ultrasound imaging were used in studies of human triple-negative breast cancer cell MDA-MB-231 xenograft in mice. Histological staining, immunoblotting and immunohistochemistry were used to investigate mechanism that mediates Cec-induced cell death. Activating Cec channels expressed in human breast cancer MCF7 cells produced enormous calcium influx at depolarized membrane. Activating the wild-type Cav1.2 channels expressed in MCF7 cells also produced a large calcium influx at depolarized membrane, but this calcium influx was diminished at the sustained membrane depolarization due to channel inactivation. MCF7 cells expressing Cec died when the membrane potential was held at -10 mV for 1 hr, while non-Cec-expressing MCF7 cells were alive. MCF7 cell death was 8-fold higher in Cec-expressing cells than in non-Cec-expressing cells. Direct injection of lentivirus containing Cec into MDA-MB-231 xenograft in mice inhibited tumor growth. Activated caspase-3 protein was detected only in MDA-MB-231 cells expressing Cec, along with a significantly increased expression of activated caspase-3 in xenograft tumor treated with Cec. We demonstrated a novel strategy to induce constant calcium influx that selectively kills human triple-negative breast tumor cells.

  12. Structural Factors and Mechanisms Underlying the Improved Photodynamic Cell Killing with Silicon Phthalocyanine Photosensitizers Directed to Lysosomes Versus Mitochondria

    PubMed Central

    Rodriguez, Myriam E.; Zhang, Ping; Azizuddin, Kashif; Delos Santos, Grace B.; Chiu, Song-mao; Xue, Liang-yan; Berlin, Jeffery C.; Peng, Xinzhan; Wu, Hongqiao; Lam, Minh; Nieminen, Anna-Liisa; Kenney, Malcolm E.; Oleinick, Nancy L.

    2012-01-01

    The phthalocyanine photosensitizer Pc 4 has been shown to bind preferentially to mitochondrial and endoplasmic reticulum membranes. Upon photoirradiation of Pc 4-loaded cells, membrane components, especially Bcl-2, are photodamaged and apoptosis, as indicated by activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase, is triggered. A series of analogs of Pc 4 were synthesized, and the results demonstrate that Pcs with the aminopropylsiloxy ligand of Pc 4 or a similar one on one side of the Pc ring and a second large axial ligand on the other side of the ring have unexpected properties, including enhanced cell uptake, greater monomerization resulting in greater intracellular fluorescence and three-fold higher affinity constants for liposomes. The hydroxyl-bearing axial ligands tend to reduce aggregation of the Pc and direct it to lysosomes, resulting in four to six times more killing of cells, as defined by loss of clonogenicity, than with Pc 4. Whereas Pc 4-PDT photodamages Bcl-2 and Bcl-xL, Pc 181-PDT causes much less photodamage to Bcl-2 over the same dose–response range relative to cell killing, with earlier cleavage of Bid and slower caspase-3-dependent apoptosis. Therefore, within this series of photosensitizers, these hydroxyl-bearing axial ligands are less aggregated than is Pc 4, tend to localize to lysosomes and are more effective in overall cell killing than is Pc 4, but induce apoptosis more slowly and by a modified pathway. PMID:19508642

  13. Curcumin interacts with sildenafil to kill GI tumor cells via endoplasmic reticulum stress and reactive oxygen/ nitrogen species

    PubMed Central

    Roberts, Jane L.; Poklepovic, Andrew; Booth, Laurence

    2017-01-01

    The present studies focused on the ability of the phosphodiesterase 5 (PDE5) inhibitor sildenafil to enhance the anti-cancer properties of clinically relevant concentrations of the dietary diarylheptanoid curcumin. In gastrointestinal tumor cells, sildenafil and curcumin interacted in a greater than additive fashion to kill. Inhibition of the extrinsic apoptotic pathway suppressed killing by ∼50%, as did blockade of the intrinsic apoptotic pathway. Sildenafil and curcumin reduced mTORC1 and mTORC2 activity and increased Beclin1 levels and the numbers of autophagosomes and autolysosomes in cells in a PERK-eIF2α-dependent fashion. Knock down of Beclin1 or ATG5 partially suppressed killing. In contrast, stable knock out of ATG16-L1 unexpectedly enhanced killing, an effect not altered by Beclin1/ATG5 knock down. Curcumin and sildenafil exposure reduced the expression of MCL-1, BCL-XL, thioredoxin and superoxide dismutase 2 (SOD2) in an eIF2α-dependent fashion. Curcumin and sildenafil interacted in a greater than additive fashion to increase the levels of reactive oxygen species; knock down of thioredoxin or SOD2 enhanced killing and over-expression of thioredoxin or SOD2 suppressed killing. In vivo, curcumin and sildenafil interacted to suppress the growth of colon cancer tumors. Multiplex analyses of plasma taken after drug exposure at animal nadir indicated that the levels of M-CSF, CXCL-9, PDGF and G-CSF were significantly increased by [curcumin + sildenafil] and that expression of CXCL1 and CCL5 were significantly reduced. Cells isolated from in vivo treated [curcumin + sildenafil] tumors were resistant to in vitro [curcumin + sildenafil] exposure, a phenotype that was blocked by the colon cancer therapeutic regorafenib. PMID:29245915

  14. ACCUMULATION OF DIBUTYLTIN IN HUMAN NATURAL KILLER CELLS

    EPA Science Inventory

    NK cells are a subset of lymphocytes capable of killing tumor cells, virally infected cells and antibody coated cells. Dibutyltin dichloride (DBT) is a butyltin that has been used as a stabilizer in polyvinyl chloride (PVC) plastics and also as a deworming product in poultry. DBT...

  15. Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity

    PubMed Central

    Bisetto, Sara; Newberg, Andrew; Doria, Cataldo; Levine, Mark; Monti, Daniel A.; Hoek, Jan B.

    2016-01-01

    We investigated the mechanism of selective ascorbate-induced cytotoxicity in tumor cells, including Hep G2 cells, compared to primary hepatocytes. H2O2 formation was required for ascorbate cytotoxicity, as extracellular catalase treatment protected tumor cells. H2O2 generated by glucose oxidase treatment also caused cell killing, but treatment with a pharmacological dose (5-20 mM) of ascorbate was significantly more cytotoxic at comparable rates of H2O2 production, suggesting that ascorbate enhanced H2O2 cytotoxicity. This was further supported by the finding that ascorbate at a non-cytotoxic dose (1 mM) enhanced cell killing caused by glucose oxidase. Consistent with this conclusion, ascorbate treatment caused deregulation of cellular calcium homeostasis, resulting in massive mitochondrial calcium accumulation. Ascorbate acted synergistically with the chemotherapeutic sorafenib in killing Hep G2 cells, but not primary hepatocytes, suggesting adjuvant ascorbate treatment can broaden sorafenib's therapeutic range. Sorafenib caused mitochondrial depolarization and prevented mitochondrial calcium sequestration. Subsequent ascorbate addition further deregulated cellular calcium homeostasis promoting cell death. Additionally, we present the case of a patient with hepatocellular carcinoma (HCC) who had prolonged regression of a rib metastasis upon combination treatment with ascorbate and sorafenib, indicating that these studies have direct clinical relevance. PMID:27036367

  16. Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity.

    PubMed

    Rouleau, Lauren; Antony, Anil Noronha; Bisetto, Sara; Newberg, Andrew; Doria, Cataldo; Levine, Mark; Monti, Daniel A; Hoek, Jan B

    2016-06-01

    We investigated the mechanism of selective ascorbate-induced cytotoxicity in tumor cells, including Hep G2 cells, compared to primary hepatocytes. H2O2 formation was required for ascorbate cytotoxicity, as extracellular catalase treatment protected tumor cells. H2O2 generated by glucose oxidase treatment also caused cell killing, but treatment with a pharmacologic dose (5-20mM) of ascorbate was significantly more cytotoxic at comparable rates of H2O2 production, suggesting that ascorbate enhanced H2O2 cytotoxicity. This was further supported by the finding that ascorbate at a non-cytotoxic dose (1mM) enhanced cell killing caused by glucose oxidase. Consistent with this conclusion, ascorbate treatment caused deregulation of cellular calcium homeostasis, resulting in massive mitochondrial calcium accumulation. Ascorbate acted synergistically with the chemotherapeutic sorafenib in killing Hep G2 cells, but not primary hepatocytes, suggesting adjuvant ascorbate treatment can broaden sorafenib's therapeutic range. Sorafenib caused mitochondrial depolarization and prevented mitochondrial calcium sequestration. Subsequent ascorbate addition further deregulated cellular calcium homeostasis promoting cell death. Additionally, we present the case of a patient with hepatocellular carcinoma (HCC) who had prolonged regression of a rib metastasis upon combination treatment with ascorbate and sorafenib, indicating that these studies have direct clinical relevance. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Differential repair of radiation-induced DNA damage in cells of human squamous cell carcinoma and the effect of caffeine and cysteamine on induction and repair of DNA double-strand breaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smeets, M.F.M.A.; Mooren, E.H.M.; Abdel-Wahab, A.H.A.

    1994-11-01

    The goal of these experiments was to investigate further the relationship between DNA double-strand breaks and cell killing in human tumor cells, first by comparing different cell lines, and second by radiomodification studies. Field-inversion gel electrophoresis was used to quantify double-strand breaks. Two subclones of the radioresistant human squamous cell carcinoma line SQ20B (SQD9 and SQG6) were compared. These subclones differed in DNA index by a factor of 1.7 but showed the same resistance to radiation as cells of the parental cell line. It was found that, although induction of DSBs was not significantly different in the two cell lines,more » the t{sub 1/2} of the fast component of repair was significantly shorter for SQD9 cells, leading to greater overall repair which was not reflected in increased survival. Caffeine and cysteamine were tested as modifiers of radiosensitivity, using the radioresistant SQ20B line and the radiosensitive SCC61 cell line. No effect of caffeine was seen when the drug was present only during irradiation. Postirradiation incubations with caffeine, however, resulted in a dose reduction factor greater than 2.0 in cell survival for both cell lines. In contrast, induction of DSBs was reduced by caffeine, and no effect on DSB repair was observed. Cysteamine led to a dose protection factor greater than 1.8 in cell survival in both cell lines. A reduction in induced DSBs was found at high doses corresponding approximately with the increase in cell survival. Over the same (low) dose range, however, the correlation between DSB induction and cell killing was poor. These data indicate that DSB induction does not correlate well with cell killing either for different cell lines, for radiochemical modification (cysteamine) or for some other types of modification (caffeine). 31 refs., 8 figs.« less

  18. Hypersensitivity of skin fibroblasts from basal cell nevus syndrome patients to killing by ultraviolet B but not by ultraviolet C radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, L.A.; Goldberg, L.H.; Ley, R.D.

    Basal cell nevus syndrome (BCNS) is an autosomal dominant genetic disorder in which the afflicted individuals are extremely susceptible to sunlight-induced skin cancers, particularly basal cell carcinomas. However, the cellular and molecular basis for BCNS is unknown. To ascertain whether there is any relationship between genetic predisposition to skin cancer and increased sensitivity of somatic cells from BCNS patients to killing by UV radiation, we exposed skin fibroblasts established from unexposed skin biopsies of several BCNS and age- and sex-matched normal individuals to either UV-B (280-320 nm) or UV-C (254 nm) radiation and determined their survival. The results indicated thatmore » skin fibroblasts from BCNS patients were hypersensitive to killing by UV-B but not UV-C radiation as compared to skin fibroblasts from normal individuals. DNA repair studies indicated that the increased sensitivity of BCNS skin fibroblasts to killing by UV-B radiation was not due to a defect in the excision repair of pyrimidine dimers. These results indicate that there is an association between hypersensitivity of somatic cells to killing by UV-B radiation and the genetic predisposition to skin cancer in BCNS patients. In addition, these results suggest that DNA lesions (and repair processes) other than the pyrimidine dimer are also involved in the pathogenesis of sunlight-induced skin cancers in BCNS patients. More important, the UV-B sensitivity assay described here may be used as a diagnostic tool to identify presymptomatic individuals with BCNS.« less

  19. Immune Checkpoint Blockade for Breast Cancer.

    PubMed

    Swoboda, April; Nanda, Rita

    An effective antitumor immune response requires interaction between cells of the adaptive and innate immune system. Three key elements are required: generation of activated tumor-directed T cells, infiltration of activated T cells into the tumor microenvironment, and killing of tumor cells by activated T cells. Tumor immune evasion can occur as a result of the disruption of each of these three key T cell activities, resulting in three distinct cancer-immune phenotypes. The immune inflamed phenotype, characterized by the presence of a robust tumor immune infiltrate, suggests impaired activated T cell killing of tumor cells related to the presence of inhibitory factors. Programmed death receptor-1 (PD-1) is an inhibitory transmembrane protein expressed on T cells, B cells, and NK cells. The interaction between PD-1 and its ligands (PD-L1/L2) functions as an immune checkpoint against unrestrained cytotoxic T effector cell activity-it promotes peripheral T effector cell exhaustion and conversion of T effector cells to immunosuppressive T regulatory (Treg) cells. Immune checkpoint inhibitors, which block the PD-1/PD-L1 axis and reactivate cytotoxic T effector cell function, are actively being investigated for the treatment of breast cancer.

  20. Autophagy Induced by Intracellular Infection of Propionibacterium acnes

    PubMed Central

    Nakamura, Teruko; Furukawa, Asuka; Uchida, Keisuke; Ogawa, Tomohisa; Tamura, Tomoki; Sakonishi, Daisuke; Wada, Yuriko; Suzuki, Yoshimi; Ishige, Yuki; Minami, Junko; Akashi, Takumi

    2016-01-01

    Background Sarcoidosis is caused by Th1-type immune responses to unknown agents, and is linked to the infectious agent Propionibacterium acnes. Many strains of P. acnes isolated from sarcoid lesions cause intracellular infection and autophagy may contribute to the pathogenesis of sarcoidosis. We examined whether P. acnes induces autophagy. Methods Three cell lines from macrophages (Raw264.7), mesenchymal cells (MEF), and epithelial cells (HeLa) were infected by viable or heat-killed P. acnes (clinical isolate from sarcoid lymph node) at a multiplicity of infection (MOI) of 100 or 1000 for 1 h. Extracellular bacteria were killed by washing and culturing infected cells with antibiotics. Samples were examined by colony assay, electron-microscopy, and fluorescence-microscopy with anti-LC3 and anti-LAMP1 antibodies. Autophagy-deficient (Atg5-/-) MEF cells were also used. Results Small and large (≥5 μm in diameter) LC3-positive vacuoles containing few or many P. acnes cells (LC3-positive P. acnes) were frequently found in the three cell lines when infected by viable P. acnes at MOI 1000. LC3-positive large vacuoles were mostly LAMP1-positive. A few small LC3-positive/LAMP1-negative vacuoles were consistently observed in some infected cells for 24 h postinfection. The number of LC3-positive P. acnes was decreased at MOI 100 and completely abolished when heat-killed P. acnes was used. LC3-positive P. acnes was not found in autophagy-deficient Atg5-/- cells where the rate of infection was 25.3 and 17.6 times greater than that in wild-type Atg5+/+ cells at 48 h postinfection at MOI 100 and 1000, respectively. Electron-microscopic examination revealed bacterial cells surrounded mostly by a single-membrane including the large vacuoles and sometimes a double or multi-layered membrane, with occasional undigested bacterial cells in ruptured late endosomes or in the cytoplasm. Conclusion Autophagy was induced by intracellular P. acnes infection and contributed to intracellular bacterial killing as an additional host defense mechanism to endocytosis or phagocytosis. PMID:27219015

  1. Converting cancer genes into killer genes.

    PubMed Central

    Da Costa, L T; Jen, J; He, T C; Chan, T A; Kinzler, K W; Vogelstein, B

    1996-01-01

    Over the past decade, it has become clear that tumorigenesis is driven by alterations in genes that control cell growth or cell death. Theoretically, the proteins encoded by these genes provide excellent targets for new therapeutic agents. Here, we describe a gene therapy approach to specifically kill tumor cells expressing such oncoproteins. In outline, the target oncoprotein binds to exogenously introduced gene products, resulting in transcriptional activation of a toxic gene. As an example, we show that this approach can be used to specifically kill cells overexpressing a mutant p53 gene in cell culture. The strategy may be generally applicable to neoplastic diseases in which the underlying patterns of genetic alterations or abnormal gene expression are known. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8633039

  2. Cellular recovery from exposure to sub-optimal concentrations of AB toxins that inhibit protein synthesis

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin 1, exotoxin A, diphtheria toxin and ricin are all AB-type protein toxins that act within the host cytosol to kill the host cell through a pathway involving the inhibition of protein synthesis. It is thought that a single molecule of cytosolic toxin is sufficient to kill the host cell. In...

  3. Mitochondrial Fragmentation in Aspergillus fumigatus as Early Marker of Granulocyte Killing Activity

    PubMed Central

    Ruf, Dominik; Brantl, Victor; Wagener, Johannes

    2018-01-01

    The host's defense against invasive mold infections relies on diverse antimicrobial activities of innate immune cells. However, studying these mechanisms in vitro is complicated by the filamentous nature of such pathogens that typically form long, branched, multinucleated and compartmentalized hyphae. Here we describe a novel method that allows for the visualization and quantification of the antifungal killing activity exerted by human granulocytes against hyphae of the opportunistic pathogen Aspergillus fumigatus. The approach relies on the distinct impact of fungal cell death on the morphology of mitochondria that were visualized with green fluorescent protein (GFP). We show that oxidative stress induces complete fragmentation of the tubular mitochondrial network which correlates with cell death of affected hyphae. Live cell microscopy revealed a similar and non-reversible disruption of the mitochondrial morphology followed by fading of fluorescence in Aspergillus hyphae that were killed by human granulocytes. Quantitative microscopic analysis of fixed samples was subsequently used to estimate the antifungal activity. By utilizing this assay, we demonstrate that lipopolysaccharides as well as human serum significantly increase the killing efficacy of the granulocytes. Our results demonstrate that evaluation of the mitochondrial morphology can be utilized to assess the fungicidal activity of granulocytes against A. fumigatus hyphae. PMID:29868488

  4. Microtubule antagonists activate programmed cell death (apoptosis) in cultured rat hepatocytes.

    PubMed Central

    Tsukidate, K.; Yamamoto, K.; Snyder, J. W.; Farber, J. L.

    1993-01-01

    We investigated the mechanism of lethal injury following the disruption of microtubules in cultured hepatocytes treated with vinblastine (VBL) or colchicine (COL). These agents kill hepatocytes by a process readily distinguished from two well-known pathways that lead to a loss of viability, namely, oxidative stress and inhibition of mitochondrial electron transport. Cell killing with VBL and COL was accompanied by fragmentation of DNA. Both the loss of viability and the fragmentation of DNA were prevented by the inhibition of protein synthesis within 6 hours following exposure to VBL or COL. Cell death and the fragmentation of DNA were also prevented when Ca2+ was removed from the culture medium. By contrast, the inhibition of protein kinase C prevented cell killing by VBL or COL, but did not alter the extent of DNA fragmentation. The requirements here for protein synthesis, extracellular Ca2+, and protein kinase C activity define a model of apoptosis, or programmed cell death, that seems to involve mechanisms that can be dissociated from the fragmentation of DNA. Images Figure 2 PMID:8362985

  5. Improved Killing of Ovarian Cancer Stem Cells by Combining a Novel Chimeric Antigen Receptor-Based Immunotherapy and Chemotherapy.

    PubMed

    Klapdor, Rüdiger; Wang, Shuo; Hacker, Ulrich; Büning, Hildegard; Morgan, Michael; Dörk, Thilo; Hillemanns, Peter; Schambach, Axel

    2017-10-01

    Ovarian cancer represents the most lethal gynecological cancer. Although cytoreductive chemotherapy and surgery lead to complete macroscopic tumor removal, most of the patients in advanced stages suffer from recurrent disease and subsequently die. This may be explained by the activity of cancer stem cells (CSC), which are a subpopulation of cells with an elevated chemoresistance and an increased capacity for self-renewal and metastatic spread. Specifically targeting these cells by adoptive immunotherapy represents a promising strategy to reduce the risk for recurrent disease. This study selected the widely accepted CSC marker CD133 as a target for a chimeric antigen receptor (CAR)-based immunotherapeutic approach to treat ovarian cancer. A lentiviral vector was generated encoding a third-generation anti-CD133-CAR, and clinically used NK92 cells were transduced. These engineered natural killer (NK) cells showed specific killing against CD133-positive ovarian cancer cell lines and primary ovarian cancer cells cultured from sequential ascites harvests. Additionally, specific activation of these engineered NK cells was demonstrated via interferon-gamma secretion assays. To improve clinical efficacy of ovarian cancer treatment, the effect of the chemotherapeutic agent cisplatin was evaluated together with CAR-transduced NK cell treatment. It was demonstrated that NK cells remain cytotoxic and active under cisplatin treatment and, importantly, that sequential treatment with cisplatin followed by CAR-NK cells led to the strongest killing effect. The specific eradication of ovarian CSCs by anti-CD133-CAR expressing NK92 cells represents a promising strategy and, when confirmed in vivo, shall be the basis of future clinical studies with the aim to prevent recurrent disease.

  6. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    PubMed Central

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  7. Increased ICAM-1 Expression in Transformed Human Oral Epithelial Cells: Molecular Mechanism and Functional Role in Peripheral Blood Mononuclear Cell Adhesion and Lymphokine-Activated-Killer Cell Cytotoxicity

    PubMed Central

    Huang, George T.-J.; Zhang, Xinli; Park, No-Hee

    2012-01-01

    The intercellular adhesion molecule-1 (ICAM-1, CD54) serves as a counter-receptor for the β2-integrins, LFA-1 and Mac-1, which are expressed on leukocytes. Although expression of ICAM-1 on tumor cells has a role in tumor progression and development, information on ICAM-1 expression and its role in oral cancer has not been established. Normal human oral keratinocytes (NHOK), human papilloma virus (HPV)-immortalized human oral keratinocyte lines (HOK-16B, HOK-18A, and HOK-18C), and six human oral neoplastic cell lines (HOK-16B-BaP-T1, SCC-4, SCC-9, HEp-2, Tu-177 and 1483) were used to study ICAM-1 expression and its functional role in vitro. Our results demonstrated that NHOK express negligible levels of ICAM-1, whereas immortalized human oral keratinocytes and cancer cells express significantly higher levels of ICAM-1, except for HOK-16B-BaP-T1 and HEp-2. Altered mRNA half-lives did not fully account for the increased accumulation of ICAM-1 mRNA. Adhesion of peripheral blood mononuclear cells (PBMC) to epithelial cells correlated with cell surface ICAM-1 expression levels. This adhesion was inhibited by antibodies specific for either ICAM-1 or LFA-1/Mac-1, suggesting a role for these molecules in adhesion. In contrast, lymphokine-activated-killer (LAK) cell cytotoxic killing of epithelial cells did not correlate with ICAM-1 levels or with adhesion. Nonetheless, within each cell line, blocking of ICAM-1 or LFA-1/Mac-1 reduced LAK cells killing, suggesting that ICAM-1 is involved in mediating this killing. PMID:10938387

  8. Naltrexone at low doses upregulates a unique gene expression not seen with normal doses: Implications for its use in cancer therapy.

    PubMed

    Liu, Wai M; Scott, Katherine A; Dennis, Jayne L; Kaminska, Elwira; Levett, Alan J; Dalgleish, Angus G

    2016-08-01

    It has been reported that lower doses of the opioid antagonist naltrexone are able to reduce tumour growth by interfering with cell signalling as well as by modifying the immune system. We have evaluated the gene expression profile of a cancer cell line after treatment with low-dose naltrexone (LDN), and assessed the effect that adapting treatment schedules with LDN may have on enhancing efficacy. LDN had a selective impact on genes involved with cell cycle regulation and immune modulation. Similarly, the pro-apoptotic genes BAD and BIK1 were increased only after LDN. Continuous treatment with LDN had little effect on growth in different cell lines; however, altering the treatment schedule to include a phase of culture in the absence of drug following an initial round of LDN treatment, resulted in enhanced cell killing. Furthermore, cells pre-treated with LDN were more sensitive to the cytotoxic effects of a number of common chemotherapy agents. For example, priming HCT116 with LDN before treatment with oxaliplatin significantly increased cell killing to 49±7.0 vs. 14±2.4% in cultures where priming was not used. Interestingly, priming with NTX before oxaliplatin resulted in just 32±1.8% cell killing. Our data support further the idea that LDN possesses anticancer activity, which can be improved by modifying the treatment schedule.

  9. Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation

    NASA Technical Reports Server (NTRS)

    Peng, Yuanlin; Zhang, Qinming; Nagasawa, Hatsumi; Okayasu, Ryuichi; Liber, Howard L.; Bedford, Joel S.

    2002-01-01

    Targeted gene silencing in mammalian cells by RNA interference (RNAi) using small interfering RNAs (siRNAs) was recently described by Elbashir et al. (S. M. Elbashir et al., Nature (Lond.), 411: 494-498, 2001). We have used this methodology in several human cell strains to reduce expression of the Prkdc (DNA-PKcs) gene coding for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) that is involved in the nonhomologous end joining of DNA double-strand breaks. We have also demonstrated a radiosensitization for several phenotypic endpoints of radiation damage. In low-passage normal human fibroblasts, siRNA knock-down of DNA-PKcs resulted in a reduced capacity for restitution of radiation-induced interphase chromosome breaks as measured by premature chromosome condensation, an increased yield of acentric chromosome fragments at the first postirradiation mitosis, and an increased radiosensitivity for cell killing. For three strains of related human lymphoblasts, DNA-PKcs-targeted siRNA transfection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fold decrease in induced mutant yield in TK6- and p53-null NH32 cells, but about a 2-fold increase in induced mutant yield in p53-mutant WTK1 cells at both the hypoxanthine quanine phosphoribosyl transferase (hprt) and the thymidine kinase loci.

  10. The TAT-RasGAP317-326 anti-cancer peptide can kill in a caspase-, apoptosis-, and necroptosis-independent manner

    PubMed Central

    Puyal, Julien; Margue, Christiane; Michel, Sébastien; Kreis, Stephanie; Kulms, Dagmar; Barras, David; Nahimana, Aimable; Widmann, Christian

    2016-01-01

    Tumor cell resistance to apoptosis, which is triggered by many anti-tumor therapies, remains a major clinical problem. Therefore, development of more efficient therapies is a priority to improve cancer prognosis. We have previously shown that a cell-permeable peptide derived from the p120 Ras GTPase-activating protein (RasGAP), called TAT-RasGAP317-326, bears anti-malignant activities in vitro and in vivo, such as inhibition of metastatic progression and tumor cell sensitization to cell death induced by various anti-cancer treatments. Recently, we discovered that this RasGAP-derived peptide possesses the ability to directly kill some cancer cells. TAT-RasGAP317-326 can cause cell death in a manner that can be either partially caspase-dependent or fully caspase-independent. Indeed, TAT-RasGAP317-326-induced toxicity was not or only partially prevented when apoptosis was inhibited. Moreover, blocking other forms of cell death, such as necroptosis, parthanatos, pyroptosis and autophagy did not hamper the killing activity of the peptide. The death induced by TAT-RasGAP317-326 can therefore proceed independently from these modes of death. Our finding has potentially interesting clinical relevance because activation of a death pathway that is distinct from apoptosis and necroptosis in tumor cells could lead to the generation of anti-cancer drugs that target pathways not yet considered for cancer treatment. PMID:27602963

  11. Targeting the latent cytomegalovirus reservoir with an antiviral fusion toxin protein

    PubMed Central

    Krishna, B. A.; Spiess, K.; Poole, E. L.; Lau, B.; Voigt, S.; Kledal, T. N.; Rosenkilde, M. M.; Sinclair, J. H.

    2017-01-01

    Reactivation of human cytomegalovirus (HCMV) in transplant recipients can cause life-threatening disease. Consequently, for transplant recipients, killing latently infected cells could have far-reaching clinical benefits. In vivo, myeloid cells and their progenitors are an important site of HCMV latency, and one viral gene expressed by latently infected myeloid cells is US28. This viral gene encodes a cell surface G protein-coupled receptor (GPCR) that binds chemokines, triggering its endocytosis. We show that the expression of US28 on the surface of latently infected cells allows monocytes and their progenitor CD34+ cells to be targeted and killed by F49A-FTP, a highly specific fusion toxin protein that binds this viral GPCR. As expected, this specific targeting of latently infected cells by F49A-FTP also robustly reduces virus reactivation in vitro. Consequently, such specific fusion toxin proteins could form the basis of a therapeutic strategy for eliminating latently infected cells before haematopoietic stem cell transplantation. PMID:28148951

  12. Epirubicin-Adsorbed Nanodiamonds Kill Chemoresistant Hepatic Cancer Stem Cells

    PubMed Central

    2015-01-01

    Chemoresistance is a primary cause of treatment failure in cancer and a common property of tumor-initiating cancer stem cells. Overcoming mechanisms of chemoresistance, particularly in cancer stem cells, can markedly enhance cancer therapy and prevent recurrence and metastasis. This study demonstrates that the delivery of Epirubicin by nanodiamonds is a highly effective nanomedicine-based approach to overcoming chemoresistance in hepatic cancer stem cells. The potent physical adsorption of Epirubicin to nanodiamonds creates a rapidly synthesized and stable nanodiamond–drug complex that promotes endocytic uptake and enhanced tumor cell retention. These attributes mediate the effective killing of both cancer stem cells and noncancer stem cells in vitro and in vivo. Enhanced treatment of both tumor cell populations results in an improved impairment of secondary tumor formation in vivo compared with treatment by unmodified chemotherapeutics. On the basis of these results, nanodiamond-mediated drug delivery may serve as a powerful method for overcoming chemoresistance in cancer stem cells and markedly improving overall treatment against hepatic cancers. PMID:25437772

  13. Tumor-tropic endothelial colony forming cells (ECFCs) loaded with near-infrared sensitive Au nanoparticles: A "cellular stove" approach to the photoablation of melanoma.

    PubMed

    Margheri, Giancarlo; Zoppi, Angela; Olmi, Roberto; Trigari, Silvana; Traversi, Rita; Severi, Mirko; Bani, Daniele; Bianchini, Francesca; Torre, Eugenio; Margheri, Francesca; Chillà, Anastasia; Biagioni, Alessio; Calorini, Lido; Laurenzana, Anna; Fibbi, Gabriella; Del Rosso, Mario

    2016-06-28

    In the photothermal treatments (PTs) of tumor, the localization of a high number of near-infrared (NIR) absorbing gold nanoparticles in the tumor mass is still a challenging issue. Here, we propose a promising strategy to deliver therapeutic chitosan-coated gold nanoparticles to tumor cells as hidden cargo of Endothelial Colony Forming Cells (ECFCs) endowed with an innate tumor-tropism. Remarkably, ECFC gold enrichement doesn't affect cell viability and preserves the endothelial lineage characteristics such as capillary morphogenesis and cell migration. We demonstrate that heavily Au-doped ECFCs are able to efficiently warm up the tumor environment, and kill the cancer cells via hyperthermic heating both in vitro as well as in vivo. Thus, we show an excellent thermotransductive property of gold enriched ECFCs and their capability to kill melanoma cells at moderate NIR light intensities.

