Mitosek-Szewczyk, Krystyna; Tabarkiewicz, Jacek; Wilczynska, Barbara; Lobejko, Katarzyna; Berbecki, Jerzy; Nastaj, Marcin; Dworzanska, Ewa; Kolodziejczyk, Beata; Stelmasiak, Zbigniew; Rolinski, Jacek
2013-09-15
Cladribine causes sustained reduction in peripheral T and B cell populations while sparing other immune cells. We determined two populations of dendritic cells (DCs): namely CD1c(+)/CD19(-) (myeloid DCs) and CD303(+)/CD123(+) (plasmacytoid DCs), CD19(+) B lymphocytes, CD3(+) T lymphocytes and CD4(+) or CD8(+) subpopulations in patients with multiple sclerosis after cladribine therapy. We examined 50 patients with secondary progressive multiple sclerosis (SP MS) according to McDonalds et al.'s criteria, 2001 [15]. Blood samples were collected before the initiation of cladribine therapy and after 1st, 2nd, 3th, 4th and 5th courses of treatment. DC subsets, T and B cells were analyzed by flow cytometry. During cladribine treatment the myeloid DCs CD1c(+)/CD19(-) did not change (p=0.73175), and the plasmacytoid DCs CD303(+)/CD123(+) significantly increased (p=0.00034) which resulted in significant changes in the ratio of myeloid DCs to plasmacytoid DCs (p=0.00273). During therapy, B lymphocyte CD19(+) significantly decreased (p=0.00005) and significant changes in CD4(+) cells (p=0.00191), changes in CD8(+) cells (p=0.05760) and significant changes in CD3(+) (p=0.01822) were found. We noticed significant trend to increase the CD303(+) circulating the dendritic cells. This population produces large amounts of IFN-alfa. We found significant and rapid decrease in B cells and CD4(+) Th cells. Our results suggest two possible ways of beneficial cladribine influence on immune system in MS. Induction of IFN-alfa producing cells and their predominance over BDCA-1(+) DCs, which are associated with cytotoxic response. Additionally, cladribine could influence two populations of lymphocytes: B cells and Th lymphocytes responsible for induction of immune response against myelin antigens. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Alhallak, Kinan; Jenkins, Samir V.; Lee, David E.; Greene, Nicholas P.; Quinn, Kyle P.; Griffin, Robert J.; Dings, Ruud P. M.; Rajaram, Narasimhan
2017-06-01
Radiation resistance remains a significant problem for cancer patients, especially due to the time required to definitively determine treatment outcome. For fractionated radiation therapy, nearly 7 to 8 weeks can elapse before a tumor is deemed to be radiation-resistant. We used the optical redox ratio of FAD/(FAD+NADH) to identify early metabolic changes in radiation-resistant lung cancer cells. These radiation-resistant human A549 lung cancer cells were developed by exposing the parental A549 cells to repeated doses of radiation (2 Gy). Although there were no significant differences in the optical redox ratio between the parental and resistant cell lines prior to radiation, there was a significant decrease in the optical redox ratio of the radiation-resistant cells 24 h after a single radiation exposure (p=0.01). This change in the redox ratio was indicative of increased catabolism of glucose in the resistant cells after radiation and was associated with significantly greater protein content of hypoxia-inducible factor 1 (HIF-1α), a key promoter of glycolytic metabolism. Our results demonstrate that the optical redox ratio could provide a rapid method of determining radiation resistance status based on early metabolic changes in cancer cells.
Goblet cell response after photorefractive keratectomy and laser in situ keratomileusis
Ryan, Denise S.; Bower, Kraig S.; Sia, Rose K.; Shatos, Marie A.; Howard, Robin S.; Mines, Michael J.; Stutzman, Richard D.; Dartt, Darlene A.
2017-01-01
PURPOSE To determine whether patients without dry eye preoperatively have an altered conjunctival goblet cell density and mucin secretion postoperatively and to explore what factors affect changes in goblet cell density and mucin secretion. SETTING The former Walter Reed Army Medical Center, Washington, DC, USA. DESIGN Prospective nonrandomized clinical study. METHODS Impression cytology was used to determine conjunctival goblet cell density before and 1 week, 1 month, and 3 months after photorefractive keratectomy (PRK) or laser in situ keratomileusis (LASIK). The McMonnies questionnaire, Schirmer test, tear breakup time, corneal sensitivity, rose bengal staining, and computerized videokeratoscopy were also performed to assess tear-film and ocular-surface health. RESULTS The ratio of goblet cell to total cells changed postoperatively from baseline in both groups (P < .001). The most significant change was a median 29% decrease 1 month postoperatively. However, there were no significant differences between groups over time (P = .772). The ratio of filled goblet cell to total goblet cell did not change significantly over the same time period (P = .128), and there were no significant differences between the PRK group and the LASIK group over time (P = .282). CONCLUSIONS Patients without apparent dry eye had altered conjunctival goblet cell population after PRK or LASIK. The conjunctival goblet cell population tended to decrease in the early postoperative period after either surgery and was most affected by preoperative goblet cell density. The changes in the tear film and ocular surface did not seem to affect goblet cell mucin secretion after either procedure. PMID:27531295
Li, Mi; Liu, LianQing; Xi, Ning; Wang, YueChao; Xiao, XiuBin; Zhang, WeiJing
2015-09-01
Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.
Swaminathan Iyer, K; Gaikwad, R M; Woodworth, C D; Volkov, D O; Sokolov, Igor
2012-06-01
A significant change of surface features of malignant cervical epithelial cells compared to normal cells has been previously reported. Here, we are studying the question at which progressive stage leading to cervical cancer the surface alteration happens. A non-traditional method to identify malignant cervical epithelial cells in vitro, which is based on physical (in contrast to specific biochemical) labelling of cells with fluorescent silica micron-size beads, is used here to examine cells at progressive stages leading to cervical cancer which include normal epithelial cells, cells infected with human papillomavirus type-16 (HPV-16), cells immortalized by HPV-16, and carcinoma cells. The study shows a statistically significant (at p < 0.01) difference between both immortal and cancer cells and a group consisting of normal and infected. There is no significant difference between normal and infected cells. Immortal cells demonstrate the signal which is closer to cancer cells than to either normal or infected cells. This implies that the cell surface, surface cellular brush changes substantially when cells become immortal. Physical labeling of the cell surface represents a substantial departure from the traditional biochemical labeling methods. The results presented show the potential significance of physical properties of the cell surface for development of clinical methods for early detection of cervical cancer, even at the stage of immortalized, premalignant cells.
Iyer, K. Swaminathan; Gaikwad, R. M.; Woodworth, C. D.; Volkov, D. O.
2013-01-01
A significant change of surface features of malignant cervical epithelial cells compared to normal cells has been previously reported. Here, we are studying the question at which progressive stage leading to cervical cancer the surface alteration happens. A non-traditional method to identify malignant cervical epithelial cells in vitro, which is based on physical (in contrast to specific biochemical) labelling of cells with fluorescent silica micron-size beads, is used here to examine cells at progressive stages leading to cervical cancer which include normal epithelial cells, cells infected with human papillomavirus type-16 (HPV-16), cells immortalized by HPV-16, and carcinoma cells. The study shows a statistically significant (at p <0.01) difference between both immortal and cancer cells and a group consisting of normal and infected. There is no significant difference between normal and infected cells. Immortal cells demonstrate the signal which is closer to cancer cells than to either normal or infected cells. This implies that the cell surface, surface cellular brush changes substantially when cells become immortal. Physical labeling of the cell surface represents a substantial departure from the traditional biochemical labeling methods. The results presented show the potential significance of physical properties of the cell surface for development of clinical methods for early detection of cervical cancer, even at the stage of immortalized, pre-malignant cells. PMID:22351422
Koyama, Shin; Narita, Eijiro; Shimizu, Yoko; Shiina, Takeo; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji
2016-08-05
To investigate the cellular effects of terahertz (THz) exposure, human corneal epithelial (HCE-T) cells derived from human eye were exposed to 0.12 THz radiation at 5 mW/cm² for 24 h, then the genotoxicity, morphological changes, and heat shock protein (Hsp) expression of the cells were examined. There was no statistically significant increase in the micronucleus (MN) frequency of cells exposed to 0.12 THz radiation compared with sham-exposed controls and incubator controls, whereas the MN frequency of cells treated with bleomycin for 1 h (positive control) did increase significantly. Similarly, there were no significant morphological changes in cells exposed to 0.12 THz radiation compared to sham-exposed controls and incubator controls, and Hsp expression (Hsp27, Hsp70, and Hsp90α) was also not significantly different between the three treatments. These results indicate that exposure to 0.12 THz radiation using the present conditions appears to have no or very little effect on MN formation, morphological changes, and Hsp expression in cells derived from human eye.
RNA Binding Proteins Posttranscriptionally Regulate Genes Involved In Oncogenesis
2010-06-01
whose steady state mRNA levels may not significantly change, but which are tr anslationally active inside cancer cells. Potentially the...techniques have the potential to better delineate gene s whose steady state mRNA levels may not significantly change, but which are translationally active ...significantly change, but which are tr anslationally active inside cancer cells. Potentially the identification of such genes m ay offer novel therapeutic
Tenorio, Allan R.; Chan, Ellen S.; Bosch, Ronald J.; Macatangay, Bernard J. C.; Read, Sarah W.; Yesmin, Suria; Taiwo, Babafemi; Margolis, David M.; Jacobson, Jeffrey M.; Landay, Alan L.; Wilson, Cara C.; Mellors, John W.; Keshavarzian, Ali; Rodriguez, Benigno; Aziz, Mariam; Presti, Rachel; Deeks, Steven; Ebiasah, Ruth; Myers, Laurie; Borowski, LuAnn; Plants, Jill; Palm, David A.; Weibel, Derek; Putnam, Beverly; Lindsey, Elizabeth; Player, Amy; Albrecht, Mary; Kershaw, Andrea; Sax, Paul; Keenan, Cheryl; Walton, Patricia; Baum, Jane; Stroberg, Todd; Hughes, Valery; Coster, Laura; Kumar, Princy N.; Yin, Michael T.; Noel-Connor, Jolene; Tebas, Pablo; Thomas, Aleshia; Davis, Charles E.; Redfield, Robert R.; Sbrolla, Amy; Flynn, Teri; Davis, Traci; Whitely, Kim; Singh, Baljinder; Swaminathan, Shobha; McGregor, Donna; Palella, Frank; Aberg, Judith; Cavanagh, Karen; Santana Bagur, Jorge L.; Flores, Olga Méndez; Fritsche, Janice; Sha, Beverly; Slamowitz, Debbie; Valle, Sandra; Tashima, Karen; Patterson, Helen; Harber, Heather; Para, Michael; Eaton, Molly; Maddox, Dale; Currier, Judith; Cajahuaringa, Vanessa; Luetkemeyer, Annie; Dwyer, Jay; Fichtenbaum, Carl J.; Saemann, Michelle; Ray, Graham; Campbell, Thomas; Fischl, Margaret A.; Bolivar, Hector; Oakes, Jonathan; Chicurel-Bayard, Miriam; Tripoli, Christine; Weinman, D. Renee; Adams, Mary; Hurley, Christine; Dunaway, Shelia; Storey, Sheryl; Klebert, Michael; Royal, Michael
2015-01-01
Background. Rifaximin, a nonabsorbable antibiotic that decreases lipopolysaccharide (LPS) in cirrhotics, may decrease the elevated levels of microbial translocation, T-cell activation and inflammation in human immunodeficiency virus (HIV)-positive immune nonresponders to antiretroviral therapy (ART). Methods. HIV-positive adults receiving ART for ≥96 weeks with undetectable viremia for ≥48 weeks and CD4+ T-cell counts <350 cells/mm3 were randomized 2:1 to rifaximin versus no study treatment for 4 weeks. T-cell activation, LPS, and soluble CD14 were measured at baseline and at weeks 2, 4, and 8. Wilcoxon rank sum tests compared changes between arms. Results. Compared with no study treatment (n = 22), rifaximin (n = 43) use was associated with a significant difference between study arms in the change from baseline to week 4 for CD8+T-cell activation (median change, 0.0% with rifaximin vs +0.6% with no treatment; P = .03). This difference was driven by an increase in the no-study-treatment arm because there was no significant change within the rifaximin arm. Similarly, although there were significant differences between study arms in change from baseline to week 2 for LPS and soluble CD14, there were no significant changes within the rifaximin arm. Conclusions. In immune nonresponders to ART, rifaximin minimally affected microbial translocation and CD8+T-cell activation. Trial registration number. NCT01466595. PMID:25214516
Radiation changes in vaginal and cervical cytology in carcinoma of the cervix uteri
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, S.; Gupta, Y.N.; Sanyal, B.
1982-02-01
Radiation changes are observed in all postirradiated smears of squamous cell carcinoma of the cervix from 56 females, although to a variable degree. After 1 year the changes subside gradually. A high cornification index is a good guide for recurrence. The significance of dysplastic cells as premonition for recurrence is debatable. The presence of malignant cells at any stage was considered of grave significance, and indicates poor radiation response or recurrence.
Bao, Yong; Fan, Jian-Zhong; Li, Ke; Li, Chuan; Yang, Jun-Feng
2008-06-01
To investigate the effect of infrasound therapy on the proliferation, apoptosis and ultrastructure of human B lymphoma Raji cells. Human B lymphoma Raji cells were exposed to infrasound treatment for 15, 30, 60, 90 and 120 min and cultured subsequently for 24 or 48 h. MTT assay, flow cytometry analysis, and electron microscopy were performed to examine the proliferative status, cell apoptosis and ultrastructural changes of the exposed cells, respectively. MTT assay revealed no significant changes in the proliferation of the cells exposed to infrasound treatment (P>0.05), nor did flow cytometry analysis identified significant variation in the cell apoptosis (P>0.05). Scanning electron microscopy, however, identified shortened or reduced cell processes and microvilli on the surface of the cells with infrasound exposure and a subsequent 24-hour culture, and the cell membrane surface became smooth. Under transmission electron microscope, the cells with infrasound treatment presented with significantly reduced microvilli, and the cell nuclei appeared homogeneous, with cytoplasmic budding and losses after a 48-hour culture. Infrasound less than 90 dB does not obviously affect the proliferation and apoptosis of Raji cells, but may directly cause cell ultrastructural changes such as reduction of the cell processes.
Blood volume and red cell life span (M113), part C
NASA Technical Reports Server (NTRS)
Johnson, P. C., Jr.
1973-01-01
Prechamber, in-chamber, and postchamber blood samples taken from Skylab simulation crewmembers did not indicate significant shortening of the red cell life span during the mission. This does not suggest that the space simulation environment could not be associated with red cell enzyme changes. It does show that any changes in enzymes were not sufficiently great to significantly shorten red cell survival. There was no evidence of bone marrow erythropoetic suppression nor was there any evidence of increased red cell destruction.
Patiño, Pablo J; Caraballo, Domingo I; Szewczyk, Katarzyna; Quintana, Juan C; Bedoya, Lady R; Ramírez, Beatriz E; Jaramillo, Andrés
2017-09-29
Exercise-induced stress induces considerable changes in the immune system. To better understand the mechanisms related to these immune changes during acute and chronic physical stress, we studied the effects of aerobic physical training (APT) on several parameters of the immune system. Previously untrained males (18-25 years of age) were divided into a group that was subjected to 6 months of APT (n=10) and a sedentary control group (n=7). The subjects performed a cardiopulmonary exercise test (CET) at 0, 3, and 6 months of the APT program. B cell (CD19+), T cell (CD4+ and CD8+), and natural killer cell (CD56+) levels, and mitogen-induced T cell proliferation and cytokine production (interleukin-1, interleukin-4, interleukin-12, and interferon-) were evaluated before and at 30 seconds and 24 hours after the CET. There was a significant increase in CD4+ T cells and natural killer cells and a significant reduction in T cell proliferation in both groups 30 seconds after the CET at 3 and 6 months of the APT program. Of note, the trained group showed significantly lower resting T cell proliferation (before and 24 hour after the CET) than the sedentary control group at 3 and 6 months of the APT program. There were no significant differences in cytokine production after the CET between both groups at any time point of the APT program. These data show that APT does not condition against strenuous exercise induced immune changes but significantly modulates T cell proliferative responses.
Short-term effects of overnight orthokeratology on corneal cell morphology and corneal thickness.
Nieto-Bona, Amelia; González-Mesa, Ana; Nieto-Bona, Ma Paz; Villa-Collar, César; Lorente-Velázquez, Amalia
2011-06-01
To examine the morphological and biometric corneal changes produced over periods of 15 days and 1 month after overnight orthokeratology (OK). Prospective, single-center, longitudinal trial. Twenty-seven right eyes of 27 subjects (group 1) with low to moderate myopia wore OK lenses for 1 month. Ten right eyes of 10 subjects (group 2) with emmetropia to low myopia who did not wear any type of contact lens served as controls. Corneal morphometric measurements were obtained in vivo using a confocal microscope to examine the central and midperipheral cornea. Thickness measurements in the peripheral cornea were obtained by optical coherence tomography. Changes in visual acuity, refractive error, and corneal topography were also analyzed. No significant changes in either endothelial cell or stromal cell density were observed after 1 month of OK. Basal epithelial cells were, however, significantly reduced (P < 0.01), and epithelial wing and superficial cells showed enhanced visibility (P < 0.05). Superficial cells increased in height and width, the width increase after 1 month being significant (P < 0.01). Epithelial thickness was significantly reduced in the central cornea and 2 mm around the center. Corneal pachymetry increased significantly in the band from 5 to 10 mm from the corneal apex (P < 0.01). OK lenses for myopia induce significant structural and optical changes particularly in the central epithelium after 15 days or 1 month of wear. The central corneal epithelium responds to OK wear by undergoing significant epithelial cell shape and size alterations with no effects, however, on the cells of the corneal endothelium or the corneal stroma. Peripheral corneal thickness increased with respect to baseline values. These findings suggest that the corneal epithelium is the principal structure affected by the mechanical forces exerted by the OK lenses.
Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows
Higuita-Castro, Natalia; Mihai, Cosmin; Hansford, Derek J.
2014-01-01
Interfacial flows during cyclic airway reopening are an important source of ventilator-induced lung injury. However, it is not known how changes in airway wall compliance influence cell injury during airway reopening. We used an in vitro model of airway reopening in a compliant microchannel to investigate how airway wall stiffness influences epithelial cell injury. Epithelial cells were grown on gel substrates with different rigidities, and cellular responses to substrate stiffness were evaluated in terms of metabolic activity, mechanics, morphology, and adhesion. Repeated microbubble propagations were used to simulate cyclic airway reopening, and cell injury and detachment were quantified via live/dead staining. Although cells cultured on softer gels exhibited a reduced elastic modulus, these cells experienced less plasma membrane rupture/necrosis. Cells on rigid gels exhibited a minor, but statistically significant, increase in the power law exponent and also exhibited a significantly larger height-to-length aspect ratio. Previous studies indicate that this change in morphology amplifies interfacial stresses and, therefore, correlates with the increased necrosis observed during airway reopening. Although cells cultured on stiff substrates exhibited more plasma membrane rupture, these cells experienced significantly less detachment and monolayer disruption during airway reopening. Western blotting and immunofluorescence indicate that this protection from detachment and monolayer disruption correlates with increased focal adhesion kinase and phosphorylated paxillin expression. Therefore, changes in cell morphology and focal adhesion structure may govern injury responses during compliant airway reopening. In addition, these results indicate that changes in airway compliance, as occurs during fibrosis or emphysema, may significantly influence cell injury during mechanical ventilation. PMID:25213636
Effect of three months of soft contact lens wear on conjunctival cytology.
Sapkota, Kishor; Franco, Sandra; Sampaio, Paula; Lira, Madalena
2016-07-01
The purpose of this study was to investigate the effect of three months of soft contact lens wear on conjunctival goblet cell density and epithelial cell morphology. This was a longitudinal clinical trial. Conjunctival impression cytology was performed on the superior palpebral conjunctiva in fifty-four eyes of twenty-seven neophyte contact lens wearers before and after three months of contact lens wear. Goblet cell density was determined by optical microscopy and epithelial cell morphology was classified according to the Tseng classification. Changes in goblet cell density as well as epithelial cell grading were determined. The effects of lens material and wearing modality on cytological changes were also investigated. Goblet cell density reduced significantly by 85 ± 151 cells/mm(2) (p < 0.001) after three months of contact lens wear. Reduction in goblet cell density was associated with lens materials; it was higher in conventional hydrogel lenses in comparison to silicone-hydrogel lenses (p = 0.008). The highest reduction in goblet cell density was found with Nelfilcon A lens wear (p = 0.002) and the lowest with Comfilcon A lens wear (p = 0.414). There was no statistically significant difference in grading of epithelial metaplasia before and after three months of contact lens wear (p = 0.075). Age was not correlated with the reduction in goblet cell density (r = -0.196, p = 0.160) but it was associated with the change in epithelial cell morphology (p = 0.036). Three months of soft contact lens wear statistically significantly reduced goblet cell density; however, no significant changes were found in the grading of epithelial metaplasia. Contact lenses with lower oxygen permeability, higher Young modulus and higher thickness highly affected the conjunctival cytology. © 2016 Optometry Australia.
2014-01-01
Background Chronic obstructive pulmonary disease (COPD) is a worldwide epidemic disease and a major cause of death and disability. The present study aimed to elucidate pharmacological effects of adipose derived stromal cells (ASCs) on pathological and biochemical factors in a guinea pig model of COPD. Guinea pigs were randomized into 5 groups including: Control, COPD, COPD + intratracheal delivery of PBS as a vehicle (COPD-PBS), COPD + intratracheal delivery of ASCs (COPD-ITASC) and COPD + intravenous injection of ASCs (COPD-IVASC). COPD was induced by exposing animals to cigarette smoke for 3 months. Cell therapy was performed immediately after the end of animal exposure to cigarette smoke and 14 days after that, white blood cells, oxidative stress indices and pathological changes of the lung were measured. Results Compared with control group, emphysema was clearly observed in the COPD and COPD-PBS groups (p < 0.001). Lung histopathologic changes of COPD-ITASC and COPD-IVASC groups showed non-significant improvement compared to COPD-PBS group. The COPD-ITASC group showed a significant increase in total WBC compared to COPD-PBS group but there was not a significant increase in this regard in COPD-IVASC group. The differential WBC showed no significant change in number of different types of leukocytes. The serum level of malondialdehyde (MDA) significantly decreased but thiol groups of broncho-alveolar lavage fluid (BALF) increased in both cell treated groups (p < 0.05 for all cases). Weight of animals decreased during smoke exposure and improved after PBS or cell therapy. However, no significant change was observed between the groups receiving PBS and the ones receiving ASCs. Conclusion Cell therapy with ASCs can help in reducing oxidative damage during smoking which may collectively hold promise in attenuation of the severity of COPD although the lung structural changes couldn’t be ameliorated with these pharmacological therapeutic methods. PMID:24495506
Ghorbani, Ahmad; Feizpour, Azadeh; Hashemzahi, Milad; Gholami, Lila; Hosseini, Mahmoud; Soukhtanloo, Mohammad; Vafaee Bagheri, Farzaneh; Khodaei, Esmaeil; Mohammadian Roshan, Nema; Boskabady, Mohammad Hossein
2014-02-04
Chronic obstructive pulmonary disease (COPD) is a worldwide epidemic disease and a major cause of death and disability. The present study aimed to elucidate pharmacological effects of adipose derived stromal cells (ASCs) on pathological and biochemical factors in a guinea pig model of COPD. Guinea pigs were randomized into 5 groups including: Control, COPD, COPD + intratracheal delivery of PBS as a vehicle (COPD-PBS), COPD + intratracheal delivery of ASCs (COPD-ITASC) and COPD + intravenous injection of ASCs (COPD-IVASC). COPD was induced by exposing animals to cigarette smoke for 3 months. Cell therapy was performed immediately after the end of animal exposure to cigarette smoke and 14 days after that, white blood cells, oxidative stress indices and pathological changes of the lung were measured. Compared with control group, emphysema was clearly observed in the COPD and COPD-PBS groups (p < 0.001). Lung histopathologic changes of COPD-ITASC and COPD-IVASC groups showed non-significant improvement compared to COPD-PBS group. The COPD-ITASC group showed a significant increase in total WBC compared to COPD-PBS group but there was not a significant increase in this regard in COPD-IVASC group. The differential WBC showed no significant change in number of different types of leukocytes. The serum level of malondialdehyde (MDA) significantly decreased but thiol groups of broncho-alveolar lavage fluid (BALF) increased in both cell treated groups (p < 0.05 for all cases). Weight of animals decreased during smoke exposure and improved after PBS or cell therapy. However, no significant change was observed between the groups receiving PBS and the ones receiving ASCs. Cell therapy with ASCs can help in reducing oxidative damage during smoking which may collectively hold promise in attenuation of the severity of COPD although the lung structural changes couldn't be ameliorated with these pharmacological therapeutic methods.
Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells.
Yu, Tao; Wang, Yongtao; Zhang, Huizhen; Johnson, Caroline H; Jiang, Yiming; Li, Xiangjun; Wu, Zeming; Liu, Tian; Krausz, Kristopher W; Yu, Aiming; Gonzalez, Frank J; Huang, Min; Bi, Huichang
2016-06-01
Mycoplasma contamination is a common problem in cell culture and can alter cellular functions. Since cell metabolism is either directly or indirectly involved in every aspect of cell function, it is important to detect changes to the cellular metabolome after mycoplasma infection. In this study, liquid chromatography mass spectrometry (LC/MS)-based metabolomics was used to investigate the effect of mycoplasma contamination on the cellular metabolism of human pancreatic carcinoma cells (PANC-1). Multivariate analysis demonstrated that mycoplasma contamination induced significant metabolic changes in PANC-1 cells. Twenty-three metabolites were identified and found to be involved in arginine and purine metabolism and energy supply. This study demonstrates that mycoplasma contamination significantly alters cellular metabolite levels, confirming the compelling need for routine checking of cell cultures for mycoplasma contamination, particularly when used for metabolomics studies. Graphical abstract Metabolomics reveals mycoplasma contamination changes the metabolome of PANC-1 cells.
Selective cytotoxic effect of non-thermal micro-DBD plasma
NASA Astrophysics Data System (ADS)
Kwon, Byung-Su; Choi, Eun Ha; Chang, Boksoon; Choi, Jeong-Hyun; Kim, Kyung Sook; Park, Hun-Kuk
2016-10-01
Non-thermal plasma has been extensively researched as a new cancer treatment technology. We investigated the selective cytotoxic effects of non-thermal micro-dielectric barrier discharge (micro-DBD) plasma in cervical cancer cells. Two human cervical cancer cell lines (HeLa and SiHa) and one human fibroblast (HFB) cell line were treated with micro-DBD plasma. All cells underwent apoptotic death induced by plasma in a dose-dependent manner. The plasma showed selective inhibition of cell proliferation in cervical cancer cells compared to HFBs. The selective effects of the plasma were also observed between the different cervical cancer cell lines. Plasma treatment significantly inhibited the proliferation of SiHa cells in comparison to HeLa cells. The changes in gene expression were significant in the cervical cancer cells in comparison to HFBs. Among the cancer cells, apoptosis-related genes were significantly enriched in SiHa cells. These changes were consistent with the differential cytotoxic effects observed in different cell lines.
Changing the Properties of Multipotent Mesenchymal Stromal Cells by IFNγ Administration.
Petinati, N A; Kapranov, N M; Bigil'deev, A E; Popova, M D; Davydova, Yu O; Gal'tseva, I V; Drize, N I; Kuz'mina, L A; Parovichnikova, E N; Savchenko, V G
2017-06-01
We studied changes in the population of human multipotent mesenchymal stromal cells activated by IFNγ. The cells were cultured under standard conditions; IFNγ was added in various concentrations for 4 h or over 2 passages. It was shown that the total cell production significantly decreased after long-term culturing with IFNγ, but 4-h exposure did not affect this parameter. After 4-h culturing, the expression levels of IDO1, CSF1, and IL-6 increased by 300, 7, and 2.4 times, respectively, and this increase persisted 1 and 2 days after removal of IFNγ from the culture medium. The expression of class I and II MHC (HLA) on cell surface practically did not change immediately after exposure to IFNγ, but during further culturing, HLA-ABC (MHC I) and HLA-DR (MHC II) expression significantly increased, which abolished the immune privilege in these cells, the property allowing clinical use of allogenic multipotent mesenchymal stromal cells. Multipotent mesenchymal stromal cells can suppress proliferation of lymphocytes. The degree of this suppression depends on individual properties of multipotent mesenchymal stromal cell donor. Treatment with IFNγ did not significantly affect the intensity of inhibition of lymphocyte proliferation by these cells.
Moreb, Jan S; Baker, Henry V; Chang, Lung-Ji; Amaya, Maria; Lopez, M Cecilia; Ostmark, Blanca; Chou, Wayne
2008-11-24
Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell lung cancer. Neither the mechanisms nor the biologic significance for such over expression have been studied. We have employed oligonucleotide microarrays to analyze changes in gene profiles in A549 lung cancer cell line in which ALDH activity was reduced by up to 95% using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3). Stringent analysis methods were used to identify gene expression patterns that are specific to the knock down of ALDH activity and significantly different in comparison to wild type A549 cells (WT) or cells similarly transduced with green fluorescent protein (GFP) siRNA. We confirmed significant and specific down regulation of ALDH1A1 and ALDH3A1 in Lenti 1+3 cells and in comparison to 12 other ALDH genes detected. The results of the microarray analysis were validated by real time RT-PCR on RNA obtained from Lenti 1+3 or WT cells treated with ALDH activity inhibitors. Detailed functional analysis was performed on 101 genes that were significantly different (P < 0.001) and their expression changed by > or = 2 folds in the Lenti 1+3 group versus the control groups. There were 75 down regulated and 26 up regulated genes. Protein binding, organ development, signal transduction, transcription, lipid metabolism, and cell migration and adhesion were among the most affected pathways. These molecular effects of the ALDH knock-down are associated with in vitro functional changes in the proliferation and motility of these cells and demonstrate the significance of ALDH enzymes in cell homeostasis with a potentially significant impact on the treatment of lung cancer.
Tenorio, Allan R; Chan, Ellen S; Bosch, Ronald J; Macatangay, Bernard J C; Read, Sarah W; Yesmin, Suria; Taiwo, Babafemi; Margolis, David M; Jacobson, Jeffrey M; Landay, Alan L; Wilson, Cara C
2015-03-01
Rifaximin, a nonabsorbable antibiotic that decreases lipopolysaccharide (LPS) in cirrhotics, may decrease the elevated levels of microbial translocation, T-cell activation and inflammation in human immunodeficiency virus (HIV)-positive immune nonresponders to antiretroviral therapy (ART). HIV-positive adults receiving ART for ≥96 weeks with undetectable viremia for ≥48 weeks and CD4(+) T-cell counts <350 cells/mm(3) were randomized 2:1 to rifaximin versus no study treatment for 4 weeks. T-cell activation, LPS, and soluble CD14 were measured at baseline and at weeks 2, 4, and 8. Wilcoxon rank sum tests compared changes between arms. Compared with no study treatment (n = 22), rifaximin (n = 43) use was associated with a significant difference between study arms in the change from baseline to week 4 for CD8(+)T-cell activation (median change, 0.0% with rifaximin vs +0.6% with no treatment; P = .03). This difference was driven by an increase in the no-study-treatment arm because there was no significant change within the rifaximin arm. Similarly, although there were significant differences between study arms in change from baseline to week 2 for LPS and soluble CD14, there were no significant changes within the rifaximin arm. In immune nonresponders to ART, rifaximin minimally affected microbial translocation and CD8(+)T-cell activation. Trial registration number. NCT01466595. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Wu, Fayin; Zhou, Hefeng; Fan, Zhiying; Zhu, Yawen; Li, Yongye; Yao, Yukun; Ran, Dan
2014-02-01
To observe the effect of garlic oil combined with 5-FU induced apoptosis of adenoid cystic carcinoma cell line ACC-M. Human salivary in adenoid cystic carcinoma cell line AC-M was cultured, divided into the experimental group (5-FU group, garlic oil group, garlic oil + 5-FU group) and the control group, to observe the growth activity of tumor cells by MTT methods; to analyse the changes of cell cycle and apoptosis rate by flow cytometry. MTT experiments showed that 5-FU, garlic oil, garlic oil and 5-FU on ACC-M cells have inhibition in different concentration, with the increase of concentration and action time of the rise; Cell cycle analysis showed significant changes in flow cytometry. With the increase of concentration and the acting time, the G0/G1, phase of the cell ratio increased, S had no significant change, but G2/M phase cells decreased. Apoptosis rate display showed garlic oil combined with 5-FU induced apoptosis of ACC-M cells was significantly stronger than single group. Garlic oil can effectively induce the apoptosis of adenoid cystic carcinoma cell line ACC-M. The effect of garlic oil combined with 5-FU on ACC-M cells was stronger than the garlic oil, 5-FU used alone.
Cell death monitoring using quantitative optical coherence tomography methods
NASA Astrophysics Data System (ADS)
Farhat, Golnaz; Yang, Victor X. D.; Kolios, Michael C.; Czarnota, Gregory J.
2011-03-01
Cell death is characterized by a series of predictable morphological changes, which modify the light scattering properties of cells. We present a multi-parametric approach to detecting changes in subcellular morphology related to cell death using optical coherence tomography (OCT). Optical coherence tomography data were acquired from acute myeloid leukemia (AML) cells undergoing apoptosis over a period of 48 hours. Integrated backscatter (IB) and spectral slope (SS) were computed from OCT backscatter spectra and statistical parameters were extracted from a generalized gamma (GG) distribution fit to OCT signal intensity histograms. The IB increased by 2-fold over 48 hours with significant increases observed as early as 4 hours. The SS increased in steepness by 2.5-fold with significant changes at 12 hours, while the GG parameters were sensitive to apoptotic changes at 24 to 48 hours. Histology slides indicated nuclear condensation and fragmentation at 24 hours, suggesting the late scattering changes could be related to nuclear structure. A second series of measurements from AML cells treated with cisplatin, colchicine or ionizing radiation suggested that the GG parameters could potentially differentiate between modes of cell death. Distinct cellular morphology was observed in histology slides obtained from cells treated under each condition.
Confocal microscopy of corneal stroma and endothelium after LASIK and PRK.
Amoozadeh, Javad; Aliakbari, Soheil; Behesht-Nejad, Amir-Houshang; Seyedian, Mohammad-Amin; Rezvan, Bijan; Hashemi, Hassan
2009-10-01
To compare with confocal microscopy the changes in stromal keratocyte density and endothelial cell count due to photorefractive keratectomy (PRK) and LASIK. In this prospective study, 32 eyes (16 myopic patients) were examined with the NIDEK Confoscan 3 confocal microscope before and 6 months after PRK and LASIK. The preoperative mean myopia was -2.85+/-0.99 diopters (D) (range: -1.00 to -4.00 D) in 24 eyes that underwent PRK and -2.94+/-0.96 D (range: -2.00 to -4.25 D) in 8 eyes that underwent LASIK. Keratocyte density in the anterior and posterior stroma and the endothelial cell count were measured. Statistically significant changes were assessed using the t test. P<.05 was considered statistically significant. Preoperative hexagonal cell percentage in the LASIK group was 52.17+/-11.43 and 51.33+/-10.98 in the PRK group. Postoperatively, the percentages were 52.96+/-7.55 and 53.34+/-10.2, respectively. Six months postoperatively, keratocyte density changed by 367.12+/-103.35 cells/mm(2) (34.7% reduction) in the anterior stroma (P<.05) and 9.25+/-28.28 cells/mm(2) (1.31% reduction) in the posterior stroma (P>.05) for the LASIK group. In the PRK group, these values were 319.71+/-83.45 cells/mm(2) (31.13% reduction) in the anterior stroma (P<.05) and 0.17+/-38.97 cells/mm(2) (0.02% reduction) in the posterior stroma (P>.05). The changes in keratocyte densities were not statistically significant between groups (P>.05). The mean number of keratocytes decreased by 37.2% in the retroablation zone of the LASIK group (P<.05). No changes were noted in endothelial cell counts. A significant decrease occurred in the number of stromal keratocytes in the anterior stroma. Despite differences in surgery, the change in keratocyte density and endothelial cell counts were similar between LASIK and PRK groups (P>.05). Copyright 2009, SLACK Incorporated.
Kwon, Yong Hwan; Kim, Nayoung; Nam, Ryoung Hee; Park, Ji Hyun; Lee, Sun Min; Kim, Sung Kook; Lee, Hye Seung; Kim, Yong Sung; Lee, Dong Ho
2017-01-01
The gastric accommodation reflex is an important mechanism in gastric physiology. However, the aging-associated structural and functional changes in gastric relaxation have not yet been established. Thus, we evaluated the molecular changes of interstitial cell of Cajal (ICC) and neuronal nitric oxide synthase (nNOS) and the function changes in the corpus of F344 rats at different ages (6-, 31-, 74-wk and 2-yr). The proportion of the c-Kit-positive area in the submucosal border (SMB) and myenteric plexus (MP) layer was significantly lower in the older rats, as indicated by immunohistochemistry. The density of the nNOS-positive immunoreactive area also decreased with age in the SMB, circular muscle (CM), and MP. Similarly, the percent of nNOS-positive neuronal cells per total neuronal cells and the proportion of nNOS immunoreactive area of MP also decreased in aged rats. In addition, the mRNA and protein expression of c-Kit and nNOS significantly decreased with age. Expression of stem cell factor (SCF) and the pan-neuronal marker PGP 9.5 mRNA was significantly lower in the older rats than in the younger rats. Barostat studies showed no difference depending on age. Instead, the change of volume was significantly decreased by L-NG63-nitroarginine methyl ester in the 2-yr-old rats compared with the 6-wk-old rats (P = 0.003). Taken together, the quantitative and molecular nNOS changes in the stomach might play a role in the decrease of gastric accommodation with age. PMID:28045993
Talati, Ronak; Vanderpoel, Andrew; Eladdadi, Amina; Anderson, Kate; Abe, Ken; Barroso, Margarida
2013-01-01
The overexpression of certain membrane-bound receptors is a hallmark of cancer progression and it has been suggested to affect the organization, activation, recycling and down-regulation of receptor-ligand complexes in human cancer cells. Thus, comparing receptor trafficking pathways in normal vs. cancer cells requires the ability to image cells expressing dramatically different receptor expression levels. Here, we have presented a significant technical advance to the analysis and processing of images collected using intensity based Förster resonance energy transfer (FRET) confocal microscopy. An automated Image J macro was developed to select region of interests (ROI) based on intensity and statistical-based thresholds within cellular images with reduced FRET signal. Furthermore, SSMD (strictly standardized mean differences), a statistical signal-to-noise ratio (SNR) evaluation parameter, was used to validate the quality of FRET analysis, in particular of ROI database selection. The Image J ROI selection macro together with SSMD as an evaluation parameter of SNR levels, were used to investigate the endocytic recycling of Tfn-TFR complexes at nanometer range resolution in human normal vs. breast cancer cells expressing significantly different levels of endogenous TFR. Here, the FRET-based assay demonstrates that Tfn-TFR complexes in normal epithelial vs. breast cancer cells show a significantly different E% behavior during their endocytic recycling pathway. Since E% is a relative measure of distance, we propose that these changes in E% levels represent conformational changes in Tfn-TFR complexes during endocytic pathway. Thus, our results indicate that Tfn-TFR complexes undergo different conformational changes in normal vs. cancer cells, indicating that the organization of Tfn-TFR complexes at the nanometer range is significantly altered during the endocytic recycling pathway in cancer cells. In summary, improvements in the automated selection of FRET ROI datasets allowed us to detect significant changes in E% with potential biological significance in human normal vs. cancer cells. PMID:23994873
On the importance of prompt oxygen changes for hypofractionated radiation treatments.
Kissick, Michael; Campos, David; van der Kogel, Albert; Kimple, Randall
2013-10-21
This discussion is motivated by observations of prompt oxygen changes occurring prior to a significant number of cancer cells dying (permanently stopping their metabolic activity) from therapeutic agents like large doses of ionizing radiation. Such changes must be from changes in the vasculature that supplies the tissue or from the metabolic changes in the tissue itself. An adapted linear-quadratic treatment is used to estimate the cell survival variation magnitudes from repair and reoxygenation from a two-fraction treatment in which the second fraction would happen prior to significant cell death from the first fraction, in the large fraction limit. It is clear the effects of oxygen changes are likely to be the most significant factor for hypofractionation because of large radiation doses. It is a larger effect than repair. Optimal dose timing should be determined by the peak oxygen timing. A call is made to prioritize near real time measurements of oxygen dynamics in tumors undergoing hypofractionated treatments in order to make these treatments adaptable and patient-specific.
Lee, Jong Do; You, Myung Hee; Kim, Young Seol; Kim, Jin Woo; Kim, Kwang Won; Kim, Sun Woo; Choi, Young Kil
1986-01-01
Although it has been well established that thyroid hormones increase β-adrenergic receptors of various tissues in the animal studies, there are controversies about the β-adrenergic receptor changes of human mononuclear cells and polymorphonuclear cells. The present study was performed to analyze the change of β-adrenergic receptor of those cells according to the thyroid functional status and to evaluate their usefulness in assessment of sympathetic hyperactivity. We measured [3H]-dihydroalprenolol binding to circulating mononuclear and polymorphonuclear cells from 18 patients with hyperthyrodism, 7 with hypothyroidism, 8 with euthyroid goiter and 21 normal controls. Only with polymorphonuclear cells the receptor concentration was significantly higher (P<0.01) in hyperthyroidism (46.07±4.78 fmol/mg protein) than in the normal control (28.42±2.06 fmol/mg protein) and the affinity constants of both cells were comparable to normal control values. And serum concentrations of T3 were not correlated well with the changes of receptor concentrations in hyperthyroidism. The patients with hypothyroidism and euthyroid goiter showed no significant difference in the receptor concentration and the affinity constants with both cell binding assays. These results indicate that thyroid hormones increase the receptor concentration in polymorphonuclear cells which might be responsible for the symptoms of sympathetic hyperactivity and the polymorphornuclear cells are useful for β-adrenergic receptor assay. PMID:15759381
Drug-targeting strategies in cancer therapy.
Huang, P S; Oliff, A
2001-02-01
Genetic changes in cell-cycle, apoptotic, and survival pathways cause tumorigenesis, leading to significant phenotypic changes in transformed cells. These changes in the tumor environment - elevated expression of surface proteases, increased angiogenesis and glucuronidase activity - can be taken advantage of to improve the therapeutic index of existing cancer therapies. Targeting cytotoxics to tumor cells by enzymatic activation is a promising strategy for improving chemotherapeutics.
TGF-β induces changes in breast cancer cell deformability.
Kulkarni, Ankur; Chatterjee, Aritra; Kondaiah, Paturu; Gundiah, Namrata
2018-05-10
Mechanical properties of cells regulate cell behaviors which lead to phenotypic changes that may aid in the development and progression of disease. In this study, we used atomic force microscopy (AFM) indentation with a spherical probe to characterize the elastic and viscoelastic properties of invasive (MDA-MB-231) and noninvasive (MCF-7) breast cancer cells treated with transforming growth factor-β (TGF-β). We also used confocal fluorescence imaging to investigate the sub-membrane cytoskeletal structure of the cells. Results showed significant alterations in moduli of both cell types after 24 hour TGF-β treatment which had a context dependent response; moduli for MDA-MB-231 decreased whereas MCF-7 demonstrated stiffening response. Viscoelastic characterization using stress relaxation tests showed increased fluid-like nature of MDA-MB-231 following TGF-β treatment and lower fluidity for MCF-7 cells. We also observed significant alterations in the expression and orientation of actin stress fibers with TGF-β treatment which correlated with the changes in cell mechanics. The less invasive MCF-7 cells had a delayed overall increase in cell deformability after 48 hour exposure to TGF-β; a similar trend was observed for MDA-MB cells. These changes may be important to facilitate migration, for instance, during metastasis of cancer cells through submicron sized spaces. © 2018 IOP Publishing Ltd.
Chang, Hana; Knothe Tate, Melissa L
2011-12-01
In the preceding study (Part A), we showed that prescribed seeding conditions as well as seeding density can be used to subject multipotent stem cells (MSCs) to volume changing stresses and that changes in volume of the cell are associated with changes in shape, but not volume, of the cell nucleus. In the current study, we aim to control the mechanical milieu of live cells using these prescribed seeding conditions concomitant to delivery of shape changing stresses via fluid flow, while observing adaptation of the cytoskeleton, a major cellular transducer that modulates cell shape, stiffness and remodeling. We hypothesize that the spatiotemporal organization of tubulin and actin elements of the cytoskeleton changes in response to volume and shape changing stresses emulating those during development, prior to the first beating of the heart or twitching of muscle. Our approach was to quantify the change over baseline in spatiotemporal distribution of actin and tubulin in live C3H/10T1/2 model stem cells subjected to volume changing stresses induced by seeding at density as well as low magnitude, short duration, shape changing (shear) stresses induced by fluid flow (0.5 or 1.0 dyne/cm2 for 30/60/90 minutes). Upon exposure to fluid flow, both tubulin thickness (height) and concentration (fluorescence intensity) change significantly over baseline, as a function of proximity to neighboring cells (density) and the substrate (apical-basal height). Given our recently published studies showing amplification of stress gradients (flow velocity) with increasing distance to nearest neighbors and the substrate, i.e. with decreasing density and toward the apical side of the cell, tubulin adaptation appears to depend significantly on the magnitude of the stress to which the cell is exposed locally. In contrast, adaptation of actin to the changing mechanical milieu is more global, exhibiting less significant differences attributable to nearest neighbors or boundaries than differences attributable to magnitude of the stress to which the cell is exposed globally (0.5 versus 1.0 dyne/cm2). Furthermore, changes in the actin cytoskeletal distribution correlate positively with one pre-mesenchymal condensation marker (Msx2) and negatively with early markers of chondrogenesis (ColIIaI alone, indicative of pre-hypertrophic chondrogenesis) and osteogenesis (Runx2). Changes in the tubulin cytoskeletal distribution correlate positively with a marker of pericondensation (Sox9 alone), negatively with chondrogenesis (ColIIaI) and positively with adipogenesis (Ppar-gamma 2). Taken as a whole, exposure of MSCs to volume and shape changing stresses results in emergent anisotropy of cytoskeletal architecture (structure), which relate to emergent cell fate (function).
Čukuranović Kokoris, Jovana; Jovanović, Ivan; Pantović, Vukica; Krstić, Miljan; Stanojković, Milica; Milošević, Verica; Ugrenović, Slađana; Stojanović, Vesna
2017-02-01
The aim of this research was to quantify the changes in the morphology and density of the anterior pituitary folliculostellate (FS) and luteinizing hormone (LH) cells. Material was tissue of the pituitary gland of the 14 male cadavers. Tissue slices were immunohistochemically stained with monoclonal anti-LH antibody and polyclonal anti-S100 antibody for the detection of LH and FS cells, respectively. Digital images of the stained slices were afterwards morphometrically analyzed by ImageJ. Results of the morphometric analysis showed significant increase of the FS cells volume density in cases older than 70 years. Volume density of the LH cells did not significantly change, whereas their area significantly increased with age. Nucleocytoplasmic ratio of the LH cells gradually decreased and became significant after the age of 70. Finally, volume density of the FS cell significantly correlated with LH cells area and nucleocytoplasmic ratio. From all above cited, we concluded that in men, density and size of the FS cells increase with age. Long-term hypertrophy of the LH cells results in their functional decline after the age of 70. Strong correlation between FS cells and LH cells morphometric parameters might point to age-related interaction between these two cell groups. Copyright © 2016 Elsevier Ltd. All rights reserved.
Leader, Joseph K.; Crothers, Kristina; Huang, Laurence; King, Mark A.; Morris, Alison; Thompson, Bruce W.; Flores, Sonia C.; Drummond, M. Bradley; Rom, William N.; Diaz, Philip T.
2015-01-01
Introduction The disease spectrum for HIV-infected individuals has shifted towards co-morbid non-AIDS conditions including chronic lung disease, but quantitative image analysis of lung disease has not been performed. Objectives To quantify the prevalence of structural changes of the lung indicating emphysema or fibrosis on radiographic examination. Methods A cross-sectional analysis of 510 HIV-infected participants in the multi-center Lung-HIV study was performed. Data collected included: demographics, biological markers of HIV, pulmonary function testing, and chest CT examinations. Emphysema and fibrosis-like changes were quantified on CT images based on threshold approaches. Results In our cohort: 69% was on antiretroviral therapy, 13% had a current CD4 cell count less than 200 cells/μL, 39% had an HIV viral load greater than 500 copies/mL, 25% had at least a trace level of emphysema (defined as >2.5% of voxels <-950HU). Trace emphysema was significantly correlated with age, smoking, and pulmonary function. Neither current CD4 cell count nor HIV viral load was significantly correlated with emphysema. Fibrosis-like changes were detected in 29% of the participants and were significantly correlated with HIV viral load (Pearson correlation coefficient = 0.210, p<0.05); current CD4 cell count was not associated with fibrosis. In multivariable analyses including age, race, and smoking status, HIV viral load remained significantly correlated with fibrosis-like changes (coefficient = 0.107, P = 0.03). Conclusion A higher HIV viral load was significantly associated with fibrosis-like changes possibly indicating early interstitial lung disease, but emphysematous changes were not related to current CD4 cell count or HIV viral load. PMID:26914911
Parandakh, Azim; Tafazzoli-Shadpour, Mohammad; Khani, Mohammad-Mehdi
2017-06-01
This study aimed to investigate stepwise remodeling of human mesenchymal stem cells (hMSCs) in response to cyclic stretch through rearrangement and alignment of cells and cytoskeleton regulation toward smooth muscle cell (SMC) fate in different time spans. Image analysis techniques were utilized to calculate morphological parameters. Cytoskeletal reorganization was observed by investigating F-actin filaments using immunofluorescence staining, and expression level of contractile SMC markers was followed by a quantitative polymerase chain reaction method. Applying cyclic uniaxial stretch on cultured hMSCs, utilizing a costume-made device, led to alteration in fractal dimension (FD) and cytoskeleton structure toward continuous alignment and elongation of cells by elevation of strain duration. Actin filaments became more aligned perpendicular to the axis of mechanical stretch by increasing uniaxial loading duration. At first, FD met a significant decrease in 4 h loading duration then increased significantly by further loading up to 16 h, followed by another decrease up to 1 d of uniaxial stretching. HMSCs subjected to 24 h cyclic uniaxial stretching significantly expressed early and intermediate contractile SM markers. It was hypothesized that the increase in FD after 4 h while cells continuously became more aligned and elongated was due to initiation of change in phenotype that influenced arrangement of cells. At this point, change in cell phenotype started leading to change in morphology while mechanical loading still caused cell alignment and rearrangement. Results can be helpful when optimized engineered cells are needed based on mechanical condition for functional engineered tissue and cell therapy.
Liu, Jinlin; Zhou, Yonglie; Yu, Qinghua; Zhao, Zhao; Wang, Huan; Luo, Xiaoming; Chen, Yanxia; Zhu, Zhongliang; Chen, Guoqing; Wu, Mao; Qiu, Liannv
2015-11-01
Follicular helper T (Tfh) cells are recognized as a distinct CD4helper T cell subset, and mainly dysregulated in the autoimmune disease, whether it plays a role in the infectious mononucleosis (IM) diseases is unknown. In this study, we found that the CD4CXCR5 Tfh cells were not significantly changed, but the CD4CXCR5ICOS and CD4CXCR5ICOSPD1 Tfh subsets were significantly increased in the IM patients, and all these cells were significantly changed after antiviral therapy. Second, only the numbers of CD4CXCR5ICOSPD1 Tfh cells correlated with the Epstein-Barr virus (EBV) DNA load, negatively correlated with the numbers of naive B cells and amount of IL-21, and positively correlated with the numbers of plasma cells, memory B cells, and atypical lymphocytes. Third, the frequency of CD4CXCR5ICOSPD1 Tfh subset was significantly higher in lymphadenectasis or hepatosplenomegaly patients, and associated with the level of alanine aminotransferase (ALT). All together, our findings discovered this CD4CXCR5ICOSPD1 Tfh cell subset might play an important role in the pathogenesis of IM.
Zhang, Qisen; Zhang, Xiaoqi; Pettolino, Filomena; Zhou, Gaofeng; Li, Chengdao
2016-02-01
Barley (Hordeum vulgare L.) seed germination initiates many important biological processes such as DNA, membrane and mitochondrial repairs. However, little is known on cell wall modifications in germinating embryos. We have investigated cell wall polysaccharide composition change, gene transcription and alternative splicing events in four barley varieties at 24h and 48 h germination. Cell wall components in germinating barley embryos changed rapidly, with increases in cellulose and (1,3)(1,4)-β-D-glucan (20-100%) within 24h, but decreases in heteroxylan and arabinan (3-50%). There were also significant changes in the levels of type I arabinogalactans and heteromannans. Alternative splicing played very important roles in cell wall modifications. At least 22 cell wall transcripts were detected to undergo either alternative 3' splicing, alternative 5' splicing or intron retention type of alternative splicing. These genes coded enzymes catalyzing synthesis and degradation of cellulose, heteroxylan, (1,3)(1,4)-β-D-glucan and other cell wall polymers. Furthermore, transcriptional regulation also played very important roles in cell wall modifications. Transcript levels of primary wall cellulase synthase, heteroxylan synthesizing and nucleotide sugar inter-conversion genes were very high in germinating embryos. At least 50 cell wall genes changed transcript levels significantly. Expression patterns of many cell wall genes coincided with changes in polysaccharide composition. Our data showed that cell wall polysaccharide metabolism was very active in germinating barley embryos, which was regulated at both transcriptional and post-transcriptional levels. Copyright © 2015 Elsevier GmbH. All rights reserved.
Tseng, Bertrand P; Lan, Mary L; Tran, Katherine K; Acharya, Munjal M; Giedzinski, Erich; Limoli, Charles L
2013-01-01
Past work has shown that exposure to gamma rays and protons elicit a persistent oxidative stress in rodent and human neural stem cells (hNSCs). We have now adapted these studies to more realistic exposure scenarios in space, using lower doses and dose rates of these radiation modalities, to further elucidate the role of radiation-induced oxidative stress in these cells. Rodent neural stem and precursor cells grown as neurospheres and human neural stem cells grown as monolayers were subjected to acute and multi-dosing paradigms at differing dose rates and analyzed for changes in reactive oxygen species (ROS), reactive nitrogen species (RNS), nitric oxide and superoxide for 2 days after irradiation. While acute exposures led to significant changes in both cell types, hNSCs in particular, exhibited marked and significant elevations in radiation-induced oxidative stress. Elevated oxidative stress was more significant in hNSCs as opposed to their rodent counterparts, and hNSCs were significantly more sensitive to low dose exposures in terms of survival. Combinations of protons and γ-rays delivered as lower priming or higher challenge doses elicited radioadaptive changes that were associated with improved survival, but in general, only under conditions where the levels of reactive species were suppressed compared to cells irradiated acutely. Protective radioadaptive effects on survival were eliminated in the presence of the antioxidant N-acetylcysteine, suggesting further that radiation-induced oxidative stress could activate pro-survival signaling pathways that were sensitive to redox state. Data corroborates much of our past work and shows that low dose and dose rate exposures elicit significant changes in oxidative stress that have functional consequences on survival.
Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan
2016-01-01
The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124
How a High-Gradient Magnetic Field Could Affect Cell Life
NASA Astrophysics Data System (ADS)
Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr
2016-11-01
The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate.
How a High-Gradient Magnetic Field Could Affect Cell Life
Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr
2016-01-01
The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate. PMID:27857227
Red cell volume with changes in plasma osmolarity during maximal exercise.
NASA Technical Reports Server (NTRS)
Van Beaumont, W.
1973-01-01
The volume of the red cell in vivo was measured during acute changes in plasma osmolarity evoked through short (6 to 8 min) maximal exercise in six male volunteer subjects. Simultaneous measurements of mean corpuscular red cell volume (MCV), hematocrit, blood hemoglobin, mean corpuscular hemoglobin concentration (MCHC), and plasma osmolarity showed that there was no change in the MCV or MCHC with a concomitant rise of nearly 6% in plasma osmolarity. Apparently, in vivo, the volume of the red cell in exercising healthy human subjects does not change measurably, in spite of significant changes in osmotic pressure of the surrounding medium. Consequently, it is not justified to correct postexercise hematocrit measurements for changes in plasma osmolarity.
Effect of bariatric surgery on peripheral blood lymphocyte subsets in women.
Merhi, Zaher O; Durkin, Helen G; Feldman, Joseph; Macura, Jerzy; Rodriguez, Carlos; Minkoff, Howard
2009-01-01
The use of bariatric surgery to treat refractory obesity is increasingly common. The great weight loss that can result from these procedures has been shown to ameliorate certain deleterious effects of obesity. However, the effect of surgery on immune status is unclear. We investigated the relationship between surgical weight loss and peripheral blood lymphocyte percentages in women. Women (n=20, age range 25-59 years, body mass index [BMI] range 36.4-68.2 kg/m2) who had undergone either gastric banding (n=14) or gastric bypass (n=6) were enrolled in a prospective study to determine the percentages of their peripheral blood T cells (CD3+, CD4+, and CD8+), CD19+ B cells, and CD3-/CD16+CD56+ natural killer precursor cells before and 85+/-7 days (3 months) postoperatively using flow cytometry. The data are expressed as the percentage of total lymphocytes+/-the standard error of the mean. A decrease in the BMI at 3 months postoperatively was 12% in the overall study population and 8% and 20% in the banding and bypass groups, respectively. No significant changes were found in the CD4+ or CD8+ T cells (P=.9 and P=.5, respectively), CD19+ B cells (P=.6), or natural killer precursor cells (P=.25) in the overall population or among the patients when stratified by surgical procedure (gastric banding or bypass). The change in CD3+ T cells approached significance (P=.06). A "same direction" (negative) correlation was found between the decrease in BMI and changes in the CD4+ T cell percentages between the pre- and postoperative levels in all the participants, and in the bypass and banding groups separately. However, it only reached statistical significance in the bypass group (r=-.96, P=.002). When studying the correlation between the decrease in BMI and the changes in CD3+ T cell percentages between the pre- and postoperative levels, a borderline significant negative correlation was found for all participants (r=-.44, P=.05) and in the bypass group (r=-.76, P=.08). The rate of change in the CD4+ and CD3+ T cells was greatest among those with the least weight loss and decreased with greater weight loss. An inverse relationship exists between the change in certain T cells (CD4+ and CD3+) and the amount of weight lost after bariatric surgery, mainly gastric bypass surgery. The greater the decrease in BMI, the lower the change in these T cells.
Low-Dose, Long-Wave UV Light Does Not Affect Gene Expression of Human Mesenchymal Stem Cells
Wong, Darice Y.; Ranganath, Thanmayi; Kasko, Andrea M.
2015-01-01
Light is a non-invasive tool that is widely used in a range of biomedical applications. Techniques such as photopolymerization, photodegradation, and photouncaging can be used to alter the chemical and physical properties of biomaterials in the presence of live cells. Long-wave UV light (315 nm–400 nm) is an easily accessible and commonly used energy source for triggering biomaterial changes. Although exposure to low doses of long-wave UV light is generally accepted as biocompatible, most studies employing this wavelength only establish cell viability, ignoring other possible (non-toxic) effects. Since light exposure of wavelengths longer than 315 nm may potentially induce changes in cell behavior, we examined changes in gene expression of human mesenchymal stem cells exposed to light under both 2D and 3D culture conditions, including two different hydrogel fabrication techniques, decoupling UV exposure and radical generation. While exposure to long-wave UV light did not induce significant changes in gene expression regardless of culture conditions, significant changes were observed due to scaffold fabrication chemistry and between cells plated in 2D versus encapsulated in 3D scaffolds. In order to facilitate others in searching for more specific changes between the many conditions, the full data set is available on Gene Expression Omnibus for querying. PMID:26418040
Hepatic mucosal mast cell hyperplasia in rats with secondary biliary cirrhosis.
Rioux, K P; Sharkey, K A; Wallace, J L; Swain, M G
1996-04-01
Mast cells have been shown to play a role in many chronic inflammatory and fibrotic disorders. However, their possible contribution to the pathological changes that occur in liver cirrhosis is unknown. To explore this, we examined whether changes in hepatic mast cell number and mediator content were associated with fibrotic changes in experimental biliary cirrhosis. Rats were studied 7, 14, or 21 days after bile duct resection (BDR). Hepatic mast cells were identified by histochemical and immunohistochemical stains. Rat mast cell protease II (RMCP-II), a marker of mast cell degranulation, was measured in liver by enzyme-linked immunosorbent assay. Hepatic collagen deposition was assessed by Sirius Red F3BA staining. In day 21 BDR rats, there was a one- to twofold increase (P < .001) in the number of hepatic mast cells, but this was not observed in day 7 or 14 BDR rats. Mild fibrotic changes were noted in BDR rat livers as early as 7 days after induction of cholestasis. Significant expansion and organization of fibrous tissue had occurred in day 14 BDR rats which progressed to bridging fibrosis by day 21. Liver RMCP-II levels were decreased by 50 percent (P < .05) and mast cell degranulation was apparent as shown by histamine immunostaining. These results suggest that hepatic mast cell hyperplasia and degranulation occur during prolonged cholestasis in the rat. Although these changes do not correlate with the onset of hepatic fibrosis, they do occur at a time during which there is significant deposition and organization extracellular matrix elements. Hepatic mast cells, by releasing profibrogenic mediators, may contribute to fibrotic changes in biliary cirrhosis.
NASA Astrophysics Data System (ADS)
Bhargava, Maneesh
Rationale: In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized, and are similar to changes in human acute respiratory distress syndrome (ARDS). In the injured lung, alveolar type two (AT2) epithelial cells play a critical role restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. Methods: We applied an unbiased systems level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQRTM with tandem mass spectrometry. Results: Of 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene Ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene Set Enrichment Analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A Short Time-series Expression Miner (STEM) algorithm identified protein clusters with coherent changes during injury and repair. Conclusion: Coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.
Cell biomechanics and its applications in human disease diagnosis
NASA Astrophysics Data System (ADS)
Nematbakhsh, Yasaman; Lim, Chwee Teck
2015-04-01
Certain diseases are known to cause changes in the physical and biomechanical properties of cells. These include cancer, malaria, and sickle cell anemia among others. Typically, such physical property changes can result in several fold increases or decreases in cell stiffness, which are significant and can result in severe pathology and eventual catastrophic breakdown of the bodily functions. While there are developed biochemical and biological assays to detect the onset or presence of diseases, there is always a need to develop more rapid, precise, and sensitive methods to detect and diagnose diseases. Biomechanical property changes can play a significant role in this regard. As such, research into disease biomechanics can not only give us an in-depth knowledge of the mechanisms underlying disease progression, but can also serve as a powerful tool for detection and diagnosis. This article provides some insights into opportunities for how significant changes in cellular mechanical properties during onset or progression of a disease can be utilized as useful means for detection and diagnosis. We will also showcase several technologies that have already been developed to perform such detection and diagnosis.
Influence of TRAIL gene on biomechanical properties of the human leukemic cell line Jurkat.
Yao, Weijuan; Chen, Kai; Wang, Xinjuan; Xie, Lide; Wen, Zongyao; Yan, Zongyi; Chien, Shu
2002-12-01
We cloned the cDNA fragment of human TNF-related apoptosis inducing ligand (TRAIL) into RevTet-On, a Tet-regulated and high-level gene expression system. Making use of the TRAIL gene expression system in Jurkat as a cell model, we studied the influence of TRAIL gene on the biomechanics properties of Jurkat through measuring changes of cellular biomechanics properties before and after the TRAIL gene expression, which was induced by adding tetracycline derivative doxycycline (Dox). The results indicated that the TRAIL gene expression led to significant changes in cellular biomechanics properties. The osmotic fragility increased and the cell stiffness increased after the expression of TRAIL gene. Thus, the apoptosis-inducing TRAIL gene caused significant changes in the biomechanics properties of Jurkat cells.
NASA Astrophysics Data System (ADS)
Liefer, J. D.; Benner, I.; Brown, C. M.; Garg, A.; Fiset, C.; Irwin, A. J.; Follows, M. J.; Finkel, Z.
2016-02-01
Trait based modeling efforts are an important tool for predicting the distribution of phytoplankton communities in the ocean and their interaction with elemental stoichiometry. The elemental stoichiometry of phytoplankton is based on their macromolecular composition. Many phytoplankton species accumulate C-rich storage products (carbohydrates and lipids) and reduce N and P-rich functional components (proteins and nucleic acids) upon N- or P-starvation. Reconciling global patterns in C:N:P stoichiometry and phytoplankton community structure and succession requires a better understanding of how phytoplankton macromolecular composition varies across taxa, size class, and growth conditions. We examined changes in cell size and composition from exponential growth to nitrogen starvation in four common phytoplankton species representing two size classes each of chlorophytes and diatoms. Variation in cell size, cell mass, and length of stationary growth phase appeared to be size dependent. The larger species of chlorophyte and diatom had a significant increase in cell mass and cell size with N-starvation and showed no significant change in cell density after starvation for 5-7 days. The smaller size species of both phyla showed no significant change in cell size or mass upon N-starvation and a consistent decline in cell density 1-2 days after peak densities were reached. All species had a similar significant increase in C quota, but changes in N quota and C:N were more variable and species-specific. We also present changes in macromolecular composition and C, N, and P-allocation due to N-starvation and their implications for elemental stoichiometry under natural conditions. These results are compared to field observations of C:N:P stoichiometry and phytoplankton community structure to examine the physiological plasticity that may underlie global oceanic C:N:P variability and demonstrate the importance of this plasticity in trait based models.
Skrzycki, Michał; Czeczot, Hanna; Mielczarek-Puta, Magdalena; Otto-Ślusarczyk, Dagmara; Graboń, Wojciech
2017-06-01
Tumor cells due to distance from capillary vessels exist in different oxygenation conditions (anoxia, hypoxia, normoxia). Changes in cell oxygenation lead to reactive oxygen species production and oxidative stress. Sigma 1 receptor (Sig1R) is postulated to be stress responding agent and superoxide dismutases (SOD1 and SOD2) are key antioxidant enzymes. It is possible that they participate in tumor cells adaptation to different concentrations of oxygen. Evaluation of Sig1R, SOD1, and SOD2 expression in different concentrations of oxygen (1%, 10%, 21%) in colon adenocarcinoma cell lines. SW480 (primary adenocarcinoma) and SW620 (metastatic) cell lines were cultured in standard conditions in Dulbecco's modified Eagle's medium for 5 days, and next cultured in Hypoxic Chamber in 1% O 2 , 10% O 2 , 21% O 2 . Number of living cells was determined by trypan blue assay. Level of mRNA for Sig1R, SOD1, and SOD2 was determined by standard PCR method. Statistical analysis was conducted using Statistica 10.1 software. We observed significant changes in expression of Sig1R, SOD1, SOD2 due to different oxygen concentrations. ANOVA analysis revealed significant interactions between studied parameters mainly in hypoxia conditions in SW480 cells and between Sig1R and SOD2 in SW620 cells. It also showed that changes in expression of studied proteins depend significantly on type of the cell line. Changes of Sig1R and SOD2 expression point to mitochondria as main organelle responsible for survival of tumor cells exposed to hypoxia or oxidative stress. Studied proteins are involved in intracellular response to stress related with different concentrations of oxygen.
Rivera, César; Núñez-de-Mendoza, Camila
2013-01-01
This research objective is to identify cytomorphometrical changes using exfoliative cytology (EC) and later Papanicolaou (Pap) staining, for oral epithelial cells of patients with type 2 diabetes (DM2) (n = 30), while being compared to patients without the disease (n = 30). Additionally, we investigated an association between cellular changes and salivary flow levels; relationship that until now has not been reported. Results show that the cell diameter and the nuclear-cytoplasmic ratio was significantly higher compared to those patients without the disease (p ≤ 0.001 Student and Welch test). Decreased salivary flow was significantly associated with increased cell diameter and nuclear-cytoplasmic ratio (p ≤ 0.001 ANOVA with Tukey test). Evidence and clinical observations show that DM2 and decreased salivary flow are related to detectable cytomorphometrical changes in exfoliated cells, which may extend the horizon of this cytological technique. PMID:24040475
Rivera, César; Núñez-de-Mendoza, Camila
2013-01-01
This research objective is to identify cytomorphometrical changes using exfoliative cytology (EC) and later Papanicolaou (Pap) staining, for oral epithelial cells of patients with type 2 diabetes (DM2) (n = 30), while being compared to patients without the disease (n = 30). Additionally, we investigated an association between cellular changes and salivary flow levels; relationship that until now has not been reported. Results show that the cell diameter and the nuclear-cytoplasmic ratio was significantly higher compared to those patients without the disease (p ≤ 0.001 Student and Welch test). Decreased salivary flow was significantly associated with increased cell diameter and nuclear-cytoplasmic ratio (p ≤ 0.001 ANOVA with Tukey test). Evidence and clinical observations show that DM2 and decreased salivary flow are related to detectable cytomorphometrical changes in exfoliated cells, which may extend the horizon of this cytological technique.
Smith, Wally R; Coyne, Patrick; Smith, Virginia S; Mercier, Bruce
2003-09-01
Weather changes are among the proposed precursors of painful sickle cell crises. However, epidemiologic data are mixed regarding the relationship between ambient temperature and crisis frequency. To study this relationship among a local sickle cell disease population, emergency department (ED) visits and admissions were evaluated in adults with sickle cell crisis as the primary diagnosis at a major teaching hospital in a temperate climate. Official daily ambient temperatures (average for that day) were obtained from the National Climate Data Center for the days patients visited the ED or were hospitalized, and for 24 or 48 hours prior. Daily ED visit counts and admission counts were correlated with the visit/admission day's ambient temperature, with the ambient temperature 24 hours before admission, and with the magnitude of change in daily ambient temperature over the prior 24 or 48 hours. For all correlations, statistical significance was defined as a p value of <0.01 and clinical significance was defined as a moderate or greater correlation, absolute value of r >/= 0.30. ED visits or admissions correlated statistically, but not clinically, with daily temperatures. On days when temperatures were <32 degrees F or >80 degrees F, these correlations were statistically significant, but clinical significance was variable. ED visits or admissions correlated only statistically with temperatures 24 hours prior, even on days when temperatures were <32 degrees F. When temperatures were >80 degrees F, the correlations were statistically significant, but there was a reverse, clinically significant correlation between admissions and temperatures. Finally, only statistically significant correlations were found between ED visits or admissions and change in temperature over the prior 24 or 48 hours. Weak or inconsistent confirmation of a relationship was found between daily ambient temperatures and ED visits or hospital admissions for sickle cell crises.
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith
2011-01-01
The purpose of this innovation is to use microstrain gauges to monitor minute changes in temperature along with material properties of the metal cans and pouches used in the construction of lithium-ion cells. The sensitivity of the microstrain gauges to extremely small changes in temperatures internal to the cells makes them a valuable asset in controlling the hazards in lithium-ion cells. The test program on lithium-ion cells included various cell configurations, including the pouch type configurations. The thermal properties of microstrain gauges have been found to contribute significantly as safety monitors in lithium-ion cells that are designed even with hard metal cases. Although the metal cans do not undergo changes in material property, even under worst-case unsafe conditions, the small changes in thermal properties observed during charge and discharge of the cell provide an observable change in resistance of the strain gauge. Under abusive or unsafe conditions, the change in the resistance is large. This large change is observed as a significant change in slope, and this can be used to prevent cells from going into a thermal runaway condition. For flexible metal cans or pouch-type lithium-ion cells, combinations of changes in material properties along with thermal changes can be used as an indication for the initiation of an unsafe condition. Lithium-ion cells have a very high energy density, no memory effect, and almost 100-percent efficiency of charge and discharge. However, due to the presence of a flammable electrolyte, along with the very high energy density and the capability of releasing oxygen from the cathode, these cells can go into a hazardous condition of venting, fire, and thermal runaway. Commercial lithium-ion cells have current and voltage monitoring devices that are used to control the charge and discharge of the batteries. Some lithium-ion cells have internal protective devices, but when used in multi-cell configurations, these protective devices either do not protect or are themselves a hazard to the cell due to their limitations. These devices do not help in cases where the cells develop high impedance that suddenly causes them to go into a thermal runaway condition. Temperature monitoring typically helps with tracking the performance of a battery. But normal thermistors or thermal sensors do not provide the accuracy needed for this and cannot track a change in internal cell temperatures until it is too late to stop a thermal runaway.
Yau, S-Y; Lau, B W-M; Zhang, E-D; Lee, J C-D; Li, A; Lee, T M C; Ching, Y-P; Xu, A-M; So, K-F
2012-10-11
Previous studies have shown that a 2-week treatment with 40 mg/kg corticosterone (CORT) in rats suppresses hippocampal neurogenesis and decreases hippocampal brain-derived neurotrophic factor (BDNF) levels and impairs spatial learning, all of which could be counteracted by voluntary wheel running. BDNF and insulin-like growth factor (IGF-1) have been suggested to mediate physical exercise-enhanced hippocampal neurogenesis and cognition. Here we examined whether such running-elicited benefits were accompanied by corresponding changes of peripheral BDNF and IGF-1 levels in a rat model of stress. We examined the effects of acute (5 days) and chronic (4 weeks) treatment with CORT and/or wheel running on (1) hippocampal cell proliferation, (2) spatial learning and memory and (3) plasma levels of BDNF and IGF-1. Acute CORT treatment improved spatial learning without altered cell proliferation compared to vehicle treatment. Acute CORT-treated non-runners showed an increased trend in plasma BDNF levels together with a significant increase in hippocampal BDNF levels. Acute running showed no effect on cognition, cell proliferation and peripheral BDNF and IGF-1 levels. Conversely, chronic CORT treatment in non-runners significantly impaired spatial learning and suppressed cell proliferation in association with a decreased trend in plasma BDNF level and a significant increase in hippocampal BDNF levels. Running counteracted cognitive deficit and restored hippocampal cell proliferation following chronic CORT treatment; but without corresponding changes in plasma BDNF and IGF-1 levels. The results suggest that the beneficial effects of acute stress on cognitive improvement may be mediated by BDNF-enhanced synaptic plasticity that is hippocampal cell proliferation-independent, whereas chronic stress may impair cognition by decreasing hippocampal cell proliferation and BDNF levels. Furthermore, the results indicate a trend in changes of plasma BDNF levels associated with a significant alteration in hippocampal levels, suggesting that treatment with running/CORT for 4 weeks may induce a change in central levels of hippocampal BDNF level, which may not lead to a significant change in peripheral levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Effects of space flight exposure on cell growth, tumorigenicity and gene expression in cancer cells
NASA Astrophysics Data System (ADS)
Yang, Cheng; Li, Yuehui; Zhang, Zhijie; Luo, Chen; Tong, Yongqing; Zhou, Guohua; Xie, Pingli; Hu, Jinyue; Li, Guancheng
2008-12-01
It is well recognized that harsh outer space environment, consisting of microgravity and radiation, poses significant health risks for human cells. To investigate potential effects of the space environment exposure on cancer cells we examined the biological changes in Caski cells carried by the "Shen Zhou IV" spaceship. After exposure for 7 days in spaceflight, 1440 survival subclonal cell lines were established and 4 cell lines were screened. 44F10 and 17E3 were selected because of their increased cell proliferation and tumorigenesis, while 48A9 and 31F2 had slower cytological events. Experiments with cell proliferation assay, flow cytometry, soft agar assay, tumorigenesis assay and DNA microarray analysis have shown that selected cell lines presented multiple biological changes in cell morphology, cell growth, tumorigenicity and gene expression. These results suggest that space environment exposure can make significant biological impact on cancer cells and provide an entry point to find the immunological target of tumorigenesis.
NASA Astrophysics Data System (ADS)
Xu, Bo; Chen, Minjian; Ji, Xiaoli; Mao, Zhilei; Zhang, Xuemei; Wang, Xinru; Xia, Yankai
2014-06-01
Gold nanorods (GNRs) are commonly used nanomaterials with potential harmful effects on male reproduction. However, the mechanism by which GNRs affect male reproduction remains largely undetermined. In this study, the metabolic changes in spermatocyte-derived cells GC-2 and Sertoli cell line TM-4 were analyzed after GNR treatment for 24 h. Metabolomic analysis revealed that glycine was highly decreased in TM-4 cells after GNR-10 nM treatment while there was no significant change in GC-2 cells. RT-PCR showed that the mRNA levels of glycine synthases in the mitochondrial pathway decreased after GNR treatment, while there was no significant difference in mRNA levels of glycine synthases in the cytoplasmic pathway. High content screening (HCS) showed that GNRs decreased membrane permeability and mitochondrial membrane potential of TM-4 cells, which was also confirmed by JC-1 staining. In addition, RT-PCR and Western blot indicated that the mRNA and protein levels of blood-testis barrier (BTB) factors (ZO-1, occludin, claudin-5, and connexin-43) in TM-4 cells were also disrupted by GNRs. After glycine was added into the medium, the GNR-induced harmful effects on mitochondria and BTB factors were recovered in TM-4 cells. Our results showed that even low doses of GNRs could induce significant toxic effects on mitochondria and BTB factors in TM-4 cells. Furthermore, we revealed that glycine was a potentially important metabolic intermediary for the changes of membrane permeability, mitochondrial membrane potential and BTB factors after GNR treatment in TM-4 cells.Gold nanorods (GNRs) are commonly used nanomaterials with potential harmful effects on male reproduction. However, the mechanism by which GNRs affect male reproduction remains largely undetermined. In this study, the metabolic changes in spermatocyte-derived cells GC-2 and Sertoli cell line TM-4 were analyzed after GNR treatment for 24 h. Metabolomic analysis revealed that glycine was highly decreased in TM-4 cells after GNR-10 nM treatment while there was no significant change in GC-2 cells. RT-PCR showed that the mRNA levels of glycine synthases in the mitochondrial pathway decreased after GNR treatment, while there was no significant difference in mRNA levels of glycine synthases in the cytoplasmic pathway. High content screening (HCS) showed that GNRs decreased membrane permeability and mitochondrial membrane potential of TM-4 cells, which was also confirmed by JC-1 staining. In addition, RT-PCR and Western blot indicated that the mRNA and protein levels of blood-testis barrier (BTB) factors (ZO-1, occludin, claudin-5, and connexin-43) in TM-4 cells were also disrupted by GNRs. After glycine was added into the medium, the GNR-induced harmful effects on mitochondria and BTB factors were recovered in TM-4 cells. Our results showed that even low doses of GNRs could induce significant toxic effects on mitochondria and BTB factors in TM-4 cells. Furthermore, we revealed that glycine was a potentially important metabolic intermediary for the changes of membrane permeability, mitochondrial membrane potential and BTB factors after GNR treatment in TM-4 cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01035c
Liu, Jinlin; Zhou, Yonglie; Yu, Qinghua; Zhao, Zhao; Wang, Huan; Luo, Xiaoming; Chen, Yanxia; Zhu, Zhongliang; Chen, Guoqing; Wu, Mao; Qiu, Liannv
2015-01-01
Abstract Follicular helper T (Tfh) cells are recognized as a distinct CD4+helper T cell subset, and mainly dysregulated in the autoimmune disease, whether it plays a role in the infectious mononucleosis (IM) diseases is unknown. In this study, we found that the CD4+CXCR5+ Tfh cells were not significantly changed, but the CD4+CXCR5+ICOS+ and CD4+CXCR5+ICOS+PD1+ Tfh subsets were significantly increased in the IM patients, and all these cells were significantly changed after antiviral therapy. Second, only the numbers of CD4+CXCR5+ICOS+PD1+ Tfh cells correlated with the Epstein-Barr virus (EBV) DNA load, negatively correlated with the numbers of naive B cells and amount of IL-21, and positively correlated with the numbers of plasma cells, memory B cells, and atypical lymphocytes. Third, the frequency of CD4+CXCR5+ICOS+PD1+ Tfh subset was significantly higher in lymphadenectasis or hepatosplenomegaly patients, and associated with the level of alanine aminotransferase (ALT). All together, our findings discovered this CD4+CXCR5+ICOS+PD1+ Tfh cell subset might play an important role in the pathogenesis of IM. PMID:26559315
NASA Technical Reports Server (NTRS)
Wolf, M.; Noel, G. T.; Stirn, R. J.
1977-01-01
Difficulties in relating observed current-voltage characteristics of individual silicon solar cells to their physical and material parameters were underscored by the unexpected large changes in the current-voltage characteristics telemetered back from solar cells on the ATS-1 spacecraft during their first year in synchronous orbit. Depletion region recombination was studied in cells exhibiting a clear double-exponential dark characteristic by subjecting the cells to proton irradiation. A significant change in the saturation current, an effect included in the Sah, Noyce, Shockley formulation of diode current resulting from recombination in the depletion region, was caused by the introduction of shallow levels in the depletion region by the proton irradiation. This saturation current is not attributable only to diffusion current from outside the depletion region and only its temperature dependence can clarify its origin. The current associated with the introduction of deep-lying levels did not change significantly in these experiments.
Choi, Hyeongwon; Choi, Eun Ha; Kim, Kyung Sook
2017-10-01
Mechanical properties of a single cell are closely related to the fate and functions of the cell. Changes in mechanical properties may cause diseases or cell apoptosis. Selective cytotoxic effects of nonthermal atmospheric pressure micro-dielectric barrier discharge (DBD) plasma have been demonstrated on cancer cells. In this work, changes in the mechanical properties of a single cell induced by nonthermal atmospheric pressure micro-DBD plasma were investigated using atomic force microscopy (AFM). Two cervical cancer cell lines (HeLa and SiHa) and normal human fibroblast cells (HFBs) were exposed to micro-DBD plasma for various exposure times. The elasticity of a single cell was determined by force-distance curve measurement using AFM. Young's modulus was decreased by plasma treatment for all cells. The Young's modulus of plasma-treated HeLa cells was decreased by 75% compared to nontreated HeLa cells. In SiHa cells and HFBs, elasticity was decreased slightly. Chemical changes induced by the plasma treatment, which were observed by Raman spectroscopy, were also significant in HeLa cells compared to SiHa cells and HFBs. These results suggested that the molecular changes induced by micro-DBD plasma were related to cell mechanical changes. © 2017 Wiley Periodicals, Inc.
Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection.
Hua, Tao; Zhang, Xuehua; Tang, Bo; Chang, Chen; Liu, Guoyang; Feng, Lei; Yu, Yang; Zhang, Daohua; Hou, Jibo
2018-04-24
Low concentrations of nonionic surfactants can change the physical properties of cell membranes, and thus and in turn increase drug permeability. Porcine circovirus 2 (PCV2) is an extremely slow-growing virus, and PCV2 infection of PK-15 cells yields very low viral titers. The present study investigates the effect of various nonionic surfactants, namely, Tween-20, Tween-28, Tween-40, Tween-80, Brij-30, Brij-35, NP-40, and Triton X-100 on PCV2 infection and yield in PK-15 cells. Significantly increased PCV2 infection was observed in cells treated with Tween-20 compared to those treated with Tween-28, Tween-40, Brij-30, Brij-35, NP-40, and Triton X-100 (p < 0.01). Furthermore, 24 h incubation with 0.03% Tween-20 has shown to induce significant cellular morphologic changes (cell membrane underwent slight intumescence and bulged into a balloon, and the number of microvilli decreased), as well as to increase caspase-3 activity and to decrease cell viability in PCV2-infected PK-15 cells cmpared to control group; all these changes were restored to normal after Tween-20 has been washed out from the plate. Our data demonstrate that Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection. The findings of the present study may be utilized in the development of a PCV2 vaccine.
Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells.
Morris, Brett A; Burkel, Brian; Ponik, Suzanne M; Fan, Jing; Condeelis, John S; Aguirre-Ghiso, Julio A; Castracane, James; Denu, John M; Keely, Patricia J
2016-11-01
Increased breast density attributed to collagen I deposition is associated with a 4-6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA) cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grosicka-Maciag, Emilia; Kurpios-Piec, Dagmara; Grzela, Tomasz
2010-11-01
This work investigated the effect of N-acetyl-L-cysteine (NAC) on disulfiram (DSF) induced oxidative stress in Chinese hamster fibroblast cells (V79). An increase in oxidative stress induced by DSF was observed up to a 200 {mu}M concentration. It was evidenced by a statistically significant increase of both GSH{sub t} and GSSG levels, as well as elevated protein carbonyl (PC) content. There was no increase in lipid peroxidation (measured as TBARS). DSF increased CAT activity, but did not change SOD1 and SOD2 activities. Analysis of GSH related enzymes showed that DSF significantly increased GR activity, did not change Se-dependent GPx, but statisticallymore » significantly decreased non-Se-dependent GPx activity. DSF showed also pro-apoptotic activity. NAC alone did not produce any significant changes, besides an increase of GSH{sub t} level, in any of the variables measured. However, pre-treatment of cells with NAC ameliorated DSF-induced changes. NAC pre-treatment restored the viability of DSF-treated cells evaluated by Trypan blue exclusion assay and MTT test, GSSG level, and protein carbonyl content to the control values as well as it reduced pro-apoptotic activity of DSF. The increase of CAT and GR activity was not reversed. Activity of both GPx was significantly increased compared to their values after DSF treatment. In conclusion, oxidative properties are at least partially attributable to the cellular effects of disulfiram and mechanisms induced by NAC pre-treatment may lower or even abolish the observed effects. These observations illustrate the importance of the initial cellular redox state in terms of cell response to disulfiram exposure. -- Research Highlights: {yields}This report explores biological properties of disulfiram under a condition of modulated intra-cellular GSH level. It shows a protective role of N-acetyl-L-cysteine in V79 cells exposed to disulfiram (in GSH metabolism as well as in changes of antioxidant enzyme activity).« less
Changes in neocortical and hippocampal microglial cells during hibernation.
