Acquisition of New DNA Sequences After Infection of Chicken Cells with Avian Myeloblastosis Virus
Shoyab, M.; Baluda, M. A.; Evans, R.
1974-01-01
DNA-RNA hybridization studies between 70S RNA from avian myeloblastosis virus (AMV) and an excess of DNA from (i) AMV-induced leukemic chicken myeloblasts or (ii) a mixture of normal and of congenitally infected K-137 chicken embryos producing avian leukosis viruses revealed the presence of fast- and slow-hybridizing virus-specific DNA sequences. However, the leukemic cells contained twice the level of AMV-specific DNA sequences observed in normal chicken embryonic cells. The fast-reacting sequences were two to three times more numerous in leukemic DNA than in DNA from the mixed embryos. The slow-reacting sequences had a reiteration frequency of approximately 9 and 6, in the two respective systems. Both the fast- and the slow-reacting DNA sequences in leukemic cells exhibited a higher Tm (2 C) than the respective DNA sequences in normal cells. In normal and leukemic cells the slow hybrid sequences appeared to have a Tm which was 2 C higher than that of the fast hybrid sequences. Individual non-virus-producing chicken embryos, either group-specific antigen positive or negative, contained 40 to 100 copies of the fast sequences and 2 to 6 copies of the slowly hybridizing sequences per cell genome. Normal rat cells did not contain DNA that hybridized with AMV RNA, whereas non-virus-producing rat cells transformed by B-77 avian sarcoma virus contained only the slowly reacting sequences. The results demonstrate that leukemic cells transformed by AMV contain new AMV-specific DNA sequences which were not present before infection. PMID:16789139
Single-cell genomic sequencing using Multiple Displacement Amplification.
Lasken, Roger S
2007-10-01
Single microbial cells can now be sequenced using DNA amplified by the Multiple Displacement Amplification (MDA) reaction. The few femtograms of DNA in a bacterium are amplified into micrograms of high molecular weight DNA suitable for DNA library construction and Sanger sequencing. The MDA-generated DNA also performs well when used directly as template for pyrosequencing by the 454 Life Sciences method. While MDA from single cells loses some of the genomic sequence, this approach will greatly accelerate the pace of sequencing from uncultured microbes. The genetically linked sequences from single cells are also a powerful tool to be used in guiding genomic assembly of shotgun sequences of multiple organisms from environmental DNA extracts (metagenomic sequences).
Highly multiplexed targeted DNA sequencing from single nuclei.
Leung, Marco L; Wang, Yong; Kim, Charissa; Gao, Ruli; Jiang, Jerry; Sei, Emi; Navin, Nicholas E
2016-02-01
Single-cell DNA sequencing methods are challenged by poor physical coverage, high technical error rates and low throughput. To address these issues, we developed a single-cell DNA sequencing protocol that combines flow-sorting of single nuclei, time-limited multiple-displacement amplification (MDA), low-input library preparation, DNA barcoding, targeted capture and next-generation sequencing (NGS). This approach represents a major improvement over our previous single nucleus sequencing (SNS) Nature Protocols paper in terms of generating higher-coverage data (>90%), thereby enabling the detection of genome-wide variants in single mammalian cells at base-pair resolution. Furthermore, by pooling 48-96 single-cell libraries together for targeted capture, this approach can be used to sequence many single-cell libraries in parallel in a single reaction. This protocol greatly reduces the cost of single-cell DNA sequencing, and it can be completed in 5-6 d by advanced users. This single-cell DNA sequencing protocol has broad applications for studying rare cells and complex populations in diverse fields of biological research and medicine.
Integrated sequencing of exome and mRNA of large-sized single cells.
Wang, Lily Yan; Guo, Jiajie; Cao, Wei; Zhang, Meng; He, Jiankui; Li, Zhoufang
2018-01-10
Current approaches of single cell DNA-RNA integrated sequencing are difficult to call SNPs, because a large amount of DNA and RNA is lost during DNA-RNA separation. Here, we performed simultaneous single-cell exome and transcriptome sequencing on individual mouse oocytes. Using microinjection, we kept the nuclei intact to avoid DNA loss, while retaining the cytoplasm inside the cell membrane, to maximize the amount of DNA and RNA captured from the single cell. We then conducted exome-sequencing on the isolated nuclei and mRNA-sequencing on the enucleated cytoplasm. For single oocytes, exome-seq can cover up to 92% of exome region with an average sequencing depth of 10+, while mRNA-sequencing reveals more than 10,000 expressed genes in enucleated cytoplasm, with similar performance for intact oocytes. This approach provides unprecedented opportunities to study DNA-RNA regulation, such as RNA editing at single nucleotide level in oocytes. In future, this method can also be applied to other large cells, including neurons, large dendritic cells and large tumour cells for integrated exome and transcriptome sequencing.