  14. AKT Axis, miR-21, and RECK Play Pivotal Roles in Dihydroartemisinin Killing Malignant Glioma Cells

    PubMed Central

    Shao, Ying-Ying; Zhang, Tao-Lan; Wu, Lan-Xiang; Zou, He-Cun; Li, Shuang; Huang, Jin; Zhou, Hong-Hao

    2017-01-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is known to play important roles in inhibiting proliferation rate, inducing apoptosis, as well as hindering the metastasis and invasion of glioma cells, but the underlying mechanisms are still unclear so far. In this study, methyl thiazolyl tetrazolium (MTT), colony-forming, wound healing, invasion, and apoptosis assays were performed to investigate the effect of DHA on malignant glioma cells. Results showed that DHA induced apoptosis of malignant glioma cells through Protein Kinase B (AKT) axis, induced death of malignant glioma cells by downregulating miR-21, and inhibited the invasion of malignant glioma cells corresponding with up-regulation of the reversion-inducing-cysteine-rich protein with kazal motifs (RECK). These results revealed that AKT axis, miR-21, and RECK play pivotal roles in DHA killing malignant glioma cells, suggesting that DHA is a potential agent for treating glioma. PMID:28208619

  15. Extinction models for cancer stem cell therapy

    PubMed Central

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives. PMID:22001354

  16. Extinction models for cancer stem cell therapy.

    PubMed

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S; Lange, Kenneth L

    2011-12-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth-death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Serum supplementation modulates the effects of dibutyltin on human natural killer cell function

    EPA Science Inventory

    NK cells are a subset of lymphocytes capable of killing tumor cells, virally infected cells and antibody coated cells. Dibutyltin dichloride (DBT) is an organotin used as a stabilizer in polyvinyl chloride (PVC) plastics and as a deworming product in poultry. DBT may leach from P...

  18. A Small-Molecule Inhibitor of BCL6 Kills DLBCL Cells In Vitro and In Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerchietti, L.C.; Ghetu, A.F.; Zhu, X.

    2010-09-22

    The BCL6 transcriptional repressor is the most frequently involved oncogene in diffuse large B cell lymphoma (DLBCL). We combined computer-aided drug design with functional assays to identify low-molecular-weight compounds that bind to the corepressor binding groove of the BCL6 BTB domain. One such compound disrupted BCL6/corepressor complexes in vitro and in vivo, and was observed by X-ray crystallography and NMR to bind the critical site within the BTB groove. This compound could induce expression of BCL6 target genes and kill BCL6-positive DLBCL cell lines. In xenotransplantation experiments, the compound was nontoxic and potently suppressed DLBCL tumors in vivo. The compoundmore » also killed primary DLBCLs from human patients.« less

  19. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes.

    PubMed

    Chang, Hsin-Fang; Bzeih, Hawraa; Schirra, Claudia; Chitirala, Praneeth; Halimani, Mahantappa; Cordat, Emmanuelle; Krause, Elmar; Rettig, Jens; Pattu, Varsha

    2016-09-15

    CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. Sensitization of B16 tumor cells with a CXCR4 antagonist increases the efficacy of immunotherapy for established lung metastases

    PubMed Central

    Lee, Chih-hung; Kakinuma, Takashi; Wang, Julia; Zhang, Hong; Palmer, Douglas C.; Restifo, Nicholas P.; Hwang, Sam T.

    2008-01-01

    Expression of the chemokine receptor CXCR4 by tumor cells promotes metastasis, possibly by activating pro-survival signals that render cancer cells resistant to immune attack. Inhibition of CXCR4 with a peptide antagonist, T22, blocks metastatic implantation of CXCR4-transduced B16 (CXCR4-luc-B16) melanoma cells in lung, but not the outgrowth of established metastases, raising the question of how T22 can best be used in a clinical setting. Herein, whereas the treatment of CXCR4-luc-B16 cells in vitro with the CXCR4 ligand CXCL12 did not reduce killing induced by cisplatin or cyclophosphamide, CXCL12 markedly reduced Fas-dependent killing by gp100-specific (pmel-1) CD8+ T cells. T22 pretreatment restored sensitivity of CXCR4-luc-B16 cells to pmel-1 killing, even in the presence of CXCL12. Two immune-augmenting regimens were used in combination with T22 to treat experimental lung metastases. First, low-dose cyclophosphamide treatment (100 mg/kg) on day 5 in combination with T22 (days 4–7) yielded a ~70% reduction of B16 metastatic tumor burden in the lungs compared with cyclophosphamide treatment alone (P < 0.001). Furthermore, whereas anti–CTL antigen 4 (CTLA4) monoclonal antibody (mAb; or T22 treatment) alone had little effect on established B16 metastases, pretreatment with T22 (in combination with anti-CTLA4 mAb) resulted in a 50% reduction in lung tumor burden (P = 0.02). Thus, in vitro, CXCR4 antagonism with T22 renders B16 cells susceptible to killing by antigen-specific T cells. In vivo, T22 synergizes with cyclophosphamide or anti-CTLA4 mAb in the treatment of established lung metastases, suggesting a novel strategy for augmenting the efficacy of immunotherapy. PMID:17041104

  1. Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells

    PubMed Central

    Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.

    2014-01-01

    The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction. PMID:24458018

  2. Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo

    PubMed Central

    Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah

    2016-01-01

    Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting “oncogene addiction” could be a promising strategy for combatting p53 mutant tumors. PMID:27765910

  3. Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo.

    PubMed

    Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah

    2016-11-22

    Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting "oncogene addiction" could be a promising strategy for combatting p53 mutant tumors.

  4. Combination of Near Infrared Light-Activated Photodynamic Therapy Mediated by Indocyanine Green with Etoposide to Treat Non-Small-Cell Lung Cancer

    PubMed Central

    Luo, Ting; Zhang, Qinrong; Lu, Qing-Bin

    2017-01-01

    Indocyanine green (ICG) has been reported as a potential near-infrared (NIR) photosensitizer for photodynamic therapy (PDT) of cancer. However the application of ICG-mediated PDT is both intrinsically and physiologically limited. Here we report a combination of ICG-PDT with a chemotherapy drug etoposide (VP-16), aiming to enhance the anticancer efficacy, to circumvent limitations of PDT using ICG, and to reduce side effects of VP-16. We found in controlled in vitro cell-based assays that this combination is effective in killing non-small-cell lung cancer cells (NSCLC, A549 cell line). We also found that the combination of ICG-PDT and VP-16 exhibits strong synergy in killing non-small-cell lung cancer cells partially through inducing more DNA double-strand breaks (DSBs), while it has a much weaker synergy in killing human normal cells (GM05757). Furthermore, by studying the treatment sequence dependence and the cytotoxicity of laser-irradiated mixtures of ICG and VP-16, we found that the observed synergy involves direct/indirect reactions between ICG and VP-16. We further propose that there exists an electron transfer reaction between ICG and VP-16 under irradiation. This study therefore shows the anticancer efficacy of ICG-PDT combined with VP-16. These findings suggest that ICG-mediated PDT may be applied in combination with the chemotherapy drug VP-16 to treat some cancers, especially the non-small-cell lung cancer. PMID:28587258

  5. Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53.

    PubMed

    Kitagaki, J; Yang, Y; Saavedra, J E; Colburn, N H; Keefer, L K; Perantoni, A O

    2009-01-29

    Nitric oxide (NO) is a major effector molecule in cancer prevention. A number of studies have shown that NO prodrug JS-K (O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) induces apoptotic cell death in vitro and in vivo, indicating that it is a promising new therapeutic for cancer. However, the mechanism of its tumor-killing activity remains unclear. Ubiquitin plays an important role in the regulation of tumorigenesis and cell apoptosis. Our earlier report has shown that inactivation of the ubiquitin system through blocking E1 (ubiquitin-activating enzyme) activity preferentially induces apoptosis in p53-expressing transformed cells. As E1 has an active cysteine residue that could potentially interact with NO, we hypothesized that JS-K could inactivate E1 activity. E1 activity was evaluated by detecting ubiquitin-E1 conjugates through immunoblotting. JS-K strikingly inhibits the ubiquitin-E1 thioester formation in cells in a dose-dependent manner with an IC(50) of approximately 2 microM, whereas a JS-K analog that cannot release NO did not affect these levels in cells. Moreover, JS-K decreases total ubiquitylated proteins and increases p53 levels, which is mainly regulated by ubiquitin and proteasomal degradation. Furthermore, JS-K preferentially induces cell apoptosis in p53-expressing transformed cells. These findings indicate that JS-K inhibits E1 activity and kills transformed cells harboring wild-type p53.

  6. Smart Plasmonic Glucose Nanosensors as Generic Theranostic Agents for Targeting-Free Cancer Cell Screening and Killing.

    PubMed

    Chen, Limei; Li, Haijuan; He, Haili; Wu, Haoxi; Jin, Yongdong

    2015-07-07

    Fast and accurate identification of cancer cells from healthy normal cells in a simple, generic way is very crucial for early cancer detection and treatment. Although functional nanoparticles, like fluorescent quantum dots and plasmonic Au nanoparticles (NPs), have been successfully applied for cancer cell imaging and photothermal therapy, they suffer from the main drawback of needing time-consuming targeting preparation for specific cancer cell detection and selective ablation. The lack of a generic and effective method therefore limits their potential high-throughput cancer cell preliminary screening and theranostic applications. We report herein a generic in vitro method for fast, targeting-free (avoiding time-consuming preparations of targeting moiety for specific cancer cells) visual screening and selective killing of cancer cells from normal cells, by using glucose-responsive/-sensitive glucose oxidase-modified Ag/Au nanoshells (Ag/Au-GOx NSs) as a smart plasmonic theranostic agent. The method is generic to some extent since it is based on the distinct localized surface plasmon resonance (LSPR) responses (and colors) of the smart nanoprobe with cancer cells (typically have a higher glucose uptake level) and normal cells.

  7. Cytotoxic cells induced after Chlamydia psittaci infection in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, J.K.

    1982-03-01

    The ability of spleen cells from Chlamydia psittaci-infected mice to lyse C. psittaci-infected and uninfected target cell monolayers was studied. The cytotoxicity assay used was a terminal label method in which the number of adherent target cells surviving the interaction with effector cells was determined by measuring the uptake of (3H)uridine by such cells. It was observed that in the first few days postinfection (3 to 5), spleens contained cells that lysed infected and uninfected targets with equal efficiency. Subsequently, infected targets were killed primarily. The activity of effector spleen cells for infected targets continued, although at a reduced level,more » beyond 21 days postinfection. Intact effector cells were required since a disruption by sonication resulted in a loss of cytotoxicity. The enhanced killing observed with infected targets was also observed when target cells were sensitized with heat- or UV-inactivated C. psittaci. This study suggests that the induction of cytotoxic cells after C. psittaci infection may contribute to the ability of the host to control multiplication of the microorganism.« less

  8. Medium-mediated effects increase cell killing in a human keratinocyte cell line exposed to solar-simulated radiation.

    PubMed

    Maguire, Alanna; Morrissey, Brian; Walsh, James E; Lyng, Fiona M

    2011-01-01

    The objective of this study was to investigate whether cell culture medium is a biologically relevant exposure medium that can be employed in non-ionising photobiological investigations. The effect of solar-simulated irradiation on cell culture medium and its ability to elicit cell death was studied. The role of reactive oxygen species (ROS), cell secreted factors, and the contribution of individual components of the medium were investigated. Cell death was found to be primarily mediated through the formation of ROS via riboflavin photosensitisation and degradation in the cell culture medium. Phenol red was found to significantly reduce the cell killing ability of riboflavin. Exposures in riboflavin-free medium resulted in significantly increased cell survival compared to identical exposures in riboflavin containing medium. This study has shown that solar radiation toxicity is augmented by cell culture medium due to the presence of riboflavin. Results suggest that exposures performed in phenol red-free medium may serve to increase phototoxic effects if riboflavin is present. Riboflavin-free media is recommended for solar radiation investigations to eliminate concerns regarding riboflavin photosensitisation and nutrient deprivation.

  9. Cell wars: regulation of cell survival and proliferation by cell competition

    PubMed Central

    Vivarelli, Silvia; Wagstaff, Laura; Piddini, Eugenia

    2012-01-01

    During cell competition fitter cells take over the tissue at the expense of viable, but less fit, cells, which are eliminated by induction of apoptosis or senescence. This probably acts as a quality-control mechanism to eliminate suboptimal cells and safeguard organ function. Several experimental conditions have been shown to trigger cell competition, including differential levels in ribosomal activity or in signalling pathway activation between cells, although it is unclear how those differences are sensed and translated into fitness levels. Many of the pathways implicated in cell competition have been previously linked with cancer, and this has led to the hypothesis that cell competition could play a role in tumour formation. Cell competition could be co-opted by cancer cells to kill surrounding normal cells and boost their own tissue colonization. However, in some cases, cell competition could have a tumour suppressor role, as cells harbouring mutations in a subset of tumour suppressor genes are killed by wild-type cells. Originally described in developing epithelia, competitive interactions have also been observed in some stem cell niches, where they play a role in regulating stem cell selection, maintenance and tissue repopulation. Thus competitive interactions could be relevant to the maintenance of tissue fitness and have a protective role against aging. PMID:22928509

  10. Gemcitabine sensitizes lung cancer cells to Fas/FasL system-mediated killing

    PubMed Central

    Siena, Liboria; Pace, Elisabetta; Ferraro, Maria; Di Sano, Caterina; Melis, Mario; Profita, Mirella; Spatafora, Mario; Gjomarkaj, Mark

    2014-01-01

    Gemcitabine is a chemotherapy agent commonly used in the treatment of non-small cell lung cancer (NSCLC) that has been demonstrated to induce apoptosis in NSCLC cells by increasing functionally active Fas expression. The aim of this study was to evaluate the Fas/Fas ligand (FasL) system involvement in gemcitabine-induced lung cancer cell killing. NSCLC H292 cells were cultured in the presence or absence of gemcitabine. FasL mRNA and protein were evaluated by real-time PCR, and by Western blot and flow cytometry, respectively. Apoptosis of FasL-expressing cells was evaluated by flow cytometry, and caspase-8 and caspase-3 activation by Western blot and a colorimetric assay. Cytotoxicity of lymphokine-activated killer (LAK) cells and malignant pleural fluid lymphocytes against H292 cells was analysed in the presence or absence of the neutralizing anti-Fas ZB4 antibody, by flow cytometry. Gemcitabine increased FasL mRNA and total protein expression, the percentage of H292 cells bearing membrane-bound FasL (mFasL) and of mFasL-positive apoptotic H292 cells, as well as caspase-8 and caspase-3 cleavage. Moreover, gemcitabine increased CH11-induced caspase-8 and caspase-3 cleavage and proteolytic activity. Cytotoxicity of LAK cells and pleural fluid lymphocytes was increased against gemcitabine-treated H292 cells and was partially inhibited by ZB4 antibody. These results demonstrate that gemcitabine: (i) induces up-regulation of FasL in lung cancer cells triggering cell apoptosis via an autocrine/paracrine loop; (ii) induces a Fas-dependent apoptosis mediated by caspase-8 and caspase-3 activation; (iii) enhances the sensitivity of lung cancer cells to cytotoxic activity of LAK cells and malignant pleural fluid lymphocytes, partially via Fas/FasL pathway. Our data strongly suggest an active involvement of the Fas/FasL system in gemcitabine-induced lung cancer cell killing. PMID:24128051

  11. Multimeric complement component C9 is necessary for killing of Escherichia coli J5 by terminal attack complex C5b-9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joiner, K.A.; Schmetz, M.A.; Sanders, M.E.

    The authors studied the molecular composition of the complement C5b-9 complex required for optimal killing of Escherichia coli strain J5. J5 cells were incubated in 3.3%, 6.6%, or 10.0% C8-deficient serum previously absorbed to remove specific antibody and lysozyme. This resulted in the stable deposition after washing of 310, 560, and 890 C5b67 molecules per colony-forming unit, respectively, as determined by binding of /sup 125/I-labeled C7. Organisms were then incubated with excess C8 and various amounts of /sup 131/I-labeled C9. Plots of the logarithm (base 10) of E. coli J5 cells killed (log kill) vs. C9 input were sigmoidal, confirmingmore » the multihit nature of the lethal process. When C9 was supplied in excess, 3300, 5700, and 9600 molecules of C9 were bound per organism for cells bearing 310, 560, and 890 C5b-8 complexes, respectively, leading to C9-to-C7 ratios of 11.0:1, 10.8:1, and 11.4:1 and to log kill values of 1.3, 2.1, and 3.9. However, at low inputs of C9 that lead to C9-to-C7 ratios of less than 3.3:1, no killing occurred, and this was independent of the number of C5b-9 complexes bound. Formation of multimeric C9 at C9-to-C7 ratios permissive for killing was confirmed by electron microscopy and by binding of /sup 125/I-labeled antibody with specificity for multimeric but not monomeric C9. These experiments are the first to demonstrate a biological function for C9 polymerization and suggest that multimeric C9 is necessary for optimal killing of E. coli J5 cells by C5b-9.« less

  12. Solitomab, an epithelial cell adhesion molecule/CD3 bispecific antibody (BiTE), is highly active against primary chemotherapy-resistant ovarian cancer cell lines in vitro and fresh tumor cells ex vivo.

    PubMed

    English, Diana P; Bellone, Stefania; Schwab, Carlton L; Roque, Dana M; Lopez, Salvatore; Bortolomai, Ileana; Cocco, Emiliano; Bonazzoli, Elena; Chatterjee, Sudeshna; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Santin, Alessandro D

    2015-02-01

    Solitomab is a novel, bispecific, single-chain antibody that targets epithelial cell adhesion molecule (EpCAM) on tumor cells and also contains a cluster of differentiation 3 (CD3) (T-cell coreceptor) binding region. The authors evaluated the in vitro activity of solitomab against primary chemotherapy-resistant epithelial ovarian carcinoma cell lines as well as malignant cells in ascites. EpCAM expression was evaluated by flow cytometry in 5 primary ovarian cancer cell lines and in 42 fresh ovarian tumor cell cultures in ascites from patients with mainly advanced or recurrent, chemotherapy-resistant disease. The potential activity of solitomab against EpCAM-positive tumor cells was evaluated by flow cytometry, proliferation, and 4-hour chromium-release, cell-mediated cytotoxicity assays. EpCAM expression was detected by flow cytometry in approximately 80% of the fresh ovarian tumors and primary ovarian tumor cell lines tested. EpCAM-positive, chemotherapy-resistant cell lines were identified as resistant to natural killer cell-mediated or T-cell-mediated killing after exposure to peripheral blood lymphocytes in 4-hour chromium-release assays (mean±standard error of the mean, 3.6%±0.7% of cells killed after incubation of EpCAM-positive cell lines with control bispecific antibody). In contrast, after incubation with solitomab, EpCAM-positive, chemotherapy-resistant cells became highly sensitive to T-cell cytotoxicity (mean±standard error of the mean, 28.2%±2.05% of cells killed; P<.0001) after exposure to peripheral blood lymphocytes. Ex vivo incubation of autologous tumor-associated lymphocytes with EpCAM-expressing malignant cells in ascites with solitomab resulted in a significant increase in T-cell activation markers and a reduction in the number of viable ovarian tumor cells in ascites (P<.001). Solitomab may represent a novel, potentially effective agent for the treatment of chemotherapy-resistant ovarian cancers that overexpress EpCAM. © 2014 American Cancer Society.

  13. Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies.

    PubMed

    Friedman, Jay; Morisada, Megan; Sun, Lillian; Moore, Ellen C; Padget, Michelle; Hodge, James W; Schlom, Jeffrey; Gameiro, Sofia R; Allen, Clint T

    2018-06-21

    Natural killer (NK) cells recognize and lyse target tumor cells in an MHC-unrestricted fashion and complement antigen- and MHC-restricted killing by T-lymphocytes. NK cells and T-lymphocytes mediate early killing of targets through a common granzyme B-dependent mechanism. Tumor cell resistance to granzyme B and how this alters NK cell killing is not clearly defined. Tumor cell sensitivity to cultured murine KIL and human high affinity NK (haNK) cells in the presence or absence of AZD1775, a small molecule inhibitor of WEE1 kinase, was assessed via real time impedance analysis. Mechanisms of enhanced sensitivity to NK lysis were determined and in vivo validation via adoptive transfer of KIL cells into syngeneic mice was performed. Cultured murine KIL cells lyse murine oral cancer 2 (MOC2) cell targets more efficiently than freshly isolated peripheral murine NK cells. MOC2 sensitivity to granzyme B-dependent KIL cell lysis was enhanced by inhibition of WEE1 kinase, reversing G2/M cell cycle checkpoint activation and resulting in enhanced DNA damage and apoptosis. Treatment of MOC2 tumor-bearing wild-type C57BL/6 mice with AZD1775 and adoptively transferred KIL cells resulted in enhanced tumor growth control and survival over controls or either treatment alone. Validating these findings in human models, WEE1 kinase inhibition sensitized two human head and neck cancer cell lines to direct lysis by haNK cells. Further, WEE1 kinase inhibition sensitized these cell lines to antibody-dependent cell-mediated cytotoxicity when combined with the anti-PD-L1 IgG1 mAb Avelumab. Tumor cell resistance to granzyme B-induced cell death can be reversed through inhibition of WEE1 kinase as AZD1775 sensitized both murine and human head and neck cancer cells to NK lysis. These data provide the pre-clinical rationale for the combination of small molecules that reverse cell cycle checkpoint activation and NK cellular therapies.

  14. Vav1-phospholipase C-γ1 (Vav1-PLC-γ1) pathway initiated by T cell antigen receptor (TCRγδ) activation is required to overcome inhibition by ubiquitin ligase Cbl-b during γδT cell cytotoxicity.

    PubMed

    Yin, Shanshan; Zhang, Jianmin; Mao, Yujia; Hu, Yu; Cui, Lianxian; Kang, Ning; He, Wei

    2013-09-13

    T cell antigen receptor γδ (TCRγδ) and natural killer group 2, member D (NKG2D) are two crucial receptors for γδT cell cytotoxicity. Compelling evidences suggest that γδT cell cytotoxicity is TCRγδ-dependent and can be co-stimulated by NKG2D. However, the molecular mechanism of underlying TCRγδ-dependent activation of γδT cells remains unclear. In this study we demonstrated that TCRγδ but not NKG2D engagement induced lytic granule polarization and promoted γδT cell cytotoxicity. TCRγδ activation alone was sufficient to trigger Vav1-dependent phospholipase C-γ1 signaling, resulting in lytic granule polarization and effective killing, whereas NKG2D engagement alone failed to trigger cytotoxicity-related signaling to overcome the inhibitory effect of Cbl-b; therefore, NKG2D engagement alone could not induce effective killing. However, NKG2D ligation augmented the activation of γδT cell cytotoxicity through the Vav1-phospholipase C-γ1 pathway. Vav1 overexpression or Cbl-b knockdown not only enhanced TCRγδ activation-initiated killing but also enabled NKG2D activation alone to induce γδT cell cytotoxicity. Taken together, our results suggest that the activation of γδT cell cytotoxicity requires a strong activation signal to overcome the inhibitory effect of Cbl-b. Our finding provides new insights into the molecular mechanisms underlying the initiation of γδT cell cytotoxicity and likely implications for optimizing γδT cell-based cancer immunotherapy.

  15. Complement activation on B lymphocytes opsonized with rituximab or ofatumumab produces substantial changes in membrane structure preceding cell lysis.

    PubMed

    Beum, Paul V; Lindorfer, Margaret A; Beurskens, Frank; Stukenberg, P Todd; Lokhorst, Henk M; Pawluczkowycz, Andrew W; Parren, Paul W H I; van de Winkel, Jan G J; Taylor, Ronald P

    2008-07-01

    Binding of the CD20 mAb rituximab (RTX) to B lymphocytes in normal human serum (NHS) activates complement (C) and promotes C3b deposition on or in close proximity to cell-bound RTX. Based on spinning disk confocal microscopy analyses, we report the first real-time visualization of C3b deposition and C-mediated killing of RTX-opsonized B cells. C activation by RTX-opsonized Daudi B cells induces rapid membrane blebbing and generation of long, thin structures protruding from cell surfaces, which we call streamers. Ofatumumab, a unique mAb that targets a distinct binding site (the small loop epitope) of the CD20 Ag, induces more rapid killing and streaming on Daudi cells than RTX. In contrast to RTX, ofatumumab promotes streamer formation and killing of ARH77 cells and primary B cells from patients with chronic lymphocytic leukemia. Generation of streamers requires C activation; no streaming occurs in media, NHS-EDTA, or in sera depleted of C5 or C9. Streamers can be visualized in bright field by phase imaging, and fluorescence-staining patterns indicate they contain membrane lipids and polymerized actin. Streaming also occurs if cells are reacted in medium with bee venom melittin, which penetrates cells and forms membrane pores in a manner similar to the membrane-attack complex of C. Structures similar to streamers are demonstrable when Ab-opsonized sheep erythrocytes (non-nucleated cells) are reacted with NHS. Taken together, our findings indicate that the membrane-attack complex is a key mediator of streaming. Streamer formation may, thus, represent a membrane structural change that can occur shortly before complement-induced cell death.

  16. ESAT-6 Targeting to DEC205+ Antigen Presenting Cells Induces Specific-T Cell Responses against ESAT-6 and Reduces Pulmonary Infection with Virulent Mycobacterium tuberculosis.

    PubMed

    Silva-Sánchez, Aarón; Meza-Pérez, Selene; Flores-Langarica, Adriana; Donis-Maturano, Luis; Estrada-García, Iris; Calderón-Amador, Juana; Hernández-Pando, Rogelio; Idoyaga, Juliana; Steinman, Ralph M; Flores-Romo, Leopoldo

    2015-01-01

    Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen's naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205+ APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions.

  17. ESAT-6 Targeting to DEC205+ Antigen Presenting Cells Induces Specific-T Cell Responses against ESAT-6 and Reduces Pulmonary Infection with Virulent Mycobacterium tuberculosis

    PubMed Central

    Silva-Sánchez, Aarón; Meza-Pérez, Selene; Flores-Langarica, Adriana; Donis-Maturano, Luis; Estrada-García, Iris; Calderón-Amador, Juana; Hernández-Pando, Rogelio; Idoyaga, Juliana; Flores-Romo, Leopoldo

    2015-01-01

    Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen’s naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205+ APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions. PMID:25915045

  18. A CD13-targeting peptide integrated protein inhibits human liver cancer growth by killing cancer stem cells and suppressing angiogenesis.

    PubMed

    Zheng, Yan-Bo; Gong, Jian-Hua; Liu, Xiu-Jun; Li, Yi; Zhen, Yong-Su

    2017-05-01

    CD13 is a marker of angiogenic endothelial cells, and recently it is proved to be a biomarker of human liver cancer stem cells (CSCs). Herein, the therapeutic effects of NGR-LDP-AE, a fusion protein composed of CD13-targeting peptide NGR and antitumor antibiotic lidamycin, on human liver cancer and its mechanism were studied. Western blot and immunofluorescence assay demonstrated that CD13 (WM15 epitope) was expressed in both human liver cancer cell lines and vascular endothelial cells, while absent in normal liver cells. MTT assay showed that NGR-LDP-AE displayed potent cytotoxicity to cultured tumor cell lines with IC 50 values at low nanomolar level. NGR-LDP-AE inhibited tumorsphere formation of liver cancer cells, and the IC 50 values were much lower than that in MTT assay, indicating selectively killing of CSCs. In endothelial tube formation assay, NGR-LDP-AE at low cytotoxic dose significantly inhibited the formation of intact tube networks. Animal experiment demonstrated that NGR-LDP-AE inhibited the growth of human liver cancer xenograft. Immunohistochemical analysis showed that NGR-LDP-AE induced the down-regulation of CD13. In vitro experiment using cultured tumor cells also confirmed this result. NGR-LDP-AE activated both apoptotic and autophagic pathways in cultured tumor cells, while the induced autophagy protected cells from death. Conclusively, NGR-LDP-AE exerts its antitumor activity via killing liver CSCs and inhibiting angiogenesis. With one targeting motif, NGR-LDP-AE acts on both liver CSCs and angiogenic endothelial cells. It is a promising dual targeting fusion protein for liver cancer therapy, especially for advanced or relapsed cancers. © 2017 Wiley Periodicals, Inc.

  19. Combining Heavy Ion Radiation and Artificial MicroRNAs to Target the Homologous Recombination Repair Gene Efficiently Kills Human Tumor Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Zhiming; Department of Radiation Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia; Wang Ping

    2013-02-01

    Purpose: Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Methods and Materials:more » Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Results: Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Conclusions: Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death.« less

  20. Combining heavy ion radiation and artificial microRNAs to target the homologous recombination repair gene efficiently kills human tumor cells.

    PubMed

    Zheng, Zhiming; Wang, Ping; Wang, Hongyan; Zhang, Xiangming; Wang, Minli; Cucinotta, Francis A; Wang, Ya

    2013-02-01

    Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Correction of both spontaneous and DEB-induced chromosome instability in Fanconi anemia FA-C cells by FACC cDNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavropoulos, D.J.; Tomkins, D.J.; Allingham-Hawkins, D.J.

    1994-09-01

    Cells from all four Fanconi anemia complementation groups show hypersensitivity to cell-killing by mitomycin C (MMC), diepoxybutane (DEB) and other DNA cross-linking agents, and increased spontaneous and DEB-induced chromosome aberrations (CA). The extent of these phenotypes varies between lymphoblastoid cell lines from different complementation groups. Our data showed that the difference in MMC hypersensitivity and DEB-CA was not always coupled. While 230N (FA-B) had higher DEB-induced CA/cell than 536N (FA-C) (7.42 vs. 4.46 respectively), that latter was much more sensitive to cell-killing by MMC (dose at 10% survival, D{sub 10}: 5.2 vs. 1.2 ng/ml respectively). Strathdes et al. (1992) clonedmore » a cDNA Fanconi anemia complementation group C (FACC) which complemented the hypersensitivity to MMC and DEB cell-killing of FA-C cells (536N) but not cells from the other three complementation groups. The present study was initiated to determine whether chromosome instability in 536N is also complemented by the FACC (FAC3) cDNA. The pREP4-FAC3 vector was transfected into 536N and transfectants selected with hygromycin B. The DEB D{sub 10} of 536N (1.0 {mu}M) was corrected to the control level (16.2 {mu}M for 3TO) by FACC (15.1 {mu}M for 536N-FACC), as previously demonstrated. Chromosome instability (cab, cse, ctb, cte) was determined without and with 0.1 {mu}g/ml DEB treatment. Spontaneous CA of 536N (0.30 aberrations/cell) was corrected to the control level (0.04 for 3TO) by FACC (0.06 for 536N-FACC). Similarly, the DEB-induced CA was corrected (2.74 for 536N vs. 0.06 and 0.02 for 3TO and 536N-FACC respectively). Thus, at least for FA complementation group C, hypersensitivity to cell-killing and chromosome instability are not dissociated and are most likely caused by the same gene defect.« less

  2. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro.

    PubMed

    Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei

    2013-08-06

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma.

  3. Optimization of the temporal pattern of applied dose for a single fraction of radiation: Implications for radiation therapy

    NASA Astrophysics Data System (ADS)

    Altman, Michael B.