León-Espinosa, Gonzalo; Regalado-Reyes, Mamen; DeFelipe, Javier; Muñoz, Alberto
2018-05-01
Mammalian hibernation proceeds alongside a wide range of complex brain adaptive changes that appear to protect the brain from extreme hypoxia and hypothermia. Using immunofluorescence, confocal microscopy, quantitative analysis methods and intracellular injections, we have characterized microglia morphological changes that occur in the neocortex and hippocampus of the Syrian hamster during hibernation. In euthermic hamsters, microglial cells showed the typical ramified/resting morphology with multiple long, thin and highly-branched processes homogeneously immunostained for Iba-1. However, during torpor, microglial cell process numbers increase significantly accompanied by a shortening of the Iba-1 immunoreactive processes, which show a fragmented appearance. Adaptative changes of microglial cells during torpor coursed with no expression of microglial cell activation markers. We discuss the possibility that these morphological changes may contribute to neuronal damage prevention during hibernation.
Polianskaia, G G; Goriachaia, T S; Pinaev, G P
2007-01-01
The numerical and structural karyotypic variability has been investigated in "markerless" Rat kangaroo kidney cell lines NBL-3-17 and NBL-3-11 when cultivating on a fibronectin-coated surface. In cell line NBL-3-17, cultivated on the fibronectin-coated surface for 1, 2, 4 and 8 days, the character of cell distribution for the chromosome number has changed. These changes involve a significant decrease in frequency of cells with modal number of chromosomes, and an increase in frequency of cells with lower chromosomal number. Many new additional structural variants of the karyotype (SVK) appear. The observed alterations seem to be due preference adhesion of cells with lower chromosome number, disturbances of mitotic apparatus and selection of SVK, which are more adopted to changes in culture conditions. Detachment of cells from the fibronectin-coated surface, followed by 5 days cultivation on a hydrophilic surface restored control distribution. In cell line NBL-3-11, cultivated on the fibronectin-coated surface for 1, 2, 4 and 8 days, the character of numerical karyotypic variability did not change compared to control variants. In cell line NBL-3-17 the frequency of chromosomal aberrations under cultivation on the fibronectin-coated surface for 1, 2, 4 and 8 days did not change relative to control variants. In cell line NBL-3-11 the frequency of chromosomal aberrations under the same conditions significantly increases, mainly at the expence of chromosomal, chromatid breaks and dicentrics (telomeric association) relative to control variants. We discuss possible reasons of differences in the character of numerical and structural karyotypic variability between cell lines NBL-3-17 (hypotriploid) and NBL-3-11 (hypodiploid) under cultivation on fibronectin. The reasons of the observed interline karyotypic differences possibly consist in peculiarity of karyotypic structure of cell line NBL-3-11 and in the change of gene expression, namely in a dose of certain functioning genes in the hypotryploid cell line NBL-3-17.
Substance P stimulates production of inflammatory cytokines in human disc cells.
Kepler, Christopher K; Markova, Dessislava Z; Hilibrand, Alan S; Vaccaro, Alexander R; Risbud, Makarand V; Albert, Todd J; Anderson, D Greg
2013-10-01
Laboratory study. The aims of this study were as follows: (1) to confirm that Substance P (SP) is expressed by nucleus pulposus (NP) and annulus fibrosus (AF) cells; (2) to determine the effect of SP on expression of inflammatory mediators in human disc cells and the effect of inflammatory mediators on the expression of SP; and (3) to characterize the relative expression of SP receptor isoforms in disc tissue and describe whether exposure to SP changes receptor expression. SP, classically described as a neurotransmitter, acts as an inflammatory regulator in other tissue types, but its role within the intervertebral disc has not been characterized. Human AF and NP cells from 7 individuals were expanded in monolayer and maintained in alginate bead culture. Cells were treated with SP or interleukin (IL)-1β/tumor necrosis factor-α (TNF-α). After treatment, the cells were recovered and then RNA was isolated and transcribed into cDNA. Quantitative reverse-transcriptase polymerase chain reaction was performed to evaluate expression of inflammatory mediators and SP and its receptors. Disc cells treated with SP demonstrated significant upregulation of IL-1β, IL-6, and IL-8 in NP and AF cells whereas significant upregulation of RANTES and TNF occurred only in the AF cells. AF and NP cells expressed SP at low levels; expression did not change significantly with SP treatment but was significantly upregulated after treatment with IL-1β/TNF-α. Both SP receptor isoforms were expressed by NP and AF cells. SP upregulates inflammatory mediators in disc cells. SP and its receptors were expressed in both NP and AF cells, and expression did not change after treatment with SP but increased after treatment with IL-1β/TNF-α. SP likely acts in an autocrine or paracrine manner in intervertebral disc cells and may be involved in "crosstalk" between disc cells and neurons, providing a potential mechanism for transmission of painful discogenic stimuli.
Markers of apoptosis induction and proliferation in the orbitofrontal cortex in alcohol dependence
Whittom, Angela; Villarreal, Ashley; Soni, Madhav; Owusu-Duku, Beverly; Meshram, Ashish; Rajkowska, Grazyna; Stockmeier, Craig A.; Miguel-Hidalgo, Jose J.
2014-01-01
Background Alcohol-dependent (ALC) subjects exhibit glial and neuronal pathology in the prefrontal cortex (PFC). However, in many patients, neurophysiological disturbances are not associated with catastrophic cell depletion despite prolonged alcohol abuse. It is still unclear how some relevant markers of a cell’s propensity to degenerate or proliferate are changed in the PFC of ALC subjects without major neurological disorders. Methods Levels of pro-apoptotic caspase 8 (C8), X-linked inhibitor of apoptosis protein (XIAP), direct IAP binding protein with low pI (DIABLO), proliferating cell nuclear antigen (PCNA), and density of cells immunoreactive (-IR) for proliferation marker Ki-67 were measured postmortem in the left orbitofrontal cortex (OFC) of 29 subjects with alcohol dependence and 23 non-psychiatric comparison subjects. Results ALC subjects had significantly higher levels of the 14kDa C8 fragment (C8-14), an indicator of C8 activation. However, there was no change in the levels of DIABLO, XIAP or in the DIABLO/XIAP ratio. PCNA protein level and density of Ki-67-IR cells were not significantly changed in alcoholics, although PCNA levels were increased in older ALC subjects as compared to controls. Conclusions Significant increase of a C8 activation indicator was found in alcoholism, but without significant changes in XIAP level, DIABLO/XIAP ratio, or Ki-67 labeling. These results would help to explain the absence of catastrophic cell loss in the PFC of many alcohol dependent subjects, while still being consistent with an alcoholism-related vulnerability to slow decline in glial cells and neurons in the OFC of alcoholics. PMID:25421516
NASA Technical Reports Server (NTRS)
Holman, H. Y.; Martin, M. C.; Blakely, E. A.; Bjornstad, K.; McKinney, W. R.
2000-01-01
Synchrotron radiation based Fourier transform IR (SR-FTIR) spectromicroscopy allows the study of individual living cells with a high signal to noise ratio. Here we report the use of the SR-FTIR technique to investigate changes in IR spectral features from individual human lung fibroblast (IMR-90) cells in vitro at different points in their cell cycle. Clear changes are observed in the spectral regions corresponding to proteins, DNA, and RNA as a cell changes from the G(1)-phase to the S-phase and finally into mitosis. These spectral changes include markers for the changing secondary structure of proteins in the cell, as well as variations in DNA/RNA content and packing as the cell cycle progresses. We also observe spectral features that indicate that occasional cells are undergoing various steps in the process of cell death. The dying or dead cell has a shift in the protein amide I and II bands corresponding to changing protein morphologies, and a significant increase in the intensity of an ester carbonyl C===O peak at 1743 cm(-1) is observed. Copyright John Wiley & Sons, Inc. Biopolymers (Biospectroscopy) 57: 329-335, 2000.
RESPONSES OF CELLS TO pH CHANGES IN THE MEDIUM
Taylor, A. Cecil
1962-01-01
Studies were made with time-lapse motion pictures of the reactions of cells in culture to changes in their environment. The concentrations of H+, HCO3 -and CO2 in the medium were altered in such a way that each, in turn, could be maintained constant while the others were varied. Observations were made on the shape of the cells, their activity, and their relation to the substratum. Characteristic reversible changes in the cells were observed whenever environmental pH was altered. Elevation of the pH accelerated cell movements and caused contraction of the cytoplasm, while lowering of the pH retarded and eventually stopped all cell activity, causing apparent gelation of the protoplasm. These responses did not occur when HCO3 - and CO2 were varied without changing the pH. It is suggested that local pH changes in the micro-environment of a cell's surface may be a significant factor in controlling cell behavior in culture and in vivo. PMID:13993539
Mehrazma, Mitra; Tanzifi, Parin; Rakhshani, Naser
2014-01-01
Objective: The goal of this study is to evaluate some structural changes in muscular, collagenous and neural components as well as expression of Cajal-like cells and apoptosis of smooth muscle cells in congenital ureteropelvic junction obstruction (UPJO). Methods: Tissue specimens were obtained from 25 patients with UPJO and compared with normal ureteropelvic junction regions of 19 autopsies. In paraffin embedded sections the amount of Cajal-like cells, density of nerve fibers and smooth muscle cell apoptosis (using immunohistochemical staining) were determined. Collagen deposition and muscular components were stained by Trichrome-Masson staining and evaluated by image analysis techniques. Arrangement of muscular bundles was also evaluated qualitatively. Findings : The number of Cajal-like cells was significantly lower in patients than in controls. The apoptotic score and mean number of nerve fibers were not statistically different for the two groups. Arrangement of muscular fibers was more irregular in patients than in controls (P<0.001). Collagen deposition was significantly higher in patients than in controls (P<0.001). The mean amount of muscular component was lower in patients than in normal ones. (P= 0.09) Conclusion: We found significant pathologic changes in congenital ureteropelvic junction obstruction such as decrease in Cajal-like cells, increase in collagen deposition and irregular arrangement of muscle fibers. PMID:25793054
Seasonal development of cambial activity in relation to xylem formation in Chinese fir.
Wu, Hongyang; Xu, Huimin; Li, Hanyin; Wei, Dongmei; Lin, Jinxing; Li, Xiaojuan
2016-05-20
The vascular cambium is a lateral meristem which can differentiate into secondary phloem and xylem. The secondary growth of woody plants resulting from vascular cambium activity has been a focus of considerable attention, but the quantitative relationships between cambial activity and secondary xylem formation have been little studied. Our analysis of cytological changes in the cambium of Chinese fir (Cunninghamia lanceolata), revealed a significant positive correlation between vascular cambium cell numbers and cambium zone width through the seasonal cycle. Cambium cell numbers and the cambium cell radial diameter were closely related to xylem formation. Immuno-labeling showed that de-esterified homogalacturonan and (1-4)-β-d-galactan epitopes were highly abundant in cell walls of dormant-stage cambium, whereas high methylesterified homogalacturonan was strongly labeled in the active stage. Raman spectroscopy detected significant changes in the chemical composition of cell walls during the active-dormant stage transition. More pectin and less monolignols occurred in radial cell walls than in tangential walls during the dormant stage, but no significant changes were found in other stages, indicating that pectin accumulation facilitates cell wall expansion, with cambium activity transition. Our quantitative analysis of the relationship between cambial activity and xylem formation, as well as the cell wall modification during the active stage provides useful information about cambial characteristics and xylogenesis. Copyright © 2016. Published by Elsevier GmbH.
Lopez, Bernard L; Flenders, Pamela; Davis-Moon, Linda; Corbin, Theodore; Ballas, Samir K
2007-01-01
This study sought to determine the minimum clinically significant change in the visual analog scale (VAS) during the Emergency Department (ED) treatment of adult vasoocclusive sickle cell crisis (VOC). Sickle cell anemia patients presenting to the ED with their typical VOC pain had a 100 mm VAS administered prior to each of up to three standard analgesic injections administered as part of a treatment protocol. At each assessment, subjects were asked to describe their pain as "much better," a "little better," "the same," "a little worse," or "much worse." The change in the VAS (DeltaVAS) between assessments was measured. The main outcome of the measurement was change in the VAS associated with a description of a change in pain of "a little less" or "a little more." Seventy four subjects presented with initially high pain scores [VAS = 79.47 mm, 95% confidence interval (CI) = 75.99 to 82.95 mm]. In the "little better/little worse" combined group, the DeltaVAS was 13.5 mm (95% CI = 11.25 cm to 15.74 cm). A change in the 100 mm VAS of 13.5 mm is the minimum clinically significant change during ED treatment of VOC. A DeltaVAS <13.5 mm may not be clinically important. This finding may assist the clinician in the assessment of pain improvement for adult sickle cell patients with VOC.
Cholecystokinin-producing (I) cells of intestinal mucosa in dexamethasone-treated rats.
Glišić, Radmila; Koko, Vesna; Cvijić, Gordana; Milošević, Maja Čakić; Obradović, Jasmina
2011-11-10
The aim of this study was to investigate the morphological, immunohistochemical and ultrastructural changes of cholecystokinin-producing (I) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2mg/kg dexamethasone, rats developed diabetes similar to human diabetes mellitus type 2. The mean diameter of the duodenum was significantly decreased due to significant reduction of volume fraction and profile area of lamina propria. There was a decrease in volume fraction and number of cholecystokinin (CCK)-producing cells per mm(2) of mucosa, as well as their numerical density, but without statistical significance. Also, dexamethasone induced appearance of hyperactive duodenal I-cells with small number of granules and dilated endoplasmic reticulum. In conclusion, the present study showed that morphological changes in duodenum cholecystokinin-producing (I) cells occurred in diabetic rats, in a manner which, suggests compensatory effort of CCK cells in diabetic condition. Copyright © 2011 Elsevier B.V. All rights reserved.
Decreased non-MHC-restricted (CD56+) killer cell cytotoxicity after spaceflight
NASA Technical Reports Server (NTRS)
Mehta, S. K.; Kaur, I.; Grimm, E. A.; Smid, C.; Feeback, D. L.; Pierson, D. L.
2001-01-01
Cytotoxic activity of non-major histocompatibility complex-restricted (CD56+) (NMHC) killer cells and cell surface marker expression of peripheral blood mononuclear cells were determined before and after spaceflight. Ten astronauts (9 men, 1 woman) from two space shuttle missions (9- and 10-day duration) participated in the study. Blood samples were collected 10 days before launch, within 3 h after landing, and 3 days after landing. All peripheral blood mononuclear cell preparations were cryopreserved and analyzed simultaneously in a 4-h cytotoxicity (51)Cr release assay using K562 target cells. NMHC killer cell lytic activity was normalized per 1,000 CD56+ cells. When all 10 subjects were considered as one study group, NMHC killer cell numbers did not change significantly during the three sampling periods, but at landing lytic activity had decreased by approximately 40% (P < 0.05) from preflight values. Nine of ten astronauts had decreased lytic activity immediately after flight. NMHC killer cell cytotoxicity of only three astronauts returned toward preflight values by 3 days after landing. Consistent with decreased NMHC killer cell cytotoxicity, urinary cortisol significantly increased after landing compared with preflight levels. Plasma cortisol and ACTH levels at landing were not significantly different from preflight values. No correlation of changes in NMHC killer cell function or hormone levels with factors such as age, gender, mission, or spaceflight experience was found. After landing, expression of the major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), as determined by flow cytometric analysis, did not show any consistent changes from measurements made before flight.
Verma, Rachna; Krishna, Amitabh
2017-01-15
The aim of present study was to evaluate the significance of estradiol (E2) in testicular activities and to find out the mechanism by which E2 regulates spermatogenesis in mice. To achieve this, both in vivo and in vitro effect of Letrozole on testis of adult mice was investigated. Letrozole-induced changes in testicular histology, cell proliferation (proliferating cell nuclear antigen; PCNA), cell survival (B cell lymphoma factor-2; Bcl2), apoptotic (cysteine-aspartic proteases; caspase-3), steroidogenic (side chain cleavage; SCC, 3β-hydroxy steroid dehydrogenase enzyme; 3β HSD, steroidogenic acute regulatory protein; StAR, aromatase and luteinizing hormone receptor; LH-R) markers, glucose level, and rate of expression of glucose transporter (GLUT) 8 and insulin receptor (IR) proteins in the testis along with changes in serum E2 and testosterone (T) levels were evaluated. Letrozole acts on testis and caused significant decrease in E2 synthesis, but increase in testosterone level and showed regressive changes in the spermatogenesis. Letrozole-induced changes in various testicular markers were compared with the changes in serum E2 level. The correlation study showed that decreased circulating E2 level may be responsible for decreased insulin receptor (IR) level in the testis. The decreased effects of insulin inhibited the glucose transport in the testis by suppressing GLUT8. The decreased level of testicular glucose may produce less lactate as energy support to developing germ cells consequently resulting in decreased cell proliferation and cell survival, but increased apoptosis. Thus, Letrozole suppresses spermatogenesis by reducing insulin sensitivity and glucose transport in the testis, but significantly increased testosterone level by promoting gonadotrophin release by decreased E2. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of Gravity on Cell Movement and Development
NASA Technical Reports Server (NTRS)
Wang, Yu-Li
2002-01-01
The main purpose of this project was to understand how the migration and growth of cultured cells respond to mechanical forces. We have made significant progress on all the proposed aims. The most important discoveries are that changes in the environmental mechanical input, such as during space flight, can induce profound changes in cell migration, growth, and programmed cell death. In addition, using genetically engineered cells, we have gained important insight into the molecular mechanism underlying such mechanosensing processes. The results are summarized.
Calculation of the thermoneutral potential of NiCd and NiH2 cells
NASA Technical Reports Server (NTRS)
Zimmerman, Albert H.
1994-01-01
The thermoneutral potential of a nickel cadmium or nickel hydrogen cell is the potential at which the cell charge or discharge process puts out zero heat, and thus is the potential corresponding to the enthalpy change of the charge/discharge reaction, delta H. A relatively straightforward method for obtaining the thermoneutral potential E(sub tn), is based on the measured potential and temperature derivative of the cell reactions, which are related to the free energy change delta G, and entropy change delta S, respectively. Particularly in the nickel hydrogen cell, the pressure of hydrogen can often vary over an order of magnitude or more during the course of a charge or discharge. In a nickel cadmium cell, although significant changes in oxygen pressure can occur during charge or discharge, since oxygen does not enter into the charge/discharge reaction, these pressure changes are related to the heat generated from oxygen evolution and recombination. However, the entropy changes due to changes in hydrogen pressure relative to the 1 atm standard state must be included to apply this method to the nickel hydrogen cell.
Kannler, Martina; Lüling, Robin; Yildirim, Ali Önder; Gudermann, Thomas; Steinritz, Dirk; Dietrich, Alexander
2018-05-12
Transient receptor potential A1 (TRPA1) channels were originally characterized in neuronal tissues but also identified in lung epithelium by staining with fluorescently coupled TRPA1 antibodies. Its exact function in non-neuronal tissues, however, is elusive. TRPA1 is activated in vitro by hypoxia and hyperoxia and is therefore a promising TRP candidate for sensing hyperoxia in pulmonary epithelial cells and for inducing alveolar epithelial hyperplasia. Here, we isolated tracheal, bronchial, and alveolar epithelial cells and show low but detectable TRPA1 mRNA levels in all these cells as well as TRPA1 protein by Western blotting in alveolar type II (AT II) cells. We quantified changes in intracellular Ca 2+ ([Ca 2+ ] i ) levels induced by application of hyperoxic solutions in primary tracheal epithelial, bronchial epithelial, and AT II cells isolated from wild-type (WT) and TRPA1-deficient (TRPA1-/-) mouse lungs. In all cell types, we detected hyperoxia-induced rises in [Ca 2+ ] i levels, which were not significantly different in TRPA1-deficient cells compared to WT cells. We also tested TRPA1 function in a mouse model for hyperoxia-induced alveolar epithelial hyperplasia. A characteristic significant increase in thickening of alveolar tissues was detected in mouse lungs after exposure to hyperoxia, but not in normoxic WT and TRPA1-/- controls. Quantification of changes in lung morphology in hyperoxic WT and TRPA1-/- mice, however, again revealed no significant changes. Therefore, TRPA1 expression does neither appear to be a key player for hyperoxia-induced changes in [Ca 2+ ] i levels in primary lung epithelial cells, nor being essential for the development of hyperoxia-induced alveolar epithelial hyperplasia.
Kahleova, Hana; Tura, Andrea; Hill, Martin; Holubkov, Richard; Barnard, Neal D
2018-02-09
The aim of this study was to test the effect of a plant-based dietary intervention on beta-cell function in overweight adults with no history of diabetes. Participants ( n = 75) were randomized to follow a low-fat plant-based diet ( n = 38) or to make no diet changes ( n = 37) for 16 weeks. At baseline and 16 weeks, beta-cell function was quantified with a mathematical model. Using a standard meal test, insulin secretory rate was calculated by C-peptide deconvolution. The Homeostasis Model Assessment (HOMA-IR) index was used to assess insulin resistance while fasting. A marked increase in meal-stimulated insulin secretion was observed in the intervention group compared with controls (interaction between group and time, Gxt, p < 0.001). HOMA-IR index fell significantly ( p < 0.001) in the intervention group (treatment effect -1.0 (95% CI, -1.2 to -0.8); Gxt, p = 0.004). Changes in HOMA-IR correlated positively with changes in body mass index (BMI) and visceral fat volume ( r = 0.34; p = 0.009 and r = 0.42; p = 0.001, respectively). The latter remained significant after adjustment for changes in BMI ( r = 0.41; p = 0.002). Changes in glucose-induced insulin secretion correlated negatively with BMI changes ( r = -0.25; p = 0.04), but not with changes in visceral fat. Beta-cell function and insulin sensitivity were significantly improved through a low-fat plant-based diet in overweight adults.
Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi
2015-01-01
Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. PMID:25998127
Nikezic, D; Lau, B M F; Stevanovic, N; Yu, K N
2006-01-01
To calculate the absorbed dose in the human lung due to inhaled radon progeny, ICRP focussed on the layers containing the target cells, i.e., the basal and secretory cells. Such an approach did not consider details of the sensitive cells in the layers. The present work uses the microdosimetric approach and determines the absorbed alpha-particle energy in non-spherical nuclei of target cells (basal and secretory cells). The absorbed energy for alpha particles emitted by radon progeny in the human respiratory tract was calculated in basal- and secretory-cell nuclei, assuming conical and ellipsoidal forms for these cells. Distributions of specific energy for different combinations of alpha-particle sources, energies and targets are calculated and shown. The dose conversion coefficient for radon progeny is reduced for about 2mSv/WLM when conical and ellipsoidal cell nuclei are considered instead of the layers. While changes in the geometry of secretory-cell nuclei do not have significant effects on their absorbed dose, changes from spherical to conical basal-cell nuclei have significantly reduced their absorbed dose from approximately 4 to approximately 3mGy/WLM. This is expected because basal cells are situated close to the end of the range of 6MeV alpha particles. This also underlines the significance of better and more precise information on targets in the T-B tree. A further change in the dose conversion coefficient can be achieved if a different weighting scheme is adopted for the doses for the cells. The results demonstrate the necessity for better information on the target cells for more accurate dosimetry for radon progeny.
Direct reprogramming and biomaterials for controlling cell fate.
Kim, Eunsol; Tae, Giyoong
2016-01-01
Direct reprogramming which changes the fate of matured cell is a very useful technique with a great interest recently. This approach can eliminate the drawbacks of direct usage of stem cells and allow the patient specific treatment in regenerative medicine. Overexpression of diverse factors such as general reprogramming factors or lineage specific transcription factors can change the fate of already differentiated cells. On the other hand, biomaterials can provide physical and topographical cues or biochemical cues on cells, which can dictate or significantly affect the differentiation of stem cells. The role of biomaterials on direct reprogramming has not been elucidated much, but will be potentially significant to improve the efficiency or specificity of direct reprogramming. In this review, the strategies for general direct reprogramming and biomaterials-guided stem cell differentiation are summarized with the addition of the up-to-date progress on biomaterials for direct reprogramming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugita, Kazuya; Yamamura, Chiaki; Tabata, Ken-ichi
2013-01-04
Highlights: Black-Right-Pointing-Pointer Expression of GPR174 in CHO cells induces morphological changes and proliferation delay. Black-Right-Pointing-Pointer These are due to increase in intracellular cAMP concentration. Black-Right-Pointing-Pointer Lysophosphatidylserine was identified to stimulate GPR174 leading to activate ACase. Black-Right-Pointing-Pointer The potencies of fatty acid moiety on LysoPS were oleoyl Greater-Than-Or-Slanted-Equal-To stearoyl > palmitoyl. Black-Right-Pointing-Pointer We propose that GPR174 is a lysophosphatidylserine receptor. -- Abstract: We established cell lines that stably express orphan GPCR GPR174 using CHO cells, and studied physiological and pharmacological features of the receptor. GPR174-expressing cells showed cell-cell adhesion with localization of actin filaments to cell membrane, and revealed significant delaymore » of cell proliferation. Since the morphological changes of GPR174-cells were very similar to mock CHO cells treated with cholera toxin, we measured the concentration of intracellular cAMP. The results showed the concentration was significantly elevated in GPR174-cells. By measuring intracellular cAMP concentration in GPR174-cells, we screened lipids and nucleotides to identify ligands for GPR174. We found that lysophosphatidylserine (LysoPS) stimulated increase in intracellular cAMP in a dose-dependent manner. Moreover, phosphorylation of Erk was elevated by LysoPS in GPR174 cells. These LysoPS responses were inhibited by NF449, an inhibitor of G{alpha}{sub s} protein. These results suggested that GPR174 was a putative LysoPS receptor conjugating with G{alpha}{sub s}, and its expression induced morphological changes in CHO cells by constitutively activating adenylyl cycles accompanied with cell conjunctions and delay of proliferation.« less
Investigation of diseases through red blood cells' shape using photoacoustic response technique
NASA Astrophysics Data System (ADS)
Biswas, Deblina; Gorey, Abhijeet; Chen, Goerge C. K.; Sharma, Norman; Vasudevan, Srivathsan
2015-03-01
Photoacoustic (PA) imaging is a non-invasive real-time technique, widely applied to many biomedical imaging studies in the recent years. While most of these studies have been focussed on obtaining an image after reconstruction, various features of time domain signal (e.g. amplitude, width, rise and relaxation time) would provide very high sensitivity in detecting morphological changes in cells during a biological study. Different haematological disorders (e.g., sickle cell anaemia, thalassemia) exhibit significant morphological cellular changes. In this context, this study explores the possibility of utilizing the developed photoacoustic response technique to apply onto blood samples. Results of our preliminary study demonstrate that there is a significant change in signal amplitude due to change in concentration of the blood. Thus it shows the sensitivity of the developed photoacoustic technique towards red blood cell count (related to haematological disease like anaemia). Subsequently, morphological changes in RBC (i.e. swollen and shrunk compared to normal RBC) induced by hypotonic and hypertonic solutions respectively were also experimented. The result shows a distinct change in PA signal amplitude. This would serve as a diagnostic signature for many future studies on cellular morphological disorders.
In vitro effects of nicotine on the non-small-cell lung cancer line A549.
Gao, Tao; Zhou, Xue-Liang; Liu, Sheng; Rao, Chang-Xiu; Shi, Wen; Liu, Ji-Chun
2016-04-01
To investigate in vitro effects of nicotine on the non-small-cell lung cancer line A549. The case-control study was conducted at the First Affiliated Hospital of Nanchang University from 1st January to 30th June, 2014 and comprised A549 cells which were treated with a series of concentrations of nicotine (0.01 µM, 0.1 µM, 1 µM and 10 µM) for 24 hours. Control cells were incubated under the same conditions without the addition of nicotine. Cell growth was detected by monotetrazolium salt [3-(4, 5-dimethyl-2-thiazolyl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. Cell apoptosis was detected by Haematoxylin and Eosin staining, immunofluorescence analysis of Filamentous actin and electron microscope observation. Nicotine had no significant effect on A549 cell growth at the dose of 0.01µM (p>0.05), but had significant growth inhibitory effects at the doses of 0.1µM, 1µM and 10µM (p< 0.05 each). A significant decrease in cell numbers was observed on staining (p< 0.05). Significant changes in the size and shape of cells and concomitant changes in cytoskeletons and organelles were observed by immunofluorescence and electron microscope observation (p< 0.05). The growth inhibitory effects of nicotine on A549 cells were found to be dose-dependent.
Effects of hypergravity on immunologic function
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.; Koebel, D. A.; Davis, S.
1995-01-01
The purpose of this study was to compare the effects of hypergravity exposure (2g) with those of exposure to space flight in the Cosmos 2044 flight. To do so, rats were centrifuged continuously for 14 days. Two different experiments were carried out on tissue obtained from the centrifuged rats. In the first experiment, rat bone marrow cells were examined for their response to recombinant murine colony stimulating factor-granulocyte/monocyte (GM-CSF). In the second experiment, rat spleen and bone marrow cells were stained in with a variety of antibodies directed against cell surface antigenic markers. These cells were preserved and analyzed on a flow cytometer. The results of the studies indicated that bone marrow cells from centrifuged rats showed no significant change in response to GM-CSF as compared to bone marrow cells from control rats. Spleen cells from flown rats showed some statistically significant changes in leukocytes subset distribution, but no differences that appeared to be of biological significance. These results indicate that hypergravity did not greatly affect the same immunological parameters affected by space flight in the Cosmos 2044 mission.
Effects of hypergravity on immunologic function
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.; Koebel, D. A.; Davis, S.
1994-01-01
The purpose of this study was to compare the effects of hypergravity exposure (2g) with those of exposure to space flight in the Cosmos 2044 flight. To do so, rats were centrifuged continuously for 14 days. Two different experiments were carried out on tissue obtained from the centrifuged rats. In the first experiment, rat bone marrow cells were examined for their response to recombinant murine colony stimulating factor-granulocyte/monocyte (GM-CSF). In the second experiment, rate spleen and bone marrow cells were stained in with a variety of antibodies directed against cell surface antigenic markers. These cells were preserved and analyzed on a flow cytometer. The results of the studies indicated that bone marrow cells from centrifuged rats showed no significant change in response to GM-CSF as compared to bone marrow cells from control rats. Spleen cells from flown rats showed some statistically significant changes in leukocytes subset distribution, but no differences that appeared to be of biological significance. These results indicate that hypergravity did not greatly affect the same immunological parameters affected by space flight in the Cosmos 2044 mission.
Mori, A; Kenyon, P R; Mori, N; Yamamoto, I; Tanaka, Y; Suzuki, N; Tazaki, H; Ozawa, T; Hayashi, T; Hickson, R E; Morris, S T; Blair, H; Arai, T
2008-02-01
Metabolite and immunoreactive insulin (IRI) concentrations, energy metabolism related enzymes activities and peripheral blood mononuclear cell (PBMC) populations were measured in blood of pregnant Angus heifers with differing liveweight change profiles (gaining or losing), in New Zealand to investigate the meanings of those parameters in the restricted feeding beef heifers. Beef heifers losing liveweight (-412 g/day) showed significantly lower concentrations of plasma IRI, and higher concentrations of plasma free fatty acid (FFA) than heifers gaining liveweight (483 g/day). The cytosolic and mitochondrial malate dehydrogenase (MDH) activities and MDH/lactate dehydrogenase (M/L) ratio in leukocytes of the liveweight losing heifers were significantly higher than those the liveweight gaining heifers. Percentages of cluster of differentiation (CD) 3 positive cells and natural killer (NK) cells in PBMC decreased significantly in the liveweight losing heifers compared to those in the liveweight gaining heifers. Plasma IRI and FFA concentrations, leukocyte cytosolic and mitochondrial MDH activities and CD3 positive and NK cell populations may be useful markers to evaluate metabolic conditions and immunity in the restricted feeding beef heifers.
Inaba, Nao; Kuroshima, Shinichiro; Uto, Yusuke; Sasaki, Muneteru; Sawase, Takashi
2017-09-01
Osteocytes play important roles in controlling bone quality as well as preferential alignment of biological apatite c -axis/collagen fibers. However, the relationship between osteocytes and mechanical stress remains unclear due to the difficulty of three-dimensional (3D) culture of osteocytes in vitro . The aim of this study was to investigate the effect of cyclic mechanical stretch on 3D-cultured osteocyte-like cells. Osteocyte-like cells were established using rat calvarial osteoblasts cultured in a 3D culture system. Cyclic mechanical stretch (8% amplitude at a rate of 2 cycles min -1 ) was applied for 24, 48 and 96 consecutive hours. Morphology, cell number and preferential cell alignment were evaluated. Apoptosis- and autophagy-related gene expression levels were measured using quantitative PCR. 3D-cultured osteoblasts became osteocyte-like cells that expressed osteocyte-specific genes such as Dmp1 , Cx43 , Sost , Fgf23 and RANKL , with morphological changes similar to osteocytes. Cell number was significantly decreased in a time-dependent manner under non-loaded conditions, whereas cyclic mechanical stretch significantly prevented decreased cell numbers with increased expression of anti-apoptosis-related genes. Moreover, cyclic mechanical stretch significantly decreased cell size and ellipticity with increased expression of autophagy-related genes, LC3b and atg7 . Interestingly, preferential cell alignment did not occur, irrespective of mechanical stretch. These findings suggest that an anti-apoptotic effect contributes to network development of osteocyte-like cells under loaded condition. Spherical change of osteocyte-like cells induced by mechanical stretch may be associated with autophagy upregulation. Preferential alignment of osteocytes induced by mechanical load in vivo may be partially predetermined before osteoblasts differentiate into osteocytes and embed into bone matrix.
A micro-Raman spectroscopic investigation of leukemic U-937 cells in aged cultures
NASA Astrophysics Data System (ADS)
Fazio, Enza; Trusso, Sebastiano; Franco, Domenico; Nicolò, Marco Sebastiano; Allegra, Alessandro; Neri, Fortunato; Musolino, Caterina; Guglielmino, Salvatore P. P.
2016-04-01
Recently it has been shown that micro-Raman spectroscopy combined with multivariate analysis is able to discriminate among different types of tissues and tumoral cells by the detection of significant alterations and/or reorganizations of complex biological molecules, such as nucleic acids, lipids and proteins. Moreover, its use, being in principle a non-invasive technique, appears an interesting clinical tool for the evaluation of the therapeutical effects and of the disease progression. In this work we analyzed molecular changes in aged cultures of leukemia model U937 cells with respect to fresh cultures of the same cell line. In fact, structural variations of individual neoplastic cells on aging may lead to a heterogeneous data set, therefore falsifying confidence intervals, increasing error levels of analysis and consequently limiting the use of Raman spectroscopy analysis. We found that the observed morphological changes of U937 cells corresponded to well defined modifications of the Raman contributions in selected spectral regions, where markers of specific functional groups, useful to characterize the cell state, are present. A detailed subcellular analysis showed a change in cellular organization as a function of time, and correlated to a significant increase of apoptosis levels. Besides the aforementioned study, Raman spectra were used as input for principal component analysis (PCA) in order to detect and classify spectral changes among U937 cells.
McGrath, Emma; Ryan, Elizabeth J; Lynch, Lydia; Golden-Mason, Lucy; Mooney, Eoghan; Eogan, Maeve; O'Herlihy, Colm; O'Farrelly, Cliona
2009-04-01
Cycle-dependent fluctuations in natural killer (NK) cell populations in endometrium and circulation may differ, contributing to unexplained infertility. NK cell phenotypes were determined by flow cytometry in endometrial biopsies and matched blood samples. While circulating and endometrial T cell populations remained constant throughout the menstrual cycle in fertile and infertile women, circulating NK cells in infertile women increased during the secretory phase. However, increased expression of CD94, CD158b (secretory phase), and CD158a (proliferative phase) by endometrial NK cells from infertile women was observed. These changes were not reflected in the circulation. In infertile women, changes in circulating NK cell percentages are found exclusively during the secretory phase and not in endometrium; cycle-related changes in NK receptor expression are observed only in infertile endometrium. While having exciting implications for understanding NK cell function in fertility, our data emphasize the difficulty in attaching diagnostic or prognostic significance to NK cell analyses in individual patients.
Carbon nanowall scaffold to control culturing of cervical cancer cells
NASA Astrophysics Data System (ADS)
Watanabe, Hitoshi; Kondo, Hiroki; Okamoto, Yukihiro; Hiramatsu, Mineo; Sekine, Makoto; Baba, Yoshinobu; Hori, Masaru
2014-12-01
The effect of carbon nanowalls (CNWs) on the culturing rate and morphological control of cervical cancer cells (HeLa cells) was investigated. CNWs with different densities were grown using plasma-enhanced chemical vapor deposition and subjected to post-growth plasma treatment for modification of the surface terminations. Although the surface wettability of the CNWs was not significantly dependent on the CNW densities, the cell culturing rates were significantly dependent. Morphological changes of the cells were not significantly dependent on the density of CNWs. These results indicate that plasma-induced surface morphology and chemical terminations enable nanobio applications using carbon nanomaterials.
Jęśko, Henryk; Lukiw, Walter J; Wilkaniec, Anna; Cieślik, Magdalena; Gąssowska-Dobrowolska, Magdalena; Murawska, Emilia; Hilgier, Wojciech; Adamczyk, Agata
2018-01-01
Urea cycle enzymes may play important yet poorly characterized roles in Alzheimer's disease (AD). Our previous results showed that amyloid-β (Aβ) affects urea cycle enzymes in rat pheochromocytoma (PC12) cells. The aim of the present study was to investigate the changes in arginases, other urea cycle enzymes, and nitric oxide synthases (NOSs) in PC12 cells transfected with AβPP bearing the double 'Swedish' mutation (APPsw, K670M/N671L) and in postmortem sporadic AD brain hippocampus; the mutation intensifies Aβ production and strongly associates with AD neuropathology. mRNA expression was analyzed using real-time PCR in cell cultures and DNA microarrays in hippocampal CA1 area of human AD brains. Arginase activity was measured spectrophotometrically, and arginine, ornithine, and citrulline levels by high-performance liquid chromatography. Our data demonstrated that the expression and activity of arginases (Arg1 and Arg2), as well as the expression of argininosuccinate synthase (Ass) were significantly reduced in APPsw cells compared to control. However, argininosuccinate lyase (Asl) was upregulated in APPsw cells. Real-time PCR analysis revealed significant elevation of neuronal nitric oxide synthase (Nnos) mRNA in APPsw cells, without changes in the endothelial Enos, whereas inducible Inos was undetectable. The changes were found to follow closely those observed in the human hippocampal CA1 region of sporadic AD brains. The changes in enzyme expression were accompanied in APPsw cells by significantly elevated citrulline, ornithine, and arginine. Our findings demonstrate that AβPP/Aβ alters arginine metabolism and induces a shift of cellular homeostasis that may support the oxidative/nitrosative stress observed in AD.
Binaii, Mohammad; Ghiasi, Maryam; Farabi, Seyed Mohammad Vahid; Pourgholam, Reza; Fazli, Hasan; Safari, Reza; Alavi, Seyed Eshagh; Taghavi, Mohammad Javad; Bankehsaz, Zahra
2014-01-01
The present study investigated the effects of different dietary nettle (Urtica dioica) levels on biochemical, hematological and immunological parameters in beluga (Huso huso). Fish were divided into 4 groups before being fed for 8 weeks with 0%, 3%, 6% and 12% of nettle. The blood samples were collected on week 4 and 8. The use of nettle did not significantly change the mean cell volume, mean cell haemoglobin, lymphocytes, eosinophils, albumin, glucose, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and lysozyme activity on week 4 and 8. After 4 weeks, the total red blood cell (RBC) and hematocrit (Ht) showed a significant increase in 12% nettle group compared to the 3% nettle and control groups but haemoglobin (Hb) had a significant change in 12% nettle compared to the control. At the same time was not found a significant change in the mean cell haemoglobin concentration (MCHC), total white blood cell (WBC), neutrophils, respiratory burst activity (RB), total immunoglobulin (Ig) and total protein (TP), triglyceride (Tri) and cholesterol (Chol). After 8 weeks, the fish treated with nettle exhibited significantly increase in neutrophil and Hb levels compared to the control and between treatment groups, 12% nettle group shown the highest Hb while RBC and Hct values significantly rose in fish fed by 12% compared to the control. Supplementing 6% and 12% nettle increased the WBC and MCHC compared to the other groups. The group fed 12% showed a highly significant difference in RB, TP and Ig after 8 weeks. However, Tri and Chol were significantly decreased in the juvenile beluga fed by the 6% and 12% nettle diet compared to the other groups. The results suggest that by using this herb there will be an improvement in hemato-biochemical parameters and immune function of juvenile beluga.
Label-free LC-MS analysis of HER2+ breast cancer cell line response to HER2 inhibitor treatment.
Di Luca, Alessio; Henry, Michael; Meleady, Paula; O'Connor, Robert
2015-08-04
Human epidermal growth-factor receptor (HER)-2 is overexpressed in 25 % of breast-cancers and is associated with an aggressive form of the disease with significantly shortened disease free and overall survival. In recent years, the use of HER2-targeted therapies, monoclonal-antibodies and small molecule tyrosine-kinase inhibitors has significantly improved the clinical outcome for HER2-positive breast-cancer patients. However, only a fraction of HER2-amplified patients will respond to therapy and the use of these treatments is often limited by tumour drug insensitivity or resistance and drug toxicities. Currently there is no way to identify likely responders or rational combinations with the potential to improve HER2-focussed treatment outcome. In order to further understand the molecular mechanisms of treatment-response with HER2-inhibitors, we used a highly-optimised and reproducible quantitative label-free LC-MS strategy to characterize the proteomes of HER2-overexpressing breast-cancer cell-lines (SKBR3, BT474 and HCC1954) in response to drug-treatment with HER2-inhibitors (lapatinib, neratinib or afatinib). Following 12 ours treatment with different HER2-inhibitors in the BT474 cell-line; compared to the untreated cells, 16 proteins changed significantly in abundance following lapatinib treatment (1 μM), 21 proteins changed significantly following neratinib treatment (150 nM) and 38 proteins changed significantly following afatinib treatment (150 nM). Whereas following 24 hours treatment with neratinib (200 nM) 46 proteins changed significantly in abundance in the HCC1954 cell-line and 23 proteins in the SKBR3 cell-line compared to the untreated cells. Analysing the data we found that, proteins like trifunctional-enzyme subunit-alpha, mitochondrial; heterogeneous nuclear ribonucleoprotein-R and lamina-associated polypeptide 2, isoform alpha were up-regulated whereas heat shock cognate 71 kDa protein was down-regulated in 3 or more comparisons. This proteomic study highlights several proteins that are closely associated with early HER2-inhibitor response and will provide a valuable resource for further investigation of ways to improve efficacy of breast-cancer treatment.
Steinborn, A; Schmitt, E; Kisielewicz, A; Rechenberg, S; Seissler, N; Mahnke, K; Schaier, M; Zeier, M; Sohn, C
2012-01-01
Dysregulations concerning the composition and function of regulatory T cells (T(regs)) are assumed to be involved in the pathophysiology of complicated pregnancies. We used six-colour flow cytometric analysis to demonstrate that the total CD4(+) CD127(low+/-) CD25(+) forkhead box protein 3 (FoxP3)(+) T(reg) cell pool contains four distinct T(reg) subsets: DR(high+) CD45RA(-), DR(low+) CD45RA(-), DR(-) CD45RA(-) T(regs) and naive DR(-) CD45RA(+) T(regs). During the normal course of pregnancy, the most prominent changes in the composition of the total T(reg) cell pool were observed between the 10th and 20th weeks of gestation, with a clear decrease in the percentage of DR(high+) CD45RA(-) and DR(low+) CD45RA(-) T(regs) and a clear increase in the percentage of naive DR(-) CD45RA(+) T(regs). After that time, the composition of the total T(reg) cell pool did not change significantly. Its suppressive activity remained stable during normally progressing pregnancy, but decreased significantly at term. Compared to healthy pregnancies the composition of the total T(reg) cell pool changed in the way that its percentage of naive DR(-) CD45RA(+) T(regs) was reduced significantly in the presence of pre-eclampsia and in the presence of preterm labour necessitating preterm delivery (PL). Interestingly, its percentage of DR(high+) CD45RA(-) and DR(low+) CD45RA(-) T(regs) was increased significantly in pregnancies affected by pre-eclampsia, while PL was accompanied by a significantly increased percentage of DR(-) CD45RA(-) and DR(low+) CD45RA(-) T(regs). The suppressive activity of the total T(reg) cell pool was diminished in both patient collectives. Hence, our findings propose that pre-eclampsia and PL are characterized by homeostatic changes in the composition of the total T(reg) pool with distinct T(reg) subsets that were accompanied by a significant decrease of its suppressive activity. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.
Studies on the erythron and the ferrokinetic responses in beagles adapted to hypergravity
NASA Technical Reports Server (NTRS)
Beckman, D. A.; Evans, J. W.; Oyama, J.
1978-01-01
Red cell survival, ferrokinetics, and hematologic parameters were investigated in beagle dogs exposed to chronic hypergravity (2.6 Gx). Ineffective erythropoiesis, red cell mass, plasma volume, and Cr-51-elution were significantly increased; maximum Fe-59 incorporation was decreased; and there was no change in the mean erythrocyte life span following autologous injection of Cr-51-labeled red cells and Fe-59-labeled transferrin. Red cell count, F(cells), total body hemoglobin (Hb), susceptability to osmotic lysis, and differential reticulocyte count were increased. White blood cell count, venous blood %Hb, mean cell volume, mean cell Hb, mean cell Hb concentration, and serum iron were decreased. No changes were observed for body mass, mg Fe per g Hb, iron binding capacity, percent saturation of iron carrying capacity, or the electrophoretic mobility of purified Hb. This study indicated that chronic exposure to hypergravity induced changes in red cell size, volume, total mass, and membrane permeability.
Kumar, S Mathan; Swaminathan, Kavitha; Clemens, Dahn L; Dey, Aparajita
2014-02-01
Gluthathione (GSH) is a major cellular antioxidant. The present study utilizing VL-17A cells exposed to chronic alcohol plus high glucose investigated the changes in oxidative stress, toxicity, and glyoxalase 1 activity as a detoxification pathway due to changes in GSH level through GSH supplementation with N-acetyl cysteine (NAC) or ursodeoxycholic acid (UDCA) and its depletion through buthionine sulfoximine (BSO) or diethyl maleate (DEM). Glyoxalase 1 plays an important role in detoxification of methylglyoxal which is formed as a precursor of advanced glycated end products formed due to high glucose mediated oxidative stress. Significant changes in glyoxalase 1 activity utilizing methylglyoxal or glyoxal as substrates occurred with NAC or UDCA or BSO or DEM supplementation in chronic alcohol plus high glucose treated VL-17A cells. NAC or UDCA administration in chronic alcohol plus high glucose treated VL-17A cells increased viability and decreased ROS levels, lipid peroxidation and 3-nitrotyrosine adduct formation. Similarly, GSH depletion with BSO or DEM had an opposite effect on the parameters in chronic alcohol plus high glucose treated VL-17A cells. In conclusion, modulation of GSH with NAC or UDCA or BSO or DEM leads to significant changes in oxidative stress, glyoxalase 1 enzyme activity and toxicity in chronic alcohol plus high glucose treated VL-17A cells.
Okumura, Takashi; Ohuchida, Kenoki; Sada, Masafumi; Abe, Toshiya; Endo, Sho; Koikawa, Kazuhiro; Iwamoto, Chika; Miura, Daisuke; Mizuuchi, Yusuke; Moriyama, Taiki; Nakata, Kohei; Miyasaka, Yoshihiro; Manabe, Tatsuya; Ohtsuka, Takao; Nagai, Eishi; Mizumoto, Kazuhiro; Oda, Yoshinao; Hashizume, Makoto; Nakamura, Masafumi
2017-01-01
Pancreatic cancer progression involves components of the tumor microenvironment, including stellate cells, immune cells, endothelial cells, and the extracellular matrix. Although peripancreatic fat is the main stromal component involved in extra-pancreatic invasion, its roles in local invasion and metastasis of pancreatic cancer remain unclear. This study investigated the role of adipose tissue in pancreatic cancer progression using genetically engineered mice (Pdx1-Cre; LSL-KrasG12D; Trp53R172H/+) and an in vitro model of organotypic fat invasion. Mice fed a high fat diet had significantly larger primary pancreatic tumors and a significantly higher rate of distant organ metastasis than mice fed a standard diet. In the organotypic fat invasion model, pancreatic cancer cell clusters were smaller and more elongated in shape and showed increased fibrosis. Adipose tissue-derived conditioned medium enhanced pancreatic cancer cell invasiveness and gemcitabine resistance, as well as inducing morphologic changes in cancer cells and increasing the numbers of lipid droplets in their cytoplasm. The concentrations of oleic, palmitoleic, and linoleic acids were higher in adipose tissue-derived conditioned medium than in normal medium, with these fatty acids significantly enhancing the migration of cancer cells. Mature adipocytes were smaller and the concentration of fatty acids in the medium higher when these cells were co-cultured with cancer cells. These findings indicate that lipolytic and fibrotic changes in peripancreatic adipose tissue enhance local invasiveness and metastasis via adipocyte-released fatty acids. Inhibition of fatty acid uptake by cancer cells may be a novel therapy targeting interactions between cancer and stromal cells. PMID:28407685
Pathologic Changes of the Peripheral Vestibular System Secondary to Chronic Otitis Media.
da Costa Monsanto, Rafael; Erdil, Mehmet; Pauna, Henrique F; Kwon, Geeyoun; Schachern, Patricia A; Tsuprun, Vladimir; Paparella, Michael M; Cureoglu, Sebahattin
2016-09-01
To evaluate the histopathologic changes of dark, transitional, and hair cells of the vestibular system in human temporal bones from patients with chronic otitis media. Comparative human temporal bone study. Otopathology laboratory. To compare the density of vestibular dark, transitional, and hair cells in temporal bones with and without chronic otitis media, we used differential interference contrast microscopy. In the chronic otitis media group (as compared with the age-matched control group), the density of type I and type II hair cells was significantly decreased in the lateral semicircular canal, saccule, and utricle (P < .05). The density of type I cells was also significantly decreased in the chronic otitis media group in the posterior semicircular canal (P = .005), but that of type II cells was not (P = .168). The mean number of dark cells was significantly decreased in the chronic otitis media group in the lateral semicircular canal (P = .014) and in the posterior semicircular canal (P = .002). We observed no statistically significant difference in the density of transitional cells between the 2 groups (P > .1). The findings of our study suggest that the decrease in the number of vestibular sensory cells and dark cells could be the cause of the clinical symptoms of imbalance of some patients with chronic otitis media. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
NASA Technical Reports Server (NTRS)
Brinker, David J.; Hickey, John R.; Scheiman, David A.
1993-01-01
The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.
Decreased NK-Cell Cytotoxicity after Short Flights on the Space Shuttle
NASA Technical Reports Server (NTRS)
Mehta, Satish K.; Grimm, Elizabeth A.; Smid, Christine; Kaur, Indreshpal; Feeback, Daniel L.; Pierson, Duane L.
2000-01-01
Cytotoxic activity of natural killer (NK) cells and cell surface marker expression of peripheral blood mononuclear cells (PBMCs) isolated from 11 U.S. astronauts on two different missions were determined before and after 9 or 10 days of spaceflight aboard the space shuttle. Blood samples were collected 10 and 3 days before launch, within 3 hours after landing, and 3 days after landing. All PBMC preparations were cryopreserved and analyzed simultaneously in a 4-hour cytotoxicity "Cr-release assay using NK-sensitive K-562 target cells. Compared to preflight values, NK-cell cytotoxicity (corrected for lymphopenia observed on landing day) was significantly decreased at landing (P < 0.0125). It then apparently began to recover and approached preflight values by 3 days after landing. Consistent with decreased NK-cell cytotoxicity, significant increases from preflight values were found in plasma adrenocorticotropic hormone at landing. Plasma and urinary cortisol levels did not change significantly from preflight values. Expression of major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), determined by flow cytometric analysis, revealed no consistent phenotypic changes in relative percent of NK or other lymphoid cells after 10 days of spaceflight.
Degroote, Roxane L; Hauck, Stefanie M; Kremmer, Elisabeth; Amann, Barbara; Ueffing, Marius; Deeg, Cornelia A
2012-07-19
The molecular mechanism which enables activated immune cells to cross the blood-retinal barrier in spontaneous autoimmune uveitis is yet to be unraveled. Equine recurrent uveitis is the only spontaneous animal model allowing us to investigate the autoimmune mediated transformation of leukocytes in the course of this sight threatening disease. Hypothesizing that peripheral blood immune cells change their protein expression pattern in spontaneous autoimmune uveitis, we used DIGE to detect proteins with altered abundance comparing peripheral immune cells of healthy and ERU diseased horses. Among others, we found a significant downregulation of talin 1 in peripheral blood granulocytes of ERU specimen, pointing to changes in β integrin activation and indicating a significant role of the innate immune system in spontaneous autoimmune diseases. Copyright © 2012. Published by Elsevier B.V.
Spaceflight Effects on the Hematopoietic Tissue of Ribbed Newts
NASA Astrophysics Data System (ADS)
Domaratskaya, E. I.; Almeida, E. A. C.; Butorina, N. N.; Nikonova, T. M.; Grigoryan, E. N.; Poplinskaya, V. A.
2008-06-01
The newts Pleurodeles waltl flown on Foton-M2 for 12 days were used for studying the effects of spaceflight on hematopoiesis in lower vertebrates. Prior to the flight, all the animals underwent to removal their lenses and tail tips for regeneration studies. No significant differences in blood cell contents were detected between flight and control animals. Morphological examination of hematopoietic areas of the liver in both groups also showed no significant differences. Experiments with BrdU incorporation revealed labeled cells in the hemopoietic area of the liver as well as in blood. The blood cell composition of newts flown on Foton-M3 was similar to that in intact (nonoperated) newts used in Bion-11 and Foton-M2 experiments. The lack of blood changes in newts during the current experiments distinguishes them from mammals flown in space (rats and mice), which developed significant changes in both blood cell counts, stem and committed cells in the blood-forming tissues.
Red cell changes in hyperthyroidism.
How, J; Davidson, R J; Bewsher, P D
1979-10-01
The Coulter 'S' red cell profile was studied prospectively in 100 untreated non-anaemic hyperthyroid patients and followed up in 52 of them until they had become euthyroid with radio-iodine or carbimazole treatment. Serial haematological data were also obtained in 23 hyperthyroid patients during treatment with beta-adrenoreceptor blocking drug alone. The most significant finding was a low mean corpuscular volume (MCV) which was invariably present throughout the hyperthyroid state. Treatment with beta-adrenoreceptor blocking drugs did not significantly alter any of the red cell parameters. On the other hand, the MCV increased and was restored to normal with radio-iodine or carbimazole treatment although there was a lag period of about 6--8 weeks between achieving the euthyroid state and the normalisation of this red cell index. While none of the patients were aneaemic, the haemoglobin level rose significantly following effective anti-thyroid treatment. It is suggested that measurement of the MCV may have a useful role in the diagnosis of hyperthyroidism. 2 possible mechanisms leading to the observed red cell changes in hyperthyroidism are postulated.
On physical changes on surface of human cervical epithelial cells during cancer transformations
NASA Astrophysics Data System (ADS)
Sokolov, Igor; Dokukin, Maxim; Guz, Nataliia; Woodworth, Craig
2013-03-01
Physical changes of the cell surface of cells during transformation from normal to cancerous state are rather poorly studied. Here we describe our recent studies of such changes done on human cervical epithelial cells during their transformation from normal through infected with human papillomavirus type-16 (HPV-16), immortalized (precancerous), to cancerous cells. The changes were studied with the help of atomic force microscopy (AFM) and through the measurement of physical adhesion of fluorescent silica beads to the cell surface. Based on the adhesion experiments, we clearly see the difference in nonspecific adhesion which occurs at the stage of immortalization of cells, precancerous cells. The analysis done with the help of AFM shows that the difference observed comes presumably from the alteration of the cellular ``brush,'' a layer that surrounds cells and which consists of mostly microvilli, microridges, and glycocalyx. Further AFM analysis reveals the emergence of fractal scaling behavior on the surface of cells when normal cells turn into cancerous. The possible causes and potential significance of these observations will be discussed.
Ulcerative colitis: ultrastructure of interstitial cells in myenteric plexus.
Rumessen, J J; Vanderwinden, J-M; Horn, T
2010-10-01
Interstitial cells of Cajal (ICC) are key regulatory cells in the gut. In the colon of patients with severe ulcerative colitis (UC), myenteric ICC had myoid ultrastructural features and were in close contact with nerve terminals. In all patients as opposed to controls, some ICC profiles showed degenerative changes, such as lipid droplets and irregular vacuoles. Nerve terminals often appeared swollen and empty. Glial cells, muscle cells, and fibroblast-like cells (FLC) showed no alterations. FLC enclosed macrophages (MLC), which were in close contact with naked axon terminals. The organization and cytological changes may be of pathophysiological significance in patients with UC.
Ogaĭ, V B; Novoselova, E G; Makar, V R; Kolaeva, S G
2002-01-01
Production of tumor necrosis factor (TNF) has been investigated in peritoneal macrophages and splenic T cells of Arctic Yakutian ground squirrel (Citellus Undulatus Pallas) upon in vitro action of electromagnetic and ionizing radiation during annual cycle. The significant activation of TNF production in the cells of awaken ground squirrels in winter and increasing level of the lymphokine production at spring-summer period has been indicated. The level of TNF production in splenic T cells was not changed during whole year. The electromagnetic radiation (EMR) of low intensity (8.15-18 GHz, 1 microW/cm2) induced an augmentation of both secretory and proliferative activity in TNF-producing cells. Ionizing radiation suppressed T cell proliferation, but the doses 2 and 5 Gy resulted in a significant stimulation of TNF production in T cells and macrophages.
NASA Technical Reports Server (NTRS)
Alexander, R. A.; Lang, C. K.; Steele, M. K.; Corbin, B. J.; Wade, C. E.
1995-01-01
The mean CO2 concentration on the Space Shuttle is 0.3% and has reached 0.7%, for extended periods of time. Following space flight, it has been shown that both humans and animals have significant changes in red blood cell counts (RBC) and white blood cell counts (WBC). In other studies, where no significant change did occur in the total WBC, a significant change did occur in the distribution of WBC. WBC are affected by circulating levels of glucocorticoids, which often increase when animals or humans are exposed to adverse and/or novel stimuli (e.g. elevated CO2 levels or weightlessness). The purpose of this study was to determine if elevations in CO2 concentration produce changes in total WBC and/or their distribution.
Numeric and volumetric changes in Leydig cells during aging of rats.
Neves, Bruno Vinicius Duarte; Lorenzini, Fernando; Veronez, Djanira; Miranda, Eduardo Pereira de; Neves, Gabriela Duarte; Fraga, Rogério de
2017-10-01
To analyze the effects of aging in rats on the nuclear volume, cytoplasmic volume, and total volume of Leydig cells, as well as their number. Seventy-two Wistar rats were divided into six subgroups of 12 rats, which underwent right orchiectomy at 3, 6, 9, 12, 18, and 24 months of age. The weight and volume of the resected testicles were assessed. A stereological study of Leydig cells was conducted, which included measurements of cell number and nuclear, cytoplasmic, and total cell volumes. The weight and volume of the resected testicles showed reductions with age. Only the subgroup composed of 24-month old rats showed a decrease in the nuclear volume of Leydig cells. Significant reductions in the cytoplasmic volume and total volume of Leydig cells were observed in 18- and 24-month old rats. The number of Leydig cells did not vary significantly with age. Aging in rats resulted in reduction of the nuclear, cytoplasmic, and total cell volumes of Leydig cells. There was no change in the total number of these cells during aging.
Seyoum, Awoke; Ndlovu, Principal; Temesgen, Zewotir
2017-03-16
Adherence and CD4 cell count change measure the progression of the disease in HIV patients after the commencement of HAART. Lack of information about associated factors on adherence to HAART and CD4 cell count reduction is a challenge for the improvement of cells in HIV positive adults. The main objective of adopting joint modeling was to compare separate and joint models of longitudinal repeated measures in identifying long-term predictors of the two longitudinal outcomes: CD4 cell count and adherence to HAART. A longitudinal retrospective cohort study was conducted to examine the joint predictors of CD4 cell count change and adherence to HAART among HIV adult patients enrolled in the first 10 months of the year 2008 and followed-up to June 2012. Joint model was employed to determine joint predictors of two longitudinal response variables over time. Furthermore, the generalized linear mixed effect model had been used for specification of the marginal distribution, conditional to correlated random effect. A total of 792 adult HIV patients were studied to analyze the longitudinal joint model study. The result from this investigation revealed that age, weight, baseline CD4 cell count, ownership of cell phone, visiting times, marital status, residence area and level of disclosure of the disease to family members had significantly affected both outcomes. From the two-way interactions, time * owner of cell phone, time * sex, age * sex, age * level of education as well as time * level of education were significant for CD4 cell count change in the longitudinal data analysis. The multivariate joint model with linear predictor indicates that CD4 cell count change was positively correlated (p ≤ 0.0001) with adherence to HAART. Hence, as adherence to HAART increased, CD4 cell count also increased; and those patients who had significant CD4 cell count change at each visiting time had been encouraged to be good adherents. Joint model analysis was more parsimonious as compared to separate analysis, as it reduces type I error and subject-specific analysis improved its model fit. The joint model operates multivariate analysis simultaneously; and it has great power in parameter estimation. Developing joint model helps validate the observed correlation between the outcomes that have emerged from the association of intercepts. There should be a special attention and intervention for HIV positive adults, especially for those who had poor adherence and with low CD4 cell count change. The intervention may be important for pre-treatment counseling and awareness creation. The study also identified a group of patients who were with maximum risk of CD4 cell count change. It is suggested that this group of patients needs high intervention for counseling.
2011-01-01
Introduction The pan-HDAC inhibitor (HDACI) suberoylanilide hydroxamic acid (SAHA) has previously shown to be a radio-sensitizer to conventional photon radiotherapy (XRT) in pediatric sarcoma cell lines. Here, we investigate its effect on the response of two sarcoma cell lines and a normal tissue cell line to heavy ion irradiation (HIT). Materials and methods Clonogenic assays after different doses of heavy ions were performed. DNA damage and repair were evaluated by measuring γH2AX via flow-cytometry. Apoptosis and cell cycle analysis were also measured via flow cytometry. Protein expression of repair proteins, p53 and p21 were measured using immunoblot analysis. Changes of nuclear architecture after treatment with SAHA and HIT were observed in one of the sarcoma cell lines via light microscopy after staining towards chromatin and γH2AX. Results Corresponding with previously reported photon data, SAHA lead to an increase of sensitivity to heavy ions along with an increase of DSB and apoptosis in the two sarcoma cell lines. In contrast, in the osteoblast cell line (hFOB 1.19), the combination of SAHA and HIT showed a significant radio-protective effect. Laser scanning microscopy revealed no significant morphologic changes after HIT compared to the combined treatment with SAHA. Immunoblot analysis revealed no significant up or down regulation of p53. However, p21 was significantly increased by SAHA and combination treatment as compared to HIT only in the two sarcoma cell lines - again in contrast to the osteoblast cell line. Changes in the repair kinetics of DSB p53-independent apoptosis with p21 involvement may be part of the underlying mechanisms for radio-sensitization by SAHA. Conclusion Our in vitro data suggest an increase of the therapeutic ratio by the combination of SAHA with HIT in infantile sarcoma cell lines. PMID:21933400
Monsanto, Rafael da Costa; Schachern, Patricia; Paparella, Michael M; Cureoglu, Sebahattin; Penido, Norma de Oliveira
2017-08-01
Our study aimed to evaluate pathologic changes in the cochlear (inner and outer hair cells and stria vascularis) and vestibular (vestibular hair cells, dark, and transitional cells) sensorial elements in temporal bones from donors who had otitis media. We studied 40 temporal bones from such donors, which were categorized in serous otitis media (SOM), serous-purulent otitis media (SPOM), mucoid/mucoid-purulent otitis media (MOM/MPOM), and chronic otitis media (COM); control group comprised 10 nondiseased temporal bones. We found significant loss of inner and outer cochlear hair cells in the basal turn of the SPOM, MOM/MPOM and COM groups; significant loss of vestibular hair cells was observed in the MOM/MPOM and COM groups. All otitis media groups had smaller mean area of the stria vascularis in the basal turn of the cochlea when compared to controls. In conclusion, our study demonstrated more severe pathologic changes in the later stages of the continuum of otitis media (MOM/MPOM and COM). Those changes seem to progress from the basal turn of the cochlea (stria vascularis, then inner and outer hair cells) to the middle turn of the cochlea and to the saccule and utricle in the MOM/MPOM and COM stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Dharmu, Indra; Ramamurty, N; Kannan, Ramalingam; Babu, Mary
2007-01-01
The hemolymph-derived achatinin(H) (lectin) from Achatina fulica showed a marked cytotoxic effect on MCF7, a human mammary carcinoma cell line. IC(50) values as measured by the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay for achatinin(H) ranged from 6 to 10 microg/ml in the MCF7 cells. MCF7 cells showed significant morphological changes leading to cell death. The above cell death was observed after 48 h of treatment with 8 microg/ml when compared to untreated cells. Alterations in the tumor marker enzymes, as well as in antioxidant enzymes, were observed after achatinin(H) treatment. The specificity and purity of the achatinin(H) was confirmed by the Western blot assay. Achatinin(H) binding to MCF7 cells was detected by anti-achatinin(H), and visualization of the achatinin(H) binding sites on confluent MCF7 cells was confirmed by flourescein isothiocyanate conjugated secondary antibody. MCF7-treated cells fluoresced, indicating the presence of achatinin(H) binding sites. Fluorescence-activated cell sorting analysis of the cell cycle showed a significant increase in S-phase in MCF7 cells after 48 h of achatinin(H) treatment. The cells were arrested in G(2)/M phase of the cell cycle after 48 h with significant changes in cell viability. Cellular damage was confirmed by agarose gel electrophoresis with the characteristic appearance of a DNA streak in treated MCF7 cells indicating the ongoing apoptosis.
NASA Astrophysics Data System (ADS)
Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen
2015-05-01
Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.
Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen
2015-01-01
Abstract. Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs. PMID:25688541
Cell cycle dependent changes in the plasma membrane organization of mammalian cells.
Denz, Manuela; Chiantia, Salvatore; Herrmann, Andreas; Mueller, Peter; Korte, Thomas; Schwarzer, Roland
2017-03-01
Lipid membranes are major structural elements of all eukaryotic and prokaryotic organisms. Although many aspects of their biology have been studied extensively, their dynamics and lateral heterogeneity are still not fully understood. Recently, we observed a cell-to-cell variability in the plasma membrane organization of CHO-K1 cells (Schwarzer et al., 2014). We surmised that cell cycle dependent changes of the individual cells from our unsynchronized cell population account for this phenomenon. In the present study, this hypothesis was tested. To this aim, CHO-K1 cells were arrested in different cell cycle phases by chemical treatments, and the order of their plasma membranes was determined by various fluorescent lipid analogues using fluorescence lifetime imaging microscopy. Our experiments exhibit significant differences in the membrane order of cells arrested in the G2/M or S phase compared to control cells. Our single-cell analysis also enabled the specific selection of mitotic cells, which displayed a significant increase of the membrane order compared to the control. In addition, the lipid raft marker GPImYFP was used to study the lateral organization of cell cycle arrested cells as well as mitotic cells and freely cycling samples. Again, significant differences were found between control and arrested cells and even more pronounced between control and mitotic cells. Our data demonstrate a direct correlation between cell cycle progression and plasma membrane organization, underlining that cell-to-cell heterogeneities of membrane properties have to be taken into account in cellular studies especially at the single-cell level. Copyright © 2016 Elsevier B.V. All rights reserved.
Chvátal, Alexandr; Anděrová, Miroslava; Kirchhoff, Frank
2007-01-01
Pathological states in the central nervous system lead to dramatic changes in the activity of neuroactive substances in the extracellular space, to changes in ionic homeostasis and often to cell swelling. To quantify changes in cell morphology over a certain period of time, we employed a new technique, three-dimensional confocal morphometry. In our experiments, performed on enhanced green fluorescent protein/glial fibrillary acidic protein astrocytes in brain slices in situ and thus preserving the extracellular microenvironment, confocal morphometry revealed that the application of hypotonic solution evoked two types of volume change. In one population of astrocytes, hypotonic stress evoked small cell volume changes followed by a regulatory volume decrease, while in the second population volume changes were significantly larger without subsequent volume regulation. Three-dimensional cell reconstruction revealed that even though the total astrocyte volume increased during hypotonic stress, the morphological changes in various cell compartments and processes were more complex than have been previously shown, including swelling, shrinking and structural rearrangement. Our data show that astrocytes in brain slices in situ during hypotonic stress display complex behaviour. One population of astrocytes is highly capable of cell volume regulation, while the second population is characterized by prominent cell swelling, accompanied by plastic changes in morphology. It is possible to speculate that these two astrocyte populations play different roles during physiological and pathological states. PMID:17488344
Segmentation and Morphometric Analysis of Cells from Fluorescence Microscopy Images of Cytoskeletons
Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo
2013-01-01
We developed a method to reconstruct cell geometry from confocal fluorescence microscopy images of the cytoskeleton. In the method, region growing was implemented twice. First, it was applied to the extracellular regions to differentiate them from intracellular noncytoskeletal regions, which both appear black in fluorescence microscopy imagery, and then to cell regions for cell identification. Analysis of morphological parameters revealed significant changes in cell shape associated with cytoskeleton disruption, which offered insight into the mechanical role of the cytoskeleton in maintaining cell shape. The proposed segmentation method is promising for investigations on cell morphological changes with respect to internal cytoskeletal structures. PMID:23762186
Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo
2013-01-01
We developed a method to reconstruct cell geometry from confocal fluorescence microscopy images of the cytoskeleton. In the method, region growing was implemented twice. First, it was applied to the extracellular regions to differentiate them from intracellular noncytoskeletal regions, which both appear black in fluorescence microscopy imagery, and then to cell regions for cell identification. Analysis of morphological parameters revealed significant changes in cell shape associated with cytoskeleton disruption, which offered insight into the mechanical role of the cytoskeleton in maintaining cell shape. The proposed segmentation method is promising for investigations on cell morphological changes with respect to internal cytoskeletal structures.
Yang, Long-long; Zhou, Yan; Li, Hai-juan; Guo, Juan; Zhang, Yan-jun; Ding, Gui-rong; Guo, Guo-zhen
2012-03-01
To study the effects of electromagnetic pulse (EMP) exposure on the morphological change and excretion functions of mouse microglia (BV-2) cells and possible mechanism. BV-2 cells were divided into two groups: the group exposed to EMP at 200 kV/m for 200 pulses and sham exposure group. At 1, 6, 12 and 24 hour after exposure the cells and culture supernatant were collected. Cellular morphological change was observed under invert microscope, the levels of TNF-α, IL-1β and IL-10 in culture supernatant were determined by enzyme-linked immunosorbent assay (ELISA), nitric oxide (NO) and reactive oxygen species (ROS) were detected by nitrate reductase method and DCFH-DA probe, respectively. The protein and phosphorylation levels of ERK, JNK and p38 were measured by Western Blot method. After the cells pre-treated with the inhibitor of p38 (SB203580) were exposed to EMP, the levels of NO and ROS in culture supernatant were detected. It was found that the large ameboid shape appeared in some microglia cells exposed to EMP for 1, 6 and 12 h. Moreover, the number of microglia cells with ameboid shape increased significantly at 1 h, 6 h and 12 h after EMP exposure compared with sham group (P < 0.05). The levels of cytokines, such as TNF-α, IL-1β and IL-10, in culture supernatant did not change obviously after EMP exposure. The levels of NO and ROS increased significantly at 1h after EMP exposure, reached the peak at 6 h, began to recover at 12 h and recovered to sham group level at 24 h (P < 0.05). Western blot results showed that the protein and protein phosphorylation levels of ERK and JNK did not change significantly after EMP exposure, however, the protein and protein phosphorylation levels of p38 increased obviously at 1 h and 6 h after EMP exposure, compared with sham group (P < 0.05). In addition, the pretreatment of p38 inhibitor (SB203580) significantly decreased NO and ROS production induced by EMP. EMP exposure may activate microglia cells and promote the production of NO and ROS in mouse microglia cells, and p38 pathway is involved in this process.
Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi
2015-07-10
Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Effect of high pressure treatment on liquid whole egg
NASA Astrophysics Data System (ADS)
Németh, Csaba; Dalmadi, István; Mráz, Balázs; Friedrich, László; Zeke, Ildikó; Juhász, Réka; Suhajda, Ágnes; Balla, Csaba
2012-06-01
In our tests, we artificially infected liquid whole egg samples with Salmonella enteritidis, Listeria monocytogenes, and Staphylococcus aureus bacteria, and then treated the samples in "Food Lab900" high hydrostatic pressure (HHP) instrument for 3-17 min at 200-400 MPa. Subsequently, the change of the viable cell count of the specific bacteria has been tested. In addition to the samples infected with various bacteria, non-infected samples were also treated in each test and the change in viable cell count, colour and viscosity of the samples upon the effect of the treatment. In summary, it can be concluded that in each test of our investigations, the viable cell count of S. enteritidis critical for egg products is reduced significantly, while the reduction of the total viable cell count was around two magnitudes. Additionally, based on our results, microbial destruction, reduction of enthalpy (denaturation of egg white) caused by the treatment at HPP, and colour change are primarily affected by the pressure level, while the changes in rheological properties are also significantly affected by the duration of high pressure treatment (p<0.05).
Mitov, Mihail I.; Harris, Jennifer W.; Alstott, Michael C.; Zaytseva, Yekaterina Y.; Evers, B. Mark; Butterfield, D. Allan
2017-01-01
Thermotherapy, as a method of treating cancer, has recently attracted considerable attention from basic and clinical investigators. A number of studies and clinical trials have shown that thermotherapy can be successfully used as a therapeutic approach for various cancers. However, the effects of temperature on cancer bioenergetics have not been studied in detail with a real time, in a microplate, label-free detection approach. This study investigate how changes in temperature affect the bioenergetics characteristics (mitochondrial function and glycolysis) of three colorectal cancer (CRC) cell lines utilizing the Seahorse XF96 technology. Experiments were performed at 32°C, 37°C and 42°C using assay medium conditions and equipment settings adjusted to produce equal oxygen and pH levels ubiquitously at the beginning of all experiments. The results suggest that temperature significantly changes multiple components of glycolytic and mitochondrial function of all cell lines tested. Under hypothermia conditions (32°C), the extracellular acidification rates (ECAR) of CRC cells were significantly lower compared to the same basal ECAR levels measured at 37°C. Mitochondrial stress test for SW480 cells at 37°C vs 42°C demonstrated increased proton leak while all other OCR components remained unchanged (similar results were detected also for the patient-derived xenograft cells Pt.93). Interestingly, the FCCP dose response at 37°C vs 42°C show significant shifts in profiles, suggesting that single dose FCCP experiments might not be sufficient to characterize the mitochondrial metabolic potential when comparing groups, conditions or treatments. These findings provide valuable insights for the metabolic and bioenergetic changes of CRC cells under hypo- and hyperthermia conditions that could potentially lead to development of better targeted and personalized strategies for patients undergoing combined thermotherapy with chemotherapy. PMID:28342898
Mitov, Mihail I; Harris, Jennifer W; Alstott, Michael C; Zaytseva, Yekaterina Y; Evers, B Mark; Butterfield, D Allan
2017-05-15
Thermotherapy, as a method of treating cancer, has recently attracted considerable attention from basic and clinical investigators. A number of studies and clinical trials have shown that thermotherapy can be successfully used as a therapeutic approach for various cancers. However, the effects of temperature on cancer bioenergetics have not been studied in detail with a real time, microplate based, label-free detection approach. This study investigates how changes in temperature affect the bioenergetics characteristics (mitochondrial function and glycolysis) of three colorectal cancer (CRC) cell lines utilizing the Seahorse XF96 technology. Experiments were performed at 32°C, 37°C and 42°C using assay medium conditions and equipment settings adjusted to produce equal oxygen and pH levels ubiquitously at the beginning of all experiments. The results suggest that temperature significantly changes multiple components of glycolytic and mitochondrial function of all cell lines tested. Under hypothermia conditions (32°C), the extracellular acidification rates (ECAR) of CRC cells were significantly lower compared to the same basal ECAR levels measured at 37°C. Mitochondrial stress test for SW480 cells at 37°C vs 42°C demonstrated increased proton leak while all other OCR components remained unchanged (similar results were detected also for the patient-derived xenograft cells Pt.93). Interestingly, the FCCP dose response at 37°C vs 42°C show significant shifts in profiles, suggesting that single dose FCCP experiments might not be sufficient to characterize the mitochondrial metabolic potential when comparing groups, conditions or treatments. These findings provide valuable insights for the metabolic and bioenergetic changes of CRC cells under hypo- and hyperthermia conditions that could potentially lead to development of better targeted and personalized strategies for patients undergoing combined thermotherapy with chemotherapy. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitov, Mihail I., E-mail: m.mitov@uky.edu; Harris, Jennifer W.; Alstott, Michael C.
Thermotherapy, as a method of treating cancer, has recently attracted considerable attention from basic and clinical investigators. A number of studies and clinical trials have shown that thermotherapy can be successfully used as a therapeutic approach for various cancers. However, the effects of temperature on cancer bioenergetics have not been studied in detail with a real time, microplate based, label-free detection approach. This study investigates how changes in temperature affect the bioenergetics characteristics (mitochondrial function and glycolysis) of three colorectal cancer (CRC) cell lines utilizing the Seahorse XF96 technology. Experiments were performed at 32 °C, 37 °C and 42 °Cmore » using assay medium conditions and equipment settings adjusted to produce equal oxygen and pH levels ubiquitously at the beginning of all experiments. The results suggest that temperature significantly changes multiple components of glycolytic and mitochondrial function of all cell lines tested. Under hypothermia conditions (32 °C), the extracellular acidification rates (ECAR) of CRC cells were significantly lower compared to the same basal ECAR levels measured at 37 °C. Mitochondrial stress test for SW480 cells at 37 °C vs 42 °C demonstrated increased proton leak while all other OCR components remained unchanged (similar results were detected also for the patient-derived xenograft cells Pt.93). Interestingly, the FCCP dose response at 37 °C vs 42 °C show significant shifts in profiles, suggesting that single dose FCCP experiments might not be sufficient to characterize the mitochondrial metabolic potential when comparing groups, conditions or treatments. These findings provide valuable insights for the metabolic and bioenergetic changes of CRC cells under hypo- and hyperthermia conditions that could potentially lead to development of better targeted and personalized strategies for patients undergoing combined thermotherapy with chemotherapy.« less
Safi Oz, Zehra; Doğan Gun, Banu; Gun, Mustafa Ozkan; Ozdamar, Sukru Oguz
2015-01-01
The aim of this study was to explore the cytomorphometric and morphological effects of Trichomonas vaginalis in exfoliated epithelial cells. Ninety-six Pap-stained cervical smears were divided into a study group and two control groups as follows: T. vaginalis cases, a first control group with inflammation, and a second control group without inflammation. Micronucleated, binucleated, karyorrhectic, karyolytic, and karyopyknotic cells and cells with perinuclear halos per 1,000 epithelial cells were counted. Nuclear and cellular areas were evaluated in 70 clearly defined cells in each smear using image analysis. The frequencies of morphological parameters in the T. vaginalis cases were higher than the values of the two control groups, and the difference among groups was found to be significant (p < 0.05). The nuclear and cytoplasmic areas of epithelial cells were diminished in patients with trichomoniasis. The mean nucleus/cytoplasm ratio in T. vaginalis patients was higher than the value in the control groups, and the difference between the study group and control group 1 was significant. However, there was no statistically significant increase between the study group and control group 2. T. vaginalis exhibited significant changes in the cellular size and nuclear structure of the cells. The rising frequency of micronuclei, nuclear abnormalities, and changing nucleus/cytoplasm ratio may reflect genotoxic damage in trichomoniasis. © 2015 S. Karger AG, Basel.
The changes of potassium currents in RCS rat Müller cell during retinal degeneration.
Zhao, TongTao; Li, YaoChen; Weng, ChuanHuang; Yin, ZhengQin
2012-01-03
Müller cells are the principal glial cells expressing membrane-bound potassium channel and predominantly mediating the homeostatic regulation of extracellular K+ produced by neuronal activity in retina. It's well known that Müller cells can be activated in many pathological conditions, but little is known about the change of potassium currents of Müller cells during the progression of retinitis pigmentosa. Herein, the Royal College of Surgeons rats (RCS rat) were employed to investigate some phenotypic and functional changes of Müller cells during retinal degeneration such as the expression of Kir4.1, membrane properties and K+ channel currents by using immunohistochemistry, RT-PCR, western blot and whole-cell patch clamping respectively. Compared with Müller cells in control retina, increased glutamine synthetase (GS) mRNA levels were seen at P30 and P60, and then decreased gradually in RCS rat retina. Morphologically, Müller cells showed significant hypertrophy and proliferation after p60. The increased expression of intermediate filament, glial fibrillary acidic protein (GFAP) and vimentin began at P30 and reached a peak at p60. Kir4.1 channels presented a peak expression at P30. Concomitantly, K(+) currents of Müller cells increased at P30 and decreased at P90 significantly. We concluded that retinal Müller cells of RCS rats underwent an activation initiated by the onset of retinal degeneration before p60 and then an obvious reactive gliosis, which led the basic membrane properties to suffer marked changes, and caused the Kir4.1 channels of Müller cells to occur a clear functional shift, even lose their normal electrophysiological properties. This process aggravates the impairment caused by the initial photoreceptor degeneration. Copyright © 2011 Elsevier B.V. All rights reserved.
Directed evolution of cell size in Escherichia coli.
Yoshida, Mari; Tsuru, Saburo; Hirata, Naoko; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen; Yomo, Tetsuya
2014-12-17
In bacteria, cell size affects chromosome replication, the assembly of division machinery, cell wall synthesis, membrane synthesis and ultimately growth rate. In addition, cell size can also be a target for Darwinian evolution for protection from predators. This strong coupling of cell size and growth, however, could lead to the introduction of growth defects after size evolution. An important question remains: can bacterial cell size change and/or evolve without imposing a growth burden? The directed evolution of particular cell sizes, without a growth burden, was tested with a laboratory Escherichia coli strain. Cells of defined size ranges were collected by a cell sorter and were subsequently cultured. This selection-propagation cycle was repeated, and significant changes in cell size were detected within 400 generations. In addition, the width of the size distribution was altered. The changes in cell size were unaccompanied by a growth burden. Whole genome sequencing revealed that only a few mutations in genes related to membrane synthesis conferred the size evolution. In conclusion, bacterial cell size could evolve, through a few mutations, without growth reduction. The size evolution without growth reduction suggests a rapid evolutionary change to diverse cell sizes in bacterial survival strategies.
Stress Modulus of Cancer Cells
NASA Astrophysics Data System (ADS)
Bonin, Keith; Guthold, Martin; Guo, Xinyi; Sigley, Justin
2012-02-01
Our main goal is to study the different physical and mechanical properties of cells as they advance through different stages of neoplastic transformation from normal to the metastatic state. Since recent reports indicate there is significant ambiguity about how these properties change for different cancer cells, we plan to measure these properties for a single line of cells, and to determine whether the changes vary for different cellular components: i.e. whether the change in physical properties is due to a change in the cytoskeleton, the cell membrane, the cytoplasm, or a combination of these elements. Here we expect to present data on the stress modulus of cancer cells at different stages: normal, mortal cancerous, immortal cancerous, and tumorigenic. The cells are Weinberg cell line Human Mammary Epithelial (HME) cells. Atomic force microscope (AFM) probes with different diameters are used to push on the cell membrane to measure the local, regional and global cell stress modulus. Preliminary results on normal HME cells suggests a stress modulus of 1.5 ± 0.8 kPa when pushing with 7 μm spherical probes. We anticipate reporting an improved value for the modulus as well as results for some of the Weinberg cancer cells.