High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA.
Chandrananda, Dineika; Thorne, Natalie P; Bahlo, Melanie
2015-06-17
High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to noise ratio in the sequencing data. In this study, we investigate various features of cell-free DNA in plasma using deep-sequencing data from two pregnant women (>70X, >50X) and compare them with matched cellular DNA. We utilize a descriptive approach to examine how the biological cleavage of cell-free DNA affects different sequence signatures such as fragment lengths, sequence motifs at fragment ends and the distribution of cleavage sites along the genome. We show that the size distributions of these cell-free DNA molecules are dependent on their autosomal and mitochondrial origin as well as the genomic location within chromosomes. DNA mapping to particular microsatellites and alpha repeat elements display unique size signatures. We show how cell-free fragments occur in clusters along the genome, localizing to nucleosomal arrays and are preferentially cleaved at linker regions by correlating the mapping locations of these fragments with ENCODE annotation of chromatin organization. Our work further demonstrates that cell-free autosomal DNA cleavage is sequence dependent. The region spanning up to 10 positions on either side of the DNA cleavage site show a consistent pattern of preference for specific nucleotides. This sequence motif is present in cleavage sites localized to nucleosomal cores and linker regions but is absent in nucleosome-free mitochondrial DNA. These background signals in cell-free DNA sequencing data stem from the non-random biological cleavage of these fragments. This sequence structure can be harnessed to improve bioinformatics algorithms, in particular for CNV and structural variant detection. Descriptive measures for cell-free DNA features developed here could also be used in biomarker analysis to monitor the changes that occur during different pathological conditions.
Colombo, M M; Swanton, M T; Donini, P; Prescott, D M
1984-01-01
Oxytricha nova is a hypotrichous ciliate with micronuclei and macronuclei. Micronuclei, which contain large, chromosomal-sized DNA, are genetically inert but undergo meiosis and exchange during cell mating. Macronuclei, which contain only small, gene-sized DNA molecules, provide all of the nuclear RNA needed to run the cell. After cell mating the macronucleus is derived from a micronucleus, a derivation that includes excision of the genes from chromosomes and elimination of the remaining DNA. The eliminated DNA includes all of the repetitious sequences and approximately 95% of the unique sequences. We cloned large restriction fragments from the micronucleus that confer replication ability on a replication-deficient plasmid in Saccharomyces cerevisiae. Sequences that confer replication ability are called autonomously replicating sequences. The frequency and effectiveness of autonomously replicating sequences in micronuclear DNA are similar to those reported for DNAs of other organisms introduced into yeast cells. Of the 12 micronuclear fragments with autonomously replicating sequence activity, 9 also showed homology to macronuclear DNA, indicating that they contain a macronuclear gene sequence. We conclude from this that autonomously replicating sequence activity is nonrandomly distributed throughout micronuclear DNA and is preferentially associated with those regions of micronuclear DNA that contain genes. Images PMID:6092934
Mitochondrial DNA mutations in single human blood cells.
Yao, Yong-Gang; Kajigaya, Sachiko; Young, Neal S
2015-09-01
Determination mitochondrial DNA (mtDNA) sequences from extremely small amounts of DNA extracted from tissue of limited amounts and/or degraded samples is frequently employed in medical, forensic, and anthropologic studies. Polymerase chain reaction (PCR) amplification followed by DNA cloning is a routine method, especially to examine heteroplasmy of mtDNA mutations. In this review, we compare the mtDNA mutation patterns detected by three different sequencing strategies. Cloning and sequencing methods that are based on PCR amplification of DNA extracted from either single cells or pooled cells yield a high frequency of mutations, partly due to the artifacts introduced by PCR and/or the DNA cloning process. Direct sequencing of PCR product which has been amplified from DNA in individual cells is able to detect the low levels of mtDNA mutations present within a cell. We further summarize the findings in our recent studies that utilized this single cell method to assay mtDNA mutation patterns in different human blood cells. Our data show that many somatic mutations observed in the end-stage differentiated cells are found in hematopoietic stem cells (HSCs) and progenitors within the CD34(+) cell compartment. Accumulation of mtDNA variations in the individual CD34+ cells is affected by both aging and family genetic background. Granulocytes harbor higher numbers of mutations compared with the other cells, such as CD34(+) cells and lymphocytes. Serial assessment of mtDNA mutations in a population of single CD34(+) cells obtained from the same donor over time suggests stability of some somatic mutations. CD34(+) cell clones from a donor marked by specific mtDNA somatic mutations can be found in the recipient after transplantation. The significance of these findings is discussed in terms of the lineage tracing of HSCs, aging effect on accumulation of mtDNA mutations and the usage of mtDNA sequence in forensic identification. Copyright © 2015 Elsevier B.V. All rights reserved.