    The increasing prevalence of intensity modulated radiation therapy (IMRT) as a treatment modality has led to a renewed interest in the potential for interaction between prolonged treatment time, as frequently associated with IMRT, and the underlying radiobiology of the irradiated tissue. A particularly relevant aspect of radiobiology is cell repair capacity, which influences cell survival, and thus directly relates to the ability to control tumors and spare normal tissues. For a single fraction of radiation, the linear quadratic (LQ) model is commonly used to relate the radiation dose to the fraction of cells surviving. The LQ model implies a dependence on two time-related factors which correlate to radiobiological effects: the duration of radiation application, and the functional form of how the dose is applied over that time (the "temporal pattern of applied dose"). Although the former has been well studied, the latter has not. Thus, the goal of this research is to investigate the impact of the temporal pattern of applied dose on the survival of human cells and to explore how the manipulation of this temporal dose pattern may be incorporated into an IMRT-based radiation therapy treatment planning scheme. The hypothesis is that the temporal pattern of applied dose in a single fraction of radiation can be optimized to maximize or minimize cell kill. Furthermore, techniques which utilize this effect could have clinical ramifications. In situations where increased cell kill is desirable, such as tumor control, or limiting the degree of cell kill is important, such as the sparing of normal tissue, temporal sequences of dose which maximize or minimize cell kill (temporally "optimized" sequences) may provide greater benefit than current clinically used radiation patterns. In the first part of this work, an LQ-based modeling analysis of effects of the temporal pattern of dose on cell kill is performed. Through this, patterns are identified for maximizing cell kill for a given radiation pattern by concentrating the highest doses in the middle of a fraction (a "Triangle" pattern), or minimizing cell kill by placing the highest doses near the beginning and end (a "V-shaped" pattern). The conditions under which temporal optimization effects are most acute are also identified: irradiation of low alpha/beta tissues, long fraction durations, and high doses/fx. An in vitro study is then performed which verifies that the temporal effects and trends predicted by the modeling study are clearly manifested in human cells. Following this a phantom which could allow similar in vitro radiobiological experiments in a 3-dimensional clinically-based environment is designed, created, and dosimetrically assessed using TLDs, film, and biological assay-based techniques. The phantom is found to be a useful and versatile tool for such experiments. A scheme for utilizing the phantom in a clinical treatment environment is then developed. This includes a demonstration of prototype methods for optimizing the temporal pattern of applied dose in clinical IMRT plans to manipulate tissue-dependent effects. Looking toward future experimental validation of such plans using the phantom, an analysis of the suitability of biological assays for use in phantom-based in vitro experiments is performed. Finally, a discussion is provided about the steps necessary to integrate temporal optimization into in vivo experiments and ultimately into a clinical radiation therapy environment. If temporal optimization is ultimately shown to have impact in vivo, the successful implementation of the methods developed in this study could enhance the efficacy and care of thousands of patients receiving radiotherapy.

  4. Tumor-treating fields elicit a conditional vulnerability to ionizing radiation via the downregulation of BRCA1 signaling and reduced DNA double-strand break repair capacity in non-small cell lung cancer cell lines.

    PubMed

    Karanam, Narasimha Kumar; Srinivasan, Kalayarasan; Ding, Lianghao; Sishc, Brock; Saha, Debabrata; Story, Michael D

    2017-03-30

    The use of tumor-treating fields (TTFields) has revolutionized the treatment of recurrent and newly diagnosed glioblastoma (GBM). TTFields are low-intensity, intermediate frequency, alternating electric fields that are applied to tumor regions and cells using non-invasive arrays. The predominant mechanism by which TTFields are thought to kill tumor cells is the disruption of mitosis. Using five non-small cell lung cancer (NSCLC) cell lines we found that there is a variable response in cell proliferation and cell killing between these NSCLC cell lines that was independent of p53 status. TTFields treatment increased the G2/M population, with a concomitant reduction in S-phase cells followed by the appearance of a sub-G1 population indicative of apoptosis. Temporal changes in gene expression during TTFields exposure was evaluated to identify molecular signaling changes underlying the differential TTFields response. The most differentially expressed genes were associated with the cell cycle and cell proliferation pathways. However, the expression of genes found within the BRCA1 DNA-damage response were significantly downregulated (P<0.05) during TTFields treatment. DNA double-strand break (DSB) repair foci increased when cells were exposed to TTFields as did the appearance of chromatid-type aberrations, suggesting an interphase mechanism responsible for cell death involving DNA repair. Exposing cells to TTFields immediately following ionizing radiation resulted in increased chromatid aberrations and a reduced capacity to repair DNA DSBs, which were likely responsible for at least a portion of the enhanced cell killing seen with the combination. These findings suggest that TTFields induce a state of 'BRCAness' leading to a conditional susceptibility resulting in enhanced sensitivity to ionizing radiation and provides a strong rationale for the use of TTFields as a combined modality therapy with radiation or other DNA-damaging agents.

  5. Killing Cancer Cells with the Help of Infrared Light – Photoimmunotherapy

    Cancer.gov

    Near-infrared photoimmunotherapy uses an antibody–photoabsorber conjugate that binds to cancer cells. When near-infrared light is applied, the cells swell and then burst, causing the cancer cell to die. Photoimmunotherapy is in clinical trials in patients with inoperable tumors.

  6. Modeling in conventional and supra electroporation for model cell with organelles

    NASA Astrophysics Data System (ADS)

    Sulaeman, Muhammad Yangki; Widita, Rena

    2015-09-01

    Electroporation is a formation of pores in the membrane cell due to the external electric field applied to the cell. There are two types of electroporation, conventional and supra-electroporation. The purpose of creating pores in the cell using conventional electroporation are to increase the effectiveness of chemotherapy (electrochemotherapy) and to kill cancer tissue using irreversible electroporation. Supra-electroporation shows that it can induce electroporation in the organell inside the cell, so it can kill the cell by apoptosis mechanism. Modeling of electroporation phenomenon on a model cell had been done by using software COMSOL Multiphysics 4.3b with the applied external electric field used are 1.1 kV/cm for conventional electroporation and 60 kV/cm for supra-electroporation to find the difference between transmembrane voltage and pore density for both electroporation. It can be concluded from the results that there is a big difference between transmembrane voltage and pores density on conventional and supra electroporation on model cell.

  7. Enhancing effects of gamma interferon on phagocytic cell association with and killing of Trypanosoma cruzi

    NASA Technical Reports Server (NTRS)

    Wirth, J. J.; Kierszenbaum, F.; Sonnenfeld, G.; Zlotnik, A.

    1985-01-01

    Results are reported from a study of the influence gamma interferon (GIFN) and interleukin 2 (IL2) have on the capability of P388D1 cells and mouse resident peritoneal macrophages (MPM) to attach to the blood-resident parasites Trypanosoma cruzi and kill them. Cultures of trypomastigote forms of the Tulahuen strain of T. cruzi grown in bovine serum were introduced into peritoneal cells of mice, along with P388D1 cells incubated with GIFN, IL2 and both. Control cells were also maintained. Statistical analysis were then performed on data on counts of the number of dead T. Cruzi cells. The GIFN enhanced the interaction of MPM and P388D1 cells with the surface of T. Cruzi, provided the interaction was given over 12 hr to take place. A depression of the cytotoxicity of P388D1 cells was attributed to mediation by H2O2, an effect partially offset by incubation with the lymphokine GIFN.

  8. Reduction of radiation-induced cell cycle blocks by caffeine does not necessarily lead to increased cell killing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musk, S.R.

    1991-03-01

    The effect of caffeine upon the radiosensitivities of three human tumor lines was examined and correlated with its action upon the radiation-induced S-phase and G2-phase blocks. Caffeine was found to reduce at least partially the S-phase and G2-phase blocks in all the cell lines examined but potentiated cytotoxicity in only one of the three tumor lines. That reductions have been demonstrated to occur in the absence of increased cell killing provides supporting evidence for the hypothesis that reductions may not be causal in those cases when potentiation of radiation-induced cytotoxicity is observed in the presence of caffeine.

  9. Dependence of the cytotoxicity of DNA-damaging agents on the mismatch repair status of human cells.

    PubMed

    Papouli, Efterpi; Cejka, Petr; Jiricny, Josef

    2004-05-15

    Mismatch repair (MMR) deficiency was reported to increase resistance of mammalian cells to killing by several genotoxic substances. However, although MMR-deficient cells are approximately 100-fold more resistant to killing by S(N)1 type methylating agents than MMR-proficient controls, the sensitivity differences reported for the other agents were typically <2-fold. To test whether these differences were linked to factors other than MMR status, we studied the cytotoxicities of mitomycin C, chloroethylcyclohexyl nitrosourea, melphalan, psoralen-UVA, etoposide, camptothecin, ionizing radiation, and cis-dichlorodiaminoplatinum (cisplatin) in a strictly isogenic system. We now report that MMR deficiency reproducibly desensitized cells solely to cisplatin.

  10. Human Papillomavirus E6E7-Mediated Adenovirus Cell Killing: Selectivity of Mutant Adenovirus Replication in Organotypic Cultures of Human Keratinocytes

    PubMed Central

    Balagué, Cristina; Noya, Francisco; Alemany, Ramon; Chow, Louise T.; Curiel, David T.

    2001-01-01

    Replication-competent adenoviruses are being investigated as potential anticancer agents. Exclusive virus replication in cancer cells has been proposed as a safety trait to be considered in the design of oncolytic adenoviruses. From this perspective, we have investigated several adenovirus mutants for their potential to conditionally replicate and promote the killing of cells expressing human papillomavirus (HPV) E6 and E7 oncoproteins, which are present in a high percentage of anogenital cancers. For this purpose, we have employed an organotypic model of human stratified squamous epithelium derived from primary keratinocytes that have been engineered to express HPV-18 oncoproteins stably. We show that, whereas wild-type adenovirus promotes a widespread cytopathic effect in all infected cells, E1A- and E1A/E1B-deleted adenoviruses cause no deleterious effect regardless of the coexpression of HPV18 E6E7. An adenovirus deleted in the CR2 domain of E1A, necessary for binding to the pRB family of pocket proteins, shows no selectivity of replication as it efficiently kills all normal and E6E7-expressing keratinocytes. Finally, an adenovirus mutant deleted in the CR1 and CR2 domains of E1A exhibits preferential replication and cell killing in HPV E6E7-expressing cultures. We conclude that the organotypic keratinocyte culture represents a distinct model to evaluate adenovirus selectivity and that, based on this model, further modifications of the adenovirus genome are required to restrict adenovirus replication to tumor cells. PMID:11462032

  11. The mechanism of T-cell mediated cytotoxicity. VI. T-cell projections and their role in target cell killing.

    PubMed Central

    Sanderson, C J; Glauert, A M

    1979-01-01

    Electron micrographs of material fixed during the first 10 min of a T-cell cytotoxic system showed T-cell projections and T-cell burrowing into target cells. These observations were made possible by using a system with a very high rate of killing. The projections vary in shape and size, and can push deeply into the target cell, distorting organelles in their path, including the nucleus. The projections contain fine fibrillar material, to the exclusion of organelles. They push the target cell membrane in front of them to form pockets approximating to the shape of the projection. Areas of close contact occur between the projections and the target cell membrane, particularly at the leading edges. The likelihood that these projections develop as a result of contact with specific antigen, and are involved in the cytotoxic mechanism is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 PMID:311336

  12. T lymphocyte mediated lysis of mitomycin C treated Tenon’s capsule fibroblasts

    PubMed Central

    Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N

    2004-01-01

    Aims: To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon’s capsule fibroblasts. Methods: IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. Results: T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). Conclusion: T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically. PMID:14977777

  13. T lymphocyte mediated lysis of mitomycin C treated Tenon's capsule fibroblasts.

    PubMed

    Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N

    2004-03-01

    To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon's capsule fibroblasts. IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically.

  14. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease.

    PubMed

    Jochmans, Dirk; Anders, Maria; Keuleers, Inge; Smeulders, Liesbeth; Kräusslich, Hans-Georg; Kraus, Günter; Müller, Barbara

    2010-10-15

    Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of the most active compounds, VRX-480773 and GW-678248, were also tested in primary human cells and mediated cytotoxicity on HIV-1 infected peripheral blood mononuclear cells. These data present proof of concept for targeted drug induced elimination of HIV producing cells. While NNRTIs themselves may not be sufficiently potent for therapeutic application, the results provide a basis for the development of drugs exploiting this mechanism of action.

  15. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease

    PubMed Central

    2010-01-01

    Background Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Results Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of the most active compounds, VRX-480773 and GW-678248, were also tested in primary human cells and mediated cytotoxicity on HIV-1 infected peripheral blood mononuclear cells. Conclusion These data present proof of concept for targeted drug induced elimination of HIV producing cells. While NNRTIs themselves may not be sufficiently potent for therapeutic application, the results provide a basis for the development of drugs exploiting this mechanism of action. PMID:20950436

  16. Observation of the death process of cancer cells killed through surface plasmon resonance of gold nanoring with optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Yang; He, Yulu; Hsieh, Cheng-Che; Hua, Wei-Hsiang; Low, Meng Chun; Tsai, Meng-Tsan; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    The use of a high-resolution optical coherence tomography (OCT) system with the operation wavelength around 800 nm to scan SCC4 cancer cells under different laser illumination conditions is demonstrated. The cancer cells are incubated with Au nanorings (NRIs), which are linked with photosensitizer, AlPcS, for them to be up-taken by the cells. Two Au NRI samples of different geometries for inducing localized surface plasmon (LSP) resonance around 1310 and 1064 nm are used. Four different lasers are utilized for illuminating the cells under OCT scanning, including 1310-nm continuous (cw) laser, 1064-nm cw laser, 1064-nm femtosecond (fs) laser, and 660-nm cw laser. The 1310- and 1064-nm cw lasers mainly produce the photothermal effect through the LSP resonance of Au NRIs for damaging the observed cells. Besides the photothermal effect, the 1064-nm fs laser can produce strong two-photon absorption through the assistance of the LSP resonance of Au NRI for exciting AlPcS to effectively generate singlet oxygen and damage the observed cells. The 660-nm laser can excite AlPcS through single-photon absorption for generating singlet oxygen and damaging the observed cells. With the photothermal effect, the observed cells can be killed through the process of necrosis. Through the generation of singlet oxygen, the cell membrane can be preserved and the interior substances are solidified to become a hard body of strong scattering. In this situation, the cells are killed through the apoptosis process. Illuminated by the 660-nm cw laser, a process of interior substance escape is observed through high-speed OCT scanning.

  17. Caffeine toxicity is inversely related to DNA repair in simian virus 40-transformed xeroderma pigmentosum cells irradiated with ultraviolet light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.

    1989-01-01

    Human cells transformed by simian virus 40 (SV40) are more sensitive to killing by ultraviolet light when grown in caffeine after irradiation. The degree of sensitization at 2 mM caffeine (expressed as the ratio of the 37% survival dose for control cells divided by the 37% survival dose for cells grown in caffeine, i.e., the dose modification factor) was approximately 1.9 in transformed normal cells and 3.8-5.8 in excision-defective xeroderma pigmentosum (XP) groups A, C, and D cells. A large dose modification factor of 12 was observed in a transformed XP variant cell line. Chinese hamster ovary cells were notmore » significantly different from transformed normal human cells, with a maximum dose modification factor of 1.5. Two radioresistant XP revertants that do not excise cyclobutane dimers gave different responses; one resembled its group A parent in being sensitized by caffeine, and one did not. These results can be interpreted on the basis of a single hypothesis that cells are killed as a result of attempts to replicate damaged DNA. Increased replication rates caused by transformation, increased numbers of replication forks in DNA caused by caffeine, and increased numbers of damaged sites ahead of replication forks in excision-defective cells are all processes that will consequently increase killing according to this hypothesis. A corollary is that the XP variant may be highly sensitized to caffeine because of excision defects at the DNA replication forks, an idea that may be important in designing cloning strategies for the XP variant gene.« less

  18. Cell cycle perturbation induced by gemcitabine in human tumor cells in cell culture, xenografts and bladder cancer patients: implications for clinical trial designs combining gemcitabine with a Chk1 inhibitor.

    PubMed

    Montano, Ryan; Khan, Nadeem; Hou, Huagang; Seigne, John; Ernstoff, Marc S; Lewis, Lionel D; Eastman, Alan

    2017-09-15

    Gemcitabine irreversibly inhibits ribonucleotide reductase and induces S phase arrest but whether this occurs in tumors in mice or patients has not been established. Tumor cells in culture were incubated with gemcitabine for 6 h to approximate the administration schedule in a patient. Concentrations that induced persistent S phase arrest thereafter correlated with cell killing. Administration of gemcitabine to mice also demonstrated a persistent S phase arrest in their tumor. The minimum dose that induced almost complete S phase arrest after 24 h (40 mg/kg) was well below the maximum tolerated dose in mice. S phase arrest was also observed in tumors of bladder cancer patients receiving gemcitabine. The Chk1 inhibitor MK-8776 sensitized cells to gemcitabine with the greatest cell killing when added 18 h after gemcitabine. In mice, the administration of MK-8776 18 h after gemcitabine elicited positivity for the DNA damage marker γH2AX; this also occurred at relatively low dose (40 mg/kg) gemcitabine. Hence, in both cell culture and xenografts, MK-8776 can markedly enhance cell killing of cells reversibly arrested in S phase by gemcitabine. Some cell lines are hypersensitive to MK-8776 as monotherapy, but this was not observed in xenograft models. Effective monotherapy requires a higher dose of Chk1 inhibitor, and target inhibition over a longer time period as compared to its use in combination. These results have important implications for combining Chk1 inhibitors with gemcitabine and suggest that Chk1 inhibitors with increased bioavailability may have improved efficacy both in combination and as monotherapy.

  19. Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells

    PubMed Central

    Ding, Husheng; McDonald, Jennifer S.; Yun, Seongseok; Schneider, Paula A.; Peterson, Kevin L.; Flatten, Karen S.; Loegering, David A.; Oberg, Ann L.; Riska, Shaun M.; Huang, Shengbing; Sinicrope, Frank A.; Adjei, Alex A.; Karp, Judith E.; Meng, X. Wei; Kaufmann, Scott H.

    2014-01-01

    Although farnesyltransferase inhibitors have shown promising activity in relapsed lymphoma and sporadic activity in acute myelogenous leukemia, their mechanism of cytotoxicity is incompletely understood, making development of predictive biomarkers difficult. In the present study, we examined the action of tipifarnib in human acute myelogenous leukemia cell lines and clinical samples. In contrast to the Ras/MEK/ERK pathway-mediated Bim upregulation that is responsible for tipifarnib-induced killing of malignant lymphoid cells, inhibition of Rheb-induced mTOR signaling followed by dose-dependent upregulation of Bax and Puma occurred in acute myelogenous leukemia cell lines undergoing tipifarnib-induced apoptosis. Similar Bax and Puma upregulation occurred in serial bone marrow samples harvested from a subset of acute myelogenous leukemia patients during tipifarnib treatment. Expression of FTI-resistant Rheb M184L, like knockdown of Bax or Puma, diminished tipifarnib-induced killing. Further analysis demonstrated that increased Bax and Puma levels reflect protein stabilization rather than increased gene expression. In U937 cells selected for tipifarnib resistance, neither inhibition of signaling downstream of Rheb nor Bax and Puma stabilization occurred. Collectively, these results not only identify a pathway downstream from Rheb that contributes to tipifarnib cytotoxicity in human acute myelogenous leukemia cells, but also demonstrate that FTI-induced killing of lymphoid versus myeloid cells reflects distinct biochemical mechanisms downstream of different farnesylated substrates. (ClinicalTrials.gov identifier NCT00602771) PMID:23996484

  20. B-Raf inhibitor vemurafenib in combination with temozolomide and fotemustine in the killing response of malignant melanoma cells.

    PubMed

    Roos, Wynand P; Quiros, Steve; Krumm, Andrea; Merz, Stephanie; Switzeny, Olivier Jérôme; Christmann, Markus; Loquai, Carmen; Kaina, Bernd

    2014-12-30

    In the treatment of metastatic melanoma, a highly therapy-refractory cancer, alkylating agents are used and, for the subgroup of BRAFV600E cancers, the B-Raf inhibitor vemurafenib. Although vemurafenib is initially beneficial, development of drug resistance occurs leading to tumor relapse, which necessitates the requirement for combined or sequential therapy with other drugs, including genotoxic alkylating agents. This leads to the question whether vemurafenib and alkylating agents act synergistically and whether chronic vemurafenib treatment alters the melanoma cell response to alkylating agents. Here we show that a) BRAFV600E melanoma cells are killed by vemurafenib, driving apoptosis, b) BRAFV600E melanoma cells are neither more resistant nor sensitive to temozolomide/fotemustine than non-mutant cells, c) combined treatment with vemurafenib plus temozolomide or fotemustine has an additive effect on cell kill, d) acquired vemurafenib resistance of BRAFV600E melanoma cells does not affect MGMT, MSH2, MSH6, PMS2 and MLH1, nor does it affect the resistance to temozolomide and fotemustine, e) metastatic melanoma biopsies obtained from patients prior to and after vemurafenib treatment did not show a change in the MGMT promoter methylation status and MGMT expression level. The data suggest that consecutive treatment with vemurafenib and alkylating drugs is a reasonable strategy for metastatic melanoma treatment.

  1. Intravital imaging of CTLs killing islet cells in diabetic mice

    PubMed Central

    Coppieters, Ken; Amirian, Natalie; von Herrath, Matthias

    2011-01-01

    Type 1 diabetes (T1D) is caused by autoimmune destruction of the insulin-producing β cells in the pancreatic islets, which are essentially mini-organs embedded in exocrine tissue. CTLs are considered to have a predominant role in the autoimmune destruction underlying T1D. Visualization of CTL-mediated killing of β cells would provide new insight into the pathogenesis of T1D, but has been technically challenging to achieve. Here, we report our use of intravital 2-photon imaging in mice to visualize the dynamic behavior of a virally expanded, diabetogenic CTL population in the pancreas at cellular resolution. Following vascular arrest and extravasation, CTLs adopted a random motility pattern throughout the compact exocrine tissue and displayed unimpeded yet nonlinear migration between anatomically nearby islets. Upon antigen encounter within islets, a confined motility pattern was acquired that allowed the CTLs to scan the target cell surface. A minority of infiltrating CTLs subsequently arrested at the β cell junction, while duration of stable CTL–target cell contact was on the order of hours. Slow-rate killing occurred in the sustained local presence of substantial numbers of effector cells. Collectively, these data portray the kinetics of CTL homing to and between antigenic target sites as a stochastic process at the sub-organ level and argue against a dominant influence of chemotactic gradients. PMID:22133877

  2. B-Raf inhibitor vemurafenib in combination with temozolomide and fotemustine in the killing response of malignant melanoma cells

    PubMed Central

    Krumm, Andrea; Merz, Stephanie; Switzeny, Olivier Jérôme; Christmann, Markus; Loquai, Carmen; Kaina, Bernd

    2014-01-01

    In the treatment of metastatic melanoma, a highly therapy-refractory cancer, alkylating agents are used and, for the subgroup of BRAFV600E cancers, the B-Raf inhibitor vemurafenib. Although vemurafenib is initially beneficial, development of drug resistance occurs leading to tumor relapse, which necessitates the requirement for combined or sequential therapy with other drugs, including genotoxic alkylating agents. This leads to the question whether vemurafenib and alkylating agents act synergistically and whether chronic vemurafenib treatment alters the melanoma cell response to alkylating agents. Here we show that a) BRAFV600E melanoma cells are killed by vemurafenib, driving apoptosis, b) BRAFV600E melanoma cells are neither more resistant nor sensitive to temozolomide/fotemustine than non-mutant cells, c) combined treatment with vemurafenib plus temozolomide or fotemustine has an additive effect on cell kill, d) acquired vemurafenib resistance of BRAFV600E melanoma cells does not affect MGMT, MSH2, MSH6, PMS2 and MLH1, nor does it affect the resistance to temozolomide and fotemustine, e) metastatic melanoma biopsies obtained from patients prior to and after vemurafenib treatment did not show a change in the MGMT promoter methylation status and MGMT expression level. The data suggest that consecutive treatment with vemurafenib and alkylating drugs is a reasonable strategy for metastatic melanoma treatment. PMID:25557167

  3. Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway.

    PubMed

    Ezraty, Benjamin; Vergnes, Alexandra; Banzhaf, Manuel; Duverger, Yohann; Huguenot, Allison; Brochado, Ana Rita; Su, Shu-Yi; Espinosa, Leon; Loiseau, Laurent; Py, Béatrice; Typas, Athanasios; Barras, Frédéric

    2013-06-28

    All bactericidal antibiotics were recently proposed to kill by inducing reactive oxygen species (ROS) production, causing destabilization of iron-sulfur (Fe-S) clusters and generating Fenton chemistry. We find that the ROS response is dispensable upon treatment with bactericidal antibiotics. Furthermore, we demonstrate that Fe-S clusters are required for killing only by aminoglycosides. In contrast to cells, using the major Fe-S cluster biosynthesis machinery, ISC, cells using the alternative machinery, SUF, cannot efficiently mature respiratory complexes I and II, resulting in impendence of the proton motive force (PMF), which is required for bactericidal aminoglycoside uptake. Similarly, during iron limitation, cells become intrinsically resistant to aminoglycosides by switching from ISC to SUF and down-regulating both respiratory complexes. We conclude that Fe-S proteins promote aminoglycoside killing by enabling their uptake.

  4. Patient-Derived Antibody Targets Tumor Cells

    Cancer.gov

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  5. Fluoro-luminometric real-time measurement of bacterial viability and killing.

    PubMed

    Lehtinen, Janne; Virta, Marko; Lilius, Esa Matti

    2003-10-01

    The viability and killing of Escherichia coli was measured on a real-time basis using a fluoro-luminometric device, which allows successive measurements of fluorescence and bioluminescence without user intervention. Bacteria were made fluorescent and bioluminescent by expression of gfp and insect luciferase (lucFF) genes. The green fluorescent protein (GFP) is a highly fluorescent, extremely stable protein, which accumulates in cells during growth, and therefore the measured fluorescence signal was proportional to the total number of cells. The luciferase reaction is dependent of ATP produced by living cells, so that the bioluminescence level was a direct measure of the viable cells. In contrast to the bacterial luciferase, the insect luciferase uses a water-soluble and nonvolatile substrate, which makes automated multi-well microplate assay possible. For the validation of the assay, the proportion of living and dead cell populations was experimentally modified by incubating E. coli cells in the presence of various ethanol concentrations. Bacterial viability and killing measured by a fluoro-luminometric assay correlated fairly well with the reference methods: conventional plate counting, optical density measurement and various flow cytometric analyses. The real-time assay described here allows following the changes in bacterial cultures and assessing the bactericidal and other effects of various chemical, immunological and physical agents simultaneously in large numbers of samples.

  6. Low doses of killed parasite in CpG elicit vigorous CD4+ T cell responses against blood-stage malaria in mice

    PubMed Central

    Pinzon-Charry, Alberto; McPhun, Virginia; Kienzle, Vivian; Hirunpetcharat, Chakrit; Engwerda, Christian; McCarthy, James; Good, Michael F.

    2010-01-01

    Development of a vaccine that targets blood-stage malaria parasites is imperative if we are to sustainably reduce the morbidity and mortality caused by this infection. Such a vaccine should elicit long-lasting immune responses against conserved determinants in the parasite population. Most blood-stage vaccines, however, induce protective antibodies against surface antigens, which tend to be polymorphic. Cell-mediated responses, on the other hand, offer the theoretical advantage of targeting internal antigens that are more likely to be conserved. Nonetheless, few of the current blood-stage vaccine candidates are able to harness vigorous T cell immunity. Here, we present what we believe to be a novel blood-stage whole-organism vaccine that, by combining low doses of killed parasite with CpG-oligodeoxynucleotide (CpG-ODN) adjuvant, was able to elicit strong and cross-reactive T cell responses in mice. Our data demonstrate that immunization of mice with 1,000 killed parasites in CpG-ODN engendered durable and cross-strain protection by inducing a vigorous response that was dependent on CD4+ T cells, IFN-γ, and nitric oxide. If applicable to humans, this approach should facilitate the generation of robust, cross-reactive T cell responses against malaria as well as antigen availability for vaccine manufacture. PMID:20628205

  7. Inflammasome - activated gasdermin D causes pyroptosis by forming membrane pores

    PubMed Central

    Liu, Xing; Zhang, Zhibin; Ruan, Jianbin; Pan, Youdong; Magupalli, Venkat Giri; Wu, Hao; Lieberman, Judy

    2017-01-01

    Inflammatory caspases (caspases 1, 4, 5 and 11) are activated in response to microbial infection and danger signals. When activated, they cleave mouse and human gasdermin D (GSDMD) after Asp276 and Asp275, respectively, to generate an N-terminal cleavage product (GSDMD-NT) that triggers inflammatory death (pyroptosis) and release of inflammatory cytokines such as interleukin-1β1,2. Cleavage removes the C-terminal fragment (GSDMD-CT), which is thought to fold back on GSDMD-NT to inhibit its activation. However, how GSDMD-NT causes cell death is unknown. Here we show that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy. GSDMD-NT binds to phosphatidylinositol phosphates and phosphatidylserine (restricted to the cell membrane inner leaflet) and cardiolipin (present in the inner and outer leaflets of bacterial membranes). Mutation of four evolutionarily conserved basic residues blocks GSDMD-NT oligomerization, membrane binding, pore formation and pyroptosis. Because of its lipid-binding preferences, GSDMD-NT kills from within the cell, but does not harm neighbouring mammalian cells when it is released during pyroptosis. GSDMD-NT also kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined. PMID:27383986

  8. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.

    PubMed

    Liu, Xing; Zhang, Zhibin; Ruan, Jianbin; Pan, Youdong; Magupalli, Venkat Giri; Wu, Hao; Lieberman, Judy

    2016-07-07

    Inflammatory caspases (caspases 1, 4, 5 and 11) are activated in response to microbial infection and danger signals. When activated, they cleave mouse and human gasdermin D (GSDMD) after Asp276 and Asp275, respectively, to generate an N-terminal cleavage product (GSDMD-NT) that triggers inflammatory death (pyroptosis) and release of inflammatory cytokines such as interleukin-1β. Cleavage removes the C-terminal fragment (GSDMD-CT), which is thought to fold back on GSDMD-NT to inhibit its activation. However, how GSDMD-NT causes cell death is unknown. Here we show that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy. GSDMD-NT binds to phosphatidylinositol phosphates and phosphatidylserine (restricted to the cell membrane inner leaflet) and cardiolipin (present in the inner and outer leaflets of bacterial membranes). Mutation of four evolutionarily conserved basic residues blocks GSDMD-NT oligomerization, membrane binding, pore formation and pyroptosis. Because of its lipid-binding preferences, GSDMD-NT kills from within the cell, but does not harm neighbouring mammalian cells when it is released during pyroptosis. GSDMD-NT also kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined.

  9. Zika virus has oncolytic activity against glioblastoma stem cells

    PubMed Central

    Gorman, Matthew J.; McKenzie, Lisa D.; Hubert, Christopher G.; Prager, Briana C.; Fernandez, Estefania; Richner, Justin M.; Zhang, Rong; Shan, Chao; Tycksen, Eric; Shi, Pei-Yong

    2017-01-01

    Glioblastoma is a highly lethal brain cancer that frequently recurs in proximity to the original resection cavity. We explored the use of oncolytic virus therapy against glioblastoma with Zika virus (ZIKV), a flavivirus that induces cell death and differentiation of neural precursor cells in the developing fetus. ZIKV preferentially infected and killed glioblastoma stem cells (GSCs) relative to differentiated tumor progeny or normal neuronal cells. The effects against GSCs were not a general property of neurotropic flaviviruses, as West Nile virus indiscriminately killed both tumor and normal neural cells. ZIKV potently depleted patient-derived GSCs grown in culture and in organoids. Moreover, mice with glioblastoma survived substantially longer and at greater rates when the tumor was inoculated with a mouse-adapted strain of ZIKV. Our results suggest that ZIKV is an oncolytic virus that can preferentially target GSCs; thus, genetically modified strains that further optimize safety could have therapeutic efficacy for adult glioblastoma patients. PMID:28874392

  10. Casp8p41 generated by HIV protease kills CD4 T cells through direct Bak activation

    PubMed Central

    Sainski, Amy M.; Dai, Haiming; Natesampillai, Sekar; Pang, Yuan-Ping; Bren, Gary D.; Cummins, Nathan W.; Correia, Cristina; Meng, X. Wei; Tarara, James E.; Ramirez-Alvarado, Marina; Katzmann, David J.; Ochsenbauer, Christina; Kappes, John C.