Monocrotophos induced apoptosis in PC12 cells: role of xenobiotic metabolizing cytochrome P450s.
Kashyap, Mahendra Pratap; Singh, Abhishek Kumar; Kumar, Vivek; Tripathi, Vinay Kumar; Srivastava, Ritesh Kumar; Agrawal, Megha; Khanna, Vinay Kumar; Yadav, Sanjay; Jain, Swatantra Kumar; Pant, Aditya Bhushan
2011-03-21
Monocrotophos (MCP) is a widely used organophosphate (OP) pesticide. We studied apoptotic changes and their correlation with expression of selected cytochrome P450s (CYPs) in PC12 cells exposed to MCP. A significant induction in reactive oxygen species (ROS) and decrease in glutathione (GSH) levels were observed in cells exposed to MCP. Following the exposure of PC12 cells to MCP (10(-5) M), the levels of protein and mRNA expressions of caspase-3/9, Bax, Bcl(2), P(53), P(21), GSTP1-1 were significantly upregulated, whereas the levels of Bclw, Mcl1 were downregulated. A significant induction in the expression of CYP1A1/1A2, 2B1/2B2, 2E1 was also observed in PC12 cells exposed to MCP (10(-5) M), whereas induction of CYPs was insignificant in cells exposed to 10(-6) M concentration of MCP. We believe that this is the first report showing altered expressions of selected CYPs in MCP-induced apoptosis in PC12 cells. These apoptotic changes were mitochondria mediated and regulated by caspase cascade. Our data confirm the involvement of specific CYPs in MCP-induced apoptosis in PC12 cells and also identifies possible cellular and molecular mechanisms of organophosphate pesticide-induced apoptosis in neuronal cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, J.S.; Dubyak, G.R.
Extracellular adenosine triphosphate (ATP) is known to reversibly increase the cation permeability of a variety of freshly isolated and cultured cell types. In this study the effects of extracellular ATP were studied using peripheral blood lymphocytes (PBL) isolated from both normal subjects and from patients with chronic lymphocytic leukemia (CLL). Changes in the permeability to Na+, Rb+, and Li+ ions were measured using conventional isotope and flame photometry techniques. In addition, changes in cytosolic (Ca2+) were fluorimetrically monitored to assess possible changes in net Ca2+ influx. ATP produced a 12-fold increase in 22Na+ influx into CLL cells but only amore » 3.5-fold increase in this flux in PBL cells. A maximal response was produced by 0.1 mmol/L ATP in the absence of Mg2+, while a twofold molar excess of Mg2+ over ATP abolished the response. ATP had no effect on the passive (ouabain-insensitive) 86Rb+ influx into PBL cells but stimulated this flux by fivefold in the CLL cells. Li+ influx into CLL cells was also stimulated threefold by ATP. Under these same conditions ATP also produced a net increase in total cell Na and a decrease in total cell K in the CLL cells. Exclusion of two normally impermeable dyes, trypan blue and ethidium bromide, was not altered in the ATP-treated CLL cells. Finally, extracellular ATP (3 mmol/L) produced no significant change in the cytosolic (Ca2+) of normal, monocyte-depleted populations of PBL. Conversely, this same concentration of ATP produced a very rapid and a significant (an average threefold peak change) increase in the cytosolic (Ca2+) of cell preparations derived from five out of nine CLL patients. In these latter CLL cells, the ATP-induced elevation in cytosolic (Ca2+) appeared to be due to a net increase in Ca2+ influx, since no elevations were observed when the extracellular (Ca2+) was reduced to less than 0.1 mmol/L.« less
Chen, Bin; Che, Tuanjie; Bai, Decheng; He, Xiangyi
2013-04-01
To evaluate the effects of non-Saccharomyces albicans metabolic products on the cell cycle distribution and proliferation of human umbilical vein endothelial cell ECV304 cells in vitro. The parallel dilution supernatant of Saccharomyces tropicalis, Saccharomyces krusei and Saccharomyces glabrata were prepared, and 1, 4, 16-fold(s) diluted concentration and control group were set up. The line of human umbilical vein endothelial cell ECV304 was cultured in vitro and treated by non-Saccharomyces albicans supernatant. The proliferous effect of ECV304 induced by non-Saccharomyces albicans supernatant after 24, 48, 72 h was detected by the methods of MTT, and the changes of cell density and cycle after 48 h were investigated by inverted microscope and flow cytometry. At the 24th hour, all of the higher concentration (1-fold) of non-Saccharomyces albicans supernatant and the 4-folds diluted Saccharomyces krusei could promote ECV304 proliferation(P < 0.05). After adding various non-Saccharomyces albicans supernatant at 48h and 72th hour, Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant significantly increased proliferation rate of ECV304, while Saccharomyces tropicalis supernatant group showed no significant change no matter which concentration was tested. At 48th hour after adding the non-Saccharomyces albicans supernatant, the ECV304 cells density treated by Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant were significantly higher under the inverted microscope. The G0/G1 population of ECV304 cells decreased while cell proliferation index (PI) increased after incubated with Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant for 48 hours (P < 0.05). Saccharomyces tropicalis group showed no significant change (P > 0.05). The metabolic products of Sacharoymces krusei and Saccharomyces glabrata could induce proliferation of ECV304 cell, which suggests non-Saccharomyces albicans should be undergone more attention clinically in detection and treatment.
Altschuler, R A; Dolan, D F; Halsey, K; Kanicki, A; Deng, N; Martin, C; Eberle, J; Kohrman, D C; Miller, R A; Schacht, J
2015-04-30
This study compared the timing of appearance of three components of age-related hearing loss that determine the pattern and severity of presbycusis: the functional and structural pathologies of sensory cells and neurons and changes in gap detection (GD), the latter as an indicator of auditory temporal processing. Using UM-HET4 mice, genetically heterogeneous mice derived from four inbred strains, we studied the integrity of inner and outer hair cells by position along the cochlear spiral, inner hair cell-auditory nerve connections, spiral ganglion neurons (SGN), and determined auditory thresholds, as well as pre-pulse and gap inhibition of the acoustic startle reflex (ASR). Comparisons were made between mice of 5-7, 22-24 and 27-29 months of age. There was individual variability among mice in the onset and extent of age-related auditory pathology. At 22-24 months of age a moderate to large loss of outer hair cells was restricted to the apical third of the cochlea and threshold shifts in the auditory brain stem response were minimal. There was also a large and significant loss of inner hair cell-auditory nerve connections and a significant reduction in GD. The expression of Ntf3 in the cochlea was significantly reduced. At 27-29 months of age there was no further change in the mean number of synaptic connections per inner hair cell or in GD, but a moderate to large loss of outer hair cells was found across all cochlear turns as well as significantly increased ABR threshold shifts at 4, 12, 24 and 48 kHz. A statistical analysis of correlations on an individual animal basis revealed that neither the hair cell loss nor the ABR threshold shifts correlated with loss of GD or with the loss of connections, consistent with independent pathological mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Regulatory T cell activity in immunosuppresive mice model of pseudomonas aeruginosa pneumonia.
Li, Jun-Lu; Chen, Ting-Sang; Yuan, Cong-Cong; Zhao, Guo-Qiang; Xu, Min; Li, Xiao-Yan; Cao, Jie; Xing, Li-Hua
2017-08-01
Pseudomonas aeruginosa (PA) pneumonia is a refractory, even lethal complication in immunosuppressive individuals and immune disturbances may promote the pathological process. We aimed to investigate the regulatory T (Treg) cell activity in an immunosuppressive mice model of PA pneumonia by estimating levels of main transcription factor and the main effector of Treg cells, i.e., Forkhead box protein 3 (FOXP3) and interleukine-10 (IL-10). Seventy-two BALB/c mice were divided into four groups randomly: control (A), PA pneumonia (B), immunosuppression (C) and immunosuppression with PA pneumonia (D). Mice were sacrificed at 4, 8 and 24 h after establishing experimental models. The pathological changes of lung tissue were graded, and the FOXP3 mRNA and serum IL-10 levels were detected. Histological analysis of lung tissues showed there were no significantly pathological changes in groups A and C, but significantly pathological changes were found in groups B and D, especially in group D at 8 h (P<0.05). The expression levels of FOXP3 mRNA in groups A and C showed no significant changes at the three time points, which were significantly lower than those in groups B and D (P<0.05). FOXP3 mRNA levels were lowest at 4 h, and there was significant difference between groups B and D (P<0.05). The serum levels of IL-10 in groups A and C were almost normal at the three time points, but decreased significantly in groups B and D (P<0.05). The serum levels of IL-10 decreased to the lowest at 8 h, especially in group D (P<0.05). The results indicate that PA pneumonia in immunosuppressive individuals worsens rapidly, which may be associated with Treg cells function disturbance. And Treg cells may be promising as adjuvant therapeutics for PA pneumonia in immunosuppressive individuals.
Uno, D; Tsukagoshi, H; Hisada, T; Iwamae, S; Mori, M
1997-03-01
We evaluated the mechanism of the airway hyperresponsiveness (AHR) induced by a calcium ionophore in guinea pigs. Airway responsiveness to intravenous histamine (HS) and substance P (SP) was measured 24 h after a 1-h exposure to aerosolized A23187 (0.03 or 0.1 mg/ml) or its vehicle (10% DMSO). Changes were assessed by calculating -logPC350HS and logPC350SP. Neutral endopeptidase (NEP) activity in the airway tissues, as well as the nitrite (NO2) levels and the cell population in bronchoalveolar lavage fluid (BALF) was determined after measurement of pulmonary function. Changes in SP-induced vascular permeability 24 h after exposure to A23187 were measured by the Evans Blue dye extravasation technique. Exposure to A23187 caused a significant AHR to SP, along with a significant increase in the number of neutrophils and epithelial cells in the BALF. While there was no significant change in NEP activity in the airway tissues, the levels of nitrite in the BALF were significantly decreased in A23187-exposed animals. Significant correlations were found between the number of epithelial cells in the BALF and logPC350SP (r = 0.477, p < 0.05) and between nitrite levels in the BALF and -logPC350SP (r = 0.491, p < 0.05) A23187 exposure did not significantly change the SP-induced airway microvascular leakage. These data suggest that A23187 exposure induced AHR to SP possibly by reducing NO levels in the airway tissues. This may be due to damaged airway epithelium and/or NO breakdown by activated inflammatory cells in the airways of these guinea pigs.
Jauchem, James R; Bernhard, Joshua A; Cerna, Cesario Z; Lim, Tiffany Y; Seaman, Ronald L; Tarango, Melissa
2013-09-01
In previous studies hematocrit has been consistently increased in an anesthetized animal model after exposures to TASER(®) conducted energy weapons (CEWs). In the present study we analyzed changes in blood cell counts and red blood cell membrane proteins following two 30-s applications of a TASER C2 device (which is designed for civilian use). Hematocrit increased significantly from 33.2 ± 2.4 (mean ± SD) to 42.8 ± 4.6 % immediately after CEW exposure of eleven pigs (Sus scrofa). Red blood cell count increased significantly from 6.10 ± 0.55 × 10(12)/L to 7.45 ± 0.94 × 10(12)/L, and mean corpuscular volume increased significantly from 54.5 ± 2.4 fl to 57.8 ± 2.6 fl. Mean corpuscular hemoglobin concentration decreased significantly from 20.5 ± 0.7 to 18.5 ± 0.6 mM. Thirty protein spots (from two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, selected for detailed comparison) exhibited greater densities 30-min post-exposure compared with pre-exposure values. A greater number of echinocytes were observed following CEW exposure. On the basis of these results it appears that, during the strong muscle contractions produced by TASER CEWs, a specific population of red blood cells (RBCs) may be released from the spleen or other reservoirs within the body. The total time of CEW exposure in the present study was relatively long compared with exposures in common law-enforcement scenarios. Despite statistically significant changes in red blood cell counts (and other measures directly related to RBCs), the alterations were short-lived. The transient nature of the changes would be likely to counteract any potentially detrimental effects.
Capra, N F; Ro, J Y
2000-05-01
The aim of the present study was to investigate the effects of intramuscular injection with hypertonic saline, a well-established experimental model for muscle pain, on central processing of proprioceptive input from jaw muscle spindle afferents. Fifty-seven cells were recorded from the medial edge of the subnucleus interpolaris (Vi) and the adjacent parvicellular reticular formation from 11 adult cats. These cells were characterized as central units receiving jaw muscle spindle input based on their responses to electrical stimulation of the masseter nerve, muscle palpation and jaw stretch. Forty-five cells, which were successfully tested with 5% hypertonic saline, were categorized as either dynamic-static (DS) (n=25) or static (S) (n=20) neurons based on their responses to different speeds and amplitudes of jaw movement. Seventy-six percent of the cells tested with an ipsilateral injection of hypertonic saline showed a significant modulation of mean firing rates (MFRs) during opening and/or holding phases. The most remarkable saline-induced change was a significant reduction of MFR during the hold phase in S units (100%, 18/18 modulated). Sixty-nine percent of the DS units (11/16 modulated) also showed significant changes in MFRs limited to the hold phase. However, in the DS neurons, the MFRs increased in seven units and decreased in four units. Finally, five DS neurons showed significant changes of MFRs during both opening and holding phases. Injections of isotonic saline into the ipsilateral masseter muscle had little effect, but hypertonic saline injections made into the contralateral masseter muscle produced similar results to ipsilateral injections with hypertonic saline. These results unequivocally demonstrate that intramuscular injection with an algesic substance, sufficient to produce muscle pain, produces significant changes in the proprioceptive properties of the jaw movement-related neurons. Potential mechanisms involved in saline-induced changes in the proprioceptive signals and functional implications of the changes are discussed.
Single-Cell Analysis of Experience-Dependent Transcriptomic States in Mouse Visual Cortex
Hrvatin, Sinisa; Hochbaum, Daniel R.; Nagy, M. Aurel; Cicconet, Marcelo; Robertson, Keiramarie; Cheadle, Lucas; Zilionis, Rapolas; Ratner, Alex; Borges-Monroy, Rebeca; Klein, Allon M.; Sabatini, Bernardo L.; Greenberg, Michael E.
2017-01-01
Activity-dependent transcriptional responses shape cortical function. However, we lack a comprehensive understanding of the diversity of these responses across the full range of cortical cell types, and how these changes contribute to neuronal plasticity and disease. Here we applied high-throughput single-cell RNA-sequencing to investigate the breadth of transcriptional changes that occur across cell types in mouse visual cortex following exposure to light. We identified significant and divergent transcriptional responses to stimulation in each of the 30 cell types characterized, revealing 611 stimulus-responsive genes. Excitatory pyramidal neurons exhibit inter- and intra-laminar heterogeneity in the induction of stimulus responsive genes. Non-neuronal cells demonstrated clear transcriptional responses that may regulate experience-dependent changes in neurovascular coupling and myelination. Together, these results reveal the dynamic landscape of stimulus-dependent transcriptional changes that occur across cell types in visual cortex, which are likely critical for cortical function and may be sites of de-regulation in developmental brain disorders. PMID:29230054
Metabolomics reveals metabolic changes in male reproductive cells exposed to thirdhand smoke
NASA Astrophysics Data System (ADS)
Xu, Bo; Chen, Minjian; Yao, Mengmeng; Ji, Xiaoli; Mao, Zhilei; Tang, Wei; Qiao, Shanlei; Schick, Suzaynn F.; Mao, Jian-Hua; Hang, Bo; Xia, Yankai
2015-10-01
Thirdhand smoke (THS) is a new term for the toxins in cigarette smoke that linger in the environment long after the cigarettes are extinguished. The effects of THS exposure on male reproduction have not yet been studied. In this study, metabolic changes in male germ cell lines (GC-2 and TM-4) were analyzed after THS treatment for 24 h. THS-loaded chromatography paper samples were generated in a laboratory chamber system and extracted in DMEM. At a paper: DMEM ratio of 50 μg/ml, cell viability in both cell lines was normal, as measured by the MTT assay and markers of cytotoxicity, cell cycle, apoptosis and ROS production were normal as measured by quantitative immunofluorescence. Metabolomic analysis was performed on methanol extracts of GC-2 and TM-4 cells. Glutathione metabolism in GC-2 cells, and nucleic acid and ammonia metabolism in TM-4 cells, was changed significantly by THS treatment. RT-PCR analyses of mRNA for enzyme genes Gss and Ggt in GC-2 cells, and TK, SMS and Glna in TM-4 cells reinforced these findings, showing changes in the levels of enzymes involved in the relevant pathways. In conclusion, exposure to THS at very low concentrations caused distinct metabolic changes in two different types of male reproductive cell lines.
Thermal stability of gallium arsenide solar cells
NASA Astrophysics Data System (ADS)
Papež, Nikola; Škvarenina, Ľubomír.; Tofel, Pavel; Sobola, Dinara
2017-12-01
This article summarizes a measurement of gallium arsenide (GaAs) solar cells during their thermal processing. These solar cells compared to standard silicon cells have better efficiency and high thermal stability. However, their use is partly limited due to high acquisition costs. For these reasons, GaAs cells are deployed only in the most demanding applications where their features are needed, such as space applications. In this work, GaAs solar cells were studied in a high temperature range within 30-650 °C where their functionality and changes in surface topology were monitored. These changes were recorded using an electron microscope which determined the position of the defects; using an atomic force microscope we determined the roughness of the surface and an infrared camera that showed us the thermal radiated places of the defected parts of the cell. The electrical characteristics of the cells during processing were determined by its current-voltage characteristics. Despite the occurrence of subtle changes on the solar cell with newly created surface features after 300 °C thermal processing, its current-voltage characteristic remained without a significant change.
NASA Technical Reports Server (NTRS)
Hymer, Wesley C.
1990-01-01
The secretory capacity of growth hormone (GH) and prolactin (PRL) cells prepared from rats flown in space on the 12.5 day mission of Cosmos 1887 and the 14 day mission of Cosmos 2044 was evaluated in several post-flight tests on Earth. The results showed statistically significant and repeatable decrements in hormone release, especially when biological assays (rather than immunological assays) were used in the tests. Significant and repeatable intracellular changes in GH cells from the flight animals were also found; most important were increases in the GH-specific cytoplasmic staining intensities and cytoplasmic areas occupied by hormore. Tail suspension of rats for 14 days, an established model for mimicking musculo-skeletal changes seen in spaceflown rats, results in some changes in GH and PRL cell function that were similar to those from spaceflown animals. Our results add to a growing body of data that described deconditioning of physiological systems in spaceflight and provide insights into the time frame that might be required for readaptation of the GH/PRL cell system upon return to Earth.
Reducing Recon 2 for steady-state flux analysis of HEK cell culture.
Quek, Lake-Ee; Dietmair, Stefanie; Hanscho, Michael; Martínez, Verónica S; Borth, Nicole; Nielsen, Lars K
2014-08-20
A representative stoichiometric model is essential to perform metabolic flux analysis (MFA) using experimentally measured consumption (or production) rates as constraints. For Human Embryonic Kidney (HEK) cell culture, there is the opportunity to use an extremely well-curated and annotated human genome-scale model Recon 2 for MFA. Performing MFA using Recon 2 without any modification would have implied that cells have access to all functionality encoded by the genome, which is not realistic. The majority of intracellular fluxes are poorly determined as only extracellular exchange rates are measured. This is compounded by the fact that there is no suitable metabolic objective function to suppress non-specific fluxes. We devised a heuristic to systematically reduce Recon 2 to emphasize flux through core metabolic reactions. This implies that cells would engage these dominant metabolic pathways to grow, and any significant changes in gross metabolic phenotypes would have invoked changes in these pathways. The reduced metabolic model becomes a functionalized version of Recon 2 used for identifying significant metabolic changes in cells by flux analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
An extensive program of periodic alternative splicing linked to cell cycle progression
Dominguez, Daniel; Tsai, Yi-Hsuan; Weatheritt, Robert; Wang, Yang; Blencowe, Benjamin J; Wang, Zefeng
2016-01-01
Progression through the mitotic cell cycle requires periodic regulation of gene function at the levels of transcription, translation, protein-protein interactions, post-translational modification and degradation. However, the role of alternative splicing (AS) in the temporal control of cell cycle is not well understood. By sequencing the human transcriptome through two continuous cell cycles, we identify ~1300 genes with cell cycle-dependent AS changes. These genes are significantly enriched in functions linked to cell cycle control, yet they do not significantly overlap genes subject to periodic changes in steady-state transcript levels. Many of the periodically spliced genes are controlled by the SR protein kinase CLK1, whose level undergoes cell cycle-dependent fluctuations via an auto-inhibitory circuit. Disruption of CLK1 causes pleiotropic cell cycle defects and loss of proliferation, whereas CLK1 over-expression is associated with various cancers. These results thus reveal a large program of CLK1-regulated periodic AS intimately associated with cell cycle control. DOI: http://dx.doi.org/10.7554/eLife.10288.001 PMID:27015110
van Det, N F; van den Born, J; Tamsma, J T; Verhagen, N A; Berden, J H; Bruijn, J A; Daha, M R; van der Woude, F J
1996-04-01
Changes in heparan sulfate metabolism may be important in the pathogenesis of diabetic nephropathy. Recent studies performed on renal biopsies from patients with diabetic nephropathy revealed a decrease in heparan sulfate glycosaminoglycan staining in the glomerular basement membrane without changes in staining for heparan sulfate proteoglycan-core protein. To understand this phenomenon at the cellular level, we investigated the effect of high glucose conditions on the synthesis of heparan sulfate proteoglycan by glomerular cells in vitro. Human adult mesangial and glomerular visceral epithelial cells were cultured under normal (5 mM) and high glucose (25 mM) conditions. Immunofluorescence performed on cells cultured in 25 mM glucose confirmed and extended the in vivo histological observations. Using metabolic labeling we observed an altered proteoglycan production under high glucose conditions, with predominantly a decrease in heparan sulfate compared to dermatan sulfate or chondroitin sulfate proteoglycan. N-sulfation analysis of heparan sulfate proteoglycan produced under high glucose conditions revealed less di- and tetrasaccharides compared to larger oligosaccharides, indicating an altered sulfation pattern. Furthermore, with quantification of glomerular basement membrane heparan sulfate by ELISA, a significant decrease was observed when mesangial and visceral epithelial cells were cultured in high glucose conditions. We conclude that high glucose concentration induces a significant alteration of heparan sulfate production by mesangial cells and visceral epithelial cells. Changes in sulfation and changes in absolute quantities are both observed and may explain the earlier in vivo observations. These changes may be of importance for the altered integrity of the glomerular charge-dependent filtration barrier and growth-factor matrix interactions in diabetic nephropathy.
Shahbazfar, Amir Ali; Zare, Payman; Ranjbaran, Mehrdad; Tayefi-Nasrabadi, Hossein; Fakhri, Omid; Farshi, Yashar; Shadi, Sahar; Khoshkerdar, Afsaneh
2014-01-01
Anticancer properties of artemisinin and its derivatives have been shown in many experiments. Addition of butyric acid, miconazole, and iron to this traditional drug has been done in order to enhance its anticancer potency. Cell lines 5637 and 4T1, were cultivated and classified into 13 groups of three each. Different doses of artemisinin with constant doses of iron, miconazole and butyric acid, were added to the cultures. At the end of exposure pathological and enzymatic studies were performed. In four groups treated with different doses of artemisinin and iron, dose-dependent changes were observed. These changes included apoptosis and necrosis with dominance of apoptosis. The supernatant lactate dehydrogenase (LDH) level was increased in a dose-dependent manner, but there was no significant increase in the cell fraction of malonyldialdehyde (MDA) or LDH. In four other groups, which received miconazole, butyric acid and iron in addition to different doses of artemisinin, necrosis was more prominent than apoptosis, and the MDA level did not show any significant change, but LDH was increased. The groups treated with miconazole showed identical changes, with less severity compared to combination therapy groups. In butyric acid-treated groups, the only detectable changes were, mild cell swelling, few apoptosis, and rare necrosis. A combination therapy with artemisinin can be more effective against cancer cells than monotherapy with that. Butyric acid was not effective on cancer cells. Miconazole deviated the nature of cell death from apoptosis to necrosis and it must be used under caution.
2012-01-01
Background Canine mast cell tumour proliferation depends to a large extent on the activity of KIT, a tyrosine kinase receptor. Inhibitors of the KIT tyrosine kinase have recently been introduced and successfully applied as a therapeutic agent for this tumour type. However, little is known on the downstream target genes of this signaling pathway and molecular changes after inhibition. Results Transcriptome analysis of the canine mast cell tumour cell line C2 treated for up to 72 hours with the tyrosine kinase inhibitor masitinib identified significant changes in the expression levels of approximately 3500 genes or 16% of the canine genome. Approximately 40% of these genes had increased mRNA expression levels including genes associated with the pro-proliferative pathways of B- and T-cell receptors, chemokine receptors, steroid hormone receptors and EPO-, RAS and MAP kinase signaling. Proteome analysis of C2 cells treated for 72 hours identified 24 proteins with changed expression levels, most of which being involved in gene transcription, e.g. EIA3, EIA4, TARDBP, protein folding, e.g. HSP90, UCHL3, PDIA3 and protection from oxidative stress, GSTT3, SELENBP1. Conclusions Transcriptome and proteome analysis of neoplastic canine mast cells treated with masitinib confirmed the strong important and complex role of KIT in these cells. Approximately 16% of the total canine genome and thus the majority of the active genes were significantly transcriptionally regulated. Most of these changes were associated with reduced proliferation and metabolism of treated cells. Interestingly, several pro-proliferative pathways were up-regulated, which may represent attempts of masitinib treated cells to activate alternative pro-proliferative pathways. These pathways may contain hypothetical targets for a combination therapy with masitinib to further improve its therapeutic effect. PMID:22747577
Hulshof, Henriëtte J; Novati, Arianna; Luiten, Paul G M; den Boer, Johan A; Meerlo, Peter
2012-10-01
Sex differences in stress reactivity may be one of the factors underlying the increased sensitivity for the development of psychopathologies in women. Particularly, an increased hypothalamic-pituitary-adrenal (HPA) axis reactivity in females may exacerbate stress-induced changes in neuronal plasticity and neurogenesis, which in turn may contribute to an increased sensitivity to psychopathology. The main aim of the present study was to examine male-female differences in stress-induced changes in different aspects of hippocampal neurogenesis, i.e. cell proliferation, differentiation and survival. Both sexes were exposed to a wide variety of stressors, where after differences in HPA-axis reactivity and neurogenesis were assessed. To study the role of oestradiol in potential sex differences, ovariectomized females received low or high physiological oestradiol level replacement pellets. The results show that females in general have a higher basal and stress-induced HPA-axis activity than males, with minimal differences between the two female groups. Cell proliferation in the dorsal hippocampus was significantly higher in high oestradiol females compared to low oestradiol females and males, while doublecortin (DCX) expression as a marker of cell differentiation was significantly higher in males compared to females, independent of oestradiol level. Stress exposure did not significantly influence cell proliferation or survival of new cells, but did reduce DCX expression. In conclusion, despite the male-female differences in HPA-axis activity, the effect of repeated stress exposure on hippocampal cell differentiation was not significantly different between sexes. Copyright © 2012 Elsevier B.V. All rights reserved.
Gregori, Josep; Méndez, Olga; Katsila, Theodora; Pujals, Mireia; Salvans, Cándida; Villarreal, Laura; Arribas, Joaquin; Tabernero, Josep; Sánchez, Alex; Villanueva, Josep
2014-07-15
Secretome profiling has become a methodology of choice for the identification of tumor biomarkers. We hypothesized that due to the dynamic nature of secretomes cellular perturbations could affect their composition but also change the global amount of protein secreted per cell. We confirmed our hypothesis by measuring the levels of secreted proteins taking into account the amount of proteome produced per cell. Then, we established a correlation between cell proliferation and protein secretion that explained the observed changes in global protein secretion. Next, we implemented a normalization correcting the statistical results of secretome studies by the global protein secretion of cells into a generalized linear model (GLM). The application of the normalization to two biological perturbations on tumor cells resulted in drastic changes in the list of statistically significant proteins. Furthermore, we found that known epithelial-to-mesenchymal transition (EMT) effectors were only statistically significant when the normalization was applied. Therefore, the normalization proposed here increases the sensitivity of statistical tests by increasing the number of true-positives. From an oncology perspective, the correlation between protein secretion and cellular proliferation suggests that slow-growing tumors could have high-protein secretion rates and consequently contribute strongly to tumor paracrine signaling.
Cho, Min Chul; Cho, Sung Yong; Yoon, Cheol Yong; Lee, Seung Bae; Kwak, Cheol; Kim, Hyeon Hoe; Jeong, Hyeon
2015-01-01
To investigate the role of EphA2 in malignant cellular behavior in renal cell carcinoma (RCC) cells and whether FAK/RhoA signaling can act as downstream effectors of EphA2 on RCC cells. Expression of EphA2 protein in non-metastatic RCC (Caki-2 and A498), metastatic RCC cells (Caki-1 and ACHN), HEK-293 cells and prostate cancer cells (PC-3 and DU-145; positive controls of EphA2 expression) was evaluated by Western blot. Changes in mRNA or protein expression of EphA2, FAK or membrane-bound RhoA following EphA2, FAK or RhoA small interfering RNA (siRNA) transfection were determined by reverse transcription polymerase chain reaction or Western blot. The effect of siRNA treatment on cellular viability, apoptosis and invasion was analyzed by cell counting kit-8, Annexin-V and modified Matrigel-Boyden assays, respectively. In all RCC cell lines, the expression of EphA2 protein was detectable at variable levels; however, in HEK-293 cells, EphA2 expression was very low. Treatment with EphA2 siRNA significantly reduced the expression of EphA2 mRNA and protein in all RCC cell lines. For non-metastatic RCC cells (Caki-2 and A498) but not metastatic RCC cells (Caki-1 and ACHN), cellular viability, invasiveness, resistance to apoptosis, expression of membrane-bound RhoA protein and FAK phosphorylation were significantly decreased in EphA2 siRNA-treated cells compared to the control. In non-metastatic RCC cells, FAK siRNA significantly attenuated the invasiveness, resistance to apoptosis, as well as expression of membrane-bound RhoA protein without changing protein expression of EphA2. RhoA siRNA significantly decreased the malignant cellular behavior and expression of membrane-bound RhoA protein without changing EphA2 protein expression or FAK phosphorylation. Our data provide the first functional evidence that the EphA2/FAK/RhoA signaling pathway plays a critical role in the malignant cellular behavior of RCC and appears to be functional particularly in the early stage of malignant progression of non-metastatic RCC.
[Effect of ERK/AP-1 signaling pathway on proliferation of hepatoma cells induced by PAR-2 agonists].
Zheng, Yan-min; Xie, Li-qun; Li, Xuan; Zhao, Jun-yan; Chen, Xiao-yi; Chen, Li; Zhou, Jing; Li, Fei
2009-12-01
To investigate the expression of protease activated receptor-2 (PAR-2) in human HepG2 hepatoma cells and elucidate the effects of trypsin and PAR-2 agonist peptide SLIGKV-NH(2) upon the proliferation of hepatoma cells and its intracellular signaling mechanism. PAR-2 protein and mRNA expression were detected by immunofluorescence and RT-PCR. The cells were treated with SLIGKV-NH(2), trypsin, reverse PAR-2 agonist peptide VKGILS-NH(2) or PD98059. The changes of cell cycle distribution were evaluated by flow cytometry. The proliferative potential of HepG2 cells was estimated by MTT. The changes of PAR-2, c-fos and PCNA mRNA expression were detected by RT-PCR. The changes of c-fos and PCNA protein expression were detected by Western blotting. PAR-2 protein and mRNA were expressed in HepG2 cells. PAR-2 mRNA expression (PAR-2/beta-actin) were 0.70 +/- 0.04 and 0.99 +/- 0.05 respectively in cells treated with trypsin and SLIGKV-NH(2). They were both significantly higher than that in the control group (0.35 +/- 0.05, F = 135.534, P < 0.01). Percent G(0)/G(1) phase of HepG2 cells treated with trypsin or SLIGKV-NH(2) were significantly lower than those in the control group [(56.11 +/- 0.85)%, (57.85 +/- 0.46)% vs (79.12 +/- 0.67)%, both P < 0.01] Percent S phase, G(2)/M phase and proliferation index (PI) of HepG2 cells treated with trypsin or SLIGKV-NH(2) were significantly elevated (P < 0.01). The proliferation-enhancing effects and the up-regulation of mRNA and protein of c-fos and PCNA induced by trypsin or SLIGKV-NH(2) were significantly blocked by pretreatment with PD98059 (P < 0.01). There was no statistical significance in proliferation of HepG2 cells between the reverse PAR-2 agonist peptide VKGILS-NH(2) and control group (P > 0.05). PAR-2 is expressed in HepG2 hepatoma cells. PAR-2 activation induced by trypsin or SLIGKV-NH(2) promotes the proliferation of HepG2 cells partially via the ERK/AP-1 pathway.
Dadachova, Ekaterina; Bryan, Ruth A.; Huang, Xianchun; Moadel, Tiffany; Schweitzer, Andrew D.; Aisen, Philip; Nosanchuk, Joshua D.; Casadevall, Arturo
2007-01-01
Background Melanin pigments are ubiquitous in nature. Melanized microorganisms are often the dominating species in certain extreme environments, such as soils contaminated with radionuclides, suggesting that the presence of melanin is beneficial in their life cycle. We hypothesized that ionizing radiation could change the electronic properties of melanin and might enhance the growth of melanized microorganisms. Methodology/Principal Findings Ionizing irradiation changed the electron spin resonance (ESR) signal of melanin, consistent with changes in electronic structure. Irradiated melanin manifested a 4-fold increase in its capacity to reduce NADH relative to non-irradiated melanin. HPLC analysis of melanin from fungi grown on different substrates revealed chemical complexity, dependence of melanin composition on the growth substrate and possible influence of melanin composition on its interaction with ionizing radiation. XTT/MTT assays showed increased metabolic activity of melanized C. neoformans cells relative to non-melanized cells, and exposure to ionizing radiation enhanced the electron-transfer properties of melanin in melanized cells. Melanized Wangiella dermatitidis and Cryptococcus neoformans cells exposed to ionizing radiation approximately 500 times higher than background grew significantly faster as indicated by higher CFUs, more dry weight biomass and 3-fold greater incorporation of 14C-acetate than non-irradiated melanized cells or irradiated albino mutants. In addition, radiation enhanced the growth of melanized Cladosporium sphaerospermum cells under limited nutrients conditions. Conclusions/Significance Exposure of melanin to ionizing radiation, and possibly other forms of electromagnetic radiation, changes its electronic properties. Melanized fungal cells manifested increased growth relative to non-melanized cells after exposure to ionizing radiation, raising intriguing questions about a potential role for melanin in energy capture and utilization. PMID:17520016
Smetana, K; Zápotocký, M
2010-01-01
The present study was undertaken to provide more information on nucleolar changes induced by a histone deacetylase inhibitor such as valproic acid in leukaemic myeloblasts at the single-cell level. For this study, RNA in nucleoli was visualized by a simple but sensitive cytochemical procedure in unfixed cytospins of short-term bone marrow cultures from patients suffering from acute myeloid leukaemia. Valproic acid in leukaemic myeloblasts markedly reduced the nucleolar size and also produced significant transformation of "active" to "resting" and "inactive" nucleoli that reflected the alteration of the nucleolar transcription in sensitive myeloblasts. On this occasion it should be added that valproic acid significantly increased the incidence of altered myeloblasts that changed to apoptotic cells or apoptotic bodies and cell ghosts. In contrast to the above-mentioned decreased nucleolar size, the nucleolar RNA concentration, expressed by computerassisted RNA image densitometry in valproic acidtreated myeloblasts, was not significantly changed. The results of the present study clearly indicated that the nucleolar size and transformation of "active" to "sleeping" or "inactive" nucleoli are convenient markers of the sensitivity and alteration of leukaemic myeloblasts produced by a histone deacetylase inhibitor, valproic acid, at the single-cell level.
NASA Technical Reports Server (NTRS)
Schatten, H.; Hedrick, J.; Chakrabarti, A.
1998-01-01
Insect cell cultures derived from Drosophila melanogaster are increasingly being used as an alternative system to mammalian cell cultures, as they are amenable to genetic manipulation. Although Drosophila cells are an excellent tool for the study of genes and expression of proteins, culture conditions have to be considered in the interpretation of biochemical results. Our studies indicate that significant differences occur in cytoskeletal structure during the long-term culture of the Drosophila-derived cell lines Schneider Line-1 (S1) and Kc23. Scanning, transmission-electron, and immunofluorescence microscopy studies reveal that microfilaments, microtubules, and centrosomes become increasingly different during the culture of these cells from 24 h to 7-14 days. Significant cytoskeletal changes are observed at the cell surface where actin polymerizes into microfilaments, during the elongation of long microvilli. Additionally, long protrusions develop from the cell surface; these protrusions are microtubule-based and establish contact with neighboring cells. In contrast, the microtubule network in the interior of the cells becomes disrupted after four days of culture, resulting in altered transport of mitochondria. Microtubules and centrosomes are also affected in a small percent of cells during cell division, indicating an instability of centrosomes. Thus, the cytoskeletal network of microfilaments, microtubules, and centrosomes is affected in Drosophila cells during long-term culture. This implies that gene regulation and post-translational modifications are probably different under different culture conditions.
Smith, Ryan T; Waring, George O; Durrie, Daniel S; Stahl, Jason E; Thomas, Priscilla
2009-12-01
To compare the effect of femtosecond thinflap LASIK and photorefractive keratectomy (PRK) on postoperative endothelial cell density. In a prospective, randomized, contralateral, single-center clinical trial, 25 patients (mean age: 30+/-5 years [range: 21 to 38 years]) underwent PRK in one eye and thin-flap LASIK in the fellow eye for the correction of myopia using a wavefront-guided platform. The central corneal endothelial cell density was measured using the NIDEK Confoscan 4 preoperatively, and at 1 and 3 months postoperatively. Changes in endothelial cell density were analyzed over time between the two refractive techniques. In PRK, the average preoperative endothelial cell density was 3011+/-329 cells/mm(2), which decreased to 2951+/-327 cells/mm(2) at 1 month (P=.5736) and 2982+/-365 cells/mm(2) at 3 months (P=.6513). In thinflap LASIK, the average preoperative endothelial cell density was 2995+/-325 cells/mm(2), which decreased to 2977+/-358 cells/mm(2) at 1 month (P=.5756) and 2931+/-369 cells/mm(2) at 3 months (P=.4106). No statistically significant difference was found between the two groups at 1 (P=.7404) or 3 (P=.3208) months postoperatively. No statistically significant change was noted in endothelial cell density following either PRK or thin-flap LASIK for the treatment of myopia. Furthermore, no statistically significant difference was found between the two groups out to 3 months postoperatively, indicating that thin-flap LASIK is as safe as PRK with regards to endothelial health.
Robust nuclear lamina-based cell classification of aging and senescent cells
Righolt, Christiaan H.; van 't Hoff, Merel L.R.; Vermolen, Bart J.; Young, Ian T.; Raz, Vered
2011-01-01
Changes in the shape of the nuclear lamina are exhibited in senescent cells, as well as in cells expressing mutations in lamina genes. To identify cells with defects in the nuclear lamina we developed an imaging method that quantifies the intensity and curvature of the nuclear lamina. We show that this method accurately describes changes in the nuclear lamina. Spatial changes in nuclear lamina coincide with redistribution of lamin A proteins and local reduction in protein mobility in senescent cell. We suggest that local accumulation of lamin A in the nuclear envelope leads to bending of the structure. A quantitative distinction of the nuclear lamina shape in cell populations was found between fresh and senescent cells, and between primary myoblasts from young and old donors. Moreover, with this method mutations in lamina genes were significantly distinct from cells with wild-type genes. We suggest that this method can be applied to identify abnormal cells during aging, in in vitro propagation, and in lamina disorders. PMID:22199022
Robust nuclear lamina-based cell classification of aging and senescent cells.
Righolt, Christiaan H; van 't Hoff, Merel L R; Vermolen, Bart J; Young, Ian T; Raz, Vered
2011-12-01
Changes in the shape of the nuclear lamina are exhibited in senescent cells, as well as in cells expressing mutations in lamina genes. To identify cells with defects in the nuclear lamina we developed an imaging method that quantifies the intensity and curvature of the nuclear lamina. We show that this method accurately describes changes in the nuclear lamina. Spatial changes in nuclear lamina coincide with redistribution of lamin A proteins and local reduction in protein mobility in senescent cell. We suggest that local accumulation of lamin A in the nuclear envelope leads to bending of the structure. A quantitative distinction of the nuclear lamina shape in cell populations was found between fresh and senescent cells, and between primary myoblasts from young and old donors. Moreover, with this method mutations in lamina genes were significantly distinct from cells with wild-type genes. We suggest that this method can be applied to identify abnormal cells during aging, in in vitro propagation, and in lamina disorders.
Ren, Chun-E; Zhu, Xueqiong; Li, Jinping; Lyle, Christian; Dowdy, Sean; Podratz, Karl C; Byck, David; Chen, Hai-Bin; Jiang, Shi-Wen
2015-03-13
Epithelial stromal cells represent a major cellular component of human uterine endometrium that is subject to tight hormonal regulation. Through cell-cell contacts and/or paracrine mechanisms, stromal cells play a significant role in the malignant transformation of epithelial cells. We isolated stromal cells from normal human endometrium and investigated the morphological and transcriptional changes induced by estrogen, progesterone and tamoxifen. We demonstrated that stromal cells express appreciable levels of estrogen and progesterone receptors and undergo different morphological changes upon hormonal stimulation. Microarray analysis indicated that both estrogen and progesterone induced dramatic alterations in a variety of genes associated with cell structure, transcription, cell cycle, and signaling. However, divergent patterns of changes, and in some genes opposite effects, were observed for the two hormones. A large number of genes are identified as novel targets for hormonal regulation. These hormone-responsive genes may be involved in normal uterine function and the development of endometrial malignancies.
Detecting cell death with optical coherence tomography and envelope statistics
NASA Astrophysics Data System (ADS)
Farhat, Golnaz; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.
2011-02-01
Currently no standard clinical or preclinical noninvasive method exists to monitor cell death based on morphological changes at the cellular level. In our past work we have demonstrated that quantitative high frequency ultrasound imaging can detect cell death in vitro and in vivo. In this study we apply quantitative methods previously used with high frequency ultrasound to optical coherence tomography (OCT) to detect cell death. The ultimate goal of this work is to use these methods for optically-based clinical and preclinical cancer treatment monitoring. Optical coherence tomography data were acquired from acute myeloid leukemia cells undergoing three modes of cell death. Significant increases in integrated backscatter were observed for cells undergoing apoptosis and mitotic arrest, while necrotic cells induced a decrease. These changes appear to be linked to structural changes observed in histology obtained from the cell samples. Signal envelope statistics were analyzed from fittings of the generalized gamma distribution to histograms of envelope intensities. The parameters from this distribution demonstrated sensitivities to morphological changes in the cell samples. These results indicate that OCT integrated backscatter and first order envelope statistics can be used to detect and potentially differentiate between modes of cell death in vitro.
Mukherjee, Joy; Ow, Saw Yen; Noirel, Josselin; Biggs, Catherine A
2011-02-01
Cell surface physicochemical characterization techniques were combined with quantitative changes in protein expression, to investigate the biological and biophysical changes of Escherichia coli MG1655 cells when grown as a biofilm (BIO). The overall surface charge of BIO cells was found to be less negative, highlighting the need for a lower electrophoretic mobility for attachment to occur. Comparison of the chemical functional groups on the cell surface showed similar profiles, with the absorbance intensity higher for proteins and carbohydrates in the BIO cells. Quantitative proteomic analysis demonstrated that 3 proteins were significantly increased, and 9 proteins significantly decreased in abundance, in cells grown as a BIO compared to their planktonic counterparts, with 7 of these total 12 proteins unique to this study. Proteins showing significant increased or decreased abundance include proteins involved in acid resistance, DNA protection and binding and ABC transporters. Further predictive analysis of the metabolic pathways showed an increased abundance of the amino acid metabolism and tricarboxylic acid (TCA) cycle, with a decrease in expression within the pentose phosphate and glycolysis pathways. It is therefore hypothesized that cells grown as a BIO are still energetically viable potentially using amino acids as an indirect carbon backbone source into the TCA cycle. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reduction of the Earth's magnetic field inhibits growth rates of model cancer cell lines.
Martino, Carlos F; Portelli, Lucas; McCabe, Kevin; Hernandez, Mark; Barnes, Frank
2010-12-01
Small alterations in static magnetic fields have been shown to affect certain chemical reaction rates ex vivo. In this manuscript, we present data demonstrating that similar small changes in static magnetic fields between individual cell culture incubators results in significantly altered cell cycle rates for multiple cancer-derived cell lines. This change as assessed by cell number is not a result of apoptosis, necrosis, or cell cycle alterations. While the underlying mechanism is unclear, the implications for all cell culture experiments are clear; static magnetic field conditions within incubators must be considered and/or controlled just as one does for temperature, humidity, and carbon dioxide concentration. Copyright © 2010 Wiley-Liss, Inc.
Viola, A; Lutz, N W; Maroc, C; Chabannon, C; Julliard, M; Cozzone, P J
2000-03-01
Victoria Blue BO (VB BO) is a new and promising photosensitizer currently being evaluated for photodynamic therapy (PDT). Its photochemical processes are mediated by oxygen radicals, but do not involve singlet oxygen. We used (31)P NMR spectroscopy of VB-BO sensitized TF-1 leukemic cells to gain further insight into the biochemical mechanisms underlying PDT-induced cell death. Sham-treatment experiments were performed to evaluate the effects of this photosensitizer in the absence of light irradiation. Significant metabolic differences were detected for TF-1 cells incubated with VB BO but not exposed to light, as compared with native cells (controls). These changes include reductions in phosphocreatine, UDP-hexose and phosphodiester levels (as percentage of total phosphate) and slightly reduced intracellular pH. Complete phosphocreatine depletion, significant acidification and concomitant inorganic-phosphate accumulation were observed for TF-1 cells irradiated after incubation with VB BO. Moreover, significant changes in phospholipid metabolites, i.e., accumulation of cytidine 5'-diphosphate choline and a decrease in phosphodiester levels, were observed for PDT-treated vs. sham-treated cells. Perturbations of phospholipid metabolism may be involved in programmed cell death, and the detection of a characteristic DNA ladder pattern by gel electrophoresis confirmed the existence of apoptosis in PDT-treated TF-1 cells. Copyright 2000 Wiley-Liss, Inc.
Actin and microtubule networks contribute differently to cell response for small and large strains
NASA Astrophysics Data System (ADS)
Kubitschke, H.; Schnauss, J.; Nnetu, K. D.; Warmt, E.; Stange, R.; Kaes, J.
2017-09-01
Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players are actin filaments and microtubules governing a cell’s response to mechanical stimuli. We investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at small (≤5% deformation) and large strains (>5% deformation). To understand specific contributions of actin filaments and microtubules, we systematically studied cellular responses after treatment with cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed capturing the relative deformation and relaxation of cells under different conditions. We separated distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A, for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with jasplakinolide yielded cell softening for small strains but showed no significant change at large strains. In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel revealed no significant changes for deformations at small strains, but concentration-dependent impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains, while at larger strains; the whole cell is probed with a significant contribution from the microtubules.
A Metabolomics Study of BPTES Altered Metabolism in Human Breast Cancer Cell Lines.
Nagana Gowda, G A; Barding, Gregory A; Dai, Jin; Gu, Haiwei; Margineantu, Daciana H; Hockenbery, David M; Raftery, Daniel
2018-01-01
The Warburg effect is a well-known phenomenon in cancer, but the glutamine addiction in which cancer cells utilize glutamine as an alternative source of energy is less well known. Recent efforts have focused on preventing cancer cell proliferation associated with glutamine addiction by targeting glutaminase using the inhibitor BPTES (bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide). In the current study, an investigation of the BPTES induced changes in metabolism was made in two human breast cancer cell lines, MCF7 (an estrogen receptor dependent cell line) and MDA-MB231 (a triple negative cell line), relative to the non-cancerous cell line, MCF10A. NMR spectroscopy combined with a recently established smart-isotope tagging approach enabled quantitative analysis of 41 unique metabolites representing numerous metabolite classes including carbohydrates, amino acids, carboxylic acids and nucleotides. BPTES induced metabolism changes in the cancer cell lines were especially pronounced under hypoxic conditions with up to 1/3 of the metabolites altered significantly ( p < 0.05) relative to untreated cells. The BPTES induced changes were more pronounced for MCF7 cells, with 14 metabolites altered significantly ( p < 0.05) compared to seven for MDA-MB231. Analyses of the results indicate that BPTES affected numerous metabolic pathways including glycolysis, TCA cycle, nucleotide and amino acid metabolism in cancer. The distinct metabolic responses to BPTES treatment determined in the two breast cancer cell lines offer valuable metabolic information for the exploration of the therapeutic responses to breast cancer.
Minchenko, Dmytro O; Kharkova, A P; Halkin, O V; Karbovskyi, L L; Minchenko, O H
2016-04-01
The aim of the present study was to investigate the effect of hypoxia on the expression of genes encoding insulin-like growth factors (IGF1 and IGF2), their receptor (IGF1R), binding protein-4 (IGFBP4), and stanniocalcin 2 (STC2) in U87 glioma cells in relation to inhibition of endoplasmic reticulum stress signaling mediated by IRE1 (inositol requiring enzyme 1) for evaluation of their possible significance in the control of tumor growth. The expression of IGF1, IGF2, IGF1R, IGFBP4, and STC2 genes in U87 glioma cells transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia was studied by qPCR. The expression of IGF1 and IGF2 genes is down-regulated in glioma cells without IRE1 signaling enzyme function in comparison with the control cells. At the same time, the expression of IGF1R, IGFBP4, and STC2 genes was up-regulated in glioma cells upon inhibition of IRE1, with more significant changes for IGFBP4 and STC2 genes. We also showed that hypoxia does not change significantly the expression of IGF1, IGF2, and IGF1R genes but up-regulated IGFBP4 and STC2 genes expression in control glioma cells. Moreover, the inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 in glioma cells does not change significantly the effect of hypoxia on the expression of IGF1, IGF1R, and IGFBP4 genes but introduces sensitivity of IGF2 gene to hypoxic condition. Thus, the expression of IGF2 gene is resistant to hypoxia only in control glioma cells and significantly down-regulated in cells without functional activity of IRE1 signaling enzyme, which is central mediator of the unfolded protein response and an important component of the tumor growth as well as metabolic diseases. Results of this study demonstrate that the expression of IGF1 and IGF1R genes is resistant to hypoxic condition both in control U87 glioma cells and cells without IRE1 signaling enzyme function. However, hypoxia significantly up-regulates the expression of IGFBP4 gene independently on the inhibition of IRE1 enzyme. These data show that proteins encoded by these genes are resistant to hypoxia except IGFBP4 and participate in the regulation of metabolic and proliferative processes through IRE1 signaling.
Du, Xing; Zhao, Guiqiu; Wang, Qing; Yang, Xian; Gao, Ang; Lin, Jing; Wang, Qian; Xu, Qiang
2014-11-20
Surgically induced astigmatism (SIA) was one of the factors that influences the desirable refractive outcome, and it was related to the length, type, location, structure of the incision and to the suture closure technique, etc. The aim was to evaluate the association of corneal histocytological changes with SIA after phacoemulsification. The study enrolled 68 cases of cataract patient (68 eyes). Corneal histocytological parameters at corneal incision, central cornea and contralateral incision obtained by confocal microscope through focusing (CMTF) were compared preoperatively and 1 week, 2 weeks, 1 month, 3 months and 6 months postoperatively. These biometric parameters included the endothelial cell density, keratocyte density of posterior stromal layer, and the morphological changes. SIA was calculated by Jaffe's vector analysis. 1 From preoperatively to 1 week, 2 weeks, 1 month, 3 months and 6 months postoperatively, the endothelail cell density was decreased significantly (p < 0.05). Keratocyte density of posterior stroma layer was increased significantly only at 1 week, 2 weeks, 1 month, 3 months postoperatively (p <0.05), but not statistically significant (p = 0.173) at 6 months postoperatively compared to preoperative values. 2 The histocytological observations indicated that the morphology changed significantly postoperatively at the corneal incision, including the cell absent area, wave-like area, dot-like and mass-like hyperreflection, stripe-like absent area, in the endothelial layer, and the keratocyte activation, microfolds, irregular hyporeflective or hyperreflective belt, and a little dot-like hyperreflection in the posterior stroma layer. 3 The reduction of the endothelial cell density at the corneal incision at 1 week, 2 weeks, 1 month postoperatively, were positively correlated with SIA (P1 week = 0.003, P2 weeks = 0.003, P1 month = 0.032), while others were not associated with SIA statistically. The reduction of endothelail cell density and the histocytological changes at the corneal incision were associated with SIA. The underlining mechanism needs further study.
NASA Astrophysics Data System (ADS)
Yang, Yang; Sun, Xiaoxia; Zhao, Yongfang
2017-07-01
Fixatives are traditionally used in marine ecosystem research. The bias introduced by fixatives on the dimensions of plankton cells may lead to an overestimation or underestimation of the carbon biomass. To determine the impact of traditional fixatives on dinoflagellates during short- and long-term fixation, we analyzed the degree of change in three bloom-forming dinoflagellates ( Prorocentrum micans, Scrippsiella trochoidea and Noctiluca scintillans) brought about by Lugol's iodine solution (hereafter Lugol's) and formalin. The fixation effects were species-specific. P. micans cell volume showed no significant change following long-term preservation, and S. trochoidea swelled by approximately 8.06% in Lugol's and by 20.97% in formalin as a percentage of the live cell volume, respectively. N. scintillans shrank significantly in both fixatives. The volume change due to formalin in N. scintillans was not concentration-dependent, whereas the volume shrinkage of N. scintillans cells fixed with Lugol's at a concentration of 2% was nearly six-fold that in cells fixed with Lugol's at a concentration of 0.6%-0.8%. To better estimate the volume of N. scintillans fixed in formalin at a concentration of 5%, we suggest that the conversion relationship was as follows: volume of live cell=volume of intact fixed cell/0.61. Apart from size change, damage induced by fixatives on N. scintillans was obvious. Lugol's is not a suitable fixative for N. scintillans due to high frequency of broken cells. Accurate carbon biomass estimate of N. scintillans should be performed on live samples. These findings help to improve the estimate of phytoplankton cell volume and carbon biomass in marine ecosystem.
Bioinspired Tuning of Hydrogel Permeability-Rigidity Dependency for 3D Cell Culture
NASA Astrophysics Data System (ADS)
Lee, Min Kyung; Rich, Max H.; Baek, Kwanghyun; Lee, Jonghwi; Kong, Hyunjoon
2015-03-01
Hydrogels are being extensively used for three-dimensional immobilization and culture of cells in fundamental biological studies, biochemical processes, and clinical treatments. However, it is still a challenge to support viability and regulate phenotypic activities of cells in a structurally stable gel, because the gel becomes less permeable with increasing rigidity. To resolve this challenge, this study demonstrates a unique method to enhance the permeability of a cell-laden hydrogel while avoiding a significant change in rigidity of the gel. Inspired by the grooved skin textures of marine organisms, a hydrogel is assembled to present computationally optimized micro-sized grooves on the surface. Separately, a gel is engineered to preset aligned microchannels similar to a plant's vascular bundles through a uniaxial freeze-drying process. The resulting gel displays significantly increased water diffusivity with reduced changes of gel stiffness, exclusively when the microgrooves and microchannels are aligned together. No significant enhancement of rehydration is achieved when the microgrooves and microchannels are not aligned. Such material design greatly enhances viability and neural differentiation of stem cells and 3D neural network formation within the gel.
Analysis of the Effects of δ-Tocopherol on RAW264.7 and K562 Cells Based on 1H NMR Metabonomics.
Lu, Yang; Li, Hui; Geng, Yue
2018-01-31
δ-Tocopherol (δ-TOH) is a form of vitamin E with higher bioactivity. In this study, we studied the bioactivity of δ-TOH using the IC 50 of δ-TOH on RAW264.7 (80 μM) and K562 (110 μM) cells. We compared the differential metabolites from the cell lines with and without δ-TOH treatment by 1 H NMR metabonomics analysis. It was found that δ-TOH affected the protein biosynthesis, betaine metabolism, and urea cycle in various ways in both cell lines. Metabolic levels of the cell lines were changed after treatment with δ-TOH as differential metabolites were produced. The betaine level in RAW264.7 cells was reduced significantly, while the l-lactic acid level in K562 cells was significantly enhanced. The metabolic changes might contribute to the switch of the respiration pattern from aerobic respiration to anaerobic respiration in K562 cells. These results are helpful in further understanding the subtoxicity of δ-TOH.
Effects of JP-8 Jet Fuel on Homeostasis of Clone 9 Rat Liver Cells
NASA Technical Reports Server (NTRS)
Wilson, C. L.; Barhoumi, R.; Burghardt, R.; Miladi, A.; Jung, A.
2000-01-01
Chronic exposure to JP-8 and other kerosene-based petroleum distillates has been associated with hepatic, renal, neurologic, pulmonary, and immune toxicity. However, the effects of kerosene-type jet fuels on cellular homeostasis hitherto have not been reported. Fluorescence imaging using a Meridian Ultima laser scanning fluorescence microscope was used to evaluate the effect of JP-8 jet fuel on a communication competent rat liver cell line. Several endpoints of cellular function were measured including gap junctional intercellular communication (GJIC), mitochondrial and plasma membrane potential (MMP and PMP, respectively), intracellular glutathione (GSH) concentration, glutathione-S-transferase (GST) activity, and reactive oxygen species (ROS) generation. Cells were treated with JP-8 (0.01 to 2% in ethanol (EtOH)) for the following time points: 1 h, 24 h, 48 h, and analysis immediately after addition of jet fuel. GJIC analyzed directly after addition of 1% JP-8 was reduced 4.9-fold relative to EtOH-dosed control groups and further reduction (12.6-fold) was observed in cells treated for 1 h. Moreover, GJIC was not recoverable in cells treated with 1% JP-8 for 1 h and subsequently washed and incubated in fresh medium for 1 h. Significant changes in GSH content and GST activity were observed in cells analyzed directly after addition of 1% JP-8. GSH content increased in cells treated for 1 h with less than 2% JP-8 whereas treatment with 2% JP-8 for 1 h resulted in a 50% reduction in intracellular GSH relative to EtOH-dosed controls. Cells treated with 1% JP-8 for 48 h exhibited changes in GSH levels. However, higher JP-8 concentrations exhibited more pronounced changes in GSH and GST, which led to suppression of GSH synthesis. ROS increased in a dose-responsive fashion at JP-8 concentrations up to 1%, but decreased to 80% of control values at 2% and 3% JP-8. A 25% reduction in PMP was observed in cells treated for 1 h with 1% JP-8. In contrast, cells treated for 48 h with 2% JP-8 exhibited a 25% increase when compared to control. No significant changes were noted in the 0.01 and 1% treatment groups. Moreover, no significant changes were observed in MMP or intracellular calcium concentrations in cells treated with 0.01 to 2% JP-8 for up to 48 h. In summary, the most significant effects observed in the present study which may contribute to the toxicity of JP-8 jet fuel in cultured rat liver cells include effects on GJIC, ROS production, and GSH depletion at high (i.e., greater than 2%) JP-8 concentrations.
NASA Astrophysics Data System (ADS)
Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore
2014-02-01
The present study intended to examine the effect of visible red light on structural and cellular parameters on wounded skin fibroblast cells. To achieve the stated objective, uniform scratch was created on confluent monolayered human skin fibroblast cells, and were exposed to single dose of He-Ne laser (15 mm spot, 6.6808 mWcm-2) at 1, 2, 3, 4, 5, 6 and 7 Jcm-2 in the presence and absence of 10% fetal bovine serum (FBS). Beam profile measurements of the expanded laser beam were conducted to ensure the beam uniformity. The influence of laser dose on the change in temperature was recorded using sensitive temperature probe. Additionally, following laser exposure cell migration and cell survival were documented at different time intervals on wounded human skin fibroblast cells grown in vitro. Beam profile measurements indicated more or less uniform power distribution over the whole beam area. Temperature monitoring of sham irradiated control and laser treatment groups displayed negligible temperature change indicating the absence of thermal effect at the tested laser doses. In the absence of 10% FBS, single exposure of different laser doses failed to produce any significant effects on cell migration or cell survival. However, in the presence of serum single exposure of 5 J/cm2 on wounded skin fibroblasts significantly enhanced the cell migration (P<0.05) compared to the other tested doses (1, 2, 3, 4, 6 and 7 J/cm2) and sham irradiated controls. In conclusion, the LLLT acts by improving cell migration and cell proliferation to produce measurable changes in wounded fibroblast cells.
Kadow-Romacker, Anke; Duda, Georg N; Bormann, Nicole; Schmidmaier, Gerhard; Wildemann, Britt
2013-12-01
Osteoblast- and osteoclast-like cells are responsible for coordinated bone maintenance, illustrated by a balanced formation and resorption. Both parameters appear to be influenced by mechanical constrains acting on each of these cell types individually. We hypothesized that the interactions between both cell types are also influenced by mechanical stimulation. Co-cultures of osteoblast- and osteoclast-like cells were stimulated with 1,100 µstrain, 0.1 or 0.3 Hz for 1-5 min/day over 5 days. Two different setups depending on the differentiation of the osteoclast-like cells were used: i) differentiation assay for the fusion of pre-osteoclasts to osteoclasts, ii) resorption assay to determine the activity level of osteoclast-like cells. In the differentiation assay (co-culture of osteoblasts with unfused osteoclast precursor cells) the mechanical stimulation resulted in a significant decrease of collagen-1 and osteocalcin produced by osteoblast-like cells. Significantly more TRAP-iso5b was measured after stimulation for 3 min with 0.1 Hz, indicating enhanced osteoclastogenesis. In the resorption assay (co-culture of osteoblasts with fused osteoclasts) the stimulation for 3 min with 0.3 Hz significantly increased the resorption activity of osteoclasts measured by the pit formation and the collagen resorption. The same mechanical stimulation resulted in an increased collagen-1 production by the osteoblast-like cells. The ratio of RANKL/OPG was not different between the groups. These findings demonstrate that already small changes in duration or frequency of mechanical stimulation had significant consequences for the behavior of osteoblast- and osteoclast-like cells in co-culture, which partially depend on the differentiation status of the osteoclast-like cells.
The effects of the fungicides fenhexamid and myclobutanil on SH-SY5Y and U-251 MG human cell lines.
Nagel, David A; Hill, Eric J; O'Neil, John; Mireur, Alexandra; Coleman, Michael D
2014-11-01
Mixtures of pesticides in foodstuffs and the environment are ubiquitous in the developed world and although agents are usually exhaustively tested individually, the toxicological implications of pesticide mixtures are underreported. In this study, the effects of two fungicides, fenhexamid and myclobutanil were investigated individually and in combination on two human cell lines, SH-SY5Y neuronal cells and U-251 MG glial cells. After 48h of incubation with increasing concentrations of pesticides ranging from 1 to 1000μM, gene expression profiles were studied in addition to toxicity end points, including cell viability, mitochondrial depolarisation as well as cellular glutathione maintenance. There were no significant differences between the susceptibility of the two cell lines in terms of cell viability assessment or mitochondrial membrane potential, when agents were administered either individually or in combination. By contrast, in the presence of the fungicides, the SH-SY5Y cells showed significantly greater susceptibility to oxidative stress in terms of total thiol depletion in comparison with the astrocytic cells. Treatment with the two pesticides led to significant changes in the cell lines' expression of several genes which regulate cell cycle control and growth (RB1, TIMP1) as well as responses to DNA attrition (ATM and CDA25A) and control of apoptosis (FAS). There was no evidence in this study that the combination of fenhexamid and myclobutanil was significantly more toxic than individual exposure, although gene expression changes suggested there may be differences in the sub-lethal response of both cell lines to both individual and combined exposure. Copyright © 2014 Elsevier B.V. All rights reserved.
Kim, Jiyeon; Kim, Tae Yeon; Lee, Myung Shin; Mun, Ji Young; Ihm, Chunhwa; Kim, Soon Ae
2016-09-16
It has been suggested that tumor cells secrete exosomes to modify the local microenvironment, which then promotes intercellular communication and metastasis. Although exosomes derived from cancer cells may contribute to the epithelial-mesenchymal transition (EMT) in untransformed cells, few studies have defined exosome cargo upon induction of EMT. In this study, we investigated the changes in exosomal cargo from the epithelial to mesenchymal cell phenotype by inducing EMT with transforming growth factor (TGF)-β1 in A549 human lung adenocarcinoma cells. The protein content of the exosomes reflects the change in the cell phenotype. In addition, miR-23a was significantly enriched in the exosomes after mesenchymal transition. Following treatment of exosomes from mesenchymal cells via EMT induction with TGF-β1 to the epithelial cell type, phenotypic changes in protein expression level and cell morphology were observed. Autologous treatment of exosomes enhanced the transcriptional activity and abundance of β-catenin. Our results suggest that the exosomal protein and miRNA content reflects the physiological condition of its source and that exosomes induce phenotypic changes via autocrine signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
Münster, M; Kook, P; Araujo, R; Hörauf, A; Vieth, M
2015-01-01
It was hypothesized that typical characteristics of hyperregeneratory esophagopathy (HRE) in humans such as basal cell hyperplasia and elongation of stromal papillae are also histologically detectable in canine esophageal epithelium, and that these changes are associated with clinical signs and endoscopic findings suggesting gastroesophageal reflux (GER). Sixty-five adult dogs with clinical signs attributable to esophageal disease underwent esophagoscopy and biopsy. Clinical signs suggesting GER (regurgitation, ptyalism, painful discomfort) were prospectively evaluated through a questionnaire. Endoscopic mucosal alterations suggesting GER such as minimal endoscopic changes and obvious mucosal defects were assessed via video endoscopy. Biopsy specimens obtained from the esophageal squamous epithelium were evaluated histologically. The squamous epithelium's substructures of esophageal biopsies were quantitatively assessed through microscopic morphometry. Esophageal squamous epithelium was considered normal in 48 dogs, and HRE was detected histologically in 17 dogs; both pathognomonic changes (basal cell hyperplasia, elongation of stromal papillae) were consistently present. Morphometrically assessed stromal papillary length and basal cell layer thickness was significantly (each, p < 0.0001) higher in the 17 dogs with HRE than in the 48 dogs without HRE, respectively. Overall, clinical signs suggesting GER were significantly (p = 0.02) more frequently encountered and regurgitation was significantly (p = 0.009) more common in the 17 dogs with HRE than in the 48 dogs without HRE. Similarly, endoscopic changes were significantly (p = 0.002) more frequently observed and minimal endoscopic changes suggesting GER were significantly (p = 0.004) more common in 17 dogs with HRE than in the 48 dogs without HRE. Typical characteristics of hyperregeneratory esophagopathy in humans are also histologically detectable in canine esophageal epithelium. Histological changes are associated with clinical signs and endoscopic findings suggesting GER.
Study of the rat adrenal renin-angiotensin system at a cellular level.
Chiou, C Y; Williams, G H; Kifor, I
1995-01-01
To address the question as to how zona glomerulosa (ZG) cell angiotensin II (Ang II) secretion is regulated, we developed an immuno-cell blot assay to measure its secretion from single cells. We compared these results with those obtained from population studies using a superfusion system. Modulation of Ang II secretion was investigated acutely (by administrating potassium [K+] or captopril) and chronically (by feeding the animals low or high sodium diets). The area of secretory cells, halo areas, and halo intensities varied widely but were highly significantly correlated (P < 0.001) with each other. A disproportionate amount of Ang II was secreted by a small number of large cells. When K+ concentration was increased from 3.6 to 0 mM, superfused ZG cells increased their Ang II secretion 2.32 +/- 0.59-fold. Administration of captopril reduced the K(+)-stimulated Ang II secretion 1.24 +/- 0.07 fold. These findings were reflected in the cell blot assay as a change in the frequency distribution of halo area by K+ and captopril in the same direction as in the population study. In both conditions, the percentage of secretory cells did not change significantly from control. Superfused ZG cells from rats on a low sodium diet secreted 1.85 +/- 0.58-fold more Ang II than cells from sodium-loaded rats (p < 0.05, n = 6). The cell blot assay confirmed these findings with sodium restriction significantly increasing (P < 0.001) both the halo area and its frequency distribution to a larger portion of high secreting cells. However, in contrast to acute treatment with K+ or captopril, the number of secretory cells also doubled. Thus, the individual ZG cell uses two mechanisms to modify Ang II production. In response to acute stimulation and suppression, the amount of Ang II secreted per cell is modified without changing the number of secretary cells. With chronic stimulation, both the amount of Ang II secreted per cell and the number of secretary cells increase. Images PMID:7657812
Shin, Dae-Whan
2002-01-01
Although there are many reports on the splenic (systemic) T cell response after Toxoplasma gondii infection, little information is available regarding the local T cell responses of peritoneal exudate cells (PEC) and gut intraepithelial lymphocytes (IEL) following peroral infection with bradyzoites. Mice were infected with 40 cysts of the 76K strain of T. gondii, and then sacrificed at days 0, 1, 4, 7 and 10 postinfection (PI). The cellular composition and T cell responses of PEC and IEL were analyzed. The total number of PEC and IEL per mouse increased after infection, but the ratio of increase was higher in IEL. Lymphocytes were the major component of both PEC and IEL. The relative percentages of PEC macrophages and neutrophils/eosinophils increased significantly at day 1 and 4 PI, whereas those of IEL did not change significantly. The percentage of PEC NK1.1 and γδ T cells peaked at day 4 PI (p < 0.0001), and CD4 and CD8α T cells increased continuously after infection. The percentages of IEL CD8α and γδ T cells decreased slightly at first, and then increased. CD4 and NK1.1 T cells of IEL did not change significantly after infection. IFN-γ-producing PEC NK1.1 T cells increased significantly from day 1 PI, but the other T cell subsets produced IFN-γ abundantly thereafter. The proportion of IEL IFN-γ-producing CD8α and γδ T cells increased significantly after infection, while IEL NK1.1 T cells had similar IFN-γ production patterns. Taken together, CD4 T cells were the major phenotype and the important IFN-γ-producing T cell subsets in PEC after oral infection with T. gondii, whereas CD8α T cells had these roles in IEL. These results suggest that PEC and IEL comprise different cell differentials and T cell responses, and according to infection route these factors may contribute to the different cellular immune responses. PMID:12325441
Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun
2010-07-01
This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.
Singh, Kanika; Cubano, Luis; Lewis, Marian
2015-01-01
Gravitational perturbation altered gene expression and increased glucose consumption in spaceflown Jurkat cells. The purpose of this study was to determine if the acceleration experienced during launch was responsible for these changes. In ground-based studies, cells were subjected to typical launch centrifugal acceleration (3g of force for eight minutes) and centrifugal force of 90g for five minutes (commonly used to sediment cells) in a laboratory centrifuge. Controls consisted of static cultures. Gene expression was analyzed by RT-PCR. pH and glucose concentrations were evaluated to monitor metabolic changes. Comparison with controls indicated no significant change in pH or glucose use. Gene expression of Jurkat cells subjected to 3g or 90g of force was altered for only two genes out of seven tested. This research suggests that the changes observed in Jurkat cells flown on STS-95 were not a result of launch acceleration but to other conditions experienced during space flight. PMID:23875517
Low Testosterone Alters the Activity of Mouse Prostate Stem Cells.
Zhou, Ye; Copeland, Ben; Otto-Duessel, Maya; He, Miaoling; Markel, Susan; Synold, Tim W; Jones, Jeremy O
2017-04-01
Low serum testosterone (low T) has been repeatedly linked to worse outcomes in men with newly diagnosed prostate cancer (PC). How low T contributes to these outcomes is unknown. Here we demonstrate that exposure to low T causes significant changes in the mouse prostate and prostate stem cells. Mice were castrated and implanted with capsules to achieve castrate, normal, or sub-physiological levels of T. After 6 weeks of treatment, LC-MS/MS was used to quantify the levels of T and dihydrotestosterone (DHT) in serum and prostate tissue. FACS was used to quantify the percentages of purported prostate stem and transit amplifying (TA) cells in mouse prostates. Prostate tissues were also stained for the presence of CD68+ cells and RNA was extracted from prostate tissue or specific cell populations to measure changes in transcript levels with low T treatment. Despite having significantly different levels of T and DHT in the serum, T and DHT concentrations in prostate tissue from different T treatment groups were similar. Low T treatment resulted in significant alterations in the expression of androgen biosynthesis genes, which may be related to maintaining prostate androgen levels. Furthermore, the expression of androgen-regulated genes in the prostate was similar among all T treatment groups, demonstrating that the mouse prostate can maintain functional levels of androgens despite low serum T levels. Low T increased the frequency of prostate stem and TA cells in adult prostate tissue and caused major transcriptional changes in those cells. Gene ontology analysis suggested that low T caused inflammatory responses and immunofluorescent staining indicated that low T treatment led to the increased presence of CD68+ macrophages in prostate tissue. Low T alters the AR signaling axis which likely leads to maintenance of functional levels of prostate androgens. Low T also induces quantitative and qualitative changes in prostate stem cells which appear to lead to inflammatory macrophage infiltration. These changes are proposed to lead to an aggressive phenotype once cancers develop and may contribute to the poor outcomes in men with low T. Prostate 77:530-541, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Denney, Helen A; Whittle, Robert J; Lai, Jennifer; Jacques, Richard M; Taylor, Peter C
2017-01-01
Induction of immune tolerance by an increase in regulatory T (Treg) cells after extracorporeal photopheresis (ECP) is thought to contribute to how ECP exerts its therapeutic effect in patients with chronic graft-versus-host disease (cGvHD). We investigated whether percentages and absolute counts of Treg cells changed post-ECP, and examined correlation with response. Absolute counts and % of CD4+ T cells and Treg cells (CD4 + CD25 + FOXP3 + CD127dim/-) were evaluated using flow cytometry in 32 patients with cGvHD treated by ECP for a minimum of 3 months, and up to 12 months. CD4+ or Treg cells at baseline to 12 months post-ECP were compared with changes in skin disease scores or global organ involvement, or the ability to taper steroids, at 14, 28, and 56 weeks. Regulatory T cells % increased significantly above any overall changes in CD4+ % at 6, 9, and 12 months post-ECP. There was no statistically significant association between Treg cells and skin or steroid response, whereas a larger increase in CD4+ count from baseline to 1 to 3 months corresponded to increased odds of being able to reduce steroid dose by 50% or greater at 14 weeks. Skin and global organ responders at 28 weeks had higher median Treg cell counts 3 months post-ECP than nonresponders, as did steroid responders at 56 weeks who were 12 months post-ECP. Regulatory T cell counts and % varied greatly among cGvHD patients, and the increase post-ECP was not significant until 6 months. No clear correlation was found between Treg cells and clinical improvement, suggesting that increases in Treg cell numbers and/or proportions are not driving the mechanism leading to a response after ECP.
Curcumin modulates DNA methylation in colorectal cancer cells.
Link, Alexander; Balaguer, Francesc; Shen, Yan; Lozano, Juan Jose; Leung, Hon-Chiu E; Boland, C Richard; Goel, Ajay
2013-01-01
Recent evidence suggests that several dietary polyphenols may exert their chemopreventive effect through epigenetic modifications. Curcumin is one of the most widely studied dietary chemopreventive agents for colon cancer prevention, however, its effects on epigenetic alterations, particularly DNA methylation, remain unclear. Using systematic genome-wide approaches, we aimed to elucidate the effect of curcumin on DNA methylation alterations in colorectal cancer cells. To evaluate the effect of curcumin on DNA methylation, three CRC cell lines, HCT116, HT29 and RKO, were treated with curcumin. 5-aza-2'-deoxycytidine (5-aza-CdR) and trichostatin A treated cells were used as positive and negative controls for DNA methylation changes, respectively. Methylation status of LINE-1 repeat elements, DNA promoter methylation microarrays and gene expression arrays were used to assess global methylation and gene expression changes. Validation was performed using independent microarrays, quantitative bisulfite pyrosequencing, and qPCR. As expected, genome-wide methylation microarrays revealed significant DNA hypomethylation in 5-aza-CdR-treated cells (mean β-values of 0.12), however, non-significant changes in mean β-values were observed in curcumin-treated cells. In comparison to mock-treated cells, curcumin-induced DNA methylation alterations occurred in a time-dependent manner. In contrast to the generalized, non-specific global hypomethylation observed with 5-aza-CdR, curcumin treatment resulted in methylation changes at selected, partially-methylated loci, instead of fully-methylated CpG sites. DNA methylation alterations were supported by corresponding changes in gene expression at both up- and down-regulated genes in various CRC cell lines. Our data provide previously unrecognized evidence for curcumin-mediated DNA methylation alterations as a potential mechanism of colon cancer chemoprevention. In contrast to non-specific global hypomethylation induced by 5-aza-CdR, curcumin-induced methylation changes occurred only in a subset of partially-methylated genes, which provides additional mechanistic insights into the potent chemopreventive effect of this dietary nutraceutical.
Curcumin Modulates DNA Methylation in Colorectal Cancer Cells
Link, Alexander; Balaguer, Francesc; Shen, Yan; Lozano, Juan Jose; Leung, Hon-Chiu E.; Boland, C. Richard; Goel, Ajay
2013-01-01
Aim Recent evidence suggests that several dietary polyphenols may exert their chemopreventive effect through epigenetic modifications. Curcumin is one of the most widely studied dietary chemopreventive agents for colon cancer prevention, however, its effects on epigenetic alterations, particularly DNA methylation, remain unclear. Using systematic genome-wide approaches, we aimed to elucidate the effect of curcumin on DNA methylation alterations in colorectal cancer cells. Materials and Methods To evaluate the effect of curcumin on DNA methylation, three CRC cell lines, HCT116, HT29 and RKO, were treated with curcumin. 5-aza-2′-deoxycytidine (5-aza-CdR) and trichostatin A treated cells were used as positive and negative controls for DNA methylation changes, respectively. Methylation status of LINE-1 repeat elements, DNA promoter methylation microarrays and gene expression arrays were used to assess global methylation and gene expression changes. Validation was performed using independent microarrays, quantitative bisulfite pyrosequencing, and qPCR. Results As expected, genome-wide methylation microarrays revealed significant DNA hypomethylation in 5-aza-CdR-treated cells (mean β-values of 0.12), however, non-significant changes in mean β-values were observed in curcumin-treated cells. In comparison to mock-treated cells, curcumin-induced DNA methylation alterations occurred in a time-dependent manner. In contrast to the generalized, non-specific global hypomethylation observed with 5-aza-CdR, curcumin treatment resulted in methylation changes at selected, partially-methylated loci, instead of fully-methylated CpG sites. DNA methylation alterations were supported by corresponding changes in gene expression at both up- and down-regulated genes in various CRC cell lines. Conclusions Our data provide previously unrecognized evidence for curcumin-mediated DNA methylation alterations as a potential mechanism of colon cancer chemoprevention. In contrast to non-specific global hypomethylation induced by 5-aza-CdR, curcumin-induced methylation changes occurred only in a subset of partially-methylated genes, which provides additional mechanistic insights into the potent chemopreventive effect of this dietary nutraceutical. PMID:23460897
Monocrotophos Induced Apoptosis in PC12 Cells: Role of Xenobiotic Metabolizing Cytochrome P450s
Kashyap, Mahendra Pratap; Singh, Abhishek Kumar; Kumar, Vivek; Tripathi, Vinay Kumar; Srivastava, Ritesh Kumar; Agrawal, Megha; Khanna, Vinay Kumar; Yadav, Sanjay; Jain, Swatantra Kumar; Pant, Aditya Bhushan
2011-01-01
Monocrotophos (MCP) is a widely used organophosphate (OP) pesticide. We studied apoptotic changes and their correlation with expression of selected cytochrome P450s (CYPs) in PC12 cells exposed to MCP. A significant induction in reactive oxygen species (ROS) and decrease in glutathione (GSH) levels were observed in cells exposed to MCP. Following the exposure of PC12 cells to MCP (10−5 M), the levels of protein and mRNA expressions of caspase-3/9, Bax, Bcl2, P53, P21, GSTP1-1 were significantly upregulated, whereas the levels of Bclw, Mcl1 were downregulated. A significant induction in the expression of CYP1A1/1A2, 2B1/2B2, 2E1 was also observed in PC12 cells exposed to MCP (10−5 M), whereas induction of CYPs was insignificant in cells exposed to 10−6 M concentration of MCP. We believe that this is the first report showing altered expressions of selected CYPs in MCP-induced apoptosis in PC12 cells. These apoptotic changes were mitochondria mediated and regulated by caspase cascade. Our data confirm the involvement of specific CYPs in MCP-induced apoptosis in PC12 cells and also identifies possible cellular and molecular mechanisms of organophosphate pesticide-induced apoptosis in neuronal cells. PMID:21445290
Tanigawa, Tohru; Tanaka, Hirokazu; Hayashi, Ken; Nakayama, Meiho; Iwasaki, Satoshi; Banno, Shinya; Takumida, Masaya; Brodie, Hirally; Inafuku, Shigeru
2008-11-01
Our findings indicate that oxidative stress induces morphological changes in vestibular hair cells and subsequently leads to cell death after 2.5 h. The aim of this study was to confirm the direct effects of oxidative stress on vestibular hair cells. Vestibular hair cells isolated from guinea pigs were loaded with 1 or 10 mM H2O2, and morphological changes were observed. In addition, in a viability/cytotoxicity assay system, the numbers of dead cells in isolated cristae ampullares were counted 1, 3, and 5 h after loading with H2O2 or artificial perilymph (control). Reactive oxygen, in the form of H2O2, directly affects the cell membrane of isolated vestibular hair cells and causes swelling of the cell body, bleb formation, and shortening of the neck region. Morphological changes occur within 30 min after loading with H2O2, but a significant increase in the number of dead cells is noted only after 3 h.
Bartolomé, M C; Cortés, A A; Sánchez-Fortún, A; Garnica-Romo, M G; Sánchez-Carrillo, S; Sánchez-Fortún, Sebastián
2016-12-01
Changes induced on freshwater microalga Dictyosphaerium chlorelloides (Dc(wt)) acclimated in the laboratory until their survival in culture media enriched with cadmium 100 µM have been studied. Cadmium removal by living cells of this Cd-resistant (Dc(CdR100)) strain was tested in cultures exposed to 100 µM Cd during 30 days. Cell dimensions were measured under light microscopy, and cell growth was studied. Photosynthetic yield (ΦPSII) was analyzed and the photosynthetic oxygen development and respiration response was obtained. Results show that Dc(CdR100) strain exhibited significant cell morphology changes in comparison to Dc(wt) cells, which affected both surface area and cell biovolume. Malthusian fitness analysis showed that Dc(CdR100) strain living in Cd-enriched culture had developed a lower capacity of nearly 50% growth, and its photosynthetic oxygen development and respiration response were significantly reduced in both light and dark photosynthetic phases. Dc(CdR100) strain showed a very high capacity to remove cadmium from the aquatic environment (over 90%), although most of the removed heavy metal (≈70%) is adhered to the cell wall. These specific characteristics of Dc(CdR100) cells suggest the possibility of using this strain in conjunction with Dc(wt) strain as bioelements into a dual-head biosensor, and in bioremediation processes on freshwater polluted with Cd.
Expression of multidrug resistance proteins in retinoblastoma
Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir
2017-01-01
AIM To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy. PMID:29181307
3D/4D multiscale imaging in acute lymphoblastic leukemia cells: visualizing dynamics of cell death
NASA Astrophysics Data System (ADS)
Sarangapani, Sreelatha; Mohan, Rosmin Elsa; Patil, Ajeetkumar; Lang, Matthew J.; Asundi, Anand
2017-06-01
Quantitative phase detection is a new methodology that provides quantitative information on cellular morphology to monitor the cell status, drug response and toxicity. In this paper the morphological changes in acute leukemia cells treated with chitosan were detected using d'Bioimager a robust imaging system. Quantitative phase image of the cells was obtained with numerical analysis. Results show that the average area and optical volume of the chitosan treated cells is significantly reduced when compared with the control cells, which reveals the effect of chitosan on the cancer cells. From the results it can be attributed that d'Bioimager can be used as a non-invasive imaging alternative to measure the morphological changes of the living cells in real time.