Aas-Hanssen, Kristin; Thompson, Keith M; Bogen, Bjarne; Munthe, Ludvig A
2015-01-01
Systemic lupus erythematosus (SLE) is marked by a T helper (Th) cell-dependent B cell hyperresponsiveness, with frequent germinal center reactions, and gammaglobulinemia. A feature of SLE is the finding of IgG autoantibodies specific for dsDNA. The specificity of the Th cells that drive the expansion of anti-dsDNA B cells is unresolved. However, anti-microbial, anti-histone, and anti-idiotype Th cell responses have been hypothesized to play a role. It has been entirely unclear if these seemingly disparate Th cell responses and hypotheses could be related or unified. Here, we describe that H chain CDR3 idiotypes from IgG(+) B cells of lupus mice have sequence similarities with both microbial and self peptides. Matched sequences were more frequent within the mutated CDR3 repertoire and when sequences were derived from lupus mice with expanded anti-dsDNA B cells. Analyses of histone sequences showed that particular histone peptides were similar to VDJ junctions. Moreover, lupus mice had Th cell responses toward histone peptides similar to anti-dsDNA CDR3 sequences. The results suggest that Th cells in lupus may have multiple cross-reactive specificities linked to the IgVH CDR3 Id-peptide sequences as well as similar DNA-associated protein motifs.
Enlightenment of Yeast Mitochondrial Homoplasmy: Diversified Roles of Gene Conversion
Ling, Feng; Mikawa, Tsutomu; Shibata, Takehiko
2011-01-01
Mitochondria have their own genomic DNA. Unlike the nuclear genome, each cell contains hundreds to thousands of copies of mitochondrial DNA (mtDNA). The copies of mtDNA tend to have heterogeneous sequences, due to the high frequency of mutagenesis, but are quickly homogenized within a cell (“homoplasmy”) during vegetative cell growth or through a few sexual generations. Heteroplasmy is strongly associated with mitochondrial diseases, diabetes and aging. Recent studies revealed that the yeast cell has the machinery to homogenize mtDNA, using a common DNA processing pathway with gene conversion; i.e., both genetic events are initiated by a double-stranded break, which is processed into 3′ single-stranded tails. One of the tails is base-paired with the complementary sequence of the recipient double-stranded DNA to form a D-loop (homologous pairing), in which repair DNA synthesis is initiated to restore the sequence lost by the breakage. Gene conversion generates sequence diversity, depending on the divergence between the donor and recipient sequences, especially when it occurs among a number of copies of a DNA sequence family with some sequence variations, such as in immunoglobulin diversification in chicken. MtDNA can be regarded as a sequence family, in which the members tend to be diversified by a high frequency of spontaneous mutagenesis. Thus, it would be interesting to determine why and how double-stranded breakage and D-loop formation induce sequence homogenization in mitochondria and sequence diversification in nuclear DNA. We will review the mechanisms and roles of mtDNA homoplasmy, in contrast to nuclear gene conversion, which diversifies gene and genome sequences, to provide clues toward understanding how the common DNA processing pathway results in such divergent outcomes. PMID:24710143
Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.
Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre
2012-01-01
Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.