    2014-01-01

    Previous studies have shown that human immunodeficiency virus (HIV) protease cleaves procaspase 8 to a fragment, termed Casp8p41, that lacks caspase activity but nonetheless contributes to T cell apoptosis. Herein, we show that Casp8p41 contains a domain that interacts with the BH3-binding groove of pro-apoptotic Bak to cause Bak oligomerization, Bak-mediated membrane permeabilization, and cell death. Levels of active Bak are higher in HIV-infected T cells that express Casp8p41. Conversely, targeted mutations in the Bak-interacting domain diminish Bak binding and Casp8p41-mediated cell death. Similar mutations in procaspase 8 impair the ability of HIV to kill infected T cells. These observations support a novel paradigm in which HIV converts a normal cellular constituent into a direct activator that functions like a BH3-only protein. PMID:25246614

  11. Bisphosphonates significantly increase the activity of doxorubicin or vincristine against canine malignant histiocytosis cells.

    PubMed

    Hafeman, S D; Varland, D; Dow, S W

    2012-03-01

    Canine malignant histiocytosis (MH) is an aggressive neoplasm of macrophages and dendritic cells. It carries a poor prognosis because of the development of widespread metastasis and poor sensitivity to chemotherapy. Thus, there is a large need for new treatments for MH. We hypothesized that bisphosphonates might be useful to increase the effectiveness of cytotoxic chemotherapy against MH. To address this question, we conducted in vitro screening studies using MH cell lines and a panel of 6 chemotherapy and 5 bisphosphonate drugs. The combination of clodronate with vincristine was found to elicit synergistic killing which was associated with a significant increase in cell cycle arrest. Second, zoledronate combined with doxorubicin also significantly increased cell killing. Zoledronate significantly increased the uptake of doxorubicin by MH cells. On the basis of these findings, we conclude that certain bisphosphonate drugs may increase the overall effectiveness of chemotherapy for MH in dogs. © 2011 Blackwell Publishing Ltd.

  12. Bisphosphonates Significantly Increase the Activity of Doxorubicin or Vincristine Against Canine Malignant Histiocytosis Cells

    PubMed Central

    Hafeman, S.D.; Varland, D.; Dow, S.W.

    2011-01-01

    Canine malignant histiocytosis (MH) is an aggressive neoplasm of macrophages and dendritic cells. It carries a poor prognosis due to the development of widespread metastasis and poor sensitivity to chemotherapy. Thus, there is a large need for new treatments for MH. We hypothesized that bisphosphonates might be useful to increase the effectiveness of cytotoxic chemotherapy against MH. To address this question, we conducted in vitro screening studies using MH cell lines and a panel of 6 chemotherapy and 5 bisphosphonate drugs. The combination of clodronate with vincristine was found to elicit synergistic killing which was associated with a significant increase in cell cycle arrest. Second, zoledronate combined with doxorubicin also significantly increased cell killing. Zoledronate significantly increased the uptake of doxorubicin by MH cells. Based on these findings, we conclude that certain bisphosphonate drugs may increase the overall effectiveness of chemotherapy for MH in dogs. PMID:22236140

  13. Cellular recovery from exposure to sub-optimal concentrations of AB toxins that inhibit protein synthesis.

    PubMed

    Cherubin, Patrick; Quiñones, Beatriz; Teter, Ken

    2018-02-06

    Ricin, Shiga toxin, exotoxin A, and diphtheria toxin are AB-type protein toxins that act within the host cytosol and kill the host cell through pathways involving the inhibition of protein synthesis. It is thought that a single molecule of cytosolic toxin is sufficient to kill the host cell. Intoxication is therefore viewed as an irreversible process. Using flow cytometry and a fluorescent reporter system to monitor protein synthesis, we show a single molecule of cytosolic toxin is not sufficient for complete inhibition of protein synthesis or cell death. Furthermore, cells can recover from intoxication: cells with a partial loss of protein synthesis will, upon removal of the toxin, increase the level of protein production and survive the toxin challenge. Thus, in contrast to the prevailing model, ongoing toxin delivery to the cytosol appears to be required for the death of cells exposed to sub-optimal toxin concentrations.

  14. Experimental evidence for killing the resistant cells and raising the efficacy and decreasing the toxicity of cytostatics and irradiation by mixtures of the agents of the passive antitumor defense system in the case of various tumor and normal cell lines in vitro.

    PubMed

    Kulcsár, Gyula

    2009-02-01

    Despite the substantial decline of the immune system in AIDS, only a few kinds of tumors increase in incidence. This shows that the immune system has no absolute role in the prevention of tumors. Therefore, the fact that tumors do not develop in the majority of the population during their lifetime indicates the existence of other defense system(s). According to our hypothesis, the defense is made by certain substances of the circulatory system. Earlier, on the basis of this hypothesis, we experimentally selected 16 substances of the circulatory system and demonstrated that the mixture of them (called active mixture) had a cytotoxic effect (inducing apoptosis) in vitro and in vivo on different tumor cell lines, but not on normal cells and animals. In this paper, we provide evidence that different cytostatic drugs or irradiation in combination with the active mixture killed significantly more cancer cells, compared with either treatments alone. The active mixture decreased, to a certain extent, the toxicity of cytostatics and irradiation on normal cells, but the most important result was that the active mixture destroyed the multidrug-resistant cells. Our results provide the possibility to improve the efficacy and reduce the side-effects of chemotherapy and radiation therapy and to prevent the relapse by killing the resistant cells.

  15. Cloning and characterization of human immunodeficiency virus type 1 variants diminished in the ability to induce syncytium-independent cytolysis.

    PubMed Central

    Stevenson, M; Haggerty, S; Lamonica, C; Mann, A M; Meier, C; Wasiak, A

    1990-01-01

    The phenomenon of interference was exploited to isolate low-abundance noncytopathic human immunodeficiency virus type 1 (HIV-1) variants from a primary HIV-1 isolate from an asymptomatic HIV-1-seropositive hemophiliac. Successive rounds of virus infection of a cytolysis-susceptible CD4+ cell line and isolation of surviving cells resulted in selective amplification of an HIV-1 variant reduced in the ability to induce cytolysis. The presence of a PvuII polymorphism facilitated subsequent amplification and cloning of cytopathic and noncytopathic HIV-1 variants from the primary isolate. Cloned virus stocks from cytopathic and noncytopathic variants exhibited similar replication kinetics, infectivity, and syncytium induction in susceptible host cells. The noncytopathic HIV-1 variant was unable, however, to induce single-cell killing in susceptible host cells. Construction of viral hybrids in which regions of cytopathic and noncytopathic variants were exchanged indicated that determinants for the noncytopathic phenotype map to the envelope glycoprotein. Sequence analysis of the envelope coding regions indicated the absence of two highly conserved N-linked glycosylation sites in the noncytopathic HIV-1 variant, which accompanied differences in processing of precursor gp160 envelope glycoprotein. These results demonstrate that determinants for syncytium-independent single-cell killing are located within the envelope glycoprotein and suggest that single-cell killing is profoundly influenced by alterations in envelope sequence which affect posttranslational processing of HIV-1 envelope glycoprotein within the infected cell. Images PMID:1695254

  16. Antimicrobial effects of gold/copper sulphide (Gold/Copper monosulfide) core/shell nanoparticles on Bacillus anthracis spores and cells

    NASA Astrophysics Data System (ADS)

    Addae, Ebenezer

    Bacillus anthracis is a gram positive, rod shaped and spore forming bacteria. It causes anthrax, a deadly human and animal disease that can kill its victims in three days. The spores of B. anthracis can survive extreme environmental conditions for decades and germinate when exposed to proper conditions. Due to its potential as a bio-weapon, effective disinfectants that pose less harm to the environment and animals are urgently needed. Metal nanoparticles have the potential of killing microbial cells and spores. We present here the effect of Gold/Copper Sulphide core/shell (Au/CuS) nanoparticles on B. anthracis cells and spores. The results indicated that the continuous presence of 0.83 microM during the spore growth in nutrient medium completely inhibited spore outgrowth. Au/CuS nanoparticles at concentration of 4.15 μM completely inactivated B. anthracis cells (x 107) after 30 min of pre-treatment in any of the three buffers including water, PBS, and nutrient broth. However, the same and even higher concentrations of nanoparticles produce no significant spore (x 105) killing after 24 h of pre-treatment. SEM imaging, EDS analysis, and DNA extrusion experiments revealed that nanoparticles damaged the cell membrane causing DNA and cytosolic content efflux and eventually cell death. The study demonstrated the strong antimicrobial activity of Au/CuS nanoparticles to B. anthracis cells and revealed that Au/CuS NPs showed more effective inactivation effect against the cells than they did against the spores.

  17. The effect of phloretin on human γδ T cells killing colon cancer SW-1116 cells.

    PubMed

    Zhu, Sheng-Ping; Liu, Gang; Wu, Xiao-Ting; Chen, Fu-Xing; Liu, Jun-Quan; Zhou, Zhong-Hai; Zhang, Jian-Fu; Fei, Su-Juan

    2013-01-01

    To explore the effect and mechanism of Phloretin on human γδ T cells killing colon cancer SW-1116 cells. γδ T cells were amplified in vitro from human peripheral blood mononuclear cells through isopentenyl pyrophosphate method (IPP). After cocultured different concentrations of Phloretin with γδ T cells or SW-1116 cells for 48h respectively, MTT assay was used to test the growth curve of these two cells; Flow cytometry to test the expression of Granzyme B (GraB), perforin (PFP), CD107a and IFN-γ of γδ T cells; Lactate dehydrogenase (LDH) release assay to test the cytotoxic activity of the γδ T cells on SW-1116 cells; and Western blot to test the Wnt3a expression of the γδ T cells. After cultured with IPP for ten days, the percentage of γδ T cells increased from 3.31±3.00% to 78.40±10.30%. Compared to the control group, when the concentration of Phloretin increased from 2.35μg/ml to 18.75μg/ml, it could significantly proliferate the γδ T cell growth (P<0.05) and inhibit the growth of SW-1116 cells in dose-response, and the expression of GraB, PFP, CD107a and Wnt3a significantly increased (P<0.05). Significant positive relationships were observed among CD107a and PFP, GraB, cytotoxicity (P<0.05). The percentage of IFN-γ producing γδ T cells treated with Phloretin was significantly higher than control group. Phloretin can enhance the killing effect of γδ T cells on SW-1116 cells; the mechanism may be that Phloretin could proliferate the γδ T cell growth, increase the expression of PFP and GraB, activate the Wnt signaling pathway, and produce higher level of IFN-γ. Indeed CD107a expression probably correlates quite well with antitumor activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Enhanced cytotoxic activity of effector T-cells against cholangiocarcinoma by dendritic cells pulsed with pooled mRNA.

    PubMed

    Junking, Mutita; Grainok, Janya; Thepmalee, Chutamas; Wongkham, Sopit; Yenchitsomanus, Pa-Thai

    2017-10-01

    Cholangiocarcinoma is a malignancy of bile duct epithelia with an increasing in incidence rate worldwide. Surgery is the only curative treatment, while adjuvant chemotherapy and radiotherapy render poor responses. Cell-based immunotherapy is a potential strategy for cholangiocarcinoma treatment. However, variation of tumor antigens in cholangiocarcinoma leads to the ineffectiveness of cell-based immunotherapy. In this study, we examined the activation of effector T-cells by dendritic cells pulsed with protein lysate or total RNA from cholangiocarcinoma cell lines for their cytolytic activity against cholangiocarcinoma. Broad-spectrum antigen types with respect to RNA antigen sources were obtained from combination of three cholangiocarcinoma cell lines (KKU-213, KKU-100, and KKU-055). Compared with protein lysate-pulsed dendritic cells, total RNA-pulsed dendritic cells induced anti-tumor effector T-cell response with higher killing ability to KKU-100 and KKU-213 cells compared with protein lysate-pulsed dendritic cells. Moreover, pooled messenger RNA from three cholangiocarcinoma cell lines significantly increased the specific killing capacity of activated lymphocytes against KKU-213 cells. These results suggest that activation of anti-tumor effector T-cells against cholangiocarcinoma by RNA-pulsed dendritic cells is more effective than that by protein lysate-pulsed dendritic cells. In addition, pulsing dendritic cells with pooled messenger RNA from multiple cell lines enhanced the efficacy of a cellular immune response against cholangiocarcinoma.

  19. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging

    NASA Astrophysics Data System (ADS)

    Flusberg, Deborah A.; Sorger, Peter K.

    2013-06-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.

  20. Comparative analysis of cell killing and autosomal mutation in mouse kidney epithelium exposed to 1 GeV protons in vitro or in vivo.

    PubMed

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Grossi, Gianfranco; Dan, Cristian; Grygoryev, Dmytro; Lasarev, Michael; Turker, Mitchell S

    2013-05-01

    Human exposure to high-energy protons occurs in space flight scenarios or, where necessary, during radiotherapy for cancer or benign conditions. However, few studies have assessed the mutagenic effectiveness of high-energy protons, which may contribute to cancer risk. Mutations cause cancer and most cancer-associated mutations occur at autosomal loci. This study addresses the cytotoxic and mutagenic effects of 1 GeV protons in mouse kidney epithelium. Mutant fractions were measured for an endogenous autosomal locus (Aprt) that detects all types of mutagenic events. Results for kidneys irradiated in vivo are compared with the results for kidney cells from the same strain exposed in vitro. The results demonstrate dose-dependent cell killing in vitro and for cells explanted 3-4 months postirradiation in vivo. Incubation in vivo for longer periods (8-9 months) further attenuates proton-induced cell killing. Protons are mutagenic to cells in vitro and for in vivo irradiated kidneys. The dose-response for Aprt mutation is curvilinear after in vitro or in vivo exposure, bending upward at the higher doses. While the absolute mutant fractions are higher in vivo, the fold-increase over background is similar for both in vitro and in situ exposures. Results are also presented for a limited study on the effect of dose fractionation on the induction of Aprt mutations in kidney epithelial cells. Dose-fractionation reduces the fraction of proton-induced Aprt mutants in vitro and in vivo and also results in less cell killing. Taken together, the mutation burden in the epithelium is slightly reduced by dose-fractionation. Autosomal mutations accumulated during clinical exposure to high-energy protons may contribute to the risk of treatment-associated neoplasms, thereby highlighting the need for rigorous treatment planning to reduce the dose to normal tissues. For low dose exposures that occur during most space flight scenarios, the mutagenic effects of protons appear to be modest.

  1. Finding a Vulnerable Spot in HIV’s Armor by Investigating the Structure of HIV | Center for Cancer Research

    Cancer.gov

    The Human Immunodeficiency Virus (HIV) infects and eventually kills CD4-expressing T cells, which are essential for the immune system to function appropriately. Loss of significant numbers of T cells leads to Acquired Immunodeficiency Syndrome (AIDS), a disease that kills over two million people around the world every year. HIV infection depends on two proteins expressed on

  2. [Construction, expression and characterization of the fusion gene of super-antigen SEA and single chain Fv of the ND-1 monoclonal antibody against human colorectal cancer].

    PubMed

    Chen, Hang; Li, Li; Fang, Jin

    2012-04-01

    To construct and express the recombinant ND-1-scFv/SEA, a fusion protein of superantigen (staphylococcal enterotoxinA, SEA) and single-chain variable fragment of monoclonal antibody ND-1 against human clolorectal carcinoma, and to enhance the targeted killing effect of SEA. The expression of the fusion protein was induced in E.coli M15 by IPTG. Ni-NTA resin affinity chromatography was used to separate and purify the expressed product. The specific binding activity of the purified ND-1-scFv/SEA protein was examined by indirect immunofluorescence assay and the targeted-cytotoxicity was determined using MTT assay. The expressing vector of fusion gene ND-1scFv/SEA was constructed successfully. ND-1-scFv/SEA protein retained a high binding affinity to antigen-positive human colorectal cancer cell CCL-187 and had a stronger capability to activate PBMC and kill the target cells compared to SEA alone, with a killing rate of 91% at 4 μg/mL. ND-1-scFv/SEA fusion protein could specifically target colorectal cancer cell, enhance the activity of kill tumor cell and has potential applications in the targeted therapy of colorectal cancer.

  3. Rapid inactivation of Cronobacter sakazakii on copper alloys following periods of desiccation stress.

    PubMed

    Elguindi, Jutta; Alwathnani, Hend A; Rensing, Christopher

    2012-04-01

    Cronobacter spp. have been identified as the causative agent in meningitis and necrotizing enterocolitis in premature infants which can be linked to the bacterium's desiccation resistance and persistence in powdered infant formula. In this study we examined the efficacy of copper cast alloys in contact killing of Cronobacter sakazakii following periods of desiccation stress. Cronobacter sakazakii cells suspended in Tryptic Soy Broth (TSB) were killed within 10 min while kept moist on 99.9% copper alloys and within 1 min of drying on 99.9% copper alloys. Survival times were unchanged after cells suspended in TSB were desiccated for 33 days. Cronobacter sakazakii cells suspended in infant formula were killed within 30 min under moist conditions and within 3 min of drying on 99.9% copper alloys. However, when desiccated in infant formula for 45 days, survival times decreased to 10 and 1 min in moist and dry conditions, respectively. In contrast, no decrease in viable cells was noted on stainless steel surfaces under the experimental conditions employed in this study. Cronobacter sakazakii was rapidly killed on copper alloys under all testing conditions of this study indicating that desiccation and copper ion resistance do not prolong survival. These results could have important implications for the utilization of copper in the production and storage of powdered infant formula.

  4. Protective immunity by oral immunization with heat-killed Shigella strains in a guinea pig colitis model.

    PubMed

    Barman, Soumik; Koley, Hemanta; Ramamurthy, Thandavarayan; Chakrabarti, Manoj Kumar; Shinoda, Sumio; Nair, Gopinath Balakrish; Takeda, Yoshifumi

    2013-11-01

    The protective efficacy of and immune response to heat-killed cells of monovalent and hexavalent mixtures of six serogroups/serotypes of Shigella strains (Shigella dysenteriae 1, Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, Shigella boydii 4, and Shigella sonnei) were examined in a guinea pig colitis model. A monovalent or hexavalent mixture containing 1 × 10(7) of each serogroup/serotype of heat-killed Shigella cells was administered orally on Days 0, 7, 14 and 21. On Day 28, the immunized animals were challenged rectally with 1 × 10(9) live virulent cells of each of the six Shigella serogroups/serotypes. In all immunized groups, significant levels of protection were observed after these challenges. The serum titers of IgG and IgA against the lipopolysaccharide of each of the six Shigella serogroups/serotypes increased exponential during the course of immunization. High IgA titers against the lipopolysaccharide of each of the six Shigella serogroups/serotypes were also observed in intestinal lavage fluid from all immunized animals. These data indicate that a hexavalent mixture of heat-killed cells of the six Shigella serogroups/serotypes studied would be a possible broad-spectrum candidate vaccine against shigellosis. © 2013 The Societies and Wiley Publishing Asia Pty Ltd.

  5. Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis

    PubMed Central

    Mercer, Frances; Ng, Shek Hang; Brown, Taylor M.; Boatman, Grace; Johnson, Patricia J.

    2018-01-01

    T. vaginalis, a human-infective parasite, causes the most common nonviral sexually transmitted infection (STI) worldwide and contributes to adverse inflammatory disorders. The immune response to T. vaginalis is poorly understood. Neutrophils (polymorphonuclear cells [PMNs]) are the major immune cell present at the T. vaginalis–host interface and are thought to clear T. vaginalis. However, the mechanism of PMN clearance of T. vaginalis has not been characterized. We demonstrate that human PMNs rapidly kill T. vaginalis in a dose-dependent, contact-dependent, and neutrophil extracellular trap (NET)-independent manner. In contrast to phagocytosis, we observed that PMN killing of T. vaginalis involves taking “bites” of T. vaginalis prior to parasite death, using trogocytosis to achieve pathogen killing. Both trogocytosis and parasite killing are dependent on the presence of PMN serine proteases and human serum factors. Our analyses provide the first demonstration, to our knowledge, of a mammalian phagocyte using trogocytosis for pathogen clearance and reveal a novel mechanism used by PMNs to kill a large, highly motile target. PMID:29408891

  6. Hemangiosarcoma and its cancer stem cell subpopulation are effectively killed by a toxin targeted through epidermal growth factor and urokinase receptors.

    PubMed

    Schappa, Jill T; Frantz, Aric M; Gorden, Brandi H; Dickerson, Erin B; Vallera, Daniel A; Modiano, Jaime F

    2013-10-15

    Targeted toxins have the potential to overcome intrinsic or acquired resistance of cancer cells to conventional cytotoxic agents. Here, we hypothesized that EGFuPA-toxin, a bispecific ligand-targeted toxin (BLT) consisting of a deimmunized Pseudomonas exotoxin (PE) conjugated to epidermal growth factor and urokinase, would efficiently target and kill cells derived from canine hemangiosarcoma (HSA), a highly chemotherapy resistant tumor, as well as cultured hemangiospheres, used as a surrogate for cancer stem cells (CSC). EGFuPA-toxin showed cytotoxicity in four HSA cell lines (Emma, Frog, DD-1 and SB) at a concentration of ≤100 nM, and the cytotoxicity was dependent on specific ligand-receptor interactions. Monospecific targeted toxins also killed these chemoresistant cells; in this case, a "threshold" level of EGFR expression appeared to be required to make cells sensitive to the monospecific EGF-toxin, but not to the monospecific uPA-toxin. The IC₅₀ of CSCs was higher by approximately two orders of magnitude as compared to non-CSCs, but these cells were still sensitive to EGFuPA-toxin at nanomolar (i.e., pharmacologically relevant) concentrations, and when targeted by EGFuPA-toxin, resulted in death of the entire cell population. Taken together, our results support the use of these toxins to treat chemoresistant tumors such as sarcomas, including those that conform to the CSC model. Our results also support the use of companion animals with cancer for further translational development of these cytotoxic molecules. Copyright © 2013 UICC.

  7. Action of caffeine on x-irradiated HeLa cells. V. Identity of the sector of cells that expresses potentially lethal damage in G/sub 1/ and G/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beetham, K.L.; Tolmach, L.J.

    1982-07-01

    When HeLa S3 cells are irradiated in early G/sub 1/ with 4 Gy of 220-kV x rays and are then incubated in growth medium containing up to 5 mM caffeine, survival is reduced (as reported previously), reaching a concentration-dependent plateau. Cell killing presumably occurs as a result of the fixation of a portion of the potentially lethal damage the cells contain. These cells respond to continued treatment with caffeine at concentrations greater than 2 mM during S, but less so than during G/sub 1/. When they reach G/sub 2/ arrest, however, extensive cell killing again occurs (reported previously), presumably alsomore » the result of potentially lethal damage fixation. G/sub 1/-irradiated cultures that are treated with caffeine either continuously at a concentration in the range 1 to 5 mM, or at 10 mM for 8 hr and subsequently with the low concentration, achieve the same survival level in G/sub 2/, provided that the potentially lethal damage is not repaired during G/sub 1/ and S. Repair seems to be completely inhibited in the presence of 3 to 4 mM caffeine. The results indicate that fixation of potentially lethal damage occurs in the same sector of cells in G/sub 1/ and G/sub 2/, suggesting that the same cellular lesion gives rise to cell killing in the two phases.« less

  8. HIV envelope-mediated, CCR5/α4β7-dependent killing of CD4-negative γδ T cells which are lost during progression to AIDS.

    PubMed

    Li, Haishan; Pauza, C David

    2011-11-24

    HIV infects and replicates in CD4+ T cells but effects on host immunity and disease also involve depletion, hyper-activation, and modification of CD4-negative cell populations. In particular, the depletion of CD4-negative γδ T cells is common to all HIV+ individuals. We found that soluble or cell-associated envelope glycoproteins from CCR5-tropic strains of HIV could bind, activates the p38-caspase pathway, and induce the death of γδ cells. Envelope binding requires integrin α4β7 and chemokine receptor CCR5 which are at high levels and form a complex on the γδ T cell membrane. This receptor complex facilitated V3 loop binding to CCR5 in the absence of CD4-induced conformational changes. Cell death was increased by antigen stimulation after exposure to envelope glycoprotein. Direct signaling by envelope glycoprotein killed CD4-negative γδ T cells and reproduced a defect observed in all patients with HIV disease.

  9. Critical role for perforin and Fas-dependent killing of dendritic cells in the control of inflammation

    PubMed Central

    Felix, Kumar

    2012-01-01

    After stimulation of antigen-specific T cells, dendritic cell (DCs) are susceptible to killing by these activated T cells that involve perforin and Fas-dependent mechanisms. Fas-dependent DC apoptosis has been shown to limit DC accumulation and prevent the development of autoimmunity. However, a role for perforin in the maintenance of DC homeostasis for immune regulation remains to be determined. Here we show that perforin deficiency in mice, together with the deletion of Fas in DCs (perforin−/−DC-Fas−/−), led to DC accumulation, uncontrolled T-cell activation, and IFN-γ production by CD8+ T cells, resulting in the development of lethal hemophagocytic lymphohistiocytosis. Consistently, adoptive transfer of Fas−/− DCs induced over-activation and IFN-γ production in perforin−/− CD8+ T cells. Neutralization of IFN-γ prevented the spreading of inflammatory responses to different cell types and protected the survival of perforin−/−DC-Fas−/− mice. Our data suggest that perforin and Fas synergize in the maintenance of DC homeostasis to limit T cell activation, and prevent the initiation of an inflammatory cascade. PMID:22042696

  10. Constructing TC-1-GLUC-LMP2 Model Tumor Cells to Evaluate the Anti-Tumor Effects of LMP2-Related Vaccines

    PubMed Central

    Sun, Liying; Hao, Yanzhe; Wang, Zhan; Zeng, Yi

    2018-01-01

    Epstein-Barr virus (EBV) is related to a variety of malignant tumors, and its encoded protein, latent membrane protein 2 (LMP2), is an effective target antigen that is widely used to construct vector vaccines. However, the model cells carrying LMP2 have still not been established to assess the oncolytic effect of LMP2-related vaccines at present. In this study, TC-1-GLUC-LMP2 tumor cells were constructed as target cells to evaluate the anti-tumor effects of LMP2-assosiated vaccines. The results showed that both LMP2 and Gaussia luciferase (GLuc) genes could be detected by polymerase chain reaction (PCR) and reverse transcription-polymerase chain reaction (RT-PCR) in TC-1-GLUC-LMP2 cells. Western blot results showed that the LMP2 and Gaussia luciferase proteins were stably expressed in tumor cells for at least 30 generations. We mixed 5 × 104 LMP2-specific mouse splenic lymphocytes with 5 × 103 TC-1-GLUC-LMP2 target cells and found that the target cells were killed as the specific killing effect was obviously enhanced by the increased quantities of LMP2-peptide stimulated spleens. Furthermore, the tumor cells could not be observed in the mice inoculated TC-1-GLUC-LMP2 cells after being immunized with vaccine-LMP2, while the vaccine-NULL immunized mice showed that tumor volume gradually grew with increased inoculation time. These results indicated that the TC-1-GLUC-LMP2 cells stably expressing LMP2 and GLuc produced tumors in mice, and that the LMP2-specific cytotoxic T lymphocyte (CTL) effectively killed the cells in vitro and in vivo, suggesting that TC-1-GLUC-LMP2 cells can be used as model cells to assess the immune and antitumor effects of LMP2-related vaccines. PMID:29570629

  11. Talking About Killing: Cell Phones, Collective Action, and Insurgent Violence in Iraq

    DTIC Science & Technology

    2011-09-06

    Does improved communication as provided by modern cell phone technology affect the production of violence during insurgencies? Theoretical...the effect of cell phone communications on conflict using data on Iraq’s cell phone network and event data on violence. We show that increased mobile

  12. [Immune granulomatous inflammation as the body's adaptive response].

    PubMed

    Paukov, V S; Kogan, E A

    2014-01-01

    Based on their studies and literature analysis, the authors offer a hypothesis for the adaptive pattern of chronic immune granulomatous inflammation occurring in infectious diseases that are characterized by the development of non-sterile immunity. The authors' proposed hypothesis holds that not every chronic inflammation is a manifestation of failing defenses of the body exposed to a damaging factor. By using tuberculosis and leprosy as an example, the authors show the insolvency of a number of existing notions of the pathogenesis and morphogenesis of epithelioid-cell and leprous granulomas. Thus, the authors consider that resident macrophages in tuberculosis maintain their function to kill mycobacteria; thereby the immune system obtains information on the antigenic determinants of the causative agents. At the same time, by consuming all hydrolases to kill mycobacteria, the macrophage fails to elaborate new lysosomes for the capacity of the pathogens to prevent them from forming. As a result, the lysosome-depleted macrophage transforms into an epithelioid cell that, maintaining phagocytic functions, loses its ability to kill the causative agents. It is this epithelioid cell where endocytobiosis takes place. These microorganisms destroy the epithelioid cell and fall out in the area of caseating granuloma necrosis at regular intervals. Some of them phagocytize epithelioid cells to maintain non-sterile immunity; the others are killed by inflammatory macrophages. The pathogenesis and morphogenesis of leprous granuloma, its tuberculous type in particular, proceed in a fundamentally similar way. Thus, non-sterile immunity required for tuberculosis, leprosy, and, possibly, other mycobacterioses is maintained.

  13. Persister eradication: lessons from the world of natural products.

    PubMed

    Keren, Iris; Mulcahy, Lawrence R; Lewis, Kim

    2012-01-01

    Persisters are specialized survivor cells that protect bacterial populations from killing by antibiotics. Persisters are dormant phenotypic variants of regular cells rather than mutants. Bactericidal antibiotics kill by corrupting their targets into producing toxic products; tolerance to antibiotics follows when targets are inactive. Transcriptome analysis of isolated persisters points to toxin/antitoxin modules as a principle component of persister formation. Mechanisms of persister formation are redundant, making it difficult to eradicate these cells. In Escherichia coli, toxins RelE and MazF cause dormancy by degrading mRNA; HipA inhibits translation by phosphorylating Ef-Tu; and TisB forms an anion channel in the membrane, leading to a decrease in pmf and ATP levels. Prolonged treatment of chronic infections with antibiotics selects for hip mutants that produce more persister cells. Eradication of tolerant persisters is a serious challenge. Some of the existing antibiotics are capable of killing persisters, pointing to ways of developing therapeutics to treat chronic infections. Mitomycin is a prodrug which is converted into a reactive compound forming adducts with DNA upon entering the cell. Prolonged treatment with aminoglycosides that cause mistranslation leading to misfolded peptides can sterilize a stationary culture of Pseudomonas aeruginosa, a pathogen responsible for chronic, highly tolerant infections of cystic fibrosis patients. Finally, one of the best bactericidal agents is rifampin, an inhibitor of RNA polymerase, and we suggest that it "kills" by preventing persister resuscitation. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. TNF-induced target cell killing by CTL activated through cross-presentation.