Barkla, Bronwyn J.; Vera-Estrella, Rosario
2015-01-01
One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na+ and Cl− ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells. PMID:26113856
Hernández-Bule, María Luisa; Trillo, María Ángeles; Úbeda, Alejandro
2014-01-01
Capacitive Resistive Electric Transfer (CRET) therapy applies currents of 0.4-0.6 MHz to treatment of inflammatory and musculoskeletal injuries. Previous studies have shown that intermittent exposure to CRET currents at subthermal doses exert cytotoxic or antiproliferative effects in human neuroblastoma or hepatocarcinoma cells, respectively. It has been proposed that such effects would be mediated by cell cycle arrest and by changes in the expression of cyclins and cyclin-dependent kinase inhibitors. The present work focuses on the study of the molecular mechanisms involved in CRET-induced cytostasis and investigates the possibility that the cellular response to the treatment extends to other phenomena, including induction of apoptosis and/or of changes in the differentiation stage of hepatocarcinoma cells. The obtained results show that the reported antiproliferative action of intermittent stimulation (5 m On/4 h Off) with 0.57 MHz, sine wave signal at a current density of 50 µA/mm(2), could be mediated by significant increase of the apoptotic rate as well as significant changes in the expression of proteins p53 and Bcl-2. The results also revealed a significantly decreased expression of alpha-fetoprotein in the treated samples, which, together with an increased concentration of albumin released into the medium by the stimulated cells, can be interpreted as evidence of a transient cytodifferentiating response elicited by the current. The fact that this type of electrical stimulation is capable of promoting both, differentiation and cell cycle arrest in human cancer cells, is of potential interest for a possible extension of the applications of CRET therapy towards the field of oncology.
Barkla, Bronwyn J; Vera-Estrella, Rosario
2015-01-01
One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na(+) and Cl(-) ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells.
Kim, Min Su; Kim, Kyoung Nam; Kim, Chang-Sik
2016-12-01
To compare changes in corneal endothelial cell density (CECD) after Ahmed glaucoma valve (AGV) implantation and trabeculectomy. Changes in corneal endothelium in patients that underwent AGV implantation or trabeculectomy were prospectively evaluated. Corneal specular microscopy was performed at the central cornea using a non-contact specular microscope before surgery and 6 months and 12 months after surgery. The CECD, hexagonality of the endothelial cells, and the coefficient of variation of the cell areas were compared between the two groups. Forty eyes of 40 patients with AGV implantation and 28 eyes of 28 patients with trabeculectomy were studied. Intraocular pressure in the AGV implantation group was significantly higher than that in the trabeculectomy group ( p < 0.001), but there was no significant difference in other clinical variables between the two groups. In the AGV implantation group, the mean CECD significantly decreased by 9.4% at 6 months and 12.3% at 12 months compared with baseline values (both, p < 0.001), while it decreased by 1.9% at 6 months and 3.2% at 12 months in the trabeculectomy group ( p = 0.027 and p = 0.015, respectively). The changes at 6 months and 12 months in the AGV implantation group were significantly higher than those in the trabeculectomy group ( p = 0.030 and p = 0.027, respectively). In the AGV implantation group, there was a significant decrease in the CECD between baseline and 6 months and between 6 months and 12 months ( p < 0.001 and p = 0.005, respectively). However, in the trabeculectomy group, a significant decrease was observed only between baseline and 6 months ( p = 0.027). Both the AGV implantation group and the trabeculectomy group showed statistically significant decreases in the CECD 1 year after surgery. The decrease in CECD in the AVG implantation group was greater and persisted longer than that in the trabeculectomy group.
Al Masum, Abdulla; Chakraborty, Maharudra; Ghosh, Soumen; Laha, Dipranjan; Karmakar, Parimal; Islam, Md Maidul; Mukhopadhyay, Subrata
2016-11-01
Interaction of CT DNA with Rhodamine 6G (R6G) has been studied using molecular docking, electrochemical, spectroscopic and thermodynamic methods. From the study, it was illustrated that Rhodamine 6G binds to the minor groove of CT DNA. The binding was cooperative in nature. Circular voltametric study showed significant change in peak current and peak potential due to complexation. All the studies showed that the binding constant was in the order of 10 6 M -1 . Circular dichroic spectra showed significant conformational change on binding and DNA unwind during binding. Thermodynamic study showed that binding was favored by negative enthalpy and positive entropy change. From thermodynamic study it was also observed that several positive and negative free energies played significant role during binding and the unfavorable conformational free energy change was overcame by highly negative hydrophobic and salt dependent free energy changes. The experimental results were further validated using molecular docking study and the effect of structure on binding has been studied theoretically. From docking study it was found that the hydrophobic interaction and hydrogen bonds played a significant role during binding. The dye was absorbed by cell and this phenomenon was studied using fluorescent microscope. Cell survivability test showed that the dye active against Human Breast Cancer cells MDA-MB 468. ROS study showed that the activity is due to the production of reactive oxygen. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, L.; Bareno, J.; Trask, S.
Increased charging rates negatively affect the lifetime of lithium-ion cells by increasing cell resistance and reducing capacity. This work is a post-mortem study of 18650 cells subjected to charge rates of 0.7-, 2-, 4-, and 6-C. For cells charged at 0.7-C to 4-C, this performance degradation is primarily related to surface film thickness with no observable change in surface film chemical composition. However, at charge rates of 6-C, the chemical composition of the surface film changes significantly, suggesting that this change is the reason for the sharper increase in cell resistance compared to the lower charge rates. In addition, wemore » found that surface film formation was not uniform across the electrode. Surface film was thicker and chemically different along the central band of the electrode “jelly roll”. This result is most likely attributable to an increase in temperature that results from non-uniform electrode wetting during manufacture. As a result, this non-uniform change further resulted in active material delamination from the current collector owing to chemical changes to the binder for the cell charged at 6-C.« less
Somerville, L.; Bareno, J.; Trask, S.; ...
2016-10-22
Increased charging rates negatively affect the lifetime of lithium-ion cells by increasing cell resistance and reducing capacity. This work is a post-mortem study of 18650 cells subjected to charge rates of 0.7-, 2-, 4-, and 6-C. For cells charged at 0.7-C to 4-C, this performance degradation is primarily related to surface film thickness with no observable change in surface film chemical composition. However, at charge rates of 6-C, the chemical composition of the surface film changes significantly, suggesting that this change is the reason for the sharper increase in cell resistance compared to the lower charge rates. In addition, wemore » found that surface film formation was not uniform across the electrode. Surface film was thicker and chemically different along the central band of the electrode “jelly roll”. This result is most likely attributable to an increase in temperature that results from non-uniform electrode wetting during manufacture. As a result, this non-uniform change further resulted in active material delamination from the current collector owing to chemical changes to the binder for the cell charged at 6-C.« less
Jochems, Caroline; Fantini, Massimo; Fernando, Romaine I; Kwilas, Anna R; Donahue, Renee N; Lepone, Lauren M; Grenga, Italia; Kim, Young-Seung; Brechbiel, Martin W; Gulley, James L; Madan, Ravi A; Heery, Christopher R; Hodge, James W; Newton, Robert; Schlom, Jeffrey; Tsang, Kwong Y
2016-06-21
Epacadostat is a novel inhibitor of indoleamine-2,3-dioxygenase-1 (IDO1) that suppresses systemic tryptophan catabolism and is currently being evaluated in ongoing clinical trials. We investigated the effects of epacadostat on (a) human dendritic cells (DCs) with respect to maturation and ability to activate human tumor antigen-specific cytotoxic T-cell (CTL) lines, and subsequent T-cell lysis of tumor cells, (b) human regulatory T cells (Tregs), and (c) human peripheral blood mononuclear cells (PBMCs) in vitro. Simultaneous treatment with epacadostat and IFN-γ plus lipopolysaccharide (LPS) did not change the phenotype of matured human DCs, and as expected decreased the tryptophan breakdown and kynurenine production. Peptide-specific T-cell lines stimulated with DCs pulsed with peptide produced significantly more IFN-γ, TNFα, GM-CSF and IL-8 if the DCs were treated with epacadostat. These T cells also displayed higher levels of tumor cell lysis on a per cell basis. Epacadostat also significantly decreased Treg proliferation induced by IDO production from IFN-γ plus LPS matured human DCs, although the Treg phenotype did not change. Multicolor flow cytometry was performed on human PBMCs treated with epacadostat; analysis of 123 discrete immune cell subsets revealed no changes in major immune cell types, an increase in activated CD83+ conventional DCs, and a decrease in immature activated Tim3+ NK cells. These studies show for the first time several effects of epacadostat on human DCs, and subsequent effects on CTL and Tregs, and provide a rationale as to how epacadostat could potentially increase the efficacy of immunotherapeutics, including cancer vaccines.
Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice.
Cahill, Lindsay S; Gazdzinski, Lisa M; Tsui, Albert Ky; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory Mt; Kassner, Andrea; Sled, John G
2017-03-01
Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO 2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia.
Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice
Gazdzinski, Lisa M; Tsui, Albert KY; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory MT; Kassner, Andrea; Sled, John G
2016-01-01
Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia. PMID:27165012
Flytzanis, Nicholas C.; Balsamo, Michele; Condeelis, John S.; Oktay, Maja H.; Burge, Christopher B.; Gertler, Frank B.
2011-01-01
Epithelial-mesenchymal transition (EMT), a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA–Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT–dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell–cell junction formation, and regulation of cell migration, were enriched among EMT–associated alternatively splicing events. Our analysis suggested that most EMT–associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT–associated splicing pattern. Expression of EMT–associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT–dependent splicing changes occur commonly in human tumors. The functional significance of EMT–associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT–associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression. PMID:21876675
2016-10-01
CD4 + T cells in the injured cord compared with vehicle treatment. To ensure that the changes in cellular invasion were not the...CD11b-~~~~~~~ t ~ \\... . ~ ~I ~ •• ~ ·’ "’ ’O iii CD3 ) 1’ Vehicle CBD Figure 6. CBD treatment significantly deerease CD4 + T cell population In...macrophage (top right) population, but did significantly decrease CD4 + T cell population (bottom right). There were no differences in total spleen cell ,
Fox, Raymond G; Magness, Scott; Kujoth, Gregory C; Prolla, Tomas A; Maeda, Nobuyo
2012-05-01
Changes in intestinal absorption of nutrients are important aspects of the aging process. To address this issue, we investigated the impact of accelerated mitochondrial DNA mutations on the stem/progenitor cells in the crypts of Lieberkühn in mice homozygous for a mitochondrial DNA polymerase gamma mutation, Polg(D257A), that exhibit accelerated aging phenotype. As early as 3-7 mo of age, the small intestine was significantly enlarged in the PolgD257A mice. The crypts of the PolgD257A mice contained 20% more cells than those of their wild-type littermates and exhibited a 10-fold increase in cellular apoptosis primarily in the stem/progenitor cell zones. Actively dividing cells were proportionally increased, yet a significantly smaller proportion of cells was in the S phase of the cell cycle. Stem cell-derived organoids from PolgD257A mice failed to develop fully in culture and exhibited fewer crypt units, indicating an impact of the mutation on the intestinal epithelial stem/progenitor cell maintenance. In addition, epithelial cell migration along the crypt-villus axis was slowed and less organized, and the ATP content in the villi was significantly reduced. On a high-fat, high-carbohydrate diet, PolgD257A mice showed significantly restricted absorption of excess lipids accompanied by an increase in fecal steatocrits. We conclude that the PolgD257A mutation causes cell cycle dysregulation in the crypts leading to the age-associated changes in the morphology of the small intestine and contributes to the restricted absorption of dietary lipids.
Cakir, Murteza; Colak, Abdullah; Calikoglu, Cagatay; Taspinar, Numan; Sagsoz, Mustafa Erdem; Kadioglu, Hakan Hadi; Hacimuftuoglu, Ahmet; Seven, Sabriye
2016-01-01
Objective: We aimed to evaluate the effects of gamma-ray, laser light, and visible light, which neurons are commonly exposed to during treatment of various cranial diseases, on the viability of neurons. Materials and Methods: Neuronal cell culture was prepared from the frontal cortex of 9 newborn rats. Cultured cells were irradiated with gamma-ray for 1–10 min by 152Eu, 241Am, and 132Ba isotopes, visible light for 1–160 min, and laser light for 0.2–2 seconds. The MTT tetrazolium reduction assay was used to assess the number of viable cells in the neuronal cell cultures. Wavelength dispersive X-ray fluorescence spectrometer was used to determine Na, K, and Ca levels in cellular fluid obtained from neuronal cell culture plaques. Results: Under low-dose radiation with 152Eu, 241Am, and 132Ba isotopes, cell viability insignificantly decreased with time (p>0.05). On the other hand, exposure to visible light produced statistically significant decrease in cell viability at both short- (1–10 min) and long-term (20–160 min). Cell viability did not change with 2 seconds of laser exposure. Na, K, and Ca levels significantly decreased with gamma-ray and visible light. The level of oxidative stress markers significantly changed with gamma-ray. Conclusion: In conclusion, while low dose gamma-ray has slight to moderate apoptotic effect in neuronal cell cultures by oxidative stress, long-term visible light induces remarkable apoptosis and cell death. Laser light has no significant effect on neurons. Further genetic studies are needed to clarify the chronic effect of visible light on neuronal development and functions. PMID:27551168
Çelik, Ayla; Yildirim, Seda; Ekinci, Seda Yaprak; Taşdelen, Bahar
2013-06-01
Buccal micronucleus cytome (BMCyt) assay monitors genetic damage, cell proliferation and cell death in humans exposed to occupational and environmental agents. BMCyt is used as an indicator of genotoxic exposure, since it is associated with chromosomal instability. There is little research on the occupational exposure among road construction workers for genotoxicity testing. In the present study, we evaluated MN frequencies and other nuclear changes, karyorrhexis (KR), karyolysis (KL), broken egg (BE), binucleate (BN), condensed chromatin cell (CCC), and picnotic cell (PC) in buccal mucosa cells of 40 road construction workers (twenty smokers and twenty non-smokers) and 40 control groups consisting of healthy persons (twenty smokers and twenty non-smokers). Microscopic observation was performed of 2000 cells per individual in both road construction workers and control group. In control and worker groups, for each person repair index (RI) was calculated via formula KR+L/BE+MN. The results showed a statistically significant increase in the frequency of MN in buccal epithelial cells of exposed group compared with control group (p<0.001). There is no significant difference between smokers and non-smokers for incidence of MN or nuclear changes and value of RI in exposed group. In road construction workers, RI is lower than the control group. There is a significant difference between workers and control group (p<0.001) for RI. Our data reveal that asphalt fumes during road paving operations are absorbed by workers and that asphalt fume exposure is able to significantly induce cytogenetic damage in buccal mucosa cells of workers after controlling some possible confounding factors, such as age, sex and smoking habits. In addition to determination of nuclear changes and the micronucleus, the determination of RI value presents a new approach to genotoxic bio-monitoring assessment studies of occupationally exposed population. Copyright © 2013 Elsevier Inc. All rights reserved.
Menstruum induces changes in mesothelial cell morphology.
Koks, C A; Demir Weusten, A Y; Groothuis, P G; Dunselman, G A; de Goeij, A F; Evers, J L
2000-01-01
In previous studies, we have shown that menstrual endometrium preferentially adheres to the subepithelial lining of the peritoneum. It remains to be elucidated, however, whether this damage is preexisting or inflicted by the menstrual tissue itself. We hypothesized that the menstrual tissue itself damages the peritoneum. To investigate this, the viability of menstrual endometrial tissue in peritoneal fluid (PF) was evaluated and the morphologic changes in the mesothelial cells were studied by in vitro cocultures of menstruum with mesothelial cell monolayers. Menstruum was collected with a menstrual cup. Endometrial tissue was isolated from the menstruum, resuspended in culture medium or in the cell-free fraction of PF and cultured for 24, 48 or 72 h. A 3(4, 5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to obtain a relative measure of viable adhered endometrial cells. Mesothelial cells isolated from human omental tissue were cultured on Matrigel or uncoated plastic. At confluence, overnight cocultures were performed and scanning electron microscopy was used to evaluate the morphologic changes. The viability of endometrial fragments was 84% (n = 36, p < 0.05), 82% (n = 27, not significant) and 104% (n = 14, not significant) when cultured in the cell-free fraction of PF for 24, 48 and 72 h, respectively, when compared to medium with 10% fetal calf serum. Menstrual endometrial fragments or menstrual serum added to and cocultured with mesothelial cells induced severe morphologic alterations of the latter, including retraction, shrinking and gap formation. Similar morphologic changes were observed when mesothelial cells were cocultured with menstrual endometrial fragments in PF or in culture inserts. Incubation with conditioned medium from cultured menstrual endometrium induced similar but less pronounced changes in morphology. In conclusion, menstrual endometrial fragments remain viable in PF in vitro for at least 72 h. Antegradely shed menstruum induces changes in mesothelial cell morphology, including retraction and shrinking with exposure of the underlying surface. These findings suggest that menstruum is harmful to the peritoneal lining. Therefore, by local destruction of the mesothelial layer, menstrual endometrium is able to create sites for adhesion. Copyright 2000 S. Karger AG, Basel
Chen, Bo; Wang, Xiaojun; Long, Xiao; Zhang, Mingzi; Huang, Jiuzuo; Yu, Nanze; Xu, Jing
2018-06-01
The authors aimed to analyze factors related to lipotransfer for localized scleroderma, and to explore the feasibility of cell-assisted lipotransfer for localized scleroderma treatment. Abdominal fat samples were taken from six scleroderma patients without corticosteroid therapy, five scleroderma patients with corticosteroid therapy, and 10 normal liposuction patients. Their quantity, morphology, and proliferation ability were measured. Blood flow was measured by laser speckle contrast imaging in localized scleroderma lesions and normal contralateral regions for eight localized scleroderma patients. Bleomycin-induced skin fibrosis nude mice were also used to investigate differences between lipotransfer and cell-assisted lipotransfer. Fat weight was measured, and expression of transforming growth factor (TGF)-β1 and type III collagen in the injected skin was determined by immunohistochemistry. The number of stem cells from scleroderma patients with corticosteroid treatment was significantly reduced. Mean blood perfusion in localized scleroderma lesions was not significantly different than in the contralateral normal regions. In normal nude mice, there were no significant changes in TGF-β1 and type III collagen between the control, lipotransfer, and cell-assisted lipotransfer groups, whereas in bleomycin-induced skin fibrosis nude mice, lipotransfer and cell-assisted lipotransfer reduced TGF-β1 and type III collagen expression. For scleroderma patients, fewer adipose-derived stem cells, because of a history of corticosteroid therapy and a local inflammatory microenvironment, are more important factors, whereas blood supply showed no significant change. Therefore, cell-assisted lipotransfer not only improves the survival rate of transplanted fat but also improves skin texture in bleomycin-induced skin fibrosis nude mice.
Smith, Caroline L; Anthony, Shelagh; Hubank, Mike; Leiper, James M; Vallance, Patrick
2005-01-01
Background Asymmetric dimethylarginine (ADMA) is a naturally occurring inhibitor of nitric oxide synthesis that accumulates in a wide range of diseases associated with endothelial dysfunction and enhanced atherosclerosis. Clinical studies implicate plasma ADMA as a major novel cardiovascular risk factor, but the mechanisms by which low concentrations of ADMA produce adverse effects on the cardiovascular system are unclear. Methods and Findings We treated human coronary artery endothelial cells with pathophysiological concentrations of ADMA and assessed the effects on gene expression using U133A GeneChips (Affymetrix). Changes in several genes, including bone morphogenetic protein 2 inducible kinase (BMP2K), SMA-related protein 5 (Smad5), bone morphogenetic protein receptor 1A, and protein arginine methyltransferase 3 (PRMT3; also known as HRMT1L3), were confirmed by Northern blotting, quantitative PCR, and in some instances Western blotting analysis to detect changes in protein expression. To determine whether these changes also occurred in vivo, tissue from gene deletion mice with raised ADMA levels was examined. More than 50 genes were significantly altered in endothelial cells after treatment with pathophysiological concentrations of ADMA (2 μM). We detected specific patterns of changes that identify pathways involved in processes relevant to cardiovascular risk and pulmonary hypertension. Changes in BMP2K and PRMT3 were confirmed at mRNA and protein levels, in vitro and in vivo. Conclusion Pathophysiological concentrations of ADMA are sufficient to elicit significant changes in coronary artery endothelial cell gene expression. Changes in bone morphogenetic protein signalling, and in enzymes involved in arginine methylation, may be particularly relevant to understanding the pathophysiological significance of raised ADMA levels. This study identifies the mechanisms by which increased ADMA may contribute to common cardiovascular diseases and thereby indicates possible targets for therapies. PMID:16190779
Stria vascularis and cochlear hair cell changes in syphilis: A human temporal bone study.
Hızlı, Ömer; Kaya, Serdar; Hızlı, Pelin; Paparella, Michael M; Cureoglu, Sebahattin
2016-12-01
To observe any changes in stria vascularis and cochlear hair cells in patients with syphilis. We examined 13 human temporal bone samples from 8 patients with syphilis (our syphilis group), as well as 12 histopathologically normal samples from 9 age-matched patients without syphilis (our control group). We compared, between the two groups, the mean area of the stria vascularis (measured with conventional light microscopy connected to a personal computer) and the mean percentage of cochlear hair cell loss (obtained from cytocochleograms). In our syphilis group, only 1 (7.7%) of the 13 samples had precipitate in the endolymphatic or perilymphatic spaces; 8 (61.5%) of the samples revealed the presence of endolymphatic hydrops (4 cochlear, 4 saccular). The mean area of the stria vascularis did not significantly differ, in any turn of the cochlea, between the 2 groups (P>0.1). However, we did find significant differences between the 2 groups in the mean percentage of outer hair cells in the apical turn (P<0.026) and in the mean percentage of inner hair cells in the basal (P=0.001), middle (P=0.004), and apical (P=0.018) turns. In 7 samples in our syphilis group, we observed either complete loss of the organ of Corti or a flattened organ of Corti without any cells in addition to the absence of both outer and inner hair cells. In this study, syphilis led either to complete loss of the organ of Corti or to significant loss of cochlear hair cells, in addition to cochleosaccular hydrops. But the area of the stria vascularis did not change. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Global metabolite profiling analysis of lipotoxicity in HER2/neu-positive breast cancer cells.
Baumann, Jan; Kokabee, Mostafa; Wong, Jason; Balasubramaniyam, Rakshika; Sun, Yan; Conklin, Douglas S
2018-06-05
Recent work has shown that HER2/neu-positive breast cancer cells rely on a unique Warburg-like metabolism for survival and aggressive behavior. These cells are dependent on fatty acid (FA) synthesis, show markedly increased levels of stored fats and disruption of the synthetic process results in apoptosis. In this study, we used global metabolite profiling and a multi-omics network analysis approach to model the metabolic changes in this physiology under palmitate-supplemented growth conditions to gain insights into the molecular mechanism and its relevance to disease prevention and treatment. Computational analyses were used to define pathway enrichment based on the dataset of significantly altered metabolites and to integrate metabolomics and transcriptomics data in a multi-omics network analysis. Network-predicted changes and functional relationships were tested with cell assays in vitro . Palmitate-supplemented growth conditions induce distinct metabolic alterations. Growth of HER2-normal MCF7 cells is unaffected under these conditions whereas HER2/neu-positive cells display unchanged neutral lipid content, AMPK activation, inhibition of fatty acid synthesis and significantly altered glutamine, glucose and serine/glycine metabolism. The predominant upregulated lipid species is the novel bioactive lipid N-palmitoylglycine, which is non-toxic to these cells. Limiting the availability of glutamine significantly ameliorates the lipotoxic effects of palmitate, reduces CHOP and XBP1(s) induction and restores the expression levels of HER2 and HER3. The study shows that HER2/neu-positive breast cancer cells change their metabolic phenotype in the presence of palmitate. Palmitate induces AMPK activation and inhibition of fatty acid synthesis that feeds back into glycolysis as well as anaplerotic glutamine metabolism.
Mahelkova, Gabriela; Jirsova, Katerina; Seidler Stangova, Petra; Palos, Michalis; Vesela, Viera; Fales, Ivan; Jiraskova, Nada; Dotrelova, Dagmar
2017-05-01
In vivo corneal confocal microscopy allows the examination of each layer of the cornea in detail and the identification of pathological changes at the cellular level. The purpose of this study was to identify the possible effects of a three-month treatment with autologous serum eye-drops in different corneal layers of patients with severe dry eye disease using corneal confocal microscopy. Twenty-six patients with dry eye disease were included in the study. Corneal fluorescein staining was performed. The corneas of the right eyes were examined using in vivo corneal confocal microscopy before and after a three-month treatment with autologous serum drops. The densities of superficial and basal epithelial cells, Langerhans cells, the keratocytes and activated keratocytes, the density of endothelial cells and the status of the sub-basal nerve plexus fibres were evaluated. A significant decrease in corneal fluorescein staining was found after the three-month autologous serum treatment (p = 0.0006). The basal epithelial cell density decreased significantly (p = 0.001), while the density of superficial epithelial cells did not change significantly (p = 0.473) nor did the number of Langerhans cells or activated keratocytes (p = 0.223; p = 0.307, respectively). There were no differences in the other corneal cell layers or in the status of the nerve fibres. The results demonstrate the ability of corneal confocal microscopy to evaluate an improvement in the basal epithelial cell layer of the cornea after autologous serum treatment in patients with dry eye disease. More studies with longer follow-up periods are needed to elucidate the suitability of corneal confocal microscopy to follow the effect of autologous serum treatment on nerve fibres or other corneal layers in dry eye disease patients. © 2016 Optometry Australia.
Surbhi; Rastogi, Ashutosh; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod
2016-05-01
Present study examined the expression of brain peptides associated with the reproduction and energy homeostasis (GnRH/GnIH, NPY/VIP), and assessed their possible functional association in the photosensitive (non-breeding, pre-breeding), photostimulated (breeding) and photorefractory (post-breeding) migratory redheaded buntings (Emberiza bruniceps), using double-labeled immunohistochemistry. Particularly, we measured immunoreactive (-ir) cell numbers, per cent cell area and cell optical density (OD) in the preoptic area (GnRH-I), midbrain (GnRH-II), paraventricular nucleus (GnIH), dorsomedial hypothalamus, DMH and infundibular complex, INc (NPY and VIP), and lateral septal organ (VIP) of buntings kept under natural photoperiods at the wintering latitude (26°55'N). There was a significant seasonal difference in GnRH-I, not GnRH-II, with reduced -ir cells in the photosensitive and photorefractory buntings, and notably with increased cell OD between the refractory and non-breeding states with no increase in testis size. Also, increased cell OD of GnIH neurons in non-breeding state indicated its role in the maintenance of small testes during the post-refractory period. Overall, seasonal changes in GnRH-I and GnIH were found consistent with their suggested roles in reproductive regulation of absolute photorefractory birds. Further, there was a significant seasonal change in cell OD of NPY neurons in DMH, not the INc. In contrast, VIP immunoreactivity was seasonally altered, with a significantly higher VIP-ir cells in breeding than the pre-breeding state. Finally, close proximity between perikarya with fibres suggested functional interactions between the GnRH and GnIH, and NPY and VIP. Thus, seasonal plasticity of brain peptides is perhaps the part of neural regulation of seasonal reproduction and associated energy homeostasis in migratory songbirds. Copyright © 2016 Elsevier Inc. All rights reserved.
Stria Vascularis and Cochlear Hair Cell Changes in Syphilis: A Human Temporal Bone Study
Hızlı, Ömer; Kaya, Serdar; Hızlı, Pelin; Paparella, Michael M.; Cureoglu, Sebahattin
2016-01-01
Objective To observe any changes in stria vascularis and cochlear hair cells in patients with syphilis Materials and Methods We examined 13 human temporal bone samples from 8 patients with syphilis (our syphilis group), as well as 12 histopathologically normal samples from 9 age-matched patients without syphilis (our control group). We compared, between the 2 groups, the mean area of the stria vascularis (measured with conventional light microscopy connected to a personal computer) and the mean percentage of cochlear hair cell loss (obtained from cytocochleograms). Results In our syphilis group, only 1 (7.7%) of the 13 samples had precipitate in the endolymphatic or perilymphatic spaces; 8 (61.5%) of the samples revealed the presence of endolymphatic hydrops (4 cochlear, 4 saccular). The mean area of the stria vascularis area did not significantly differ, in any turn of the cochlea, between the 2 groups (P > 0.1). However, we did find significant differences between the 2 groups in the mean percentage of outer hair cells in the apical turn (P < 0.026) and in the mean percentage of inner hair cells in the basal (P = 0.001), middle (P = 0.004), and apical (P = 0.018) turns. In 7 samples in our syphilis group, we observed either complete loss of the organ of Corti or a flattened organ of Corti without any cells in addition to the absence of both outer and inner hair cells. Conclusion In this study, syphilis led either to complete loss of the organ of Corti or to significant loss of cochlear hair cells, in addition to cochleosaccular hydrops. But the area of the stria vascularis did not change. PMID:26860231
Sun, Z Y; Geng, D Y; Chen, C F; Wang, P P; Song, T
2017-06-20
Objective: To investigate the influence of extremely low-frequency magnetic field on periodical expression of cryptochrome ( Cry ) gene in mouse embryonic fibroblast NIH3T3 cells. Methods: The NIH3T3 cells were divided into magnetic field group and sham-exposure group. The NIH3T3 cells in the magnetic field group were stimulated by horse serum and then exposed to an extremely low-frequency magnetic field (50 Hz and 0.3 mT) for 48 hours, and those in the sham-exposure group were also stimulated by horse serum and then exposed to a coil for 48 hours. The NIH3T3 cells were collected, total RNA was extracted, and cDNA was obtained via reverse transcription. Real-time fluorescent quantitative RT-PCR was used to measure the changes in transcription cycles of Cry and Period genes in both groups. Results: There was no significant difference in the proliferation rate at 0, 12, 24, and 48 hours of exposure between the two groups ( P >0.05) . Both sham-exposure group and magnetic field group showed a rhythmic change in the expression of Cry gene, and compared with the sham-exposure group, the magnetic field group had a significantly shortened circadian rhythm of Cry gene in NIH3T3 cells ( t =2.57, P <0.05) . Both groups had rhythmic and periodical expression of Period gene and there was no significant difference between the two groups ( t =0.70, P >0.05) . Conclusion: Extremely low-frequency magnetic field can significantly shorten the circadian rhythm of Cry gene in mouse embryonic fibroblasts, while there is no significant change in the circadian rhythm of Period gene.
Xu, Longjiang; Leng, Hong; Shi, Xin; Ji, Jiang; Fu, Jinxiang; Leng, Hong
2017-06-01
MicroRNAs (miRNAs) have been demonstrated to contribute to malignant progression in psoriasis development. The purposes of the study was to evaluated the effects of miRNA-155 on cell proliferation, migration and apoptosis in psoriasis development via PTEN singaling pathway and identify its direct target protein. Quantitative real-time RT-PCR (qRT-PCR) was performed to examine the level of miR-155 in psoriasis cells, miR-155 was downregulated in a psoriasis cell line Hacat by transfected with small interfering RNA (siRNA), respectively. Cell survival was detected by the MTT assay and colony formation assay. Cell migration and invasion were measured via wound-healing assayand transwell assay. In addition, cell cycle and apoptosis about psoriasis cells was measured by flow cytometry. In this study, qRT-PCR assay showed that the expressions of miR-155 mRNA in psoriasis tissues were significantly higher than that in normal tissues. The assays about cell growth and proliferation showed that miR-155 knockdown led to a significant decrease in cell proliferation which was determined by MTT assay and colony formation assay compared to those of Lv-NC cells. Flow cytometry analysis showed that depletion of miR-155 could cause cell cycle change and the number of apoptotic cells was significantly increased in Lv-miR155 cells compared with control cells. In addition, the expression of several apoptosis-related factors were dramatically changed, such as PTEN, PIP 3 , AKT, p-AKT, Bax and Bcl-2. Our findings indicate that down-regulation of miR-155 significantly inhibits proliferation, migration, invasion and promotes apoptosis through PTEN singaling pathway in psoriasis cells. miR-155 might function as an oncogene miRNA in the progress of psoriasis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Anfosso, F; Alcaraz, G; Vervloet, D; Charpin, J
1982-11-01
In atopic patients with clinical symptoms of hay fever, changes in T gamma and T mu cells were evaluated during desensitization. A significant increase in T mu and overall in T gamma cells was noted. These results suggested that T cell defect could be restored by desensitization treatment.
Improved Method for Culturing Guinea-Pig Macrophage Cells
NASA Technical Reports Server (NTRS)
Savage, J.
1982-01-01
Proper nutrients and periodic changes in culture medium maintain cell viability for a longer period. New method uses a thioglycolate solution, instead of mineral oil, to induce macrophage cells in guinea pigs and also uses an increased percent of fetal-calf bovine serum in cultivation medium. Macrophage cells play significant roles in the body's healing and defense systems.
Chapnick, Douglas A.; Jacobsen, Jeremy; Liu, Xuedong
2013-01-01
Understanding how cells migrate individually and collectively during development and cancer metastasis can be significantly aided by a computation tool to accurately measure not only cellular migration speed, but also migration direction and changes in migration direction in a temporal and spatial manner. We have developed such a tool for cell migration researchers, named Pathfinder, which is capable of simultaneously measuring the migration speed, migration direction, and changes in migration directions of thousands of cells both instantaneously and over long periods of time from fluorescence microscopy data. Additionally, we demonstrate how the Pathfinder software can be used to quantify collective cell migration. The novel capability of the Pathfinder software to measure the changes in migration direction of large populations of cells in a spatiotemporal manner will aid cellular migration research by providing a robust method for determining the mechanisms of cellular guidance during individual and collective cell migration. PMID:24386097
Tilghman, Syreeta L.; Townley, Ian; Zhong, Qiu; Carriere, Patrick P.; Zou, Jin; Llopis, Shawn D.; Preyan, Lynez C.; Williams, Christopher C.; Skripnikova, Elena; Bratton, Melyssa R.; Zhang, Qiang; Wang, Guangdi
2013-01-01
Aromatase inhibitors, such as letrozole, have become the first-line treatment for postmenopausal women with estrogen-dependent breast cancer. However, acquired resistance remains a major clinical obstacle. Previous studies demonstrated constitutive activation of the MAPK signaling, overexpression of HER2, and down-regulation of aromatase and ERα in letrozole-resistant breast cancer cells. Given the complex signaling network involved in letrozole-refractory breast cancer and the lack of effective treatment for hormone resistance, further investigation of aromatase inhibitor resistance by a novel systems biology approach may reveal previously unconsidered molecular changes that could be utilized as therapeutic targets. This study was undertaken to characterize for the first time global proteomic alterations occurring in a letrozole-resistant cell line. A quantitative proteomic analysis of the whole cell lysates of LTLT-Ca (resistant) versus AC-1 cells (sensitive) was performed to identify significant protein expression changes. A total of 1743 proteins were identified and quantified, of which 411 were significantly up-regulated and 452 significantly down-regulated (p < 0.05, fold change > 1.20). Bioinformatics analysis revealed that acquired letrozole resistance is associated with a hormone-independent, more aggressive phenotype. LTLT-Ca cells exhibited 84% and 138% increase in migration and invasion compared with the control cells. The ROCK inhibitor partially abrogated the enhanced migration and invasion of the letrozole-resistant cells. Flow cytometric analyses also demonstrated an increase in vimentin and twist expression in letrozole-resistance cells, suggesting an onset of epithelial to mesenchymal transition (EMT). Moreover, targeted gene expression arrays confirmed a 28-fold and sixfold up-regulation of EGFR and HER2, respectively, whereas ERα and pS2 were dramatically reduced by 28-fold and 1100-fold, respectively. Taken together, our study revealed global proteomic signatures of a letrozole-resistant cell line associated with hormone independence, enhanced cell motility, EMT and the potential values of several altered proteins as novel prognostic markers or therapeutic targets for letrozole resistant breast cancer. PMID:23704778
Wu, Xiuwen; Riaz, Muhammad; Yan, Lei; Du, Chenqing; Liu, Yalin; Jiang, Cuncang
2017-01-01
Boron (B) is a micronutrient indispensable for citrus and B deficiency causes a considerable loss of productivity and quality in China. However, studies on pectin composition and architecture of cell wall components in trifoliate orange roots under B deficiency condition are not sufficient. In this study, we investigated the alteration in pectin characteristics and the architecture of cell wall components in trifoliate orange [ Poncirus trifoliata (L.) Raf.] roots under B starvation. The results showed that B-deficient roots resulted in a significant enlargement of root tips and an obvious decrease in cell wall B and uronic acid content in Na 2 CO 3 -soluble pectin compared with B-adequate roots. Meanwhile, they showed a decrease of 2-keto-3-deoxyoctanoic acid in CDTA-soluble and Na 2 CO 3 -soluble pectin in cell walls, while the degree of methylation (DM) of CDTA-soluble pectin was significantly increased under B deficiency. Transmission electron microscope (TEM) micrographs of B deficient plants showed a distinct thickening of the cell walls, with the thickness 1.82 times greater than that of control plant roots. The results from Fourier-transform infrared spectroscopy (FTIR) showed that B deficiency changed the mode of hydrogen bonding between protein and carbohydrates (cellulose and hemicellulose). The FTIR spectra exhibited a destroyed protein structure and accumulation of wax and cellulose in the cell walls under B starvation. The 13 C nuclear magnetic resonance ( 13 C-NMR) spectra showed that B starvation changed the organic carbon structure of cell walls, and enhanced the contents of amino acid, cellulose, phenols, and lignin in the cell wall. The results reveal that the swelling and weakened structural integrity of cell walls, which induced by alteration on the network of pectin and cell wall components and structure in B-deficient roots, could be a major cause of occurrence of the rapid interruption of growth and significantly enlarged root tips in trifoliate orange roots under B-insufficient condition.
Circulating Hematopoietic Stem and Progenitor Cells in Aging Atomic Bomb Survivors.
Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Kajimura, Junko; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Young, Lauren F; Shieh, Jae-Hung; Moore, Malcolm A; van den Brink, Marcel R M; Kusunoki, Yoichiro
2016-01-01
It is not yet known whether hematopoietic stem and progenitor cells (HSPCs) are compromised in the aging population of atomic bomb (A-bomb) survivors after their exposure nearly 70 years ago. To address this, we evaluated age- and radiation-related changes in different subtypes of circulating HSPCs among the CD34-positive/lineage marker-negative (CD34(+)Lin(-)) cell population in 231 Hiroshima A-bomb survivors. We enumerated functional HSPC subtypes, including: cobblestone area-forming cells; long-term culture-initiating cells; erythroid burst-forming units; granulocyte and macrophage colony-forming units; and T-cell and natural killer cell progenitors using cell culture. We obtained the count of each HSPC subtype per unit volume of blood and the proportion of each HSPC subtype in CD34(+)Lin(-) cells to represent the lineage commitment trend. Multivariate analyses, using sex, age and radiation dose as variables, showed significantly decreased counts with age in the total CD34(+)Lin(-) cell population and all HSPC subtypes. As for the proportion, only T-cell progenitors decreased significantly with age, suggesting that the commitment to the T-cell lineage in HSPCs continuously declines with age throughout the lifetime. However, neither the CD34(+)Lin(-) cell population, nor HSPC subtypes showed significant radiation-induced dose-dependent changes in counts or proportions. Moreover, the correlations of the proportions among HSPC subtypes in the survivors properly revealed the hierarchy of lineage commitments. Taken together, our findings suggest that many years after exposure to radiation and with advancing age, the number and function of HSPCs in living survivors as a whole may have recovered to normal levels.
Circulating Hematopoietic Stem and Progenitor Cells in Aging Atomic Bomb Survivors
Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Kajimura, Junko; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Young, Lauren F.; Shieh, Jae-Hung; Moore, Malcolm A.; van den Brink, Marcel R. M.; Kusunoki, Yoichiro
2016-01-01
It is not yet known whether hematopoietic stem and progenitor cells (HSPCs) are compromised in the aging population of atomic bomb (A-bomb) survivors after their exposure nearly 70 years ago. To address this, we evaluated age- and radiation-related changes in different subtypes of circulating HSPCs among the CD34-positive/lineage marker-negative (CD34+Lin− ) cell population in 231 Hiroshima A-bomb survivors. We enumerated functional HSPC subtypes, including: cobblestone area-forming cells; long-term culture-initiating cells; erythroid burst-forming units; granulocyte and macrophage colony-forming units; and T-cell and natural killer cell progenitors using cell culture. We obtained the count of each HSPC subtype per unit volume of blood and the proportion of each HSPC subtype in CD34+Lin− cells to represent the lineage commitment trend. Multivariate analyses, using sex, age and radiation dose as variables, showed significantly decreased counts with age in the total CD34+Lin− cell population and all HSPC subtypes. As for the proportion, only T-cell progenitors decreased significantly with age, suggesting that the commitment to the T-cell lineage in HSPCs continuously declines with age throughout the lifetime. However, neither the CD34+Lin− cell population, nor HSPC subtypes showed significant radiation-induced dose-dependent changes in counts or proportions. Moreover, the correlations of the proportions among HSPC subtypes in the survivors properly revealed the hierarchy of lineage commitments. Taken together, our findings suggest that many years after exposure to radiation and with advancing age, the number and function of HSPCs in living survivors as a whole may have recovered to normal levels. PMID:26720799
NASA Technical Reports Server (NTRS)
Sulkowski, G. M.; Li, G-H; Sajdel-Sulkowska, E. M.
2004-01-01
We have previously reported that the developing rat cerebellum is affected by hypergravity exposure. The effect is observed during a period of both granule and glial cell proliferation and neuronal migration in the cerebellum and coincides with changes in thyroid hormone levels. The present study begins to address the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of cerebellar proteins that are known to be directly involved in cell-cell interactions [protein expressing 3-fucosyl-N-acetyl-lactosamine antigen (CD15), neuronal cell adhesion molecule (NCAM-L1)] and those that affect cell-cell interactions indirectly [glial fibrillary acidic protein (GFAP)] in rat neonates exposed to centrifuge-produced hypergravity. Cerebellar mass and protein expression in rat neonates exposed to hypergravity (1.5 G) from gestational day (G) 11 to postnatal day (P) 30 were compared at one of six time points between P6 and P30 against rat neonates developing under normal gravity. Proteins were analyzed by quantitative western blots of cerebellar homogenates prepared from male or female neonates. Cerebellar size was most clearly reduced in male neonates on P6 and in female neonates on P9, with a significant gender difference; differences in cerebellar mass remained significant even when change in total body mass was factored in. Densitometric analysis of western blots revealed both quantitative and temporal changes in the expression of selected cerebellar proteins that coincided with changes in cerebellar mass and were gender-specific. In fact, our data indicated certain significant differences even between male and female control animals. A maximal decrease in expression of CD15 was observed in HG females on P9, coinciding with maximal change in their cerebellar mass. A shift in the time-course of NCAM-L1 expression resulted in a significant increase in NCAM-L1 in HG males on P18, an isolated time at which cerebellar mass does not significantly differ between HG and SC neonates. A maximal decrease in expression of GFAP was observed in HG males on P6, coinciding with maximal change in their cerebellar mass. Altered expression of cerebellar proteins is likely to affect a number of developmental processes and contribute to the structural and functional alterations seen in the CNS developing under altered gravity. Our data suggest that both cerebellar development and its response to gravitational manipulations differ in males and females. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sulkowski, G. M.; Li, G.-H.; Sajdel-Sulkowska, E. M.
2004-01-01
We have previously reported that the developing rat cerebellum is affected by hypergravity exposure. The effect is observed during a period of both granule and glial cell proliferation and neuronal migration in the cerebellum and coincides with changes in thyroid hormone levels. The present study begins to address the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of cerebellar proteins that are known to be directly involved in cell-cell interactions [protein expressing 3-fucosyl- N-acetyl-lactosamine antigen (CD15), neuronal cell adhesion molecule (NCAM-L1)] and those that affect cell-cell interactions indirectly [glial fibrillary acidic protein (GFAP)] in rat neonates exposed to centrifuge-produced hypergravity. Cerebellar mass and protein expression in rat neonates exposed to hypergravity (1.5 G) from gestational day (G) 11 to postnatal day (P) 30 were compared at one of six time points between P6 and P30 against rat neonates developing under normal gravity. Proteins were analyzed by quantitative western blots of cerebellar homogenates prepared from male or female neonates. Cerebellar size was most clearly reduced in male neonates on P6 and in female neonates on P9, with a significant gender difference; differences in cerebellar mass remained significant even when change in total body mass was factored in. Densitometric analysis of western blots revealed both quantitative and temporal changes in the expression of selected cerebellar proteins that coincided with changes in cerebellar mass and were gender-specific. In fact, our data indicated certain significant differences even between male and female control animals. A maximal decrease in expression of CD15 was observed in HG females on P9, coinciding with maximal change in their cerebellar mass. A shift in the time-course of NCAM-L1 expression resulted in a significant increase in NCAM-L1 in HG males on P18, an isolated time at which cerebellar mass does not significantly differ between HG and SC neonates. A maximal decrease in expression of GFAP was observed in HG males on P6, coinciding with maximal change in their cerebellar mass. Altered expression of cerebellar proteins is likely to affect a number of developmental processes and contribute to the structural and functional alterations seen in the CNS developing under altered gravity. Our data suggest that both cerebellar development and its response to gravitational manipulations differ in males and females.
Kondo, T; Taniguchi, N; Ishikawa, N; Ide, H; Takakuwa, E; Murao, M
1978-05-01
Levels of rabbit erythrocyte carbonic anhydrase B and C isozymes were determined in experimental hyperthyroidism using a quantitative immunologic technique. Levels of erythrocyte 2,3-diphosphoglycerate and protein binding iodine were simultaneously determined. Thyroxine and 3,5,3'-triiodothyronine were administered to rabbits orally for 30 days. A significant decrease in carbonic anhydrase B type was observed after 30 days, although no significant change was observed in carbonic anhydrase C type. These findings suggest that the steady state level of carbonic anhydrase B type in red cells is affected by thyroid hormone more readily than that of carbonic anhydrase C type. The level of red cell 2,3-diphosphoglycerate increased markedly after 10 days of treatment, corresponding to the increase of protein binding iodine. The clinical or pathologic significances were discussed in relation to the changes in the levels of these isozymes and 2,3-diphosphglycerate in red cells.
Qian, Ai-Rong; Gao, Xiang; Zhang, Wei; Li, Jing-Bao; Wang, Yang; Di, Sheng-Meng; Hu, Li-Fang; Shang, Peng
2013-01-01
The superconducting magnet generates a field and field gradient product that can levitate diamagnetic materials. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. The effects of LG-HMF on the ultrastructure and function of osteoblast-like cells (MG-63 and MC3T3-E1) and the underlying mechanism were investigated by transmission electromicroscopy (TEM), MTT, and cell western (ICW) assays. Under LG-HMF significant morphologic changes in osteoblast-like cells occurred, including expansion of endoplasmic reticulum and mitochondria, an increased number of lysosomes, distorted microvilli, and aggregates of actin filaments. Compared to controls, cell viability and alkaline phosphatase (ALP) secretion were significantly increased, and collagen I (col I), fibronectin (FN), vinculin, integrin α3, αv, and β1 expression were changed under LG-HMF conditions. In conclusion, LG-HMF affects osteoblast ultrastructure, cell viability, and ALP secretion, and the changes caused by LG-HMF may be related to disrupting col I or FN/αβ1 integrin. PMID:23382804
Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto
2017-01-01
The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance. PMID:28685011
Hansen, Fernanda; Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto
2017-01-01
The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.
Qian, Ai-Rong; Gao, Xiang; Zhang, Wei; Li, Jing-Bao; Wang, Yang; Di, Sheng-Meng; Hu, Li-Fang; Shang, Peng
2013-01-01
The superconducting magnet generates a field and field gradient product that can levitate diamagnetic materials. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. The effects of LG-HMF on the ultrastructure and function of osteoblast-like cells (MG-63 and MC3T3-E1) and the underlying mechanism were investigated by transmission electromicroscopy (TEM), MTT, and cell western (ICW) assays. Under LG-HMF significant morphologic changes in osteoblast-like cells occurred, including expansion of endoplasmic reticulum and mitochondria, an increased number of lysosomes, distorted microvilli, and aggregates of actin filaments. Compared to controls, cell viability and alkaline phosphatase (ALP) secretion were significantly increased, and collagen I (col I), fibronectin (FN), vinculin, integrin α3, αv, and β1 expression were changed under LG-HMF conditions. In conclusion, LG-HMF affects osteoblast ultrastructure, cell viability, and ALP secretion, and the changes caused by LG-HMF may be related to disrupting col I or FN/αβ1 integrin.
Changes in immunological profile as a function of urbanization and lifestyle
Mbow, Moustapha; de Jong, Sanne E; Meurs, Lynn; Mboup, Souleymane; Dieye, Tandakha Ndiaye; Polman, Katja; Yazdanbakhsh, Maria
2014-01-01
Differences in lifestyle and break with natural environment appear to be associated with changes in the immune system resulting in various adverse health effects. Although genetics can have a major impact on the immune system and disease susceptibility, the contribution of environmental factors is thought to be substantial. Here, we investigated the immunological profile of healthy volunteers living in a rural and an urban area of a developing African country (Senegal), and in a European country (the Netherlands). Using flow cytometry, we investigated T helper type 1 (Th1), Th2, Th17, Th22 and regulatory T cells, as well as CD4+ T-cell and B-cell activation markers, and subsets of memory T and B cells in the peripheral blood. Rural Senegalese had significantly higher frequencies of Th1, Th2 and Th22 cells, memory CD4+ T and B cells, as well as activated CD4+ T and B cells compared with urban Senegalese and urban Dutch people. Within the Senegalese population, rural paritcipants displayed significantly higher frequencies of Th2 and Th22 cells, as well as higher pro-inflammatory and T-cell activation and memory profiles compared with the urban population. The greater magnitude of immune activation and the enlarged memory pool, together with Th2 polarization, seen in rural participants from Africa, followed by urban Africans and Europeans suggest that environmental changes may define immunological footprints, which could have consequences for disease patterns in general and vaccine responses in particular. PMID:24924958
Metabolomics reveals metabolic changes in male reproductive cells exposed to thirdhand smoke
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Bo; Chen, Minjian; Yao, Mengmeng
Thirdhand smoke (THS) is a new term for the toxins in cigarette smoke that linger in the environment long after the cigarettes are extinguished. The effects of THS exposure on male reproduction have not yet been studied. In this study, metabolic changes in male germ cell lines (GC-2 and TM-4) were analyzed after THS treatment for 24 h. THS-loaded chromatography paper samples were generated in a laboratory chamber system and extracted in DMEM. At a paper: DMEM ratio of 50 μg/ml, cell viability in both cell lines was normal, as measured by the MTT assay and markers of cytotoxicity, cellmore » cycle, apoptosis and ROS production were normal as measured by quantitative immunofluorescence. Metabolomic analysis was performed on methanol extracts of GC-2 and TM-4 cells. Furthermore, glutathione metabolism in GC-2 cells, and nucleic acid and ammonia metabolism in TM-4 cells, was changed significantly by THS treatment. RT-PCR analyses of mRNA for enzyme genes Gss and Ggt in GC-2 cells, and TK, SMS and Glna in TM-4 cells reinforced these findings, showing changes in the levels of enzymes involved in the relevant pathways. In conclusion, exposure to THS at very low concentrations caused distinct metabolic changes in two different types of male reproductive cell lines.« less
Metabolomics reveals metabolic changes in male reproductive cells exposed to thirdhand smoke
Xu, Bo; Chen, Minjian; Yao, Mengmeng; ...
2015-10-22
Thirdhand smoke (THS) is a new term for the toxins in cigarette smoke that linger in the environment long after the cigarettes are extinguished. The effects of THS exposure on male reproduction have not yet been studied. In this study, metabolic changes in male germ cell lines (GC-2 and TM-4) were analyzed after THS treatment for 24 h. THS-loaded chromatography paper samples were generated in a laboratory chamber system and extracted in DMEM. At a paper: DMEM ratio of 50 μg/ml, cell viability in both cell lines was normal, as measured by the MTT assay and markers of cytotoxicity, cellmore » cycle, apoptosis and ROS production were normal as measured by quantitative immunofluorescence. Metabolomic analysis was performed on methanol extracts of GC-2 and TM-4 cells. Furthermore, glutathione metabolism in GC-2 cells, and nucleic acid and ammonia metabolism in TM-4 cells, was changed significantly by THS treatment. RT-PCR analyses of mRNA for enzyme genes Gss and Ggt in GC-2 cells, and TK, SMS and Glna in TM-4 cells reinforced these findings, showing changes in the levels of enzymes involved in the relevant pathways. In conclusion, exposure to THS at very low concentrations caused distinct metabolic changes in two different types of male reproductive cell lines.« less
Rolfe, M; Parmar, A; Hoy, T G; Coakley, W T
2001-01-01
The topology of the cell-cell contact seam formed when normal or pronase pre-treated (PPT) erythrocytes are exposed to wheat germ agglutinin (WGA) in isotonic media of different ionic strengths was examined here. Lectin uptake and cell agglutination were also quantified. Agglutination of normal cells was gradually and significantly inhibited as ionic strength (IS) was reduced from 0.15 (buffered 145 mm NaCl) to 0.105. Agglutination was less inhibited in PPT cells, even when IS was reduced to 0.09. Cell contact seams formed during agglutination showed patterns of localized contacts. The scale of the patterns, i.e. the average lateral separation distance of contact regions, was 0.62 microm for normal cells and was significantly shorter, at 0.44 microm, for PPT cells at an IS of 0.15. The scale increased significantly for both cell types when the IS was reduced to 0.09. Flow cytometry measurements showed that WGA uptake by normal cells increased slightly, whilst that for PPT cells was unchanged, as IS was decreased from 0.15 to 0.09. The results imply that, whilst ionic strength change does not exert a strong influence on intermolecular WGA-ligand binding, physico-chemical modification of the interaction between cells modulates not only the extent and progression of the biospecific lectin-induced cell-cell agglutination but also the topology of the contact seam. The IS dependence of contact separation in WGA-agglutinated cells is contrasted here with that reported for cells adhering in dextran solutions. The influence of IS change and pronase pre-treatment on contact pattern are consistent with predictions, from interfacial instability theory, of punctuate thinning of the aqueous layer separating bilayer membranes in close apposition.
Derivation and application of a mathematical model for long bone growth.
Seetharam, Suneil; Bhatia, Sujata K
2012-01-01
The objective of this work was to develop a mathematical model of long bone growth and to gain insights regarding growth disorders. A cell balance (mass balance of moving cells) assessment was performed on the three regions of the growth plate, to determine the variables (including number of proliferating cells, and division rate of proliferating cells) that influence tibia growth rate. Once this relationship was established, clinical data were used to understand how tibia growth rate and number of proliferating cells change with time. These equations were then inserted into the model to determine how cell division rate changes with time. The model was utilized to determine the influence of growth time, and to measure changes in vitamin C deficiency, Indian hedgehog (IHH) expression, and bone morphogenetic protein-2 (BMP-2) implants on tibia length. According to the model, a 10-month discrepancy in growth time between the two tibias is required to produce clinically significant leg asymmetry. In addition, vitamin C deficiency, IHH overexpression, and BMP-2 implants can all affect tibia length. These bioactive molecules have the greatest effect on tibia growth rate when these perturbations occur early in life for extended periods of time. The results are significant for modeling and predicting the effects of perturbations, including bioactive implants, on long bone growth.
Effect of mild temperature shift on poly(ADP-ribose) and γH2AX levels in cultured cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, Sachiko; Tanaka, Masakazu; Sato, Teruaki
Poly (ADP-ribose) (PAR) is rapidly synthesized by PAR polymerases (PARPs) upon activation by DNA single- and double-strand breaks. In this study, we examined the quantitative amount of PAR in HeLa cells cultured within the physiological temperatures below 41 °C for verification of the effect of shifting-up or -down the temperature from 37.0 °C on the DNA breaks, whether the temperature-shift caused breaks that could be monitored by the level of PAR. While PAR level did not change significantly when HeLa cells were cultured at 33.5 °C or 37.0 °C, it was significantly increased 2- and 3-fold when cells were cultured for 12 h andmore » 24 h, respectively, at 40.5 °C as compared to 37.0 °C. Similar to the results with HeLa cells, PAR level was increased 2-fold in CHO-K1 cells cultured at 40.5 °C for 24 h as compared to 37.0 °C. As the cellular levels of PAR polymerase1 (PARP1) and PAR glycohydrolase (PARG), a major degradation enzyme for PAR, did not seem to change significantly, this increase could be caused by activation of PARP1 by DNA strand breaks. In fact, γH2AX, claimed to be a marker of DNA double-strand breaks, was found in cell extracts of HeLa cells and CHO-K1 cells at elevated temperature vs. 37.0 °C, and these γH2AX signals were intensified in the presence of 3-aminobenzamide, a PARP inhibitor. The γH2AX immunohistochemistry results in HeLa cells were consistent with Western blot analyses. In HeLa cells, proliferation was significantly suppressed at 40.5 °C in 72 h-continuous cultures and decreased viabilities were also observed after 24–72 h at 40.5 °C. Flow cytometric analyses showed that the HeLa cells were arrested at G2/M after temperature shift-up to 40.5 °C. These physiological changes were potentiated in the presence of 3-aminobenzamide. Decrease in growth rates, increased cytotoxicity and G2/M arrest, were associated with the temperature-shift to 40.5 °C and are indirect evidence of DNA breaks. In addition to γH2AX, PAR could be a sensitive marker for DNA single- and double-strand breaks. These two molecular markers provide evidence of physiological changes occurring within cells. - Highlights: • Physiological level of poly(ADP-ribose) was determined during mild temperature shift. • Poly(ADP-ribose) level in HeLa and CHO-K1 cells significantly increased. • γH2AX signals increased during culture at 40.5 °C as compared to 37.0 °C. • Poly(ADP-ribose) polymerase inhibitor potentiated γH2AX signals at 40.5 °C. • γH2AX and poly(ADP-ribose) level provide evidence of physiological changes in cells.« less
Physiological Role of Gap-Junctional Hemichannels
Quist, Arjan Pieter; Rhee, Seung Keun; Lin, Hai; Lal, Ratneshwar
2000-01-01
Hemichannels in the overlapping regions of apposing cells plasma membranes join to form gap junctions and provide an intercellular communication pathway. Hemichannels are also present in the nonjunctional regions of individual cells and their activity is gated by several agents, including calcium. However, their physiological roles are unknown. Using techniques of atomic force microscopy (AFM), fluorescent dye uptake assay, and laser confocal immunofluorescence imaging, we have examined the extracellular calcium-dependent modulation of cell volume. In response to a change in the extracellular physiological calcium concentration (1.8 to ≤1.6 mM) in an otherwise isosmotic condition, real-time AFM imaging revealed a significant and reversible increase in the volume of cells expressing gap-junctional proteins (connexins). Volume change did not occur in cells that were not expressing connexins. However, after the transient or stable transfection of connexin43, volume change did occur. The volume increase was accompanied by cytochalasin D-sensitive higher cell stiffness, which helped maintain cell integrity. These cellular physical changes were prevented by gap-junctional blockers, oleamide and β-glycyrrhetinic acid, or were reversed by returning extracellular calcium to the normal level. We conclude that nongap-junctional hemichannels regulate cell volume in response to the change in extracellular physiological calcium in an otherwise isosmotic situation. PMID:10704454
An ultra-sensitive biophysical risk assessment of light effect on skin cells.
Bennet, Devasier; Viswanath, Buddolla; Kim, Sanghyo; An, Jeong Ho
2017-07-18
The aim of this study was to analyze photo-dynamic and photo-pathology changes of different color light radiations on human adult skin cells. We used a real-time biophysical and biomechanics monitoring system for light-induced cellular changes in an in vitro model to find mechanisms of the initial and continuous degenerative process. Cells were exposed to intermittent, mild and intense (1-180 min) light with On/Off cycles, using blue, green, red and white light. Cellular ultra-structural changes, damages, and ECM impair function were evaluated by up/down-regulation of biophysical, biomechanical and biochemical properties. All cells exposed to different color light radiation showed significant changes in a time-dependent manner. Particularly, cell growth, stiffness, roughness, cytoskeletal integrity and ECM proteins of the human dermal fibroblasts-adult (HDF-a) cells showed highest alteration, followed by human epidermal keratinocytes-adult (HEK-a) cells and human epidermal melanocytes-adult (HEM-a) cells. Such changes might impede the normal cellular functions. Overall, the obtained results identify a new insight that may contribute to premature aging, and causes it to look aged in younger people. Moreover, these results advance our understanding of the different color light-induced degenerative process and help the development of new therapeutic strategies.
Yi, Xue; Cheng, Hui; Zou, Ping; Liu, Ling-Bo; Zhang, Ting; Yu, Dan; Zhu, Xiao-Ming; Zou, Liang
2010-10-01
The defect or block of apoptosis is an important factor involved in the drug resistance of tumor cells. Blm gene plays a great role in DNA damage and repair. This study was aimed to explore the relationship of blm gene expression with cell cycle and apoptosis after Jurkat DNA damage. The apoptosis rate and change of cell cycle were detected by flow cytometry, the expression level of blm mRNA in Jurkat cells was determined by semi-quantitative RT-PCR. The results indicated that after induction with 0.4 g/L of mitomycin C (MMC) for 24 hours the apoptosis rate of Jurkat cells were (11.42±0.013)%, and (66.08±1.60)% Jurkat cells were arrested in G2/M phase. After induction for 48 hours, the apoptosis rate of Jurkat cells declined from (11.42±0.013)% to (8.08±0.27)%, and cell count of Jurkat cells arrested in G2/M phase decreased from (66.08±1.60)% to (33.96±1.05)%. When induced with 0.4 g/L of MMC for 24 hours, the apoptosis rate of fibroblasts and the percentage of fibroblasts in G2/M, G0-G1 and S phase all showed no significant change until 48 hours. The range of apoptosis rate and the change of cell percentage in three phases were significantly different between Jurkat cells and fibroblasts (p<0.01). Expression level of blm mRNA in Jurkat cells was remarkably higher than that in normal fibroblasts (p<0.01), at 48 hours expression level of blm mRNA was remarkably higher than that at 24 hours. The 2 groups showed clear difference of blm mRNA expression after treated by MMC (p<0.01). It is concluded that the blm gene may play a significant role in repair of DNA damage of Jurkat cells after MMC induction. Abnormal expression of blm is correlated to the drug resistance of leukemia cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavakolinejad, Alireza; Rabbani, Mohsen, E-mail: m.rabbani@eng.ui.ac.ir; Janmaleki, Mohsen
2015-08-21
Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation wasmore » assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.« less
Peripheral Leukocyte Migration in Ferrets in Response to Infection with Seasonal Influenza Virus
Kim, Jin Hyang; York, Ian A.
2016-01-01
In order to better understand inflammation associated with influenza virus infection, we measured cell trafficking, via flow cytometry, to various tissues in the ferret model following infection with an A(H3N2) human seasonal influenza virus (A/Perth/16/2009). Changes in immune cells were observed in the blood, bronchoalveolar lavage fluid, and spleen, as well as lymph nodes associated with the site of infection or distant from the respiratory system. Nevertheless clinical symptoms were mild, with circulating leukocytes exhibiting rapid, dynamic, and profound changes in response to infection. Each of the biological compartments examined responded differently to influenza infection. Two days after infection, when infected ferrets showed peak fever, a marked, transient lymphopenia and granulocytosis were apparent in all infected animals. Both draining and distal lymph nodes demonstrated significant accumulation of T cells, B cells, and granulocytes at days 2 and 5 post-infection. CD8+ T cells significantly increased in spleen at days 2 and 5 post-infection; CD4+ T cells, B cells and granulocytes significantly increased at day 5. We interpret our findings as showing that lymphocytes exit the peripheral blood and differentially home to lymph nodes and tissues based on cell type and proximity to the site of infection. Monitoring leukocyte homing and trafficking will aid in providing a more detailed view of the inflammatory impact of influenza virus infection. PMID:27315117
Peripheral Leukocyte Migration in Ferrets in Response to Infection with Seasonal Influenza Virus.
Music, Nedzad; Reber, Adrian J; Kim, Jin Hyang; York, Ian A
2016-01-01
In order to better understand inflammation associated with influenza virus infection, we measured cell trafficking, via flow cytometry, to various tissues in the ferret model following infection with an A(H3N2) human seasonal influenza virus (A/Perth/16/2009). Changes in immune cells were observed in the blood, bronchoalveolar lavage fluid, and spleen, as well as lymph nodes associated with the site of infection or distant from the respiratory system. Nevertheless clinical symptoms were mild, with circulating leukocytes exhibiting rapid, dynamic, and profound changes in response to infection. Each of the biological compartments examined responded differently to influenza infection. Two days after infection, when infected ferrets showed peak fever, a marked, transient lymphopenia and granulocytosis were apparent in all infected animals. Both draining and distal lymph nodes demonstrated significant accumulation of T cells, B cells, and granulocytes at days 2 and 5 post-infection. CD8+ T cells significantly increased in spleen at days 2 and 5 post-infection; CD4+ T cells, B cells and granulocytes significantly increased at day 5. We interpret our findings as showing that lymphocytes exit the peripheral blood and differentially home to lymph nodes and tissues based on cell type and proximity to the site of infection. Monitoring leukocyte homing and trafficking will aid in providing a more detailed view of the inflammatory impact of influenza virus infection.
Changes in the inner ear structures in cystic fibrosis patients.
Pauna, Henrique F; Monsanto, Rafael C; Kurata, Natsuko; Paparella, Michael M; Cureoglu, Sebahattin
2017-01-01
Although prolonged use of antibiotics is very common in cystic fibrosis (CF) patients, no studies have assessed the changes in both cochlear and peripheral vestibular systems in this population. We used human temporal bones to analyze the density of vestibular dark, transitional, and hair cells in specimens from CF patients who were exposed to several types of antibiotics, as compared with specimens from an age-matched control group with no history of ear disease or antibiotic use. Additionally, we analyzed the changes in the elements of the cochlea (hair cells, spiral ganglion neurons, and the area of the stria vascularis). Data was gathered using differential interference contrast microscopy and light microscopy. In the CF group, 83% of patients were exposed to some ototoxic drugs, such as aminoglycosides. As compared with the control group, the density of both type I and type II vestibular hair cells was significantly lower in all structures analyzed; the number of dark cells was significantly lower in the lateral and posterior semicircular canals. We noted a trend toward a lower number of both inner and outer cochlear hair cells at all turns of the cochlea. The number of spiral ganglion neurons in Rosenthal's canal at the apical turn of the cochlea was significantly lower; furthermore, the area of the stria vascularis at the apical turn of the cochlea was significantly smaller. Deterioration of cochlear and vestibular structures in CF patients might be related to their exposure to ototoxic antibiotics. Well-designed case-control studies are necessary to rule out the effect of CF itself. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Changes in the Inner Ear Structures in Cystic Fibrosis Patients
Pauna, Henrique F.; Monsanto, Rafael C.; Kurata, Natsuko; Paparella, Michael M.; Cureoglu, Sebahattin
2016-01-01
Objective Although prolonged use of antibiotics is very common in cystic fibrosis (CF) patients, no studies have assessed the changes in both cochlear and peripheral vestibular systems in this population. Methods We used human temporal bones to analyze the density of vestibular dark, transitional, and hair cells in specimens from CF patients who were exposed to several types of antibiotics, as compared with specimens from an age-matched control group with no history of ear disease or antibiotic use. Additionally, we analyzed the changes in the elements of the cochlea (hair cells, spiral ganglion neurons, and the area of the stria vascularis). Data was gathered using differential interference contrast microscopy and light microscopy. Results In the CF group, 83% of patients were exposed to some ototoxic drugs, such as aminoglycosides. As compared with the control group, the density of both type I and type II vestibular hair cells was significantly lower in all structures analyzed; the number of dark cells was significantly lower in the lateral and posterior semicircular canals. We noted a trend toward a lower number of both inner and outer cochlear hair cells at all turns of the cochlea. The number of spiral ganglion neurons in Rosenthal’s canal at the apical turn of the cochlea was significantly lower; furthermore, the area of the stria vascularis at the apical turn of the cochlea was significantly smaller. Conclusions Deterioration of cochlear and vestibular structures in CF patients might be related to their exposure to ototoxic antibiotics. Well-designed case-control studies are necessary to rule out the effect of CF itself. PMID:28012509
Carbon Dioxide Tolerance: A Review
1967-09-01
limited buffering capabilities. 3. !rrncefihdtar btif, frig. Part of the excess H4 diffuses into cells and is buffered by intracellular HCO...correspond with changes in venous pH and pulmonary 00- excretion, possibly indicating a significant role of bone CO.. stores in acclimatization to carbon...blood parameters included no change in hematocrit, re- ticulocyte counts, and white blood cell counts while scme decrease was seen in circulating
Fujisawa, Kazuaki; Ito, Yushi
1982-01-01
1 The effects of substance P (SP) on the membrane and contractile properties of the smooth muscle cell, or on neuro-effector transmission in the guinea-pig ileum were observed by means of microelectrodes, double sucrose gap and tension recording. 2 SP (10-13-10-10M) induced a phasic contraction of longitudinal muscle strips, but did not change the muscle tone of circular muscle strips, in concentrations up to 10-8M. 3 SP (10-10-10-8M) evoked three different membrane responses in longitudinal muscle cells: (i) bursts of spike discharges with no significant change in the membrane potential and input membrane resistance; (ii) bursts of spike discharges with a small but clear depolarization of the membrane and increase in the input membrane resistance; (iii) slow waves with no change in the membrane potential. 4 In the circular muscle cells, low concentrations of SP (<10-8M) did not affect the membrane potential or the spikes, but SP (10-7M) increased the spike discharges with no significant change in the membrane potential. 5 SP (10-10M) reduced the threshold depolarization required for the generation of action potentials with no change in membrane potential of the longitudinal muscle cells. 6 Pretreatment with atropine (5 × 10-6M), tetrodotoxin (TTX 10-6M) or baclofen (4.7 × 10-6M) had no effect on the excitatory actions of SP on the smooth muscle cells of longitudinal and circular muscle strips. 7 Excitatory actions of SP on the membrane potential or spike activities of longitudinal muscle cells were preserved in NaCl but not in Ca-deficient solution. 8 SP (10-10-10-9M) enhanced the amplitude of the excitatory junction potentials (e.j.ps) evoked by electrical field stimulation in longitudinal muscle cells with no change in the membrane potential and input resistance. SP (10-10-10-9M), however, did not change the amplitude of inhibitory junction potentials (i.j.ps) recorded from the circular muscle cells. 9 These results indicate that SP in relatively low concentrations acts on both smooth muscle cells and on excitatory neuro-effector transmission in the longitudinal muscle; the main site of the action of SP is probably the muscle membrane. PMID:6178458
Wachi, Masatada; Koyama, Masahiro; Utsuyama, Masanori; Bittman, Barry B; Kitagawa, Masanobu; Hirokawa, Katsuiku
2007-02-01
With growing evidence linking job stress to illness, finding an effective means of stress management has become a challenging international endeavor. Although music therapy has attracted the attention of various fields as a promising method for alleviating stress, lack of standardization and paucity of data have served as impediments to widespread utilization. The effects of a Recreational Music-Making (RMM) group drumming protocol was evaluated on Japanese male corporate employees. A total of 20 volunteers participated in a one-hour RMM session while 20 volunteers engaged in leisurely reading for one hour (controls). After a six-month interval, the groups switched activities and underwent one session each. Pre- and post-intervention data were collected using mood state questionnaires and blood samples. Individual and group mean values for natural killer (NK) cell activity, NK cell percentage, and cytokine gene expression were analyzed. NK cell activity in the RMM group increased among individuals with low pre-intervention levels, and decreased among those with high pre-intervention levels. A significant correlation was established between changes in NK cell activity and the changes in the level of gene expressions for interferon-gamma and interleukin-10. The RMM group demonstrated enhanced mood, lower gene expression levels of the stress-induced cytokine interleukin-10, and higher NK cell activity when compared to the control. Based upon documented changes in NK cell activity, coupled with gene expression changes for interferon-gamma, interleukin-10, and improved mood, this RMM protocol has significant potential for utilization in the corporate wellness environment.
Spectral Monitoring of Surfactant Clearance during Alveolar Epithelial Type II Cell Differentiation
Swain, Robin J.; Kemp, Sarah J.; Goldstraw, Peter; Tetley, Teresa D.; Stevens, Molly M.
2008-01-01
In this study, we report on the noninvasive identification of spectral markers of alveolar type II (ATII) cell differentiation in vitro using Raman microspectroscopy. ATII cells are progenitor cells for alveolar type I (ATI) cells in vivo, and spontaneously differentiate toward an ATI-like phenotype in culture. We analyzed undifferentiated and differentiated primary human ATII cells, and correlated Raman spectral changes to cellular changes in morphology and marker protein synthesis (surfactant protein C, alkaline phosphatase, caveolin-1). Undifferentiated ATII cells demonstrated spectra with strong phospholipid vibrations, arising from alveolar surfactant stored within cytoplasmic lamellar bodies (Lbs). Differentiated ATI-like cells yielded spectra with significantly less lipid content. Factor analysis revealed a phospholipid-dominated spectral component as the main discriminator between the ATII and ATI-like phenotypes. Spectral modeling of the data revealed a significant decrease in the spectral contribution of cellular lipids—specifically phosphatidyl choline, the main constituent of surfactant, as ATII cells differentiate. These observations were consistent with the clearance of surfactant from Lbs as ATII cells differentiate, and were further supported by cytochemical staining for Lbs. These results demonstrate the first spectral characterization of primary human ATII cells, and provide insight into the biochemical properties of alveolar surfactant in its unperturbed cellular environment. PMID:18820234
Liu, Yuexin; Yan, Jinyin; Han, Xiaochen; Hu, Wanning
2015-01-01
Epidemiological and experimental carcinogenesis studies provide evidence that components of garlic have anticancer activity. In this study, the apoptotic effects of Garlic-derived compound S-allylmercaptocysteine (SAMC) were investigated in 8305C human anaplastic thyroid carcinoma cells. The cell line 8305C (HPACC) were treated with SAMC and the MTT assay, flow cytometry (FCM), electron microscope method were used to test cell cycle, inhibitory rate and morphologic changes respectively. HPACC-8305C cells were suppressed after exposure to SAMC of 0.02 mg/ml, 0.06 mg/ml, and 0.1 mg/ml for 48 h. Compared with the control, the difference was significant (P< 0.05). SAMC could induce apoptosis of the cells in a dose-dependent and non-linear manner and increase the proportion of cells in the G2/M phase. Compared with the control, the difference was significant in terms of the percentage of cells in the G2/M phase (P< 0.05). After exposure to SAMC at 0.02 mg/ml for 24 hours, HPACC-8305C cells showed typical morphologic change. SAMC inhibits the growth of HPACC-8305C cells by induction of apoptotic cell death and inhibit telomerase activity, which appears to account for its anti-cancer activity.
Plett, P Artur; Abonour, Rafat; Frankovitz, Stacy M; Orschell, Christie M
2004-08-01
Migration, proliferation, and differentiation of bone marrow (BM) hematopoietic stem cells (HSC) are important factors in maintaining hematopoietic homeostasis. Homeostatic control of erythrocytes and lymphocytes is perturbed in humans exposed to microgravity (micro-g), resulting in space flight-induced anemia and immunosuppression. We sought to determine whether any of these anomalies can be explained by micro-g-induced changes in migration, proliferation, and differentiation of human BM CD34+ cells, and whether such changes can begin to explain any of the shifts in hematopoietic homeostasis observed in astronauts. BM CD34+ cells were cultured in modeled micro-g (mmicro-g) using NASA's rotating wall vessels (RWV), or in control cultures at earth gravity for 2 to 18 days. Cells were harvested at different times and CD34+ cells assessed for migration potential, cell-cycle kinetics and regulatory proteins, and maturation status. Culture of BM CD34+ cells in RWV for 2 to 3 days resulted in a significant reduction of stromal cell-derived factor 1 (SDF-1alpha)-directed migration, which correlated with decreased expression of F-actin. Modeled micro-g induced alterations in cell-cycle kinetics that were characterized by prolonged S phase and reduced cyclin A expression. Differentiation of primitive CD34+ cells cultured for 14 to 18 days in RWV favored myeloid cell development at the expense of erythroid development, which was significantly reduced compared to controls. These results illustrate that mmicro-g significantly inhibits the migration potential, cell-cycle progression, and differentiation patterns of primitive BM CD34+ cells, which may contribute to some of the hematologic abnormalities observed in humans during space flight.
Guarini, Anna; Chiaretti, Sabina; Tavolaro, Simona; Maggio, Roberta; Peragine, Nadia; Citarella, Franca; Ricciardi, Maria Rosaria; Santangelo, Simona; Marinelli, Marilisa; De Propris, Maria Stefania; Messina, Monica; Mauro, Francesca Romana; Del Giudice, Ilaria; Foà, Robert
2008-08-01
Chronic lymphocytic leukemia (CLL) patients exhibit a variable clinical course. To investigate the association between clinicobiologic features and responsiveness of CLL cells to anti-IgM stimulation, we evaluated gene expression changes and modifications in cell-cycle distribution, proliferation, and apoptosis of IgV(H) mutated (M) and unmutated (UM) samples upon BCR cross-linking. Unsupervised analysis highlighted a different response profile to BCR stimulation between UM and M samples. Supervised analysis identified several genes modulated exclusively in the UM cases upon BCR cross-linking. Functional gene groups, including signal transduction, transcription, cell-cycle regulation, and cytoskeleton organization, were up-regulated upon stimulation in UM cases. Cell-cycle and proliferation analyses confirmed that IgM cross-linking induced a significant progression into the G(1) phase and a moderate increase of proliferative activity exclusively in UM patients. Moreover, we observed only a small reduction in the percentage of subG(0/1) cells, without changes in apoptosis, in UM cases; contrariwise, a significant increase of apoptotic levels was observed in stimulated cells from M cases. These results document that a differential genotypic and functional response to BCR ligation between IgV(H) M and UM cases is operational in CLL, indicating that response to antigenic stimulation plays a pivotal role in disease progression.
Impact of acute exposure to WTC dust on ciliated and goblet cells in lungs of rats
Cohen, Mitchell D.; Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Ghio, Andrew; Zelikoff, Judith; Lung-chi, Chen
2015-01-01
Clinical studies and the World Trade Center (WTC) Health Registry have revealed increases in the incidence of chronic (non-cancer) lung disorders among first responders (FR) who were at Ground Zero during the initial 72 h after the collapse. Our previous analyses of rats exposed to building-derived WTC dusts using exposure scenarios/levels that mimicked FR mouth-breathing showed that a single WTC dust exposure led to changes in expression of genes whose products could be involved in the lung ailments, but few other significant pathologies. We concluded that rather than acting as direct inducers of many of the FR health effects, it was more likely inhaled WTC dusts instead may have impacted on toxicities induced by other rescue-related co-pollutants present in Ground Zero air. To allow for such effects to occur, we hypothesized that the alkaline WTC dusts induced damage to the normal ability of the lungs to clear inhaled particles. To validate this, rats were exposed on two consecutive days (2 h/d, by intratracheal inhalation) to WTC dust (collected 12–13 September 2001) and examined over a 1-yr period thereafter for changes in the presence of ciliated cells in the airways and hyperplastic goblet cells in the lungs. WTC dust levels in the lungs were assessed in parallel to verify that any changes in levels of these cells corresponded with decreases in host ability to clear the particles themselves. Image analyses of the rat lungs revealed a significant decrease in ciliated cells and increase in hyperplastic goblet cells due to the single series of WTC dust exposures. The study also showed there was only a nominal non-significant decrease (6–11%) in WTC dust burden over a 1-yr period after the final exposure. These results provide support for our current hypothesis that exposure to WTC dusts caused changes in airway morphology/cell composition; such changes could, in turn, have led to potential alterations in the clearance/toxicities of other pollutants inhaled at Ground Zero in the critical initial 72-h period. PMID:26194034
Impact of acute exposure to WTC dust on ciliated and goblet cells in lungs of rats.
Cohen, Mitchell D; Vaughan, Joshua M; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Ghio, Andrew; Zelikoff, Judith; Lung-chi, Chen
2015-01-01
Clinical studies and the World Trade Center (WTC) Health Registry have revealed increases in the incidence of chronic (non-cancer) lung disorders among first responders (FR) who were at Ground Zero during the initial 72 h after the collapse. Our previous analyses of rats exposed to building-derived WTC dusts using exposure scenarios/levels that mimicked FR mouth-breathing showed that a single WTC dust exposure led to changes in expression of genes whose products could be involved in the lung ailments, but few other significant pathologies. We concluded that rather than acting as direct inducers of many of the FR health effects, it was more likely inhaled WTC dusts instead may have impacted on toxicities induced by other rescue-related co-pollutants present in Ground Zero air. To allow for such effects to occur, we hypothesized that the alkaline WTC dusts induced damage to the normal ability of the lungs to clear inhaled particles. To validate this, rats were exposed on two consecutive days (2 h/d, by intratracheal inhalation) to WTC dust (collected 12-13 September 2001) and examined over a 1-yr period thereafter for changes in the presence of ciliated cells in the airways and hyperplastic goblet cells in the lungs. WTC dust levels in the lungs were assessed in parallel to verify that any changes in levels of these cells corresponded with decreases in host ability to clear the particles themselves. Image analyses of the rat lungs revealed a significant decrease in ciliated cells and increase in hyperplastic goblet cells due to the single series of WTC dust exposures. The study also showed there was only a nominal non-significant decrease (6-11%) in WTC dust burden over a 1-yr period after the final exposure. These results provide support for our current hypothesis that exposure to WTC dusts caused changes in airway morphology/cell composition; such changes could, in turn, have led to potential alterations in the clearance/toxicities of other pollutants inhaled at Ground Zero in the critical initial 72-h period.
Glial cell morphological and density changes through the lifespan of rhesus macaques.
Robillard, Katelyn N; Lee, Kim M; Chiu, Kevin B; MacLean, Andrew G
2016-07-01
How aging impacts the central nervous system (CNS) is an area of intense interest. Glial morphology is known to affect neuronal and immune function as well as metabolic and homeostatic balance. Activation of glia, both astrocytes and microglia, occurs at several stages during development and aging. The present study analyzed changes in glial morphology and density through the entire lifespan of rhesus macaques, which are physiologically and anatomically similar to humans. We observed apparent increases in gray matter astrocytic process length and process complexity as rhesus macaques matured from juveniles through adulthood. These changes were not attributed to cell enlargement because they were not accompanied by proportional changes in soma or process volume. There was a decrease in white matter microglial process length as rhesus macaques aged. Aging was shown to have a significant effect on gray matter microglial density, with a significant increase in aged macaques compared with adults. Overall, we observed significant changes in glial morphology as macaques age indicative of astrocytic activation with subsequent increase in microglial density in aged macaques. Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, Zhou; Kong, Fanxiang; Shi, Xiaoli; Zhang, Min; Xing, Peng; Cao, Huansheng
2008-06-01
To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies. © 2008 Phycological Society of America.
El-Mansy, A A; Mazroa, S A; Hamed, W S; Yaseen, A H; El-Mohandes, E A
2016-01-01
The liver is a target for toxic chemicals such as cadmium (Cd). When the liver is damaged, hepatic stellate cells (HSC) are activated and transformed into myofibroblast-like cells, which are responsible for liver fibrosis. Curcuma longa has been reported to exert a hepato-protective effect under various pathological conditions. We investigated the effects of C. longa administration on HSC activation in response to Cd induced hepatotoxicity. Forty adult male albino rats were divided into: group 1 (control), group 2 (Cd treated), group 3 (C. longa treated) and group 4 (Cd and C. longa treated). After 6 weeks, liver specimens were prepared for light and electron microscopy examination of histological changes and immunohistochemical localization of alpha smooth muscle actin (αSMA) as a specific marker for activated HSC. Activated HSC with a positive αSMA immune reaction were not detected in groups 1 and 3. Large numbers of activated HSC with αSMA immune reactions were observed in group 2 in addition to Cd induced hepatotoxic changes including excess collagen deposition in thickened portal triads, interlobular septa with hepatic lobulation, inflammatory cell infiltration, a significant increase in Kupffer cells and degenerated hepatocytes. In group 4, we observed a significant decrease in HSC that expressed αSMA with amelioration of the hepatotoxic changes. C. longa administration decreased HSC activation and ameliorated hepatotoxic changes caused by Cd in adult rats.
Early Hematopoietic Zinc Finger Protein Prevents Tumor Cell Recognition by Natural Killer Cells1
La Rocca, Rosanna; Fulciniti, Mariateresa; Lakshmikanth, Tadepally; Mesuraca, Maria; Ali, Talib Hassan; Mazzei, Valerio; Amodio, Nicola; Catalano, Lucio; Rotoli, Bruno; Ouerfelli, Ouathek; Grieco, Michele; Gulletta, Elio; Bond, Heather M.; Morrone, Giovanni; Ferrone, Soldano; Carbone, Ennio
2009-01-01
Early hematopoietic zinc finger/zinc finger protein 521 (EHZF/ZNF521) is a novel zinc finger protein expressed in hematopoietic stem and progenitor cells and is down-regulated during their differentiation. Its transcript is also abundant in some hematopoietic malignancies. Analysis of the changes in the antigenic profile of cells transfected with EHZF cDNA revealed up-regulation of HLA class I cell surface expression. This phenotypic change was associated with an increased level of HLA class I H chain, in absence of detectable changes in the expression of other Ag-processing machinery components. Enhanced resistance of target cells to NK cell-mediated cytotoxicity was induced by enforced expression of EHZF in the cervical carcinoma cell line HeLa and in the B lymphoblastoid cell line IM9. Preincubation of transfected cells with HLA class I Ag-specific mAb restored target cell susceptibility to NK cell-mediated lysis, indicating a specific role for HLA class I Ag up-regulation in the NK resistance induced by EHZF. A potential clinical significance of these findings is further suggested by the inverse correlation between EHZF and MHC class I expression levels, and autologous NK susceptibility of freshly explanted multiple myeloma cells. PMID:19342626
Kim, Hee Jin; Kim, Nayoung; Kim, Yong Sung; Nam, Ryoung Hee; Lee, Sun Min; Park, Ji Hyun; Choi, Daeun; Hwang, Young-Jae; Lee, Jongchan; Lee, Hye Seung; Kim, Min-Seob; Lee, Moon Young; Lee, Dong Ho
2017-01-01
The aging-associated cellular and molecular changes in esophagus have not been established, yet. Thus we evaluated histological structure, interstitial cells of Cajal (ICCs), neuronal nitric oxide synthase (nNOS)-positive cells, and contractility in the esophagus of Fischer 344 rat at different ages (6-, 31-, 74-weeks, and 2-years). The lamina propria thickness and endomysial area were calculated. The immunoreactivity of c-Kit, nNOS and protein gene product (PGP) 9.5 was counted after immunohistochemistry. Expression of c-Kit, stem cell factor (SCF), nNOS and PGP 9.5 mRNA was measured by real-time PCR, and expression of c-Kit and nNOS protein was detected by Western blot. Isovolumetric contractile force measurement and electrical field stimulation (EFS) were conducted. The lamina propria thickness increased (6 week vs 2 year, P = 0.005) and the endomysial area of longitudinal muscle decreased with aging (6 week vs 2 year, P<0.001), while endomysial area of circular muscle did not significantly decrease. The proportions of NOS-immunoreactive cells and c-Kit-immunoreactive areas declined with aging (6 week vs 2 year; P<0.001 and P = 0.004, respectively), but there was no significant change of PGP 9.5-immunopositiviy. The expressions of nNOS, c-Kit and SCF mRNA also reduced with aging (6 week vs 2 year; P = 0.006, P = 0.001 and P = 0.006, respectively), while the change of PGP 9.5 mRNA expression was not significant. Western blot showed the significant decreases of nNOS and c-Kit protein expression with aging (6 week vs 2 year; P = 0.008 and P = 0.012, respectively). The EFS-induced esophageal contractions significantly decreased in 2-yr-old rat compared with 6-wk-old rats, however, L-NG-Nitroarginine methylester did not significantly increase the spontaneous and EFS-induced contractions in the 6-wk- and 2-yr-old rat esophagus. In conclusion, an increase of lamina propria thickness, a decrease of endomysial area, c-Kit, SCF and NOS expression with preserved total enteric neurons, and contractility in aged rat esophagus may explain the aging-associated esophageal dysmotility.
Kim, Hee Jin; Kim, Yong Sung; Nam, Ryoung Hee; Lee, Sun Min; Park, Ji Hyun; Choi, Daeun; Hwang, Young-Jae; Lee, Jongchan; Lee, Hye Seung; Kim, Min-Seob; Lee, Moon Young; Lee, Dong Ho
2017-01-01
The aging-associated cellular and molecular changes in esophagus have not been established, yet. Thus we evaluated histological structure, interstitial cells of Cajal (ICCs), neuronal nitric oxide synthase (nNOS)-positive cells, and contractility in the esophagus of Fischer 344 rat at different ages (6-, 31-, 74-weeks, and 2-years). The lamina propria thickness and endomysial area were calculated. The immunoreactivity of c-Kit, nNOS and protein gene product (PGP) 9.5 was counted after immunohistochemistry. Expression of c-Kit, stem cell factor (SCF), nNOS and PGP 9.5 mRNA was measured by real-time PCR, and expression of c-Kit and nNOS protein was detected by Western blot. Isovolumetric contractile force measurement and electrical field stimulation (EFS) were conducted. The lamina propria thickness increased (6 week vs 2 year, P = 0.005) and the endomysial area of longitudinal muscle decreased with aging (6 week vs 2 year, P<0.001), while endomysial area of circular muscle did not significantly decrease. The proportions of NOS-immunoreactive cells and c-Kit-immunoreactive areas declined with aging (6 week vs 2 year; P<0.001 and P = 0.004, respectively), but there was no significant change of PGP 9.5-immunopositiviy. The expressions of nNOS, c-Kit and SCF mRNA also reduced with aging (6 week vs 2 year; P = 0.006, P = 0.001 and P = 0.006, respectively), while the change of PGP 9.5 mRNA expression was not significant. Western blot showed the significant decreases of nNOS and c-Kit protein expression with aging (6 week vs 2 year; P = 0.008 and P = 0.012, respectively). The EFS-induced esophageal contractions significantly decreased in 2-yr-old rat compared with 6-wk-old rats, however, L-NG-Nitroarginine methylester did not significantly increase the spontaneous and EFS-induced contractions in the 6-wk- and 2-yr-old rat esophagus. In conclusion, an increase of lamina propria thickness, a decrease of endomysial area, c-Kit, SCF and NOS expression with preserved total enteric neurons, and contractility in aged rat esophagus may explain the aging-associated esophageal dysmotility. PMID:29182640
NASA Technical Reports Server (NTRS)
Zhang, Ye; Rohde, Larry; Emami, Kamal; Hammond, Dianne; Casey, Rachael; Mehta, Satish; Jeevarajan, Antony; Pierson, Duane; Wu, Honglu
2008-01-01
Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have demonstrated that genes with upregulated expression induced by IR may play important roles in DNA damage sensing, cell cycle checkpoint and chromosomal repair, the relationship between the regulation of gene expression by IR and its impact on cytogenetic responses to ionizing radiation has not been systematically studied. In our present study, the expression of 25 genes selected based on their transcriptional changes in response to IR or from their known DNA repair roles were individually knocked down by siRNA transfection in human fibroblast cells. Chromosome aberrations (CA) and micronuclei (MN) formation were measured as the cytogenetic endpoints. Our results showed that the yield of MN and/or CA formation were significantly increased by suppressed expression of 5 genes that included Ku70 in the DSB repair pathway; XPA in the NER pathway; RPA1 in the MMR pathway; RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes including MRE11A, RAD51 in the DSB pathway, and SESN1 and SUMO1 showed significant inhibition of cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, p21 and MLH1 expression resulted in both enhanced cell cycle progression and significantly higher yield of cytogenetic damage, indicating the involvement of these gene products in both cell cycle control and DNA damage repair. Of these 11 genes that affected the cytogenetic response, 9 were up-regulated in the cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulating the biological consequences after IR. Failure to express these IR-responsive genes, such as by gene mutation, could seriously change the outcome of the post IR scenario and lead to carcinogenesis.
Sadoughi, Mohammad Mehdi; Einollahi, Bahram; Baradaran-Rafii, Alireza; Roshandel, Danial; Hasani, Hamidreza; Nazeri, Mehrdad
2018-02-01
To compare the outcomes of the conventional and accelerated corneal collagen cross-linking (CXL) in patients with bilateral progressive keratoconus (KC). Fifteen consecutive patients with bilateral progressive KC were enrolled. In each patient, the fellow eyes were randomly assigned to the conventional CXL (3 mW/cm 2 for 30 min) or accelerated CXL (ACXL) (9 mW/cm 2 for 10 min) groups. Manifest refraction; uncorrected and corrected distant visual acuity; maximum and mean keratometry; corneal hysteresis and corneal resistance factor; endothelial cell density and morphology; central corneal thickness; and wavefront aberrations were measured before and 12 months after the CXL. Manifest refraction spherical equivalent and refractive cylinder improved significantly only in conventional group. Uncorrected and corrected distant visual acuity did not change significantly in either group. Also there was no significant change in the maximum and mean keratometry after 12 months. There was significant decrease in central corneal thickness in both groups which was more prominent in conventional group. Endothelial cell density reduced only in the conventional group which was not statistically significant (P = 0.147). CH, CRF, and wavefront aberrations did not change significantly in either group. We did not observe any significant difference in the changes of the variables between the two groups. Accelerated CXL with 9 mW/cm 2 irradiation for 10 min had similar refractive, visual, keratometric, and aberrometric results and less adverse effects on the corneal thickness and endothelial cells as compared with the conventional method after 12 months follow-up. However, randomized clinical trials with longer follow-ups and larger sample sizes are needed.
NASA Astrophysics Data System (ADS)
Pokrzywinski, Kaytee L.; Tilney, Charles L.; Warner, Mark E.; Coyne, Kathryn J.
2017-03-01
Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton.
Pokrzywinski, Kaytee L.; Tilney, Charles L.; Warner, Mark E.; Coyne, Kathryn J.
2017-01-01
Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton. PMID:28332589
[The effect of focused ultrasound on the physicochemical properties of Sarcoma 180 cell membrane].
Li, Tao; Hao, Qiao; Wang, Xiaobing; Liu, Quanhong
2009-10-01
This study was amied to detect the changes in the cell membrane of Sarcoma 180 (S180) cells induced by focused ultrasound and to probe the underlying mechanism. The viability of tumor cells was examined at various intensities and different treatment times by ultrasound at the frequency of 2.2MHz. Flow cytometry and fluorescence microscopy were used to detect the loading of fluorescein isothiocyanate dextran (FD500) which signifies the change of membrane permeability. The results showed that after the cells were treated by ultrasound, especially when irradiated for 60s, the number of fluorescent cell, which represented the transient change of membrane permeabilization with cell survival, increased significantly. Then the damage of cell membrane was evaluated by the measurement of lactate dehydrogenase (LDH) release which became more severe as the radiation time was increasing. The generation of lipid peroxidation was estimated using the Thibabituric Acid (TBA) method after irradiation. The results reveal that the instant cell damage effects induced by ultrasound may be related to the improved membrane lipid peroxidation levels post-treatment. The physicochemical properties of S180 cell membrane were changed by focused ultrasound. The findings also imply an exposure time-dependent pattern and suggest that the lipid peroxidation produced by acoustic cavitation may play important roles in these actions.
Aluminum and temperature alteration of cell membrane permeability of Quercus rubra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junping Chen; Sucoff, E.I.; Stadelmann, E.J.
1991-06-01
Al toxicity is the major factor limiting plant growth in acid soils. This report extends research on Al-induced changes in membrane behavior of intact root cortex cells of Northern red oak (Quercus rubra). Membrane permeability was determined by the plasmometric method for individual intact cells at temperatures from 2 or 4 to 35 C. Al (0.37 millimolar) significantly increased membrane permeability to urea and monoethyl urea and decreased permeability to water. Al significantly altered the activation energy required to transport water (+ 32%), urea (+ 9%), and monoethyl urea ({minus}7%) across cell membranes. Above 9 C, Al increased the lipidmore » partiality of the cell membranes; below 7 C, Al decreased it. Al narrowed by 6 C the temperature range over which plasmolysis occurred without membrane damage. These changes in membrane behavior are explainable if Al reduced membrane lipid fluidity and kink frequency and increases packing density and the occurrence of straight lipid chains.« less
Gene expression profiling in multipotent DFAT cells derived from mature adipocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Hiromasa; Database Center for Life Science; Oki, Yoshinao
2011-04-15
Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed asmore » well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.« less
Nucleolar molecular signature of pluripotent stem cells.
Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Jiang, Houbo; Hu, Zhixing; Ren, Yong; Feng, Jian; Prasad, Paras N
2013-04-02
Induced pluripotent stem cells (iPSC) are generated by reprogramming somatic cells to the pluripotent state. Identification and quantitative characterization of changes in the molecular organization of the cell during the process of cellular reprogramming is valuable for stem cell research and advancement of its therapeutic applications. Here we employ quantitative Raman microspectroscopy and biomolecular component analysis (BCA) for a comparative analysis of the molecular composition of nucleoli in skin fibroblasts and iPSC derived from them. We report that the cultured fibroblasts obtained from different human subjects, share comparable concentrations of proteins, RNA, DNA, and lipids in the molecular composition of nucleoli. The nucleolar molecular environment is drastically changed in the corresponding iPSC. We measured that the transition from skin fibroblasts to iPSC is accompanied by a statistically significant increase in protein concentrations ~1.3-fold, RNA concentrations ~1.3-fold, and DNA concentrations ~1.4-fold, while no statistically significant difference was found for the lipid concentrations. The analysis of molecular vibrations associated with diverse aminoacids and protein conformations indicates that nucleoli of skin fibroblasts contain similar subsets of proteins, with prevalence of tyrosine. In iPSC, we observed a higher signal from tryptophan with an increase in the random coil and α helix protein conformations, indicating changes in the subset of nucleolar proteins during cell reprogramming. At the same time, the concentrations of major types of macromolecules and protein conformations in the nucleoli of iPSC and human embryonic stem cells (hESC) were found to be similar. We discuss these results in the context of nucleolar function and conclude that the nucleolar molecular content is correlated with the cellular differentiation status. The approach described here shows the potential for spectroscopically monitoring changes in macromolecular organization of the cell at different stages of reprogramming.
Minami, Masahiro; Oku, Hidehiro; Okuno, Takashi; Fukuhara, Masayuki; Ikeda, Tsunehiko
2007-09-01
To investigate the effects of high infusion pressure in conjunction with pars plana vitrectomy (PPV) on retinal morphology and function in rabbits. Pars plana vitrectomy was performed under urethane (0.8 mg/kg) anaesthesia in the right eye of albino rabbits following phacoemulsification and aspiration (PEA). The left eyes were not touched. After PEA, the animals were divided into two groups. In six eyes, intraocular pressure (IOP) was increased to 80 mmHg for 30 mins (high-pressure group) and in five eyes IOP was maintained at 40 mmHg for 30 mins (low-pressure group). The IOPs were regulated by the height of the bottle of balanced salt solution (BSS) and monitored with a pressure transducer. After the pressure elevation, vitreous fluid was collected to measure the glutamate concentration. Then, PPV was performed for 15 mins in both groups under an infusion pressure of 40 mmHg. In five additional rabbits, PEA alone was performed in the right eye, and vitreous fluid was collected (PEA group). Functional alterations were assessed by recording visual evoked potentials (VEPs) and electroretinograms (ERGs). Ten days after the IOP changes, the animals were killed with intravenous pentobarbital sodium and the eyes were prepared for histological analysis. Damage to retinal ganglion cells (RGCs) was quantified by counting the number of cells in the ganglion cell layer (GCL). The contralateral eyes in the high-pressure group served as controls (n = 6). The mean implicit time (IT) of the VEPs in the high-pressure group was significantly longer than that before the IOP elevation, by 114-124% (p < 0.05, paired t-test), and also than that of control eyes (p < 0.05, anova followed by t-test). No significant changes in the VEPs were detected in either the low-pressure group or the PEA group. There were significantly fewer cells in the GCL in the high-pressure group (24.7/mm) than in the control animals (41.4/mm; p < 0.05, Dunnett's test). The number of cells in the GCL in the low-pressure and PEA groups did not significantly differ to that in the controls. The amplitudes of the ERG a- and b-waves were not significantly changed (p > 0.05, paired t-test). These results suggest that high infusion pressure in conjunction with PPV leads to morphological and functional changes in the retina. The absence of ERG changes and presence of VEP changes suggest that these changes were due to damage to RGCs, which supports the morphological observations.
Neural mechanism for sensing fast motion in dim light.
Li, Ran; Wang, Yi
2013-11-07
Luminance is a fundamental property of visual scenes. A population of neurons in primary visual cortex (V1) is sensitive to uniform luminance. In natural vision, however, the retinal image often changes rapidly. Consequently the luminance signals visual cells receive are transiently varying. How V1 neurons respond to such luminance changes is unknown. By applying large static uniform stimuli or grating stimuli altering at 25 Hz that resemble the rapid luminance changes in the environment, we show that approximately 40% V1 cells responded to rapid luminance changes of uniform stimuli. Most of them strongly preferred luminance decrements. Importantly, when tested with drifting gratings, the preferred speeds of these cells were significantly higher than cells responsive to static grating stimuli but not to uniform stimuli. This responsiveness can be accounted for by the preferences for low spatial frequencies and high temporal frequencies. These luminance-sensitive cells subserve the detection of fast motion under the conditions of dim illumination.
Unified quantitative characterization of epithelial tissue development
Guirao, Boris; Rigaud, Stéphane U; Bosveld, Floris; Bailles, Anaïs; López-Gay, Jesús; Ishihara, Shuji; Sugimura, Kaoru
2015-01-01
Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI: http://dx.doi.org/10.7554/eLife.08519.001 PMID:26653285
Monitoring of cell and tissue responses to photodynamic therapy by electrical impedance spectroscopy
NASA Astrophysics Data System (ADS)
Molckovsky, A.; Wilson, B. C.
2001-04-01
Electrical impedance spectroscopic (EIS) monitoring of photodynamic therapy (PDT) was investigated in vivo in rat liver and in vitro in multicellular spheroids. Liver impedance was continuously measured with two needle electrodes before, during and up to 3 hours following Photofrin-PDT. EIS spectra were altered immediately after PDT, with significant changes in conductivity at ~10 kHz, and in permittivity at ~30 kHz and 1 MHz. The change in permittivity at high frequencies was related to oedema, while low-frequency effects were attributed to cell necrosis and vascular changes. Photofrin-PDT-treated spheroids showed dose-dependent decreases in permittivity and conductivity at frequencies above 10 and 100 kHz, respectively. Histology showed concomitant development of a damaged rim containing sparsely distributed cells with compromised membranes and lightly staining cytoplasm. Different EIS responses to apoptotic versus necrotic modes of cell death further verified the sensitivity of impedance to purely cellular changes in the spheroid model. In conclusion, EIS sensitivity to PDT-induced damage, at both the cell and tissue level, varies with dose and time, and can be correlated qualitatively to biological changes.
Regulated necrosis and its implications in toxicology.
Aki, Toshihiko; Funakoshi, Takeshi; Uemura, Koichi
2015-07-03
Recent research developments have revealed that caspase-dependent apoptosis is not the sole form of regulated cell death. Caspase-independent, but genetically regulated, forms of cell death include pyroptosis, necroptosis, parthanatos, and the recently discovered ferroptosis and autosis. Importantly, regulated necrosis can be modulated by small molecule inhibitors/activators, confirming the cell autonomous mechanism of these forms of cell death. The success of small molecule-mediated manipulation of regulated necrosis has produced great changes in the field of cell death research, and has also brought about significant changes in the fields of pharmacology as well as toxicology. In this review, we intend to summarize the modes of regulated cell death other than apoptosis, and discuss their implications in toxicology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Siemianowicz, Krzysztof; Gminski, Jan; Garczorz, Wojciech; Slabiak, Natalia; Goss, Malgorzata; Machalski, Marek; Magiera-Molendowska, Helena
2003-01-01
Two mutations of methylenetetrahydrofolate reductase (MTHFR) gene (C677T and A1298C) may lead to a decreased activity of the enzyme. These mutations may change a risk of some cancers. We evaluated these two polymorphisms of MTHFR in patients with small cell lung cancer (SCLC) and non-small cell lung cancer (NCSCL). All lung cancer patients had statistically significantly higher percentage of MTHFR 677TT genotype in comparison with non-cancer controls. There were no statistically significant differences in the distribution of MTHFR 1298 genotypes. Neither of the polymorphisms presented any statistically significant differences between SCLC and NSCLC.
[Antiapoptotic Effect of the Leukemia Associated Gene MLAA-34 in HeLa Cells].
Zhang, Peng-Yu; Zhao, Xuan; Zhang, Wen-Juan; Zhang, Wang-Gang; Chen, Yin-Xia
2016-04-01
To study the antiapoptotic effect of leukemia-associated gene MLAA-34 in HeLa cells. The MLAA-34 recombinant lentiviral expression vector was constructed, and the stably transfected HeLa cell line with high expression of MLAA-34 was set up; As(2)O(3) was used to induce apoptosis; the MTT assay, colony formation test and flow cytometry were used to detect the ability of cell proliferation, colong formation, apoptosis and cell cycle changes respectively. After treatment with As(2)O(3), the survival rate of HeLa cells with MLAA-34 overexpression was significantly higher than that of the control cells, and the colony formation ability of MLAA-34 significantly increased, and the high expression of MLAA-34 gene significantly decreased the apoptosis rate of HeLa cells, and decreased the proportion of G(2)/M phase cells. The leukemia-associated gene MLAA-34 has been comfirmed to show antiapoptotic effect in HeLa cells which are induced by As(2)O(3).
Ping, Juan; Shen, Zhi-Hui; Wang, Bao-Quan; Zhao, Na; Li, Rui; Li, Mian; Pang, Xiao-Bin; Chen, Chuan-Bo
2015-04-01
To explore the effects of aptamer-siRNA nucleic acid compound on growth and apoptosis in myeloid leukemia cell line K562. the changes of cellular morphology and structure were observed by using fluorescence microscope, laser confocal microscope, JEM-4000EX transmission electron microscopy; MTT assay were performed to evaluate the sensibility of K562 cells to aptamer-siRNA compound, the apoptosis was detected by DNA gel electro-phoresis. The remarkably changes of morphology and structure of K562 cells treated with 200 µmol/L aptamer-siRNA were observed under fluorescence microscopy and electromicroscopy. As compared with control, the aptamer-siRNA compound showed more inhibitory effect on K562 cells and there was significant difference (P<0.05). The MTT assay showed that the IC50 value of aptamer-siRNA compound for K562 cells was 150 µmol/L. According to agarose gel electrophoresis observation, when the aptamer-siRNA compound showed effect on K562 cells, the typical DNA lader could be observed. The aptamer-siRNA compound can significantly induce K562 cell apoptosis, and provide reference for gene therapy of patients with chronic myelocytic lenkemia.
Lee, Sung Ryul; Heo, Hye Jin; Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In Sung; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Han, Jin
2015-07-01
Mutation or depletion of mitochondrial DNA (mtDNA) can cause severe mitochondrial malfunction, originating from the mitochondrion itself, or from the crosstalk between nuclei and mitochondria. However, the changes that would occur if the amount of mtDNA is diminished are less known. Thus, we generated rat myoblast H9c2 cells containing lower amounts of mtDNA via ethidium bromide and uridine supplementation. After confirming the depletion of mtDNA by quantitative PCR and gel electrophoresis analysis, we investigated the changes in mitochondrial physical parameters by using flow cytometry. We also evaluated the resistance of these cells to serum starvation and sodium nitroprusside. H9c2 cells with diminished mtDNA contents showed decreased mitochondrial membrane potential, mass, free calcium, and zinc ion contents as compared to naïve H9c2 cells. Furthermore, cytosolic and mitochondrial reactive oxygen species levels were significantly higher in mtDNA-lowered H9c2 cells than in the naïve cells. Although the oxygen consumption rate and cell proliferation were decreased, mtDNA-lowered H9c2 cells were more resistant to serum deprivation and nitroprusside insults than the naïve H9c2 cells. Taken together, we conclude that the low abundance of mtDNA cause changes in cellular status, such as changes in reactive oxygen species, calcium, and zinc ion levels inducing resistance to stress. © 2015 International Federation for Cell Biology.
Silva, Igor Henrique Morais; de Andrade, Samantha Cardoso; de Faria, Andreza Barkokebas Santos; Fonsêca, Deborah Daniela Diniz; Gueiros, Luiz Alcino Monteiro; Carvalho, Alessandra Albuquerque Tavares; da Silva, Wylla Tatiana Ferreira; de Castro, Raul Manhães; Leão, Jair Carneiro
2016-12-01
The aim of this study was to evaluate the influence of low-level laser therapy (LLLT) with different parameters and wavelengths on nitric oxide (NO) release and cell viability. Irradiation was performed with Ga-Al-As laser, continuous mode and wavelengths of 660 and 808 nm at different energy and power densities. For each wavelength, powers of 30, 50, and 100 mW and times of 10, 30, and 60 s were used. NO release was measured using Griess reaction, and cell viability was evaluated by mitochondrial reduction of bromide 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) to formazan. LLLT promoted statistically significant changes in NO release and MTT value only at the wavelength of 660 nm (p < 0.05). LLLT also promoted an increase in the NO release and cell viability when the energy densities 64 (p = 0.04) and 214 J/cm 2 (p = 0.012), respectively, were used. LLLT has a significant impact on NO release without affecting cell viability, but the significance of these findings in the inflammatory response needs to be further studied.
Busch, Maike; Große-Kreul, Jan; Wirtz, Janina Jasmin; Beier, Manfred; Stephan, Harald; Royer-Pokora, Brigitte; Metz, Klaus; Dünker, Nicole
2017-08-01
Trefoil factor family (TFF) peptides have been shown to play a pivotal role in oncogenic transformation, tumorigenesis and metastasis by changing cell proliferation, apoptosis, migration and invasion behavior of various cancer cell lines. In the study presented, we investigated the effect of TFF1 overexpression on cell growth, viability, migration and tumorigenicity of different retinoblastoma (RB) cell lines. Transient TFF1 overexpression significantly increases RB cell apoptosis levels. Stable, lentiviral TFF1 overexpression likewise decreases RB cell viability, proliferation and growth and significantly increases apoptosis as revealed by WST-1 assays, BrdU and DAPI cell counts. TFF1-induced apoptosis is executed via cleaved caspase-3 activation as revealed by caspase blockage experiments and caspase-3 immunocytochemistry. Results from pG13-luciferase reporter assays and Western blot analyses indicate that TFF1-induced apoptosis is mediated through transcriptional activity of p53 with concurrently downregulated miR-18a expression. In ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF1 overexpression significantly decreases the size of tumors forming from Y79 and RB355 cells and reduces the migration potential of RB355 cells. Differentially expressed genes and pathways involved in cancer progression were identified after TFF1 overexpression in Y79 cells by gene expression array analysis, underlining the effects on reduced tumorigenicity. TFF1 knockdown in RBL30 cells revealed caspase-3/7-independent apoptosis induction, but no changes on cell proliferation level. In summary, the in vitro and in vivo data demonstrate for the first time a tumor suppressor function of TFF1 in RB cells which is at least partly mediated by p53 activation and miR-18a downregulation. © 2017 UICC.
Srikanth, Koigoora; Mahajan, Amit; Pereira, Eduarda; Duarte, Armando Costa; Venkateswara Rao, Janapala
2015-10-01
Aluminium oxide nanoparticles (Al2 O3 NPs) are increasingly used in diverse applications that has raised concern about their safety. Recent studies suggested that Al2 O3 NPs induced oxidative stress may be the cause of toxicity in algae, Ceriodaphnia dubia, Caenorhabditis elegans and Danio rerio. However, there is paucity on the toxicity of Al2 O3 NPs on fish cell lines. The current study was aimed to investigate Al2 O3 NPs induced cytotoxicity, oxidative stress and morphological abnormality of Chinnok salmon cells (CHSE-214). A dose-dependent decline in cell viability was observed in CHSE-214 cells exposed to Al2 O3 NPs. Oxidative stress induced by Al2 O3 NPs in CHSE-214 cells has resulted in the significant reduction of superoxide dismutase, catalase and glutathione in a dose-dependent manner. However, a significant increase in glutathione sulfo-transferase and lipid peroxidation was observed in CHSE-214 cells exposed to Al2 O3 NPs in a dose-dependent manner. Significant morphological changes in CHSE-214 cells were observed when exposed to Al2 O3 NPs at 6, 12 and 24 h. The cells started to detach and appear spherical at 6 h followed by loss of cellular contents resulting in the shrinking of the cells. At 24 h, the cells started to disintegrate and resulted in cell death. Our data demonstrate that Al2 O3 NPs induce cytotoxicity and oxidative stress in a dose-dependent manner in CHSE-214 cells. Thus, our current work may serve as a base-line study for future evaluation of toxicity studies using CHSE-214 cells. Copyright © 2015 John Wiley & Sons, Ltd.
Mao, Nan; He, Guansheng; Rao, Jinjun; Lv, Lin
2014-06-01
To investigate the effect of silencing Bmi-1 expression in reversing cisplatin resistance in human lung cancer cells and explore the possible mechanisms. Cisplatin-resistant A549/DDP cells with small interference RNA (siRNA)-mediated Bmi-1 expression silencing were examined for cisplatin sensitivity using MTT assay and alterations in cell cycle distribution and apoptosis with flow cytometry, and the changes in cell senescence was assessed using β-galactosidase staining. The protein expressions of Bmi-1, P14(ARF), P16(INK4a), P53, P21, Rb and ubi-H2AK119 in the cells were determined with Western blotting. A549/DDP cells showed significantly higher Bmi-1 expression than A549 cells. After siRNA-mediated Bmi-1 silencing, A549/DDP cells showed significantly enhanced cisplatin sensitivity with an increased IC50 from 40.3±4.1 µmol/L to 18.3±2.8 µmol/L (P<0.01) and increased cell percentage in G0/G1 phase from (48.9±2.3)% to (78.7±7.6)% (P<0.01). Silencing Bmi-1 did not cause significant changes in the cell apoptosis rate but induced obvious senescence phenotype in A549/DDP cells with down-regulated expression of ubi-H2AK119 and up-regulated expressions of P14(ARF), P16(INK4a), P53, P21 and Rb. Silencing Bmi-1 by RNA interference can induce cell senescence and resensitize A549/DDP cells to cisplatin possibly by regulating INK4a/ARF/Rb senescence pathway.
Jastreboff, P J; Sasaki, C T
1986-11-01
Changes in spontaneous neuronal activity of the inferior colliculus in albino guinea pigs before and after administration of sodium salicylate were analyzed. Animals were anesthetized with pentobarbital, and two microelectrodes separated by a few hundred microns were driven through the inferior colliculus. After collecting a sufficiently large sample of cells, sodium salicylate (450 mg/kg) was injected i.p. and recordings again made 2 h after the injection. Comparison of spontaneous activity recorded before and after salicylate administration revealed highly statistically significant differences (p less than 0.001). After salicylate, the mean rate of the cell population increased from 29 to 83 Hz and the median from 26 to 74 Hz. Control experiments in which sodium salicylate was replaced by saline injection revealed no statistically significant differences in cell discharges. Recordings made during the same experiments from lobulus V of the cerebellar vermis revealed no changes in response to salicylate. The observed changes in single-unit activity due to salicylate administration may represent the first systematic evidence of a tinnituslike phenomenon in animals.
Gene expression profiling of choline-deprived neural precursor cells isolated from mouse brain.
Niculescu, Mihai D; Craciunescu, Corneliu N; Zeisel, Steven H
2005-04-04
Choline is an essential nutrient and an important methyl donor. Choline deficiency alters fetal development of the hippocampus in rodents and these changes are associated with decreased memory function lasting throughout life. Also, choline deficiency alters global and gene-specific DNA methylation in several models. This gene expression profiling study describes changes in cortical neural precursor cells from embryonic day 14 mice, after 48 h of exposure to a choline-deficient medium. Using Significance Analysis of Microarrays, we found the expression of 1003 genes to be significantly changed (from a total of 16,000 total genes spotted on the array), with a false discovery rate below 5%. A total of 846 genes were overexpressed while 157 were underexpressed. Classification by gene ontology revealed that 331 of these genes modulate cell proliferation, apoptosis, neuronal and glial differentiation, methyl metabolism, and calcium-binding protein classes. Twenty-seven genes that had changed expression have previously been reported to be regulated by promoter or intron methylation. These findings support our previous work suggesting that choline deficiency decreases the proliferation of neural precursors and possibly increases premature neuronal differentiation and apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hang, Bo; Snijders, Antoine M.; Huang, Yurong
Thirdhand smoke (THS) is the fraction of cigarette smoke that persists in indoor environments after smoking. We investigated the effects of neonatal and adult THS exposure on bodyweight and blood cell populations in C57BL/6 J mice. At the end of neonatal exposure, THS-treated male and female mice had significantly lower bodyweight than their respective control mice. However, five weeks after neonatal exposure ended, THS-treated mice weighed the same as controls. In contrast, adult THS exposure did not change bodyweight of mice. On the other hand, both neonatal and adult THS exposure had profound effects on the hematopoietic system. Fourteen weeksmore » after neonatal THS exposure ended, eosinophil number and platelet volume were significantly higher, while hematocrit, mean cell volume, and platelet counts were significantly lower compared to control. Similarly, adult THS exposure also decreased platelet counts and increased neutrophil counts. Moreover, both neonatal and adult THS exposure caused a significant increase in percentage of B-cells and significantly decreased percentage of myeloid cells. Our results demonstrate that neonatal THS exposure decreases bodyweight and that THS exposure induces persistent changes in the hematopoietic system independent of age at exposure. These results also suggest that THS exposure may have adverse effects on human health.« less
Hang, Bo; Snijders, Antoine M.; Huang, Yurong; ...
2017-02-03
Thirdhand smoke (THS) is the fraction of cigarette smoke that persists in indoor environments after smoking. We investigated the effects of neonatal and adult THS exposure on bodyweight and blood cell populations in C57BL/6 J mice. At the end of neonatal exposure, THS-treated male and female mice had significantly lower bodyweight than their respective control mice. However, five weeks after neonatal exposure ended, THS-treated mice weighed the same as controls. In contrast, adult THS exposure did not change bodyweight of mice. On the other hand, both neonatal and adult THS exposure had profound effects on the hematopoietic system. Fourteen weeksmore » after neonatal THS exposure ended, eosinophil number and platelet volume were significantly higher, while hematocrit, mean cell volume, and platelet counts were significantly lower compared to control. Similarly, adult THS exposure also decreased platelet counts and increased neutrophil counts. Moreover, both neonatal and adult THS exposure caused a significant increase in percentage of B-cells and significantly decreased percentage of myeloid cells. Our results demonstrate that neonatal THS exposure decreases bodyweight and that THS exposure induces persistent changes in the hematopoietic system independent of age at exposure. These results also suggest that THS exposure may have adverse effects on human health.« less
Ma, Hongshuang; Zhao, Ling; Jiang, Zhenyu; Jiang, Yanfang; Feng, Li; Ye, Zhuang
2014-11-01
Imbalance of natural killer (NK) cells is associated with the development of systemic lupus erythematosus (SLE). However, little is known about the dynamic changes on NK cells following therapy. This study aimed at examining the impact of classic therapies on the numbers of different subsets of NK cells in new-onset SLE patients. The numbers of different subsets of peripheral blood NK cells in 24 new-onset SLE patients before, 4 and 12 weeks post the classic therapies, and 7 healthy controls were determined by flow cytometry. The potential correlation between the numbers of NK cells and the values of clinical measures was analyzed. In comparison with that before treatment, the numbers of NK, NKG2C+, and KIR2DL3+ NK cells were significantly increased while the numbers of NKp46+ and NKG2A + NK cells significantly decreased at 4 and/or 12 weeks post the treatment only in the drug well-responding patients, but not in those poor responders (P < 0.05 for all). The numbers of NKG2C + NK cells were correlated positively with the levels of serum C3 while the numbers of KIR2DL3+ NK cells were correlated negatively with the scores of SLEDAI in these patients at 4 weeks post the treatment. The classic therapies modulated the numbers of some subsets of NK cells in drug well-responding SLE patients. The changes in the numbers of some subsets of NK cells may serve as biomarkers for evaluating the therapeutic responses of SLE.
Lambert Emo, Kris; Hyun, Young-Min; Reilly, Emma; Barilla, Christopher; Gerber, Scott; Fowell, Deborah; Kim, Minsoo; Topham, David J
2016-09-01
During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8-10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection.
Lambert Emo, Kris; Hyun, Young-min; Barilla, Christopher; Gerber, Scott; Fowell, Deborah; Kim, Minsoo
2016-01-01
During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8–10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection. PMID:27644089
Magnetic field exposure stiffens regenerating plant protoplast cell walls.
Haneda, Toshihiko; Fujimura, Yuu; Iino, Masaaki
2006-02-01
Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag.
Hernández-Bule, María Luisa; Trillo, María Ángeles; Úbeda, Alejandro
2014-01-01
Capacitive Resistive Electric Transfer (CRET) therapy applies currents of 0.4–0.6 MHz to treatment of inflammatory and musculoskeletal injuries. Previous studies have shown that intermittent exposure to CRET currents at subthermal doses exert cytotoxic or antiproliferative effects in human neuroblastoma or hepatocarcinoma cells, respectively. It has been proposed that such effects would be mediated by cell cycle arrest and by changes in the expression of cyclins and cyclin-dependent kinase inhibitors. The present work focuses on the study of the molecular mechanisms involved in CRET-induced cytostasis and investigates the possibility that the cellular response to the treatment extends to other phenomena, including induction of apoptosis and/or of changes in the differentiation stage of hepatocarcinoma cells. The obtained results show that the reported antiproliferative action of intermittent stimulation (5 m On/4 h Off) with 0.57 MHz, sine wave signal at a current density of 50 µA/mm2, could be mediated by significant increase of the apoptotic rate as well as significant changes in the expression of proteins p53 and Bcl-2. The results also revealed a significantly decreased expression of alpha-fetoprotein in the treated samples, which, together with an increased concentration of albumin released into the medium by the stimulated cells, can be interpreted as evidence of a transient cytodifferentiating response elicited by the current. The fact that this type of electrical stimulation is capable of promoting both, differentiation and cell cycle arrest in human cancer cells, is of potential interest for a possible extension of the applications of CRET therapy towards the field of oncology. PMID:24416255
Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui; Hunter, William C; Hill, Michael A; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A
2015-02-01
Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging. © 2014 American Heart Association, Inc.
[Effect of electromagnetic pulse irradiation on structure and function of Leydig cells in mice].
Wang, Shui-Ming; Wang, De-Wen; Peng, Rui-Yun; Gao, Ya-Bing; Yang, Yi; Hu, Wen-Hua; Chen, Hao-Yu; Zhang, You-Ren; Gao, Yan
2003-08-01
To explore the effect of electromagnetic pulse (EMP) irradiation on structure and function of Leydig cells in mice. One hundred and fourteen male Kunming mice were randomly divided into irradiated and control group, the former radiated generally by 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP respectively five times within two minutes. Pathological changes of Leydig cells were observed by light and electron microscope. Serum testosterone (T), luteinizing hormone (LH) and estradiol (E2) were measured dynamically by radioimmunoassay at 6 h, 1 d, 3 d, 7 d, 14 d and 28 d after irradiation. Main pathological changes were edema and vacuolation, swelling of cytoplasmic mitochondria, reduce of lipid droplets, pale staining of most of lipid droplets, and partial or complete cavitation of lipid droplets in Leydig cells within 28 days after EMP radiation. Compared with normal controls, serum T decreased in all in different degrees within 28 days, and dropped significantly at 6 h-14 d, 6 h-7 d and 1 d-28 d after 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP irradiation(P < 0.05 or P < 0.01). EMP irradiation caused no significant changes in serum LH and E2. Leydig cells are among those that are the most susceptible to EMP irradiation. EMP irradiation may cause significant injury in structure and function of Leydig cells in mice, whose earlier and continuous effect is bound to affect sexual function and sperm production.
Turcios, Lilia; Vilchez, Valery; Acosta, Luis F; Poyil, Pratheeshkumar; Butterfield, David Allan; Mitov, Mihail; Marti, Francesc; Gedaly, Roberto
2017-06-01
Treatment of advanced hepatocellular carcinoma (HCC) remains a challenge due to the high tumor heterogeneity. In the present study, we aim to evaluate the impact of the β-catenin inhibitor, FH535, alone or in combination with the Ras/Raf/MAPK inhibitor Sorafenib, on the bioenergetics profiles of the HCC cell lines Huh7 and PLC/PRF/5. Single low-dose treatments with FH535 or Sorafenib promoted different effects on mitochondrial respiration and glycolysis in a cell type specific manner. However, the combination of these drugs significantly reduced both mitochondrial respiration and glycolytic rates regardless of the HCC cells. The significant changes in mitochondrial respiration observed in cells treated with the Sorafenib-FH535 combination may correspond to differential targeting of ETC complexes and changes in substrate utilization mediated by each drug. Moreover, the bioenergetics changes and the loss of mitochondrial membrane potential that were evidenced by treatment of HCC cells with the combination of FH535 and Sorafenib, preceded the induction of cell apoptosis. Overall, our results demonstrated that Sorafenib-FH535 drug combination induce the disruption of the bioenergetics of HCC by the simultaneous targeting of mitochondrial respiration and glycolytic flux that leads the synergistic effect on inhibition of cell proliferation. These findings support the therapeutic potential of combinatory FH535-Sorafenib treatment of the HCC heterogeneity by the simultaneous targeting of different molecular pathways. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Sensitivity of cell-based biosensors to environmental variables.
Gilchrist, Kristin H; Giovangrandi, Laurent; Whittington, R Hollis; Kovacs, Gregory T A
2005-01-15
Electrically active living cells cultured on extracellular electrode arrays are utilized to detect biologically active agents. Because cells are highly sensitive to environmental conditions, environmental fluctuations can elicit cellular responses that contribute to the noise in a cell-based biosensor system. Therefore, the characterization and control of environmental factors such as temperature, pH, and osmolarity is critical in such a system. The cell-based biosensor platform described here utilizes the measurement of action potentials from cardiac cells cultured on electrode arrays. A recirculating fluid flow system is presented for use in dose-response experiments that regulates temperature within +/-0.2 degrees C, pH to within +/-0.05 units, and allows no significant change in osmolarity. Using this system, the relationship between the sensor output parameters and environmental variation was quantified. Under typical experimental conditions, beat rate varied approximately 10% per degree change in temperature or per 0.1 unit change in pH. Similar relationships were measured for action potential amplitude, duration, and conduction velocity. For the specific flow system used in this work, the measured environmental sensitivity resulted in an overall beat rate variation of +/-4.7% and an overall amplitude variation of +/-3.3%. The magnitude of the noise due to environmental sensitivity has a large impact on the detection capability of the cell-based system. The significant responses to temperature, pH, and osmolarity have important implications for the use of living cells in detection systems and should be considered in the design and evaluation of such systems.
Susceptibility of ATM-deficient pancreatic cancer cells to radiation.
Ayars, Michael; Eshleman, James; Goggins, Michael
2017-05-19
Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.
Optical-mechanical properties of diseased cells measured by interferometry
NASA Astrophysics Data System (ADS)
Shaked, Natan T.; Bishitz, Y.; Gabai, H.; Girshovitz, P.
2013-04-01
Interferometric phase microscopy (IPM) enables to obtain quantitative optical thickness profiles of transparent samples, including live cells in-vitro, and track them in time with sub-nanometer accuracy without any external labeling, contact or force application on the sample. The optical thickness measured by IPM is a multiplication between the cell integral refractive index differences and its physical thickness. Based on the time-dependent optical thickness profile, one can generate the optical thickness fluctuation map. For biological cells that are adhered to the surface, the variance of the physical thickness fluctuations in time is inversely proportional to the spring factor indicating on cell stiffness, where softer cells are expected fluctuating more than more rigid cells. For homogenous refractive index cells, such as red blood cells, we can calculate a map indicating on the cell stiffness per each spatial point on the cell. Therefore, it is possible to obtain novel diagnosis and monitoring tools for diseases changing the morphology and the mechanical properties of these cells such as malaria, certain types of anaemia and thalassemia. For cells with a complex refractive-index structure, such as cancer cells, decoupling refractive index and physical thickness is not possible in single-exposure mode. In these cases, we measure a closely related parameter, under the assumption that the refractive index does not change much within less than a second of measurement. Using these techniques, we lately found that cancer cells fluctuate significantly more than healthy cells, and that metastatic cancer cells fluctuate significantly more than primary cancer cells.
Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells.
Sun, Li; Wang, Xu
2003-09-01
To investigate the effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells. The gastric cancer SGC-7901 adenocarcinoma cells were treated with allicin and the cell cycle, inhibitory rate, apoptosis, telomerase activity and morphologic changes were studied by MTT assay, flow cytometry (FCM), TRAP-PCR-ELISA assay, light microscope, electron microscope respectively. Results were compared with that of AZT (3'-Azido-3'-deoxythymidine). SGC-7901 cells were suppressed after exposure to allicin of 0.016 mg/ml, 0.05 mg/ml, and 0.1 mg/ml for 48 h. Compared with the control, the difference was significant (P<0.05). Allicin could induce apoptosis of the cells in a dose-dependent and non-linear manner and increase the proportion of cells in the G(2)/M phase. Compared with the control, the difference was significant in terms of the percentage of cells in the G2/M phase (P<0.05). Allicin could inhibit telomerase activity in a time-dependent and dose-dependent pattern. After exposure to allicin at 0.016 mg/ml for 24 hours, SGC-7901 cells showed typical morphologic change. Allicin can inhibit telomerase activity and induce apoptosis of gastric cancer SGC-7901 cells. Allicin may be more effective than AZT.
[Facial nerve injuries cause changes in central nervous system microglial cells].
Cerón, Jeimmy; Troncoso, Julieta
2016-12-01
Our research group has described both morphological and electrophysiological changes in motor cortex pyramidal neurons associated with contralateral facial nerve injury in rats. However, little is known about those neural changes, which occur together with changes in surrounding glial cells. To characterize the effect of the unilateral facial nerve injury on microglial proliferation and activation in the primary motor cortex. We performed immunohistochemical experiments in order to detect microglial cells in brain tissue of rats with unilateral facial nerve lesion sacrificed at different times after the injury. We caused two types of lesions: reversible (by crushing, which allows functional recovery), and irreversible (by section, which produces permanent paralysis). We compared the brain tissues of control animals (without surgical intervention) and sham-operated animals with animals with lesions sacrificed at 1, 3, 7, 21 or 35 days after the injury. In primary motor cortex, the microglial cells of irreversibly injured animals showed proliferation and activation between three and seven days post-lesion. The proliferation of microglial cells in reversibly injured animals was significant only three days after the lesion. Facial nerve injury causes changes in microglial cells in the primary motor cortex. These modifications could be involved in the generation of morphological and electrophysiological changes previously described in the pyramidal neurons of primary motor cortex that command facial movements.
The swimming behavior of flagellated bacteria in viscous and viscoelastic media
NASA Astrophysics Data System (ADS)
Qu, Zijie; Henderikx, Rene; Breuer, Kenneth
2016-11-01
The motility of bacteria E.coli in viscous and viscoelastic fluids has been widely studied although full understanding remains elusive. The swimming mode of wild-type E.coli is well-described by a run-and-tumble sequence in which periods of straight swimming at a constant speed are randomly interrupted by a tumble, defined as a sudden change of direction with a very low speed. Using a tracking microscope, we follow cells for extended periods of time and find that the swimming behavior can be more complex, and can include a wider variety of behaviors including a "slow random walk" in which the cells move at relatively low speed without the characteristic run. Significant variation between individual cells is observed, and furthermore, a single cell can change its motility during the course of a tracking event. Changing the viscosity and viscoelasticy of the swimming media also has profound effects on the average swimming speed and run-tumble nature of the cell motility, including changing the distribution, duration of tumbling and slow random walk events. The reasons for these changes are explained using a Purcell-style resistive force model for the cell and flagellar behavior as well as model for the changes in flagellar bundling in different fluid viscosities. National Science Foundation.
Formin like 1 expression is increased on CD4+ T lymphocytes in spontaneous autoimmune uveitis.
Degroote, Roxane L; Uhl, Patrizia B; Amann, Barbara; Krackhardt, Angela M; Ueffing, Marius; Hauck, Stefanie M; Deeg, Cornelia A
2017-02-10
The membrane protein expression repertoire of cells changes in course of activation. In equine recurrent uveitis (ERU), a spontaneous autoimmune disease in horses with relapsing and ultimately blinding inner eye inflammation, CD4+ T lymphocytes are the crucial pathogenic cells activated in the periphery directly prior to an inflammatory episode. In order to find relevant changes in the membrane proteome associated to disease, we sorted CD4+ lymphocytes and compared protein abundance from the generated proteome datasets of both healthy horses and ERU cases. We detected formin like 1, a key player in actin dependent cellular processes such as phagocytosis, cell adhesion and cell migration, with significantly higher abundance in the CD4+ cell membrane proteome of horses with ERU. In transmigration experiments, we demonstrated higher migration rate of cells originating from diseased animals connecting formin like 1 to the migratory ability of cells. These findings are the first description of formin like 1 in association to processes involved in migration of inflammatory CD4+ T cells across the blood-retinal barrier in a spontaneous ocular autoimmune disease and suggest formin like 1 to play a role in the molecular mechanisms of ERU disease pathogenesis. Data are available via ProteomeXchange with identifier PXD005384. This comparative proteomic study of membrane proteins of CD4+ T cells identified a novel protein, formin like 1, with expression on the plasma cell membrane of equine CD4+ T cells and a significant change of abundance on CD4+ T cells of horses with a spontaneous autoimmune disease. Functional studies in a cell culture model for transmigration at the blood-retinal barrier (BRB) unraveled a strong impact of formin like 1 on migratory processes of CD4+ T cells across the BRB, a key event in uveitis pathogenesis. These findings provide novel knowledge about changes in the CD4+ immune cell membrane proteome in a spontaneously and naturally occurring autoimmune disease in horses with high relevance for veterinary medicine. Additionally, this model has proven translational quality for human medicine and provides novel proteomic information on autoimmune uveitis in man. Copyright © 2017 Elsevier B.V. All rights reserved.
Andreucci, M; Fuiano, G; Presta, P; Lucisano, G; Leone, F; Fuiano, L; Bisesti, V; Esposito, P; Russo, D; Memoli, B; Faga, T; Michael, A
2009-08-01
Erythropoietin has been shown to have a protective effect in certain models of ischaemia-reperfusion, and in some cases the protection has been correlated with activation of signalling pathways known to play a role in cell survival and proliferation. We have studied whether erythropoietin would overcome direct toxic effects of hydrogen peroxide (H(2)O(2)) treatment to human renal proximal tubular (HK-2) cells. HK-2 cells were incubated with H(2)O(2) (2 mm) for 2 h with or without erythropoietin at concentrations of 100 and 400 U/ml, and cell viability/proliferation was assessed by chemical reduction of MTT. Changes in phosphorylation state of the kinases Akt, glycogen synthase kinase-3beta (GSK-3beta), mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) were also analysed. Cells incubated with H(2)O(2) alone showed a significant decrease in viability, which did not significantly change by addition of erythropoietin at concentration of 100 U/ml, but was further reduced when concentration of erythropoietin was increased to 400 U/ml. Phosphorylation state of the kinases Akt, GSK-3beta, mTOR and ERK1/ERK2 of H(2)O(2)-treated HK-2 cells was slightly altered in the presence of erythropoietin at concentration of 100 U/ml, but was significantly less in the presence of erythropoietin at a concentration of 400 U/ml. Phosphorylation of forkhead transcription factor FKHRL1 was diminished in cells incubated with H(2)O(2) and erythropoietin at a concentration of 400 U/ml. Erythropoietin, at high concentrations, may significantly increase cellular damage in HK-2 cells subjected to oxidative stress, which may be due in part to decrease in activation of important signalling pathways involved in cell survival and/or cell proliferation.
Podhorecka, Monika; Goracy, Aneta; Szymczyk, Agnieszka; Kowal, Malgorzata; Ibanez, Blanca; Jankowska-Lecka, Olga; Macheta, Arkadiusz; Nowaczynska, Aleksandra; Drab-Urbanek, Elzbieta; Chocholska, Sylwia; Jawniak, Dariusz; Hus, Marek
2017-05-23
B cell receptor (BCR) stimulation signal plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL), and kinase inhibitors directed toward the BCR pathway are now the promising anti-leukemic drugs. Ibrutinib, a Bruton tyrosine kinase inhibitor, demonstrates promising clinical activity in CLL. It is reported that ibrutinib, additionally to directly targeting leukemic cells, also inhibits the interactions of these cells with T cells, macrophages and accessory cells. Assessment of these mechanisms is important because of their non -direct anti-leukemic effects and to identify possible side effects connected with long-term drug administration.The aim of this study was to assess the in vivo effects of ibrutinib on T-cell subpopulations and cytokine network in CLL. The analysis was performed on a group of 19 patients during first month of ibrutinib therapy. The standard multicolor flow cytometry and cytometric bead array methods were used for assessment of T-cell subsets and cytokines/chemokines, respectively.The data obtained indicates that Ibrutinib treatment results in changes in T-cell subpopulations and cytokine network in CLL patients. Particularly, a significant reduction of T regulatory cells in peripheral blood was observed. By targeting these populations of T cells Ibrutinib can stimulate rejection of tumor cells by the immune system.
Omlor, G W; Nerlich, A G; Tirlapur, U K; Urban, J P; Guehring, T
2014-12-01
Embryonic notochordal disc nucleus cells (NC) have been identified to protect disc tissue against disc degeneration but in human beings NC phenotype gets lost with aging and the pathophysiological mechanisms are poorly understood. NC may stimulate other cells via soluble factors, and NC-conditioned medium can be used to stimulate matrix production of other disc cells and mesenchymal stem cells and thus may be of special interest for biological disc repair. As this stimulatory effect is associated with the NC phenotype, we investigated how cell morphology and gene-expression of the NC phenotype changes with time in 3D-cell culture. NC and inner annulus chondrocyte-like cells (CLC) from immature pigtails (freshly isolated cells/tissue, 3D-alginate beads, 3D-clusters) were cultured for up to 16 days under normoxia and hypoxia. Protein-expression was analysed by immunohistology and gene-expression analysis was carried out on freshly isolated cells and cultured cells. Cell morphology and proliferation were analysed by two-photon-laser-microscopy. Two-photon-laser-microscopy showed a homogenous and small CLC population in the inner annulus, which differed from the large vacuole-containing NC in the nucleus. Immunohistology found 93 % KRT8 positive cells in the nucleus and intracellular and pericellular Col2, IL6, and IL12 staining while CLC were KRT8 negative. Freshly isolated NC showed significantly higher KRT8 and CAIII but lower Col2 gene-expression than CLC. NC in 3D-cultures demonstrated significant size reduction and loss of vacuoles with culture time, all indicating a loss of the characteristic NC morphology. Hypoxia reduced the rate of decrease in NC size and vacuoles. Gene-expression of KRT8 and CAIII in NC fell significantly early in culture while Col2 did not decrease significantly within the culture period. In CLC, KRT8 and CAIII gene-expression was low and did not change noticeably in culture, whereas Col2 expression fell with time in culture. 3D-culture caused a rapid loss of NC phenotype towards a CLC phenotype with disappearance of vacuoles, reduced cell size, increased proliferation, and gene-expression changes. These findings may be related to NC nutritional demands and support the latest hypothesis of NC maturation into CLC opposing the idea that NC get lost in human discs by cell death or apoptosis to be replaced by CLC from the inner annulus.
Tsiklis, Nikolaos S; Kymionis, George D; Pallikaris, Aristofanis I; Diakonis, Vasilios F; Ginis, Harilaos S; Kounis, George A; Panagopoulou, Sophia I; Pallikaris, Ioannis G
2007-11-01
To evaluate whether photorefractive keratectomy (PRK) for moderate myopia using a solid-state laser with a wavelength of 213 nm alters the corneal endothelial cell density. University refractive surgery center. The corneal endothelium was analyzed preoperatively and 1, 6, and 12 months postoperatively using corneal confocal microscopy (modified HRT II with a Rostock Cornea Module, Heidelberg Engineering) in 60 eyes (30 patients). Patients were randomized to have myopic PRK using a 213 nm wavelength solid-state laser (study group) or a conventional 193 nm wavelength excimer laser (control group). Three endothelial images were acquired in each of 30 preoperative normal eyes to evaluate the repeatability of endothelial cell density measurements. Repeated-measures analysis of variance was used to compare the variations in endothelial cell density between the 2 lasers and the changes in endothelial cell density over time. There were no statistically significant differences in sex, age, corneal pachymetry, attempted correction, preoperative endothelial cell density, or postoperative refractive outcomes (uncorrected visual acuity, best spectacle-corrected visual acuity, and spherical equivalent refraction) between the 2 groups (P>.05). The coefficient of repeatability of endothelial cell density was 131 cells/mm(2). The measured endothelial cell count per 1.0 mm(2) did not significantly change up to 1 year postoperatively in either group (both P>.05). No statistically significant difference was found between the 2 groups in any postoperative interval (P>.05). Photorefractive keratectomy for moderate myopia using a 213 nm wavelength solid-state laser or a conventional 193 nm wavelength excimer laser did not significantly affect corneal endothelial density during the 1-year postoperative period.
The effects of ROS in prostatic stromal cells under hypoxic environment.
Ren, Hailin; Li, Xiaona; Cheng, Guojun; Li, Ning; Hou, Zhi; Suo, Jiming; Wang, Jian; Za, Xi
2015-06-01
The objective of this study is to explore the effects of reactive oxygen species (ROS) under hypoxic environment in prostatic stromal cells (PSC). To detect the expression of ROS in PSC and the tissues of benign prostatic hyperplasia (BPH) by flow cytometry; under hypoxic conditions, to observe the changes of cells growth and ROS in PSC; quantitative PCR was used to detect hypoxia inducible factor-1α (HIF-1α), androgen receptors (AR), vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) in PSC; After edaravone intervening, to examine the changes of cells growth, ROS, HIF-1α, AR, VEGF, and IL-8 under hypoxic conditions. The expression of ROS in tissues and cells which under hypoxic condition was significantly increased. 3% O2 promoted the proliferation. The HIF-1α, AR, VEGF, and IL-8 were upregulated under 3% O2. After edaravone intervening, ROS significantly decreased, HIF-1α and VEGF were downregulated, and cell proliferation declined. Hypoxia stimulates the generation of ROS, and the ROS may play a key role in BPH.
Guo, Ying; Cepurna, William O; Dyck, Jennifer A; Doser, Tom A; Johnson, Elaine C; Morrison, John C
2010-06-01
To determine and compare gene expression patterns in the whole retina and retinal ganglion cell layer (RGCL) in a rodent glaucoma model. IOP was unilaterally elevated in Brown Norway rats (N = 26) by injection of hypertonic saline and monitored for 5 weeks. A cDNA microarray was used on whole retinas from one group of eyes with extensive optic nerve injury and on RGCL isolated by laser capture microdissection (LCM) from another group with comparable injury, to determine the significantly up- or downregulated genes and gene categories in both groups. Expression changes of selected genes were examined by quantitative reverse transcription-PCR (qPCR) to verify microarray results. Microarray analysis of the whole retina identified 632 genes with significantly changed expression (335 up, 297 down), associated with 9 upregulated and 3 downregulated biological processes. In contrast, the RGCL microarray yielded 3726 genes with significantly changed expression (2003 up, 1723 down), including 60% of those found in whole retina. Thirteen distinct upregulated biological processes were identified in the RGCL, dominated by protein synthesis. Among 11 downregulated processes, axon extension and dendrite morphogenesis and generation of precursor metabolism and energy were uniquely identified in the RGCL. qPCR confirmed significant changes in 6 selected messages in whole retina and 11 in RGCL. Increased Atf3, the most upregulated gene in the RGCL, was confirmed by immunohistochemistry of RGCs. Isolation of RGCL by LCM allows a more refined detection of gene response to elevated pressure and improves the potential of determining cellular mechanisms in RGCs and their supporting cells that could be targets for enhancing RGC survival.
Maćczak, Aneta; Bukowska, Bożena; Michałowicz, Jaromir
2015-01-01
Bisphenol A (BPA) has been shown to provoke many deleterious impacts on human health, and thus it is now successively substituted by BPA analogues, whose effects have been poorly investigated. Up to now, only one study has been realized to assess the effect of BPA on human erythrocytes, which showed its significant hemolytic and oxidative potential. Moreover, no study has been conducted to evaluate the effect of BPA analogues on red blood cells. The purpose of the present study was to compare the impact of BPA and its selected analogues such as bisphenol F (BPF), bisphenol S (BPS) and bisphenol AF (BPAF) on hemolytic and morphological changes and hemoglobin oxidation (methemoglobin formation) of human erythrocytes. The erythrocytes were incubated with different bisphenols concentrations ranging from 0.5 to 500μg/ml for 1, 4 and 24h. The compounds examined caused hemolysis in human erythrocytes with BPAF exhibiting the strongest effect. All bisphenols examined caused methemoglobin formation with BPA inducing the strongest oxidative potential. Flow cytometry analysis showed that all bisphenols (excluding BPS) induced significant changes in erythrocytes size. Changes in red blood cells shape were conducted using phase contrast microscopy. It was noticed that BPA and BPAF induced echinocytosis, BPF caused stomatocytosis, while BPS did not provoke significant changes in shape of red blood cells. Generally, the results showed that BPS, which is the main substituent of bisphenol A in polymers and thermal paper production, exhibited significantly lower disturbance of erythrocyte functions than BPA. Copyright © 2015 Elsevier Inc. All rights reserved.
Hudson, Sandra; Wang, Dongliang; Middleton, Frank; Nevaldine, Barbara H; Naous, Rana; Hutchison, Robert E
2018-04-26
Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL) shows 60-70% event free survival with standard treatments. Targeted therapies are being tested for increased benefit and/or reduced toxicity, but interactions with standard agents are not well known. We exposed four ALCL cell lines to two targeted agents, crizotinib and brentuximab vedotin, and to two standard agents, doxorubicin and vinblastine. For each agent and combination, we measured apoptosis and expression of approximately 300 previously annotated genes of interest using targeted RNA-sequencing. An aurora kinase inhibitor, alisertib, was similarly tested for gene expression effects. Only crizotinib, alone or in combination, showed significant effects (adjusted P < 0.05) on expression and apoptosis. One hundred and nine of 277 gene expressions showed crizotinib-associated differential expression, mostly downregulation, 62 associated with apoptosis, and 28 associated with both crizotinib and apoptosis. Doxorubicin was antagonistic with crizotinib on gene expression and apoptosis. Brentuximab was synergistic with crizotinib in apoptosis, and not antagonistic in gene expression. Vinblastine also appeared synergistic with crizotinib but did not achieve statistical significance. Alisertib did not show significant expression changes. Our data suggest that crizotinib induces apoptosis through orderly changes in cell signaling associated with ALK inhibition. Expression effects of crizotinib and associated apoptosis are antagonized by doxorubicin, but apoptosis is synergized by brentuximab vedotin and possibly vinblastine. These findings suggest that concurrent use of crizotinib and doxorubicin may be counterproductive, while the pairing of crizotinib with brentuximab (or vinblastine) may increase efficacy. Alisertib did not induce expression changes at cytotoxic dosage. © 2018 Wiley Periodicals, Inc.
2012-01-01
Background Protein dynamics during non-steady state conditions as feeding are complex. Such studies usually demand combinations of methods to give conclusive information, particularly on myofibrillar proteins with slow turnover. Therefore, time course transcript analyses were evaluated as possible means to monitor changes in myofibrillar biosynthesis in skeletal muscles in conditions with clinical nutrition; i.e. long term exposure of nutrients. Methods Muscle tissue from overnight intravenously fed surgical patients were used as a model combined with muscle tissue from starved and refed mice as well as cultured L6 muscle cells. Transcripts of acta 1 (α-actin), mhc2A (myosin) and slc38 a2/Snat 2 (amino acid transporter) were quantified (qPCR) as markers of muscle protein dynamics. Results Myosin heavy chain 2A transcripts decreased significantly in skeletal muscle tissue from overnight parenterally fed patients but did not change significantly in orally refed mice. Alpha-actin transcripts did not change significantly in muscle cells from fed patients, mice or cultured L6 cells during provision of AA. The AA transporter Snat 2 decreased in L6 cells refed by all AA and by various combinations of AA but did not change during feeding in muscle tissue from patients or mice. Conclusion Our results confirm that muscle cells are sensitive to alterations in extracellular concentrations of AA for induction of protein synthesis and anabolism. However, transcripts of myofibrillar proteins and amino acid transporters showed complex alterations in response to feeding with provision of amino acids. Therefore, muscle tissue transcript levels of actin and myosin do not reflect protein accretion in skeletal muscles at feeding. PMID:23190566
Ishikawa, N; Horii, Y; Oinuma, T; Suganuma, T; Nawa, Y
1994-01-01
The aim of this study was to examine the role of T cells on the alteration of terminal sugars of goblet cell mucins in the small intestinal mucosa of parasitized rats and to clarify the biological significance of the altered mucins in the mucosal defence against intestinal helminths. For this purpose, Nippostrongylus brasiliensis adult worms obtained from donor rats at 7 ('normal' worms) or 13 days ('damaged' worms) post-infection were implanted intraduodenally into euthymic and hypothymic (rnu/rnu) rats. Expulsion of implanted normal worms and associated goblet cell changes were extremely delayed in hypothymic recipients compared with euthymic recipients. In contrast, intraduodenally implanted damaged worms were expelled by day 5 regardless of the strains. Around the time of expulsion of implanted damaged worms, euthymic recipients showed both goblet cell hyperplasia and alteration of mucins, whereas hypothymic rats showed only the latter. Dexamethasone treatment completely abolished goblet cell changes of both strains of recipients. To clarify the importance of the constitutional changes of goblet cell mucins in mucosal defence, euthymic rats were primed by implantation of damaged worms to induce goblet cell changes, and then 3 or 5 days later they were challenged by implantation with normal worms. The results show that when goblet cell changes were induced by priming with damaged worms, recipient rats could completely prevent the establishment of normal worms. When hypothymic rats were primed and challenged in the same manner, a similar but slightly less preventive effect was observed. Such a protective effect of altered mucins seems to be selective because priming of euthymic rats with damaged N. brasiliensis did not affect the establishment of Strongyloides venezuelensis. These results suggest that: (1) once N. brasiliensis adult worms are 'damaged' by the host's T-cell-dependent immune mechanisms, they can induce alteration of sugar residues of goblet cell mucins via host-mediated, T-cell-independent processes; (2) the expression of such altered mucins is highly effective not only in causing expulsion of established damaged worms but also in preventing establishment of normal worms; and (3) the preventive effect of altered mucins is selective against parasite species. Images Figure 2 Figure 4 PMID:8206520
Bowler, Elizabeth; Porazinski, Sean; Uzor, Simon; Thibault, Philippe; Durand, Mathieu; Lapointe, Elvy; Rouschop, Kasper M A; Hancock, John; Wilson, Ian; Ladomery, Michael
2018-04-02
Mounting evidence suggests that one of the ways that cells adapt to hypoxia is through alternative splicing. The aim of this study was firstly to examine the effect of hypoxia on the alternative splicing of cancer associated genes using the prostate cancer cell line PC3 as a model. Secondly, the effect of hypoxia on the expression of several regulators of splicing was examined. PC3 cells were grown in 1% oxygen in a hypoxic chamber for 48 h, RNA extracted and sent for high throughput PCR analysis at the RNomics platform at the University of Sherbrooke, Canada. Genes whose exon inclusion rate PSI (ψ) changed significantly were identified, and their altered exon inclusion rates verified by RT-PCR in three cell lines. The expression of splice factors and splice factor kinases in response to hypoxia was examined by qPCR and western blotting. The splice factor kinase CLK1 was inhibited with the benzothiazole TG003. In PC3 cells the exon inclusion rate PSI (ψ) was seen to change by > 25% in 12 cancer-associated genes; MBP, APAF1, PUF60, SYNE2, CDC42BPA, FGFR10P, BTN2A2, UTRN, RAP1GDS1, PTPN13, TTC23 and CASP9 (caspase 9). The expression of the splice factors SRSF1, SRSF2, SRSF3, SAM68, HuR, hnRNPA1, and of the splice factor kinases SRPK1 and CLK1 increased significantly in hypoxia. We also observed that the splice factor kinase CLK3, but not CLK2 and CLK4, was also induced in hypoxic DU145 prostate, HT29 colon and MCF7 breast cancer cell lines. Lastly, we show that the inhibition of CLK1 in PC3 cells with the benzothiazole TG003 increased expression of the anti-apoptotic isoform caspase 9b. Significant changes in alternative splicing of cancer associated genes occur in prostate cancer cells in hypoxic conditions. The expression of several splice factors and splice factor kinases increases during hypoxia, in particular the Cdc-like splice factor kinases CLK1 and CLK3. We suggest that in hypoxia the elevated expression of these regulators of splicing helps cells adapt through alternative splicing of key cancer-associated genes. We suggest that the CLK splice factor kinases could be targeted in cancers in which hypoxia contributes to resistance to therapy.
Touloupidis, Stavros; Papathanasiou, Athanasios; Kalaitzis, Christos; Fatles, Georgios; Manavis, Ioannis; Rombis, Vassilios
2006-01-01
We have analyzed data collected over a 26-year period for influences of new diagnostic imaging techniques (ultrasound, computed tomography, and magnetic resonance imaging) on the size, stage, and other parameters of renal cell carcinomas at the time of first diagnosis. We reviewed retrospectively the records of 203 patients who underwent operations at our institutions from 1973 to 1999. All the patients suffered from renal cell carcinoma. With this study we attempted to answer four questions regarding changes over this time span: (1) have new imaging techniques lead to a reduction in the median diameter of the tumor upon first diagnosis, (2) has the tumor stage decreased due to earlier diagnosis, (3) is there any correlation between tumor size and tumor stage, and (4) are the patient's early diagnoses at a younger age? Other parameters such as infiltration of the renal pelvis and the cell type were also examined. The tumor size and stage at the time of diagnosis and treatment are positively correlated, and both decrease significantly over the time span examined. There is also a strong association between tumor size and infiltration of the renal pelvis. The median age of the patients did not significantly change over time. The wider use of improved imaging techniques has significantly changed the clinical appearance of the renal cell carcinoma. The question is whether these techniques have also affected the prognosis of the disease.
Somsouk, Ma; Dunham, Richard M; Cohen, Michelle; Albright, Rebecca; Abdel-Mohsen, Mohamed; Liegler, Teri; Lifson, Jeffrey; Piatak, Michael; Gorelick, Robert; Huang, Yong; Wu, Yuaner; Hsue, Priscilla Y; Martin, Jeffrey N; Deeks, Steven G; McCune, Joseph M; Hunt, Peter W
2014-01-01
The anti-inflammatory agent, mesalamine (5-aminosalicylic acid) has been shown to decrease mucosal inflammation in ulcerative colitis. The effect of mesalamine in HIV-infected individuals, who exhibit abnormal mucosal immune activation and microbial translocation (MT), has not been established in a placebo-controlled trial. We randomized 33 HIV-infected subjects with CD4 counts <350 cells/mm3 and plasma HIV RNA levels <40 copies/ml on antiretroviral therapy (ART) to add mesalamine vs. placebo to their existing regimen for 12 weeks followed by a 12 week crossover to the other arm. Compared to placebo-treated subjects, mesalamine-treated subjects did not experience any significant change in the percent CD38+HLA-DR+ peripheral blood CD4+ and CD8+ T cells at week 12 (P = 0.38 and P = 0.63, respectively), or in the CD4+ T cell count at week 12 (P = 0.83). The percent CD38+HLA-DR+ CD4+ and CD8+ T cells also did not change significantly in rectal tissue (P = 0.86, P = 0.84, respectively). During the period of mesalamine administration, plasma sCD14, IL-6, D-dimer, and kynurenine to tryptophan ratio were not changed significantly at week 12 and were similarly unchanged at week 24. This study suggests that, at least under the conditions studied, the persistent immune activation associated with HIV infection is not impacted by the anti-inflammatory effects of mesalamine. ClinicalTrials.gov NCT01090102.
Viscoelastic and biochemical properties of erythrocytes during storage with SAG-M at +4 degrees C.
Farges, E; Grebe, R; Baumann, M
2002-01-01
During storage at +4 degrees C, red blood cells undergo biochemical and physicochemical modifications, which alter their rheological characteristics especially the deformability. Even so until now not precisely defined deformability is undoubtedly a function of whole cell elasticity and viscosity. In a previous study we have investigated changes of elasticity of whole RBCs during a 6 weeks storage by quasi-static experiments using our Cell-Elastometer method. Since the changes in deformability we observed with that experimental approach have not been significant we extended the hard/software capabilities of this instrument to enable dynamic measurements also. We applied this modified hard-/software set-up to examine again changes in viscoelasticity of erythrocytes from concentrates during a six weeks storage at a blood bank. The cells were resuspended in CPD-SAG-M and stored at +4 degrees C. Quasi-static and dynamic experiments were performed on stored erythrocytes and showed for both significant changes in elasticity and viscoelasticity from the fourth week on. So it can be stated that due to our experimental results decrease in deformability of RBCs during storage occurs after a four weeks period of relative stability. To get further insight in changes of underlying or related biochemical properties according experiments have been performed in parallel. Especially the decrease in ATP showed a nearly parallel time course with a significant decrease after the 4th week. All other parameters especially the 2,3 DPG level showed a nearly linear de- or increase with time which are in accordance with the results of the additionally performed elongation experiments. Our quasi-static and dynamic deformability measurements have been proven to provide a simple and reliable tool to follow up erythrocyte senescence during storage where a pronounced change in mechanical properties may be used as an indicator for a change in bioviability. This has to be verified in further experiments.
NASA Technical Reports Server (NTRS)
Gruener, R.
1985-01-01
Alterations in gravitational conditions which alter the normal development and interactions of nerve and muscle cells grown in culture is examined. Clinostat conditions, similating Og, which produce changes in cell morphology and growth patterns is studied. Data show that rotation of cocultures of nerve and muscle cells results in morphologic changes which are predicted to significantly alter the functional interactions between the elements of a prototypic synapse. It is further predicted that similar alterations may occur in central synapses which may therefore affect the development of the central nervous system when subjected to altered gravitational conditions.
Lee, Haeyong; Bae, Sungmin; Choi, Byoung Whui; Yoon, Yoosik
2012-02-01
In the present study, we investigated the possibility that the WNT/β-catenin pathway plays a role in inflammatory responses both in an human inflammatory condition and in an in vitro inflammation model. First, we analyzed gene expression patterns of the peripheral blood cells from asthma patients compared with those from normal subjects using microarray analyses. We found that intracellular signaling molecules of the WNT/β-catenin pathway were significantly changed in asthma patients compared with the levels in the controls. Next, we determined whether major components of the WNT/β-catenin pathway were involved in the lipopolysaccharide (LPS)-induced inflammatory response of the RAW264.7 macrophage cell line. Among the members of WNT/β-catenin pathway, the protein levels of low-density lipoprotein receptor-related protein (LRP) 6, dishevelled (DVL) 2, and AXIN1, which were measured using western blotting, did not significantly change in the presence of LPS. In contrast, the LPS induced a rapid phosphorylation of glycogen synthase kinase (GSK) 3β and accumulation of β-catenin protein. It was found that β-catenin plays a significant role in the LPS-induced inflammatory response through the performance of small interfering RNA (siRNA) transfection experiments. The mRNA level of IL-6 was significantly elevated in β-catenin siRNA-transfected cells compared with that in control siRNA-transfected cells after LPS treatment. Furthermore, nuclear factor-κB (NF-κB) activity was also significantly increased in β-catenin siRNA-transfected cells compared with the level seen in control siRNA-transfected cells. Taken together, these results suggest that β-catenin plays a role as a negative regulator, preventing the overproduction of inflammatory cytokines such as IL-6 in LPS-induced inflammatory responses.
Percentage and function of CD4+CD25+ regulatory T cells in patients with hyperthyroidism
Jiang, Ting-Jun; Cao, Xue-Liang; Luan, Sha; Cui, Wan-Hui; Qiu, Si-Huang; Wang, Yi-Chao; Zhao, Chang-Jiu; Fu, Peng
2018-01-01
The current study observed the percentage of peripheral blood (PB) CD4+CD25+ regulatory T cells (Tregs) and the influence of CD4+CD25+ Tregs on the proliferation of naïve CD4 T cells in patients with hyperthyroidism. Furthermore, preliminary discussions are presented on the action mechanism of CD4+CD25+ Tregs on hyperthyroidism attacks. The present study identified that compared with the percentage of PB CD4+CD25+ Tregs in healthy control subjects, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in patients with hyperthyroidism (P>0.05). For patients with hyperthyroidism, CD4+CD25+ Tregs exhibited significantly reduced inhibition of the proliferation of naïve CD4 T cells and decreased secretion capacity on the cytokines of CD4 T cells, compared with those of healthy control subjects (P<0.05). In addition, it was demonstrated that thyroid function of patients with hyperthyroidism was significantly improved (P<0.05) subsequent to receiving medication. Compared with the percentage of PB CD4+CD25+ Tregs in patients with hyperthyroidism before treatment, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in hyperthyroidism patients following treatment (P>0.05). In the patients with hyperthyroidism, following treatment, CD4+CD25+ Tregs exhibited significantly increased inhibition of the proliferation of naïve CD4 T cells and increased secretion capacity of CD4 T cell cytokines, compared with those of the patients with hyperthyroidism prior to treatment (P<0.05). PB CD4+CD25+ Tregs function was decreased in patients with hyperthyroidism, and its non-proportional decrease may be closely associated with the occurrence and progression of hyperthyroidism. PMID:29207121
Marasco, Emiliano; Aquilani, Angela; Cascioli, Simona; Moneta, Gian Marco; Caiello, Ivan; Farroni, Chiara; Giorda, Ezio; D'Oria, Valentina; Marafon, Denise Pires; Magni-Manzoni, Silvia; Carsetti, Rita; De Benedetti, Fabrizio
2018-04-01
To investigate whether abnormalities in B cell subsets in patients with juvenile idiopathic arthritis (JIA) correlate with clinical features and response to treatment. A total of 109 patients diagnosed as having oligoarticular JIA or polyarticular JIA were enrolled in the study. B cell subsets in peripheral blood and synovial fluid were analyzed by flow cytometry. Switched memory B cells were significantly increased in patients compared to age-matched healthy controls (P < 0.0001). When patients were divided according to age at onset of JIA, in patients with early-onset disease (presenting before age 6 years) the expansion in switched memory B cells was more pronounced than that in patients with late-onset disease and persisted throughout the disease course. In longitudinal studies, during methotrexate (MTX) treatment, regardless of the presence or absence of active disease, the number of switched memory B cells increased significantly (median change from baseline 36% [interquartile range {IQR} 15, 66]). During treatment with MTX plus tumor necrosis factor inhibitors (TNFi), in patients maintaining disease remission, the increase in switched memory B cells was significantly lower than that in patients who experienced active disease (median change from baseline 4% [IQR -6, 32] versus 41% [IQR 11, 73]; P = 0.004). The yearly rate of increases in switched memory B cells was 1.5% in healthy controls, 1.2% in patients who maintained remission during treatment with MTX plus TNFi, 4.7% in patients who experienced active disease during treatment with MTX plus TNFi, and ~4% in patients treated with MTX alone. Switched memory B cells expand during the disease course at a faster rate in JIA patients than in healthy children. This increase is more evident in patients with early-onset JIA. TNFi treatment inhibits this increase in patients who achieve and maintain remission, but not in those with active disease. © 2018, American College of Rheumatology.
Schwann Cell Phenotype Changes in Aging Human Dental Pulp.
Couve, E; Lovera, M; Suzuki, K; Schmachtenberg, O
2018-03-01
Schwann cells are glial cells that support axonal development, maintenance, defense, and regeneration in the peripheral nervous system. There is limited knowledge regarding the organization, plasticity, and aging of Schwann cells within the dental pulp in adult permanent teeth. The present study sought to relate changes in the pattern of Schwann cell phenotypes between young and old adult teeth with neuronal, immune, and vascular components of the dental pulp. Schwann cells are shown to form a prominent glial network at the dentin-pulp interface, consisting of nonmyelinating and myelinating phenotypes, forming a multicellular neuroimmune interface in association with nerve fibers and dendritic cells. Schwann cell phenotypes are recognized by the expression of S100, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), Sox10, GAP43, and p75NTR markers. In young adult teeth, a dense population of nonmyelinating Schwann cells projects processes in close association with sensory nerve terminals through the odontoblast layer, reaching the adjacent predentin/dentin domain. While GAP43 and p75NTR are highly expressed in nonmyelinating Schwann cells from young adult teeth, the presence of these markers declines significantly in old adult teeth. Myelinated axons, identified by MBP expression, are mainly present at the Raschkow plexus and within nerve bundles in the dental pulp, but their density is significantly reduced in old adult versus young adult teeth. These data reveal age-related changes within the glial network of the dental pulp, in association with a reduction of coronal dental pulp innervation in old adult versus young adult teeth. The prominence of Schwann cells as a cellular component at the dentin-pulp interface supports the notion that their association with sensory nerve terminals and immune system components forms part of an integrated multicellular barrier for defense against pathogens and dentin repair.
Function of actin cytoskeleton in gravisensing during spaceflight
NASA Astrophysics Data System (ADS)
Hughes-Fulford, M.
Since astronauts and cosmonauts have significant bone loss in microgravity, we hypothesized that there would be physiological changes in cellular bone growth in the absence of gravity. Our first experiments on STS-56 demonstrated that quiescent osteoblasts activated by sera under microgravity conditions had a significant 60% reduction in growth (p<0.001) and a paradoxical 2 fold increase in release of autocrine PGE2 when compared to ground controls. In addition, there was a significant collapse of the actin cytoskeleton and loss of focal adhesions after 4 days of growth in microgravity. Other investigators have made similar observations of cytoskeletal modifications in microgravity. Later studies in Biorack on STS-76, 81 and 84 confirmed the increased release of PGE2 and collapse of the cytoskeleton in cells grown in microgravity conditions, however flown cells under 1g conditions maintained normal actin cytoskeleton and fibronectin matrix. We do not think that the changes seen in the cytoskeleton are due to alterations in fibronectin message or protein synthesis since no differences were found between microgravity, 1g or ground conditions. The nuclear structure was noticeably different in the flown 0g cells with elongation of the nucleus after 24 hours of microgravity, this alteration in nuclear structure was not seen in the 1g flown or ground control cells. Further examination of total RNA in the cells showed no significant changes between the three gravity conditions suggesting specific not general physiological changes in microgravity. When osteoblast mRNA was analyzed, the immediate early genes, c-myc and cox-2 and the autocrine growth factor FGFb were down-regulated in microgravity. The inability of the 0g grown osteoblast to respond to sera activation suggests that there is a major alteration in anabolic signal transduction under microgravity conditions, most probably through the growth factor receptors and/or the associated kinase pathways. It is still unclear whether these changes in signal transduction are related to the alterations in the cytoskeleton under microgravity conditions and this possibility is under study.
Lutterschmidt, Deborah I; Lucas, Ashley R; Karam, Ritta A; Nguyen, Vicky T; Rasmussen, Meghann R
2018-01-01
Seasonal rhythms in physiology and behavior are widespread across diverse taxonomic groups and may be mediated by seasonal changes in neurogenesis, including cell proliferation, migration, and differentiation. We examined if cell proliferation in the brain is associated with the seasonal life-history transition from spring breeding to migration and summer foraging in a free-ranging population of red-sided garter snakes ( Thamnophis sirtalis ) in Manitoba, Canada. We used the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) to label newly proliferated cells within the brain of adult snakes collected from the den during the mating season or from a road located along their migratory route. To assess rates of cell migration, we further categorized BrdU-labeled cells according to their location within the ventricular zone or parenchymal region of the nucleus sphericus (homolog of the amygdala), preoptic area/hypothalamus, septal nucleus, and cortex (homolog of the hippocampus). We found that cell proliferation and cell migration varied significantly with sex, the migratory status of snakes, and reproductive behavior in males. In most regions of interest, patterns of cell proliferation were sexually dimorphic, with males having significantly more BrdU-labeled cells than females prior to migration. However, during the initial stages of migration, females exhibited a significant increase in cell proliferation within the nucleus sphericus, hypothalamus, and septal nucleus, but not in any subregion of the cortex. In contrast, migrating males exhibited a significant increase in cell proliferation within the medial cortex but no other brain region. Because it is unlikely that the medial cortex plays a sexually dimorphic role in spatial memory during spring migration, we speculate that cell proliferation within the male medial cortex is associated with regulation of the hypothalamus-pituitary-adrenal axis. Finally, the only brain region where cell migration into the parenchymal region varied significantly with sex or migratory status was the hypothalamus. These results suggest that the migration of newly proliferated cells and/or the continued division of undifferentiated cells are activated earlier or to a greater extent in the hypothalamus. Our data suggest that sexually dimorphic changes in cell proliferation and cell migration in the adult brain may mediate sex differences in the timing of seasonal life-history transitions.
Lutterschmidt, Deborah I.; Lucas, Ashley R.; Karam, Ritta A.; Nguyen, Vicky T.; Rasmussen, Meghann R.