    PubMed

    Wohlleber, Dirk; Kashkar, Hamid; Gärtner, Katja; Frings, Marianne K; Odenthal, Margarete; Hegenbarth, Silke; Börner, Carolin; Arnold, Bernd; Hämmerling, Günter; Nieswandt, Bernd; van Rooijen, Nico; Limmer, Andreas; Cederbrant, Karin; Heikenwalder, Mathias; Pasparakis, Manolis; Protzer, Ulrike; Dienes, Hans-Peter; Kurts, Christian; Krönke, Martin; Knolle, Percy A

    2012-09-27

    Viruses can escape cytotoxic T cell (CTL) immunity by avoiding presentation of viral components via endogenous MHC class I antigen presentation in infected cells. Cross-priming of viral antigens circumvents such immune escape by allowing noninfected dendritic cells to activate virus-specific CTLs, but they remain ineffective against infected cells in which immune escape is functional. Here, we show that cross-presentation of antigen released from adenovirus-infected hepatocytes by liver sinusoidal endothelial cells stimulated cross-primed effector CTLs to release tumor necrosis factor (TNF), which killed virus-infected hepatocytes through caspase activation. TNF receptor signaling specifically eliminated infected hepatocytes that showed impaired anti-apoptotic defense. Thus, CTL immune surveillance against infection relies on two similarly important but distinct effector functions that are both MHC restricted, requiring either direct antigen recognition on target cells and canonical CTL effector function or cross-presentation and a noncanonical effector function mediated by TNF. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  15. In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells

    NASA Astrophysics Data System (ADS)

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2016-12-01

    Metastasis causes as many as 90% of cancer-related deaths, especially for the deadliest skin cancer, melanoma. Since hematogenous dissemination of circulating tumor cells is the major route of metastasis, detection and destruction of circulating tumor cells are vital for impeding metastasis and improving patient prognosis. Exploiting the exquisite intrinsic optical absorption contrast of circulating melanoma cells, we developed dual-wavelength photoacoustic flow cytography coupled with a nanosecond-pulsed melanoma-specific laser therapy mechanism. We have successfully achieved in vivo label-free imaging of rare single circulating melanoma cells in both arteries and veins of mice. Further, the photoacoustic signal from a circulating melanoma cell immediately hardware-triggers a lethal pinpoint laser irradiation to kill it on the spot in a thermally confined manner without causing collateral damage. A pseudo-therapy study including both in vivo and in vitro experiments demonstrated the performance and the potential clinical value of our method, which can facilitate early treatment of metastasis by clearing circulating tumor cells from vasculature.

  16. Hyperglycaemia does not affect antigen-specific activation and cytolytic killing by CD8+ T cells in vivo.

    PubMed

    Recino, Asha; Barkan, Kerry; Wong, F Susan; Ladds, Graham; Cooke, Anne; Wallberg, Maja

    2017-08-31

    Metabolism is of central importance for T cell survival and differentiation. It is well known that T cells cannot function in the absence of glucose, but it is less clear how they respond to excessive levels of glucose. In the present study, we investigated how increasing levels of glucose affect T-cell-mediated immune responses. We examined the effects of increased levels of glucose on CD8 + T-cell behaviour in vitro by assessing activation and cytokine production, as well as oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and intracellular signalling. In addition, we assessed in vivo proliferation, cytokine production and cytolytic activity of cells in chemically induced diabetic C57BL/6 mice. Elevated levels of glucose in in vitro cultures had modest effects on proliferation and cytokine production, while in vivo hyperglycaemia had no effect on CD8 + T-cell proliferation, interferon γ (IFNγ) production or cytolytic killing. © 2017 The Author(s).

  17. Repurposing a Prokaryotic Toxin-Antitoxin System for the Selective Killing of Oncogenically Stressed Human Cells.

    PubMed

    Preston, Mark A; Pimentel, Belén; Bermejo-Rodríguez, Camino; Dionne, Isabelle; Turnbull, Alice; de la Cueva-Méndez, Guillermo

    2016-07-15

    Prokaryotes express intracellular toxins that pass unnoticed to carrying cells until coexpressed antitoxin partners are degraded in response to stress. Although not evolved to function in eukaryotes, one of these toxins, Kid, induces apoptosis in mammalian cells, an effect that is neutralized by its cognate antitoxin, Kis. Here we engineered this toxin-antitoxin pair to create a synthetic system that becomes active in human cells suffering a specific oncogenic stress. Inspired by the way Kid becomes active in bacterial cells, we produced a Kis variant that is selectively degraded in human cells expressing oncoprotein E6. The resulting toxin-antitoxin system functions autonomously in human cells, distinguishing those that suffer the oncogenic insult, which are killed by Kid, from those that do not, which remain protected by Kis. Our results provide a framework for developing personalized anticancer strategies avoiding off-target effects, a challenge that has been hardly tractable by other means thus far.

  18. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection

    PubMed Central

    Ferrari, Guido; Haynes, Barton F.; Koenig, Scott; Nordstrom, Jeffrey L.; Margolis, David M.; Tomaras, Georgia D.

    2017-01-01

    HIV-1 is a retrovirus that integrates into host chromatin and can remain transcriptionally quiescent in a pool of immune cells. This characteristic enables HIV-1 to evade both host immune responses and antiretroviral drugs, leading to persistent infection. Upon reactivation of proviral gene expression, HIV-1 envelope (HIV-1 Env) glycoproteins are expressed on the cell surface, transforming latently infected cells into targets for HIV-1 Env-specific monoclonal antibodies (mAbs), which can engage immune effector cells to kill productively infected CD4+ T cells and thus limit the spread of progeny virus. Recent innovations in antibody engineering have resulted in novel immunotherapeutics such as bispecific dual-affinity re-targeting (DART) molecules and other bi- and trispecific antibody designs that can recognize HIV-1 Env and recruit cytotoxic effector cells to kill CD4+ T cells latently infected with HIV‑1. Here, we review these immunotherapies, which are designed with the goal of curing HIV-1 infection. PMID:27725635

  19. [Retroviral-mediated transfer of a hygromycin phosphotransferase-thymidine kinase fusion gene into human bladder carcinoma cell].

    PubMed

    Ye, C; Chen, S; Pei, X; Li, L; Feng, K

    1999-08-01

    To evaluate the therapeutic efficacy of retroviral-mediated hygromycin phosphotransferase-thymidine kinase fusion gene (HyTK)/GCV on human bladder carcinoma cell. A retroviral expression vector pL (HyTK) SN was constructed. By using FuGENE 6-mediated transfection and "ping-pong effect" technique, high-titer of retroviral supernatant was obtained and HyTK gene was transferred into EJ cells. A retroviral vector encoding, enhanced green fluorescent protein, EGFP was used to rapidly detect the transduction efficiency. Antitumor effects were observed after GCV treatment. In vitro experiments demonstrated the EJ cells transferred by HyTK gene were killed in the GCV treatment. Non-transduced parental cells were not sensitive to GCV, but they were dead by the bystander killing of neighboring cells when mixed with EJ/HyTK cells at various ratios. In addition, this not only affect wild-type EJ cells but also cells from different bladder carcinoma cell lines. Retroviral-mediated HyTK/GCV systems were a promising suicide gene therapy for bladder carcinoma. EGFP may act as a convenient and rapid reporter to monitor retroviral-mediated gene transfer and expression in bladder carcinoma cells.

  20. Mechanisms of Invariant Natural Killer T Cell-Mediated Immunoregulation in Cancer

    DTIC Science & Technology

    2012-05-01

    by mesenchymal stem cells . Intriguingly, the increased metastatic ability was dependent on the production of CCL5 by mesenchymal stem cells , which...Tubo, R., &Weinberg, R.A.(2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. Vol. 449:pp557-563. Breast...can induce preferential secretion of immunosuppressive cytokines ; 2) iNKT cells inhibit effector T cell priming by killing dendritic cells that

  1. In Situ Gelation-Induced Death of Cancer Cells Based on Proteinosomes.

    PubMed

    Zhou, Yuting; Song, Jianmin; Wang, Lei; Xue, Xuting; Liu, Xiaoman; Xie, Hui; Huang, Xin

    2017-08-14

    Hydrogels are an excellent type of material that can be utilized as a platform for cell culture. However, when a bulky hydrogel forms on the inside of cancer cells, the result would be different. In this study, we demonstrate a method for in situ gelation inside cancer cells that can efficiently induce cell death. Glutathione-responsive proteinosomes with good biocompatibility were prepared as carriers for sodium alginate to be endocytosed by cancer cells, where the chelation between sodium alginate and free calcium ions in the culture medium occurs during the diffusion process. The uptake of the hydrogel-loaded proteinosomes into the cancer cells, and then the triggered release of hydrogel with concomitant aggregation, was well-confirmed by monitoring the change of the Young's modulus of the cells based on AFM force measurements. Accordingly, when a large amount of hydrogel formed in cells, the cell viability would be inhibited by ∼90% by MTT assay at a concentration of 5.0 μM of hydrogel-loaded proteinosomes after 48 h incubation, which clearly proves the feasibility of the demonstrated method for killing cancer cells. Although more details regarding the mechanism of cell death should be conducted in the near future, such a demonstrated method of in situ gelation inside cells provides another choice for killing cancer cells.

  2. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    PubMed Central

    2013-01-01

    Background Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. Methods The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. Results The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Conclusions Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma. PMID:23915425

  3. Nitric oxide inhibits exocytosis of cytolytic granules from lymphokine-activated killer cells

    PubMed Central

    Ferlito, Marcella; Irani, Kaikobad; Faraday, Nauder; Lowenstein, Charles J.

    2006-01-01

    NO inhibits cytotoxic T lymphocyte killing of target cells, although the precise mechanism is unknown. We hypothesized that NO decreases exocytosis of cytotoxic granules from activated lymphocytes. We now show that NO inhibits lymphokine-activated killer cell killing of K562 target cells. Exogenous and endogenous NO decreases the release of granzyme B, granzyme A, and perforin: all contents of cytotoxic granules. NO inhibits the signal transduction cascade initiated by cross-linking of the T cell receptor that leads to granule exocytosis. In particular, we found that NO decreases the expression of Ras, a critical signaling component within the exocytic pathway. Ectopic expression of Ras prevents NO inhibition of exocytosis. Our data suggest that Ras mediates NO inhibition of lymphocyte cytotoxicity and emphasize that alterations in the cellular redox state may regulate the exocytic signaling pathway. PMID:16857739

  4. Evidence of a cellular immune response against sialyl-Tn in breast and ovarian cancer patients after high-dose chemotherapy, stem cell rescue, and immunization with Theratope STn-KLH cancer vaccine.

    PubMed

    Sandmaier, B M; Oparin, D V; Holmberg, L A; Reddish, M A; MacLean, G D; Longenecker, B M

    1999-01-01

    Seven ovarian and 33 breast high-risk stage II/III and stage IV cancer patients received high-dose chemotherapy followed by stem cell rescue. Thirty to 151 days after stem cell transplantation, the patients received their first immunotherapy treatment with Theratope STn-KLH cancer vaccine. Most patients developed increasing IgG anti-STn titers to a sustained peak after the fourth or fifth immunizations. Only one patient had elevated CA27.29 (MUC1 mucin) serum levels at trial entry. Five of the seven patients with preimmunotherapy elevated serum CA125 levels demonstrated decreasing CA125 levels during immunotherapy, consistent with an antitumor response. Evidence of STn antigen-specific T-cell proliferation was obtained from 17 of the 27 evaluable patients who received at least three immunotherapy treatments. Eleven of the 26 patients tested had evidence of an anti-STn TH1 antigen-specific T-cell response as determined by interferon-gamma, but not interleukin (IL)-4, production. After immunization, lytic activity of peripheral blood lymphocytes (PBLs) tested against a lymphokine activated killer (LAK)-sensitive cell line, a natural killer (NK)-sensitive cell line, and an STn-expressing cancer cell line (OVCAR) increased significantly. In vitro IL-2 treatment of the PBLs after vaccination greatly enhanced killing of the STn+ cancer cell line. Evidence of the development of OVCAR specific killing activity, over and above that seen due to LAK or NK killing, is presented. These studies provide the strongest evidence in humans of the development of an antitumor T-cell response after immunization with a cancer-associated carbohydrate antigen.

  5. Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death.

    PubMed

    Kim, Jin Hee; Kang, Tae Heung; Noh, Kyung Hee; Bae, Hyun Cheol; Kim, Seok-Ho; Yoo, Young Do; Seong, Seung-Yong; Kim, Tae Woo

    2009-01-29

    Dendritic cells (DCs) have become an important measure for the treatment of malignancies. Current DC preparations, however, generate short-lived DCs because they are subject to cell death from various apoptotic pressures. Antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is one of the main obstacles to limit the DC-mediated immune priming since CTLs can recognize the target antigen expressing DCs as target cells and kill the DCs. CTLs secret perforin and serine protease granzymes during CTL killing. Perforin and serine protease granzymes induce the release of a number of mitochondrial pro-apoptotic factors, which are controlled by members of the BCL-2 family, such as BAK, BAX and BIM. FasL linking to Fas on DCs triggers the activation of caspase-8, which eventually leads to mitochondria-mediated apoptosis via truncation of BID. In this study, we tried to enhance the DC priming capacity by prolonging DC survival using anti-apoptotic siRNA targeting these key pro-apoptotic molecules in CTL killing. Human papillomavirus (HPV)-16 E7 antigen presenting DCs that were transfected with these anti-apoptotic siRNAs showed increased resistance to T cell-mediated death, leading to enhanced E7-specific CD8(+) T cell activation in vitro and in vivo. Among them, siRNA targeting BIM (siBIM) generated strongest E7-specific E7-specific CD8(+) T cell immunity. More importantly, vaccination with E7 presenting DCs transfected with siBIM was capable of generating a marked therapeutic effect in vaccinated mice. Our data indicate that ex vivo manipulation of DCs with siBIM may represent a plausible strategy for enhancing dendritic cell-based vaccine potency.

  6. mTORC1 Inhibition Induces Resistance to Methotrexate and 6-Mercaptopurine in Ph+ and Ph-like B-ALL.

    PubMed

    Vo, Thanh-Trang T; Lee, J Scott; Nguyen, Duc; Lui, Brandon; Pandori, William; Khaw, Andrew; Mallya, Sharmila; Lu, Mengrou; Müschen, Markus; Konopleva, Marina; Fruman, David A

    2017-09-01

    Elevated activity of mTOR is associated with poor prognosis and higher incidence of relapse in B-cell acute lymphoblastic leukemia (B-ALL). Thus, ongoing clinical trials are testing mTOR inhibitors in combination with chemotherapy in B-ALL. However, the combination of mTOR inhibitors with standard of care chemotherapy drugs has not been studied extensively in high-risk B-ALL subtypes. Therefore, we tested whether mTOR inhibition can augment the efficacy of current chemotherapy agents in Ph + and Ph-like B-ALL models. Surprisingly, inhibiting mTOR complex 1 (mTORC1) protected B-ALL cells from killing by methotrexate and 6-mercaptopurine, two antimetabolite drugs used in maintenance chemotherapy. The cytoprotective effects correlated with decreased cell-cycle progression and were recapitulated using cell-cycle inhibitors, palbociclib or aphidicolin. Dasatinib, a tyrosine kinase inhibitor currently used in Ph + patients, inhibits ABL kinase upstream of mTOR. Dasatinib resistance is mainly caused by ABL kinase mutations, but is also observed in a subset of ABL unmutated cases. We identified dasatinib-resistant Ph+ cell lines and patient samples in which dasatinib can effectively reduce ABL kinase activity and mTORC1 signaling without causing cell death. In these cases, dasatinib protected leukemia cells from killing by 6-mercaptopurine. Using xenograft models, we observed that mTOR inhibition or dasatinib increased the numbers of leukemia cells that emerge after cessation of chemotherapy treatment. These results demonstrate that inhibitors targeting mTOR or upstream signaling nodes should be used with caution when combined with chemotherapeutic agents that rely on cell-cycle progression to kill B-ALL cells. Mol Cancer Ther; 16(9); 1942-53. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Herbal tea extract combined with light-induced significant in vitro cytotoxicity of human bladder cancer cells

    NASA Astrophysics Data System (ADS)

    Nseyo, Unyime; Kim, Albert; Stavropoulos, Nicholas E.; Skalkos, Dimitris; Nseyo, U. U.; Chung, Theodore D.

    2005-04-01

    The anti-inflammatory, anti-microbial, antiviral, and antidepressant activities of the Greek herb, Hypericum Perforatum L, HP L, have been attributed to the total extract or single constituents. We investigated the use of the extract,specifically of the polar methanolic fraction (PMF) of Epirus"HPL in photodynamic therapy (PDT) alone and in combination with recombinant Interferon-a2b (IFN) and gemcitabine (GCB) in the treatment of human bladder cancer cells. The PMF was extracted from the dry herb with methanol, followed by liquid-liquid extraction with petroleum ether. T-24 bladder cancer cells were plated (105 cells/well) and placed in the incubator (370 C, 5%CO) for 24 hours prior to addition of drugs. PMF 60ug/ml was added and incubation continued. After 24 hours, the cells were subjected to laser light (630nm) treatment with 0, 1, 4 and 8 Joules. After reincubation for 24 hours, IFN, (50,000 IU) or GCB, (2ug/ml) was added to the PDT-treated cells. After this incubation cell survival was assessed by the MTT assay. PMF-PDT alone-induced percent cell kill of 0%, 8%, 44% and 80% versus 31%, 64 and 86 % for PMF-PDT and IFN, versus 63%, 80% and 88% for MPF-PDT plus GCB at 1, 2, 4 and 8 Joules respectively. IFN and GCB induced 20% and 53% cell kill respectively. Our data suggest that MPF may be an effective agent for in vitro photodynamic therapy. PMF-PDT combined with Intron A, or gemcitabine achieved improved kill of cultured bladder cancer cells. Confirmation of these results in preclinical studies may lead to clinical trials.

  8. Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells

    PubMed Central

    Sloan, Derek D.; Lam, Chia-Ying Kao; Irrinki, Alivelu; Liu, Liqin; Tsai, Angela; Pace, Craig S.; Kaur, Jasmine; Murry, Jeffrey P.; Balakrishnan, Mini; Moore, Paul A.; Johnson, Syd; Nordstrom, Jeffrey L.; Cihlar, Tomas; Koenig, Scott

    2015-01-01

    HIV reservoirs and production of viral antigens are not eliminated in chronically infected participants treated with combination antiretroviral therapy (cART). Novel therapeutic strategies aiming at viral reservoir elimination are needed to address chronic immune dysfunction and non-AIDS morbidities that exist despite effective cART. The HIV envelope protein (Env) is emerging as a highly specific viral target for therapeutic elimination of the persistent HIV-infected reservoirs via antibody-mediated cell killing. Dual-Affinity Re-Targeting (DART) molecules exhibit a distinct mechanism of action via binding the cell surface target antigen and simultaneously engaging CD3 on cytotoxic T lymphocytes (CTLs). We designed and evaluated Env-specific DARTs (HIVxCD3 DARTs) derived from known antibodies recognizing diverse Env epitopes with or without broadly neutralizing activity. HIVxCD3 DARTs derived from PGT121, PGT145, A32, and 7B2, but not VRC01 or 10E8 antibodies, mediated potent CTL-dependent killing of quiescent primary CD4 T cells infected with diverse HIV isolates. Similar killing activity was also observed with DARTs structurally modified for in vivo half-life extension. In an ex vivo model using cells isolated from HIV-infected participants on cART, combinations of the most potent HIVxCD3 DARTs reduced HIV expression both in quiescent and activated peripheral blood mononuclear cell cultures isolated from HIV-infected participants on suppressive cART. Importantly, HIVxCD3 DARTs did not induce cell-to-cell virus spread in resting or activated CD4 T cell cultures. Collectively, these results provide support for further development of HIVxCD3 DARTs as a promising therapeutic strategy for targeting HIV reservoirs. PMID:26539983

  9. NK cell-released exosomes: Natural nanobullets against tumors.

    PubMed

    Fais, Stefano

    2013-01-01

    We have recently reported that human natural killer (NK) cells release exosomes that express both NK-cell markers and cytotoxic molecules. Similar results were obtained with circulating exosomes from human healthy donors. Both NK-cell derived and circulating exosomes exerted a full functional activity and killed both tumor and activated immune cells. These findings indicate that NK-cell derived exosomes might constitute a new promising therapeutic tool.

  10. NK cell-released exosomes

    PubMed Central

    Fais, Stefano

    2013-01-01

    We have recently reported that human natural killer (NK) cells release exosomes that express both NK-cell markers and cytotoxic molecules. Similar results were obtained with circulating exosomes from human healthy donors. Both NK-cell derived and circulating exosomes exerted a full functional activity and killed both tumor and activated immune cells. These findings indicate that NK-cell derived exosomes might constitute a new promising therapeutic tool. PMID:23482694

  11. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells.

    PubMed

    Ferreira-Teixeira, Margarida; Paiva-Oliveira, Daniela; Parada, Belmiro; Alves, Vera; Sousa, Vitor; Chijioke, Obinna; Münz, Christian; Reis, Flávio; Rodrigues-Santos, Paulo; Gomes, Célia

    2016-10-21

    High-grade non-muscle invasive bladder cancer (NMIBC) has a high risk of recurrence and progression to muscle-invasive forms, which seems to be largely related to the presence of tumorigenic stem-like cell populations that are refractory to conventional therapies. Here, we evaluated the therapeutic potential of Natural Killer (NK) cell-based adoptive immunotherapy against chemoresistant bladder cancer stem-like cells (CSCs) in a pre-clinical relevant model, using NK cells from healthy donors and NMIBC patients. Cytokine-activated NK cells from healthy donors and from high-grade NMIBC patients were phenotypically characterized and assayed in vitro against stem-like and bulk differentiated bladder cancer cells. Stem-like cells were isolated from two bladder cancer cell lines using the sphere-forming assay. The in vivo therapeutic efficacy was evaluated in mice bearing a CSC-induced orthotopic bladder cancer. Animals were treated by intravesical instillation of interleukin-activated NK cells. Tumor response was evaluated longitudinally by non-invasive bioluminescence imaging. NK cells from healthy donors upon activation with IL-2 and IL-15 kills indiscriminately both stem-like and differentiated tumor cells via stress ligand recognition. In addition to cell killing, NK cells shifted CSCs towards a more differentiated phenotype, rendering them more susceptible to cisplatin, highlighting the benefits of a possible combined therapy. On the contrary, NK cells from NMIBC patients displayed a low density on NK cytotoxicity receptors, adhesion molecules and a more immature phenotype, losing their ability to kill and drive differentiation of CSCs. The local administration, via the transurethral route, of activated NK cells from healthy donors provides an efficient tumor infiltration and a subsequent robust tumoricidal activity against bladder cancer with high selective cytolytic activity against CSCs, leading to a dramatic reduction in tumor burden from 80 % to complete remission. Although pre-clinical, our results strongly suggest that an immunotherapeutic strategy using allogeneic activated NK cells from healthy donors is effective and should be exploited as a complementary therapeutic strategy in high-risk NMIBC patients to prevent tumor recurrence and progression.

  12. Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells

    PubMed Central

    Lee, Wen Shi; Richard, Jonathan; Lichtfuss, Marit; Smith, Amos B.; Park, Jongwoo; Courter, Joel R.; Melillo, Bruno N.; Sodroski, Joseph G.; Kaufmann, Daniel E.; Parsons, Matthew S.

    2015-01-01

    ABSTRACT Lifelong antiretroviral therapy (ART) for HIV-1 does not diminish the established latent reservoir. A possible cure approach is to reactivate the quiescent genome from latency and utilize immune responses to eliminate cells harboring reactivated HIV-1. It is not known whether antibodies within HIV-1-infected individuals can recognize and eliminate cells reactivated from latency through antibody-dependent cellular cytotoxicity (ADCC). We found that reactivation of HIV-1 expression in the latently infected ACH-2 cell line elicited antibody-mediated NK cell activation but did not result in antibody-mediated killing. The lack of CD4 expression on these HIV-1 envelope (Env)-expressing cells likely resulted in poor recognition of CD4-induced antibody epitopes on Env. To examine this further, cultured primary CD4+ T cells from HIV-1+ subjects were used as targets for ADCC. These ex vivo-expanded primary cells were modestly susceptible to ADCC mediated by autologous or heterologous HIV-1+ serum antibodies. Importantly, ADCC mediated against these primary cells could be enhanced following incubation with a CD4-mimetic compound (JP-III-48) that exposes CD4-induced antibody epitopes on Env. Our studies suggest that with sufficient reactivation and expression of appropriate Env epitopes, primary HIV-1-infected cells can be targets for ADCC mediated by autologous serum antibodies and innate effector cells. The results of this study suggest that further investigation into the potential of ADCC to eliminate reactivated latently infected cells is warranted. IMPORTANCE An HIV-1 cure remains elusive due to the persistence of long-lived latently infected cells. An HIV-1 cure strategy, termed “shock and kill,” aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. While recent research efforts have focused on reversing HIV-1 latency, it remains unclear whether preexisting immune responses within HIV-1+ individuals can efficiently eliminate the reactivated cells. HIV-1-specific antibodies can potentially eliminate cells reactivated from latency via Fc effector functions by recruiting innate immune cells. Our study highlights the potential role that antibody-dependent cellular cytotoxicity might play in antilatency cure approaches. PMID:26656700

  13. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells

    PubMed Central

    Ni, Miaozhong; Xiong, Min; Zhang, Xinchao; Cai, Guoping; Chen, Huaiwen; Zeng, Qingmin; Yu, Zuochong

    2015-01-01

    Background Cancer stem cells (CSCs) possess the characteristics associated with normal stem cells and are responsible for cancer initiation, recurrence, and metastasis. CD133 is regarded as a CSCs marker of osteosarcoma, which is the most common primary bone malignancy in childhood and adolescence. Salinomycin, a polyether ionophore antibiotic, has been shown to kill various CSCs, including osteosarcoma CSCs. However, salinomycin displayed poor aqueous solubility that hinders its clinical application. The objective of this study was to develop salinomycin-loaded nanoparticles to eliminate CD133+ osteosarcoma CSCs. Methods The salinomycin-loaded PEGylated poly(lactic-co-glycolic acid) nanoparticles (SAL-NP) conjugated with CD133 aptamers (Ap-SAL-NP) were developed by an emulsion/solvent evaporation method, and the targeting and cytotoxicity of Ap-SAL-NP to CD133+ osteosarcoma CSCs were evaluated. Results The nanoparticles are of desired particle size (~150 nm), drug encapsulation efficiency (~50%), and drug release profile. After 48 hours treatment of the Saos-2 CD133+ osteosarcoma cells with drugs formulated in Ap-SAL-NP, SAL-NP, and salinomycin, the concentrations needed to kill 50% of the incubated cells were found to be 2.18, 10.72, and 5.07 μg/mL, respectively, suggesting that Ap-SAL-NP could be 4.92 or 2.33 fold more effective than SAL-NP or salinomycin, respectively. In contrast, Ap-SAL-NP was as effective as SAL-NP, and less effective than salinomycin in Saos-2 CD133− cells, suggesting that Ap-SAL-NP possess specific cytotoxicity toward Saos-2 CD133+ cells. Ap-SAL-NP showed the best therapeutic effect in Saos-2 osteosarcoma xenograft mice, compared with SAL-NP or salinomycin. Significantly, Ap-SAL-NP could selectively kill CD133+ osteosarcoma CSCs both in vitro and in vivo, as reflected by the tumorsphere formation and proportion of Saos-2 CD133+ cells. Conclusion Our results suggest that CD133 is a potential target for drug delivery to osteosarcoma CSCs and that it is possible to significantly inhibit the osteosarcoma growth by killing CD133+ osteosarcoma CSCs. We demonstrated that Ap-SAL-NP have the potential to target and kill CD133+ osteosarcoma CSCs. PMID:25848270

  14. Landscape review of current HIV 'kick and kill' cure research - some kicking, not enough killing.

    PubMed

    Thorlund, Kristian; Horwitz, Marc S; Fife, Brian T; Lester, Richard; Cameron, D William

    2017-08-29

    Current antiretroviral therapy (ART) used to treat human immunodeficiency virus (HIV) patients is life-long because it only suppresses de novo infections. Recent efforts to eliminate HIV have tested the ability of a number of agents to reactivate ('Kick') the well-known latent reservoir. This approach is rooted in the assumption that once these cells are reactivated the host's immune system itself will eliminate ('Kill') the virus. While many agents have been shown to reactivate large quantities of the latent reservoir, the impact on the size of the latent reservoir has been negligible. This suggests that the immune system is not sufficient to eliminate reactivated reservoirs. Thus, there is a need for more emphasis on 'kill' strategies in HIV cure research, and how these might work in combination with current or future kick strategies. We conducted a landscape review of HIV 'cure' clinical trials using 'kick and kill' approaches. We identified and reviewed current available clinical trial results in human participants as well as ongoing and planned clinical trials. We dichotomized trials by whether they did not include or include a 'kill' agent. We extracted potential reasons why the 'kill' is missing from current 'kick and kill' strategies. We subsequently summarized and reviewed current 'kill' strategies have entered the phase of clinical trial testing in human participants and highlighted those with the greatest promise. The identified 'kick' trials only showed promise on surrogate measures activating latent T-cells, but did not show any positive effects on clinical 'cure' measures. Of the 'kill' agents currently being tested in clinical trials, early results have shown small but meaningful proportions of participants remaining off ART for several months with broadly neutralizing antibodies, as well as agents for regulating immune cell responses. A similar result was also recently observed in a trial combining a conventional 'kick' with a vaccine immune booster ('kill'). While an understanding of the efficacy of each individual component is crucial, no single 'kick' or 'kill' agent is likely to be a fully effective cure. Rather, the solution is likely found in a combination of multiple 'kick and kill' interventions.

  15. In vivo imaging of CD8+ T cell-mediated elimination of malaria liver stages

    PubMed Central

    Cockburn, Ian A.; Amino, Rogerio; Kelemen, Reka K.; Kuo, Scot C.; Tse, Sze-Wah; Radtke, Andrea; Mac-Daniel, Laura; Ganusov, Vitaly V.; Zavala, Fidel; Ménard, Robert

    2013-01-01

    CD8+ T cells are specialized cells of the adaptive immune system capable of finding and eliminating pathogen-infected cells. To date it has not been possible to observe the destruction of any pathogen by CD8+ T cells in vivo. Here we demonstrate a technique for imaging the killing of liver-stage malaria parasites by CD8+ T cells bearing a transgenic T cell receptor specific for a parasite epitope. We report several features that have not been described by in vitro analysis of the process, chiefly the formation of large clusters of effector CD8+ T cells around infected hepatocytes. The formation of clusters requires antigen-specific CD8+ T cells and signaling by G protein-coupled receptors, although CD8+ T cells of unrelated specificity are also recruited to clusters. By combining mathematical modeling and data analysis, we suggest that formation of clusters is mainly driven by enhanced recruitment of T cells into larger clusters. We further show various death phenotypes of the parasite, which typically follow prolonged interactions between infected hepatocytes and CD8+ T cells. These findings stress the need for intravital imaging for dissecting the fine mechanisms of pathogen recognition and killing by CD8+ T cells. PMID:23674673

  16. Natural Killer (NK) Cells in Antibacterial Innate Immunity: Angels or Devils?

    PubMed Central

    Souza-Fonseca-Guimaraes, Fernando; Adib-Conquy, Minou; Cavaillon, Jean-Marc

    2012-01-01

    Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. The recent demonstration that NK cells express pattern recognition receptors, namely Toll-like and nucleotide oligomerization domain (NOD)-like receptors, led to the understanding that these cells are not only under the control of accessory cells, but can be directly involved in the antibacterial response thanks to their capacity to recognize pathogen-associated molecular patterns. Interferon (IFN)-γ is the predominant cytokine produced by activated NK cells. IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances. PMID:22105606

  17. Unfolding of the bacterial nucleoid both in vivo and in vitro as a result of exposure to camphor.

    PubMed Central

    Harrington, E W; Trun, N J

    1997-01-01

    Both prokaryotic and eukaryotic cells are sensitive to killing by camphor; however, the mechanism by which camphor kills has not been elucidated. We report here that camphor unfolds the nucleoid of Escherichia coli and that unfolding does not require DNA replication, translation, or cell division. We show that exposure of isolated nucleoids to camphor results in unfolding of the chromosome. PMID:9079934

  18. Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells.