2018-01-01
Seasonal rhythms in physiology and behavior are widespread across diverse taxonomic groups and may be mediated by seasonal changes in neurogenesis, including cell proliferation, migration, and differentiation. We examined if cell proliferation in the brain is associated with the seasonal life-history transition from spring breeding to migration and summer foraging in a free-ranging population of red-sided garter snakes (Thamnophis sirtalis) in Manitoba, Canada. We used the thymidine analog 5-bromo-2′-deoxyuridine (BrdU) to label newly proliferated cells within the brain of adult snakes collected from the den during the mating season or from a road located along their migratory route. To assess rates of cell migration, we further categorized BrdU-labeled cells according to their location within the ventricular zone or parenchymal region of the nucleus sphericus (homolog of the amygdala), preoptic area/hypothalamus, septal nucleus, and cortex (homolog of the hippocampus). We found that cell proliferation and cell migration varied significantly with sex, the migratory status of snakes, and reproductive behavior in males. In most regions of interest, patterns of cell proliferation were sexually dimorphic, with males having significantly more BrdU-labeled cells than females prior to migration. However, during the initial stages of migration, females exhibited a significant increase in cell proliferation within the nucleus sphericus, hypothalamus, and septal nucleus, but not in any subregion of the cortex. In contrast, migrating males exhibited a significant increase in cell proliferation within the medial cortex but no other brain region. Because it is unlikely that the medial cortex plays a sexually dimorphic role in spatial memory during spring migration, we speculate that cell proliferation within the male medial cortex is associated with regulation of the hypothalamus-pituitary-adrenal axis. Finally, the only brain region where cell migration into the parenchymal region varied significantly with sex or migratory status was the hypothalamus. These results suggest that the migration of newly proliferated cells and/or the continued division of undifferentiated cells are activated earlier or to a greater extent in the hypothalamus. Our data suggest that sexually dimorphic changes in cell proliferation and cell migration in the adult brain may mediate sex differences in the timing of seasonal life-history transitions.
Zhang, Jun; Rouse, Rodney L
2014-09-01
Three classical rodent models of acute pancreatitis were created in an effort to identify potential pre-clinical models of drug-induced pancreatitis (DIP) and candidate non-invasive biomarkers for improved detection of DIP. Study objectives included designing a lexicon to minimize bias by capturing normal variation and spontaneous and injury-induced changes while maintaining the ability to statistically differentiate degrees of change, defining morphologic anchors for novel pancreatic injury biomarkers, and improved understanding of mechanisms responsible for pancreatitis. Models were created in male Sprague-Dawley rats and C57BL6 mice through: 1) administration of the cholecystokinin analog, caerulein; 2) administration of arginine; 3) surgical ligation of the pancreatic duct. Nine morphologically detectable processes were used in the lexicon; acinar cell hypertrophy; acinar cell autophagy; acinar cell apoptosis; acinar cell necrosis; vascular injury; interstitial edema, inflammation and hemorrhage; fat necrosis; ductal changes; acinar cell atrophy. Criteria were defined for scoring levels (0 = absent, 1 = mild, 2 = moderate, 3 = severe) for each lexicon component. Consistent with previous studies, histopathology scores were significant greater in rats compared to mice at baseline and after treatment. The histopathology scores in caerulein and ligation-treated rats and mice were significantly greater than those of arginine-treated rats and mice. The present study supports a multifaceted pathogenesis for acute pancreatitis in which intra-acinar trypsinogen activation, damage to acinar cells, fat cells, and vascular cells as well as activation/degranulation of mast cells and activated macrophages all contribute to the initiation and/or progression of acute inflammation of the exocrine pancreas.
NASA Astrophysics Data System (ADS)
Manzano, Ana Isabel; Herranz, Raul; Manzano, Aránzazu; Van Loon, Jack; Medina, Francisco Javier
2016-02-01
Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased,. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.
Yu, Qian; Xiong, Youhua; Liu, Jianliang; Wang, Qin; Qiu, Yuanxin; Wen, Dongling
2016-06-01
Infection with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) mutants lacking a functional p35 gene can induce host cell apoptosis, which provides the possibility to use the potential of these viruses in the biological control of pest insects. Nonetheless, the proteomics or the protein changes of Spodoptera frugiperda (Sf9) cells infected with p35 knockout AcMNPV have not yet been studied. To further improve the use of AcMNPV, we set out to analyze the protein composition and protein changes of Sf9 cells of different infection stages by isobaric tag for relative and absolute quantification (iTRAQ) techniques. A total of 4004 sf9 proteins were identified by iTRAQ. After comparation of the significantly expressed 483 proteins from p35koAcMNPV-infected Sf9 cells and the significantly expressed 413 proteins from wtAcMNPV-infected Sf9 cells, we found that 226 proteins were specific to p35koAcMNPV-infected Sf9 cells. The 226 proteins were categorized according to GO classification for insects and were categorized into: biological processes, molecular functions and cellular components. Of interest, the most up-regulated proteins related to Epstein-Barr virus infection, RNA transport, Calcium signaling pathway, cGMP-PKG signaling pathway, oxidative phosphorylation and N-Glycan biosynthesis. Determination of the protein changes in p35 knockout AcMNPV-infected Sf9 cells would facilitate the better use of this virus-host cell interaction in pest insect control and other related fields. Copyright © 2016 Elsevier Inc. All rights reserved.
Red cell surface changes in cold agglutination
Salsbury, A. J.; Clarke, J. A.; Shand, W. S.
1968-01-01
Surface changes in red blood cells undergoing cold agglutination have been investigated using the Cambridge Stereoscan electron microscope. On incubation of red cells with a cold agglutinin of anti-I specificity at 4°C, circular shadows on the red cell membrane developed within 2 min. At the same time the membrane showed a granularity and processes began to develop on the surface. These processes increased in length, the processes of contiguous cells became interlinked and agglutination was complete after incubation of 1 hr. On warming an agglutinated specimen, the process was reversed with separation of red cells and retraction of the finger-like processes to yield discrete red cells of normal appearance. The addition of heparin in vivo prevented agglutination but did not inhibit surface changes completely. Complement appeared to play no part in the production of cold agglutination due to these antibodies or in the reversal of agglutination by warming. The significance of the surface changes described in relation to previous information on the mechanism of agglutination, has been discussed. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11 PMID:5655472
Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells
NASA Astrophysics Data System (ADS)
Banerjee, Rupak
Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not been investigated in detail. This study begins to investigate the effects of changing operating conditions on liquid water transport through the reactant channels. It has been identified that rapidly increasing temperature leads to the dry-out of the membrane and rapidly cooling the cell below 55°C results in the start of cell flooding. In changing the operating load of the PEMFC, overshoot in the pressure drop in the reactant channel has been identified for the first time as part of this investigation. A parametric study has been conducted to identify the factors which influence this overshoot behavior.
Ackers, D; Hejnowicz, Z; Sievers, A
1994-01-01
Velocities of cytoplasmic streaming were measured in internodal cells of Nitella flexilis L. and Chara corallina Klein ex Willd. by laser-Doppler-velocimetry to investigate the possibility of non-statolith-based perception of gravity. This was recently proposed, based on a report of gravity-dependent polarity of cytoplasmic streaming. Our measurements revealed large spatial and temporal variation in streaming velocity within a cell, independent of the position of the cell with respect to the direction of gravity. In 58% of the horizontally positioned cells the velocities of acropetal and basipetal streaming, measured at opposite locations in the cell, differed significantly. In 45% of these, basipetal streaming was faster than acropetal streaming. In 60% of the vertically positioned cells however the difference was significant, downward streaming was faster in only 61% of these. When cell positions were changed from vertical to horizontal and vice versa the cells reacted variably. A significant difference between velocities in one direction, before and after the change, was observed in approx. 70% of the measurements, but the velocity was faster in the downward direction, as the second position, in only 70% of the significantly different. The ratio of basipetal to acropetal streaming velocities at opposite locations of a cell was quite variable within groups of cells with a particular orientation (horizontal, normal vertical, inverted vertical). On average, however, the ratio was close to 1.00 in the horizontal position and approx. 1.03 in the normal vertical position (basipetal streaming directed downwards), which indicates a small direct effect of gravity on streaming velocity. Individual cells, however, showed an increased, as well as a decreased, ratio when moved from the horizontal to the vertical position. No discernible effect of media (either Ca(2+)-buffered medium or 1.2% agar in distilled water) on the streaming velocities was observed. The above mentioned phenomenon of graviperception is not supported by our data.
Huang, Rui; Zhu, Wei-Jie; Li, Jing; Gu, Yi-Qun
2014-12-01
To evaluate the changes of stage distribution of seminiferous epithelium cycle and its correlations with Leydig cell stereological parameters in aging men. Point counting method was used to analyze the stereological parameters of Leydig cells. The stage number of seminiferous epithelium cycle was calculated in the same testicular tissue samples which were used for Leydig cell stereological analysis. The aging group had shown more severe pathological changes as well as higher pathologic scores than the young group. Compared with the control group, the volume density (VV) and surface density (NA) of Leydig cells in the aging group were increased significantly. The stage number of seminiferous epithelium cycle in the aging group was decreased coincidently compared to the young group. Leydig cell Vv in the young group has a positive relationship with stages I, II, III, V and VI of seminiferous epithelium cycle, and Leydig cell NA and numerical density (NV) were positively related to stage IV. However, only the correlation between NV and stage II was found in the aging group. The stage number of seminiferous epithelium cycle was decreased in aging testes. Changes in the stage distribution in aging testes were related to the Leydig cell stereological parameters which presented as a sign of morphological changes. Copyright © 2014 Elsevier GmbH. All rights reserved.
Non-Invasive Cell-Based Therapy for Traumatic Optic Neuropathy
2013-10-01
Morgans, Sergey Girman, Raymond Lund and Shaomei Wang Retinal Morphological and Functional Changes in an Animal Model of Retinitis Pigmentosa . Vis...model was created. 2. Rat MSC and M-Sch were reliable produced for experiments. 3. Systemic administration of MSC significantly preserved retinal ...TON also promote retinal ganglion cell survival. From the first year study, we have shown that systemic administration of MSC can significantly
Zhang, Jian; Wang, Pei; He, Wen; Wang, Fengjun
2016-04-01
To study the effect of hypoxia on Slingshot protein expression in human intestinal epithelial cell and its relation with changes in barrier function of the cells. The human intestinal epithelial cell line Caco-2 was used to reproduce monolayer-cells. One portion of the monolayer-cell specimens were divided into six parts according to the random number table, and they were respectively exposed to hypoxia for 0 (without hypoxia), 1, 2, 6, 12, and 24 h. Transepithelial electrical resistance (TER) was determined with an ohmmeter. Another portion of the monolayer-cell specimens were exposed to hypoxia as above. Western blotting was used to detect the protein expressions of zonula occludens 1 (ZO-1), occludin, claudin-1, Slingshot-1, Slingshot-2, and Slingshot-3. The remaining portion of the monolayer-cell specimens were also exposed to hypoxia as above. The content of fibrous actin (F-actin) and globular actin (G-actin) was determined by fluorescence method. The sample number of above-mentioned 3 experiments was respectively 10, 10, and 18 at each time point. Data were processed with one-way analysis of variance and Dunnett test. (1) Compared with that of cells exposed to hypoxia for 0 h, TER of cells exposed to hypoxia for 1 to 24 h was significantly reduced (P values below 0.01). (2) Compared with those of cells exposed to hypoxia for 0 h (all were 1.00), the protein expressions of ZO-1, occludin, and claudin-1 of cells exposed to hypoxia for 1 to 24 h were generally lower, especially those of cells exposed to hypoxia for 12 h or 24 h (respectively 0.69 ± 0.20, 0.47 ± 0.15, and 0.47 ± 0.22, P<0.05 or P<0.01). Compared with those of cells exposed to hypoxia for 0 h, the protein expressions of Slingshot-1 and Slingshot-3 of cells exposed to hypoxia for 1 to 24 h were not obviously changed (P values above 0.05). The protein expression of Slingshot-2 of cells was decreased at first and then gradually increased from hypoxia hour 1 to 24. The protein expression of Slingshot-2 of cells exposed to hypoxia for 24 h (1.54 ± 0.57) was significantly higher than that of cells exposed to hypoxia for 0 h (1.00, P<0.05). (3) Compared with those of cells exposed to hypoxia for 0 h, the content of F-actin of cells exposed to hypoxia for 1, 6, 12, and 24 h was significantly decreased, whereas the content of G-actin of cells exposed to hypoxia for 6-24 h was significantly increased, P<0.05 or P<0.01; the content of F-actin and G-actin of cells exposed to hypoxia for the other time points was not obviously changed (P values above 0.05). Hypoxia may cause cofilin activation after dephosphorylation and the depolymerization of F-actin by inducing Slingshot-2 protein expression, which in turn affects the tight junction of human intestinal epithelial cells, thus leading to deterioration of barrier function of these cells.
Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes.
Terao, Naoko; Takamatsu, Shinji; Minehira, Tomomi; Sobajima, Tomoaki; Nakayama, Kotarosumitomo; Kamada, Yoshihiro; Miyoshi, Eiji
2015-04-07
To evaluate/isolate cancer stem cells (CSCs) from tissue or cell lines according to various definitions and cell surface markers. Lectin microarray analysis was conducted on CSC-like fractions of the human pancreatic cancer cell line Panc1 by establishing anti-cancer drug-resistant cells. Changes in glycan structure of CSC-like cells were also investigated in sphere-forming cells as well as in CSC fractions obtained from overexpression of CD24 and CD44. Several types of fucosylation were increased under these conditions, and the expression of fucosylation regulatory genes such as fucosyltransferases, GDP-fucose synthetic enzymes, and GDP-fucose transporters were dramatically enhanced in CSC-like cells. These changes were significant in gemcitabine-resistant cells and sphere cells of a human pancreatic cancer cell line, Panc1. However, downregulation of cellular fucosylation by knockdown of the GDP-fucose transporter did not alter gemcitabine resistance, indicating that increased cellular fucosylation is a result of CSC-like transformation. Fucosylation might be a biomarker of CSC-like cells in pancreatic cancer.
Kheirkhah, Ahmad; Satitpitakul, Vannarut; Hamrah, Pedram; Dana, Reza
2016-01-01
Purpose To evaluate the changes in corneal endothelial cell density (CECD) over time in patients with dry eye disease (DED) and to correlate the endothelial cell loss with corneal subbasal nerve density. Methods This retrospective study included 40 eyes of 20 patients with DED. Laser in vivo confocal microscopy had been performed in the central cornea of both eyes at an initial visit and repeated after a mean follow-up of 33.2 ± 10.2 months. The densities of corneal endothelial cells and subbasal nerves were measured in both visits and compared with 13 eyes of 13 normal age-matched controls. Results At the initial visit, the DED group had lower densities of corneal endothelial cells (2620 ± 386 cells/mm2) and subbasal nerves (17.8 ± 7.5 mm/mm2) compared with the control group (2861 ± 292 cells/mm2 and 22.8 ± 3.0 mm/mm2, with P=0.08 and P=0.01, respectively). At the end of follow-up, although there was no significant change in subbasal nerve density (16.7 ± 7.2 mm/mm2, P=0.43), the mean CECD significantly decreased to 2465 ± 391 cells/mm2 (P=0.01), with a mean corneal endothelial cell loss of 2.1 ± 3.6% per year. The endothelial cell loss showed a statistically significant negative correlation with the initial subbasal nerve density (Rs= −0.55, P=0.02). Conclusion Patients with DED have an accelerated corneal endothelial cell loss which is more than what has been reported in the literature for normal aging. Those with lower subbasal nerve density, in particular, are at a higher risk for endothelial cell loss over time. PMID:28060067
Quantitative characterization of the imaging limits of diffuse low-grade oligodendrogliomas.
Gerin, Chloé; Pallud, Johan; Deroulers, Christophe; Varlet, Pascale; Oppenheim, Catherine; Roux, Francois-Xavier; Chrétien, Fabrice; Thomas, Stephen R; Grammaticos, Basile; Badoual, Mathilde
2013-10-01
Supratentorial diffuse low-grade gliomas in adults extend beyond maximal visible MRI-defined abnormalities, and a gap exists between the imaging signal changes and the actual tumor margins. Direct quantitative comparisons between imaging and histological analyses are lacking to date. However, they are of the utmost importance if one wishes to develop realistic models for diffuse glioma growth. In this study, we quantitatively compared the cell concentration and the edema fraction from human histological biopsy samples (BSs) performed inside and outside imaging abnormalities during serial imaging-based stereotactic biopsy of diffuse low-grade gliomas. The cell concentration was significantly higher in BSs located inside (1189 ± 378 cell/mm(2)) than outside (740 ± 124 cell/mm(2)) MRI-defined abnormalities (P = .0003). The edema fraction was significantly higher in BSs located inside (mean, 45% ± 23%) than outside (mean, 5 %± 9%) MRI-defined abnormalities (P < .0001). At borders of the MRI-defined abnormalities, 20% of the tissue surface area was occupied by edema and only 3% by tumor cells. The cycling cell concentration was significantly higher in BSs located inside (10 ± 12 cell/mm(2)), compared with outside (0.5 ± 0.9 cell/mm(2)), MRI-defined abnormalities (P = .0001). We showed that the margins of T2-weighted signal changes are mainly correlated with the edema fraction. In 62.5% of patients, the cycling tumor cell fraction (defined as the ratio of the cycling tumor cell concentration to the total number of tumor cells) was higher at the limits of the MRI-defined abnormalities than closer to the center of the tumor. In the remaining patients, the cycling tumor cell fraction increased towards the center of the tumor.
Changes in the frequencies of human hematopoietic stem and progenitor cells with age and site
Farrell, TL; McGuire, TR; Bilek, L; Brusnahan, SK; Jackson, JD; Lane, JT; Garvin, KL; O'Kane, BJ; Berger, AM; Tuljapurkar, SR; Kessinger, MA; Sharp, JG
2013-01-01
This study enumerated CD45hi/CD34+ and CD45hi/CD133+ human hematopoietic stem cells (HSC) and granulocyte-monocyte colony forming (GM-CFC) progenitor cells in blood and trochanteric and femoral bone marrow in 233 individuals. Stem cell frequencies were determined by multi-parameter flow cytometry employing an internal control to determine the intrinsic variance of the assays. Progenitor cell frequency was determined using a standard colony assay technique. The frequency of outliers from undetermined methodological causes was highest for blood but less than 5% for all values. The frequency of CD45hi/CD133+ cells correlated highly with the frequency of CD45hi/CD34+ cells in trochanteric and femoral bone marrow. The frequency of these HSC populations in trochanteric and femoral bone marrow rose significantly with age. In contrast, there was no significant trend of either of these cell populations with age in the blood. Trochanteric marrow GM-CFC progenitor cells showed no significant trends with age, but femoral marrow GM-CFC trended downward with age, potentially because of the reported conversion of red marrow at this site to fat with age. Hematopoietic stem and progenitor cells exhibited changes in frequencies with age that differed between blood and bone marrow. We previously reported that side population (SP) multipotential HSC, that include the precursors of CD45hi/CD133+ and CD45hi/CD34+, decline with age. Potentially the increases in stem cell frequencies in the intermediate compartment between SP and GM progenitor cells observed in this study represent a compensatory increase for the loss of more potent members of the HSC hierarchy. PMID:24246745
Ultrastructure of rabbit embryos exposed to hyperthermia and anti-Hsp 70.
Olexikova, L; Makarevich, A V; Pivko, J; Chrenek, P
2013-08-01
The aim of the study was to determine the effect of short-term hyperthermia and Hsp70 blockage on ultrastructural changes in cell organelles and nucleoli of rabbit preimplantation embryos. The embryos were cultured either at 37.5°C (control, C) or 41.5°C (hyperthermia, HT) during 6 h. The antibody against Hsp70 was added into the culture medium (4 μg/ml) of morula stage embryos from C and HT groups. After termination of the culture, the embryos were processed for transmission electron microscopy. The embryos exposed to hyperthermia showed increased volume of lipid droplets, considerable occurrence of cellular debris in the perivitelline space and slight changes in the occurrence of microvilli on the surface of trophoblastic cells. In the embryos exposed to anti-Hsp 70 at 37.5°C, there were considerable changes in mitochondria morphology, decreased volume of dense bodies in the cytoplasm and considerable changes in the occurrence of microvilli on the surface of trophoblastic cells. In the group of embryos exposed simultaneously to hyperthermia and anti-Hsp 70, mitochondria were also expanded and swollen; the volume of flocculent vesicles and lipid droplets was increased and the volume of dense bodies in the cytoplasm was diminished. General organization of the cytoplasm in groups with anti-Hsp70 was characterized by cell organelle segregation. Averaged size of the nucleolar area was significantly increased in the embryos exposed to hyperthermia, whereas in the group exposed to the anti-Hsp70 without hyperthermia it was significantly diminished. Hyperthermia also caused disintegration of compact status of the nucleoli. In presence of anti-Hsp 70, the structural changes, described within the nucleoli during hyperthermia, were not observed. In conclusion, these results document ultrastructural changes in cell organelles of rabbit preimplantation embryo caused by hyperthermia, and also changes in the nucleolar structures, at which presence of Hsp-70 inhibit these changes. © 2012 Blackwell Verlag GmbH.
Dynamic Transcription Factor Networks in Epithelial-Mesenchymal Transition in Breast Cancer Models
Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J.; Shin, Seungjin; Jeruss, Jacqueline S.; Shea, Lonnie D.
2013-01-01
The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy. PMID:23593114
Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.
Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J; Shin, Seungjin; Jeruss, Jacqueline S; Shea, Lonnie D
2013-01-01
The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.
Dinicola, Simona; Fabrizi, Gianmarco; Masiello, Maria Grazia; Proietti, Sara; Palombo, Alessandro; Minini, Mirko; Harrath, Abdel Halim; Alwasel, Saleh H; Ricci, Giulia; Catizone, Angela; Cucina, Alessandra; Bizzarri, Mariano
2016-07-01
Inositol displays multi-targeted effects on many biochemical pathways involved in epithelial-mesenchymal transition (EMT). As Akt activation is inhibited by inositol, we investigated if such effect could hamper EMT in MDA-MB-231 breast cancer cells. In cancer cells treated with pharmacological doses of inositol E-cadherin was increased, β-catenin was redistributed behind cell membrane, and metalloproteinase-9 was significantly reduced, while motility and invading capacity were severely inhibited. Those changes were associated with a significant down-regulation of PI3K/Akt activity, leading to a decrease in downstream signaling effectors: NF-kB, COX-2, and SNAI1. Inositol-mediated inhibition of PS1 leads to lowered Notch 1 release, thus contributing in decreasing SNAI1 levels. Overall, these data indicated that inositol inhibits the principal molecular pathway supporting EMT. Similar results were obtained in ZR-75, a highly metastatic breast cancer line. These findings are coupled with significant changes on cytoskeleton. Inositol slowed-down vimentin expression in cells placed behind the wound-healing edge and stabilized cortical F-actin. Moreover, lamellipodia and filopodia, two specific membrane extensions enabling cell migration and invasiveness, were no longer detectable after inositol addiction. Additionally, fascin and cofilin, two mandatory required components for F-actin assembling within cell protrusions, were highly reduced. These data suggest that inositol may induce an EMT reversion in breast cancer cells, suppressing motility and invasiveness through cytoskeleton modifications. Copyright © 2016 Elsevier Inc. All rights reserved.
Sun, Yanxia; Guo, Yingzhen
2018-05-01
The present study aimed to detect the expression of Caspase-1 in the tumor tissues and tumor-adjacent tissues of patients with breast cancer, and to investigate the effects of Caspase-1 on the proliferation, apoptosis and invasion of breast cancer cells. Reverse transcription-quantitative polymerase chain reaction was used to detect Caspase-1 mRNA expression in breast cancer tissues and tumor-adjacent tissues from patients. Additionally, the human breast cancer MDA-MB-231 cell line was treated with the Caspase-1 small molecule inhibitor Ac-YVAD-CMK, following which the changes to Caspase-1 protein expression were detected via western blotting. The MTT method detected the changes to cell proliferation, flow cytometry detected the rate of apoptosis, and a Transwell assay was employed to assess invasion. Caspase-1 mRNA expression was significantly decreased in the breast cancer tissues of patients, compared with in the tumor-adjacent tissues, a difference that was statistically significant (P<0.05). Treatment with the Ac-YVAD-CMK markedly decreased the protein expression of Caspase-1 in MDA-MB-231 cells, and the difference was statistically significant (P<0.05). Following this treatment of Ac-YVAD-CMK cells, the proliferation and invasion abilities markedly increased, while the apoptotic levels significantly decreased (P<0.05). In conclusion, the expression of Caspase-1 is low in breast cancer tissues, which may promote the proliferation and invasion of breast cancer cells and could be closely associated with the occurrence and development of breast cancer.
NASA Astrophysics Data System (ADS)
Wilson, Jolaine M.; Krigsfeld, Gabriel S.; Sanzari, Jenine K.; Wagner, Erika B.; Mick, Rosemarie; Kennedy, Ann R.
2012-01-01
Animal models are frequently used to assist in the determination of the long- and short-term effects of space flight. The space environment, including microgravity, can impact many physiological and immunological system parameters. It has been found that ground based models of microgravity produce changes in white blood cell counts, which negatively affects immunologic function. As part of the Center of Acute Radiation Research (CARR), we compared the acute effects on white blood cell parameters induced by the more traditionally used animal model of hindlimb unloading (HU) with a recently developed reduced weightbearing analog known as partial weight suspension (PWS). Female ICR mice were either hindlimb unloaded or placed in the PWS system at 16% quadrupedal weightbearing for 4 h, 1, 2, 7 or 10 days, at which point complete blood counts were obtained. Control animals (jacketed and non-jacketed) were exposed to identical conditions without reduced weightbearing. Results indicate that significant changes in total white blood cell (WBC), neutrophil, lymphocyte, monocyte and eosinophil counts were observed within the first 2 days of exposure to each system. These differences in blood cell counts normalized by day 7 in both systems. The results of these studies indicate that there are some statistically significant changes observed in the blood cell counts for animals exposed to both the PWS and HU simulated microgravity systems.
Fazekas, Judit; Grunt, Thomas W; Jensen-Jarolim, Erika; Singer, Josef
2017-05-23
Cancer cell lines are indispensible surrogate models in cancer research, as they can be used off-the-shelf, expanded to the desired extent, easily modified and exchanged between research groups for affirmation, reproduction or follow-up experiments.As malignant cells are prone to genomic instability, phenotypical changes may occur after certain passages in culture. Thus, cell lines have to be regularly authenticated to ensure data quality. In between experiments these cell lines are often stored in liquid nitrogen for extended time periods.Although freezing of cells is a necessary evil, little research is performed on how long-term storage affects cancer cell lines. Therefore, this study investigated the effects of a 28-year long liquid nitrogen storage period on BT474 cells with regard to phenotypical changes, differences in cell-surface receptor expression as well as cytokine and gene expressional variations. Two batches of BT474 cells, one frozen in 1986, the other directly purchased from ATCC were investigated by light microscopy, cell growth analysis, flow cytometry and cytokine as well as whole-transcriptome expression profiling. The cell lines were morphologically indifferent and showed similar growth rates and similar cell-surface receptor expression. Transcriptome analysis revealed significant differences in only 26 of 40,716 investigated RefSeq transcripts with 4 of them being up-regulated and 22 down-regulated. This study demonstrates that even after very long periods of storage in liquid nitrogen, cancer cell lines display only minimal changes in their gene expression profiles. However, also such minor changes should be carefully assessed before continuation of experiments, especially if phenotypic alterations can be additionally observed.
c-myc overexpression causes anaplasia in medulloblastoma.
Stearns, Duncan; Chaudhry, Aneeka; Abel, Ty W; Burger, Peter C; Dang, Chi V; Eberhart, Charles G
2006-01-15
Both anaplasia and increased c-myc gene expression have been shown to be negative prognostic indicators for survival in medulloblastoma patients. myc gene amplification has been identified in many large cell/anaplastic medulloblastoma, but no causative link between c-myc and anaplastic changes has been established. To address this, we stably overexpressed c-myc in two medulloblastoma cell lines, DAOY and UW228, and examined the changes in growth characteristics. When analyzed in vitro, cell lines with increased levels of c-myc had higher rates of growth and apoptosis as well as significantly improved ability to form colonies in soft agar compared with control. When injected s.c. into nu/nu mice, flank xenograft tumors with high levels of c-myc in DAOY cell line background were 75% larger than those derived from control. Overexpression of c-myc was required for tumor formation by UW228 cells. Most remarkably, the histopathology of the Myc tumors was severely anaplastic, with large areas of necrosis/apoptosis, increased nuclear size, and macronucleoli. Indices of proliferation and apoptosis were also significantly higher in Myc xenografts. Thus, c-myc seems to play a causal role in inducing anaplasia in medulloblastoma. Because anaplastic changes are often observed in recurrent medulloblastoma, we propose that c-myc dysregulation is involved in the progression of these malignant embryonal neoplasms.
Talwar, Sahil; Jagani, Hitesh V; Nayak, Pawan G; Kumar, Nitesh; Kishore, Anoop; Bansal, Punit; Shenoy, Rekha R; Nandakumar, Krishnadas
2013-06-06
Based on the reported antioxidant and anti-inflammatory potential of Terminalia paniculata, the bark aqueous extract (TPW) was investigated against liver damage. Intrinsic cytotoxicity was tested on normal human liver (Chang) cell lines, followed by acute and sub-chronic toxicity studies in mice. TPW was then evaluated against CCl4-induced liver toxicity in rats. Liver enzymes (AST, ALT, and ALP) and antioxidant markers were assessed. The effect of TPW on isolated hepatic cells, post-CCl4 administration, was assessed by isolated mitochondrial membrane staining. The actions of TPW on apoptotic pathway in CCl4-treated Chang cells were also elucidated. TPW was found to be safe at all doses tested in both in vitro and in vivo toxicity studies. TPW (400 mg/kg, p.o.) significantly (*p <0.05) improved liver enzyme activity as compared to CCl4. Also, it improved antioxidant status (GSH, GST, MDA and total thiol) and preserved hepatic cell architecture. TPW pre-treatment significantly attenuated the levels of phospho-p53, p53, cleaved caspase-3, phospho-Bad, Bad and cleaved PARP in CCl4-treated Chang cells, improving the viability considerably. The findings support a protective role for Terminalia paniculata in pathologies involving oxidative stress.
Xiang, F; Zhang, D X; Ma, S Y; Huang, Y S
2016-12-20
Objective: To investigate the mechanism of protective effects of tumor necrosis factor receptor associated protein 1 (TRAP1) on hypoxic cardiomyocytes of rats. Methods: Primary cultured cardiomyocytes were obtained from neonatal Sprague-Dawley rats (aged 1 to 3 days) and then used in the following experiments. (1) Cells were divided into group TRAP1 and control group according to the random number table (the same grouping method below), and then the total protein of cells was extracted. Total protein of cells in group TRAP1 was added with mouse anti-rat TRAP1 monoclonal antibody, while that in control group was added with the same type of IgG from mouse. Co-immunoprecipitation and protein mass spectrography analysis were used to determine the possible proteins interacted with TRAP1. (2) Cells were divided into normoxia blank control group (NBC), normoxia+ TRAP1 interference control group (NTIC), normoxia+ TRAP1 interference group (NTI), normoxia+ TRAP1 over-expression control group (NTOC), and normoxia+ TRAP1 over-expression group (NTO), with 1 well in each group. Cells in group NBC were routinely cultured, while cells in the latter four groups were respectively added with TRAP1 RNA interference empty virus vector, TRAP1 RNA interference adenovirus vector, TRAP1 over-expression empty virus vector, and TRAP1 over-expression adenovirus vector. Another batch of cells were divided into group NBC, hypoxic blank control group (HBC), hypoxic+ TRAP1 interference control group (HTIC), hypoxic+ TRAP1 interference group (HTI), hypoxic+ TRAP1 over-expression control group (HTOC), and hypoxic+ TRAP1 over-expression group (HTO), with 1 well in each group. Cells in hypoxic groups were under hypoxic condition for 6 hours after being treated as those in the corresponding normoxia groups, respectively. The mRNA expression of cytochrome c oxidase subunit Ⅱ (COXⅡ) of cells in each group was detected by real time fluorescent quantitive reverse transcription polymerase chain reaction. Experiments were repeated for three times. (3) Cells were divided into group NBC, group HBC, group HTOC, group HTO, hypoxic+ TRAP1 over-expression+ COXⅡinterference control group (HTOCIC), and hypoxic+ TRAP1 over-expression+ COXⅡinterference group (HTOCI), with 3 wells in each group. Cells in the previous 4 groups were treated as those in experiment (2). Cells in group HTOCIC and HTOCI were respectively transfected with COXⅡ RNA interference empty virus vector and COXⅡ RNA interference adenovirus vector, and then both added with TRAP1 over-expression adenovirus vector. The proliferation activity of cells was determined by cell counting kit 8 and microplate reader, and the ratio of death cells was measured by propidium lodide and Hoechst 33342 staining. Another batch of cells were divided into group NBC, group HBC, group HTIC, group HTI, hypoxic+ TRAP1 interference+ COXⅡover-expression control group (HTICOC), and hypoxic+ TRAP1 interference+ COXⅡ over-expression group (HTICO), with 3 wells in each group. Cells in the previous 4 groups were treated as those in experiment (2). Cells in group HTICOC and HTICO were both transfected with TRAP1 RNA interference adenovirus vector, and then respectively added with COXⅡ over-expression empty virus vector and COXⅡ over-expression adenovirus vector. The proliferation activity of cells and the ratio of death cells were detected as before. Experiments were repeated for three times. Data were processed with one-way analysis of variance and LSD test. Results: (1) The expression of TRAP1 was found in cells of group TRAP1, while that was not found in cells of control group. The possible proteins interacted with TRAP1 were keratin, COXⅡ, and an unknown protein with predicted molecular weight 13×10 3 . (2) Compared with that in group NBC, the mRNA expression of COXⅡof cells had no significant change in group NTIC and group NTOC (with P values above 0.05), but significantly decreased in group NTI ( P <0.01), and significantly increased in group NTO ( P <0.01). Compared with that in group NBC, the mRNA expression of COXⅡof cells in group HBC was significantly decreased ( P <0.01). Compared with that in group HBC, the mRNA expression of COXⅡof cells had no significant change in group HTIC and group HTOC (with P values above 0.05), but significantly decreased in group HTI ( P <0.01), and significantly increased in group HTO ( P <0.01). (3) The proliferation activity of cells in group NBC, group HBC, group HTOC, group HTO, group HTOCIC, and group HTOCI was respectively 0.498±0.022, 0.303±0.018, 0.313±0.032, 0.456±0.031, 0.448±0.034, and 0.335±0.026, and the ratios of death cells in above groups were respectively (4.7±1.5)%, (24.7±3.1)%, (26.0±2.7)%, (13.3±2.5)%, (12.7±2.1)%, and (21.0±1.7)%. Compared with those in group NBC, the proliferation activity of cells in HBC was decreased, while the ratio of death cells was increased (with P values below 0.01). Compared with those in group HBC, the proliferation activity of cells and the ratio of death cells in group HTOC had no significant change (with P values above 0.05), while the proliferation activity of cells was increased and the ratio of death cells was decreased in group HTO (with P values below 0.01). Compared with those in group HTO, the proliferation activity of cells and the ratio of death cells in group HTOCIC had no significant change (with P values above 0.05), while the proliferation activity of cells was decreased and the ratio of death cells was increased in group HTOCI (with P values below 0.01). (4) The proliferation activity of cells in group NBC, group HBC, group HTIC, group HTI, group HTICOC, and group HTICO was respectively 0.444±0.025, 0.275±0.016, 0.283±0.021, 0.150±0.009, 0.135±0.011, and 0.237±0.017, and the ratios of death cells in above groups were respectively (3.7±0.6)%, (21.0±2.7)%, (20.3±3.1)%, (31.7±2.5)%, (33.3±3.2)%, and (19.3±1.5)%. Compared with those in group HBC, the proliferation activity of cells and the ratio of death cells in group HTIC had no significant change (with P values above 0.05). Compared with those in group HBC and group HTIC, the proliferation activity of cells was decreased and the ratio of death cells was significantly increased in group HTI (with P values below 0.01). Compared with those in group HTI, the proliferation activity of cells and the ratio of death cells in group HTICOC had no significant change (with P values above 0.05), while the proliferation activity of cells was increased and the ratio of death cells was significantly decreased in group HTICO (with P values below 0.01). Conclusions: TRAP1 can up-regulate the expression of COXⅡ mRNA, and COXⅡ is one of the downstream effector molecules that TRAP1 mediates its protective effects on hypoxic cardiomyocytes.
Ströh, Sebastian; Puller, Christian; Swirski, Sebastian; Hölzel, Maj-Britt; van der Linde, Lea I S; Segelken, Jasmin; Schultz, Konrad; Block, Christoph; Monyer, Hannah; Willecke, Klaus; Weiler, Reto; Greschner, Martin; Janssen-Bienhold, Ulrike; Dedek, Karin
2018-02-21
In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse. SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light responses of transient OFF-α retinal ganglion cells in a newly generated mouse line. In this mouse line, horizontal cell signals were no longer modulated by light. With light response recordings, we show that horizontal cells increase the dynamic range of retinal ganglion cells for contrast and temporal changes and contribute to the center/surround organization of their receptive fields. Copyright © 2018 the authors 0270-6474/18/382015-14$15.00/0.
[MACF1 knockdown in glioblastoma multiforme cells increases temozolomide-induced cytotoxicity].
Xie, Si-di; Chen, Zi-Yang; Wang, Hai; He, Min-Yi; Lu, Yun-Tao; Lei, Bing-Xi; Li, He-Zhen; Liu, Ya-Wei; Qi, Song-Tao
2017-09-20
To investigate the role of microtubule-actin crosslinking factor 1 (MACF1) in the response of glioma cells to temozolomide (TMZ). TMZ was applied to a human gliomablastoma cell line (U87) and changes in the protein expression and cellular localization were determined with Western blot, RT-PCR, and immunofluorescence. The responses of the cells with MACF1 expression knockdown by RNA interference to TMZ were assessed. TMZ-induced effects on MACF1 expression were also assessed by immunohistochemistry in a nude mouse model bearing human glioblastoma xenografts. TMZ resulted in significantly increased MACF1 expression (by about 2 folds) and changes in its localization in the gliomablastoma cells both in vitro and in vivo (P<0.01). Knockdown of MACF1 reduced the proliferation (by 45%) of human glioma cell lines treated with TMZ (P<0.01). TMZ-induced changes in MACF1 expression was accompanied by cytoskeletal rearrangement. MACF1 may be a potential therapeutic target for glioblastoma.
Aging-associated oxidative stress inhibits liver progenitor cell activation in mice.
Cheng, Yiji; Wang, Xue; Wang, Bei; Zhou, Hong; Dang, Shipeng; Shi, Yufang; Hao, Li; Luo, Qingquan; Jin, Min; Zhou, Qianjun; Zhang, Yanyun
2017-04-29
Recent studies have discovered aging-associated changes of adult stem cells in various tissues and organs, which potentially contribute to the organismal aging. However, aging-associated changes of liver progenitor cells (LPCs) remain elusive. Employing young (2-month-old) and old (24-month-old) mice, we found diverse novel alterations in LPC activation during aging. LPCs in young mice could be activated and proliferate upon liver injury, whereas the counterparts in old mice failed to respond and proliferate, leading to the impaired liver regeneration. Surprisingly, isolated LPCs from young and old mice did not exhibit significant difference in their clonogenic and proliferative capacity. Later, we uncovered that the decreased activation and proliferation of LPCs were due to excessive reactive oxygen species produced by neutrophils infiltrated into niche, which was resulted from chemokine production from activated hepatic stellate cells during aging. This study demonstrates aging-associated changes in LPC activation and reveals critical roles for the stem cell niche, including neutrophils and hepatic stellate cells, in the negative regulation of LPCs during aging.
Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields
NASA Technical Reports Server (NTRS)
Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra
1997-01-01
Endothelial cell migration is important to vascular wall regeneration following injury or stress. However, the mechanism(s) governing this response is not well understood. The microgravity environment of space may complicate the response of these cells to injury. To date, there are no reports in this area. We examined how bovine aortic (BAEC) and pulmonary (BPEC) endothelial cells respond to denudation injury under hypergravity (HGrav) and simulated microgravity (MGrav), using image analysis. In 10% FBS, the migration of confluent BAEC and BPEC into the denuded area was not affected by HGrav or MGrav. However, in low FBS (0.5%), signficantly retarded migration under MGrav, and increased migration under HGrav was found. MGrav also decreased the migration of postconfluent BPEC while HGrav showed no difference. Both MGrav and HGrav strongly decreased the migration of postconfluent BAEC. Also, both cell lines showed significant morphological changes by scanning electron microscopy. These studies indicate that endothelial cell function is affected by changes in gravity.
Liu, Jie; Ren, Xi; Guo, Xiaowei; Sun, Huanbo; Tang, Yong; Luo, Zhenghui; Zhang, Qiong; Zhang, Dongxia; Huang, Yuesheng; Zhang, Jiaping
2016-04-01
To explore the effects of direct current electric fields on directional migration and arrangement of dermal fibroblasts in neonatal BALB/c mice and the related mechanisms. Twelve neonatal BALB/c mice were divided into 4 batches. The skin on the back of 3 neonatal mice in each batch was obtained to culture fibroblasts. Fibroblasts of the second passage were inoculated in 27 square cover slips with the concentration of 5 × 10(4) cells per mL. (1) Experiment 1. Six square cover slips inoculated with fibroblasts of the second passage were divided into electric field group (EF) and sham electric field group (SEF), with 3 cover slips in each group. The cover slips were put in live cell imaging workstation. The cells in group EF was treated with electric power with EF intensity of 200 mV/mm, while simulating process without actual power was given to SEF group (the same below) for 6 h. Cell proliferation rate was subsequently counted. (2) Experiment 2. Six cover slips were divided and underwent the same processes as in experiment 1. Cell movement locus within EF hour (EFH) 6, direction change of cell migration at EFH 0 (immediately), 1, 2, 3, 4, 5, and 6 which was denoted as cos(α), cell migration velocity within EFH 6, direction change of long axis of cell within EFH 6, and direction change of cell arrangement at EFH 0, 1, 2, 3, 4, 5, and 6 which was denoted as polarity value cos[2(θ-90)] were observed under live cell imaging workstation. After EFH 6, the morphological changes in microtubules and microfilaments were observed with immunofluorescent staining. (3) Experiment 3. Six cover slips were divided into cytochalasin D group (treated with 1 μmol/L cytochalasin D for 10 min) and colchicine group (treated with 5 μmol/L colchicine for 10 min), with 3 cover slips in each group. The morphological changes in microfilaments and microtubules were observed with the same method as in experiment 2. (4) Experiment 4. Nine cover slips were divided into control group (no reagent was added), cytochalasin D group and colchicine group (added with the same reagents as in experiment 3), with 3 cover slips in each group. Cells in the 3 groups were exposed to an EF of 200 mV/mm for 6 h. Cell movement locus within EFH 6, cell migration velocity within EFH 6, cell polarity values at EFH 0, 3, and 6, and morphological changes of cells at EFH 0 and 6 were observed. Data were processed with independent samples t-test, one-way analysis of variance, and LSD test. (1) There was no statistically significant difference in cell proliferation rate in group EF and group SEF (t=-0.24, P﹥0.05). (2) Within EFH 6, cells in group EF migrated towards the anode of EF, while cells in group SEF moved randomly. At EFH 0, the values of cos(α) of cells in the 2 groups were both 0. The absolute value of cos(α) of cells in group EF (-0.57 ± 0.06) was significantly higher than that in group SEF (0.13 ± 0.09, t=6.68, P<0.01) at EFH 1, and it was still higher than that in group SEF from EFH 2 to 6 (with t values from 5.33 to 6.83, P values below 0.01). Within EFH 6, migration velocity of cells in group EF was (0.308 ± 0.019) μm/min, which was significantly higher than that in group SEF [(0.228 ± 0.021) μm/min, t=-2.76, P<0.01]. Within EFH 6, long axis of cells in group EF was perpendicular to the direction of EF, while arrangement of cells in group SEF was irregular. Cell polarity values in group EF were significantly higher than that in group SEF from EFH 2 to 6 (with t values from -7.52 to -0.90, P values below 0.01). At EFH 6, the morphology of microfilaments and microtubules of cells in EF group was similar to that in SEF group. (3) The fluorescent intensity of microfilaments of cells in cytochalasin D group became weakened, and the filamentary structure became fuzzy. The microtubules of cells in colchicine group became fuzzy with low fluorescent intensity. (4) Within EFH 6, cells in control group migrated towards the anode of EF, while cells in cytochalasin D group and colchicine group moved randomly. Within EFH 6, there was statistically significant difference in migration velocity of cells in the 3 groups (F=6.36, P<0.01). Migration velocity of cells in cytochalasin D group and colchicine group was significantly slower than that in control group (P<0.05 or P<0.01). At EFH 0, 3, and 6, cell polarity values in the 3 groups were close (with F values from 0.99 to 1.51, P values above 0.05). At EFH 0, cells in control group were spindle; cells in cytochalasin D group were polygonal or in irregular shapes; cells in colchicine group were serrated circle or oval. At EFH 6, no morphological change was observed in cells in control group; cells in cytochalasin D group were spindle with split ends on both ends; cells in colchicine group were serrated oval. The physiologic strength of exogenous direct current EF can induce directional migration and alignment of dermal fibroblasts in neonatal BALB/c mice. Microfilaments and microtubules are necessary skeleton structure for cell directional migration induced by EF, while they are not necessary for cell directional arrangement induced by EF.
Yeo, Chia-Rou; Lee, Sea-Ming; Popovich, David G.
2011-01-01
An American ginseng (Panax quinquefolius) extract (GE) that contained a quantifiable amount of ginsenosides was investigated for the potential to inhibit proliferation, affect the cell cycle, influence lipid acquisition and adiponectin expression in 3T3-L1 cells. Six fingerprint ginsenosides were quantified by high performance liquid chromatography and the respective molecular weights were confirmed by LC-ESI-MS analysis. The extract contained Rg1 (347.3 ± 99.7 μg g−1, dry weight), Re (8280.4 ± 792.3 μg g−1), Rb1 (1585.8 ± 86.8 μg g−1), Rc (32.9 ± 8 μg g−1), Rb2 (62.6 ± 10.6 μg g−1) and Rd (90.4 ± 3.2 μg g−1). The GE had a dose-dependent effect on 3T3-L1 cell growth, the LC50 value was determined to be 40.3 ± 5 μg ml−1. Cell cycle analysis showed modest changes in the cell cycle. No significant changes observed in both G1 and G2/M phases, however there was a significant decrease (P < .05) in the S phase after 24 and 48 h treatment. Apoptotic cells were modest but significantly (P < .05) increased after 48 h (3.2 ± 1.0%) compared to untreated control cells (1.5 ± 0.1%). Lipid acquisition was significantly reduced (P < .05) by 13 and 22% when treated at concentrations of 20.2 and 40.3 μg ml−1 compared to untreated control cells. In relation to adiponectin activation, western blot analysis showed that the protein expression was significantly (P < .05) increased at concentrations tested. A quantified GE reduced the growth of 3T3-L1 cells, down-regulated the accumulation of lipid and up-regulated the expression of adiponectin in the 3T3-L1 adipocyte cell model. PMID:21799682
Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth
2002-09-01
Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.
Regulation of HSD17B1 and SRD5A1 in lymphocytes.
Zhou, Z; Speiser, P W
1999-11-01
We previously reported lymphocyte expression of genes encoding enzymes required for steroid metabolism; however, only 17beta-HSD and 5alpha-reductase showed significant enzyme activity. We now investigate regulation of lymphocyte expression for genes encoding 17beta-HSD and 5alpha-reductase. Cultured human T and B lymphoid cell lines and peripheral blood mononuclear cells were treated with known regulators of steroidogenic gene expression including forskolin, PMA, ionomycin, various steroids, interleukin (IL)-4, and IL-6. Treatment with 10 or 50 microM forskolin resulted in a 20-60% reduction of expression for HSD17B1 (encoding 17beta-HSD I) in T and B lymphoid cell lines and peripheral blood mononuclear cells, although such a change was not observed in the expression of SRD5A1 (encoding 5alpha-reductase I). No significant changes were found when cells were treated for 24 h with various concentrations of PMA or ionomycin. Incubation with 10(-9) to 10(-7) M androstenedione or estradiol increased expression of HSD17B1, while testosterone decreased the expression of this gene. SRD5A1 expression was increased in the presence of 5alpha-DHT although no consistent changes were observed when the cells were treated with testosterone. Other steroids, including dexamethasone, progesterone, and 6-hydroxypregnanolone, produced no effects on expression of either HSD17B1 or SRD5A1. Treatment with 0.1-10 ng/ml of IL-4 or IL-6 also did not effect significant changes in gene expression. These data implicate the involvement of the cAMP-protein kinase signal transduction pathway in regulating lymphocyte expression of HSD17B1. Furthermore, it appears that lymphocyte HSD17B1 and SRD5A1 are regulated to some extent by specific steroids. Copyright 1999 Academic Press.
Wei, Feng-xiang; Li, Mei-yu; Song, Yu-hong; Li, Hong-zhi
2008-08-01
To study the effects of essential oil extracted from pine needles on HepG2 cell line. HepG2 cells were treated with essential oil extracted from pine needles. Cell growth rate was determined with MTF assay, cell morphologic changes were examined under transmission electromicroscope and HE straining. Flow cytometry was used to exmine apoptotic cells. Bcl-2 gene expression was determined by flow cytometry and telomerase activity by TRAP assay. Essential oils from pine needles could not only repress the growth of HepG2 cells significantly, but also induce apoptosis to them. Both dose-effect and time-effect relationship could be confirmed. Typical morphology changes of apoptosis such as nuclear enrichment and karyorrhexis were observed through transmission electromicroscope and HE straining. Telomerase activity was down regulated in the essential oil extracted from pine needles induced apoptotic cells. The expression of bcl-2 gene was suppressed after the essential oil from pine needles treatement. The essential oil extracted from pine needles can inhibit cell growth of HepG2 cell line and induce apoptosis, which may associate with inhibition of telomerase activity and bcl-2 may be involved in the regulation of telomerase activity.
ACUTE CHANGES IN SPUTUM COLLECTED FROM EXPOSED HUMAN SUBJECTS IN MINING CONDITIONS
Wong, Simon S.; Sun, Nina N.; Miller, Hugh B.; Witten, Mark L.; Burgess, Jefferey L.
2015-01-01
Neprilysin (NEP) is a key cell surface peptidase in the maintenance of airway homeostasis and the development of pulmonary disorders. However, little information is available about the effect of particulate matter (PM) on airway NEP. In this controlled human exposure study, changes in induced sputum were measured in eleven subjects at baseline, overshot (OS) mucking, and diesel exhaust (DE) exposure days. Neither OS condition nor DE exposure was found to induce significant changes in total protein, but DE induced significant increases in cell numbers of macrophages and epithelium. Moreover, significant increases in soluble NEP were observed following OS mining dust particulates (0.43 ± 0.06, p = 0.023) and DE exposure (0.30 ± 0.04, p = 0.035) when compared with the baseline control (0.40 ± 0.03), with 42% and 31% average net increase, respectively. Pearson’s correlation analyses indicated that sputum NEP activity were significantly associated with personal exposure product [Elemental carbon concentration, mg/m3 X time, min. (C X T)]. Data suggest that the changes in NEP activity may be an early, accurate endpoint for airway epithelial injury and provided a new insight into the mechanism of the airway effects in these exposure conditions. PMID:20384431
Munshi, Soumyabrata; Twining, Robert C; Dahl, Russell
2014-01-01
The cell viability assay by alamar blue is based on the principle of reduction of the non-fluorescent reagent (resazurin) to a fluorescent compound (resarufin) by the intracellular reducing environment of living cells over time. In the present study, we have for the first time shown that even in the absence of cells, there occurs significant interaction between alamar blue and cell-culture media causing an increase in fluorescence. We have used Opti-MEM, DMEM and 1:1 DMEM:Opti-MEM as three different media and determined the changes in their relative fluorescence units (RFUs) over time after the addition of 10% (v/v) alamar blue using two-way repeated measures analysis of variance (RM-ANOVA) followed by Tukey's post-hoc test. Our results show that upon the addition of alamar blue, there occurs a significant increase in RFUs in all the three media over time along with a significantly higher RFU for the Opti-MEM overall (p<0.05). We also show that the time-dependent change in RFU of 1:1 DMEM:Opti-MEM was more gradual compared to that of the other two media. These findings indicate that the reagent can itself interact with the media causing significantly different fluorescence over time in a manner independent from the effect of intracellular reducing environment of living cells on alamar blue. In addition our results indicate that fluorescence varies as a function of incubation time with the reagent. These findings signify the need for routine subtraction of the background fluorescence of media-only with alamar blue reagent during measurement of cell viability by this method in order to determine an accurate measurement of cell viability. Copyright © 2014 Elsevier Inc. All rights reserved.
In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli.
Chatterjee, A; Bhattacharya, A K
1988-06-01
The incorporation of [14C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60Co gamma-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of gamma-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after higher doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m-2) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as gamma-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.
Joy, Jasmi; Sunitha, Venkatesh; Rai, Manoj P.; Rao, Suresh; Nambranathayil, Shafeeque; Baliga, Manjeshwar Shrinath
2015-01-01
Introduction: The present study aimed to assess the levels of salivary enzymes, protein and oxidant-antioxidant system in young college-going cell phone users. Materials and Methods: The cell users (students) were categorized in to two groups – less mobile users and high mobile users, based on the duration and frequency of cell use. Unstimulated whole saliva samples of the volunteers were analysed for amylase, lactate dehydrogenase (LDH), malondialdehdye (MDA) and glutathione (GSH). Results: High mobile users had significantly higher levels of amylase (p = 0.001), LDH (p = 0.002) and MDA (p = 0.002) in saliva, when compared to less mobile users. The marginal decrease in salivary total proteins, GSH and flow rate were statistically not significant (p >0.05). Conclusion: Significant changes in salivary enzymes and MDA suggest adverse effect of high use of cell phones on cell health. PMID:25859446
Nishio, Koji; Ma, Qian
2016-01-01
The maintenance of mitochondrial membrane potential is essential for cell growth and survival. Mitochondrial uncoupling protein 2 plays the most important roles in uncoupling oxidative phosphorylation and decreasing mitochondrial O2- production by regulating the mitochondrial membrane potential. We propose that mouse UCP2 has two glycine-rich motifs, motif 1: EGIRGLWKG (170-178) and a known Walker A-like motif 2: EGPRAFYKG (264-272). These motifs seem to be important for the function of UCP2. We investigated the biological effects of overproduced-UCP2 and its physiological consequence in Cos7 cells. We introduced several amino acid changes in the motif 1. The expression vectors of the green fluorescent protein (GFP)-fused UCP2 and mutant UCP2 were constructed and expressed in Cos7 cells. The UCP2-GFP-expressed cells significantly down-regulated the mitochondrial membrane potentials and induced the enlarged cell shapes. Next we generated the stably UCP2-GFP-expressed Cos7 cells by selection with the antibiotic Genecitin (G418). Within the first few weeks following G418-selection, the stably UCP2-GFP-expressed cells could not divide well and gradually manifested the irregular and enlarged senescent-like cell morphology. The UCP2/K177E- or UCP2/G174L-expressed cells did not induce the enlarged cell shapes. Hence, UCP2/K177E and UCP2/G174L produced the functional incompetence of the glycine-rich motif 1. The senescent-like cells significantly decreased the mitochondrial membrane potentials and finally died nearly one month. Overproduction of UCP2 irreversibly reduces the mitochondrial membrane potentials and induces the senescent-like morphology and finally oncotic cell death in Cos7 cells. These changes seem to occur from the irreversible metabolic changes following total loss of cellular ATP.
Déziel, Bob; MacPhee, James; Patel, Kunal; Catalli, Adriana; Kulka, Marianna; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert
2012-05-01
Prostate cancer is one of the most common cancers in the world, and its prevalence is expected to increase appreciably in the coming decades. As such, more research is necessary to understand the etiology, progression and possible preventative measures to delay or to stop the development of this disease. Recently, there has been interest in examining the effects of whole extracts from commonly harvested crops on the behaviour and progression of cancer. Here, we describe the effects of whole cranberry extract (WCE) on the behaviour of DU145 human prostate cancer cells in vitro. Following treatment of DU145 human prostate cancer cells with 10, 25 and 50 μg ml⁻¹ of WCE, respectively for 6 h, WCE significantly decreased the cellular viability of DU145 cells. WCE also decreased the proportion of cells in the G2-M phase of the cell cycle and increased the proportion of cells in the G1 phase of the cell cycle following treatment of cells with 25 and 50 μg ml⁻¹ treatment of WCE for 6 h. These alterations in cell cycle were associated with changes in cell cycle regulatory proteins and other cell cycle associated proteins. WCE decreased the expression of CDK4, cyclin A, cyclin B1, cyclin D1 and cyclin E, and increased the expression of p27. Changes in p16(INK4a) and pRBp107 protein expression levels also were evident, however, the changes noted in p16(INK4a) and pRBp107 protein expression levels were not statistically significant. These findings demonstrate that phytochemical extracts from the American cranberry (Vaccinium macrocarpon) can affect the behaviour of human prostate cancer cells in vitro and further support the potential health benefits associated with cranberries.
Gilloteaux, Jacques; Jamison, James M; Neal, Deborah; Summers, Jack L
2014-04-01
Scanning (SEM) and transmission electron microscopy (TEM) were used to characterize the cytotoxic effects of ascorbate (VC), menadione (VK3), or a VC:VK3 combination on a human prostate carcinoma cell line (DU145) following a 1-h vitamin treatment and a subsequent 24-h incubation in culture medium. Cell alterations examined by light and electron microscopy were treatment-dependent with VC + VK3 >VK3 > VC > Sham. Oxidative stress-induced damage was found in most organelles. This report describes injuries in the tumor cell nucleus (chromatin and nucleolus), mitochondria, endomembranes, lysosomal bodies (autophagocytoses) and inclusions. Morphologic alterations suggest that cytoskeleton damage is likely responsible for the superficial cytoplasmic changes, including major changes in cell shape and size and the self-excising phenomena. Unlike apoptotic bodies, the excised pieces contain ribonucleoproteins, but not organelles. These deleterious events cause a progressive, significant reduction in the tumor cell size. During nuclear alterations, the nuclei maintain their envelope during chromatolysis and karyolysis until cell death, while nucleoli undergo a characteristic segregation of their components. In addition, changes in fat and glycogen storage are consistent the cytotoxic and metabolic alterations caused by the respective treatments. All cellular ultrastructural changes are consistent with cell death by autoschizis and not apoptosis or other kinds of cell death.
Dragosz-Kluska, Dominika; Pis, Tomasz; Pawlik, Katarzyna; Kapustka, Filip; Kilarski, Wincenty M.; Kozłowski, Jan
2018-01-01
ABSTRACT Cell size plays a role in body size evolution and environmental adaptations. Addressing these roles, we studied body mass and cell size in Galliformes birds and Rodentia mammals, and collected published data on their genome sizes. In birds, we measured erythrocyte nuclei and basal metabolic rates (BMRs). In birds and mammals, larger species consistently evolved larger cells for five cell types (erythrocytes, enterocytes, chondrocytes, skin epithelial cells, and kidney proximal tubule cells) and evolved smaller hepatocytes. We found no evidence that cell size differences originated through genome size changes. We conclude that the organism-wide coordination of cell size changes might be an evolutionarily conservative characteristic, and the convergent evolutionary body size and cell size changes in Galliformes and Rodentia suggest the adaptive significance of cell size. Recent theory predicts that species evolving larger cells waste less energy on tissue maintenance but have reduced capacities to deliver oxygen to mitochondria and metabolize resources. Indeed, birds with larger size of the abovementioned cell types and smaller hepatocytes have evolved lower mass-specific BMRs. We propose that the inconsistent pattern in hepatocytes derives from the efficient delivery system to hepatocytes, combined with their intense involvement in supracellular function and anabolic activity. PMID:29540429
Mlakar, Vid; Todorovic, Vesna; Cemazar, Maja; Glavac, Damjan; Sersa, Gregor
2009-08-26
Electroporation is a versatile method for in vitro or in vivo delivery of different molecules into cells. However, no study so far has analysed the effects of electric pulses used in electrochemotherapy (ECT pulses) or electric pulses used in electrogene therapy (EGT pulses) on malignant cells. We studied the effect of ECT and EGT pulses on human malignant melanoma cells in vitro in order to understand and predict the possible effect of electric pulses on gene expression and their possible effect on cell behaviour. We used microarrays with 2698 different oligonucleotides to obtain the expression profile of genes involved in apoptosis and cancer development in a malignant melanoma cell line (SK-MEL28) exposed to ECT pulses and EGT pulses. Cells exposed to ECT pulses showed a 68.8% average survival rate, while cells exposed to EGT pulses showed a 31.4% average survival rate. Only seven common genes were found differentially expressed in cells 16 h after exposure to ECT and EGT pulses. We found that ECT and EGT pulses induce an HSP70 stress response mechanism, repress histone protein H4, a major protein involved in chromatin assembly, and down-regulate components involved in protein synthesis. Our results show that electroporation does not significantly change the expression profile of major tumour suppressor genes or oncogenes of the cell cycle. Moreover, electroporation also does not changes the expression of genes involved in the stability of DNA, supporting current evidence that electroporation is a safe method that does not promote tumorigenesis. However, in spite of being considered an isothermal method, it does to some extent induce stress, which resulted in the expression of the environmental stress response mechanism, HSP70.
Changes in biochemical processes in cerebellar granule cells of mice exposed to methylmercury.
Bellum, Sairam; Bawa, Bhupinder; Thuett, Kerry A; Stoica, Gheorghe; Abbott, Louise C
2007-01-01
At postnatal day 34, male and female C57BL/6J mice were exposed orally once a day to a total of five doses totaling 1.0 or 5.0 mg/kg of methylmercuric chloride or sterile deionized water in moistened rodent chow. Eleven days after the last dose cerebellar granule cells were acutely isolated to measure reactive oxygen species (ROS) levels and mitochondrial membrane potential using CM-H(2)DCFDA and TMRM dyes, respectively. For visualizing intracellular calcium ion distribution using transmission electron microscopy, mice were perfused 11 days after the last dose of methylmercury (MeHg) using the oxalate-pyroantimonate method. Cytosolic and mitochondrial protein fractions from acutely isolated granule cells were analyzed for cytochrome c content using Western blot analysis. Histochemistry (Fluoro-Jade dye) and immunohistochemistry (activated caspase 3) was performed on frozen serial cerebellar sections to label granule cell death and activation of caspase 3, respectively. Granule cells isolated from MeHg-treated mice showed elevated ROS levels and decreased mitochondrial membrane potential when compared to granule cells from control mice. Electron photomicrographs of MeHg-treated granule cells showed altered intracellular calcium ion homeostasis ([Ca(2+)](i)) when compared to control granule cells. However, in spite of these subcellular changes and moderate relocalization of cytochrome c into the cytosol, the concentrations of MeHg used in this study did not produce significant neuronal cell death/apoptosis at the time point examined, as evidenced by Fluoro-Jade and activated caspase 3 immunostaining, respectively. These results demonstrate that short-term in vivo exposure to total doses of 1.0 and 5.0 mg/kg MeHg through the most common exposure route (oral) can result in significant subcellular changes that are not accompanied by overt neuronal cell death.
McIlvried, Lisa A; Cruz, J Agustin; Borghesi, Lisa A; Gold, Michael S
2017-01-01
Aim of investigation Due to compelling evidence in support of links between sex, stress, sympathetic post-ganglionic innervation, dural immune cells, and migraine, our aim was to characterize the impacts of these factors on the type and proportion of immune cells in the dura. Methods Dural immune cells were obtained from naïve or stressed adult male and female Sprague Dawley rats for flow cytometry. Rats with surgical denervation of sympathetic post-ganglionic neurons of the dura were also studied. Results Immune cells comprise ∼17% of all cells in the dura. These included: macrophages/granulocytes ("Macs"; 63.2% of immune cells), dendritic cells (0.88%), T-cells (4.51%), natural killer T-cells (0.51%), natural killer cells (3.08%), and B-cells (20.0%). There were significantly more Macs and fewer B- and natural killer T-cells in the dura of females compared with males. Macs and dendritic cells were significantly increased by stress in males, but not females. In contrast, T-cells were significantly increased in females with a 24-hour delay following stress. Lastly, Macs, dendritic cells, and T-cells were significantly higher in sympathectomized-naïve males, but not females. Conclusions It may not only be possible, but necessary to use different strategies for the most effective treatment of migraine in men and women.
Linking Essential Tremor to the Cerebellum: Neuropathological Evidence.
Louis, Elan D
2016-06-01
A fundamental question about essential tremor (ET) is whether its associated pathological changes and disease mechanisms are linkable to a specific brain region. To that end, recent tissue-based studies have made significant strides in elucidating changes in the ET brain. Emerging from these studies is increasing neuropathological evidence linking ET to the cerebellum. These studies have systematically identified a broad range of structural, degenerative changes in the ET cerebellum, spanning across all Purkinje cell compartments. These include the dendritic compartment (where there is an increase in number of Purkinje cell dendritic swellings, a pruning of the dendritic arbor, and a reduction in spine density), the cell body (where, aside from reductions in Purkinje cell linear density in some studies, there is an increase in the number of heterotopic Purkinje cell soma), and the axonal compartment (where a plethora of changes in axonal morphology have been observed, including an increase in the number of thickened axonal profiles, torpedoes, axonal recurrent collaterals, axonal branching, and terminal axonal sprouting). Additional changes, possibly due to secondary remodeling, have been observed in neighboring neuronal populations. These include a hypertrophy of basket cell axonal processes and changes in the distribution of climbing fiber-Purkinje cell synapses. These changes all distinguish ET from normal control brains. Initial studies further indicate that the profile (i.e., constellation) of these changes may separate ET from other diseases of the cerebellum, thereby serving as a disease signature. With the discovery of these changes, a new model of ET has arisen, which posits that it may be a neurodegenerative disorder centered in the cerebellar cortex. These newly emerging neuropathological studies pave the way for anatomically focused, hypothesis-driven, molecular mechanistic studies of disease pathogenesis.
Liao, Wenting; Tan, Guangguo; Zhu, Zhenyu; Chen, Qiuli; Lou, Ziyang; Dong, Xin; Zhang, Wei; Pan, Wei; Chai, Yifeng
2012-11-02
HIV-1 Tat protein is released by infected cells and can affect bystander uninfected T cells and induce numerous biological responses which contribute to its pathogenesis. To elucidate the complex pathogenic mechanism, we conducted a comprehensive investigation on Tat protein-related extracellular and intracellular metabolic changes in Jurkat T-cells using combined gas chromatography-mass spectrometry (GC-MS), reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) and a hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS)-based metabonomics approach. Quantitative real-time PCR (qRT-PCR) analyses were further employed to measure expressions of several relevant enzymes together with perturbed metabolic pathways. Combined metabonomic and qRT-PCR analyses revealed that HIV-1 Tat caused significant and comprehensive metabolic changes, as represented by significant changes of 37 metabolites and 10 relevant enzymes in HIV-1 Tat-treated cells. Using MetaboAnalyst 2.0, it was found that 11 pathways (Impact-value >0.10) among the regulated pathways were acutely perturbed, including sphingolipid metabolism, glycine, serine and threonine metabolism, pyruvate metabolism, inositol phosphate metabolism, arginine and proline metabolism, citrate cycle, phenylalanine metabolism, tryptophan metabolism, pentose phosphate pathway, glycerophospholipid metabolism, glycolysis or gluconeogenesis. These results provide metabolic evidence of the complex pathogenic mechanism of HIV-1 Tat protein as a "viral toxin", and would help obligate Tat protein as "an important target" for therapeutic intervention and vaccine development.
Yang, Hong; Lin, Shan; Cui, Jingru
2014-02-10
Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). In order to explore the molecular mechanism of ATO in leukemia cells with time series, we adopted bioinformatics strategy to analyze expression changing patterns and changes in transcription regulation modules of time series genes filtered from Gene Expression Omnibus database (GSE24946). We totally screened out 1847 time series genes for subsequent analysis. The KEGG (Kyoto encyclopedia of genes and genomes) pathways enrichment analysis of these genes showed that oxidative phosphorylation and ribosome were the top 2 significantly enriched pathways. STEM software was employed to compare changing patterns of gene expression with assigned 50 expression patterns. We screened out 7 significantly enriched patterns and 4 tendency charts of time series genes. The result of Gene Ontology showed that functions of times series genes mainly distributed in profiles 41, 40, 39 and 38. Seven genes with positive regulation of cell adhesion function were enriched in profile 40, and presented the same first increased model then decreased model as profile 40. The transcription module analysis showed that they mainly involved in oxidative phosphorylation pathway and ribosome pathway. Overall, our data summarized the gene expression changes in ATO treated K562-r cell lines with time and suggested that time series genes mainly regulated cell adhesive. Furthermore, our result may provide theoretical basis of molecular biology in treating acute promyelocytic leukemia. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Burke, Kathleen A.; Dawes, Ryan P.; Cheema, Mehar K.; Perry, Seth; Brown, Edward
2014-02-01
Second Harmonic Generation (SHG) of collagen signals allows for the analysis of collagen structural changes throughout metastatic progression. The directionality of coherent SHG signals, measured through the ratio of the forward-propagating to backward propagating signal (F/B ratio), is affected by fibril diameter, spacing, and order versus disorder of fibril packing within a fiber. As tumors interact with their microenvironment and metastasize, it causes changes in these parameters, and concurrent changes in the F/B ratio. Specifically, the F/B ratio of breast tumors that are highly metastatic to the lymph nodes is significantly higher than those in tumors with restricted lymph node involvement. We utilized in vitro analysis of tumor cell motility through collagen gels of different microstructures, and hence different F/B ratios, to explore the relationship between collagen microstructures and metastatic capabilities of the tumor. By manipulating environmental factors of fibrillogenesis and biochemical factors of fiber composition we created methods of varying the average F/B ratio of the gel, with significant changes in fiber structure occurring as a result of alterations in incubation temperature and increasing type III collagen presence. A migration assay was performed using simultaneous SHG and fluorescent imaging to measure average penetration depth of human tumor cells into the gels of significantly different F/B ratios, with preliminary data demonstrating that cells penetrate deeper into gels of higher F/B ratio caused by lower type III collagen concentration. Determining the role of collagen structure in tumor cell motility will aid in the future prediction metastatic capabilities of a primary tumor.
Tian, Lianji; Kim, Hoe Suk; Kim, Heyonjin; Jin, Xing; Jung, Hye Seung; Park, Kyong Soo; Cho, Kyoung Won; Park, Sunghyouk; Moon, Woo Kyung
2013-08-02
This study was designed to investigate changes in the metabolites in the intracellular fluid of the pancreatic β-cell line INS-1 to identify potential early and late biomarkers for predicting hypoxia-induced cell death. INS-1 cells were incubated under normoxic conditions (95% air, 5% CO₂) or hypoxic conditions (1% O₂, 5% CO₂, 95% N₂) for 2, 4, 6, 12, or 24 h. The biological changes indicating the process of cell death were analyzed using the MTT assay, flow cytometry, Western blotting, and immunostaining. Changes in the metabolic profiles from cell lysates were identified using ¹H nuclear magnetic resonance (¹H NMR) spectroscopy, and the spectra were analyzed by the multivariate model Orthogonal Projections to Latent Structure-Discriminant Analysis. Cell viability decreased approximately 40% after 12-24 h of hypoxia, coincident with a high level of cleaved caspase-3. A high level of HIF-1α was detected in the 12-24 h hypoxic conditions. The metabolite profiles were altered according to the degree of exposure to hypoxia. A spectral analysis showed significant differences in creatine-containing compounds at the early stage (2-6 h) and taurine-containing compounds at the late stage (12-24 h), with the detection of HIF-1α and cleaved caspase-3 in cells exposed to hypoxia compared to normoxia. Glycerophosphocholine decreased during the early stage hypoxia. The change in taurine- and creatine-containing compounds and choline species could be involved in the β-cell death process as inhibitors or activators of cell death. Our results imply that assessment by ¹H NMR spectroscopy would be a useful tool to predict the cell death process and to identify molecules regulating hypoxia-induced cell death mechanisms.
Zeng, Bo; Zeng, Zhen; Liu, Chang; Yang, Yaying
2017-06-01
Objective To investigate the effect of Golgi α-mannosidase II (GM2) gene knockdown on adhesion abilities of BGC-823 human gastric carcinoma cells. Methods Three plasmid vectors expressing GM2 shRNAs and a negative control plasmid vector were designed, constructed and then transfected into BGC-823 cells by Lipofectamine TM 2000. After transfection, the mRNA and protein levels of GM2 in BGC-823 cells were detected by real-time quantitative PCR (qRT-PCR) and Western blotting to evaluate the transfection efficacy. The best plasmid for GM2 gene knockdown was selected and stably transfected into BGC-823 cells. Adhesion abilities of BGC-823 cells after GM2 gene silencing were observed by cell-cell, cell-matrix and cell-endothelial cell adhesion assays. At the same time, the expressions of E-cadherin, P-selectin, CD44v6 and intercellular adhesion molecule-1 (ICAM-1) proteins were detected by Western blotting after GM2 gene knockdown. Results The expression of GM2 was effectively knockdown in GM2-shRNA-2-transfected BGC-823 cells. Compared with the blank control group and the negative control group, the intercellular adhesion ability of the GM2-shRNA-2-transfected cells increased significantly, while their cell-matrix and cell-endothelium adhesion abilities markedly decreased. In GM2-shRNA-2 transfection group, E-cadherin expression was significantly elevated and the P-selectin expression was significantly reduced, while the expression levels of CD44v6 and ICAM-1 were not obviously changed. Conclusion After GM2 gene knockdown, the intercellular adhesion ability of gastric carcinoma BGC-823 cells is enhanced, while the adhesion abilities with the extracellular matrix and endothelial cells are weakened. The changes might be related to the up-regulated expression of E-cadherin and the down-regulation of P-selectin.
Tiang, Jacky M; Butcher, Neville J; Minchin, Rodney F
2015-01-01
Expression of human arylamine N-acetyltransferase I (NAT1) has been associated with various cancer subtypes and inhibition of this enzyme with small molecule inhibitors or siRNA affects cell growth and survival. Here, we have investigated the role of NAT1 in the invasiveness of breast cancer cells both in vitro and in vivo. We knocked down NAT1 using a lentivirus-based shRNA approach and observed marked changes in cell morphology in the triple-negative breast cancer cell lines MDA-MB-231, MDA-MB-436, and BT-549. Most notable was a reduction in the number and size of the filopodia protrusions on the surface of the cells. The loss of filopodia could be rescued by the reintroduction of NAT1 into the knockdown cells. NAT1 expression was localized to the lamellipodia and extended into the filopodia protrusions. In vitro invasion through Geltrex was significantly inhibited in both the MDA cell lines but not in the BT-549 cells. The expression of Snail increased when NAT1 was knocked down, while other genes associated with mesenchymal to epithelial transition (vimentin, cytokeratin-18, and Twist) did not show any changes. By contrast, both N-cadherin and β-catenin were significantly reduced. When MDA-MB-231 cells expressing shRNA were injected in vivo into BALB/c nu/nu nude mice, a significant reduction in the number of colonies that formed in the lungs was observed. Taken together, the results show that NAT1 can alter the invasion and metastatic properties of some triple-negative breast cancer cells but not all. The study suggests that NAT1 may be a novel therapeutic target in a subset of breast cancers. PMID:25627111
Tiang, Jacky M; Butcher, Neville J; Minchin, Rodney F
2015-04-01
Expression of human arylamine N-acetyltransferase I (NAT1) has been associated with various cancer subtypes and inhibition of this enzyme with small molecule inhibitors or siRNA affects cell growth and survival. Here, we have investigated the role of NAT1 in the invasiveness of breast cancer cells both in vitro and in vivo. We knocked down NAT1 using a lentivirus-based shRNA approach and observed marked changes in cell morphology in the triple-negative breast cancer cell lines MDA-MB-231, MDA-MB-436, and BT-549. Most notable was a reduction in the number and size of the filopodia protrusions on the surface of the cells. The loss of filopodia could be rescued by the reintroduction of NAT1 into the knockdown cells. NAT1 expression was localized to the lamellipodia and extended into the filopodia protrusions. In vitro invasion through Geltrex was significantly inhibited in both the MDA cell lines but not in the BT-549 cells. The expression of Snail increased when NAT1 was knocked down, while other genes associated with mesenchymal to epithelial transition (vimentin, cytokeratin-18, and Twist) did not show any changes. By contrast, both N-cadherin and β-catenin were significantly reduced. When MDA-MB-231 cells expressing shRNA were injected in vivo into BALB/c nu/nu nude mice, a significant reduction in the number of colonies that formed in the lungs was observed. Taken together, the results show that NAT1 can alter the invasion and metastatic properties of some triple-negative breast cancer cells but not all. The study suggests that NAT1 may be a novel therapeutic target in a subset of breast cancers. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives
NASA Astrophysics Data System (ADS)
Wang, Yanli; Yuan, Lulu; Yao, Chenjie; Ding, Lin; Li, Chenchen; Fang, Jie; Sui, Keke; Liu, Yuanfang; Wu, Minghong
2014-11-01
At present, safety evaluation standards for nanofood additives are made based on the toxic effects of a single additive. Since the size, surface properties and chemical nature influence the toxicity of nanomaterials, the toxicity may have dramatically changed when nanomaterials are used as food additives in a complex system. Herein, we investigated the combined toxicity of zinc oxide nanoparticles (ZnO NPs) and vitamin C (Vc, ascorbic acid). The results showed that Vc increased the cytotoxicity significantly compared with that of the ZnO only NPs. When the cells were exposed to ZnO NPs at a concentration less than 15 mg L-1, or to Vc at a concentration less than 300 mg L-1, there was no significant cytotoxicity, both in the case of gastric epithelial cell line (GES-1) and neural stem cells (NSCs). However, when 15 mg L-1 of ZnO NPs and 300 mg L-1 of Vc were introduced to cells together, the cell viability decreased sharply indicating significant cytotoxicity. Moreover, the significant increase in toxicity was also shown in the in vivo experiments. The dose of the ZnO NPs and Vc used in the in vivo study was calculated according to the state of food and nutrition enhancer standard. After repeated oral exposure to ZnO NPs plus Vc, the injury of the liver and kidneys in mice has been indicated by the change of these indices. These findings demonstrate that the synergistic toxicity presented in a complex system is essential for the toxicological evaluation and safety assessment of nanofood.At present, safety evaluation standards for nanofood additives are made based on the toxic effects of a single additive. Since the size, surface properties and chemical nature influence the toxicity of nanomaterials, the toxicity may have dramatically changed when nanomaterials are used as food additives in a complex system. Herein, we investigated the combined toxicity of zinc oxide nanoparticles (ZnO NPs) and vitamin C (Vc, ascorbic acid). The results showed that Vc increased the cytotoxicity significantly compared with that of the ZnO only NPs. When the cells were exposed to ZnO NPs at a concentration less than 15 mg L-1, or to Vc at a concentration less than 300 mg L-1, there was no significant cytotoxicity, both in the case of gastric epithelial cell line (GES-1) and neural stem cells (NSCs). However, when 15 mg L-1 of ZnO NPs and 300 mg L-1 of Vc were introduced to cells together, the cell viability decreased sharply indicating significant cytotoxicity. Moreover, the significant increase in toxicity was also shown in the in vivo experiments. The dose of the ZnO NPs and Vc used in the in vivo study was calculated according to the state of food and nutrition enhancer standard. After repeated oral exposure to ZnO NPs plus Vc, the injury of the liver and kidneys in mice has been indicated by the change of these indices. These findings demonstrate that the synergistic toxicity presented in a complex system is essential for the toxicological evaluation and safety assessment of nanofood. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05480f
Altered Calcium Dynamics in Cardiac Cells Grown on Silane-Modified Surfaces
Ravenscroft-Chang, Melissa S.; Stohlman, Jayna; Molnar, Peter; Natarajan, Anupama; Canavan, Heather E.; Teliska, Maggie; Stancescu, Maria; Krauthamer, Victor; Hickman, J.J.
2013-01-01
Chemically defined surfaces were created using self-assembled monolayers (SAMs) of hydrophobic and hydrophilic silanes as models for implant coatings, and the morphology and physiology of cardiac myocytes plated on these surfaces were studied in vitro. We focused on changes in intracellular Ca2+ because of its essential role in regulating heart cell function. The SAM-modified coverslips were analyzed using X-ray Photoelectron Spectroscopy to verify composition. The morphology and physiology of the cardiac cells were examined using fluorescence microscopy and intracellular Ca2+ imaging. The imaging experiments used the fluorescent ratiometric dye fura-2, AM to establish both the resting Ca2+ concentration and the dynamic responses to electrical stimulation. A significant difference in excitation-induced Ca2+ changes on the different silanated surfaces was observed. However, no significant change was noted based on the morphological analysis. This result implies a difference in internal Ca2+ dynamics, and thus cardiac function, occurs when the composition of the surface is different, and this effect is independent of cellular morphology. This finding has implications for histological examination of tissues surrounding implants, the choice of materials that could be beneficial as implant coatings and understanding of cell-surface interactions in cardiac systems. PMID:19828193
Ostrowski, K; Dziedzic-Goclawska, A; Strojny, P; Grzesik, W; Kieler, J; Christensen, B; Mareel, M
1986-01-01
The rationale of the present investigation is the observations made by many authors of changes in the molecular structure of the cell surface during the multistep process of malignant transformation. These changes may influence cell-matrix and cell-cell interactions and thereby cause changes in cell adhesiveness and cell shape. The aim of the present work was to investigate whether the development of various grades of transformation in vivo and in vitro of human urothelial cells is accompanied by significant changes in cell shape as measured by Fourier analysis. The following transformation grades (TGr) have been defined (Christensen et al. 1984; Kieler 1984): TGr I = nonmalignant, mortal cell lines that grow independently of fibroblasts and have a prolonged life span. TGr II = nonmalignant cell lines with an infinite life span. TGr III = malignant and immortal cell lines that grow invasively in co-cultures with embryonic chick heart fragments and possess tumorigenic properties after s.c. injection into nude mice. Comparisons of 4 pairs of cell lines were performed; each pair was of the same origin. Two pairs--each including a TGr I cell line (Hu 961b and Hu 1703S) compared to a TGr III cell line (Hu 961a or Hu 1703He)--were derived from two transitional cell carcinomas (TCC) containing a heterogeneous cell population. Two additional cell lines classified as TGr II (HCV-29 and Hu 609) were compared to two TGr III sublines (HCV-29T and Hu 609T, respectively) which arose by "spontaneous" transformation during propagation in vitro of the respective maternal TGr II-cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)
Toapanta, Franklin R; Bernal, Paula J; Fresnay, Stephanie; Magder, Laurence S; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B
2016-06-01
A novel human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently established by the Oxford Vaccine Group. In this model, 104 CFU of Salmonella resulted in 65% of participants developing typhoid fever (referred here as typhoid diagnosis -TD-) 6-9 days post-challenge. TD was diagnosed in participants meeting clinical (oral temperature ≥38°C for ≥12h) and/or microbiological (S. Typhi bacteremia) endpoints. Changes in B cell subpopulations following S. Typhi challenge remain undefined. To address this issue, a subset of volunteers (6 TD and 4 who did not develop TD -NoTD-) was evaluated. Notable changes included reduction in the frequency of B cells (cells/ml) of TD volunteers during disease days and increase in plasmablasts (PB) during the recovery phase (>day 14). Additionally, a portion of PB of TD volunteers showed a significant increase in activation (CD40, CD21) and gut homing (integrin α4β7) molecules. Furthermore, all BM subsets of TD volunteers showed changes induced by S. Typhi infections such as a decrease in CD21 in switched memory (Sm) CD27+ and Sm CD27- cells as well as upregulation of CD40 in unswitched memory (Um) and Naïve cells. Furthermore, changes in the signaling profile of some BM subsets were identified after S. Typhi-LPS stimulation around time of disease. Notably, naïve cells of TD (compared to NoTD) volunteers showed a higher percentage of cells phosphorylating Akt suggesting enhanced survival of these cells. Interestingly, most these changes were temporally associated with disease onset. This is the first study to describe differences in B cell subsets directly related to clinical outcome following oral challenge with wild-type S. Typhi in humans.
Light adaptation alters inner retinal inhibition to shape OFF retinal pathway signaling
Mazade, Reece E.
2016-01-01
The retina adjusts its signaling gain over a wide range of light levels. A functional result of this is increased visual acuity at brighter luminance levels (light adaptation) due to shifts in the excitatory center-inhibitory surround receptive field parameters of ganglion cells that increases their sensitivity to smaller light stimuli. Recent work supports the idea that changes in ganglion cell spatial sensitivity with background luminance are due in part to inner retinal mechanisms, possibly including modulation of inhibition onto bipolar cells. To determine how the receptive fields of OFF cone bipolar cells may contribute to changes in ganglion cell resolution, the spatial extent and magnitude of inhibitory and excitatory inputs were measured from OFF bipolar cells under dark- and light-adapted conditions. There was no change in the OFF bipolar cell excitatory input with light adaptation; however, the spatial distributions of inhibitory inputs, including both glycinergic and GABAergic sources, became significantly narrower, smaller, and more transient. The magnitude and size of the OFF bipolar cell center-surround receptive fields as well as light-adapted changes in resting membrane potential were incorporated into a spatial model of OFF bipolar cell output to the downstream ganglion cells, which predicted an increase in signal output strength with light adaptation. We show a prominent role for inner retinal spatial signals in modulating the modeled strength of bipolar cell output to potentially play a role in ganglion cell visual sensitivity and acuity. PMID:26912599
[Effects on blood cell numbers and cytokines of dermal application rocket kerosene in mice].
Xu, Bingxin; Wang, Jianying; Liu, Zhiguo; Li, Chenglin; Yang, Heming; Lou, Xiaotong; Li, Jianzhong; Cui, Yan
2015-09-01
To detect the number of cells and the level of IL-2, IL-4, IL-6, IL-10, TNF-alpha, IFN-γ and IL-17 cytokines in the peripheral blood of mice exposed to rocket kerosene by skin. ICR mice were randomly divided into the normal control group and RK experimental group (400 µl×1 group). RK undiluted fuel were applied directly to the dorsal skin of the mice. In control groups were treated with sesame oil (SO). the number of blood cells were detected by automatic blood cell counter and the level of IL-2, IL-4, IL-6, IL-10, TNF-alpha, IFN-γ and IL-17 cytokines in serum were detected by using flow cytometry and BD CBA Flex set kit. Compared with the normal group, WBC and LYM had a decreasing tendency 2 h and decreased significantly 6 h, 12 h and 1 d after RK exposure (P<0.05). They increased significantly 7 d after RK exposure (P<0.05). Compared with the normal group, the level of IL-6 increased significantly 2 h, 6 h, 12 h,1 d and 3 d (P<0.05). The level of TNF-α increased significantly 2h, 3d, 5d and 7d (P<0.05). The level of IL-10 increased significantly 2 h, 6 h, 3 d, 5 d and 7 d (P<0.05). The level of IFN-γ increased significantly 6 h and 3 d (P< 0.05). The level of IL-17 significantly increased 3 d, 5 d and 7d (P<0.05). RK can change the number of immune cells, causing the immune cytokine changes in mice after RK cutaneous exposure.
Sohn, Kyoung-Jin; Jang, Hyeran; Campan, Mihaela; Weisenberger, Daniel J.; Dickhout, Jeffrey; Wang, Yi-Cheng; Cho, Robert C.; Yates, Zoe; Lucock, Mark; Chiang, En-Pei; Austin, Richard C.; Choi, Sang-Woon; Laird, Peter W.; Kim, Young-In
2009-01-01
The C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene is associated with a decreased risk of colon cancer while it may increase the risk of breast cancer. This polymorphism is associated with changes in intracellular folate cofactors, which may affect DNA methylation and synthesis via altered one-carbon transfer reactions. We investigated the effect of this mutation on DNA methylation and uracil misincorporation and its interaction with exogenous folate in further modulating these biomarkers of one-carbon transfer reactions in an in vitro model of the MTHFR 677T mutation in HCT116 colon and MDA-MB-435 breast adenocarcinoma cells. In HCT116 cells, the MTHFR 677T mutation was associated with significantly increased genomic DNA methylation when folate supply was adequate or high; however, in the setting of folate insufficiency, this mutation was associated with significantly decreased genomic DNA methylation. In contrast, in MDA-MB-435 cells, the MTHFR 677T mutation was associated with significantly decreased genomic DNA methylation when folate supply was adequate or high and with no effect when folate supply was low. The MTHFR 677T mutation was associated with a nonsignificant trend toward decreased and increased uracil misincorporation in HCT116 and MDA-MB-435 cells, respectively. Our data demonstrate for the first time a functional consequence of changes in intracellular folate cofactors resulting from the MTHFR 677T mutation in cells derived from the target organs of interest, thus providing a plausible cellular mechanism that may partly explain the site-specific modification of colon and breast cancer risks associated with the MTHFR C677T mutation. PMID:19123462
Mukherjee, Somnath; Marwaha, Neelam; Prasad, Rajendra; Sharma, Ratti Ram; Thakral, Beenu
2010-01-01
Background & Objectives: Neonatologists often prefer fresh blood (<7 days) for neonatal transfusions. The main concerns for stored RBCs are ex vivo storage lesions that undermine red cell functions and may affect metabolic status of neonatal recipients. This study was designed to evaluate serial in vitro changes of biochemical parameters in different RBC preparations during storage to consider for neonatal transfusions even after storage beyond one week. Methods: Twenty five units each of whole blood (CPDA-1 RBC, SAGM RBC) were selected for serial biochemical parameter assessment after each fulfilled the quality criteria (volume and haematocrit). These units were tested serially for supernatant potassium, pH, lactate, haemoglobin, glucose and red cell 2,3 diphosphoglycerate (2,3 DPG) up to 21 days of storage. Results: Within each group of RBC, rise in mean concentration of potassium, lactate and plasma haemoglobin from day 1 to 21 of storage was significant in CPDA-1 RBC having the highest levels at day 21. From day 3 to 21, SAGM RBC had higher mean pH value than CPDA-1 RBC though this difference was not statistically significant. SAGM RBC had highest mean glucose concentration during storage than other two types of red cell preparations (P<0.005). Within each group, fall in mean 2,3 DPG concentration from day 1 to 7 was significant (P<0.05). A positive correlation existed between mean plasma potassium and haemoglobin in all three types of red cells (r=0.726, 0.419, 0.605 for CPDA-1 RBC, SAGM RBC and whole blood respectively, P<0.005). Interpretation & Conclusions: All the three red cell preparations tested revealed biochemical changes within acceptable limits of safety till 21 days of storage. CPDA-1 RBCs had the highest degree of these changes. PMID:21245620
Mukherjee, Somnath; Marwaha, Neelam; Prasad, Rajendra; Sharma, Ratti Ram; Thakral, Beenu
2010-12-01
Neonatologists often prefer fresh blood (<7 days) for neonatal transfusions. The main concerns for stored RBCs are ex vivo storage lesions that undermine red cell functions and may affect metabolic status of neonatal recipients. This study was designed to evaluate serial in vitro changes of biochemical parameters in different RBC preparations during storage to consider for neonatal transfusions even after storage beyond one week. Twenty five units each of whole blood (CPDA-1 RBC, SAGM RBC) were selected for serial biochemical parameter assessment after each fulfilled the quality criteria (volume and haematocrit). These units were tested serially for supernatant potassium, pH, lactate, haemoglobin, glucose and red cell 2,3 diphosphoglycerate (2,3 DPG) up to 21 days of storage. Within each group of RBC, rise in mean concentration of potassium, lactate and plasma haemoglobin from day 1 to 21 of storage was significant in CPDA-1 RBC having the highest levels at day 21. From day 3 to 21, SAGM RBC had higher mean pH value than CPDA-1 RBC though this difference was not statistically significant. SAGM RBC had highest mean glucose concentration during storage than other two types of red cell preparations (P<0.005). Within each group, fall in mean 2,3 DPG concentration from day 1 to 7 was significant (P<0.05). A positive correlation existed between mean plasma potassium and haemoglobin in all three types of red cells (r=0.726, 0.419, 0.605 for CPDA-1 RBC, SAGM RBC and whole blood respectively, P<0.005). All the three red cell preparations tested revealed biochemical changes within acceptable limits of safety till 21 days of storage. CPDA-1 RBCs had the highest degree of these changes.
Kim, You-Mie; Song, Insun; Seo, Yong-Hak; Yoon, Gyesoon
2013-12-01
Enhanced lipogenesis plays a critical role in cell senescence via induction of expression of the mature form of sterol regulatory element binding protein 1 (SREBP1), which contributes to an increase in organellar mass, one of the indicators of senescence. We investigated the molecular mechanisms by which signaling molecules control SREBP1-mediated lipogenesis and senescence. We developed cellular models for stress-induced senescence, by exposing Chang cells, which are immortalized human liver cells, to subcytotoxic concentrations (200 µM) of deferoxamine (DFO) and H2O2. In this model of stress-induced cell senescence using DFO and H2O2, the phosphorylation profile of glycogen synthase kinase 3α (GSK3α) and β corresponded closely to the expression profile of the mature form of SREBP-1 protein. Inhibition of GSK3 with a subcytotoxic concentration of the selective GSK3 inhibitor SB415286 significantly increased mature SREBP1 expression, as well as lipogenesis and organellar mass. In addition, GSK3 inhibition was sufficient to induce senescence in Chang cells. Suppression of GSK3 expression with siRNAs specific to GSK3α and β also increased mature SREBP1 expression and induced senescence. Finally, blocking lipogenesis with fatty acid synthase inhibitors (cerulenin and C75) and siRNA-mediated silencing of SREBP1 and ATP citrate lyase (ACL) significantly attenuated GSK3 inhibition-induced senescence. GSK3 inactivation is an important upstream event that induces SREBP1-mediated lipogenesis and consequent cell senescence.
LIU, LI; CAI, SIYI; QIU, GUIXING; LIN, JIN
2016-01-01
ClC-3 is a volume-sensitive chloride channel that is responsible for cell volume adjustment and regulatory cell volume decrease (RVD). In order to evaluate the effects of fluid shear stress (FSS) stimulation on the osteoblast ClC-3 chloride channel, MC3T3-E1 cells were stimulated by FSS in the experimental group. Fluorescence quantitative polymerase chain reaction was used to detect changes in ClC-3 mRNA expression, the chloride ion fluorescent probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) was used to detect the chloride channel activity, and whole-cell patch clamping was used to monitor the changes in the volume-sensitive chloride current activated by a hypotonic environment following mechanical stimulation. The results show that the expression of the osteoblast chloride channel ClC-3 was significantly higher in the FSS group compared with the control group. MQAE fluorescence intensity was significantly reduced in the FSS group compared to the control group, suggesting that mechanical stimulation increased chloride channel activity and increased the efflux of intracellular chloride ions. Image analysis of osteoblast volume changes showed that osteoblast RVD was enhanced by mechanical stimulation. Whole-cell patch clamping showed that the osteoblast volume-sensitive chloride current was larger in the stimulated group compared to the control group, suggesting that elevated ClC-3 chloride channel expression results in an increased volume-sensitive chloride current. In conclusion, FSS stimulation enhances the RVD of osteoblast cell by increasing the expression of the ClC-3 and enhancing the chloride channel activity. PMID:27073622
Jauchem, James R; Cerna, Cesario Z; Lim, Tiffany Y; Seaman, Ronald L
2014-12-01
In an earlier study, we found significant changes in red-blood-cell, leukocyte, and platelet counts, and in red-blood-cell membrane proteins, following exposures of anesthetized pigs to a conducted electrical weapon. In the current study, we examined potential changes in plasma proteins [analyzed via two-dimensional gel electrophoresis (2-DGE)] following two 30 s exposures of anesthetized pigs (Sus scrofa) to a TASER (®) C2 conducted electrical weapon. Patterns of proteins, separated by 2-DGE, were consistent and reproducible between animals and between times of sampling. We determined that the blood plasma collection, handling, storage, and processing techniques we used are suitable for swine blood. There were no statistically significant changes in plasma proteins following the conducted-electrical-weapon exposures. Overall gel patterns of fibrinogen were similar to results of other studies of both pigs and humans (in control settings, not exposed to conducted electrical weapons). The lack of significant changes in plasma proteins may be added to the body of evidence regarding relative safety of TASER C2 device exposures.
Bilgin, M; Burgazli, K M; Rafiq, A; Mericliler, M; Neuhof, C; Oliva, M L; Parahuleva, M; Soydan, N; Doerr, O; Abdallah, Y; Erdogan, A
2014-01-01
Proteinase inhibitors act as a defensive system against predators e.g. insects, in plants. Bauhinia bauhinioides kallikrein inhibitor (BbKI) is a serine proteinase inhibitor, isolated from seeds of Bauhinia bauhinioides and is structurally similar to plant Kunitz-type inhibitors but lacks disulfide bridges. In this study we evaluated the antiproliferative effect of BbKI on endothelial cells and its impact on changes in membrane potential and intracellular calcium. HUVEC proliferation was significantly reduced by incubation with BbKI 50 and 100 µM 12% and 13%. Furthermore, BbKI (100 µM) exposure caused a significant increase in intracellular Ca2+ concentration by 35% as compared to untreated control. The intracellular rise in calcium was not affected by the absence of extracellular calcium. BBKI also caused a significant change in the cell membrane potential but the antiproliferative effect was independent of changes in membrane potential. BBKI has an antiproliferative effect on HUVEC, which is independent of the changes in membrane potential, and it causes an increase in intracellular Ca2+.
Femtosecond laser correction of presbyopia (INTRACOR) in emmetropes using a modified pattern.
Thomas, Bettina C; Fitting, Anna; Auffarth, Gerd U; Holzer, Mike P
2012-12-01
To evaluate functional results and corneal changes after femtosecond laser correction of presbyopia (INTRACOR, Technolas Perfect Vision GmbH) in emmetropes using a modified treatment pattern over a 12-month period. Twenty eyes from 20 emmetropic patients were treated with a modified intrastromal INTRACOR pattern consisting of 5 central rings and 8 radial cuts in a prospective, nonrandomized, uncontrolled, open, single-center, clinical study. Refraction, visual acuity, endothelial cell density, corneal pachymetry, total corneal power, and stray light were evaluated preoperatively and 1 (except endothelial cell density and stray light), 3, 6, and 12 months postoperatively. Patients filled out a subjective questionnaire at 12 months postoperatively. Comparison of preoperative versus 12-month postoperative median values revealed a significant improvement in uncorrected near visual acuity (UNVA) from 0.60 (20/80) to 0.10 logMAR (20/25) (P<.0001) and a significant decrease in corrected distance visual acuity (CDVA) from -0.10 (20/16) to 0.00 logMAR (20/20), which equals a median loss of one line (P=.0005). Fifteen percent of patients lost two lines of CDVA in the treated eye. Subjective spherical equivalent refraction remained unchanged at 0.00 diopters (D) (P=.194). After INTRACOR treatment, significant corneal steepening of 1.40 D and midperipheral flattening of 0.50 D occurred (both P<.0001). Corneal pachymetry at the thinnest point and endothelial cell density did not change significantly (P=.829 and P=.058, respectively). After 12 months, the modified INTRACOR pattern improved UNVA in emmetropic patients without inducing a myopic shift or significant changes in endothelial cell density or pachymetry. Copyright 2012, SLACK Incorporated.
Yu, Miao; Huang, Shaohui; Yu, Kevin Jun; Clyne, Alisa Morss
2012-01-01
Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles. PMID:22754315
Progress towards computer simulation of NiH2 battery performance over life
NASA Technical Reports Server (NTRS)
Zimmerman, Albert H.; Quinzio, M. V.
1995-01-01
The long-term performance of rechargeable battery cells has traditionally been verified through life-testing, a procedure that generally requires significant commitments of funding and test resources. In the situation of nickel hydrogen battery cells, which have the capability of providing extremely long cycle life, the time and cost required to conduct even accelerated testing has become a serious impediment to transitioning technology improvements into spacecraft applications. The utilization of computer simulations to indicate the changes in performance to be expected in response to design or operating changes in nickel hydrogen cells is therefore a particularly attractive tool in advanced battery development, as well as for verifying performance in different applications. Computer-based simulations of the long-term performance of rechargeable battery cells have typically had very limited success in the past. There are a number of reasons for the lack in progress in this area. First, and probably most important, all battery cells are relatively complex electrochemical systems, in which performance is dictated by a large number of interacting physical and chemical processes. While the complexity alone is a significant part of the problem, in many instances the fundamental chemical and physical processes underlying long-term degradation and its effects on performance have not even been understood. Second, while specific chemical and physical changes within cell components have been associated with degradation, there has been no generalized simulation architecture that enables the chemical and physical structure (and changes therein) to be translated into cell performance. For the nickel hydrogen battery cell, our knowledge of the underlying reactions that control the performance of this cell has progressed to where it clearly is possible to model them. The recent development of a relative generalized cell modelling approach provides the framework for translating the chemical and physical structure of the components inside a cell into its performance characteristics over its entire cycle life. This report describes our approach to this task in terms of defining those processes deemed critical in controlling performance over life, and the model architecture required to translate the fundamental cell processes into performance profiles.
Zhang, Jin-Yan; Zhang, Ju-Shun; Xu, Zhen-Shu
2015-08-01
To investigate the expression of Notch gene in chronic lymphocytic leukemia cells and to explore the change of Notch protein after the therapy with cytosine arabinoside or dexmethasone, and the mechanism of Notch mediated anti-apoptosis and drug-resistance in chronic lymphocytic leukemia cells. The mononuclear cells from bone marrow or peripheral blood of chronic lymphocytic leukemia patients (24 cases) and healthy donors (14 cases) were collected, then the expression of Notch gene, BCL-2, as well as NF-κB gene were detected by real-time fluorescent quantitative PCR (qRT-PCR) at the level of transcription. The change of Notch protein in L1210 cell lines after therapy with cytosine arabinoside and dexmethasone was determined by Western blot. mRNA expression levels of Notch1, Notch2, BCL-2 and NF-κB gene in CLL group were significantly higher than those in healthy control group (0.8556 ± 0.8726 vs 0.6731 ± 0.5334, P = 0.0182; 1.2273 ± 0.8207 vs 0.6577 ± 0.6424, P < 0.0001; 8.0960 ± 7.5661 vs 0.5969 ± 0.4976, P < 0.0001; 1.0966 ± 0.6925 vs 0.5373 ± 0.7180, P < 0.0001, respectively), but no significant difference was found between Notch3 and Notch4 gene (1.1914 ± 2.4219 vs 0.8713 ± 0.7937, P = 0.3427; 0.8174 ± 1.0869 vs 0.9752 ± 1.3446, P = 0.2402, respectively). Notch1 protein expression in L1210 cells were significantly decreased after treating with cytosine arabinoside of low and middle concentrations, but increased after treating with cytosine arabinoside of high concentration or prolonging time of cytosine arabinoside of middle con-centration. Notch1 protein expression in L1210 cells dereased after treating with dexamethasone, but did not be changed with the different concentrations and different times of dexmethason. The transcription level of Notch gene in CLL patients significantly higher than that in normal controls. The Notch1 protein expression is down-regulated in process of inhibiting L1210 cell proliferation by Ara-C and dexmethason. Notch signaling pathway may mediated anti-apoptosis and drug resistance of CLL cells. Notch molecule possibly plays an important role in the anti-apoptosis and drug-resistance of CLL cells.
Wadhwa, Meetu; Chauhan, Garima; Roy, Koustav; Sahu, Surajit; Deep, Satyanarayan; Jain, Vishal; Kishore, Krishna; Ray, Koushik; Thakur, Lalan; Panjwani, Usha
2018-01-01
Background: Sleep deprivation (SD) plagues modern society due to the professional demands. It prevails in patients with mood and neuroinflammatory disorders. Although growing evidence suggests the improvement in the cognitive performance by psychostimulants during sleep-deprived conditions, the impending involved mechanism is rarely studied. Thus, we hypothesized that mood and inflammatory changes might be due to the glial cells activation induced modulation of the inflammatory cytokines during SD, which could be improved by administering psychostimulants. The present study evaluated the role of caffeine/modafinil on SD-induced behavioral and inflammatory consequences. Methods: Adult male Sprague-Dawley rats were sleep deprived for 48 h using automated SD apparatus. Caffeine (60 mg/kg/day) or modafinil (100 mg/kg/day) were administered orally to rats once every day during SD. Rats were subjected to anxious and depressive behavioral evaluation after SD. Subsequently, blood and brain were collected for biochemical, immunohistochemical and molecular studies. Results: Sleep deprived rats presented an increased number of entries and time spent in closed arms in elevated plus maze test and decreased total distance traveled in the open field (OF) test. Caffeine/modafinil treatment significantly improved these anxious consequences. However, we did not observe substantial changes in immobility and anhedonia in sleep-deprived rats. Caffeine/modafinil significantly down-regulated the pro- and up-regulated the anti-inflammatory cytokine mRNA and protein expression in the hippocampus during SD. Similar outcomes were observed in blood plasma cytokine levels. Caffeine/modafinil treatment significantly decreased the microglial immunoreactivity in DG, CA1 and CA3 regions of the hippocampus during SD, however, no significant increase in immunoreactivity of astrocytes was observed. Sholl analysis signified the improvement in the morphological alterations of astrocytes and microglia after caffeine/modafinil administration during SD. Stereological analysis demonstrated a significant improvement in the number of ionized calcium binding adapter molecule I (Iba-1) positive cells (different states) in different regions of the hippocampus after caffeine or modafinil treatment during SD without showing any significant change in total microglial cell number. Eventually, the correlation analysis displayed a positive relationship between anxiety, pro-inflammatory cytokines and activated microglial cell count during SD. Conclusion: The present study suggests the role of caffeine or modafinil in the amelioration of SD-induced inflammatory response and anxious behavior in rats. Highlights - SD induced mood alterations in rats. - Glial cells activated in association with the changes in the inflammatory cytokines. - Caffeine or modafinil improved the mood and restored inflammatory changes during SD. - SD-induced anxious behavior correlated with the inflammatory consequences. PMID:29599709
Garzia, Aitor; Etxebeste, Oier; Rodríguez-Romero, Julio; Fischer, Reinhard; Espeso, Eduardo A.
2013-01-01
Morphogenesis encompasses programmed changes in gene expression that lead to the development of specialized cell types. In the model fungus Aspergillus nidulans, asexual development involves the formation of characteristic cell types, collectively known as the conidiophore. With the aim of determining the transcriptional changes that occur upon induction of asexual development, we have applied massive mRNA sequencing to compare the expression pattern of 19-h-old submerged vegetative cells (hyphae) with that of similar hyphae after exposure to the air for 5 h. We found that the expression of 2,222 (20.3%) of the predicted 10,943 A. nidulans transcripts was significantly modified after air exposure, 2,035 being downregulated and 187 upregulated. The activation during this transition of genes that belong specifically to the asexual developmental pathway was confirmed. Another remarkable quantitative change occurred in the expression of genes involved in carbon or nitrogen primary metabolism. Genes participating in polar growth or sexual development were transcriptionally repressed, as were those belonging to the HogA/SakA stress response mitogen-activated protein (MAP) kinase pathway. We also identified significant expression changes in several genes purportedly involved in redox balance, transmembrane transport, secondary metabolite production, or transcriptional regulation, mainly binuclear-zinc cluster transcription factors. Genes coding for these four activities were usually grouped in metabolic clusters, which may bring regulatory implications for the induction of asexual development. These results provide a blueprint for further stage-specific gene expression studies during conidiophore development. PMID:23264642
Patterson, Melissa N.; Scannapieco, Alison E.; Au, Pak Ho; Dorsey, Savanna; Royer, Catherine A.; Maxwell, Patrick H.
2015-01-01
Retrotransposon expression or mobility is increased with age in multiple species and could promote genome instability or altered gene expression during aging. However, it is unclear whether activation of retrotransposons during aging is an indirect result of global changes in chromatin and gene regulation or a result of retrotransposon-specific mechanisms. Retromobility of a marked chromosomal Ty1 retrotransposon in Saccharomyces cerevisiae was elevated in mother cells relative to their daughter cells, as determined by magnetic cell sorting of mothers and daughters. Retromobility frequencies in aging mother cells were significantly higher than those predicted by cell age and the rate of mobility in young populations, beginning when mother cells were only several generations old. New Ty1 insertions in aging mothers were more strongly correlated with gross chromosome rearrangements than in young cells and were more often at non-preferred target sites. Mother cells were more likely to have high concentrations and bright foci of Ty1 Gag-GFP than their daughter cells. Levels of extrachromosomal Ty1 cDNA were also significantly higher in aged mother cell populations than their daughter cell populations. These observations are consistent with a retrotransposon-specific mechanism that causes retrotransposition to occur preferentially in yeast mother cells as they begin to age, as opposed to activation by phenotypic changes associated with very old age. These findings will likely be relevant for understanding retrotransposons and aging in many organisms, based on similarities in regulation and consequences of retrotransposition in diverse species. PMID:26298836
Shelley, Zhaoping; Royce, Simon G; Ververis, Katherine; Karagiannis, Tom C
2014-01-01
L-sulforaphane (LSF) is a natural isothiocyanate found in cruciferous vegetables particularly broccoli. LSF has been identified as a potent antioxidant and anti-cancer agent and is widely known to regulate phase II detoxifying enzymes and induce cell cycle arrest or apoptosis in malignant cells in vitro and in vivo. Previous studies have found significant G2/M cell cycle arrest in response to LSF in various model of cancer and results have mainly been attributed to increased cyclin B1 protein levels and increased p21expression. Using genome-wide mRNA-Seq analysis we provide insights into the molecular mechanisms of action of LSF to identify a key pathway in cell cycle progression - the role of the anaphase promoting complex (APC) pathway. We evaluated gene expression changes in human erythroleukemic K562 cells following treatment with 15 μM LSF for 48h and compared them to immortalized human keratinocytes, human microvascular endothelial cells (HMEC-1) cells and normal human umbilical endothelial cells (HUVEC). We identified disparate gene expression changes in response to LSF between malignant and normal cells and immortalized cell lines. The results highlight significant down-regulation of kinase CDK1 which is suggestive that the existence and activity of APC/CDC20 complex will be inhibited along with its associated down-stream degradation of key cell cycle regulators preventing cell cycle progression from mitotic exit.
Li, Tao; Shi, Yunpeng; Sun, Weixia; Wang, Haifeng; Wang, Quan; Jiang, Yanfang
2018-02-01
T follicular helper (Tfh) cells, especially programmed cell death protein 1 (PD-1) + Tfh cells, exert important functions in the normal immune response. The purpose of this study was to determine the frequency of different subsets of PD-1 + Tfh cells and their functional effects in adult patients with minimal change disease (MCD). The frequencies of circulating PD-1 + , PD-1 + CD154 + , and PD-1 + interleukin (IL)-21 + Tfh cells, and CD38 + CD19 + and CD38 + CD19 + CD40 + B cells, as well as serum IL-2, IL-4, IL-17A, IL-6, IL-21, and interferon (IFN)-γ were significantly increased in the MCD patients compared with the healthy controls (HCs) (P < 0.05). However, no significant difference was found in PD-1 + BCL-6 + or PD-1 + ICOS + Tfh cells. Furthermore, the percentages of PD-1 + Tfh and PD-1 + CD154 + Tfh cells were negatively correlated with the estimated glomerular filtration rate (eGFR), but positively correlated with the 24-h urinary protein concentration and serum IL-21 level. The percentages of PD-1 + Tfh and PD-1 + CD154 + Tfh cells were positively correlated with the percentages of CD38 + plasma cells and active CD38 + CD40 + plasma cells, respectively. After an 8-12-week treatment with prednisolone, the percentages of PD-1 + , PD-1 + CD154 + , and PD-1 + IL-21 + Tfh cells as well as the serum level of IL-21 were significantly reduced; in contrast, the serum levels of IL-4 and IL-10 were increased (P < 0.05). We conclude that increased PD-1 + CD154 + Tfh cells are possibly the most important functional subset of PD-1 + Tfh cells and may contribute towards the pathogenesis of MCD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Anja Z; Ficklscherer, Andreas; Gülecyüz, Mehmet F; Paulus, Alexander C; Niethammer, Thomas R; Jansson, Volkmar; Müller, Peter E
2017-04-01
To analyze the ability of ropivacaine, bupivacaine, and triamcinolone to induce apoptosis and necrosis in fibroblasts, tenocytes, and human mesenchymal stem cells. Human dermal fibroblasts, adipose-derived human mesenchymal stem cells (hMSCs), and tenocytes gained from the rotator cuff tendon were seeded with a cell density of 0.5 × 10 4 /cm 2 . One specimen of ropivacaine, bupivacaine, and triamcinolone was tested separately on the cells with separate concentrations of 0.5%, 0.25%, and 0.125% for each specimen. The negative control received no agent, only a change of medium. The incubation period for each agent was 30 minutes. After a change of medium and 1 hour, 24 hours, and 7 days of incubation, 10 4 cells were harvested and analyzed via fluorescence-activated cell sorting with double-staining with annexin V and propidium iodide. Statistical analysis to determine significant difference (P < .05) between the groups with SPSS statistics 23 through one-way analysis of variance with a univariate general linear model was performed. Bupivacaine showed necrosis-inducing effects on fibroblasts and tenocytes, with the necrotic effect peaking at 0.5% and 0.25%. Ropivacaine and triamcinolone caused no significant necrosis. Compared with fibroblasts and tenocytes, hMSCs did not show significant necrotic or apoptotic effects after exposure to bupivacaine. Overall, no significant differences in apoptosis were detected between different cell lines, varying concentrations, or time measurements. Bupivacaine 0.5% and 0.25% have the most necrosis-inducing effects on fibroblasts and tenocytes. Ropivacaine caused less necrosis than bupivaine. Compared with fibroblasts and tenocytes, hMSCs were not affected by necrosis using any of the tested agents. A significant apoptosis-inducing effect could not be detected for the different cell lines. Possible cell toxicity raises questions of concern for intra-articular injections using local anesthetics and corticosteroids. The present study demonstrates the necrotic and apoptotic effects of ropivacaine, bupivacaine, and triamcinolone and may give recommendations for intra-articular use of local anesthetics and corticosteroids. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
The relationship between in vitro cellular aging and in vivo human age.
Schneider, E L; Mitsui, Y
1976-01-01
Differences between early and late passage cell cultures on the organelle and macromolecular levels have been attributed to cellular "aging". However, concern has been expressed over whether changes in diploid cell populations after serial passage in vitro accurately reflect human cellular aging in vivo. Studies were therefore undertaken to determine if significant differences would be observed in the in vitro lifespans of skin fibroblast cultures from old and young normal, non-hospitalized volunteers and to examine if parameters that change with in vitro "aging" are altered as a function of age in vivo. Statistically signigificant (P less than 0.05) decreases were found in the rate of fibroblast migration, onset of cell culture senescence, in vitro lifespan, cell population replication rate, and cell number at confluency of fibroblast cultures derived from the old donor group when compared to parallel cultures from young donors. No significant differences were observed in modal cell volumes and cellular macromolecular contents. The differences observed in cell cultures from old and young donors were quantitatively and qualitatively distinct from those cellular alterations observed in early and late passage WI-38 cells (in vitro "aging"). Therefore, although early and late passage cultures of human diploid cells may provide an important cell system for examining loss of replicative potential, fibroblast cultures derived from old and young human donors may be a more appropriate model system for studying human cellular aging. PMID:1068470
The effect of the rate of hydrostatic pressure depressurization on cells in culture.
Tworkoski, Ellen; Glucksberg, Matthew R; Johnson, Mark
2018-01-01
Changes in hydrostatic pressure, at levels as low as 10 mm Hg, have been reported in some studies to alter cell function in vitro; however, other studies have found no detectable changes using similar methodologies. We here investigate the hypothesis that the rate of depressurization, rather than elevated hydrostatic pressure itself, may be responsible for these reported changes. Hydrostatic pressure (100 mm Hg above atmospheric pressure) was applied to bovine aortic endothelial cells (BAECs) and PC12 neuronal cells using pressurized gas for periods ranging from 3 hours to 9 days, and then the system was either slowly (~30 minutes) or rapidly (~5 seconds) depressurized. Cell viability, apoptosis, proliferation, and F-actin distribution were then assayed. Our results did not show significant differences between rapidly and slowly depressurized cells that would explain differences previously reported in the literature. Moreover, we found no detectable effect of elevated hydrostatic pressure (with slow depressurization) on any measured variables. Our results do not confirm the findings of other groups that modest increases in hydrostatic pressure affect cell function, but we are not able to explain their findings.
NASA Technical Reports Server (NTRS)
Kimzey, S. L.; Burns, L. C.; Fischer, C. L.
1974-01-01
The significance of the transformations in red cell shape observed during the Skylab study must be considered relative to the limitation of man's participation in extended space flight missions. The results of this one study are not conclusive with respect to this question. Based on these examinations of red cells in normal, healthy men and based on other Skylab experiment data relative to the functional capacity of the red cells in vitro and the performance capacity of man as an integrated system, the changes observed would not appear to be the limiting factor in determining man's stay in space. However, the results of this experiment and the documented red cell mass loss during space flight raise serious questions at this time relative to the selection criteria utilized for passengers and crews of future space flights. Until the specific cause and impact of the red cell shape change on cell survival in vivo can be resolved, individuals with diagnosed hematologic abnormalities should not be considered as prime candidates for missions, especially those of longer duration.
The effect of the rate of hydrostatic pressure depressurization on cells in culture
Tworkoski, Ellen; Glucksberg, Matthew R.
2018-01-01
Changes in hydrostatic pressure, at levels as low as 10 mm Hg, have been reported in some studies to alter cell function in vitro; however, other studies have found no detectable changes using similar methodologies. We here investigate the hypothesis that the rate of depressurization, rather than elevated hydrostatic pressure itself, may be responsible for these reported changes. Hydrostatic pressure (100 mm Hg above atmospheric pressure) was applied to bovine aortic endothelial cells (BAECs) and PC12 neuronal cells using pressurized gas for periods ranging from 3 hours to 9 days, and then the system was either slowly (~30 minutes) or rapidly (~5 seconds) depressurized. Cell viability, apoptosis, proliferation, and F-actin distribution were then assayed. Our results did not show significant differences between rapidly and slowly depressurized cells that would explain differences previously reported in the literature. Moreover, we found no detectable effect of elevated hydrostatic pressure (with slow depressurization) on any measured variables. Our results do not confirm the findings of other groups that modest increases in hydrostatic pressure affect cell function, but we are not able to explain their findings. PMID:29315329
Rapid determination of antibiotic resistance in E. coli using dielectrophoresis
NASA Astrophysics Data System (ADS)
Hoettges, Kai F.; Dale, Jeremy W.; Hughes, Michael P.
2007-09-01
In recent years, infections due to antibiotic-resistant strains of bacteria such as methillicin-resistant Staphylococcus aureus and ciprofloxacin-resistant Escherichia coli are on the rise, and with them the demand for rapid antibiotic testing is also rising. Conventional tests, such as disc diffusion testing, require a primary sample to be tested in the presence of a number of antibiotics to verify which antibiotics suppress growth, which take approximately 24 h to complete and potentially place the patient at severe risk. In this paper we describe the use of dielectrophoresis as a rapid marker of cell death, by detecting changes in the electrophysiology of the cell caused by the administration of an antibiotic. In contrast to other markers, the electrophysiology of the cell changes rapidly during cell death allowing live cells to be distinguished from dead (or dying) cells without the need for culturing. Using polymyxin B as an example antibiotic, our studies indicate that significant changes in cell characteristics can be observed as soon as 1 h passes after isolating a culture from nutrient broth.
Elliott, D A; Nelson, R W; Feldman, E C; Neal, L A
1997-09-15
To characterize glycosylated hemoglobin (GHb) concentrations in the blood of dogs with disorders that may affect serum glucose or blood GHb concentrations, and to determine whether changes in GHb concentration correlate with changes in control of diabetes in dogs. Prospective study. 63 healthy dogs, 9 dogs with anemia, 24 dogs with untreated hyperadrenocorticism, 12 dogs with pancreatic beta-cell neoplasia, 23 dogs with newly diagnosed diabetes mellitus, and 77 diabetic dogs treated with insulin. Control of diabetes in dogs treated with insulin was classified as good or poor on the basis of history, physical examination findings, changes in body weight, and measurement of serum glucose concentrations Sequential evaluations of control were performed and GHb concentration in blood was measured, by means of affinity chromatography, for 5 untreated diabetic dogs before and after initiating insulin treatment, for 10 poorly controlled diabetic dogs before and after increasing insulin dosage, and for 5 diabetic dogs before and after pancreatic islet cell transplantation. Mean (+/-SD) GHb concentration was 3.3 +/- 0.8% in the blood of healthy dogs. Compared with results from healthy dogs, mean GHb concentration was significantly lower in the blood of dogs with anemia and pancreatic beta-cell neoplasia and significantly higher in the blood of untreated diabetic dogs. Mean GHb concentration was significantly higher in the blood of 46 poorly controlled diabetic dogs, compared with 31 well-controlled diabetic dogs (7.3 +/- 1.8 vs 5.7 +/- 1.7%, respectively). Mean GHb concentration in blood decreased significantly in 5 untreated diabetic dogs after treatment (8.7 +/- 1.9 vs 5.3 +/- 1.9%). Mean GHb concentration in blood also decreased significantly in 10 poorly controlled diabetic dogs after control was improved and in 5 diabetic dogs after they had received a pancreatic islet cell transplant. Measurement of GHb concentration in blood may assist in monitoring control of diabetes in dogs.
Word, Beverly; Lyn-Cook, Lascelles E; Mwamba, Bibi; Wang, Honggang; Lyn-Cook, Beverly; Hammons, George
2013-01-01
Establishing early diagnostic markers of harm is critical for effective prevention programs and regulation of tobacco products. This study examined effects of cigarette smoke condensate (CSC) on expression and promoter methylation profile of critical genes (DAPK, ECAD, MGMT, and RASSF1A) involved in lung cancer development in different human lung cell lines. NL-20 cells were treated with 0.1-100 μg/ml of CSC for 24 to 72 hrs for short-term exposures. DAPK expression or methylation status was not significantly affected. However, CSC treatment resulted in changes in expression and promoter methylation profile of ECAD, MGMT, and RASSF1A. For chronic studies, cells were exposed to 1 or 10 μg/ml CSC up to 28 days. Cells showed morphological changes associated with transformation and changes in invasion capacities and global methylation status. This study provides critical data suggesting that epigenetic changes could serve as an early biomarker of harm due to exposure to cigarette smoke.
Microbially induced separation of quartz from hematite using sulfate reducing bacteria.
Prakasan, M R Sabari; Natarajan, K A
2010-07-01
Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment. The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation. 2010 Elsevier B.V. All rights reserved.
Understanding dynamic changes in live cell adhesion with neutron reflectometry
JUNGHANS, ANN; WALTMAN, MARY JO; SMITH, HILLARY L.; POCIVAVSEK, LUKA; ZEBDA, NOUREDDINE; BIRUKOV, KONSTANTIN; VIAPIANO, MARIANO; MAJEWSKI, JAROSLAW
2015-01-01
Neutron reflectometry (NR) was used to examine various live cells adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell – surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies. PMID:25705067
Alterations of the cytoskeleton in human cells in space proved by life-cell imaging.
Corydon, Thomas J; Kopp, Sascha; Wehland, Markus; Braun, Markus; Schütte, Andreas; Mayer, Tobias; Hülsing, Thomas; Oltmann, Hergen; Schmitz, Burkhard; Hemmersbach, Ruth; Grimm, Daniela
2016-01-28
Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin during the 24(th) DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31(st) parabola showing a clear up-regulation of cytoskeletal genes. Notably, during the rocket flight the FLUMIAS microscope reveals significant alterations of the cytoskeleton related to microgravity. Our findings clearly demonstrate the applicability of the FLUMIAS microscope for life-cell imaging during microgravity, rendering it an important technological advance in live-cell imaging when dissecting protein localization.
Alterations of the cytoskeleton in human cells in space proved by life-cell imaging
Corydon, Thomas J.; Kopp, Sascha; Wehland, Markus; Braun, Markus; Schütte, Andreas; Mayer, Tobias; Hülsing, Thomas; Oltmann, Hergen; Schmitz, Burkhard; Hemmersbach, Ruth; Grimm, Daniela
2016-01-01
Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin during the 24th DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31st parabola showing a clear up-regulation of cytoskeletal genes. Notably, during the rocket flight the FLUMIAS microscope reveals significant alterations of the cytoskeleton related to microgravity. Our findings clearly demonstrate the applicability of the FLUMIAS microscope for life-cell imaging during microgravity, rendering it an important technological advance in live-cell imaging when dissecting protein localization. PMID:26818711
Kreda, S M; Pasquini, J M; Soto, E F
1992-09-01
The phospholipid composition of isolated oligodendroglial cell perikarya was studied in normal rats during development and in 18 day old malnourished and hyperthyroid rats. Phosphatidyl choline and phosphatidyl ethanolamine were found to be the major phospholipid constituents of oligodendroglial cells. Phospholipid content increased during development, mainly due to an increase of the above mentioned phospholipids. The major changes were observed in sphingomyelin, phosphatidyl serine, phosphatidyl inositol and phosphatidyl ethanolamine between 18 and 30 days of age. The phospholipid and protein content per cell was significantly decreased in the oligodendroglial cells isolated from malnourished rats as compared to controls. When data were expressed as a function of total proteins, the composition was similar to that of normal animals. In the hyperthyroid rats on the other hand, there were no changes in the amount of phospholipids per cell, while phospholipids per milligram of total oligodendroglial cell protein were markedly decreased. The changes in myelin composition produced by hyperthyroidism that we have previously described, do not follow closely those produced by this experimental condition in oligodendroglial cells, suggesting that the metabolism of myelin might be to a certain extent, independent of that in the parent cell.
Walus, Marius; Kida, Elizabeth; Rabe, Ausma; Albertini, Giorgio; Golabek, Adam A
2016-01-01
Our previous study showed an improvement in locomotor deficits after voluntary lifelong running in Ts65Dn mice, an animal model for Down syndrome (DS). In the present study, we employed mouse microarrays printed with 55,681 probes in an attempt to identify molecular changes in the cerebellar transcriptome that might contribute to the observed behavioral benefits of voluntary long-term running in Ts65Dn mice. Euploid mice were processed in parallel for comparative purposes in some analyses. We found that running significantly changed the expression of 4,315 genes in the cerebellum of Ts65Dn mice, over five times more than in euploid animals, up-regulating 1,991 and down-regulating 2,324 genes. Functional analysis of these genes revealed a significant enrichment of 92 terms in the biological process category, including regulation of biosynthesis and metabolism, protein modification, phosphate metabolism, synaptic transmission, development, regulation of cell death/apoptosis, protein transport, development, neurogenesis and neuron differentiation. The KEGG pathway database identified 18 pathways that are up-regulated and two that are down-regulated by running that were associated with learning, memory, cell signaling, proteolysis, regeneration, cell cycle, proliferation, growth, migration, and survival. Of six mRNA protein products we tested by immunoblotting, four showed significant running-associated changes in their levels, the most prominent in glutaminergic receptor metabotropic 1, and two showed changes that were close to significant. Thus, unexpectedly, our data point to the high molecular plasticity of Ts65Dn mouse cerebellum, which translated into humans with DS, suggests that the motor deficits of individuals with DS could markedly benefit from prolonged exercise. Copyright © 2015 Elsevier B.V. All rights reserved.
Kuryliszyn-Moskal, A; Ciolkiewicz, M; Klimiuk, P A; Sierakowski, S
2009-01-01
To evaluate whether nailfold capillaroscopy (NC) changes are associated with the main serum endothelial cell activation markers and the disease activity of systemic lupus erythematosus (SLE). Serum levels of vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble E-selectin (sE-selectin), and soluble thrombomodulin (sTM) were determined by an enzyme-linked immunosorbent assay (ELISA) in 80 SLE patients and 33 healthy controls. Nailfold capillary abnormalities were seen in 74 out of 80 (92.5%) SLE patients. A normal capillaroscopic pattern or mild changes were found in 33 (41.25%) and moderate/severe abnormalities in 47 (58.75%) of all SLE patients. In SLE patients a capillaroscopic score >1 was more frequently associated with the presence of internal organ involvement (p < 0.001) as well as with immunosuppressive therapy (p < 0.01). Significant differences were found in VEGF (p < 0.001), ET-1 (p < 0.001), sE-selectin (p < 0.01), and sTM (p < 0.001) serum concentrations between SLE patients with a capillaroscopic score > 1 and controls. SLE patients with severe/moderate capillaroscopic abnormalities showed significantly higher VEGF serum levels than patients with mild changes (p < 0.001). Moreover, there was a significant positive correlation between the severity of capillaroscopic changes and the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) (p < 0.005) as well as between capillaroscopic score and VEGF serum levels (p < 0.001). Our findings confirm the usefulness of NC as a non-invasive technique for the evaluation of microvascular involvement in SLE patients. A relationship between changes in NC, endothelial cell activation markers and clinical features of SLE suggest an important role for microvascular abnormalities in clinical manifestation of the disease.
Smułek, Wojciech; Zdarta, Agata; Guzik, Urszula; Dudzińska-Bajorek, Beata; Kaczorek, Ewa
2015-07-01
The changes in cell surface properties of Rahnella sp. strain EK12 and modifications in genetic material after long-term contact with saponins and rhamnolipids, were investigated. Rhamnolipids caused a decrease of hydrophobicity in liquid cultures compared with saponins. On the other hand, in cultures with rhamnolipids, the addition of diesel oil results in a rapid rise of cell surface hydrophobicity. The similar effect was not so significant in the presence of saponins. For the bacteria grown in the presence of saponins or rhamnolipids, but without diesel oil, the ratio of unsaturated to saturated fatty acids decreased, in comparison to the control culture. The differences observed in hydrophobicity, zeta potential and fatty acids profiles, indicated various mechanisms of an interaction between a surfactant and a bacterial cells. The results have also shown an impact of the long-term contact on changes in genetic material of Rahnella sp. strain EK12 cells. Moreover, the presence of saponins led to significant increase of diesel oil biodegradation. Copyright © 2015 Elsevier GmbH. All rights reserved.
Scanning fluorescent microscopy is an alternative for quantitative fluorescent cell analysis.
Varga, Viktor Sebestyén; Bocsi, József; Sipos, Ferenc; Csendes, Gábor; Tulassay, Zsolt; Molnár, Béla
2004-07-01
Fluorescent measurements on cells are performed today with FCM and laser scanning cytometry. The scientific community dealing with quantitative cell analysis would benefit from the development of a new digital multichannel and virtual microscopy based scanning fluorescent microscopy technology and from its evaluation on routine standardized fluorescent beads and clinical specimens. We applied a commercial motorized fluorescent microscope system. The scanning was done at 20 x (0.5 NA) magnification, on three channels (Rhodamine, FITC, Hoechst). The SFM (scanning fluorescent microscopy) software included the following features: scanning area, exposure time, and channel definition, autofocused scanning, densitometric and morphometric cellular feature determination, gating on scatterplots and frequency histograms, and preparation of galleries of the gated cells. For the calibration and standardization Immuno-Brite beads were used. With application of shading compensation, the CV of fluorescence of the beads decreased from 24.3% to 3.9%. Standard JPEG image compression until 1:150 resulted in no significant change. The change of focus influenced the CV significantly only after +/-5 microm error. SFM is a valuable method for the evaluation of fluorescently labeled cells. Copyright 2004 Wiley-Liss, Inc.
Exocytosis from chromaffin cells: hydrostatic pressure slows vesicle fusion
Stühmer, Walter
2015-01-01
Pressure affects reaction kinetics because chemical transitions involve changes in volume, and therefore pressure is a standard thermodynamic parameter to measure these volume changes. Many organisms live in environments at external pressures other than one atmosphere (0.1 MPa). Marine animals have adapted to live at depths of over 7000 m (at pressures over 70 MPa), and microorganisms living in trenches at over 110 MPa have been retrieved. Here, kinetic changes in secretion from chromaffin cells, measured as capacitance changes using the patch-clamp technique at pressures of up to 20 MPa are presented. It is known that these high pressures drastically slow down physiological functions. High hydrostatic pressure also affects the kinetics of ion channel gating and the amount of current carried by them, and it drastically slows down synaptic transmission. The results presented here indicate a similar change in volume (activation volume) of 390 ± 57 Å3 for large dense-core vesicles undergoing fusion in chromaffin cells and for degranulation of mast cells. It is significantly larger than activation volumes of voltage-gated ion channels in chromaffin cells. This information will be useful in finding possible protein conformational changes during the reactions involved in vesicle fusion and in testing possible molecular dynamic models of secretory processes. PMID:26009771
Durrani, Zeeshan; Pillai, Sreerekha S.; Baird, Margaret; Shiels, Brian R.
2013-01-01
Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner. PMID:23840536
Lechuga-Sancho, Alfonso M; Arroba, Ana I; Frago, Laura M; García-Cáceres, Cristina; de Célix, Arancha Delgado-Rubín; Argente, Jesús; Chowen, Julie A
2006-11-01
Processes under hypothalamic control, such as thermogenesis, feeding behavior, and pituitary hormone secretion, are disrupted in poorly controlled diabetes, but the underlying mechanisms are poorly understood. Because glial cells regulate neurosecretory neurons through modulation of synaptic inputs and function, we investigated the changes in hypothalamic glia in rats with streptozotocin-induced diabetes mellitus. Hypothalamic glial fibrillary acidic protein (GFAP) levels decreased significantly 6 wk after diabetes onset. This was coincident with decreased GFAP immunoreactive surface area, astrocyte number, and the extension of GFAP immunoreactive processes/astrocyte in the arcuate nucleus. Cell death, analyzed by terminal deoxyuridine 5-triphosphate nick-end labeling and ELISA, increased significantly at 4 wk of diabetes. Proliferation, measured by Western blot for proliferating cell nuclear antigen and immunostaining for phosphorylated histone H-3, decreased in the hypothalamus of diabetic rats throughout the study, becoming significantly reduced by 8 wk. Both proliferation and death affected astroctyes because both phosphorylated histone H-3- and terminal deoxyuridine 5-triphosphate nick-end labeling-labeled cells were GFAP positive. Western blot analysis revealed that postsynaptic density protein 95 and the presynaptic proteins synapsin I and synaptotagmin increased significantly at 8 wk of diabetes, suggesting increased hypothalamic synaptic density. Thus, in poorly controlled diabetic rats, there is a decrease in the number of hypothalamic astrocytes that is correlated with modifications in synaptic proteins and possibly synaptic inputs. These morphological changes in the arcuate nucleus could be involved in neurosecretory and metabolic changes seen in diabetic animals.
Differential expression of connexin 43 in human autoimmune thyroid disease.
Jiang, Xiao-Yan; Feng, Xiao-Hong; Li, Guo-Yan; Zhao, Qian; Yin, Hui-Qing
2010-05-01
Gap junctions provide a pathway for cell-to-cell communication. Reduced thyroid epithelial cell-cell communication has been reported in some animal models of autoimmune thyroid disease. In order to assess whether this change was similar to human autoimmune thyroid disease, we identified some connexin proteins and their corresponding mRNA in human thyroid gland. The aim of our study was to explore the expression of connexin 43 (Cx43) in the thyroid gland from normal and diseased human thyroid tissue by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). The expression levels of Cx43 in Grave's disease were significantly increased in comparison with those of normal thyroid tissue. There was a significant decrease in expression of Cx43 in Hashimoto's thyroiditis, compared with normal thyroid tissue. These data indicate that changes of Cx43 expression in human autoimmune thyroid disease were associated with variations in thyroid function and hormone secretion. 2009 Elsevier GmbH. All rights reserved.
Orlova, Darya Y; Zimmerman, Noah; Meehan, Stephen; Meehan, Connor; Waters, Jeffrey; Ghosn, Eliver E B; Filatenkov, Alexander; Kolyagin, Gleb A; Gernez, Yael; Tsuda, Shanel; Moore, Wayne; Moss, Richard B; Herzenberg, Leonore A; Walther, Guenther
2016-01-01
Changes in the frequencies of cell subsets that (co)express characteristic biomarkers, or levels of the biomarkers on the subsets, are widely used as indices of drug response, disease prognosis, stem cell reconstitution, etc. However, although the currently available computational "gating" tools accurately reveal subset frequencies and marker expression levels, they fail to enable statistically reliable judgements as to whether these frequencies and expression levels differ significantly between/among subject groups. Here we introduce flow cytometry data analysis pipeline which includes the Earth Mover's Distance (EMD) metric as solution to this problem. Well known as an informative quantitative measure of differences between distributions, we present three exemplary studies showing that EMD 1) reveals clinically-relevant shifts in two markers on blood basophils responding to an offending allergen; 2) shows that ablative tumor radiation induces significant changes in the murine colon cancer tumor microenvironment; and, 3) ranks immunological differences in mouse peritoneal cavity cells harvested from three genetically distinct mouse strains.
Thermally induced changes of optical and vital parameters in human cancer cells
NASA Astrophysics Data System (ADS)
Dressler, C.; Schwandt, D.; Beuthan, J.; Mildaziene, V.; Zabarylo, U.; Minet, O.
2010-11-01
Minimally invasive laser-induced thermotherapy (LITT) presents an alternative method to conventional tumor therapeutically interventions, such as surgery, chemotherapy, radiotherapy or nuclear medicine. Optical tissue characteristics of tumor cells and their heat-induced changes are essential issues for controlling LITT progressions. Therefore, it is indispensable to exactly know the absorption coefficient μa, the scattering coefficient μs and the anisotropy factor g as well as their changes under rising temperatures in order to simulate the treatment parameters successfully. Optical parameters of two different cancer model tissues - breast cancer cells species MX1 and colon cancer cells species CX1 - were measured in the spectral range 400 - 1100 nm as well as in the temperature range 37 - 60°C. The absorption coefficient of both cell species was low throughout the spectral range analyzed, while μs of both species rose with increasing temperatures. The anisotropy factor g however dropped for both tissues with increasing temperatures. Light scatterings inside tissues proceeded continuously forward for all species tested. It was demonstrated that optical tissue properties undergo significant changes along with the vital status of the cells when the temperature increases.
Optical coherence tomography spectral analysis for detecting apoptosis in vitro and in vivo
NASA Astrophysics Data System (ADS)
Farhat, Golnaz; Giles, Anoja; Kolios, Michael C.; Czarnota, Gregory J.
2015-12-01
Apoptosis is a form of programmed cell death characterized by a series of predictable morphological changes at the subcellular level, which modify the light-scattering properties of cells. We present a spectroscopic optical coherence tomography (OCT) technique to detect changes in subcellular morphology related to apoptosis in vitro and in vivo. OCT data were acquired from acute myeloid leukemia (AML) cells treated with cisplatin over a 48-h period. The backscatter spectrum of the OCT signal acquired from the cell samples was characterized by calculating its in vitro integrated backscatter (IB) and spectral slope (SS). The IB increased with treatment duration, while the SS decreased, with the most significant changes occurring after 24 to 48 h of treatment. These changes coincided with striking morphological transformations in the cells and their nuclei. Similar trends in the spectral parameter values were observed in vivo in solid tumors grown from AML cells in mice, which were treated with chemotherapy and radiation. Our results provide a strong foundation from which future experiments may be designed to further understand the effect of cellular morphology and kinetics of apoptosis on the OCT signal and demonstrate the feasibility of using this technique in vivo.
van Huyssteen, Mea; Milne, Pieter J; Campbell, Eileen E; van de Venter, Maryna
2011-01-01
Diabetes mellitus is a growing problem in South Africa and of concern to traditional African health practitioners in the Nelson Mandela Metropole, because they experience a high incidence of diabetic cases in their practices. A collaborative research project with these practitioners focused on the screening of Bulbine frutescens, Ornithogalum longibracteatum, Ruta graveolens, Tarchonanthus camphoratus and Tulbaghia violacea for antidiabetic and cytotoxic potential. In vitro glucose utilisation assays with Chang liver cells and C2C12 muscle cells, and growth inhibition assays with Chang liver cells were conducted. The aqueous extracts of Bulbine frutescens (143.5%), Ornithogalum longibracteatum (131.9%) and Tarchonanthus camphoratus (131.5%) showed significant increased glucose utilisation activity in Chang liver cells. The ethanol extracts of Ruta graveolens (136.9%) and Tulbaghia violacea (140.5%) produced the highest increase in glucose utilisation in C2C12 muscle cells. The ethanol extract of Bulbine frutescens produced the most pronounced growth inhibition (33.3%) on Chang liver cells. These findings highlight the potential for the use of traditional remedies in the future for the management of diabetes and it is recommended that combinations of these plants be tested in future.
Effects of zinc deficiency on the vallate papillae and taste buds in rats.
Chou, H C; Chien, C L; Huang, H L; Lu, K S
2001-05-01
Zinc deficiency is associated with multiple clinical complications, including taste disturbance, anorexia, growth retardation, skin changes, and hypogonadism. We investigated the zinc-deficiency-induced morphologic changes in the vallate taste buds of weanling and young adult male Wistar rats. A total of 24 weanling and 30 young adult rats were used. Each age group was further divided into a control group fed a zinc-adequate (50 ppm) diet, a zinc-deficient (< 1 ppm) diet group, and a zinc-adequate pair-fed group who were fed the same amount of food as that taken by the zinc-deficient group. Weanling rats were fed for 4 weeks and young adult rats were fed for 6 weeks. The morphometry and morphologic changes of vallate taste buds were analyzed using light and transmission electron microscopy. Light microscopy revealed no significant difference in papilla size and morphology among the various groups. In both weanling and young adult rats in the zinc-deficient diet and pair-fed groups, the number of taste buds per papilla (per animal) and the average profile area of the taste bud were significantly smaller than those of the corresponding controls (p < 0.05). Ultrastructural changes were seen only in the taste buds of weanling rats fed the zinc-deficient diet, with derangement of the architecture of the taste bud and widening of the intercellular space between taste bud cells. The proportion of type I taste bud cells in the taste buds of weanling rats fed the zinc-deficient diet decreased from 59% to 39%, and that of type II taste bud cells decreased from 25% to 12%. No obvious changes in the ultrastructure of type III taste bud cells were observed. The main effects of zinc deficiency in weanling and young adult rats and in adequate diet pair-fed rats were changes in the number and size of taste buds, and fine structure changes in the taste bud cells, especially during the accelerated growth stage after weaning.
Shah, Punit P.; Patel, Apurva R.; Godugu, Chandraiah; Safe, Stephen; Katiyar, Santosh K.; Singh, Mandip
2013-01-01
Background The objective of this study was to demonstrate the anti-skin cancer and chemopreventive potential of 1,1-bis(3′-indolyl)-1-(p-chlorophenyl methane) (DIM-D) using an in vitro model. Methods In vitro cell cytotoxicity and viability assays were carried out in A431 human epidermoid carcinoma cell line and normal human epidermal keratinocytes (NHEK) respectively by crystal violet staining. Apoptosis induction in A431 cells (DIM-D treated) and NHEK cells pretreated with DIM-D (2 hr) prior to UVB irradiation, were assessed. The accumulation of reactive oxygen species (ROS) in DIM-D pretreated NHEK cells (2 hr) prior to UVB exposure was also determined. Immunocytochemistry and western blot analysis was performed to determine cleaved caspase 3 and DNA damage markers in DIM-D treated A431 cells and in DIM-D pretreated NHEK cells prior to UVB irradiation. Results The IC50 values of DIM-D were 68.7±7.3, 48.3±10.1 and 11.5±3.1 μM whilst for Epigallocatechin gallate (EGCG) were 419.1±8.3, 186.1±5.2 and 56.7±3.1 μM for 24, 48 and 72 hr treatments respectively. DIM-D exhibited a significantly (p<0.05) greater induction of DNA fragmentation in A431 cells compared to EGCG with percent cell death of 38.9. In addition, DIM-D induced higher expression in A431 cells compared to EGCG of cleaved caspase 3 (3.0-fold vs. 2.4-fold changes), Nurr1 (2.7-fold vs. 1.7-fold changes) and NFκB (1.3-fold vs. 1.1-fold changes). DIM-D also exhibited chemopreventive activity in UVB-irradiated NHEK cells by significantly (p<0.05) reducing UVB-induced ROS formation and apoptosis compared to EGCG. Additionally, DIM-D induced expression of Nurr1 but reduced expression of 8-OHdG significantly in UVB-irradiated NHEK cells compared to EGCG and UV only. Conclusion Our results suggest that DIM-D exhibits Nurr1-dependent transactivation in the induction of apoptosis in A431 cells and it protects NHEK cells against UVB-induced ROS formation and DNA damage. PMID:23950896
In Vitro Modeling of Repetitive Motion Injury and Myofascial Release
Meltzer, Kate R.; Cao, Thanh V.; Schad, Joseph F.; King, Hollis; Stoll, Scott T.; Standley, Paul R.
2010-01-01
Objective In this study we modeled repetitive motion strain (RMS) and myofascial release (MFR) in vitro to investigate possible cellular and molecular mechanisms to potentially explain the immediate clinical outcomes associated with RMS and MFR. Method Cultured human fibroblasts were strained with 8 hours RMS, 60 seconds MFR and combined treatment; RMS+MFR. Fibroblasts were immediately sampled upon cessation of strain and evaluated for cell morphology, cytokine secretions, proliferation, apoptosis, and potential changes to intracellular signaling molecules. Results RMS induced fibroblast elongation of lameopodia, cellular decentralization, reduction of cell to cell contact and significant decreases in cell area to perimeter ratios compared to all other experimental groups (p<0.0001). Cellular proliferation indicated no change among any treatment group; however RMS resulted in a significant increase in apoptosis rate (p<0.05) along with increases in death-associated protein kinase (DAPK) and focal adhesion kinase (FAK) phosphorylation by 74% and 58% respectively, when compared to control. These responses were not observed in the MFR and RMS+MFR group. Of the twenty cytokines measured there was a significant increase in GRO secretion in the RMS+MFR group when compared to control and MFR alone. Conclusion Our modeled injury (RMS) appropriately displayed enhanced apoptosis activity and loss of intercellular integrity that is consistent with pro-apoptotic DAPK2 and FAK signaling. Treatment with MFR following RMS resulted in normalization in apoptotic rate and cell morphology both consistent with changes observed in DAPK2. These in vitro studies build upon the cellular evidence base needed to fully explain clinical efficacy of manual manipulative therapies. PMID:20226363
Somsouk, Ma; Dunham, Richard M.; Cohen, Michelle; Albright, Rebecca; Abdel-Mohsen, Mohamed; Liegler, Teri; Lifson, Jeffrey; Piatak, Michael; Gorelick, Robert; Huang, Yong; Wu, Yuaner; Hsue, Priscilla Y.; Martin, Jeffrey N.; Deeks, Steven G.; McCune, Joseph M.; Hunt, Peter W.
2014-01-01
The anti-inflammatory agent, mesalamine (5-aminosalicylic acid) has been shown to decrease mucosal inflammation in ulcerative colitis. The effect of mesalamine in HIV-infected individuals, who exhibit abnormal mucosal immune activation and microbial translocation (MT), has not been established in a placebo-controlled trial. We randomized 33 HIV-infected subjects with CD4 counts <350 cells/mm3 and plasma HIV RNA levels <40 copies/ml on antiretroviral therapy (ART) to add mesalamine vs. placebo to their existing regimen for 12 weeks followed by a 12 week crossover to the other arm. Compared to placebo-treated subjects, mesalamine-treated subjects did not experience any significant change in the percent CD38+HLA-DR+ peripheral blood CD4+ and CD8+ T cells at week 12 (P = 0.38 and P = 0.63, respectively), or in the CD4+ T cell count at week 12 (P = 0.83). The percent CD38+HLA-DR+ CD4+ and CD8+ T cells also did not change significantly in rectal tissue (P = 0.86, P = 0.84, respectively). During the period of mesalamine administration, plasma sCD14, IL-6, D-dimer, and kynurenine to tryptophan ratio were not changed significantly at week 12 and were similarly unchanged at week 24. This study suggests that, at least under the conditions studied, the persistent immune activation associated with HIV infection is not impacted by the anti-inflammatory effects of mesalamine. Trial Registration ClinicalTrials.gov NCT01090102 PMID:25545673
Ocular surface changes in thyroid eye disease.
Ismailova, Dilyara S; Fedorov, Anatoly A; Grusha, Yaroslav O
2013-04-01
To study the incidence and risk factors of ocular surface damage in thyroid eye disease (TED) and to determine histological changes underlying positive vital staining in this condition. Forty-six patients (92 eyes) with TED were included in this study. Routine ophthalmologic examination, Schirmer test I, vital staining and corneal sensitivity were performed. Fifteen patients with positive vital staining underwent impression cytology and incisional biopsy. Positive vital staining with lissamine green was observed in 56 eyes (60.9%), 30 patients (65.2%). The average degree of staining was 4.57 ± 0.44 (National Eye Institute Workshop grading system). Severe dry eye syndrome was found in 16%. The following histological changes of conjunctiva were revealed: significant epithelial dystrophy with cell polymorphism, goblet cells loss, excessive desquamation and epithelial keratinization with local leukocytic infiltration of substantia propria. According to our results dry eye syndrome is present in 65.2% of patients (60.9% eyes) with TED. Significant risk factors of ocular surface damage in TED were exophthalmos, lagophthalmos, palpebral fissure height and lower lid retraction. Positive conjunctival staining results from punctuate epithelial erosions and excessive desquamation of superficial cells. Histopathologic changes detected in conjunctiva consistent with dry eye and are not specific for TED.
Oyewopo, A O; Olaniyi, S K; Oyewopo, C I; Jimoh, A T
2017-12-01
Cell phones have become an integral part of everyday life. As cell phone usage has become more widespread, concerns have increased regarding the harmful effects of radiofrequency electromagnetic radiation from these devices. The current study was undertaken to investigate the effects of the emitted radiation by cell phones on testicular histomorphometry and biochemical analyses. Adult male Wistar rats weighing 180-200 g were randomly allotted to control, group A (switched off mode exposure), group B (1-hr exposure), group C (2-hr exposure) and group D (3-hr exposure). The animals were exposed to radiofrequency electromagnetic radiation of cell phone for a period of 28 days. Histomorphometry, biochemical and histological investigations were carried out. The histomorphometric parameters showed no significant change (p < .05) in the levels of germinal epithelial diameter in all the experimental groups compared with the control group. There was no significant change (p < .05) in cross-sectional diameter of all the experimental groups compared with the control group. Group D rats showed a significant decrease (p ˂ .05) in lumen diameter compared with group B rats. There was an uneven distribution of germinal epithelial cells in groups B, C and D. However, there was degeneration of the epithelia cells in group D when compared to the control and group B rats. Sera levels of malondialdehyde (MDA) and superoxide dismutase (SOD), which are markers of reactive oxygen species, significantly increased (MDA) and decreased (SOD), respectively, in all the experimental groups compared with the control group. Also sera levels of gonadotropic hormones (FSH, LH and testosterone) significantly decreased (p < .05) in groups C and D compared with the control group. The study demonstrates that chronic exposure to radiofrequency electromagnetic radiation of cell phone leads to defective testicular function that is associated with increased oxidative stress and decreased gonadotropic hormonal profile. © 2017 Blackwell Verlag GmbH.
Changes of wood cell walls in response to hygro-mechanical steam treatment.
Guo, Juan; Song, Kunlin; Salmén, Lennart; Yin, Yafang
2015-01-22
The effects of compression combined with steam treatment (CS-treatment), i.e. a hygro-mechanical steam treatment on Spruce wood were studied on a cell-structure level to understand the chemical and physical changes of the secondary cell wall occurring under such conditions. Specially, imaging FT-IR microscopy, nanoindentation and dynamic vapour absorption were used to track changes in the chemical structure, in micromechanical and hygroscopic properties. It was shown that CS-treatment resulted in different changes in morphological, chemical and physical properties of the cell wall, in comparison with those under pure steam treatment. After CS-treatment, the cellular structure displayed significant deformations, and the biopolymer components, e.g. hemicellulose and lignin, were degraded, resulting in decreased hygroscopicity and increased mechanical properties of the wood compared to both untreated and steam treated wood. Moreover, CS-treatment resulted in a higher degree of degradation especially in earlywood compared to a more uniform behaviour of wood treated only by steam. Copyright © 2014 Elsevier Ltd. All rights reserved.
Soares, Diana Gabriela; Basso, Fernanda Gonçalves; Hebling, Josimeri; de Souza Costa, Carlos Alberto
2014-02-01
To assess the whitening effectiveness and the trans-enamel/trans-dentinal toxicity of experimental tooth-bleaching protocols on pulp cells. Enamel/dentine discs individually adapted to trans-well devices were placed on cultured odontoblast-like cells (MDPC-23) or human dental pulp cells (HDPCs). The following groups were formed: G1 - no treatment (control); G2 to G4 - 35% H2O2, 3 × 15, 1 × 15, and 1 × 5 min, respectively; and G5 to G7 - 17.5% H2O2, 3 × 15, 1 × 15, and 1 × 5 min, respectively. Cell viability and morphology were evaluated immediately after bleaching (T1) and 72 h thereafter (T2). Oxidative stress and cell membrane damage were also assessed (T1). The amount of H2O2 in culture medium was quantified (Mann-Whitney; α=5%) and colour change (ΔE) of enamel was analysed after 3 sessions (Tukey's test; α=5%). Cell viability reduction, H2O2 diffusion, cell morphology alteration, oxidative stress, and cell membrane damage occurred in a concentration-/time-dependent fashion. The cell viability reduction was significant in all groups for HDPCs and only for G2, G3, and G5 in MDPC-23 cells compared with G1. Significant cell viability and morphology recovery were observed in all groups at T2, except for G2 in HDPCs. The highest ΔE value was found in G2. However, all groups presented significant ΔE increases compared with G1. Shortening the contact time of a 35%-H2O2 gel for 5 min, or reducing its concentration to 17.5% and applying it for 45, 15, or 5 min produce gradual tooth colour change associated with reduced trans-enamel and trans-dentinal cytotoxicity to pulp cells. The experimental protocols tested in the present study provided significant tooth-bleaching improvement associated with decreased toxicity to pulp cells, which may be an interesting alternative to be tested in clinical situations intended to reduce tooth sensitivity and pulp damage. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enhancement of bile resistance in Lactobacillus plantarum strains by soy lecithin.
Hu, B; Tian, F; Wang, G; Zhang, Q; Zhao, J; Zhang, H; Chen, W
2015-07-01
This study evaluated the effect of soy lecithin on the bile resistance of Lactobacillus plantarum. Six strains were cultured in MRS broth supplemented with soy lecithin at different concentrations. The strains incubated in MRS broth with 1·0% soy lecithin showed no inhibitory effect on cell growth. After culturing in MRS broth with 0·2-1·0% soy lecithin, the survival rate of harvested cells increased significantly (P < 0·05) in the 0·3% bile challenge compared with the no added soy lecithin group. The cells incubated with 0·6% soy lecithin were able to grow in an MRS broth with a higher bile salt content. The surface hydrophobicity and cell leakage in the bile challenge were assessed to reveal the physical changes caused by the addition of soy lecithin. The cell surface hydrophobicity was enhanced and the membrane integrity in the bile challenge increased after culturing with soy lecithin. A shift in the fatty acid composition was also observed, illustrating the cell membrane change in the soy lecithin culture. In this study, we report for the first time the beneficial effect of adding soy lecithin to an MRS broth on subsequent bile tolerance of Lactobacillus plantarum. Soy lecithin had no inhibitory effect on strain viability but significantly enhanced bile resistance. Surface hydrophobicity and cell integrity increased in strains cultured with soy lecithin. The observed shift in the cell fatty acid composition indicated changes to the cell membrane. As soy lecithin is safe for use in the food industry, its protective effects can be harnessed for the development of bile-sensitive strains with health-benefit functions for use in probiotic products. © 2015 The Society for Applied Microbiology.
Biochemistry and Cell Wall Changes Associated with Noni (Morinda citrifolia L.) Fruit Ripening.
Cárdenas-Coronel, Wendy G; Carrillo-López, Armando; Vélez de la Rocha, Rosabel; Labavitch, John M; Báez-Sañudo, Manuel A; Heredia, José B; Zazueta-Morales, José J; Vega-García, Misael O; Sañudo-Barajas, J Adriana
2016-01-13
Quality and compositional changes were determined in noni fruit harvested at five ripening stages, from dark-green to thaslucent-grayish. Fruit ripening was accompanied by acidity and soluble solids accumulation but pH diminution, whereas the softening profile presented three differential steps named early (no significant softening), intermediate (significant softening), and final (dramatic softening). At early step the extensive depolymerization of hydrosoluble pectins and the significantly increment of pectinase activities did not correlate with the slight reduction in firmness. The intermediate step showed an increment of pectinases and hemicellulases activities. The final step was accompanied by the most significant reduction in the yield of alcohol-insoluble solids as well as in the composition of uronic acids and neutral sugars; pectinases increased their activity and depolymerization of hemicellulosic fractions occurred. Noni ripening is a process conducted by the coordinated action of pectinases and hemicellulases that promote the differential dissasembly of cell wall polymers.
Qu, Bo; Sheng, Guan-Nan; Yu, Fei; Chen, Guan-Nan; Lv, Qi; Mao, Zhong-Peng; Guo, Long; Lv, Yi
2016-11-20
To explore the inhibitory effect of migration-inducing gene 7 (Mig-7) gene silencing induced by retroviral-mediated small hairpin RNA (shRNA) on vasculogenic mimicry (VM), invasion and metastasis of human hepatocellular carcinoma (HCC) cells in vitro. Two target sequences (Mig-7 shRNA-1 and Mig-7 shRNA-2) and one negative control sequence (Mig-7 shRNA-N) were synthesized. The recombinant retroviral vectors carrying Mig-7 shRNA were constructed, and HCC cell line MHCC-97H were transfected with Mig-7 shRNA-1, Mig-7 shRNA-2, Mig-7 shRNA-N, or the empty vector, or treated with 125 µg/mL recombinant human endostatin (ES). Mig-7 expression in the treated cells was detected using semi-quantitative PCR and Western blotting. The inhibitory effect of Mig-7 silencing on VM formation was investigated in a 3-dimensional cell culture system; the changes in cell adhesion, invasion and migration were assessed with intercellular adhesion assay, Transwell invasion assay and Transwell migration assay, respectively. The expression of Mig-7 at both mRNA and protein levels decreased significantly, VM formation, invasion and metastasis were suppressed, while intercellular adhesion increased significantly in MHCC-97H cells in Mig-7 shRNA-1 and Mig-7 shRNA-2 groups (P<0.05); such changes were not observed in cells transfected with Mig-7 shRNA-N or the empty vector, nor in cells treated with ES. Mig-7 silencing by retroviral-mediated shRNA significantly inhibits VM formation, invasion and metastasis and increases the intercellular adhesion of the HCC cells, while ES does not have such inhibitory effects.
Ackermann, Katrin; Revell, Victoria L.; Lao, Oscar; Rombouts, Elwin J.; Skene, Debra J.; Kayser, Manfred
2012-01-01
Study Objectives: The sleep/wake cycle is accompanied by changes in circulating numbers of immune cells. The goal of this study was to provide an in-depth characterization of diurnal rhythms in different blood cell populations and to investigate the effect of acute sleep deprivation on the immune system, as an indicator of the body's acute stress response. Design: Observational within-subject design. Setting: Home environment and Clinical Research Centre. Participants: 15 healthy male participants aged 23.7 ± 5.4 (standard deviation) yr. Interventions: Total sleep deprivation. Measurements and Results: Diurnal rhythms of several blood cell populations were assessed under a normal sleep/wake cycle followed by 29 hr of extended wakefulness. The effect of condition (sleep versus sleep deprivation) on peak time and amplitude was investigated. Interindividual variation of, and the level of correlation between, the different cell populations was assessed. Comprehensive nonlinear curve fitting showed significant diurnal rhythms for all blood cell types investigated, with CD4 (naïve) cells exhibiting the most robust rhythms independent of condition. For those participants exhibiting significant diurnal rhythms in blood cell populations, only the amplitude of the granulocyte rhythm was significantly reduced by sleep deprivation. Granulocytes were the most diverse population, being most strongly affected by condition, and showed the lowest correlations with any other given cell type while exhibiting the largest interindividual variation in abundance. Conclusions: Granulocyte levels and diurnal rhythmicity are directly affected by acute sleep deprivation; these changes mirror the body's immediate immune response upon exposure to stress. Citation: Ackermann K; Revell VL; Lao O; Rombouts EJ; Skene DJ; Kayser M. Diurnal rhythms in blood cell populations and the effect of acute sleep deprivation in healthy young men. SLEEP 2012;35(7):933-940. PMID:22754039
Intermittent pressure decreases human keratinocyte proliferation in vitro.
Nasca, Maria R; Shih, Alan T; West, Dennis P; Martinez, Wanda M; Micali, Giuseppe; Landsman, Adam S
2007-01-01
The aim of this study was to investigate the correlation between pressure changes and keratinocyte proliferation by determining whether keratinocytes exposed to altered mechanical pressures would proliferate at different rates compared to control cells not subjected to pressure changes. Tissue culture flasks of human keratinocytes plated at an approximate density of 15,000 cells/cm(2) undergoing an intermittent cyclic pressure of 362 mm Hg at a frequency of 2.28 or 5.16 cycles/min (0.038 or 0.086 Hz) for 8 h were compared to control flasks grown at ambient room pressure. An in-line pressure transducer was used to monitor and adjust pressure within the cell chambers, using a solenoid valve. A thymidine incorporation assay assessed the amount of cell proliferation in each set of experiments. Differences in proliferation between keratinocytes subjected to cyclic pressure changes and control cells were found to be statistically significant (p < 0.05) in 4 out of 5 proliferation assays. Also, a higher frequency of pressure changes consistently generated a reduced proliferation rate compared to that seen in cells exposed to a lower frequency of pressure changes. These data indicate that keratinocytes undergoing intermittent pressure changes exhibit decreased proliferation rates compared to controls. Furthermore, an increased frequency rate seems to have a greater effect on proliferation than low-frequency rate pressure changes, suggesting that the stress caused by frequently changed pressure may play a greater role in reducing keratinocyte proliferation than the actual magnitude of load applied to the cells. Our results support the current treatment protocol of reducing speed and duration of walking on the site of the wound to promote healing of foot ulcers. (c) 2007 S. Karger AG, Basel.
Banek, L; Posinovec, J
1980-09-15
The appearance of the Sertoli cells in cytological smears of tests with depopulation of the seminiferous epithelium is described. The mean values of the lengths and widths of the Sertoli cell nuclei in smears differed significantly between the depopulation and the control group (p < 0.01).
Neuropathology of Cervical Dystonia
Prudente, C.N.; Pardo, C.A.; Xiao, J.; Hanfelt, J.; Hess, E.J.; LeDoux, M.S.; Jinnah, H.A.
2012-01-01
The aim of this study was to search for neuropathological changes in postmortem brain tissue of individuals with cervical dystonia (CD). Multiple regions of formalin-preserved brains were collected from patients with CD and controls and examined with an extensive battery of histopathological stains in a two-stage study design. In stage one, 4 CD brains underwent a broad screening neuropathological examination. In stage two, these 4 CD brains were combined with 2 additional CD brains, and the subjective findings were quantified and compared to 16 age-matched controls. The initial subjective neuropathological assessment revealed only two regions with relatively consistent changes. The substantia nigra had frequent ubiquitin-positive intranuclear inclusions known as Marinesco bodies. Additionally, the cerebellum showed patchy loss of Purkinje cells, areas of focal gliosis and torpedo bodies. Other brain regions showed minor or inconsistent changes. In the second stage of the analysis, quantitative studies failed to reveal significant differences in the numbers of Marinesco bodies in CD versus controls, but confirmed a significantly lower Purkinje cell density in CD. Molecular investigations revealed 4 of the CD cases and 2 controls to harbor sequence variants in non-coding regions of THAP1, and these cases had lower Purkinje cell densities regardless of whether they had CD. The findings suggest that subtle neuropathological changes such as lower Purkinje cell density may be found in primary CD when relevant brain regions are investigated with appropriate methods. PMID:23195594
[Effect of infrasound on ultrastructure and permeability of rat's blood-retinal barrier].
Qiu, Ping; Zhang, Zuoming; Jiang, Yong; Gou, Qun; Wang, Bing; Gou, Lin; Chen, Jingzao
2002-08-01
To investigate the possible effect of infrasound on the ultra-structure and permeability of rat's blood-retinal barrier (BRB). Ultra-structural changes of BRB were observed through the injection of lanthanum nitrate (La), which was used as a tracer to demonstrate the breakdown of the BRB, into blood vessels. Fifteen mature male rats divided into 5 groups were exposed to infrasound at a 8 Hz frequency, 130 dB sound pressure level in a pressure chamber especially designed for the experiment for 0, 1, 7, 14, 21 days, respectively. Under the action of infrasound, along with the prolongation of exposure, the damage of BRB was severer and severer. On the 1st day, there was no significant change in La leakage. On the 7th day, La diffused in the interphotoreceptor space at nuclear level. On the 14th day, La granules could be seen in the space of nervous cells. Finally, on the 21st day, La was found between synapses, synapses and nerve cells, as well as between the nerve cells and supporting cells, then sometimes reached vitreous body. Under the electron microscope, there were no significant morphological changes, but changes related to metabolism, such as edematous mitochondria, dilated rough endoplasmic reticula, precipitation of glycogen grandules, widening of perinuclear space, etc. The results thus suggest that the exposure to infrasound cause the breakdown of rat's blood-retinal barrier and visual impairment.
MLF1 interacting protein: a potential gene therapy target for human prostate cancer?
Zhang, Lei; Ji, Guoqing; Shao, Yuzhang; Qiao, Shaoyi; Jing, Yuming; Qin, Rongliang; Sun, Huiming; Shao, Chen
2015-02-01
Here, we investigated the role of one gene that has been previously associated with human prostate carcinoma cells-myelodysplasia/myeloid leukemia factor 1 interacting protein (MLF1IP)-in order to better ascertain its role in human prostate carcinogenesis. The prostate cancer cell line PC-3 was lentivirally transfected to silence endogenous MLF1IP gene expression, which was confirmed by real-time quantitative PCR (RT-qPCR). Cellomics ArrayScan VTI imaging and MTT assays were conducted to assess cell proliferation. Cell cycle phase arrest and apoptosis were assayed by flow cytometry. Colony formation was assessed by fluorescence microscopy. MLF1IP gene expression was also analyzed by RT-qPCR in sixteen prostate cancer tissue samples and six healthy control prostate tissue samples from human patients. Cell proliferation was significantly inhibited in MLF1IP-silenced cells relative to control cells. G1 phase, S and G2/M phase cell counts were not significantly changed in MLF1IP-silenced cells relative to control cells. Apoptosis was significantly increased in MLF1IP-silenced cells, while MLF1IP-silenced cells displayed a significantly reduced number of cell colonies, compared to control cells. The 16 human prostate cancer tissue samples revealed no clear upregulation or downregulation in MLF1IP gene expression. MLF1IP significantly promotes prostate cancer cell proliferation and colony formation and significantly inhibits apoptosis without affecting cell cycle phase arrest. Further study is required to conclusively determine whether MLF1IP is upregulated in human prostate cancer tumors and to determine the precise cellular mechanism(s) for MLF1IP in prostate carcinogenesis.