    PubMed

    Dos Santos, Ancély F; Terra, Letícia F; Wailemann, Rosangela A M; Oliveira, Talita C; Gomes, Vinícius de Morais; Mineiro, Marcela Franco; Meotti, Flávia Carla; Bruni-Cardoso, Alexandre; Baptista, Maurício S; Labriola, Leticia

    2017-03-15

    Breast cancer is the main cause of mortality among women. The disease presents high recurrence mainly due to incomplete efficacy of primary treatment in killing all cancer cells. Photodynamic therapy (PDT), an approach that causes tissue destruction by visible light in the presence of a photosensitizer (Ps) and oxygen, appears as a promising alternative therapy that could be used adjunct to chemotherapy and surgery for curing cancer. However, the efficacy of PDT to treat breast tumours as well as the molecular mechanisms that lead to cell death remain unclear. In this study, we assessed the cell-killing potential of PDT using methylene blue (MB-PDT) in three breast epithelial cell lines that represent non-malignant conditions and different molecular subtypes of breast tumours. Cells were incubated in the absence or presence of MB and irradiated or not at 640 nm with 4.5 J/cm 2 . We used a combination of imaging and biochemistry approaches to assess the involvement of classical autophagic and apoptotic pathways in mediating the cell-deletion induced by MB-PDT. The role of these pathways was investigated using specific inhibitors, activators and gene silencing. We observed that MB-PDT differentially induces massive cell death of tumour cells. Non-malignant cells were significantly more resistant to the therapy compared to malignant cells. Morphological and biochemical analysis of dying cells pointed to alternative mechanisms rather than classical apoptosis. MB-PDT-induced autophagy modulated cell viability depending on the cell model used. However, impairment of one of these pathways did not prevent the fatal destination of MB-PDT treated cells. Additionally, when using a physiological 3D culture model that recapitulates relevant features of normal and tumorous breast tissue morphology, we found that MB-PDT differential action in killing tumour cells was even higher than what was detected in 2D cultures. Finally, our observations underscore the potential of MB-PDT as a highly efficient strategy which could use as a powerful adjunct therapy to surgery of breast tumours, and possibly other types of tumours, to safely increase the eradication rate of microscopic residual disease and thus minimizing the chance of both local and metastatic recurrence.

  19. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model.

    PubMed

    Swift, Brenna E; Williams, Brent A; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-07-01

    Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89-99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma tumor burden in a xenograft mouse model was reduced by intravenous NK-92 cell therapy. Since multiple myeloma colony frequency correlates with survival, our observations have important clinical implications and suggest that clinical studies of NK cell lines to treat MM are warranted.

  20. In the Hunger Games, the Winner Takes Everything.

    PubMed

    Püschel, Franziska; Muñoz-Pinedo, Cristina

    2017-10-01

    Entosis is an atypical form of cell death that occurs when a cell engulfs and kills another cell. A recent article by Overholtzer and colleagues indicates that glucose deprivation promotes entosis. AMP-activated protein kinase (AMPK) activation in the loser cells triggers their engulfment and elimination by winner cells, which endure starvation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of caffeine on induction of endogenous type C virus in mouse cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niwa, O.; Sugahara, T.

    1981-08-01

    The effect of caffeine on the expression of murine endogenous virus in mouse cells induced by radiation and chemicals was studied. Postirradiation treatment of K-BALB cells with caffeine enhanced cell killing as well as the induction of xenotropic virus after ultraviolet light irradiation. The degree of enhancement for the virus induction was comparable to that for cell killing. On the other hand, colony-forming ability and the expression of xenotropic virus of K-BALB cells after X-irradiation were unaffected by caffeine. These data suggest a linear relationship between the degree of endogenous virus expression and the amount of lethal damages after irradiation.more » For induction by halogenated pyrimidines, a 24-hr incubation of AKR2B cells with caffeine after 5-iodo-2'-deoxyuridine treatment resulted in marked suppression of the expression of ecotropic virus. On the contrary, in K-BALB cells, caffeine exerted only a small effect on 5-iodo-2'-deoxyuridine-induced expression of ecotropic and xenotropic viruses. These results indicate that, although using the same inducing agent, the pathway of endogenous virus induction may be different for AKR2B cells and for K-BALB cells.« less

  2. Low Temperature Plasma Kills SCaBER Cancer Cells

    NASA Astrophysics Data System (ADS)

    Barekzi, Nazir; van Way, Lucas; Laroussi, Mounir

    2013-09-01

    Squamous cell carcinoma of the bladder is a rare type of bladder cancer that forms as a result of chronic irritation of the epithelial lining of the bladder. The cell line used in this study is SCaBER (ATCC® HTB-3™) derived from squamous cell carcinoma of the human urinary bladder. Current treatments of bladder cancer include surgery, radiation and chemotherapy. However, the cost of these treatments, the potential toxicity of the chemotherapeutic agents and the systemic side-effects warrant an alternative to current cancer treatment. This paper represents preliminary studies to determine the effects of biologically tolerant plasma (BTP) on a cell line of human bladder cancer cells. Previous work by our group using the plasma pencil revealed the efficacy of BTP on leukemia cells suspended in solution. Based on these earlier findings we hypothesized that the plasma exposure would elicit a similar programmed cell death in the SCaBER cells. Trypan blue exclusion and MTT assays revealed the cell killing after exposure to BTP. Our study indicates that low temperature plasma generated by ionizing helium gas and the reactive species may be a suitable and safe alternative for cancer therapy.

  3. Effective elimination of cancer stem cells by magnetic hyperthermia.

    PubMed

    Sadhukha, Tanmoy; Niu, Lin; Wiedmann, Timothy Scott; Panyam, Jayanth

    2013-04-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells that have stem cell-like properties and are thought to be responsible for tumor drug resistance and relapse. Therapies that can effectively eliminate CSCs will, therefore, likely inhibit tumor recurrence. The objective of our study was to determine the susceptibility of CSCs to magnetic hyperthermia, a treatment that utilizes superparamagnetic iron oxide nanoparticles placed in an alternating magnetic field to generate localized heat and achieve selective tumor cell kill. SPIO NPs having a magnetite core of 12 nm were used to induce magnetic hyperthermia in A549 and MDA-MB-231 tumor cells. Multiple assays for CSCs, including side population phenotype, aldehyde dehydrogenase expression, mammosphere formation, and in vivo xenotransplantation, indicated that magnetic hyperthermia reduced or, in some cases, eliminated the CSC subpopulation in treated cells. Interestingly, conventional hyperthermia, induced by subjecting cells to elevated temperature (46 °C) in a water bath, was not effective in eliminating CSCs. Our studies show that magnetic hyperthermia has pleiotropic effects, inducing acute necrosis in some cells while stimulating reactive oxygen species generation and slower cell kill in others. These results suggest the potential for lower rates of tumor recurrence after magnetic hyperthermia compared to conventional cancer therapies.

  4. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models.

    PubMed

    Yang, H; Peng, T; Li, J; Wang, Y; Zhang, W; Zhang, P; Peng, S; Du, T; Li, Y; Yan, Q; Liu, B

    2016-05-01

    Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.

  5. A subset of platinum-containing chemotherapeutic agents kill cells by inducing ribosome biogenesis stress rather than by engaging a DNA damage response

    PubMed Central

    Bruno, Peter M.; Liu, Yunpeng; Park, Ga Young; Murai, Junko; Koch, Catherine E.; Eisen, Timothy J.; Pritchard, Justin R.; Pommier, Yves; Lippard, Stephen J.; Hemann, Michael T.

    2017-01-01

    Cisplatin and its platinum analogues, carboplatin and oxaliplatin, are some of the most widely used cancer chemotherapeutics. However, although cisplatin and carboplatin are primarily used in germ cell, breast and lung malignancies, oxaliplatin is instead used almost exclusively in colorectal and other gastrointestinal cancers. Here, we utilize a unique multi-platform genetic approach to study the mechanism of action of these clinically established platinum anti-cancer agents as well as more recently developed cisplatin analogues. We show that oxaliplatin, unlike cisplatin and carboplatin, does not kill cells via the DNA damage response. Rather, oxaliplatin kills cells by inducing ribosome biogenesis stress. This difference in drug mechanism explains the distinct clinical implementation of oxaliplatin relative to cisplatin and may enable mechanistically informed selection of distinct platinum drugs for distinct malignancies. These data highlight the functional diversity of core components of front line cancer therapy and the potential benefits of applying a mechanism-based rationale to the use of our current arsenal of anti-cancer drugs. PMID:28263311

  6. Killing to Fluctuate, or: How Death and Reproduction Drive a Fluctuation-Response Relation in Biofilms

    NASA Astrophysics Data System (ADS)

    Kalziqi, Arben; Yunker, Peter; Thomas, Jacob

    Unlike equilibrium atomic solids, biofilms do not experience significant thermal fluctuations at the constituent level. However, cells inside the biofilm stochastically die and reproduce, provoking a mechanical response. We investigate the mechanical response of biofilms to the death and reproduction of cells by measuring surface-height fluctuations of biofilms with two mutual predator strains of Vibrio cholerae which kill one another on contact via the Type VI Secretion System. Biofilm surface topography is measured in the homeostatic limit, wherein cell division and death occur at roughly the same rate, via white light interferometry. Although biofilms are far from equilibrium systems, measured height correlation functions line up with expectations from a generalized fluctuation-response relation derived from replication and death events, as predicted by Risler et al. (PRL 2015). Using genetically modified strains of V. cholerae which cannot kill, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction. Thus, high-precision measurement of surface topography reveals the physical consequences of death and reproduction within a biofilm, providing a new approach to studying interactions between bacteria and cells.

  7. Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus.

    PubMed

    Gomes-da-Silva, Lígia C; Zhao, Liwei; Bezu, Lucillia; Zhou, Heng; Sauvat, Allan; Liu, Peng; Durand, Sylvère; Leduc, Marion; Souquere, Sylvie; Loos, Friedemann; Mondragón, Laura; Sveinbjørnsson, Baldur; Rekdal, Øystein; Boncompain, Gaelle; Perez, Franck; Arnaut, Luis G; Kepp, Oliver; Kroemer, Guido

    2018-05-28

    Preclinical evidence depicts the capacity of redaporfin (Redp) to act as potent photosensitizer, causing direct antineoplastic effects as well as indirect immune-dependent destruction of malignant lesions. Here, we investigated the mechanisms through which photodynamic therapy (PDT) with redaporfin kills cancer cells. Subcellular localization and fractionation studies based on the physicochemical properties of redaporfin revealed its selective tropism for the endoplasmic reticulum (ER) and the Golgi apparatus (GA). When activated, redaporfin caused rapid reactive oxygen species-dependent perturbation of ER/GA compartments, coupled to ER stress and an inhibition of the GA-dependent secretory pathway. This led to a general inhibition of protein secretion by PDT-treated cancer cells. The ER/GA play a role upstream of mitochondria in the lethal signaling pathway triggered by redaporfin-based PDT Pharmacological perturbation of GA function or homeostasis reduces mitochondrial permeabilization. In contrast, removal of the pro-apoptotic multidomain proteins BAX and BAK or pretreatment with protease inhibitors reduced cell killing, yet left the GA perturbation unaffected. Altogether, these results point to the capacity of redaporfin to kill tumor cells via destroying ER/GA function. © 2018 The Authors.

  8. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping.

    PubMed

    Thurber, Aaron; Wingett, Denise G; Rasmussen, John W; Layne, Janet; Johnson, Lydia; Tenne, Dmitri A; Zhang, Jianhui; Hanna, Charles B; Punnoose, Alex

    2012-06-01

    This work reports a new method to improve our recent demonstration of zinc oxide (ZnO) nanoparticles (NPs) selectively killing certain human cancer cells, achieved by incorporating Fe ions into the NPs. Thoroughly characterized cationic ZnO NPs (∼6 nm) doped with Fe ions (Zn(1-x )Fe (x) O, x = 0-0.15) were used in this work, applied at a concentration of 24 μg/ml. Cytotoxicity studies using flow cytometry on Jurkat leukemic cancer cells show cell viability drops from about 43% for undoped ZnO NPs to 15% for ZnO NPs doped with 7.5% Fe. However, the trend reverses and cell viability increases with higher Fe concentrations. The non-immortalized human T cells are markedly more resistant to Fe-doped ZnO NPs than cancerous T cells, confirming that Fe-doped samples still maintain selective toxicity to cancer cells. Pure iron oxide samples displayed no appreciable toxicity. Reactive oxygen species generated with NP introduction to cells increased with increasing Fe up to 7.5% and decreased for >7.5% doping.

  9. BIM mediates synergistic killing of B-cell acute lymphoblastic leukemia cells by BCL-2 and MEK inhibitors.

    PubMed

    Korfi, K; Smith, M; Swan, J; Somervaille, T C P; Dhomen, N; Marais, R

    2016-04-07

    B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disease that kills ~50% of adult patients. With the exception of some BCR-ABL1(+) patients who benefit from tyrosine kinase inhibitors, there are no effective targeted therapies for adult B-ALL patients and chemotherapy remains first-line therapy despite adverse side effects and poor efficacy. We show that, although the MEK/ERK pathway is activated in B-ALL cells driven by different oncogenes, MEK inhibition does not suppress B-ALL cell growth. However, MEK inhibition synergized with BCL-2/BCL-XL family inhibitors to suppress proliferation and induce apoptosis in B-ALL cells. We show that this synergism is mediated by the pro-apoptotic factor BIM, which is dephosphorylated as a result of MEK inhibition, allowing it to bind to and neutralize MCL-1, thereby enhancing BCL-2/BCL-XL inhibitor-induced cell death. This cooperative effect is observed in B-ALL cells driven by a range of genetic abnormalities and therefore has significant therapeutic potential.

  10. Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens

    PubMed Central

    Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L.; Russo, Thomas; Edgerton, Mira

    2017-01-01

    ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60–70% killing) and A. baumannii (85–90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa, 60–80% E. cloacae and 20–60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa, but had reduced activity against biofilms of S. aureus and A. baumannii. Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae, and A. baumannii. Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections. PMID:28261570

  11. Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens.

    PubMed

    Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L; Russo, Thomas; Edgerton, Mira

    2017-01-01

    ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumanni , Pseudomonas aeruginosa , and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60-70% killing) and A. baumannii (85-90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa , 60-80% E. cloacae and 20-60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa , but had reduced activity against biofilms of S. aureus and A. baumannii . Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae , and A. baumannii . Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections.

  12. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaini, Ramesh R.; Hu, Chien-An A., E-mail: AHu@salud.unm.edu

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Chloroquine synergistically killed LNCaP cells during androgen deprivation treatment. Black-Right-Pointing-Pointer Chloroquine inhibited the function of autolysosomes and decreases the cytosolic ATP. Black-Right-Pointing-Pointer Chloroquine induced nuclear and DNA fragmentation in androgen deprived LNCaP. Black-Right-Pointing-Pointer Chloroquine may be an useful adjuvant in hormone ablation therapy in PCa patients. -- Abstract: Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showedmore » that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.« less

  13. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells

    NASA Astrophysics Data System (ADS)

    Squillante, Michael R.; Jüstel, Thomas; Anderson, R. Rox; Brecher, Charles; Chartier, Daniel; Christian, James F.; Cicchetti, Nicholas; Espinoza, Sara; McAdams, Daniel R.; Müller, Matthias; Tornifoglio, Brooke; Wang, Yimin; Purschke, Martin

    2018-06-01

    Radiation therapy is one of the primary therapeutic techniques for treating cancer, administered to nearly two-thirds of all cancer patients. Although largely effective in killing cancer cells, radiation therapy, like other forms of cancer treatment, has difficulty dealing with hypoxic regions within solid tumors. The incomplete killing of cancer cells can lead to recurrence and relapse. The research presented here is investigating the enhancement of the efficacy of radiation therapy by using scintillating nanoparticles that emit UV photons. UV photons, with wavelengths between 230 nm and 280 nm, are able to inactivate cells due to their direct interaction with DNA, causing a variety of forms of damage. UV-emitting nanoparticles will enhance the treatment in two ways: first by generating UV photons in the immediate vicinity of cancer cells, leading to direct and oxygen-independent DNA damage, and second by down-converting the applied higher energy X-rays into softer X-rays and particles that are more efficiently absorbed in the targeted tumor region. The end result will be nanoparticles with a higher efficacy in the treatment of hypoxic cells in the tumor, filling an important, unmet clinical need. Our preliminary experiments show an increase in cell death using scintillating LuPO4:Pr nanoparticles over that achieved by the primary radiation alone. This work describes the fabrication of the nanoparticles, their physical characterization, and the spectroscopic characterization of the UV emission. The work also presents in vitro results that demonstrate an enhanced efficacy of cell killing with x-rays and a low unspecific toxicity of the nanoparticles.

  14. A Novel Inhibitor Of Topoisomerase I is Selectively Toxic For A Subset of Non-Small Cell Lung Cancer Cell Lines | Office of Cancer Genomics

    Cancer.gov

    SW044248, identified through a screen for chemicals that are selectively toxic for NSCLC cell lines, was found to rapidly inhibit macromolecular synthesis in sensitive, but not in insensitive cells. SW044248 killed approximately 15% of a panel of 74 NSCLC cell lines and was non-toxic to immortalized human bronchial cell lines.

  15. Radiosensitivity and Induction of Apoptosis by High LET Carbon Ion Beam and Low LET Gamma Radiation: A Comparative Study

    PubMed Central

    Ghorai, Atanu; Bhattacharyya, Nitai P.; Sarma, Asitikantha; Ghosh, Utpal

    2014-01-01

    Cancer treatment with high LET heavy ion beam, especially, carbon ion beam (12C), is becoming very popular over conventional radiotherapy like low LET gamma or X-ray. Combination of Poly(ADP-ribose) polymerase (PARP) inhibitor with xenotoxic drugs or conventional radiation (gamma or X-ray) is the newer approach for cancer therapy. The aim of our study was to compare the radiosensitivity and induction of apoptosis by high LET 12C and low LET gamma radiation in HeLa and PARP-1 knocked down cells. We did comet assay to detect DNA breaks, clonogenic survival assay, and cell cycle analysis to measure recovery after DNA damage. We measured apoptotic parameters like nuclear fragmentation and caspase-3 activation. DNA damage, cell killing, and induction of apoptosis were significantly higher for 12C than gamma radiation in HeLa. Cell killing and apoptosis were further elevated upon knocking down of PARP-1. Both 12C and gamma induced G2/M arrest although the 12C had greater effect. Unlike the gamma, 12C irradiation affects DNA replication as detected by S-phase delay in cell cycle analysis. So, we conclude that high LET 12C has greater potential over low LET gamma radiation in killing cells and radiosensitization upon PARP-1 inhibition was several folds greater for 12C than gamma. PMID:25018892

  16. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine: An anticancer agent targeting hypoxic cells

    PubMed Central

    Seow, Helen A.; Penketh, Philip G.; Shyam, Krishnamurthy; Rockwell, Sara; Sartorelli, Alan C.

    2005-01-01

    To target malignant cells residing in hypoxic regions of solid tumors, we have designed and synthesized prodrugs generating the cytotoxic alkylating species 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) after bioreductive activation. We postulate that one of these agents, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119), requires enzymatic nitro reduction to produce 90CE, whereas another agent, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(4-nitrobenzyloxy)carbonyl]hydrazine (PNBC), can also be activated by nucleophilic attack by thiols such as glutathione (GSH)/GST. We demonstrated that these agents selectively kill hypoxic EMT6 mouse mammary carcinoma and CHO cells. In hypoxia, 50 μM KS119 produced 5 logs of kill of EMT6 cells without discernable cytotoxicity in air; similar effects were observed with CHO cells. PNBC was less efficacious against hypoxic tumor cells and also had some toxicity to aerobic cells, presumably because of GST/thiol activation, making PNBC less interesting as a selective hypoxic-cell cytotoxin. BALB/c mice with established EMT6 solid tumors were used to demonstrate that KS119 could reach and kill hypoxic cells in solid tumors. To gain information on bioreductive enzymes involved in the activation of KS119, cytotoxicity was measured in CHO cell lines overexpressing NADH:cytochrome b5 reductase (NBR), NADPH:cytochrome P450 reductase (NPR), or NAD(P)H: quinone oxidoreductase 1 (NQO1). Increased cytotoxicity occurred in cells overexpressing NBR and NPR, whereas overexpressed NQO1 had no effect. These findings were supported by enzymatic studies using purified NPR and xanthine oxidase to activate KS119. KS119 has significant potential as a hypoxia-selective tumor-cell cytotoxin and is unlikely to cause major toxicity to well oxygenated normal tissues. PMID:15964988

  17. Classification of phytoplankton cells as live or dead using the vital stains fluorescein diacetate and 5-chloromethylfluorescein diacetate.

    PubMed

    MacIntyre, Hugh L; Cullen, John J

    2016-08-01

    Regulations for ballast water treatment specify limits on the concentrations of living cells in discharge water. The vital stains fluorescein diacetate (FDA) and 5-chloromethylfluorescein diacetate (CMFDA) in combination have been recommended for use in verification of ballast water treatment technology. We tested the effectiveness of FDA and CMFDA, singly and in combination, in discriminating between living and heat-killed populations of 24 species of phytoplankton from seven divisions, verifying with quantitative growth assays that uniformly live and dead populations were compared. The diagnostic signal, per-cell fluorescence intensity, was measured by flow cytometry and alternate discriminatory thresholds were defined statistically from the frequency distributions of the dead or living cells. Species were clustered by staining patterns: for four species, the staining of live versus dead cells was distinct, and live-dead classification was essentially error free. But overlap between the frequency distributions of living and heat-killed cells in the other taxa led to unavoidable errors, well in excess of 20% in many. In 4 very weakly staining taxa, the mean fluorescence intensity in the heat-killed cells was higher than that of the living cells, which is inconsistent with the assumptions of the method. Applying the criteria of ≤5% false negative plus ≤5% false positive errors, and no significant loss of cells due to staining, FDA and FDA+CMFDA gave acceptably accurate results for only 8-10 of 24 species (i.e., 33%-42%). CMFDA was the least effective stain and its addition to FDA did not improve the performance of FDA alone. © 2016 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America.

  18. Photodynamic Cell Killing Effects and Acute Skin Photosensitivity of Aluminum‐chloro‐tetrasulfonated Phthalocyanine and Hematoporphyrin Derivative

    PubMed Central

    Komatsu, Kazuto

    1991-01-01

    Aluminum‐chloro‐tetrasulfonated phthalocyanine (PC) showing an absorption peak at 678 nm was compared to hematoporphyrin derivative (MpD), a photosensitizer commonly used in the photodynamic therapy (PDT) of cancers. In vitro studies: KK‐47 cells were exposed to long‐wavelength ultraviolet (UVA) or red light (>600 nm, >640 nm and >660 nm) after drug sensitization. With UVA irradiation, a higher photodynamic cell killing effect was observed in the cells treated with HpD than with PC. However, with red light irradiation (both > 640 nm and >660 nm) PC resulted in greater cell damage. PC was less toxic to KK‐47 cells in the dark. In vivo studies: Using a gold vapor laser (GVL: 627.8 nm, 200 mW/cm2, 200 J/cm2), the photodynamic tumor response was determined in C3H/He mice bearing transplantable squamous cell carcinoma. No significant difference was observed in the tumor volume between the PC and HpD groups, except that the PC group (10.0 mg/kg body weight) showed a significantly higher remission rate (3/6) than the control group (0/10, P<0.05). Skin Photosensitivity test: Skin photosensitivity was estimated by measuring changes in back skin thickness due to photosensitization. With UVA irradiation, a stronger skin reaction was observed in the HpD group, while with visible light irradiation there was no significant difference between the HpD and PC groups. Based on the superior cell killing effect with red light, reduced toxicity to the cells in the dark and mild skin reaction with UVA, PC may be a more promising photosensitizer for PDT. PMID:1905706

  19. In Vivo Pharmacokinetics/Pharmacodynamics of Colistin and Imipenem in Pseudomonas aeruginosa Biofilm Infection

    PubMed Central

    Wu, Hong; Ciofu, Oana; Song, Zhijun; Høiby, Niels

    2012-01-01

    Many Pseudomonas aeruginosa isolates from the airways of patients with cystic fibrosis (CF) are sensitive to antibiotics in susceptibility testing, but eradication of the infection is difficult. The main reason is the biofilm formation in the airways of patients with CF. The pharmacokinetics (PKs) and pharmacodynamics (PDs) of antimicrobials can reliably be used to predict whether antimicrobial regimens will achieve the maximum bactericidal effect against infections. Unfortunately, however, most PK/PD studies of antimicrobials have been done on planktonic cells and very few PK/PD studies have been done on biofilms, partly due to the lack of suitable models in vivo. In the present study, a biofilm lung infection model was developed to provide an objective and quantitative evaluation of the PK/PD profile of antimicrobials. Killing curves were set up to detect the antimicrobial kinetics on planktonic and biofilm P. aeruginosa cells in vivo. Colistin showed concentration-dependent killing, while imipenem showed time-dependent killing on both planktonic and biofilm P. aeruginosa cells in vivo. The parameter best correlated to the elimination of bacteria in lung by colistin was the area under the curve (AUC) versus MIC (AUC/MIC) for planktonic cells or the AUC versus minimal biofilm inhibitory concentration (MBIC; AUC/MBIC) for biofilm cells. The best-correlated parameter for imipenem was the time that the drug concentration was above the MIC for planktonic cells (TMIC) or time that the drug concentration was above the MBIC (TMBIC) for biofilm cells. However, the AUC/MIC of imipenem showed a better correlation with the efficacy of imipenem for biofilm infections (R2 = 0.89) than planktonic cell infections (R2 = 0.38). The postantibiotic effect (PAE) of colistin and imipenem was shorter in biofilm infections than planktonic cell infections in this model. PMID:22354300

  20. Reporter gene assay for fish-killing activity produced by Pfiesteria piscicida.

    PubMed Central

    Fairey, E R; Edmunds, J S; Deamer-Melia, N J; Glasgow, H; Johnson, F M; Moeller, P R; Burkholder, J M; Ramsdell, J S

    1999-01-01

    Collaborative studies were performed to develop a functional assay for fish-killing activity produced by Pfiesteria piscicida. Eight cell lines were used to screen organic fractions and residual water fraction by using a 3-[4, 5-dimethylthiazol-(2-4)]-diphenyltetrazolium bromide cytotoxicity assay. Diethyl ether and a residual water fraction were cytotoxic to several cell lines including rat pituitary (GH(4)C(1)) cells. Residual water as well as preextracted culture water containing P. piscicida cells induced c-fos-luciferase expressed in GH(4)C(1) cells with a rapid time course of induction and sensitive detection. The reporter gene assay detected activity in toxic isolates of P. piscicida from several North Carolina estuaries in 1997 and 1998 and may also be suitable for detecting toxic activity in human and animal serum. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10464070

  1. Targeted drug delivery using genetically engineered diatom biosilica.

    PubMed

    Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H

    2015-11-10

    The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites.

  2. The oncolytic peptide LTX-315 triggers necrotic cell death

    PubMed Central

    Forveille, Sabrina; Zhou, Heng; Sauvat, Allan; Bezu, Lucillia; Müller, Kevin; Liu, Peng; Zitvogel, Laurence; Pierron, Gérard; Rekdal, Øystein; Kepp, Oliver; Kroemer, Guido

    2015-01-01

    The oncolytic peptide LTX-315 has been designed for killing human cancer cells and turned out to stimulate anti-cancer immune responses when locally injected into tumors established in immunocompetent mice. Here, we investigated the question whether LTX-315 induces apoptosis or necrosis. Transmission electron microscopy or morphometric analysis of chromatin-stained tumor cells revealed that LTX-315 failed to induce apoptotic nuclear condensation and rather induced a necrotic phenotype. Accordingly, LTX-315 failed to stimulate the activation of caspase-3, and inhibition of caspases by means of Z-VAD-fmk was unable to reduce cell killing by LTX-315. In addition, 2 prominent inhibitors of regulated necrosis (necroptosis), namely, necrostatin-1 and cycosporin A, failed to reduce LTX-315-induced cell death. In conclusion, it appears that LTX-315 triggers unregulated necrosis, which may contribute to its pro-inflammatory and pro-immune effects. PMID:26566869

  3. Microbial Interactions with Several Munitions Compounds: 1,3-Dinitrobenzene, 1,3,5-Trinitrobenzene, and 3,5-Dinitroaniline.

    DTIC Science & Technology

    1982-05-01

    3,5-DiNA Biosorption studies were conducted with 3-day Standard Methods broth cultures of Azotobacter beijerinckii (ATCC19366), Bacillus cereus... Biosorption studies with heat killed cells were conducted in the same manner except that the original bacterial mixture was held at 1000 C for 15...minutes. In all cases, studies were conducted with triplicate sets of live or heat killed cells. The biosorption partition coefficient (Kp) was

  4. Isolation and characterization of Escherichia coli K-12 mutants unable to induce the adaptive response to simple alkylating agents.

    PubMed Central

    Jeggo, P

    1979-01-01

    When Esherichia coli cells are exposed to a low level of simple alkylating agents, they induce the adaptive response which renders them more resistant to the killing and the mutagenic effects of the same or other alkylating agents. This paper describes the isolation of one strain that was deficient in mutagenic adaptation and five that were deficient in both mutagenic and killing adaptation, confirming previous suggestions that killing and mutagenic adaptation are, at least to some extent, separable. These six strains have been called Ada mutants. They were more sensitive to the killing and mutagenic effects of N-methy-N'-nitro-N-nitrosoguanidine (MNNG) than the unadapted Ada+ parent. Thus, the adaptation pathway is responsible for circumventing some alkylation-induced damage even in cells that are preinduced. The increase in mutation frequency seen in Ada cells treated with MNNG was the same whether the cells were lexA+ or lexA, showing that the extra mutations found in Ada- strains do not depend upon the SOS pathway. Ada strains accumulated more O6-methyl guanine lesions than the Ada+ parent on prolonged exposure to MNNG, and this supports the idea that O6-methyl guanine is the most important lesion for MNNG-induced mutagenesis. The ada mutations have been shown to map in the 47 to 53-min region of the E. coli chromosome. PMID:383692

  5. Sun Exposure

    MedlinePlus

    ... pass through your skin and damage your skin cells. Sunburns are a sign of skin damage. Suntans ... after the sun's rays have already killed some cells and damaged others. UV rays can cause skin ...

  6. Effects of intraperitoneal and intranasal application of Lentinan on cellular response in rats.

    PubMed

    Markova, Nadya; Kussovski, Vesselin; Radoucheva, Tatyana; Dilova, Krasimira; Georgieva, Neli

    2002-11-01

    Lentinan (Ajinomoto, Japan) was administrated intraperitoneally (i.p.) and intranasally (i.n.) at different doses (1, 5 and 10 mg/kg) to rats. Effectiveness of Lentinan treatment was evaluated by comparative testing of cell activation (establishing the number, glycolytic and acid phosphatase activity, H2O2 production and killing ability against Salmonella enteritidis and Staphylococcus aureus) at two different compartments--peritoneal and broncho-alveolar cavities. The results indicated that Lentinan induced high-grade activation of peritoneal cells (PCs) and especially of broncho-alveolar cells (BACs) with markedly enhanced effector function (killing ability against S. aureus). Generally, Lentinan, known usually with its parenteral routes of application, can be successful to stimulate the host cell response in the respiratory tract by intranasal route of administration.

  7. Carbon nanotubes enhance the internalization of drugs by cancer cells and decrease their chemoresistance to cytostatics

    NASA Astrophysics Data System (ADS)

    Mahmood, M.; Xu, Y.; Dantuluri, V.; Mustafa, T.; Zhang, Y.; Karmakar, A.; Casciano, D.; Ali, S.; Biris, A.

    2013-02-01

    Etoposide is a semisynthetic, chemotherapeutic drug widely recommended to treat an extensive range of human cancers. Our studies indicate that, while etoposide is capable of killing human cancer cells, exposure to single-walled carbon nanotubes (SWCNTs) and etoposide results in enhanced cell death that appears to be synergistic and not merely additive. In this study, we used high pressure liquid chromatography and mass spectrometry to quantify the internal effective dose of etoposide when the human pancreatic cancer cell (PANC-1) was exposed to the combination of these agents. Our results unequivocally indicate that SWCNTs improve etoposide uptake and increase its capacity to kill cancer cells. We suggest that a combination of SWCNTs and etoposide may prove to be a more efficient chemotherapeutic protocol, especially because of the potential to lower toxic drug doses to levels that may be useful in decreasing adverse side effects, as well as in lowering the probability of inducing chemoresistance in exposed cancer cells.

  8. The offer of chemistry to targeted therapy in cancer.

    PubMed

    Jemel, Ikram; Jellali, Karim; Elloumi, Jihene; Aifa, Sami

    2011-12-01

    Cancer therapy is facing the big challenge of destroying selectively tumour cells without harming the normal tissues. Chemotherapy was trying from the beginning to kill malignant cells because of their proliferative activity since normal cells are in general quiescent. Meanwhile side effects were produced due to the destruction of some normal cells that need regular proliferation. The discovery of biomarkers led to the identification of molecular targets within tumour cells in order to kill them selectively. Chemistry followed the progress of biomarkers biotechnology by the production of target specific antagonists which were the subject of many patents. Meanwhile novel problems of tumour resistance appeared and made the battle against cancer a non stop development of new strategies and new weapons. As a consequence, paralleled activities of patenting biomarkers and chemical antagonists are continuously generated. The offer of chemistry does not actually limit the efficiency of Targeted therapy but the identification of biomarkers is still missing the exclusive specificity to tumour cells.

  9. Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer.

    PubMed

    Powell Gray, Bethany; Kelly, Linsley; Ahrens, Douglas P; Barry, Ashley P; Kratschmer, Christina; Levy, Matthew; Sullenger, Bruce A

    2018-05-01

    Therapies that can eliminate both local and metastatic prostate tumor lesions while sparing normal organ tissue are desperately needed. With the goal of developing an improved drug-targeting strategy, we turned to a new class of targeted anticancer therapeutics: aptamers conjugated to highly toxic chemotherapeutics. Cell selection for aptamers with prostate cancer specificity yielded the E3 aptamer, which internalizes into prostate cancer cells without targeting normal prostate cells. Chemical conjugation of E3 to the drugs monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) yields a potent cytotoxic agent that efficiently kills prostate cancer cells in vitro but does not affect normal prostate epithelial cells. Importantly, the E3 aptamer targets tumors in vivo and treatment with the MMAF-E3 conjugate significantly inhibits prostate cancer growth in mice, demonstrating the in vivo utility of aptamer-drug conjugates. Additionally, we report the use of antidotes to block E3 aptamer-drug conjugate cytotoxicity, providing a safety switch in the unexpected event of normal cell killing in vivo.

  10. Structural basis of human β-cell killing by CD8+ T cells in Type 1 diabetes

    PubMed Central

    Bulek, Anna M.; Cole, David K.; Skowera, Ania; Dolton, Garry; Gras, Stephanie; Madura, Florian; Fuller, Anna; Miles, John J.; Gostick, Emma; Price, David A.; Drijfhout, Jan W.; Knight, Robin R.; Huang, Guo C.; Lissin, Nikolai; Molloy, Peter E.; Wooldridge, Linda; Jakobsen, Bent K.; Rossjohn, Jamie; Peakman, Mark; Rizkallah, Pierre J.; Sewell, Andrew K.

    2011-01-01

    The structural characteristics of autoreactive-T cell receptor (TCR) engagement of major histocompatability (MHC) class II-restricted self-antigens is established, but how autoimmune-TCRs interact with self-MHC class I has been unclear. We examined how CD8+ T cells kill human islet β-cells, in Type-1 diabetes, via autoreactive-TCR (1E6) recognition of an HLA-A*0201-restricted glucose-sensitive preproinsulin peptide. Rigid ‘lock-and-key’ binding underpinned the 1E6-HLA-A*0201-peptide interaction, whereby 1E6 docked similarly to most MHCI-restricted TCRs. However, this interaction was extraordinarily weak, due to limited contacts with MHCI. TCR binding was highly peptide-centric, dominated by two CDR3-loop-encoded residues, acting as an ‘aromatic-cap’, over the peptide MHCI (pMHCI). Thus, highly focused peptide-centric interactions associated with suboptimal TCR-pMHCI binding affinities might lead to thymic escape and potential CD8+ T cell-mediated autoreactivity. PMID:22245737

  11. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture

    PubMed Central

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. PMID:27821713

  12. Molecular Detection of Breast Cancer

    DTIC Science & Technology

    1998-02-01

    treatment-resistant cancer cells. Clearly new approaches are needed to treat these diseases. This project is designed to develop novel approaches to...detect breast cancer cells that contaminate peripheral blood and bone marrow, and to remove such contaminating cells. An RT-PCR assay has been developed ...to detect breast cancer cells, and a novel gene therapy vector has been developed to kill contaminating cancer cells. Blood and bone marrow samples

  13. Cell injury, retrodifferentiation and the cancer treatment paradox.

    PubMed

    Uriel, José

    2015-09-01

    This "opinion article" is an attempt to take an overview of some significant changes that have happened in our understanding of cancer status during the last half century and its evolution under the progressive influence of molecular biology. As an active worker in cancer research and developmental biology during most of this period, I would like to comment briefly on these changes and to give my critical appreciation of their outcome as it affects our knowledge of cancer development as well as the current treatment of the disease. A recall of my own contribution to the subject is also included. Two subjects are particularly developed: cell injury and cell-killing therapies. Cell injury, whatever its origin, has acquired the status of a pivotal event for the initiation of cancer emergence. It is postulated that cell injury, a potential case of cellular death, may also be the origin of a process of stepwise cell reversion (retrodifferentiation or retroprogrammation) leading, by division, mature or stem cells to progressive immaturity. The genetic instability and mutational changes that accompanies this process of cell injury and rejuvenation put normal cells in a status favourable to neoplastic transformation or may evolve cancer cells toward clones with higher malignant potentiality. Thus, cell injury suggests lifestyle as the major upstream initiator of cancer development although this not exclude randomness as an unavoidable contributor to the disease. Cell-killing agents (mainly cytotoxic drugs and radiotherapy) are currently used to treat cancer. At the same time, it is agreed that agents with high cell injury potential (ultraviolet light, ionising radiations, tobacco, environmental pollutants, etc.) contribute to the emergence of malignant tumours. This represents a real paradox. In spite of the progress accomplished in cancer survival, one is tempted to suggest that we have very few chances of really cure cancer as long as we continue to treat malignancies with cell-killing therapies. Indeed, the absence of alternatives to such treatments justifies the pursuit of current procedures of cancer care. But, this should be, precisely, an urgent stimulus to explore other therapeutic approaches. Tumour reversion, immunotherapy, stem cell management and genomic analysis of embryo-foetal development could be, among others, appropriated candidates for future active research.

  14. Adjuvant Effect of Killed Propionibacterium acnes on Mouse Peritoneal B-1 Lymphocytes and Their Early Phagocyte Differentiation

    PubMed Central

    Mussalem, Juliana Sekeres; Squaiella-Baptistão, Carla Cristina; Teixeira, Daniela; Yendo, Tatiana Mina; Thies, Felipe Garutti; Popi, Ana Flavia; Mariano, Mario; Longo-Maugéri, Ieda

    2012-01-01

    B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses. PMID:22448280

  15. Adjuvant effect of killed Propionibacterium acnes on mouse peritoneal B-1 lymphocytes and their early phagocyte differentiation.

    PubMed

    Mussalem, Juliana Sekeres; Squaiella-Baptistão, Carla Cristina; Teixeira, Daniela; Yendo, Tatiana Mina; Thies, Felipe Garutti; Popi, Ana Flavia; Mariano, Mario; Longo-Maugéri, Ieda

    2012-01-01

    B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses.

  16. Cytokine-induced killer cells eradicate bone and soft-tissue sarcomas.

    PubMed

    Sangiolo, Dario; Mesiano, Giulia; Gammaitoni, Loretta; Leuci, Valeria; Todorovic, Maja; Giraudo, Lidia; Cammarata, Cristina; Dell'Aglio, Carmine; D'Ambrosio, Lorenzo; Pisacane, Alberto; Sarotto, Ivana; Miano, Sara; Ferrero, Ivana; Carnevale-Schianca, Fabrizio; Pignochino, Ymera; Sassi, Francesco; Bertotti, Andrea; Piacibello, Wanda; Fagioli, Franca; Aglietta, Massimo; Grignani, Giovanni

    2014-01-01

    Unresectable metastatic bone sarcoma and soft-tissue sarcomas (STS) are incurable due to the inability to eradicate chemoresistant cancer stem-like cells (sCSC) that are likely responsible for relapses and drug resistance. In this study, we investigated the preclinical activity of patient-derived cytokine-induced killer (CIK) cells against autologous bone sarcoma and STS, including against putative sCSCs. Tumor killing was evaluated both in vitro and within an immunodeficient mouse model of autologous sarcoma. To identify putative sCSCs, autologous bone sarcoma and STS cells were engineered with a CSC detector vector encoding eGFP under the control of the human promoter for OCT4, a stem cell gene activated in putative sCSCs. Using CIK cells expanded from 21 patients, we found that CIK cells efficiently killed allogeneic and autologous sarcoma cells in vitro. Intravenous infusion of CIK cells delayed autologous tumor growth in immunodeficient mice. Further in vivo analyses established that CIK cells could infiltrate tumors and that tumor growth inhibition occurred without an enrichment of sCSCs relative to control-treated animals. These results provide preclinical proof-of-concept for an effective strategy to attack autologous sarcomas, including putative sCSCs, supporting the clinical development of CIK cells as a novel class of immunotherapy for use in settings of untreatable metastatic disease.

  17. Targeted cellular ablation based on the morphology of malignant cells

    NASA Astrophysics Data System (ADS)

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-11-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.

  18. Protection and Sensitization of Human Cells to Proton Radiation by Cerium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Carlson, Nathan B.

    In radiation therapy for the treatment of cancer, there is demand for novel approaches that will improve tumor cell killing while protecting healthy tissue. One such approach that has shown considerable promise is the application of nanoparticles as radiation sensitizers for tumor cells and as radiation protectants for healthy tissue. In this investigation, cerium oxide nanoparticles (CNPs) obtained from the University of Central Florida's NanoScience Technology Center were studied for their protective effect to charged particle radiation in non-malignant breast cells, and for their sensitizing effect in breast and prostate cancer cell lines. These experiments were conducted at East Carolina University, where human cells were grown in the cell culture facility in the Department of Biology and then irradiated with energetic protons in the Accelerator Laboratory in the Department of Physics. Prior to irradiation, the cells were treated with distinct CNP preparations ranging in concentrations from 10 nanomolar to 10 micromolar, and cell viability was assessed using multiple assays post-irradiation. Radioprotection and radiosensitization were observed for several of the CNP treatments tested. Ultimately, the goal is to find a specific nanoparticle treatment that holds the synergistic effect of enhancing the rate of killing in tumor cells while simultaneously improving the survival of normal cells.

  19. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing.

    PubMed

    Tesori, Valentina; Piscaglia, Anna Chiara; Samengo, Daniela; Barba, Marta; Bernardini, Camilla; Scatena, Roberto; Pontoglio, Alessandro; Castellini, Laura; Spelbrink, Johannes N; Maulucci, Giuseppe; Puglisi, Maria Ausiliatrice; Pani, Giovambattista; Gasbarrini, Antonio

    2015-03-17

    Although the only effective drug against primary hepatocarcinoma, the multikinase inhibitor Sorafenib (SFB) usually fails to eradicate liver cancer. Since SFB targets mitochondria, cell metabolic reprogramming may underlie intrinsic tumor resistance. To characterize cancer cell metabolic response to SFB, we measured oxygen consumption, generation of reactive oxygen species (ROS) and ATP content in rat LCSC (Liver Cancer Stem Cells) -2 cells exposed to the drug. Genome wide analysis of gene expression was performed by Affymetrix technology. SFB cytotoxicity was evaluated by multiple assays in the presence or absence of metabolic inhibitors, or in cells genetically depleted of mitochondria. We found that low concentrations (2.5-5 μM) of SFB had a relatively modest effect on LCSC-2 or 293 T cell growth, but damaged mitochondria and increased intracellular ROS. Gene expression profiling of SFB-treated cells was consistent with a shift toward aerobic glycolysis and, accordingly, SFB cytotoxicity was dramatically increased by glucose withdrawal or the glycolytic inhibitor 2-DG. Under metabolic stress, activation of the AMP dependent Protein Kinase (AMPK), but not ROS blockade, protected cells from death. We conclude that mitochondrial damage and ROS drive cell killing by SFB, while glycolytic cell reprogramming may represent a resistance strategy potentially targetable by combination therapies.

  20. Effect of UVC light on growth, incorporation of thymidine, and DNA chain elongation in cells derived from the Indian meal moth and the cabbage looper.

    PubMed

    Styer, S C; Griffiths, T D

    1992-04-01

    After exposure to 10 or 20 J/m2 UVC light, cells of the UMN-PIE-1181 line, an embryonic cell line derived from the Indian meal moth, Plodia interpunctella, exhibited a rapid and prolonged depression in the rate of incorporation of [3H]thymidine, whereas cells of the TN-368 line, an ovarian cell line derived from Trichoplusia ni, the cabbage looper, showed only a slight drop in incorporation and a rapid recovery after exposure to 10 or 40 J/m2 UVC light. The extent of this depression was not correlated to the amount of cell killing by UVC light in these cell lines or in IAL-PID2 cells. Blockage of fork progression was correlated to the depression in thymidine incorporation. TN-368 cells exhibited little blockage after exposure to 10 or 20 J/m2 UVC light, whereas UMN-PIE-1181 cells exhibited significant blockage at these fluences. Photoreactivation did not entirely relieve blockage, depression in thymidine incorporation, or cell killing, indicating that, although the (5-6) dimer appears to be the major lesion responsible for these effects, other lesions such as the (6-4) photoproduct may play a role.

  1. Targeted cellular ablation based on the morphology of malignant cells

    PubMed Central

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-01-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors. PMID:26596248

  2. Tailoring CD19xCD3-DART exposure enhances T-cells to eradication of B-cell neoplasms.

    PubMed

    Circosta, Paola; Elia, Angela Rita; Landra, Indira; Machiorlatti, Rodolfo; Todaro, Maria; Aliberti, Sabrina; Brusa, Davide; Deaglio, Silvia; Chiaretti, Sabina; Bruna, Riccardo; Gottardi, Daniela; Massaia, Massimo; Giacomo, Filomena Di; Guarini, Anna Rita; Foà, Robin; Kyriakides, Peter W; Bareja, Rohan; Elemento, Olivier; Chichili, Gurunadh R; Monteleone, Emanuele; Moore, Paul A; Johnson, Syd; Bonvini, Ezio; Cignetti, Alessandro; Inghirami, Giorgio

    2018-01-01

    Many patients with B-cell malignancies can be successfully treated, although tumor eradication is rarely achieved. T-cell-directed killing of tumor cells using engineered T-cells or bispecific antibodies is a promising approach for the treatment of hematologic malignancies. We investigated the efficacy of CD19xCD3 DART bispecific antibody in a broad panel of human primary B-cell malignancies. The CD19xCD3 DART identified 2 distinct subsets of patients, in which the neoplastic lymphocytes were eliminated with rapid or slow kinetics. Delayed responses were always overcome by a prolonged or repeated DART exposure. Both CD4 and CD8 effector cytotoxic cells were generated, and DART-mediated killing of CD4 + cells into cytotoxic effectors required the presence of CD8 + cells. Serial exposures to DART led to the exponential expansion of CD4 + and CD8 + cells and to the sequential ablation of neoplastic cells in absence of a PD-L1-mediated exhaustion. Lastly, patient-derived neoplastic B-cells (B-Acute Lymphoblast Leukemia and Diffuse Large B Cell Lymphoma) could be proficiently eradicated in a xenograft mouse model by DART-armed cytokine induced killer (CIK) cells. Collectively, patient tailored DART exposures can result in the effective elimination of CD19 positive leukemia and B-cell lymphoma and the association of bispecific antibodies with unmatched CIK cells represents an effective modality for the treatment of CD19 positive leukemia/lymphoma.

  3. The cytotoxic mechanism of karlotoxin 2 (KmTx 2) from Karlodinium veneficum (Dinophyceae)

    PubMed Central

    Deeds, Jonathan R.; Hoesch, Robert E.; Place, Allen R.; Kao, Joseph P.Y.

    2015-01-01

    This study demonstrates that the polyketide toxin karlotoxin 2 (KmTx 2) produced by Karlodinium veneficum, a dinoflagellate associated with fish kills in temperate estuaries worldwide, alters vertebrate cell membrane permeability. Microfluorimetric and electrophysiological measurements were used to determine that vertebrate cellular toxicity occurs through non-selective permeabilization of plasma membranes, leading to osmotic cell lysis. Previous studies showed that KmTx 2 is lethal to fish at naturally-occurring concentrations measured during fish kills, while sub-lethal doses severely damage gill epithelia. This study provides a mechanistic explanation for the association between K. veneficum blooms and fish kills that has long been observed in temperate estuaries worldwide. PMID:25546005

  4. Algicidal activity against Skeletonema costatum by marine bacteria isolated from a high frequency harmful algal blooms area in southern Chinese coast.

    PubMed

    Shi, Rongjun; Huang, Honghui; Qi, Zhanhui; Hu, Weian; Tian, Ziyang; Dai, Ming

    2013-01-01

    Four marine bacterial strains P1, P5, N5 and N21 were isolated from the surface water and sediment of Mirs Bay in southern Chinese coast using the liquid infection method with 48-well plates. These bacteria were all shown to have algicidal activities against Skeletonema costatum. Based on morphological observations, biochemical tests and homology comparisons by 16S rDNA sequences, the isolated strains P1, P5, N5 and N21 were identified as Halobacillus sp., Muricauda sp., Kangiella sp. and Roseivirga sp., respectively. Our results showed that bacterial strain P1 killed S. costatum by release of heat labile algicide, while strains P5, N5 and N21 killed them directly. The algicidal processes of four bacterial strains were different. Strains P1, N5 and N21 disrupted the chain structure and S. costatum appeared as single cells, in which the cellular components were aggregated and the individual cells were inflated and finally lysed, while strain P5 decomposed the algal chains directly. We also showed that the algicidal activities of the bacterial strains were concentration-dependent. More specifically, 10 % (v/v) of bacteria in algae showed the strongest algicidal activities, as all S. costatum cells were killed by strains N5 and N21 within 72 h and by strains P1 and P5 within 96 h. 5 % of bacteria in algae also showed significant algicidal activities, as all S. costatum were killed by strains N5, P5 and N21 within 72, 96 and 120 h, respectively, whereas at this concentration, only 73.4 % of S. costatum cells exposed to strain P1 were killed within 120 h. At the concentration of 1 % bacteria in algae, the number of S. costatum cells continued to increase and the growth rate of algae upon exposure to strain N5 was significantly inhibited.

  5. Tracking in vivo migration and distribution of antigen-specific cytotoxic T lymphocytes by 5,6-carboxyfluorescein diacetate succinimidyl ester staining during cancer immunotherapy.

    PubMed

    Xu, Wei-li; Li, Suo-lin; Wen, Ming; Wen, Jun-ye; Han, Jie; Zhang, Hong-zhen; Gao, Fei; Cai, Jian-hui

    2013-08-01

    Killing of targeted tumors during adoptive cell transfer therapy is associated with cytotoxic T lymphocyte (CTL) numbers, immunophenotype, tumor-specificity, and in vivo residence time, migration, and distribution. Therefore, tracing in vivo persistence, migration, and distribution of CTLs is important for cancer immunotherapy. Optimal staining concentration for CTL proliferation was determined by cell counting kit-8 (CCK-8) assay and killing efficiencies of CTLs or carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled melanoma antigen-specific cytotoxic T lymphocytes (CFSE-CTLs) for malignant melanoma cells in vitro were compared. Additionally, CFSE-CTLs were intravenously transfused to mice receiving B16 melanoma, and their residence time, migration, and distribution in vivo were observed by measuring fluorescence intensities of CFSE-CTLs per gram of tissue (%FI/g) in various tissues and analyzing tumor/non-tumor (T/NT) values. Anti-tumor effects of transferred CTLs and correlation between %FI/g and D-value of tumor size were analyzed. Five-micromolar CFSE was optimal for labeling CTLs with minimal cytotoxicity. No significant difference occurred between CTLs and CFSE-CTLs for tumor cell killing (P = 0.849) or interleukin-2 (P = 0.318) and interferon-γ (P = 0.201) levels. Distribution of CTLs in vivo varied with time. A negative correlation between %FI/g in tumors and D-value of tumor sizes by Spearman correlation analysis was observed. CTLs were recruited to and killed tumors from 6 hours to 3 days after cell infusion. CTLs were observed up to three weeks later in the tumor, liver, kidneys, and spleen; this was related to the abundant blood supply or the nature of immune organs. CCK-8 assay is a novel method to select optimal CFSE staining concentrations. Fluorescence intensity of transferred CTLs reflects their killing efficiency of tumors. CFSE fluorescent markers can trace in vivo CTL persistence, migration, and distribution because of its stability, long half-life, and low toxicity.

  6. Atypical radiation response of SCID cells

    NASA Astrophysics Data System (ADS)

    Chawapun, Nisa

    Murine SCID (severe combined immune deficiency) cells are well known for their defect in DNA double-strand break repair and in variable(diversity)joining [V(D)J] recombination due to a mutation in a catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). As a consequence, scid cells are hypersensitive to ionizing radiation. The present study showed that asynchronous populations of scid cells were about two-fold more sensitive than Balb/c with respect to cell killing and the defect in scid cells was corrected by complementation with human chromosome 8. Analysis of the survival of synchronized populations as a function of the cell cycle revealed that while scid cells were hypersensitive in all cell cycle phases compared to wild-type cells, this hypersensitivity is even more pronounced in G1 phase. The hypersensitivity reduced as the cells progressed into S phase suggested that homologous recombination repair plays a role. The results imply that there are at least two pathways for the repair of DSB DNA, consistent with a model previously proposed by others. The scid cells were also more sensitive to UVC light (254 nm) killing as compared to wild type cells by clonogenic survival. Using a host cell reactivation (HCR) assay to study the nucleotide excision repair (NER) which is the major repair pathway for UV-photoproducts, the results showed that NER in scid cells was not as efficient as CB- 17. This suggests that DNA-PK is involved in NER as well as non-homologous end-joining (NHEJ) DSB repair which is responsible for ionizing radiation sensitivity in scid cells. Repair in scid cells was not totally absent as shown by low dose rate sparing of cell killing after exposure to 137Cs γ-rays at dose rate of 0.6 cGy/h, 1.36 cGy/h, 6 cGy/h as compared to high dose rate at 171 cGy/min, although this phenomenon could be explained partly by proliferation. However, for radiation induced transformation, no significant dose rate effect was seen. A plot of transformation versus survival revealed that the transformation induction was inversely proportional to radiation dose rate. Lower dose rates were more effective in inducing transformation in scid cells. This finding could lead to the influence of cancer risk estimation in an irradiated population consisting of a subpopulation(s) with genetic disorders predisposing those individuals to cancer.

  7. Influence of p53 status on the effects of boron neutron capture therapy in glioblastoma.

    PubMed

    Seki, Keiko; Kinashi, Yuko; Takahashi, Sentaro

    2015-01-01

    The tumor suppressor gene p53 is mutated in glioblastoma. We studied the relationship between the p53 gene and the biological effects of boron neutron capture therapy (BNCT). The human glioblastoma cells; A172, expressing wild-type p53, and T98G, with mutant p53, were irradiated by the Kyoto University Research Reactor (KUR). The biological effects after neutron irradiation were evaluated by the cell killing effect, 53BP1 foci assay and apoptosis induction. The survival-fraction data revealed that A172 was more radiosensitive than T98G, but the difference was reduced when boronophenylalanine (BPA) was present. Both cell lines exhibited similar numbers of foci, suggesting that the initial levels of DNA damage did not depend on p53 function. Detection of apoptosis revealed a lower rate of apoptosis in the T98G. BNCT causes cell death in glioblastoma cells, regardless of p53 mutation status. In T98G cells, cell killing and apoptosis occurred effectively following BNCT. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor.

    PubMed

    Boissonnas, Alexandre; Fetler, Luc; Zeelenberg, Ingrid S; Hugues, Stéphanie; Amigorena, Sebastian

    2007-02-19

    Although the immune system evolved to fight infections, it may also attack and destroy solid tumors. In most cases, tumor rejection is initiated by CD8(+) cytotoxic T lymphocytes (CTLs), which infiltrate solid tumors, recognize tumor antigens, and kill tumor cells. We use a combination of two-photon intravital microscopy and immunofluorescence on ordered sequential sections to analyze the infiltration and destruction of solid tumors by CTLs. We show that in the periphery of a thymoma growing subcutaneously, activated CTLs migrate with high instantaneous velocities. The CTLs arrest in close contact to tumor cells expressing their cognate antigen. In regions where most tumor cells are dead, CTLs resume migration, sometimes following collagen fibers or blood vessels. CTLs migrating along blood vessels preferentially adopt an elongated morphology. CTLs also infiltrate tumors in depth, but only when the tumor cells express the cognate CTL antigen. In tumors that do not express the cognate antigen, CTL infiltration is restricted to peripheral regions, and lymphocytes neither stop moving nor kill tumor cells. Antigen expression by tumor cells therefore determines both CTL motility within the tumor and profound tumor infiltration.

  9. Necroptosis: an alternative cell death program defending against cancer

    PubMed Central

    Chen, Dongshi; Yu, Jian; Zhang, Lin

    2016-01-01

    One of the hallmarks of cancer is resistance to programmed cell death, which maintains the survival of cells en route to oncogenic transformation and underlies therapeutic resistance. Recent studies demonstrate that programmed cell death is not confined to caspase-dependent apoptosis, but includes necroptosis, a form of necrotic death governed by Receptor-Interacting Protein 1 (RIP1), RIP3, and Mixed Lineage Kinase Domain-Like (MLKL). Necroptosis serves as a critical cell-killing mechanism in response to severe stress and blocked apoptosis, and can be induced by inflammatory cytokines or chemotherapeutic drugs. Genetic or epigenetic alterations of necroptosis regulators such as RIP3 and cylindromatosis (CYLD), are frequently found in human tumors. Unlike apoptosis, necroptosis elicits a more robust immune response that may function as a defensive mechanism by eliminating tumor-causing mutations and viruses. Furthermore, several classes of anticancer agents currently under clinical development, such as SMAC and BH3 mimetics, can promote necroptosis in addition to apoptosis. A more complete understanding of the interplay among necroptosis, apoptosis, and other cell death modalities is critical for developing new therapeutic strategies to enhance killing of tumor cells. PMID:26968619

  10. An Aqueous Extract of Marine Microalgae Exhibits Antimetastatic Activity through Preferential Killing of Suspended Cancer Cells and Anticolony Forming Activity

    PubMed Central

    Somasekharan, Syam Prakash; El-Naggar, Amal; Sorensen, Poul H.

    2016-01-01

    Research on marine natural products as potential anticancer agents is still limited. In the present study, an aqueous extract of a Canadian marine microalgal preparation was assessed for anticancer activities using various assays and cell lines of human cancers, including lung, prostate, stomach, breast, and pancreatic cancers, as well as an osteosarcoma. In vitro, the microalgal extract exhibited marked anticolony forming activity. In addition, it was more toxic, as indicated by increased apoptosis, to nonadherent cells (grown in suspension) than to adherent cells. In vivo, an antimetastatic effect of the extract was observed in NOD-SCID mice carrying subrenal capsule xenografts of PC3 prostate cancer cells. The results of the present study suggest that the antimetastatic effect of the aqueous microalgal extract is based on inhibition of colony forming ability of cancer cells and the preferential killing of suspended cancer cells. Further research aimed at identification of the molecular basis of the anticancer activities of the microalgal extract appears to be warranted. PMID:27656243

  11. Eradication of Pseudomonas aeruginosa cells by cathodic electrochemical currents delivered with graphite electrodes.

    PubMed

    Niepa, Tagbo H R; Wang, Hao; Gilbert, Jeremy L; Ren, Dacheng

    2017-03-01

    Antibiotic resistance is a major challenge to the treatment of bacterial infections associated with medical devices and biomaterials. One important intrinsic mechanism of such resistance is the formation of persister cells that are phenotypic variants of microorganisms and highly tolerant to antibiotics. Recently, we reported a new approach to eradicating persister cells of Pseudomonas aeruginosa using low-level direct electrochemical current (DC) and synergy with the antibiotic tobramycin. To further understand the underlying mechanism and develop this technology toward possible medical applications, we investigated the electricidal activities of non-metallic biomaterial on persister and biofilm cells of P. aeruginosa using graphite-based TGON™ 805 electrodes. We employed both single and dual chamber systems to compare electrochemical factors of TGON and stainless steel 304 electrodes. The results revealed that TGON-based treatments were highly effective against P. aeruginosa persister cells. In the single chamber system, complete eradication of planktonic persister cells (corresponding to a 7-log killing) was achieved with 70μA/cm 2 DC using TGON electrodes within 40min of treatment, while the cell viability in biofilms was reduced by 2 logs within 1h. The killing effects were dose and time dependent with higher current densities requiring less time. Moreover, reduction reactions were found more effective than oxidation reactions, confirming that metal cations are not indispensable, although they may facilitate cell killing. The findings of this study can help develop electrochemical technologies to eradicate persister and biofilm cells for more effective treatment of medical device and biomaterial associated infections. Infections associated with medical devices and biomaterials present a major challenge due to high-level tolerance of microbes to conventional antibiotics. It is well established that such tolerance is due to the formation of dormant persister cells and multicellular structures known as biofilms. Recent studies have demonstrated electrochemical treatment as a promising alternative to eradicate bacterial infections, since the killing mechanism is independent of the growth phase of bacterial cells, but relies on various electrochemical species interplaying during the treatment. The current study investigated major bactericidal properties of the electrochemical currents mediated via TGON, a carbon-based electrode material. Up to total eradication of Pseudomonas aeruginosa persister cells was achieved. The new knowledge of electrochemical properties and the bioactivity of TGON may help develop new methods/devices to eradicate bacterial infections by delivering safe levels of electrochemical currents. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. The flavonoid tangeretin activates the unfolded protein response and synergizes with imatinib in the erythroleukemia cell line K562.

    PubMed

    Lust, Sofie; Vanhoecke, Barbara; Van Gele, Mireille; Philippé, Jan; Bracke, Marc; Offner, Fritz

    2010-06-01

    We explored the mechanism of cell death of the polymethoxyflavone tangeretin (TAN) in K562 breakpoint cluster region-abelson murine leukemia (Bcr-Abl+) cells. Flow cytometric analysis showed that TAN arrested the cells in the G(2)/M phase and stimulated an accumulation of the cells in the sub-G(0) phase. TAN-induced cell death was evidenced by poly(ADP)-ribose polymerase cleavage, DNA laddering fragmentation, activation of the caspase cascade and downregulation of the antiapoptotic proteins Mcl-1 and Bcl-x(L). Pretreatment with the pancaspase inhibitor Z-VAD-FMK_blocked caspase activation and cell cycle arrest but did not inhibit apoptosis which suggest that other cell killing mechanisms like endoplasmic reticulum (ER)-associated cell death pathways could be involved. We demonstrated that TAN-induced apoptosis was preceded by a rapid activation of the proapoptotic arm of the unfolded protein response, namely PKR-like ER kinase. This was accompanied by enhanced levels of glucose-regulated protein of 78 kDa and of spliced X-box binding protein 1. Furthermore, TAN sensitized K562 cells to the cell killing effects of imatinib via an apoptotic mechanism. In conclusion, our results suggest that TAN is able to induce apoptosis in Bcr-Abl+ cells via cell cycle arrest and the induction of the unfolded protein response, and has synergistic cytotoxicity with imatinib.