Zenoni, Sara; Fasoli, Marianna; Tornielli, Giovanni Battista; Dal Santo, Silvia; Sanson, Andrea; de Groot, Peter; Sordo, Sara; Citterio, Sandra; Monti, Francesca; Pezzotti, Mario
2011-08-01
• Expansins are cell wall proteins required for cell enlargement and cell wall loosening during many developmental processes. The involvement of the Petunia hybrida expansin A1 (PhEXPA1) gene in cell expansion, the control of organ size and cell wall polysaccharide composition was investigated by overexpressing PhEXPA1 in petunia plants. • PhEXPA1 promoter activity was evaluated using a promoter-GUS assay and the protein's subcellular localization was established by expressing a PhEXPA1-GFP fusion protein. PhEXPA1 was overexpressed in transgenic plants using the cauliflower mosaic virus (CaMV) 35S promoter. Fourier transform infrared (FTIR) and chemical analysis were used for the quantitative analysis of cell wall polymers. • The GUS and GFP assays demonstrated that PhEXPA1 is present in the cell walls of expanding tissues. The constitutive overexpression of PhEXPA1 significantly affected expansin activity and organ size, leading to changes in the architecture of petunia plants by initiating premature axillary meristem outgrowth. Moreover, a significant change in cell wall polymer composition in the petal limbs of transgenic plants was observed. • These results support a role for expansins in the determination of organ shape, in lateral branching, and in the variation of cell wall polymer composition, probably reflecting a complex role in cell wall metabolism. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Teo, Ailing; Lim, Mayasari; Weihs, Daphne
2015-07-16
Embryonic stem cells (ESCs) grow into three-dimensional (3D) spheroid structures en-route to tissue growth. In vitro spheroids can be controllably induced on a two-dimensional (2D) substrate with high viability. Here we use a method for inducing pluripotent embryoid body (EB) formation on flat polyacrylamide gels while simultaneously evaluating the dynamic changes in the mechano-biology of the growing 3D spheroids. During colony growth in 3D, pluripotency is conserved while the spheroid-substrate interactions change significantly. We correlate colony-size, cell-applied traction-forces, and expressions of cell-surface molecules indicating cell-cell and cell-substrate interactions, while verifying pluripotency. We show that as the colony size increases with time, the stresses applied by the spheroid to the gel decrease in the 3D growing EBs; control cells growing in 2D-monolayers maintain unvarying forces. Concurrently, focal-adhesion mediated cell-substrate interactions give way to E-cadherin cell-cell connections, while pluripotency. The mechano-biological changes occurring in the growing embryoid body are required for stabilization of the growing pluripotent 3D-structure, and can affect its potential uses including differentiation. This could enable development of more effective expansion, differentiation, and separation approaches for clinical purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hernández-Bule, María Luisa; Cid, María Antonia; Trillo, María Angeles; Leal, Jocelyne; Ubeda, Alejandro
2010-12-01
The capacitive-resistive electric transfer (CRet) therapy is a non-invasive technique that applies electrical currents of 0.4-0.6 MHz to the treatment of musculoskeletal injuries. Although this therapy has proved effective in clinical studies, its interaction mechanisms at the cellular level still are insufficiently investigated. Results from previous studies have shown that the application of CRet currents at subthermal doses causes alterations in cell cycle progression and decreased proliferation in hepatocarcinoma (HepG2) and neuroblastoma (NB69) human cell lines. The aim of the present study was to investigate the antiproliferative response of HepG2 to CRet currents. The results showed that 24-h intermittent treatment with 50 µA/mm(2) current density induced in HepG2 statistically significant changes in expression and activation of cell cycle control proteins p27Kip1 and cyclins D1, A and B1. The chronology of these changes is coherent with that of the alterations reported in the cell cycle of HepG2 when exposed to the same electric treatment. We propose that the antiproliferative effect exerted by the electric stimulus would be primarily mediated by changes in the expression and activation of proteins intervening in cell cycle regulation, which are among the targets of emerging chemical therapies. The capability to arrest the cell cycle through electrically-induced changes in cell cycle control proteins might open new possibilities in the field of oncology.
The fluidity of Chinese hamster ovary cell and bull sperm membranes after cholesterol addition.
Purdy, P H; Fox, M H; Graham, J K
2005-08-01
Cell plasma membrane fluidity is affected by membrane lipid and protein composition as well as temperature. Altering the cholesterol content of a membrane can change membrane fluidity at different temperatures and this may affect cell survival during cryopreservation. In these experiments, we examined the effect that adding cholesterol to the membranes of Chinese hamster ovary cells (CHO) and bull sperm had on cell plasma membrane fluidity and cell survival when cells were cooled to 5 degrees C or were cryopreserved. Cells were treated with 0, 1.5 or 5.0mg cholesterol-loaded cyclodextrin (CLC), stained with N-((4-(6-phenyl-1,3,5-hexatrienyl)phenyl)propyl)trimethylammonium-p-toluenesulfonate (TMAP-DPH) to evaluate membrane fluidity and with propidium iodide to evaluate cell viability, prior to analysis by flow cytometry at 23, 5 degrees C, and after cryopreservation. CHO cells exhibited a single cell population with all cells having similar membrane fluidity. Membrane fluidity did not change when temperature had been reduced and then returned to 23 degrees C (P<0.05), however, adding cholesterol to the cells induced membranes to become more rigid (P<0.05). Bull sperm samples consisted of two cell subpopulations, one having relatively higher membrane fluidity than the other, regardless of cholesterol treatment or temperature. In addition, cells possessing the highest membrane fluidity did not survive cooling or cryopreservation efficiently. CLC treatment did not significantly alter membrane fluidity after temperature changes, but did maintain higher percentages of spermatozoa surviving cooling to 5 degrees C and cryopreservation (P<0.05). In conclusion, adding cholesterol to cell resulted in detectable membrane fluidity changes in CHO cells and increased survival of bull sperm after cooling to 5 degrees C and after cryopreservation.
Tselios, Konstantinos; Sarantopoulos, Alexandros; Gkougkourelas, Ioannis; Boura, Panagiota
2014-01-01
Several studies have reported low numbers of T regulatory cells (Tregs) in active systemic lupus erythematosus (SLE). However, it is not evident if these cells may be utilised as a biomarker in assessing disease activity. Tregs (CD4+CD25highFOXP3+) were prospectively assessed by flow cytometry in 285 separate blood samples from 100 white Caucasian SLE patients and 20 healthy controls. Patients were divided, according to disease activity (as measured by SLEDAI) into groups A (n=39, samples=94, SLEDAI=0), B (n=33, samples=92, SLEDAI=1-5), C (n=10, samples=53, SLEDAI=6-10) and D (n=18, samples=46, SLEDAI>10). Longitudinal measurements were performed in 131 cases (37 relapses, 44 remissions and 50 cases with stable disease activity) during three years. Statistics were performed by Student's t-test or one-way ANOVA; correlations with Pearson co-efficient, while p<0.05 was considered significant. Tregs were found significantly lower in severely active disease (group D), compared to healthy controls, inactive disease, mild and moderate disease activity (0.57±0.16% vs. 1.49±0.19%, 1.19±0.34% and 1.05±0.36%, 0.72±0.21%, p<0.05, respectively). There was a strongly inverse correlation between Tregs and SLEDAI (r=-0.644, p<0.001). Alterations in disease activity were characterised by inverse alterations in Tregs: relapse (from 1.23±0.44% to 0.64±0.19%, p<0.001, mean change 0.59±0.41%), remission (from 0.65±0.27% to 1.17±0.30%, p<0.001, mean change 0.52±0.35%). In cases with unaltered disease activity, Treg numbers remained stable (from 0.98±0.35% to 1.03±0.34%, p=0.245). Tregs were practically halved during relapse (mean reduction 42.6±22.2%), and doubled during remission (mean increment 113±120.9%). Mean change of Tregs in stable disease was significantly lower (7.3±20.6%, p<0.001). A clinically significant change in SLEDAI (sum of cases with relapse and remission, n=81) was followed by a significant (>20%) inverse change in Tregs in 71/81 cases (sensitivity 87.7%). In 50 cases of stable disease activity, Tregs were significantly changed (>20%) in 13 cases (specificity 74%). Positive predictive value (PPV) was 84.5% and negative predictive value (NPV) was 78.7%. CD4+CD25highFOXP3+ T regulatory cells displayed a strongly inverse correlation to disease activity in the long term. Treg alterations reflected changes in SLEDAI with high sensitivity. These cells may be a reliable biomarker for the assessment of disease activity in SLE by longitudinal measurements.
Changes in Cell Wall Polysaccharides Associated With Growth 1
Nevins, Donald J.; English, Patricia D.; Albersheim, Peter
1968-01-01
Changes in the polysaccharide composition of Phaseolus vulgaris, P. aureus, and Zea mays cell walls were studied during the first 28 days of seedling development using a gas chromatographic method for the analysis of neutral sugars. Acid hydrolysis of cell wall material from young tissues liberates rhamnose, fucose, arabinose, xylose, mannose, galactose, and glucose which collectively can account for as much as 70% of the dry weight of the wall. Mature walls in fully expanded tissues of these same plants contain less of these constituents (10%-20% of dry wt). Gross differences are observed between developmental patterns of the cell wall in the various parts of a seedling, such as root, stem, and leaf. The general patterns of wall polysaccharide composition change, however, are similar for analogous organs among the varieties of a species. Small but significant differences in the rates of change in sugar composition were detected between varieties of the same species which exhibited different growth patterns. The cell walls of species which are further removed phylogenetically exhibit even more dissimilar developmental patterns. The results demonstrate the dynamic nature of the cell wall during growth as well as the quantitative and qualitative exactness with which the biosynthesis of plant cell walls is regulated. PMID:16656862
Losa, Gabriele A; Castelli, Christian
2005-11-01
An analytical strategy combining fractal geometry and grey-level co-occurrence matrix (GLCM) statistics was devised to investigate ultrastructural changes in oestrogen-insensitive SK-BR3 human breast cancer cells undergoing apoptosis in vitro. Apoptosis was induced by 1 microM calcimycin (A23187 Ca(2+) ionophore) and assessed by measuring conventional cellular parameters during the culture period. SK-BR3 cells entered the early stage of apoptosis within 24 h of treatment with calcimycin, which induced detectable changes in nuclear components, as documented by increased values of most GLCM parameters and by the general reduction of the fractal dimensions. In these affected cells, morphonuclear traits were accompanied by the reduction of distinct gangliosides and loss of unidentifiable glycolipid molecules at the cell surface. All these changes were shown to be involved in apoptosis before the detection of conventional markers, which were only measurable during the active phases of apoptotic cell death. In overtly apoptotic cells treated with 1 microM calcimycin for 72 h, most nuclear components underwent dramatic ultrastructural changes, including marginalisation and condensation of chromatin, as reflected in a significant reduction of their fractal dimensions. Hence, both fractal and GLCM analyses confirm that the morphological reorganisation of nuclei, attributable to a loss of structural complexity, occurs early in apoptosis.
Phothiset, Suphatta; Charoenrein, Sanguansri
2014-01-30
During storage, frozen fruit may be thawed and refrozen many times before consumption, which may be extremely damaging to the texture of the frozen fruit and reverse the advantage of fast freezing. The effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues were investigated. The frozen-thawed papayas had an increase in drip loss and a decrease in firmness with increasing number of freeze-thaw cycles. Light microscopy showed irregular shapes and cell damage in parenchyma cells of frozen-thawed papayas, whereas transmission electron microscopy showed loss of cell wall materials in middle lamella. Moreover, destruction of cell wall was observed after being subjected to five freeze-thaw cycles. These changes related with a significant decrease in alcohol-insoluble solids, Na₂CO₃- and 24% KOH-soluble fractions and an increase in the water-, EDTA- and 4% KOH-soluble fractions. This was due to a decrease in the molecular mass of pectic and hemicellulosic polymers in frozen-thawed papayas using high-performance size-exclusion chromatography. The freezing and thawing processes caused fine structural damage and cell wall composition changes which contributed to a loss of drip volume and firmness of papaya tissues. © 2013 Society of Chemical Industry.
Hewitt, Angela L; Popa, Laurentiu S; Ebner, Timothy J
2015-01-21
The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. Copyright © 2015 the authors 0270-6474/15/351106-19$15.00/0.
Hewitt, Angela L.; Popa, Laurentiu S.
2015-01-01
The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. PMID:25609626
Wu, Qing; Lin, Wei-Dong; Liao, Guan-Qun; Zhang, Li-Guo; Wen, Shun-Qian; Lin, Jia-Ying
2015-01-01
AIM: To investigate the antiproliferative activity of cinobufacini on human hepatocellular carcinoma HepG2 cells and the possible mechanism of its action. METHODS: HepG2 cells were treated with different concentrations of cinobufacini. Cell viability was measured by methylthiazolyl tetrazolium (MTT) assay. Cell cycle distribution was analyzed by flow cytometry (FCM). Cytoskeletal and nuclear alterations were observed by fluorescein isothiocyanate-phalloidin and DAPI staining under a laser scanning confocal microscope. Changes in morphology and ultrastructure of cells were detected by atomic force microscopy (AFM) at the nanoscale level. RESULTS: MTT assay indicated that cinobufacini significantly inhibited the viability of HepG2 cells in a dose-dependent manner. With the concentration of cinobufacini increasing from 0 to 0.10 mg/mL, the cell viability decreased from 74.9% ± 2.7% to 49.41% ± 2.2% and 39.24% ± 2.1% (P < 0.05). FCM analysis demonstrated cell cycle arrest at S phase induced by cinobufacini. The immunofluorescence studies of cytoskeletal and nuclear morphology showed that after cinobufacini treatment, the regular reorganization of actin filaments in HepG2 cells become chaotic, while the nuclei were not damaged seriously. Additionally, high-resolution AFM imaging revealed that cell morphology and ultrastructure changed a lot after treatment with cinobufacini. It appeared as significant shrinkage and deep pores in the cell membrane, with larger particles and a rougher cell surface. CONCLUSION: Cinobufacini inhibits the viability of HepG2 cells via cytoskeletal destruction and cell membrane toxicity. PMID:25624718
Wang, Xing; Chen, Qiuhua; Tian, Wenjuan; Wang, Jianqing; Cheng, Lu; Lu, Jun; Chen, Mingqi; Pei, Yinhao; Li, Can; Chen, Gong; Gu, Ning
2017-01-01
Energy metabolism may alter pattern differences in acute lung injury (ALI) as one of the causes but the detailed features at single-cellular level remain unclear. Changes in intercellular temperature and adenosine triphosphate (ATP) concentration within the single cell may help to understand the role of energy metabolism in causing ALI. ALI in vitro models were established by treating mice lung epithelial (MLE-12) cells with lipopolysaccharide (LPS), hydrogen peroxide (H2O2), hydrochloric acid (HCl) and cobalt chloride (CoCl2, respectively. 100 nm micro thermocouple probe (TMP) was inserted into the cytosol by micromanipulation system and thermoelectric readings were recorded to calculate the intracellular temperature based on standard curve. The total ATP contents for the MLE-12 cells were evaluated at different time intervals after treatments. A significant increase of intracellular temperature was observed after 10 or 20 μg/L LPS and HCl treatments. The HCl increased the temperature in a dose-dependent manner. On the contrary, H2O2 induced a significant decline of intracellular temperature after treatment. No significant difference in intracellular temperature was observed after CoCl2 exposure. The intracellular ATP levels decreased in a time-dependent manner after treatment with H2O2 and HCl, while the LPS and CoCl2 had no significant effect on ATP levels. The intracellular temperature responses varied in different ALI models. The concentration of ATP in the MLE-12 cells played part in the intracellular temperature changes. No direct correlation was observed between the intracellular temperature and concentration of ATP in the MLE-12 cells.
Zhou, Juhua; Nagarkatti, Prakash; Zhong, Yin; Ginsberg, Jay P.; Singh, Narendra P.; Zhang, Jiajia; Nagarkatti, Mitzi
2014-01-01
While the immunological dysfunction in combat Veterans with post-traumatic stress disorder (PTSD) has been well documented, the precise mechanisms remain unclear. The current study evaluated the role of microRNA (miR) in immunological dysfunction associated with PTSD. The presence of peripheral blood mononuclear cells (PBMC) and various lymphocyte subsets in blood collected from PTSD patients were analyzed. Our studies demonstrated that the numbers of both PBMC and various lymphocyte subsets increased significantly in PTSD patients. When T cells were further analyzed, the percentage of Th1 cells and Th17 cells increased, regulatory T cells(Tregs) decreased, while Th2 cells remained unaltered in PTSD patients. These data correlated with increased plasma levels of IFN-γ and IL-17 while IL-4 showed no significant change. The increase in PBMC counts, Th1 and Th17 cells seen in PTSD patients correlated with the clinical scores. High-throughput analysis of PBMCs for 1163 miRs showed that the expression of a significant number of miRs was altered in PTSD patients. Pathway analysis of dysregulated miRs seen in PTSD patients revealed relationship between selected miRNAs and genes that showed direct/indirect role in immunological signaling pathways consistent with the immunological changes seen in these patients. Of interest was the down-regulation of miR-125a in PTSD, which specifically targeted IFN-γ production. Together, the current study demonstrates for the first time that PTSD was associated with significant alterations in miRNAs, which may promote pro-inflammatory cytokine profile. Such epigenetic events may provide useful tools to identify potential biomarkers for diagnosis, and facilitate therapy of PTSD. PMID:24759737
Zhou, Juhua; Nagarkatti, Prakash; Zhong, Yin; Ginsberg, Jay P; Singh, Narendra P; Zhang, Jiajia; Nagarkatti, Mitzi
2014-01-01
While the immunological dysfunction in combat Veterans with post-traumatic stress disorder (PTSD) has been well documented, the precise mechanisms remain unclear. The current study evaluated the role of microRNA (miR) in immunological dysfunction associated with PTSD. The presence of peripheral blood mononuclear cells (PBMC) and various lymphocyte subsets in blood collected from PTSD patients were analyzed. Our studies demonstrated that the numbers of both PBMC and various lymphocyte subsets increased significantly in PTSD patients. When T cells were further analyzed, the percentage of Th1 cells and Th17 cells increased, regulatory T cells(Tregs) decreased, while Th2 cells remained unaltered in PTSD patients. These data correlated with increased plasma levels of IFN-γ and IL-17 while IL-4 showed no significant change. The increase in PBMC counts, Th1 and Th17 cells seen in PTSD patients correlated with the clinical scores. High-throughput analysis of PBMCs for 1163 miRs showed that the expression of a significant number of miRs was altered in PTSD patients. Pathway analysis of dysregulated miRs seen in PTSD patients revealed relationship between selected miRNAs and genes that showed direct/indirect role in immunological signaling pathways consistent with the immunological changes seen in these patients. Of interest was the down-regulation of miR-125a in PTSD, which specifically targeted IFN-γ production. Together, the current study demonstrates for the first time that PTSD was associated with significant alterations in miRNAs, which may promote pro-inflammatory cytokine profile. Such epigenetic events may provide useful tools to identify potential biomarkers for diagnosis, and facilitate therapy of PTSD.
Lindqvist, Daniel; Mellon, Synthia H; Dhabhar, Firdaus S; Yehuda, Rachel; Grenon, S Marlene; Flory, Janine D; Bierer, Linda M; Abu-Amara, Duna; Coy, Michelle; Makotkine, Iouri; Reus, Victor I; Aschbacher, Kirstin; Bersani, F Saverio; Marmar, Charles R; Wolkowitz, Owen M
2017-12-01
Inflammation is reported in post-traumatic stress disorder (PTSD). Few studies have investigated circulating blood cells that may contribute to inflammation. We assessed circulating platelets, white blood cells (WBC) and red blood cells (RBC) in PTSD and assessed their relationship to inflammation and symptom severity. One-hundred and sixty-three male combat-exposed veterans (82 PTSD, 81 non-PTSD) had blood assessed for platelets, WBC, and RBC. Data were correlated with symptom severity and inflammation. All cell counts were significantly elevated in PTSD. There were small mediation effects of BMI and smoking on these relationships. After adjusting for these, the differences in WBC and RBC remained significant, while platelet count was at trend level. In all subjects, all of the cell counts correlated significantly with inflammation. Platelet count correlated with inflammation only in the PTSD subjects. Platelet count, but none of the other cell counts, was directly correlated with PTSD severity ratings in the PTSD group. Combat PTSD is associated with elevations in RBC, WBC, and platelets. Dysregulation of all three major lineages of hematopoietic cells in PTSD, as well as their significant correlation with inflammation, suggest clinical significance of these changes. Copyright © 2017 Elsevier B.V. All rights reserved.
Hematology and biochemical findings of Spacelab 1 flight
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.; Chen, J. P.; Crosby, W.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.
1988-01-01
The changes in erythropoiesis in astronauts caused by weightlessness was experimentally studied during the Spacelab 1 flight. Immediately after landing showed a mean decrease of 9,3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate caused the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. The space flight-induced decrease in red cell mass may result from a failure of erythropoesis to replace cells destroyed by the spleen soon after weightlessness is attained.
Calcium signaling in plant cells in altered gravity
NASA Astrophysics Data System (ADS)
Kordyum, E. L.
2003-10-01
Changes in the intracellular Ca 2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca 2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80 th, a review highlighting the performed research and the possible significance of such Ca 2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tension → alterations in the physicochemical properties of the membrane → changes in membrane permeability, ion transport, membrane-bound enzyme activity, etc. → metabolism rearrangements → physiological responses. An analysis of data available on biological effects of altered gravity at the cellular level allows one to conclude that microgravity environment appears to affect cytoskeleton, carbohydrate and lipid metabolism, cell wall biogenesis via changes in enzyme activity and protein expression, with involvement of regulatory Ca 2+ messenger system. Changes in Ca 2+ influx/efflux and possible pathways of Ca 2+ signaling in plant cell biochemical regulation in altered gravity are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopp, Ann H.; Jhingran, Anuja; Ramdas, Latha
2008-05-01
Purpose: The purpose of this study was to investigate early gene expression changes after chemoradiation in a human solid tumor, allowing identification of chemoradiation-induced gene expression changes in the tumor as well as the tumor microenvironment. In addition we aimed to identify a gene expression profile that was associated with clinical outcome. Methods and Materials: Microarray experiments were performed on cervical cancer specimens obtained before and 48 h after chemoradiation from 12 patients with Stage IB2 to IIIB squamous cell carcinoma of the cervix treated between April 2001 and August 2002. Results: A total of 262 genes were identified thatmore » were significantly changed after chemoradiation. Genes involved in DNA repair were identified including DDB2, ERCC4, GADD45A, and XPC. In addition, significantly regulated cell-to-cell signaling pathways included insulin-like growth factor-1 (IGF-1), interferon, and vascular endothelial growth factor signaling. At a median follow-up of 41 months, 5 of 12 patients had experienced either local or distant failure. Supervised clustering analysis identified a 58-gene set from the pretreatment samples that were differentially expressed between patients with and without recurrence. Genes involved in integrin signaling and apoptosis pathways were identified in this gene set. Immortalization-upregulated protein (IMUP), IGF-2, and ARHD had particularly marked differences in expression between patients with and without recurrence. Conclusions: Genetic profiling identified genes regulated by chemoradiation including DNA damage and cell-to-cell signaling pathways. Genes associated with recurrence were identified that will require validation in an independent patient data set to determine whether the 58-gene set associated with clinical outcome could be useful as a prognostic assay.« less
Jung, Timothy T K; John, Earnest O; Park, Seong Kook; Park, Yong Soo; Rhee, Chong-Ku
2004-02-01
Platelet activating factor (PAF), generated from biologically active phospholipids, has been implicated as a potent inflammatory mediator and has been shown to be involved in many pathological processes, especially in inflammation and allergy. It has been suspected that PAF may be one of the inflammatory mediators in middle ear effusion that can induce sensorineural hearing loss, as observed in chronic otitis media. The PAF receptor antagonist WEB2170 has been studied extensively, and its inhibitory effects against various PAF actions are well proven in otologic systems. The purpose of our study was to determine the effect of superfusion of PAF and WEB2170 on morphological changes in isolated cochlear outer hair cells (OHCs). Isolated OHCs from adult chinchilla cochleas were exposed to albumin-phosphate-buffered saline solution (1 mg/mL), WEB2170 (5 mg/30 mL), PAF (1 micromol/L), or both PAF (I micromol/L) and WEB2170 (5 mg/30 mL). All experiments were performed at an osmolality of 305 +/- 5 mOsm at room temperature for 30 minutes. The cells were observed with an inverted microscope; the images were stored and analyzed on the Image Pro-Plus program. The OHCs exposed to control albumin-phosphate-buffered saline solution or to WEB2170 did not show any significant change in cell shape or length. The cells exposed to 1 micromol/L of PAF showed ballooning and significant shortening of the mean cell length in 15 to 20 minutes. These morphological changes in OHCs can be prevented by pretreating OHCs with WEB2170. This study demonstrated that exposure to PAF causes morphological changes in isolated OHCs that can be prevented by the PAF receptor antagonist WEB2170.
Quesnell, Rebecca R; Erickson, Jamie; Schultz, Bruce D
2007-01-01
In vitro mammary epithelial cell models typically fail to form a consistently tight barrier that can effectively separate blood from milk. Our hypothesis was that mammary epithelial barrier function would be affected by changes in luminal ion concentration and inflammatory cytokines. Bovine mammary epithelial (BME-UV cell line) cells were grown to confluence on permeable supports with a standard basolateral medium and either high-electrolyte (H-elec) or low-electrolyte (L-elec) apical medium for 14 days. Apical media were changed to/from H-elec medium at predetermined times prior to assay. Transepithelial electrical resistance (R(te)) was highest in monolayers continuously exposed to apical L-elec. A time-dependent decline in R(te) began within 24 h of H-elec medium exposure. Change from H-elec medium to L-elec medium time-dependently increased R(te). Permeation by FITC-conjugated dextran was elevated across monolayers exposed to H-elec, suggesting compromise of a paracellular pathway. Significant alteration in occludin distribution was evident, concomitant with the changes in R(te), although total occludin was unchanged. Neither substitution of Na(+) with N-methyl-d-glucosamine (NMDG(+)) nor pharmacological inhibition of transcellular Na(+) transport pathways abrogated the effects of apical H-elec medium on R(te). Tumor necrosis factor alpha, but not interleukin-1beta nor interleukin-6, in the apical compartment caused a significant decrease in R(te) within 8 h. These results indicate that mammary epithelium is a dynamic barrier whose cell-cell contacts are acutely modulated by cytokines and luminal electrolyte environment. Results not only demonstrate that BME-UV cells are a model system representative of mammary epithelium but also provide critical information that can be applied to other mammary model systems to improve their physiological relevance.
Park, Soyoung; Zhang, Xiaowen; Li, Cen; Yin, Changhong; Li, Jiangwei; Fallon, John T; Huang, Weihua; Xu, Dazhong
2017-09-01
Gene 33 (Mig6, ERRFI1) is an adaptor protein with multiple cellular functions. We recently reported that depletion of this protein promotes lung epithelial cell transformation induced by hexavalent chromium [Cr(VI)]. However, the early molecular events that mediate this process are not clear. In the present study, we used single-cell RNA sequencing to compare gene expression profiles between BEAS-2B lung epithelial cells chronically exposed to a sublethal dose of Cr(VI) with or without CRISPR/cas9-mediated deletion of Gene 33. Our data reveal 83 differentially expressed genes. The most notable changes are genes associated with cell adhesion, oxidative stresses, protein ubiquitination, epithelial-mesenchymal transition/metastasis, and WNT signaling. Up-regulation of some neuro-specific genes is also evident, particularly ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), a deubiquitinase and potential biomarker for lung cancer. Gene 33 deletion and/or Cr(VI) exposure did not cause discernable changes in cell morphology. However, Gene 33 deletion led to a modest but significant reduction of cells in the G2/M phase of the cell cycle regardless of Cr(VI) exposure. Gene 33 deletion also significantly reduced cell proliferation. Interestingly, Cr(VI) exposure eliminated the difference in cell proliferation between the two genotypes. Gene 33 deletion also significantly elevated cell migration. Our data indicate that combined Gene 33 deletion and chronic Cr(VI) exposure produces a gene expression pattern and a phenotype resemble those of the transformed lung epithelial cells. Given the known association of UCHL1 with lung cancer, we propose that UCHL1 is an important player in the early stage of lung epithelial cell transformation and tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Serum HDL cholesterol concentration in patients with squamous cell and small cell lung cancer.
Siemianowicz, K; Gminski, J; Stajszczyk, M; Wojakowski, W; Goss, M; Machalski, M; Telega, A; Brulinski, K; Magiera-Molendowska, H
2000-09-01
Cancer patients often present altered serum lipid profile including changes of HDL cholesterol level. The aim of our work was to evaluate serum level of HDL cholesterol in patients with squamous cell and small cell lung cancer and its dependence on histological type and clinical stage of lung cancer. Fasting serum level of HDL cholesterol was analysed in 135 patients with newly diagnosed lung cancer and compared to a control group of healthy men. All lung cancer patients, as well as subgroups of squamous cell and small cell lung cancer had statistically significantly lower HDL cholesterol concentration than controls. There were no statistically significant differences of HDL cholesterol level between the histological types or between clinical stages of each histological type of lung cancer.
Nikiyan, Hike; Vasilchenko, Alexey; Deryabin, Dmitry
2010-01-01
The effect of a relative humidity (RH) in a range of 93-65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH = 84% RH. It is discussed the dependence of the response features on differences in cell wall structure of gram-positive and gram-negative bacterial cells.
Neal, Robert E; Garcia, Paulo A; Robertson, John L; Davalos, Rafael V
2012-04-01
Irreversible electroporation is a new technique to kill cells in targeted tissue, such as tumors, through a nonthermal mechanism using electric pulses to irrecoverably disrupt the cell membrane. Treatment effects relate to the tissue electric field distribution, which can be predicted with numerical modeling for therapy planning. Pulse effects will change the cell and tissue properties through thermal and electroporation (EP)-based processes. This investigation characterizes these changes by measuring the electrical conductivity and temperature of ex vivo renal porcine tissue within a single pulse and for a 200 pulse protocol. These changes are incorporated into an equivalent circuit model for cells and tissue with a variable EP-based resistance, providing a potential method to estimate conductivity as a function of electric field and pulse length for other tissues. Finally, a numerical model using a human kidney volumetric mesh evaluated how treatment predictions vary when EP- and temperature-based electrical conductivity changes are incorporated. We conclude that significant changes in predicted outcomes will occur when the experimental results are applied to the numerical model, where the direction and degree of change varies with the electric field considered.
Asur, Rajalakshmi S.; Sharma, Sunil; Chang, Ching-Wei; Penagaricano, Jose; Kommuru, Indira M.; Moros, Eduardo G.; Corry, Peter M.; Griffin, Robert J.
2012-01-01
Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied. The occurrence of GRID-induced bystander gene expression changes in significant numbers of DNA damage and cellular stress response signaling genes, providing molecular evidence for possible mechanisms of bystander cell killing. PMID:22559204
Nucleosome architecture throughout the cell cycle
Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto
2016-01-01
Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620
Cytotoxic Effects of Environmental Toxins on Human Glial Cells.
D'Mello, Fiona; Braidy, Nady; Marçal, Helder; Guillemin, Gilles; Rossi, Fanny; Chinian, Mirielle; Laurent, Dominique; Teo, Charles; Neilan, Brett A
2017-02-01
Toxins produced by cyanobacteria and dinoflagellates have increasingly become a public health concern due to their degenerative effects on mammalian tissue and cells. In particular, emerging evidence has called attention to the neurodegenerative effects of the cyanobacterial toxin β-N-methylamino-L-alanine (BMAA). Other toxins such as the neurotoxins saxitoxin and ciguatoxin, as well as the hepatotoxic microcystin, have been previously shown to have a range of effects upon the nervous system. However, the capacity of these toxins to cause neurodegeneration in human cells has not, to our knowledge, been previously investigated. This study aimed to examine the cytotoxic effects of BMAA, microcystin-LR (MC-LR), saxitoxin (STX) and ciguatoxin (CTX-1B) on primary adult human astrocytes. We also demonstrated that α-lipoate attenuated MC-LR toxicity in primary astrocytes and characterised changes in gene expression which could potentially be caused by these toxins in primary astrocytes. Herein, we are the first to show that all of these toxins are capable of causing physiological changes consistent with neurodegeneration in glial cells, via oxidative stress and excitotoxicity, leading to a reduction in cell proliferation culminating in cell death. In addition, MC-LR toxicity was reduced significantly in astrocytes-treated α-lipoic acid. While there were no significant changes in gene expression, many of the probes that were altered were associated with neurodegenerative disease pathogenesis. Overall, this is important in advancing our current understanding of the mechanism of toxicity of MC-LR on human brain function in vitro, particularly in the context of neurodegeneration.
Dogu, Mehmet Hilmi; Kaya, Ali Hakan; Berber, Ilhami; Sari, İsmail; Tekgündüz, Emre; Erkurt, Mehmet Ali; Iskender, Dicle; Kayıkçı, Ömur; Kuku, Irfan; Kaya, Emin; Keskin, Ali; Altuntaş, Fevzi
2016-02-01
Central venous access is often used during apheresis procedure in stem cell collection. The aim of the present study was to evaluate whether central or peripheral venous access has an effect on stem cell yield and the kinetics of the procedure and the product in patients undergoing ASCT after high dose therapy. A total of 327 patients were retrospectively reviewed. The use of peripheral venous access for stem cell yield was significantly more frequent in males compared to females (p = 0.005). Total volume of the product was significantly lower in central venous access group (p = 0.046). As being a less invasive procedure, peripheral venous access can be used for stem cell yield in eligible selected patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinozuka, Eriko; Miyashita, Masao; Mizuguchi, Yoshiaki, E-mail: yoshi1224@gmail.com
2013-01-04
Highlights: Black-Right-Pointing-Pointer SnoN modulated miR-720, miR-1274A, and miR-1274B expression levels in TE-1 cells. Black-Right-Pointing-Pointer miR-720 and miR-1274A suppressed the expression of target proteins p63 and ADAM9. Black-Right-Pointing-Pointer Silencing of SnoN significantly upregulated cell proliferation in TE-1 cells. Black-Right-Pointing-Pointer Esophageal cancer tissues have lower SnoN expression levels than normal tissues. Black-Right-Pointing-Pointer Esophageal cancer tissues have higher miR-720 expression levels than normal tissues. -- Abstract: It is now evident that changes in microRNA are involved in cancer progression, but the mechanisms of transcriptional regulation of miRNAs remain unknown. Ski-related novel gene (SnoN/SKIL), a transcription co-factor, acts as a potential key regulator withinmore » a complex network of p53 transcriptional repressors. SnoN has pro- and anti-oncogenic functions in the regulation of cell proliferation, senescence, apoptosis, and differentiation. We characterized the roles of SnoN in miRNA transcriptional regulation and its effects on cell proliferation using esophageal squamous cell carcinoma (ESCC) cells. Silencing of SnoN altered a set of miRNA expression profiles in TE-1cells, and the expression levels of miR-720, miR-1274A, and miR-1274B were modulated by SnoN. The expression of these miRNAs resulted in changes to the target protein p63 and a disintegrin and metalloproteinase domain 9 (ADAM9). Furthermore, silencing of SnoN significantly upregulated cell proliferation in TE-1 cells, indicating a potential anti-oncogenic function. These results support our observation that cancer tissues have lower expression levels of SnoN, miR-720, and miR-1274A compared to adjacent normal tissues from ESCC patients. These data demonstrate a novel mechanism of miRNA regulation, leading to changes in cell proliferation.« less
Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.
Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A
2015-01-13
The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. © 2014 The Authors.
Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis
Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A
2015-01-01
The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. PMID:25476450
Januskauskas, A; Johannisson, A; Rodriguez-Martinez, H
2003-09-01
This study investigated the use of annexin-V/PI assay to assess sub lethal changes in bull spermatozoa post-thawing, and to further relate these changes to results obtained by fluorometric assessment of sperm viability and sperm chromatin structure assay (SCSA), as well as field fertility (as 56-day non-return rates, 56-day NRR) after AI. Frozen-thawed semen samples were obtained from 18 Swedish Red and White bulls (one to three semen batches/bull) and fertility data was based on 6900 inseminations. The annexin-V/PI assay revealed that post-thaw semen samples contained on average 41.8+/-7.5% annexin-V-positive cells. Most of the annexin-V-positive cells were dying cells, i.e. also PI-positive. The incidence of annexin-V-positive cells was negatively related (r=-0.59, P<0.01) to the percentage of viable cells, as detected by fluorometry. The incidence of annexin-V-positive spermatozoa significantly correlated to the SCSA variable xalphat (r=0.53, P<0.05). The incidence of annexin-V-negative, dead cells was the only annexin-V/PI assay variable that correlated significantly with fertility both at batch (r=-0.40, P<0.05), and bull (r=-0.56, P<0.05) levels. Among sperm viability variables, subjectively assessed sperm motility (r=0.52-0.59, P<0.01), CASA-assessed sperm motility (r=0.43-0.61, P<0.05), and the incidence of live spermatozoa, expressed as total numbers (r=0.39-0.54, P<0.05), or percentage values (r=0.68-0.68, P<0.01), correlated significantly with field fertility both at batch, and bull levels. Among the SCSA variables, only the COMP alphat correlated significantly (r=0.33-0.51, P<0.05) with fertility results. The results indicate a certain proportion of bull spermatozoa express PS on their surface after thawing, e.g. they have altered membrane function, and that the incidence of such cells is inversely correlated to sperm viability, and positively correlated to abnormal sperm chromatin condensation since they eventually undergo necrosis.
NASA Astrophysics Data System (ADS)
Grimaldi, Paola; Di Giambattista, Lucia; Giordani, Serena; Udroiu, Ion; Pozzi, Deleana; Gaudenzi, Silvia; Bedini, Angelico; Giliberti, Claudia; Palomba, Raffaele; Congiu Castellano, Agostina
2011-12-01
Ultrasound effects on biological samples are gaining a growing interest concerning in particular, the intracellular delivery of drugs and genes in a safe and in a efficient way. Future progress in this field will require a better understanding of how ultrasound and acoustic cavitation affect the biological system properties. The morphological changes of cells due to ultrasound (US) exposure have been extensively studied, while little attention has been given to the cells structural changes. We have exposed two different cell lines to 1 MHz frequency ultrasound currently used in therapy, Jurkat T-lymphocytes and NIH-3T3 fibroblasts, both employed as models respectively in the apoptosis and in the gene therapy studies. The Fourier Transform Infrared (FTIR) Spectroscopy was used as probe to reveal the structural changes in particular molecular groups belonging to the main biological systems. The genotoxic damage of cells exposed to ultrasound was ascertained by the Cytokinesis-Block Micronucleus (CBMN) assay. The FTIR spectroscopy results, combined with multivariate statistical analysis, regarding all cellular components (lipids, proteins, nucleic acids) of the two cell lines, show that Jurkat cells are more sensitive to therapeutic ultrasound in the lipid and protein regions, whereas the NIH-3T3 cells are more sensitive in the nucleic acids region; a meaningful genotoxic effect is present in both cell lines only for long sonication times while in the Jurkat cells also a significant cytotoxic effect is revealed for long times of exposure to ultrasound.
Second-harmonic generation scattering directionality predicts tumor cell motility in collagen gels
NASA Astrophysics Data System (ADS)
Burke, Kathleen A.; Dawes, Ryan P.; Cheema, Mehar K.; Van Hove, Amy; Benoit, Danielle S. W.; Perry, Seth W.; Brown, Edward
2015-05-01
Second-harmonic generation (SHG) allows for the analysis of tumor collagen structural changes throughout metastatic progression. SHG directionality, measured through the ratio of the forward-propagating to backward-propagating signal (F/B ratio), is affected by collagen fibril diameter, spacing, and disorder of fibril packing within a fiber. As tumors progress, these parameters evolve, producing concurrent changes in F/B. It has been recently shown that the F/B of highly metastatic invasive ductal carcinoma (IDC) breast tumors is significantly different from less metastatic tumors. This suggests a possible relationship between the microstructure of collagen, as measured by the F/B, and the ability of tumor cells to locomote through that collagen. Utilizing in vitro collagen gels of different F/B ratios, we explored the relationship between collagen microstructure and motility of tumor cells in a "clean" environment, free of the myriad cells, and signals found in in vivo. We found a significant relationship between F/B and the total distance traveled by the tumor cell, as well as both the average and maximum velocities of the cells. Consequently, one possible mechanism underlying the observed relationship between tumor F/B and metastatic output in IDC patient samples is a direct influence of collagen structure on tumor cell motility.
Changes of Cytokines during a Spaceflight Analog - a 45-Day Head-Down Bed Rest
Zhang, Shusong; Pang, Xuewen; Liu, Hongju; Li, Li; Sun, Xiuyuan; Zhang, Yu; Wu, Hounan; Chen, Xiaoping; Ge, Qing
2013-01-01
Spaceflight is associated with deregulation in the immune system. Head-down bed rest (HDBR) at -6° is believed to be the most practical model for examining multi-system responses to microgravity in humans during spaceflight. In the present study, a 45-day HDBR was performed to investigate the alterations in human immune cell distributions and their functions in response to various stimuli. The effect of countermeasure, Rhodiola rosea (RR) treatment, was also examined. A significant decrease of interferon-γ (IFN-γ) and interleukin-17 (IL-17) productions by activated T cells, increase of IL-1β and IL-18 by activated B and myeloid cells were observed during HDBR. The upregulation of serum cortisol was correlated with the changes of IL-1 family cytokines. In addition, a significant increase of memory T and B cell and regulatory T cells (Treg) were also detected. The uptake of RR further decreased IFN-γ level and slowed down the upregulation of IL-1 family cytokines. These data suggest that for prolonged HDBR and spaceflight, the decreased protective T cell immunity and enhanced proinflammatory cytokines should be closely monitored. The treatment with RR may play an important role in suppressing proinflammatory cytokines but not in boosting protective T cell immunity. PMID:24143230
Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells.
Ji, Jian; Zhu, Pei; Sun, Chao; Sun, Jiadi; An, Lu; Zhang, Yinzhi; Sun, Xiulan
2017-01-01
3-Chloropropane-1,2-diol (3-MCPD) is a heat-produced contaminant formed during the preparation of soy sauce worldwide. The present investigation was conducted to determine the molecular aspects of 3-MCPD toxicity on human embryonic kidney cells (HEK293). Cell viability and apoptosis were assessed in response to exposure to 3-MCPD using the MTT assay and high-content screening (HCS). DNA damage, intracellular reactive oxygen species (ROS) and apoptosis-related proteins were evaluated. Genes related with apoptosis were detected by qPCR-array for further understanding the 3-MCPD induced cell apoptosis signaling pathway. Our results clearly showed that 3-MCPD treatment inhibits cell proliferation and reactive oxygen species generation. qPCR-array indicated that nine apoptotic genes were up-regulated more than 2-fold and six down-regulated more than 2-fold. Genes associated with the mitochondrial apoptotic pathway, especially BCL2 family genes, changed significantly, indicating that the mitochondrial apoptotic pathway is activated. Death receptor pathway-related genes, TNFRSF11B and TNFRSF1A, changed significantly, indicating that the death receptor pathway is also activated, resulting in the inhibition of cell growth and proliferation as well as induction of apoptosis. To sum up, the experiment results indicated that 3-MCPD induced HEK293 cell toxicity through the death receptor pathway and mitochondrial pathway.
Shah, Shreyas N; Manjunatha, Bhari S; Shah, Vandana S; Dagrus, Kapil; Soni, Nishit; Shah, Sanjiv
2015-01-01
The forte of research today aims at determining genotoxic changes in human cells as rapidly as possible. Micronuclei estimation in exfoliated cells is an easy, noninvasive and a reliable method to monitor genotoxic changes due to various reasons in oral mucosal cells. To identify, quantify and compare micronuclei in exfoliated buccal mucosal cells of healthy, oral submucous fibrosis (OSMF) and oral squamous cell carcinoma (OSCC) participants. In the present study, buccal smears from the 60 participants (30 each of OSMF and OSCC) and 30 age and sex matched controls were obtained and stained using Papanicolaou (PAP) staining method and observed under 100X magnification to identify and quantify micronuclei in the exfoliated cells of oral mucosa. There was a significant increase in micronuclei count from control to OSMF to OSCC. Also, a significant increase in the micronuclei frequency is observed with the different clinical stages and histological grades of OSMF and different histological grades of OSCC. Micronucleus assay can be used as an easy and consistent marker for genotoxic evaluation in higher risk groups and can be used for better treatment evaluation and prognosis in cases of OSMF and OSCC. Some relevant patents are also outlined in this article.
GROα overexpression drives cell migration and invasion in triple negative breast cancer cells.
Bhat, Kruttika; Sarkissyan, Marianna; Wu, Yanyuan; Vadgama, Jaydutt V
2017-07-01
Triple negative breast cancer (TNBC) is a subtype of highly aggressive breast cancer with poor prognosis. The main characteristic feature of TNBC is its lack of expression of ER, PR and HER2 receptors that are targets for treatments. Hence, it is imperative to identify novel therapeutic strategies to target TNBC. Our aim was to examine whether GROα is a specific marker for TNBC metastasis. For this we performed qPCR, ELISA, migration/invasion assays, western blotting, and siRNA transfections. Evaluation of baseline GROα expression in different breast cancer (BC) subtypes showed that it is significantly upregulated in breast tumor cells, specifically in TNBC cell line. On further evaluation in additional 17 TNBC cell lines we found that baseline GROα expression was significantly elevated in >50% of the cell lines validating GROα overexpression specifically in TNBC cells. Moreover, GROα-stimulation in MCF7 and SKBR3 cells and GROα‑knockdown in MDA-MB‑231 and HCC1937 cells elicited dramatic changes in migration and invasion abilities in vitro. Corresponding changes in EMT markers were also observed in phenotypically modified BC cells. Furthermore, mechanistic studies identified GROα regulating EMT markers and migration/invasion via MAPK pathway and specific inhibition using PD98059 resulted in the reversal of effects induced by GROα on BC cells. In conclusion, our study provides strong evidence to suggest that GROα is a critical modulator of TNBC migration/invasion and proposes GROα as a potential therapeutic target for treatment of TNBC metastasis.
Al-Asmari, Abdulrahman Khazim; Riyasdeen, Anvarbatcha; Al-Shahrani, Mohammad Hamed; Islam, Mozaffarul
2016-01-01
Snake venom possesses various kinds of proteins and neurotoxic polypeptides, which can negatively interfere with the neurotransmitter signaling cascade. This phenomenon occurs mainly due to the blocking of ion channels in the body system. Envenomation prevents or severely interrupts nerve impulses from being transmitted, inhibition of adenosine triphosphate synthesis, and proper functioning of the cardiac muscles. However, some beneficial properties of venoms have also been reported. The aim of this study was to examine the snake venom as an anticancer agent due to its inhibitory effects on cancer progression such as cell motility, cell invasion, and colony formation. In this study, the effect of venoms on phenotypic changes and the change on molecular level in colorectal and breast cancer cell lines were examined. A reduction of 60%–90% in cell motility, colony formation, and cell invasion was observed when these cell lines were treated with different concentrations of snake venom. In addition, the increase in oxidative stress that results in an increase in the number of apoptotic cancer cells was significantly higher in the venom-treated cell lines. Further analysis showed that there was a decrease in the expression of pro-inflammatory cytokines and signaling proteins, strongly suggesting a promising role for snake venom against breast and colorectal cancer cell progression. In conclusion, the snake venoms used in this study showed significant anticancer properties against colorectal and breast cancer cell lines. PMID:27799796
Schmidt, Andreas Johannes; Krieg, Jürgen-Christian; Hemmeter, Ulrich Michael; Kircher, Tilo; Schulz, Eberhard; Clement, Hans-Willi; Heiser, Philip
2010-10-01
Plant extracts such as Hypericum perforatum and Pycnogenol have been tested as alternatives to the classical ADHD drugs. It has been possible to describe neuroprotective effects of such plant extracts. A reduction of ADHD symptoms could be shown in clinical studies after the application of Pycnogenol, which is a pine bark extract. The impacts of the standardized herbal extracts Hypericum perforatum, Pycnogenol and Enzogenol up to a concentration of 5000 ng/mL on cell survival and energy metabolism in human SH-SY5Y neuroblastoma cells has been investigated in the present examination. Hypericum perforatum significantly decreased the survival of cells after treatment with a concentration of 5000 ng/mL, whereas lower concentrations exerted no significant effects. Pycnogenol( induced a significant increase of cell survival after incubation with a concentration of 32.25 ng/mL and a concentration of 250 ng/mL. Other applied concentrations of Pycnogenol failed to exert significant effects. Treatment with Enzogenol did not lead to significant changes in cell survival.Concerning energy metabolism, the treatment of cells with a concentration of 5000 ng/mL Hypericum perforatum led to a significant increase of ATP levels, whereas treatment with a concentration of 500 ng/mL had no significant effect. Incubation of cells with Pycnogenol and Enzogenol exerted no significant effects.None of the tested substances caused any cytotoxic effect when used in therapeutically relevant concentrations. Copyright © 2010 John Wiley & Sons, Ltd.
Optical volume and mass measurements show that mammalian cells swell during mitosis
Zlotek-Zlotkiewicz, Ewa; Monnier, Sylvain; Cappello, Giovanni; Le Berre, Mael
2015-01-01
The extent, mechanism, and function of cell volume changes during specific cellular events, such as cell migration and cell division, have been poorly studied, mostly because of a lack of adequate techniques. Here we unambiguously report that a large range of mammalian cell types display a significant increase in volume during mitosis (up to 30%). We further show that this increase in volume is tightly linked to the mitotic state of the cell and not to its spread or rounded shape and is independent of the presence of an intact actomyosin cortex. Importantly, this volume increase is not accompanied by an increase in dry mass and thus corresponds to a decrease in cell density. This mitotic swelling might have important consequences for mitotic progression: it might contribute to produce strong pushing forces, allowing mitotic cells to round up; it might also, by lowering cytoplasmic density, contribute to the large change of physicochemical properties observed in mitotic cells. PMID:26598614
The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.
Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M
2016-05-19
Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.
Immune responses induced by T-cell vaccination in patients with rheumatoid arthritis
Ivanova, Irina; Seledtsova, Galina; Mamaev, Sergey; Shishkov, Alexey; Seledtsov, Viktor
2014-01-01
Patients with rheumatoid arthritis (RA) were treated with a cellular vaccine, which consisted of autologous collagen-reactive T-cells. This study showed that antigen-specific proliferative activity of the peripheral blood mononuclear cells was significantly downregulated after T-cell vaccination in RA patients. T-cell vaccination resulted in a statistically significant decrease in plasma IFNγ levels and a concomitant increase in IL-4 levels in treated patients. Accordingly, following T-cell vaccination the number of IFNγ-producing CD4+ and CD8+ T-cells was decreased by 1.6–1.8-fold, which was paralleled by 1.7-fold increases in IL-4-producing CD4+ T-cells. In addition, the present study showed 5–7-fold increase in the CD8+CD45RO+CD62L– effector memory T-cells and central memory T-cells (both CD4+ CD45RO+CD62L+ T-cells and CD8+CD45RO+CD62L+ T-cells) in RA patients, as compared with healthy individuals. We observed significant reduction in CD4+ and CD8+ central memory T-cells, as well as reduction in CD8+ effector memory T-cells in vaccinated patients in the course of the treatment. We also demonstrated that CD4+CD25+FoxP3+ regulatory T-cell levels were significantly up-regulated in the peripheral blood of RA patients following T-cell vaccination. However, CD4+CD25-FoxP3+ Т-cell levels did not significantly change during the entire T-cell vaccination course. In conclusion, the T-cell immunotherapy regimen used resulted in the clinical improvement, which was achieved in 87% patients. PMID:24633313
Lead Intoxication Synergies of the Ethanol-Induced Toxic Responses in Neuronal Cells--PC12.
Kumar, V; Tripathi, V K; Jahan, S; Agrawal, M; Pandey, A; Khanna, V K; Pant, A B
2015-12-01
Lead (Pb)-induced neurodegeneration and its link with widespread neurobehavioral changes are well documented. Experimental evidences suggest that ethanol could enhance the absorption of metals in the body, and alcohol consumption may increase the susceptibility to metal intoxication in the brain. However, the underlying mechanism of ethanol action in affecting metal toxicity in brain cells is poorly understood. Thus, an attempt was made to investigate the modulatory effect of ethanol on Pb intoxication in PC12 cells, a rat pheochromocytoma. Cells were co-exposed to biological safe doses of Pb (10 μM) and ethanol (200 mM), and data were compared to the response of cells which received independent exposure to these chemicals at similar doses. Ethanol (200 mM) exposure significantly aggravated the Pb-induced alterations in the end points associated with oxidative stress and apoptosis. The finding confirms the involvement of reactive oxygen species (ROS)-mediated oxidative stress, and impairment of mitochondrial membrane potential, which subsequently facilitate the translocation of triggering proteins between cytoplasm and mitochondria. We further confirmed the apoptotic changes due to induction of mitochondria-mediated caspase cascade. These cellular changes were found to recover significantly, if the cells are exposed to N-acetyl cysteine (NAC), a known antioxidant. Our data suggest that ethanol may potentiate Pb-induced cellular damage in brain cells, but such damaging effects could be recovered by inhibition of ROS generation. These results open up further possibilities for the design of new therapeutics based on antioxidants to prevent neurodegeneration and associated health problems.
Inchley, C J; Micklem, H S; Barrett, J; Hunter, J; Minty, C
1976-01-01
The localization of i.v. injected syngeneic lymph node cells, radiolabelled with 51Cr or 75Se-L-selenomethionine, was studied in male CBA/H mice aged between 3 and 30 months. The following results were obtained. (1) Localization of cells from young adult donors was greater in the s.c. lymph nodes of old than of young recipients, the main increase being between 15 and 17 months of age. Increases in lymph node weight and DNA-synthesis were also seen at this time; but the rise in cell localization was significant even when calculated per unit of tissue weight. Splenic localization either declined slightly with age or, like the liver, showed no significant change. (2) Local antigenic stimulation by a single injection of sheep erythrocytes into one front footpad, 24 hr before lymph node cell injection, resulted in increased localization in the regional lymph nodes of 3-17 month old, but rarely of 24-30 month old mice. (3) No consistent differences in localization were observed between lymph node cells from 4-month and 25-month old donors. Both age-related and antigen-related increases in cell localization were at least partly attributable to an enhanced rate of entry of lymphocytes from the blood to the lymph nodes. Although the changes underlying the decline in antigen-related localization of cells in old recipients have still to be clarified, it is probable that the defective immune responses of old mice result partly from this decline. PMID:991459
Alsaweed, Mohammed; Lai, Ching Tat; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini
2016-01-01
Human milk (HM) is a complex biofluid conferring nutritional, protective and developmental components for optimal infant growth. Amongst these are maternal cells, which change in response to feeding and were recently shown to be a rich source of miRNAs. We used next generation sequencing to characterize the cellular miRNA profile of HM collected before and after feeding. HM cells conserved higher miRNA content than the lipid and skim HM fractions or other body fluids, in accordance with previous studies. In total, 1467 known mature and 1996 novel miRNAs were identified, with 89 high-confidence novel miRNAs. HM cell content was higher post-feeding (p < 0.05), and was positively associated with total miRNA content (p = 0.014) and species number (p < 0.001). This coincided with upregulation of 29 known and 2 novel miRNAs, and downregulation of 4 known and 1 novel miRNAs post-feeding, but no statistically significant change in expression was found for the remaining miRNAs. These findings suggest that feeding may influence the miRNA content of HM cells. The most highly and differentially expressed miRNAs were key regulators of milk components, with potential diagnostic value in lactation performance. They are also involved in the control of body fluid balance, thirst, appetite, immune response, and development, implicating their functional significance for the infant. PMID:27322254
Yeung, Chi-Kong; Sommerhage, Frank; Wrobel, Günter; Law, Jessica Ka-Yan; Offenhäusser, Andreas; Rudd, John Anthony; Ingebrandt, Sven; Chan, Mansun
2009-01-01
Simultaneous recording of electrical potentials from multiple cells may be useful for physiological and pharmacological research. The present study aimed to establish an in vitro cardiac hypoxia experimental platform on the microelectrode array (MEA). Embryonic rat cardiac myocytes were cultured on the MEAs. Following >or=90 min of hypoxia, changes in lactate production (mM), pH, beat frequency (beats per min, bpm), extracellular action potential (exAP) amplitude, and propagation velocity between the normoxic and hypoxic cells were compared. Under hypoxia, the beat frequency of cells increased and peaked at around 42.5 min (08.1+/-3.2 bpm). The exAP amplitude reduced as soon as the cells were exposed to the hypoxic medium, and this reduction increased significantly after approximately 20 min of hypoxia. The propagation velocity of the hypoxic cells was significantly lower than that of the control throughout the entire 90+ min of hypoxia. The rate of depolarisation and Na(+) signal gradually reduced over time, and these changes had a direct effect on the exAP duration. The extracellular electrophysiological measurements allow a partial reconstruction of the signal shape and time course of the underlying hypoxia-associated physiological changes. The present study showed that the cardiac myocyte-integrated MEA may be used as an experimental platform for the pharmacological studies of cardiovascular diseases in the future.
Wang, Huai-Xing; Gao, Wen-Jun
2011-01-01
N-methyl-D-aspartic acid (NMDA) receptors are critical for both normal brain functions and the pathogenesis of schizophrenia. We investigated the functional changes of glutamatergic receptors in the pyramidal cells and fast-spiking (FS) interneurons in the adolescent rat prefrontal cortex in MK-801 model of schizophrenia. We found that although both pyramidal cells and FS interneurons were affected by in vivo subchronic blockade of NMDA receptors, MK-801 induced distinct changes in αamino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA receptors in the FS interneurons compared with pyramidal cells. Specifically, the amplitude, but not the frequency, of AMPA-mediated miniature excitatory postsynaptic currents (mEPSCs) in FS interneurons was significantly decreased whereas both the frequency and amplitude in pyramidal neurons were increased. In addition, MK-801-induced new presynaptic NMDA receptors were detected in the glutamatergic terminals targeting pyramidal neurons but not FS interneurons. MK-801 also induced distinct alterations in FS interneurons but not in pyramidal neurons, including significantly decreased rectification index and increased calcium permeability. These data suggest a distinct cell-type specific and homeostatic synaptic scaling and redistribution of AMPA and NMDA receptors in response to the subchronic blockade of NMDA receptors and thus provide a direct mechanistic explanation for the NMDA hypofunction hypothesis that have long been proposed for the schizophrenia pathophysiology. PMID:22182778
Clinical significance of In vivo Cytarabine Induced Gene Expression Signature in AML
Lamba, Jatinder K.; Pounds, Stanley; Cao, Xueyuan; Crews, Kristine R.; Cogle, Christopher R.; Bhise, Neha; Raimondi, Susana C.; Downing, James R.; Baker, Sharyn D.; Ribeiro, Raul C.; Rubnitz, Jeffrey E.
2016-01-01
Despite initial remission, approximately 60-70% of adult and 30% of pediatric patients experience relapse or refractory AML. Studies so far have identified base line gene expression profiles of pathogenic and prognostic significance in AML, however extent of change in gene expression post-initiation of treatment has not been investigated. Exposure of leukemic cells to chemotherapeutic agents such as cytarabine, a mainstay of AML chemotherapy can trigger adaptive response by influencing leukemic cell transcriptome and hence development of resistance or refractory disease. It is however challenging to perform such a study due to lack of availability of specimens post-drug treatment. In this study our primary objective was to identify in vivo cytarabine induced changes in leukemia cell transcriptome and to evaluate their impact on clinical outcome. Our results highlight genes relevant to cytarabine resistance and support the concept of targeting cytarabine-induced genes as a means of improving response. PMID:26366682
Clinical significance of in vivo cytarabine-induced gene expression signature in AML.
Lamba, Jatinder K; Pounds, Stanley; Cao, Xueyuan; Crews, Kristine R; Cogle, Christopher R; Bhise, Neha; Raimondi, Susana C; Downing, James R; Baker, Sharyn D; Ribeiro, Raul C; Rubnitz, Jeffrey E
2016-01-01
Despite initial remission, ∼60-70% of adult and 30% of pediatric patients experience relapse or refractory AML. Studies so far have identified base line gene expression profiles of pathogenic and prognostic significance in AML; however, the extent of change in gene expression post-initiation of treatment has not been investigated. Exposure of leukemic cells to chemotherapeutic agents such as cytarabine, a mainstay of AML chemotherapy, can trigger adaptive response by influencing leukemic cell transcriptome and, hence, development of resistance or refractory disease. It is, however, challenging to perform such a study due to lack of availability of specimens post-drug treatment. The primary objective of this study was to identify in vivo cytarabine-induced changes in leukemia cell transcriptome and to evaluate their impact on clinical outcome. The results highlight genes relevant to cytarabine resistance and support the concept of targeting cytarabine-induced genes as a means of improving response.
Proteomic changes during intestinal cell maturation in vivo
Chang, Jinsook; Chance, Mark R.; Nicholas, Courtney; Ahmed, Naseem; Guilmeau, Sandra; Flandez, Marta; Wang, Donghai; Byun, Do-Sun; Nasser, Shannon; Albanese, Joseph M.; Corner, Georgia A.; Heerdt, Barbara G.; Wilson, Andrew J.; Augenlicht, Leonard H.; Mariadason, John M.
2008-01-01
Intestinal epithelial cells undergo progressive cell maturation as they migrate along the crypt-villus axis. To determine molecular signatures that define this process, proteins differentially expressed between the crypt and villus were identified by 2D-DIGE and MALDI-MS. Forty-six differentially expressed proteins were identified, several of which were validated by immunohistochemistry. Proteins upregulated in the villus were enriched for those involved in brush border assembly and lipid uptake, established features of differentiated intestinal epithelial cells. Multiple proteins involved in glycolysis were also upregulated in the villus, suggesting increased glycolysis is a feature of intestinal cell differentiation. Conversely, proteins involved in nucleotide metabolism, and protein processing and folding were increased in the crypt, consistent with functions associated with cell proliferation. Three novel paneth cell markers, AGR2, HSPA5 and RRBP1 were also identified. Notably, significant correlation was observed between overall proteomic changes and corresponding gene expression changes along the crypt-villus axis, indicating intestinal cell maturation is primarily regulated at the transcriptional level. This proteomic profiling analysis identified several novel proteins and functional processes differentially induced during intestinal cell maturation in vivo. Integration of proteomic, immunohistochemical, and parallel gene expression datasets demonstrate the coordinated manner in which intestinal cell maturation is regulated. PMID:18824147
High-dose vitamin D in Addison's disease regulates T-cells and monocytes: A pilot trial.
Penna-Martinez, Marissa; Filmann, Natalie; Bogdanou, Dimitra; Shoghi, Firouzeh; Huenecke, Sabine; Schubert, Ralf; Herrmann, Eva; Koehl, Ulrike; Husebye, Eystein S; Badenhoop, Klaus
2018-05-01
On the basis of the immunomodulatory actions of vitamin D (VD), we investigated the effects of high-dose VD therapy over a 3 mo period on the immune response in patients with Addison's disease (AD). This randomized, controlled, crossover trial included 13 patients with AD who received either cholecalciferol (4000 IU/d) for 3 mo followed by 3 mo placebo oil or the sequential alternative placebo followed by verum. Glucocorticoid replacement doses remained stable. The primary outcome measures were changes in 25-hydroxyvitamin D3 (25(OH)D 3 ) levels and immune cells including T helper cells (Th; CD3 + CD4 + ), late-activated Th cells (CD3 + CD4 + HLA-DR + ), regulatory T cells (CD3 + CD4 + CD25 bright CD127 dim/neg ), cytotoxic T cells (Tc; CD3 + CD8 + ), late-activated Tc cells (CD3 + CD8 + HLA-DR + ), and monocytes. The explorative analysis included the correlation of changes with VD-related gene polymorphisms and 21-hydroxylase antibody titers. Ten of 13 patients (77%) were VD deficient. Median 25(OH)D 3 concentrations increased significantly to 41.5 ng/ml (median changes: 19.95 ng/ml; P = 0.0005) after 3 mo of cholecalciferol treatment. Within the T-cells, only the late-activated Th (median changes: 1.6%; P = 0.02) and late-activated Tc cells (median changes: 4.05%; P = 0.03) decreased, whereas monocytes (median changes: 1.05%; P = 0.008) increased after VD therapy. T-cell changes were associated with two polymorphisms (CYP27B1-rs108770012 and VDR-rs10735810), but no changes in the 21-hydroxylase antibody titers were observed. Three months of treatment with cholecalciferol achieved sufficient 25(OH)D 3 levels and can regulate late-activated T-cells and monocytes in patients with AD. Explorative analysis revealed potential genetic contributions. This pilot trial provides novel insights about immunomodulation in AD. Copyright © 2017 Elsevier Inc. All rights reserved.
Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.
Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M
2014-02-01
Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in clinical settings; however, the rational application of this cue may directly impact and enhance neuro-supportive behavior, improving nerve repair.
Hassan-Zahraee, Mina; Banerjee, Anindita; Cheng, John B; Zhang, Weidong; Ahmad, Alaa; Page, Karen; von Schack, David; Zhang, Baohong; Martin, Steven W; Nayak, Satyaprakash; Reddy, Padma; Xi, Li; Neubert, Hendrik; Fernandez Ocana, Mireia; Gorelick, Ken; Clare, Robert; Vincent, Michael; Cataldi, Fabio; Hung, Kenneth
2018-01-01
Abstract Objective To define pharmacodynamic biomarkers in the peripheral blood of patients with Crohn’s disease [CD] after treatment with PF-00547659, an anti-human mucosal addressin cell adhesion molecule-1 [MAdCAM-1] monoclonal antibody. Methods In this Phase 2, randomised, double-blind, controlled study [OPERA], blood samples were analysed from patients with moderate to severe active CD who received placebo or 22.5 mg, 75 mg, or 225 mg of PF-00547659 subcutaneously at baseline and at Weeks 4 and 8, with follow-up at Week 12. Soluble MAdCAM [sMAdCAM] was measured by mass spectrometry, β7-expressing T cells by flow cytometry, and gene transcriptome by RNA sequencing. Results A slight increase in sMAdCAM was measured in the placebo group from baseline to Week 12 [6%], compared with significant decreases in all PF-00547659 groups [–87% to –98%]. A slight increase from baseline to Week 12 was observed in frequency and molecules of equivalent soluble fluorochrome for β7+ central memory T cells in the placebo group [4%], versus statistically significant increases in the active treatment groups [48% to 81%]. Similar trends were seen for β7+ effector memory T cells [placebo, 8%; PF-00547659, 84–138%] and β7+ naïve T cells [8%; 13–50%]. CCR9 gene expression had statistically significant up-regulation [p = 1.09e-06; false discovery rate < 0.1] with PF-00547659 treatment, and was associated with an increase in β7+ T cells. Conclusions Results of the OPERA study demonstrate positive pharmacology and dose-dependent changes in pharmacodynamic biomarker measurements in blood, including changes in cellular composition of lymphocytes and corresponding CCR9 gene expression changes. PMID:28961803
Hassan-Zahraee, Mina; Banerjee, Anindita; Cheng, John B; Zhang, Weidong; Ahmad, Alaa; Page, Karen; von Schack, David; Zhang, Baohong; Martin, Steven W; Nayak, Satyaprakash; Reddy, Padma; Xi, Li; Neubert, Hendrik; Fernandez Ocana, Mireia; Gorelick, Ken; Clare, Robert; Vincent, Michael; Cataldi, Fabio; Hung, Kenneth
2018-01-05
To define pharmacodynamic biomarkers in the peripheral blood of patients with Crohn's disease [CD] after treatment with PF-00547659, an anti-human mucosal addressin cell adhesion molecule-1 [MAdCAM-1] monoclonal antibody. In this Phase 2, randomised, double-blind, controlled study [OPERA], blood samples were analysed from patients with moderate to severe active CD who received placebo or 22.5 mg, 75 mg, or 225 mg of PF-00547659 subcutaneously at baseline and at Weeks 4 and 8, with follow-up at Week 12. Soluble MAdCAM [sMAdCAM] was measured by mass spectrometry, β7-expressing T cells by flow cytometry, and gene transcriptome by RNA sequencing. A slight increase in sMAdCAM was measured in the placebo group from baseline to Week 12 [6%], compared with significant decreases in all PF-00547659 groups [-87% to -98%]. A slight increase from baseline to Week 12 was observed in frequency and molecules of equivalent soluble fluorochrome for β7+ central memory T cells in the placebo group [4%], versus statistically significant increases in the active treatment groups [48% to 81%]. Similar trends were seen for β7+ effector memory T cells [placebo, 8%; PF-00547659, 84-138%] and β7+ naïve T cells [8%; 13-50%]. CCR9 gene expression had statistically significant up-regulation [p = 1.09e-06; false discovery rate < 0.1] with PF-00547659 treatment, and was associated with an increase in β7+ T cells. Results of the OPERA study demonstrate positive pharmacology and dose-dependent changes in pharmacodynamic biomarker measurements in blood, including changes in cellular composition of lymphocytes and corresponding CCR9 gene expression changes. Copyright © 2017 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com
Reyes-Reyes, E Merit; Jin, Zhuang; Vaisberg, Abraham J; Hammond, Gerald B; Bates, Paula J
2013-01-25
Recently, our group reported the discovery of three new withanolides, physangulidines A-C, from Physalis angulata. In this study, the biological effects of physangulidine A (1), which was the most active and abundant of the three new constituents, are described. It was found that 1 significantly reduces survival in clonogenic assays for two hormone-independent prostate cancer cell lines. Flow cytometry and confocal microscopy studies in DU145 human prostate cancer cells indicated that 1 induces cell cycle arrest in the G(2)/M phase and causes defective mitosis. It was determined also that 1 produces programed cell death by apoptosis, as evidenced by biochemical markers and distinct changes in cell morphology. These results imply that the antimitotic and proapoptotic effects of 1 may contribute significantly to the biological activities and potential medicinal properties of its plant of origin.
Wu, Junfang; Zhao, Zaorui; Zhu, Xiya; Renn, Cynthia L.; Dorsey, Susan G.; Faden, Alan I.
2016-01-01
Chronic pain after spinal cord injury (SCI) may present as hyperalgesia, allodynia, and/or spontaneous pain and is often resistant to conventional pain medications. Identifying more effective interventions to manage SCI-Pain requires improved understanding of the pathophysiological mechanisms involved. Cell cycle activation (CCA) has been implicated as a key pathophysiological event following SCI. We have shown that early central or systemic administration of a cell cycle inhibitor reduces CCA, prevents glial changes, and limits SCI-induced hyperesthesia. Here we compared the effects of early versus late treatment with the pan-cyclin dependent kinase inhibitor flavopiridol on allodynia as well as spontaneous pain. Adult C57BL/6 male mice subjected to moderate SCI were treated with intraperitoneal injections of flavopiridol (1 mg/kg), daily for 7 days beginning either 3 h or 5 weeks after injury. Mechanical/thermal allodynia was evaluated, as well as spontaneous pain using the mouse grimace scale (MGS). We show that sensitivity to mechanical and thermal stimulation, and locomotor dysfunction were significantly reduced by early flavopiridol treatment compared to vehicle treated controls. SCI caused robust and extended increases of MGS up to 3 weeks after trauma. Early administration of flavopiridol significantly shortened duration of MGS changes. Late flavopiridol intervention significantly limited hyperesthesia at 7 days after treatment, associated with reduced glial changes, but without effect on locomotion. Thus, our data suggest that cell cycle modulation may provide an effective therapeutic strategy to reduce hyperesthesia after SCI, with a prolonged therapeutic window. PMID:26797506
Saini, Nishant; Basu, Sabita; Kaur, Ravneet; Kaur, Jasbinder
2015-06-01
Red cell units undergo changes during storage and processing. The study was planned to assess plasma potassium, plasma hemoglobin, percentage hemolysis during storage and to determine the effects of outdoor blood collection and processing on those parameters. Blood collection in three types of blood storage bags was done - single CPDA bag (40 outdoor and 40 in-house collection), triple CPD + SAGM bag (40 in-house collection) and quadruple CPD + SAGM bag with integral leukoreduction filter (40 in-house collection). All bags were sampled on day 0 (day of collection), day 1 (after processing), day 7, day 14 and day 28 for measurement of percentage hemolysis and potassium levels in the plasma of bag contents. There was significant increase in percentage hemolysis, plasma hemoglobin and plasma potassium level in all the groups during storage (p < 0.001). No significant difference was found between any parameter analyzed for outdoor and in-house collected single CPDA red cell units. There was significant lower percentage hemolysis (p < 0.001) and potassium (day 7 to day 14 - p < 0.05 and day 14 to day 28 - p < 0.001) in red cell units from day 7 onward until day 28 of storage in the leukoreduced quadruple bag as compared to the triple bag. The in-house single CPDA red cell units showed significantly more hemolysis (p < 0.001) as compared to the triple bags with SAGM additive solution after 28 days of storage. There is gradual increase in plasma hemoglobin and plasma potassium levels during the storage of red blood cells. Blood collection can be safely undertaken in outdoor blood donation camps even in hot summer months in monitored blood transport boxes. SAGM additive solution decreases the red cell hemolysis and allows extended storage of red cells. Prestorage leukoreduction decreases the red cell hemolysis and improves the quality of blood. Copyright © 2015 Elsevier Ltd. All rights reserved.
Locally Produced BDNF Promotes Sclerotic Change in Alveolar Bone after Nerve Injury
Ida-Yonemochi, Hiroko; Yamada, Yurie; Yoshikawa, Hiroyuki
2017-01-01
Brain-derived neurotrophic factor (BDNF), which is released due to nerve injury, is known to promote the natural healing of injured nerves. It is often observed that damage of mandibular canal induces local sclerotic changes in alveolar bone. We reported that peripheral nerve injury promotes the local production of BDNF; therefore, it was possible to hypothesize that peripheral nerve injury affects sclerotic changes in the alveolar bone. This study aimed to evaluate the effect of BDNF on osteogenesis using in vitro osteoblast-lineage cell culture and an in vivo rat osteotomy model. MC3T3-E1 cells were cultured with BDNF and were examined for cell proliferative activity, chemotaxis and mRNA expression levels of osteoblast differentiation markers. For in vivo study, inferior alveolar nerve (IAN) injury experiments and mandibular cortical osteotomy were performed using a rat model. In the osteotomy model, exogenous BDNF was applied to bone surfaces after corticotomy of the mandible, and we morphologically analyzed the new bone formation. As a result, mRNA expression of osteoblast differentiation marker, osteocalcin, was significantly increased by BDNF, although cell proliferation and migration were not affected. In the in vivo study, osteopontin-positive new bone formation was significantly accelerated in the BDNF-grafted groups, and active bone remodeling, involving trkB-positive osteoblasts and osteocytes, continued after 28 days. In conclusion, BDNF stimulated the differentiation of MC3T3-E1 cells and it promoted new bone formation and maturation. These results suggested that local BDNF produced by peripheral nerve injury contributes to accelerating sclerotic changes in the alveolar bone. PMID:28072837
No changes in heme synthesis in human Friedreich´s ataxia erythroid progenitor cells.
Steinkellner, Hannes; Singh, Himanshu Narayan; Muckenthaler, Martina U; Goldenberg, Hans; Moganty, Rajeswari R; Scheiber-Mojdehkar, Barbara; Sturm, Brigitte
2017-07-20
Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the protein frataxin. Frataxin is thought to play a role in iron-sulfur cluster biogenesis and heme synthesis. In this study, we used erythroid progenitor stem cells obtained from FRDA patients and healthy donors to investigate the putative role, if any, of frataxin deficiency in heme synthesis. We used electrochemiluminescence and qRT-PCR for frataxin protein and mRNA quantification. We used atomic absorption spectrophotometry for iron levels and a photometric assay for hemoglobin levels. Protoporphyrin IX and Ferrochelatase were analyzed using auto-fluorescence. An "IronChip" microarray analysis followed by a protein-protein interaction analysis was performed. FRDA patient cells showed no significant changes in iron levels, hemoglobin synthesis, protoporphyrin IX levels, and ferrochelatase activity. Microarray analysis presented 11 genes that were significantly changed in all patients compared to controls. The genes are especially involved in oxidative stress, iron homeostasis and angiogenesis. The mystery about the involvement of frataxin on iron metabolism raises the question why frataxin deficiency in primary FRDA cells did not lead to changes in biochemical parameters of heme synthesis. It seems that alternative pathways can circumvent the impact of frataxin deficiency on heme synthesis. We show for the first time in primary FRDA patient cells that reduced frataxin levels are still sufficient for heme synthesis and possibly other mechanisms can overcome reduced frataxin levels in this process. Our data strongly support the fact that so far no anemia in FRDA patients was reported. Copyright © 2017 Elsevier B.V. All rights reserved.
Nakatani, Masashi; Fukuda, Toru; Arakawa, Naomi; Kawasoe, Tomoyuki; Omata, Sadao
2013-02-01
Few attempts have been made to distinguish the softness of different skin layers, though specific measurement of the superficial layer would be useful for evaluating the emollient effect of cosmetics and for diagnosis of skin diseases. We developed a sensor probe consisting of a piezoelectric tactile sensor and a load cell. To evaluate it, we firstly measured silicone rubber samples with different softness. Then, it was applied to human forearm skin before and after tape-stripping. A VapoMeter and skin-surface hygrometer were used to confirm removal of the stratum corneum. A Cutometer was used to obtain conventional softness data for comparison. Both the piezoelectric tactile sensor and the load cell could measure the softness of silicone rubber samples, but the piezoelectric tactile sensor was more sensitive than the load cell when the reaction force of the measured sample was under 100 mN in response to a 2-mm indentation. For human skin in vivo, transepidermal water loss and skin conductance were significantly changed after tape-stripping, confirming removal of the stratum corneum. The piezoelectric tactile sensor detected a significant change after tape-stripping, whereas the load cell did not. Thus, the piezoelectric tactile sensor can detect changes of mechanical properties at the skin surface. The load cell data were in agreement with Cutometer measurements, which showed no change in representative skin elasticity parameters after tape-stripping. These results indicate that our sensor can simultaneously measure the mechanical properties of the superficial skin layer and whole skin. © 2012 John Wiley & Sons A/S.
Qu, Wei; Kang, Yin-Dong; Zhou, Mei-Sheng; Fu, Li-Li; Hua, Zhen-Hao; Wang, Li-Ming
2010-01-01
To investigate the inhibitory effect of histone deacetylase (HDAC) inhibitors (MS-275 and TSA) on T24 human bladder cancer cells in vitro, and explore the possible mechanism. The MTT assay was employed to evaluate the inhibitory effect of MS-275 and TSA on T24 cell growth. FCM was used to analyze the variation of T24 cell cycle distribution and the apoptotic ratio after T24 cells were treated with MS-275 and TSA. Histone acetylation level was detected by Western blot. mRNA expression of p21 WAF1/CIP1, cyclin A, and cyclin E was measured by FQ-PCR. Dynamic changes of Bcl-2 and bax expression were detected by FCM. MS-275 and TSA inhibited T24 cell growth in a concentration and time-dependent manner. Treatment with 4 μmol/l MS-275 or 0.4 μmol/l TSA blocked cell cycling in the G0/G1 phase and induced a significant increase in cell apoptosis. MS-275 and TSA significantly increased the level of histone acetylation, induced p21CIP1WAF1 mRNA expression, and inhibited cyclin A mRNA expression, though no significant effect was observed on cyclin E. Bcl-2 expression was down-regulated, while bax expression was up-regulated. HDAC inhibitors can block bladder cancer cell cycle in vitro and induce apoptosis. The molecular mechanism may be associated with increased level of histone acetylation, down-regulation of p21WAF1/CIP1 expression, up-regulation of cyclin A expression, and dynamic change of bcl-2 and bax expression. Copyright © 2010 Elsevier Inc. All rights reserved.
Endometrial Serous Carcinoma With Clear-Cell Change: Frequency and Immunohistochemical Analysis.
Hariri, Nosaibah; Qarmali, Morad; Fadare, Oluwole
2018-04-01
The diagnostic distinction between endometrial serous carcinoma (ESC) and endometrial clear-cell carcinoma (CCC) may occasionally be problematic, and one potentially contributing factor is the finding of clear cells in otherwise classic cases of ESC. This study aimed to define the frequency of this finding and comparatively assessed the immunophenotype of the clear cells. A review of 56 cases of ESC identified 8 (14.28%) with clear cells, representing 1% to 20% (median 7.5) of tumoral volume in these cases. In only 3 cases were clear cells discernible at low (×20) magnification. There was no significant difference in stage distribution or age between ESC patients with and without clear cells. The immunophenotypes of ESC-associated clear cells (group 1) were compared with foci of conventional ESC on another tissue block within the same case (group 2; n = 8) as well as a randomly selected cohort of CCC cases (group 3; n = 8). Groups 1 and 2 showed no significant differences regarding p53, ER, PR, Napsin-A, p504S, and hepatocyte nuclear factor 1β (HNF1β) expression, or regarding mitotic indices or Ki67 proliferation rate. In contrast, group 1 cases showed an immunophenotypic profile that was notably different from that of group 3 cases, with the former showing statistically significantly higher/more frequent expression of ER, PR, Ki67, and p53 and lower/less frequent expression of Napsin-A, p504S, and HNF1β. We conclude that clear-cell change is seen in 14% of ESCs and is discernible at low magnification in only 5%; these areas show an immunophenotype that is essentially identical to the associated background conventional ESC and are phenotypically dissimilar to CCC.
Lee, In-Ho; Yu, Hye-sun; Lakhkar, Nilay J; Kim, Hae-Won; Gong, Myoung-Seon; Knowles, Jonathan C; Wall, Ivan B
2013-05-01
There is a continuing need to develop scaffold materials that can promote vascularisation throughout the tissue engineered construct. This study investigated the effect of cobalt oxide (CoO) doped into titanium phosphate glasses on material properties, biocompatibility and vascular endothelial growth factor (VEGF) secretion by osteoblastic MG63 cells. Glasses composed of (P2O5)45(Na2O)20(TiO2)05(CaO)30-x(CoO)x(x=0, 5, 10, and 15 mol%) were fabricated and the effect of Co on physicochemical properties including density, glass transition temperature (Tg), degradation rate, ion release, and pH changes was assessed. The results showed that incorporation of CoO into the glass system produced an increase in density with little change in Tg. It was then confirmed that the pH did not change significantly when CoO was incorporated in the glass, and stayed constant at around 6.5-7.0 throughout the dissolution study period of 336 h. Ion release results followed a specific pattern with increasing amounts of CoO. In general, although incorporation of CoO into a titanium phosphate glass increased its density, other bulk and surface properties of the glass did not show any significant changes. Cell culture studies performed using MG63 cells over a 7-day period indicated that the glasses provide a stable surface for cell attachment and are biocompatible. Furthermore, VEGF secretion was significantly enhanced on all glasses compared with standard tissue culture plastic and Co doping enhanced this effect further. In conclusion, the developed Co-doped glasses are stable and biocompatible and thus offer enhanced potential for engineering vascularized tissue. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Geer; Zhang, Aili; Xu, Lisa X.; He, Xiaoming
2009-06-01
In this study, a set of models for predicting the diffusion-limited ice nucleation and growth inside biological cells were established. Both the heterogeneous and homogeneous nucleation mechanisms were considered in the models. Molecular mobility including viscosity and mutual diffusion coefficient of aqueous cryoprotectant (i.e., glycerol here) solutions was estimated using models derived from the free volume theory for glass transition, which makes it possible to predict the two most important physical properties (i.e., viscosity and mutual diffusion coefficient) over wide ranges of temperature and concentration as encountered in cryopreservation. After being verified using experimental data, the models were used to predict the critical cooling rate (defined as the cooling rate required so that the crystallized volume is less than 0.1% of the cell volume) as a function of the initial glycerol concentration in a number of cell types with different sizes. For slowing freezing, it was found that the required critical cooling rate is cell-type dependent with influences from cell size and the ice nucleation and water transport parameters. In general, the critical cooling rate does not change significantly with the initial glycerol concentration used and tends to be higher for smaller cells. For vitrification, the required critical cooling rate does change significantly with the initial glycerol concentration used and tends to decrease with the decrease in cell size. However, the required critical cooling rate can be similar for cells with very different sizes. It was further found that the thermodynamic and kinetic parameters for intracellular ice formation associated with different cells rather than the cell size per se significantly affect the critical cooling rates required for vitrification. For all cell types, it was found that homogeneous nucleation dominates at ultrafast cooling rates and/or high glycerol concentrations, whereas heterogeneous nucleation becomes important only during slow freezing with a low initial glycerol concentration (<1.5-2M), particularly for large cells such as mouse oocytes.
Beller, Ebba; Klopp, David; Göttler, Jens; Kaesmacher, Johannes; Zimmer, Claus; Kirschke, Jan S; Prothmann, Sascha
2016-01-01
Stent-assisted coil embolization (SACE) plays an important role in the treatment of intracranial aneurysms. The purpose of this study was to investigate geometrical changes caused by closed-cell design stents in bifurcation and sidewall aneurysms. 31 patients with 34 aneurysms underwent SACE with closed-cell design stents. Inflow angle α, determined by aneurysm neck and afferent vessel, and angle between afferent and efferent vessel close to (δ1), respectively, more remote from the aneurysm neck (δ2) were graphically determined in 2D angiography projections. Stent assisted coiling resulted in a significant increase of all three angles from a mean value (±SEM) of α = 119° (±6.5°) pretreatment to 130° (±6.6°) posttreatment (P ≤ .001), δ1 = 129° (±6.4°) to 139° (±6.1°), (P ≤ .001) and δ2 = 115° (±8.4°) to 126° (±7.5°), (P ≤ .01). Angular change of δ1 in AcomA aneurysms was significant greater compared to sidewall aneurysms (26°±4.9° versus 8°± 2.3°, P ≤ .05). The initial angle of δ1 and δ2 revealed a significantly inverse relationship to the angle increase (δ1: r = -0.41, P ≤ .05 and δ2: r = -0.47, P ≤ .01). Moreover, angle δ1 was significantly higher in unruptured compared to ruptured aneurysms (135°±7.1° versus 103°±10.8°, P ≤ .05). Stent deployment modulates the geometry of the aneurysm-vessel complex, which may lead to favorable hemodynamic changes more similar to unruptured than to ruptured aneurysms. Our findings also suggest that the more acute-angled aneurysm-vessel anatomy, the larger the angular change. Further studies are needed to investigate whether these changes improve the clinical outcome.