  13. A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells.

    PubMed

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Hamana, Hiroshi; Nakagawa, Hidetoshi; Jin, Aishun; Lin, Zhezhu; Muraguchi, Atsushi

    2014-10-31

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its associated receptors (TRAIL-R/TR) are attractive targets for cancer therapy because TRAIL induces apoptosis in tumor cells through TR while having little cytotoxicity on normal cells. Therefore, many agonistic monoclonal antibodies (mAbs) specific for TR have been produced, and these induce apoptosis in multiple tumor cell types. However, some TR-expressing tumor cells are resistant to TR-specific mAb-induced apoptosis. In this study, we constructed a chimeric antigen receptor (CAR) of a TRAIL-receptor 1 (TR1)-specific single chain variable fragment (scFv) antibody (TR1-scFv-CAR) and expressed it on a Jurkat T cell line, the KHYG-1 NK cell line, and human peripheral blood lymphocytes (PBLs). We found that the TR1-scFv-CAR-expressing Jurkat cells killed target cells via TR1-mediated apoptosis, whereas TR1-scFv-CAR-expressing KHYG-1 cells and PBLs killed target cells not only via TR1-mediated apoptosis but also via CAR signal-induced cytolysis, resulting in cytotoxicity on a broader range if target cells than with TR1-scFv-CAR-expressing Jurkat cells. The results suggest that TR1-scFv-CAR could be a new candidate for cancer gene therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. ML1419c peptide immunization induces Mycobacterium leprae-specific HLA-A*0201-restricted CTL in vivo with potential to kill live mycobacteria.

    PubMed

    Geluk, Annemieke; van den Eeden, Susan J F; Dijkman, Karin; Wilson, Louis; Kim, Hee Jin; Franken, Kees L M C; Spencer, John S; Pessolani, Maria C V; Pereira, Geraldo M B; Ottenhoff, Tom H M

    2011-08-01

    MHC class I-restricted CD8(+) T cells play an important role in protective immunity against mycobacteria. Previously, we showed that p113-121, derived from Mycobacterium leprae protein ML1419c, induced significant IFN-γ production by CD8(+) T cells in 90% of paucibacillary leprosy patients and in 80% of multibacillary patients' contacts, demonstrating induction of M. leprae-specific CD8(+) T cell immunity. In this work, we studied the in vivo role and functional profile of ML1419c p113-121-induced T cells in HLA-A*0201 transgenic mice. Immunization with 9mer or 30mer covering the p113-121 sequence combined with TLR9 agonist CpG induced HLA-A*0201-restricted, M. leprae-specific CD8(+) T cells as visualized by p113-121/HLA-A*0201 tetramers. Most CD8(+) T cells produced IFN-γ, but distinct IFN-γ(+)/TNF-α(+) populations were detected simultaneously with significant secretion of CXCL10/IFN-γ-induced protein 10, CXCL9/MIG, and VEGF. Strikingly, peptide immunization also induced high ML1419c-specific IgG levels, strongly suggesting that peptide-specific CD8(+) T cells provide help to B cells in vivo, as CD4(+) T cells were undetectable. An additional important characteristic of p113-121-specific CD8(+) T cells was their capacity for in vivo killing of p113-121-labeled, HLA-A*0201(+) splenocytes. The cytotoxic function of p113-121/HLA-A*0201-specific CD8(+) T cells extended into direct killing of splenocytes infected with live Mycobacterium smegmatis expressing ML1419c: both 9mer and 30mer induced CD8(+) T cells that reduced the number of ML1419c-expressing mycobacteria by 95%, whereas no reduction occurred using wild-type M. smegmatis. These data, combined with previous observations in Brazilian cohorts, show that ML1419c p113-121 induces potent CD8(+) T cells that provide protective immunity against M. leprae and B cell help for induction of specific IgG, suggesting its potential use in diagnostics and as a subunit (vaccine) for M. leprae infection.

  15. Therapeutic Potential and Challenges of Natural Killer Cells in Treatment of Solid Tumors

    PubMed Central

    Gras Navarro, Andrea; Björklund, Andreas T.; Chekenya, Martha

    2015-01-01

    Natural killer (NK) cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing, requiring one-to-one target engagement and site-directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells, and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME) and augment adaptive immune responses by promoting differentiation, activation, and/or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes, and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach. PMID:25972872

  16. Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo.

    PubMed

    Chuang, Cheng-Hung; Tsai, Cheng-Chih; Lin, En-Shyh; Huang, Chin-Shiu; Lin, Yun-Yu; Lan, Chuan-Ching; Huang, Chun-Chih

    2016-10-31

    The aim of the present study was to determine whether Lactobacillus salivarius (LS) and Lactobacillus johnsonii (LJ) prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (γ-GT), lipid peroxidation, triglyceride (TG) and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA) levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.

  17. Ingenol Mebutate Topical

    MedlinePlus

    ... cytotoxic agents. It works by killing fast-growing cells such as the abnormal cells associated with actinic keratoses. ... cover a skin area of about 2 inches by 2 inches. Spread the gel evenly over only the ...

  18. Novel Compounds Line up to Combat Drug Resistance in Cancer Cells | Center for Cancer Research

    Cancer.gov

    As the war on cancer has intensified and new molecular attacks on cancer cells have been developed, cancer cells have devised innovative ways of defending themselves. Many drugs have been designed or discovered and used to kill cancer cells; in response, these cells are staging new mechanisms to resist the effects of a variety of drugs, a phenomenon called multidrug resistance

  19. Small Molecules that Suppress IGF-Activated Prostate Cancers

    DTIC Science & Technology

    2006-04-01

    selectively impair the growth of IGF2-overexpressing hepatocellular carcinoma cells. For cell viability assays, IGF2-expressing cells were plated at a...produced at high levels in liver tumors (27). We identified three chemically analogous compounds that killed IGF2-overexpressing hepatocellular carcinoma cells... hepatocellular carcinoma cell lines that we recently characterized2 indicated that one of the three chemi- cals, 94G6, exhibited the highest cytotoxicity

  20. Ablative Hypofractionated Radiation Therapy Enhances Non-Small Cell Lung Cancer Cell Killing via Preferential Stimulation of Necroptosis In Vitro and In Vivo.

    PubMed

    Wang, Huan-Huan; Wu, Zhi-Qiang; Qian, Dong; Zaorsky, Nicholas G; Qiu, Ming-Han; Cheng, Jing-Jing; Jiang, Chao; Wang, Juan; Zeng, Xian-Liang; Liu, Chun-Lei; Tian, Li-Jun; Ying, Guo-Guang; Meng, Mao-Bin; Hao, Xi-Shan; Yuan, Zhi-Yong

    2018-05-01

    To investigate how necroptosis (ie, programmed necrosis) is involved in killing of non-small cell lung cancer (NSCLC) after ablative hypofractionated radiation therapy (HFRT). Deoxyribonucleic acid damage, DNA repair, and the death form of NSCLC cells were assessed after radiation therapy. The overexpression and silencing of receptor-interacting protein kinases 3 (RIP3, a key protein involved activation of necroptosis)-stable NSCLC cell lines were successfully constructed. The form of cell death, the number and area of colonies, and the regulatory proteins of necroptosis were characterized after radiation therapy in vitro. Finally, NSCLC xenografts and patient specimens were used to examine involvement of necroptosis after ablative HFRT in vivo. Radiation therapy induced expected DNA damage and repair of NSCLC cell lines, but ablative HFRT at ≥10 Gy per fraction preferentially stimulated necroptosis in NSCLC cells and xenografts with high RIP3 expression, as characterized by induction and activation of RIP3 and mixed-lineage kinase domain-like protein and release of immune-activating chemokine high-mobility group box 1. In contrast, RNA interference of RIP3 attenuated ablative HFRT-induced necroptosis and activation of its regulatory proteins. Among central early-stage NSCLC patients receiving stereotactic body radiation therapy, high expression of RIP3 was associated with improved local control and progression-free survival (all P < .05). Ablative HFRT at ≥10 Gy per fraction enhances killing of NSCLC with high RIP3 expression via preferential stimulation of necroptosis. RIP3 may serve as a useful biomarker to predict favorable response to stereotactic body radiation therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Xrcc2 deficiency sensitizes cells to apoptosis by MNNG and the alkylating anticancer drugs temozolomide, fotemustine and mafosfamide.

    PubMed

    Tsaryk, Roman; Fabian, Kerstin; Thacker, John; Kaina, Bernd

    2006-08-08

    DNA double-strand breaks (DSBs) are potent killing lesions, and inefficient repair of DSBs does not only lead to cell death but also to genomic instability and tumorigenesis. DSBs are repaired by non-homologous end-joining and homologous recombination (HR). A key player in HR is Xrcc2, a Rad51-like protein. Cells deficient in Xrcc2 are hypersensitive to X-rays and mitomycin C and display increased chromosomal aberration frequencies. In order to elucidate the role of Xrcc2 in resistance to anticancer drugs, we compared Xrcc2 knockout (Xrcc2-/-) mouse embryonic fibroblasts with the corresponding isogenic wild-type and Xrcc2 complemented knockout cells. We show that Xrcc2-/- cells are hypersensitive to the killing effect of the simple methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). They undergo apoptosis after MNNG treatment while necrosis is only marginally enhanced. Complementation of Xrcc2 deficient cells by Xrcc2 cDNA transfection conferred resistance to the cytotoxic and apoptosis-inducing effect of MNNG. The hypersensitivity of Xrcc2-/- cells to MNNG prompted us to investigate their killing and apoptotic response to various methylating, chloroethylating and crosslinking drugs used in anticancer therapy. Xrcc2 deficient cells were found to be hypersensitive to temozolomide, fotemustine and mafosfamide. They were also hypersensitive to cisplatin but not to taxol. The data reveal that Xrcc2 plays a role in the protection against a wide range of anticancer drugs and, therefore, suggest Xrcc2 to be a determinant of anticancer drug resistance. They also indicate that HR is involved in the processing of DNA damage induced by simple alkylating agents.

  2. The role of Fas ligand and transforming growth factor beta in tumor progression: molecular mechanisms of immune privilege via Fas-mediated apoptosis and potential targets for cancer therapy.

    PubMed

    Kim, Ryungsa; Emi, Manabu; Tanabe, Kazuaki; Uchida, Yoko; Toge, Tetsuya

    2004-06-01

    Despite the fact that expression of Fas ligand (FasL) in cytotoxic T lymphocytes (CTLs) and in natural killer (NK) cells plays an important role in Fas-mediated tumor killing, During tumor progression FasL-expressing tumor cells are involved in counterattacking to kill tumor-infiltrating lymphocytes (TILs). Soluble FasL levels also increase with tumor progression in solid tumors, and this increase inhibits Fas-mediated tumor killing by CTLs and NK cells. The increased expression of FasL in tumor cells is associated with decreased expression of Fas; and the promoter region of the FASL gene is regulated by transcription factors, such as neuronal factor kappaB (NF-kappaB) and AP-1, in the tumor microenvironment. Although the ratio of FasL expression to Fas expression in tumor cells is not strongly related to the induction of apoptosis in TILs, increased expression of FasL is associated with decreased Fas levels in tumor cells that can escape immune surveillance and facilitate tumor progression and metastasis. Transforming growth factor beta (TGF-beta) is a potent growth inhibitor and has tumor-suppressing activity in the early phases of carcinogenesis. During subsequent tumor progression, the increased secretion of TGF-beta by both tumor cells and, in a paracrine fashion, stromal cells, is involved in the enhancement of tumor invasion and metastasis accompanied by immunosuppression. Herein, the authors review the clinical significance of FasL and TGF-beta expression patterns as features of immune privilege accompanying tumor progression in the tumor microenvironment. Potential strategies for identifying which molecules can serve as targets for effective antitumor therapy also are discussed. Copyright 2004 American Cancer Society.

  3. CD4+ T-cell responses to foot-and-mouth disease virus in vaccinated cattle.

    PubMed

    Carr, B Veronica; Lefevre, Eric A; Windsor, Miriam A; Inghese, Cristina; Gubbins, Simon; Prentice, Helen; Juleff, Nicholas D; Charleston, Bryan

    2013-01-01

    We have performed a series of studies to investigate the role of CD4(+) T-cells in the immune response to foot-and-mouth disease virus (FMDV) post-vaccination. Virus neutralizing antibody titres (VNT) in cattle vaccinated with killed FMD commercial vaccine were significantly reduced and class switching delayed as a consequence of rigorous in vivo CD4(+) T-cell depletion. Further studies were performed to examine whether the magnitude of T-cell proliferative responses correlated with the antibody responses. FMD vaccination was found to induce T-cell proliferative responses, with CD4(+) T-cells responding specifically to the FMDV antigen. In addition, gamma interferon (IFN-γ) was detected in the supernatant of FMDV antigen-stimulated PBMC and purified CD4(+) T-cells from vaccinated cattle. Similarly, intracellular IFN-γ could be detected specifically in purified CD4(+) T-cells after restimulation. It was not possible to correlate in vitro proliferative responses or IFN-γ production of PBMC with VNT, probably as a consequence of the induction of T-independent and T-dependent antibody responses and antigen non-specific T-cell responses. However, our studies demonstrate the importance of stimulating CD4(+) T-cell responses for the induction of optimum antibody responses to FMD-killed vaccines.

  4. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release.

    PubMed

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim Hj; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Zainal, Zulkarnain; Alhassan, Fatah H; Taufiq-Yap, Yun H; Eid, Eltayeb E M; Arbab, Ismail Adam; Al-Asbahi, Bandar A; Webster, Thomas J; El Zowalaty, Mohamed Ezzat

    2013-01-01

    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells.

  5. Antagonists of growth hormone-releasing hormone receptor induce apoptosis specifically in retinoblastoma cells.

    PubMed

    Chu, Wai Kit; Law, Ka Sin; Chan, Sun On; Yam, Jason Cheuk Sing; Chen, Li Jia; Zhang, Hao; Cheung, Herman S; Block, Norman L; Schally, Andrew V; Pang, Chi Pui

    2016-12-13

    Retinoblastoma (RB) is the most common intraocular cancer in children worldwide. Current treatments mainly involve combinations of chemotherapies, cryotherapies, and laser-based therapies. Severe or late-stage disease may require enucleation or lead to fatality. Recently, RB has been shown to arise from cone precursor cells, which have high MDM2 levels to suppress p53-mediated apoptosis. This finding leads to the hypothesis that restoring apoptosis mechanisms in RBs could specifically kill the cancer cells without affecting other retinal cells. We have previously reported involvement of an extrapituitary signaling pathway of the growth hormone-releasing hormone (GHRH) in the retina. Here we show that the GHRH receptor (GHRH-R) is highly expressed in RB cells but not in other retinal cells. We induced specific apoptosis with two different GHRH-R antagonists, MIA-602 and MIA-690. Importantly, these GHRH-R antagonists do not trigger apoptosis in other retinal cells such as retinal pigmented epithelial cells. We delineated the gene expression profiles regulated by GHRH-R antagonists and found that cell proliferation genes and apoptotic genes are down- and up-regulated, respectively. Our results reveal the involvement of GHRH-R in survival and proliferation of RB and demonstrate that GHRH-R antagonists can specifically kill the RB cells.

  6. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting.

    PubMed

    Siurala, Mikko; Vähä-Koskela, Markus; Havunen, Riikka; Tähtinen, Siri; Bramante, Simona; Parviainen, Suvi; Mathis, J Michael; Kanerva, Anna; Hemminki, Akseli

    2016-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8(+) T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors.

  7. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting

    PubMed Central

    Siurala, Mikko; Vähä-Koskela, Markus; Havunen, Riikka; Tähtinen, Siri; Bramante, Simona; Parviainen, Suvi; Mathis, J. Michael; Kanerva, Anna; Hemminki, Akseli

    2016-01-01

    ABSTRACT Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8+ T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors. PMID:27467954

  8. Monte Carlo radiotherapy simulations of accelerated repopulation and reoxygenation for hypoxic head and neck cancer

    PubMed Central

    Harriss-Phillips, W M; Bezak, E; Yeoh, E K

    2011-01-01

    Objective A temporal Monte Carlo tumour growth and radiotherapy effect model (HYP-RT) simulating hypoxia in head and neck cancer has been developed and used to analyse parameters influencing cell kill during conventionally fractionated radiotherapy. The model was designed to simulate individual cell division up to 108 cells, while incorporating radiobiological effects, including accelerated repopulation and reoxygenation during treatment. Method Reoxygenation of hypoxic tumours has been modelled using randomised increments of oxygen to tumour cells after each treatment fraction. The process of accelerated repopulation has been modelled by increasing the symmetrical stem cell division probability. Both phenomena were onset immediately or after a number of weeks of simulated treatment. Results The extra dose required to control (total cell kill) hypoxic vs oxic tumours was 15–25% (8–20 Gy for 5×2 Gy per week) depending on the timing of accelerated repopulation onset. Reoxygenation of hypoxic tumours resulted in resensitisation and reduction in total dose required by approximately 10%, depending on the time of onset. When modelled simultaneously, accelerated repopulation and reoxygenation affected cell kill in hypoxic tumours in a similar manner to when the phenomena were modelled individually; however, the degree was altered, with non-additive results. Simulation results were in good agreement with standard linear quadratic theory; however, differed for more complex comparisons where hypoxia, reoxygenation as well as accelerated repopulation effects were considered. Conclusion Simulations have quantitatively confirmed the need for patient individualisation in radiotherapy for hypoxic head and neck tumours, and have shown the benefits of modelling complex and dynamic processes using Monte Carlo methods. PMID:21933980

  9. Apoptin towards safe and efficient anticancer therapies.

    PubMed

    Backendorf, Claude; Noteborn, Mathieu H M

    2014-01-01

    The chicken anemia virus derived protein apoptin harbors cancer-selective cell killing characteristics, essentially based on phosphorylation-mediated nuclear transfer in cancer cells and efficient cytoplasmic degradation in normal cells. Here, we describe a growing set of preclinical experiments underlying the promises of the anti-cancer potential of apoptin. Various non-replicative oncolytic viral vector systems have revealed the safety and efficacy of apoptin. In addition, apoptin enhanced the oncolytic potential of adenovirus, parvovirus and Newcastle disease virus vectors. Intratumoral injection of attenuated Salmonella typhimurium bacterial strains and plasmid-based systems expressing apoptin resulted in significant tumor regression. In-vitro and in-vivo experiments showed that recombinant membrane-transferring PTD4- or TAT-apoptin proteins have potential as a future anticancer therapeutics. In xenografted hepatoma and melanoma mouse models PTD4-apoptin protein entered both cancer and normal cells, but only killed cancer cells. Combinatorial treatment of PTD4-apoptin with various (chemo)therapeutic compounds revealed an additive or even synergistic effect, reducing the side effects of the single (chemo)therapeutic treatment. Degradable polymeric nanocapsules harboring MBP-apoptin fusion-protein induced tumor-selective cell killing in-vitro and in-vivo and revealed the potential of polymer-apoptin protein vehicles as an anticancer agent.Besides its direct use as an anticancer therapeutic, apoptin research has also generated novel possibilities for drug design. The nuclear location domains of apoptin are attractive tools for targeting therapeutic compounds into the nucleus of cancer cells. Identification of cancer-related processes targeted by apoptin can potentially generate novel drug targets. Recent breakthroughs important for clinical applications are reported inferring apoptin-based clinical trials as a feasible reality.

  10. Repair of DNA double-strand breaks and cell killing by charged particles

    NASA Astrophysics Data System (ADS)

    Eguchi-Kasai, K.; Murakami, M.; Itsukaichi, H.; Fukutsu, K.; Yatagai, F.; Kanai, T.; Ohara, H.; Sato, K.

    It has been suggested that it is not simple double-strand breaks (dsb) but the non-reparable breaks which correlate well with the high biological effectiveness of high LET radiations for cell killing. We have compared the effects of charged particles on cell death in 3 pairs of cell lines which are normal or defective in the repair of DNA dsbs. For the cell lines SL3-147, M10, and SX10 which are deficient in DNA dsb repair, RBE values were close to unity for cell killing induced by charged particles with linear energy transfer (LET) up to 200 keV/mum and were even smaller than unity for the LET region greater than 300 keV/mum. The inactivation cross section (ICS) increased with LET for all 3 pairs. The ICS of dsb repair deficient mutants was always larger than that of their parents for all the LET ranges, but with increasing LET the difference in ICS between the mutant and its parent became smaller. Since a small difference in ICS remained at LET of about 300 keV/mum, dsb repair may still take place at this high LET, even if its role is apparently small. These results suggest that the DNA repair system does not play a major role in protection against the attack of high LET radiations and that a main cause of cell death is non-reparable dsb which are produced at a higher yield compared with low LET radiations. No correlation was observed between DNA content or nuclear area and ICS.

  11. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper-ion resistant bacteria

    PubMed Central

    Elguindi, Jutta; Moffitt, Stuart; Hasman, Henrik; Andrade, Cassandra; Raghavan, Srini; Rensing, Christopher

    2013-01-01

    The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by influx of copper ions into the cells but the exact mechanism is not fully understood. This study showed that the kinetics of contact-killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper-ion resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper-ion resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electro-chemical polarization tests using the Stern-Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper-ion resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells which contributed directly to bacterial killing. PMID:21085951

  12. Liquid crystal nanoparticles for delivery of photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Nag, Okhil K.; Naciri, Jawad; Delehanty, James B.

    2018-02-01

    The main principle of photodynamic therapy (PDT) is to kill malignant cells by generation of reactive oxygen species (ROS). PDT appeared highly effective when ROS can be produced in subcellular location such as plasma membrane. The plasma membrane maintains the structural integrity of the cell and regulates multiple important cellular processes, such as endocytosis, trafficking, and apoptotic pathways, could be one of the best points to kill the cancer cells. Previously, we have developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs. Here we highlight the utility of this LCNP for membrane targeted delivery and imaging for a photosensitizer (PS) for PDT applications.

  13. The lethal interaction of x ray and penicillin induced lesions following x-irradiation of Escherichia coli B/r in the presence of hypoxic cell sensitizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillies, N.E.; Obioha, F.I.

    When Escherichia coli B/r were x-irradiated under anoxia in the presence of different electron-affinic sensitizers and then incubated in broth containing penicillin (at a concentration that did not kill unirradiated cells) additional killing of the bacteria occurred provided the sensitizers were of relatively high lipophilicity. The overall effect was to increase the efficiency of these sensitizers. It is concluded that sensitizer-dependent latent radiation lesions(s) are produced in membrane components of the cell envelope that interact with damage caused by penicillin in the peptidoglycan layer and this causes the additional lethality.

  14. Evaluation of murine lung epithelial cells (TC-1 JHU-1) line to develop Th2-promoting cytokines IL-25/IL-33/TSLP and genes Tlr2/Tlr4 in response to Aspergillus fumigatus.

    PubMed

    Khosravi, A R; Shokri, H; Hassan Al-Heidary, S; Ghafarifar, F

    2018-03-07

    The aims of this study were to determine the role of live and heat-killed Aspergillus fumigatus conidia in releasing interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP) and to express Toll-like receptor (Tlr)2 and Tlr4 genes. Murine lung epithelial cells were incubated with live and heat-killed A. fumigatus conidia at 37°C for 6, 24 and 48h. After treatments, ELISA was performed to measure the concentrations of IL-25, IL-33 and TSLP in the supernatants. Quantitative real-time PCR (qPCR) was performed to assess the expression levels of Tlr2 and Tlr4 genes. The concentrations of IL-25 and IL-33 significantly increased after exposure to live and heat-killed conidia for various times when compared with untreated control (P<0.05). The secretion of TSLP at different concentrations of heat-killed conidia was significantly higher than both live conidia and untreated control (P<0.05). qRT-PCR results indicated a up-regulation from 1.08 to 3.60-fold for Tlr2 gene expression and 1.20 to 1.80-fold for Tlr4 gene expression exposed to heat-killed conidia. A. fumigatus has a potential ability to stimulate murine lung epithelial cells to produce IL-25/IL-33/TSLP, as well as to express Tlr2/Tlr4 genes, indicating an important role of lung epithelial cells in innate immune responses to A. fumigatus interaction. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing

    PubMed Central

    Garg, Abhishek D; Vandenberk, Lien; Fang, Shentong; Fasche, Tekele; Van Eygen, Sofie; Maes, Jan; Van Woensel, Matthias; Koks, Carolien; Vanthillo, Niels; Graf, Norbert; de Witte, Peter; Van Gool, Stefaan; Salven, Petri; Agostinis, Patrizia

    2017-01-01

    Innate immune sensing of dying cells is modulated by several signals. Inflammatory chemokines-guided early recruitment, and pathogen-associated molecular patterns-triggered activation, of major anti-pathogenic innate immune cells like neutrophils distinguishes pathogen-infected stressed/dying cells from sterile dying cells. However, whether certain sterile dying cells stimulate innate immunity by partially mimicking pathogen response-like recruitment/activation of neutrophils remains poorly understood. We reveal that sterile immunogenic dying cancer cells trigger (a cell autonomous) pathogen response-like chemokine (PARC) signature, hallmarked by co-release of CXCL1, CCL2 and CXCL10 (similar to cells infected with bacteria or viruses). This PARC signature recruits preferentially neutrophils as first innate immune responders in vivo (in a cross-species, evolutionarily conserved manner; in mice and zebrafish). Furthermore, key danger signals emanating from these dying cells, that is, surface calreticulin, ATP and nucleic acids stimulate phagocytosis, purinergic receptors and toll-like receptors (TLR) i.e. TLR7/8/9-MyD88 signaling on neutrophil level, respectively. Engagement of purinergic receptors and TLR7/8/9-MyD88 signaling evokes neutrophil activation, which culminates into H2O2 and NO-driven respiratory burst-mediated killing of viable residual cancer cells. Thus sterile immunogenic dying cells perform 'altered-self mimicry' in certain contexts to exploit neutrophils for phagocytic targeting of dead/dying cancer cells and cytotoxic targeting of residual cancer cells. PMID:28234357

  16. MHC class I target recognition, immunophenotypes and proteomic profiles of natural killer cells within the spleens of day-14 chick embryos

    USDA-ARS?s Scientific Manuscript database

    Chicken natural killer (NK) cells are not well defined, so little is known about the molecular interactions controlling their activity. At day 14 of embryonic development, chick spleens are a rich source of T-cellfree CD8aa+, CD3_ cells with natural killing activity. Cell-mediated cytotoxicity assay...

  17. 3D-modelling of radon-induced cellular radiobiological effects in bronchial airway bifurcations: direct versus bystander effects.

    PubMed

    Szőke, István; Farkas, Arpád; Balásházy, Imre; Hofmann, Werner; Madas, Balázs G; Szőke, Réka

    2012-06-01

    The primary objective of this paper was to investigate the distribution of radiation doses and the related biological responses in cells of a central airway bifurcation of the human lung of a hypothetical worker of the New Mexico uranium mines during approximately 12 hours of exposure to short-lived radon progenies. State-of-the-art computational modelling techniques were applied to simulate the relevant biophysical and biological processes in a central human airway bifurcation. The non-uniform deposition pattern of inhaled radon daughters caused a non-uniform distribution of energy deposition among cells, and of related cell inactivation and cell transformation probabilities. When damage propagation via bystander signalling was assessed, it produced more cell killing and cell transformation events than did direct effects. If bystander signalling was considered, variations of the average probabilities of cell killing and cell transformation were supra-linear over time. Our results are very sensitive to the radiobiological parameters, derived from in vitro experiments (e.g., range of bystander signalling), applied in this work and suggest that these parameters may not be directly applicable to realistic three-dimensional (3D) epithelium models.

  18. Scheduling Chemotherapy: Catch 22 between Cell Kill and Resistance Evolution

    DOE PAGES

    Gardner, Shea N.

    2000-01-01

    Dose response curves show that prolonged drug exposure at a low concentration may kill more cells than short exposures at higher drug concentrations, particularly for cell cycle phase specific drugs. Applying drugs at low concentrations for prolonged periods, however, allows cells with partial resistance to evolve higher levels of resistance through stepwise processes such as gene amplification. Models are developed for cell cycle specific (CS) and cell cycle nonspecific (CNS) drugs to identify the schedule of drug application that balances this tradeoff. The models predict that a CS drug may be applied most effectively by splitting the cumulative dose intomore » many (>40) fractions applied by long-term chemotherapy, while CNS drugs may be better applied in fewer than 10 fractions applied over a shorter term. The model suggests that administering each fraction by continuous infusion may be more effective than giving the drug as a bolus, whether the drug is CS or CNS. In addition, tumors with a low growth fraction or slow rate of cell division are predicted to be controlled more easily with CNS drugs, while those with a high proliferative fraction or fast cell division rate may respond better to CS drugs.« less

  19. Anti-CD30-targeted gold nanoparticles for photothermal therapy of L-428 Hodgkin’s cell

    PubMed Central

    Qu, Xiaochao; Yao, Cuiping; Wang, Jing; Li, Zheng; Zhang, Zhenxi

    2012-01-01

    Purpose Due to the efficient bioconjugation and highly photothermal effect, gold nanoparticles can stain receptor-overexpressing cancer cells through specific targeting of ligands to receptors, strongly absorb specific light and efficiently convert it into heat based on the property of surface plasmon resonance, and then induce the localized protein denaturation and cell death. Methods Two gold nanoparticle–antibody conjugates, gold-BerH2 antibody (anti-CD30 receptor) and gold-ACT1 antibody (anti-CD25-receptor), were synthesized. Gold-BerH2 conjugates can specifically bind to the surface of L-428 Hodgkin’s cells, and gold-ACT1 conjugates were used for the control. The gold nanoparticle-induced L-428 cell-killing experiments were implemented with different experimental parameters. Results At a relatively low concentration of gold and short incubation time, the influence of cytotoxicity of gold on cell viability can be overlooked. Under laser irradiation at suitable power, the high killing efficiency of gold-targeted L-428 cells was achieved, but little damage was done to nontargeted cancer cells. Conclusion Gold nanoparticle-mediated photothermal therapy provides a relatively safe therapeutic technique for cancer treatment. PMID:23269868

  20. Mechanisms of cell killing by the new anti-cancer drug SR 4233

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.

    SR 4233 (3-amino-1,2,4-benzotriazine, 1,4-dioxide) is a new potential anti-cancer drug which has a highly selective toxicity to hypoxic cells. This study investigated the mechanism of cell killing by this drug. Enzymatic studies have shown that SR 4233 is reductively metabolized to SR 4317 by the tumor cell lines SCVII and HT 1080 under hypoxic conditions. Cytochrome P-450 may play a major role in the reduction in both cell lines. DT diaphorase is the second most important enzyme in reducing SR 4233. In characterizing the major cellular target for SR 4233, the author has shown that damage to cell mitochondria ismore » produced largely under aerobic conditions, whereas DNA is likely to be the major target for cell death under hypoxic conditions. Further experiments demonstrated that DNA damage was similar to that produced by ionizing radiation at equitoxic doses, and chromosome aberrations can entirely account for cell death by SR 4233 under hypoxic conditions in the low dose range. Nevertheless, chromosome breaks produced by SR 4233 are less repairable than those produced by ionizing radiation, suggesting highly localized damage in the DNA by discrete foci of SR 4233 radicals.« less

Top