Cartwright, Joseph F; Anderson, Karin; Longworth, Joseph; Lobb, Philip; James, David C
2018-06-01
High-fidelity replication of biologic-encoding recombinant DNA sequences by engineered mammalian cell cultures is an essential pre-requisite for the development of stable cell lines for the production of biotherapeutics. However, immortalized mammalian cells characteristically exhibit an increased point mutation frequency compared to mammalian cells in vivo, both across their genomes and at specific loci (hotspots). Thus unforeseen mutations in recombinant DNA sequences can arise and be maintained within producer cell populations. These may affect both the stability of recombinant gene expression and give rise to protein sequence variants with variable bioactivity and immunogenicity. Rigorous quantitative assessment of recombinant DNA integrity should therefore form part of the cell line development process and be an essential quality assurance metric for instances where synthetic/multi-component assemblies are utilized to engineer mammalian cells, such as the assessment of recombinant DNA fidelity or the mutability of single-site integration target loci. Based on Pacific Biosciences (Menlo Park, CA) single molecule real-time (SMRT™) circular consensus sequencing (CCS) technology we developed a rDNA sequence analysis tool to process the multi-parallel sequencing of ∼40,000 single recombinant DNA molecules. After statistical filtering of raw sequencing data, we show that this analytical method is capable of detecting single point mutations in rDNA to a minimum single mutation frequency of 0.0042% (<1/24,000 bases). Using a stable CHO transfectant pool harboring a randomly integrated 5 kB plasmid construct encoding GFP we found that 28% of recombinant plasmid copies contained at least one low frequency (<0.3%) point mutation. These mutations were predominantly found in GC base pairs (85%) and that there was no positional bias in mutation across the plasmid sequence. There was no discernable difference between the mutation frequencies of coding and non-coding DNA. The putative ratio of non-synonymous and synonymous changes within the open reading frames (ORFs) in the plasmid sequence indicates that natural selection does not impact upon the prevalence of these mutations. Here we have demonstrated the abundance of mutations that fall outside of the reported range of detection of next generation sequencing (NGS) and second generation sequencing (SGS) platforms, providing a methodology capable of being utilized in cell line development platforms to identify the fidelity of recombinant genes throughout the production process. © 2018 Wiley Periodicals, Inc.
Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya
2015-08-01
Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Dorsch-Häsler, Karoline; Fisher, Paul B.; Weinstein, I. Bernard; Ginsberg, Harold S.
1980-01-01
The integration pattern of viral DNA was studied in a number of cell lines transformed by wild-type adenovirus type 5 (Ad5 WT) and two mutants of the DNA-binding protein gene, H5ts125 and H5ts107. The effect of chemical carcinogens on the integration of viral DNA was also investigated. Liquid hybridization (C0t) analyses showed that rat embryo cells transformed by Ad5 WT usually contained only the left-hand end of the viral genome, whereas cell lines transformed by H5ts125 or H5ts107 at either the semipermissive (36°C) or nonpermissive (39.5°C) temperature often contained one to five copies of all or most of the entire adenovirus genome. The arrangement of the integrated adenovirus DNA sequences was determined by cleavage of transformed cell DNA with restriction endonucleases XbaI, EcoRI, or HindIII followed by transfer of separated fragments to nitrocellulose paper and hybridization according to the technique of E. M. Southern (J. Mol. Biol. 98: 503-517, 1975). It was found that the adenovirus genome is integrated as a linear sequence covalently linked to host cell DNA; that the viral DNA is integrated into different host DNA sequences in each cell line studied; that in cell lines that contain multiple copies of the Ad5 genome the viral DNA sequences can be integrated in a single set of host cell DNA sequences and not as concatemers; and that chemical carcinogens do not alter the extent or pattern of viral DNA integration. Images PMID:6246266
Winnowing DNA for Rare Sequences: Highly Specific Sequence and Methylation Based Enrichment
Thompson, Jason D.; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre
2012-01-01
Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue. PMID:22355378
Ultraaccurate genome sequencing and haplotyping of single human cells.
Chu, Wai Keung; Edge, Peter; Lee, Ho Suk; Bansal, Vikas; Bafna, Vineet; Huang, Xiaohua; Zhang, Kun
2017-11-21
Accurate detection of variants and long-range haplotypes in genomes of single human cells remains very challenging. Common approaches require extensive in vitro amplification of genomes of individual cells using DNA polymerases and high-throughput short-read DNA sequencing. These approaches have two notable drawbacks. First, polymerase replication errors could generate tens of thousands of false-positive calls per genome. Second, relatively short sequence reads contain little to no haplotype information. Here we report a method, which is dubbed SISSOR (single-stranded sequencing using microfluidic reactors), for accurate single-cell genome sequencing and haplotyping. A microfluidic processor is used to separate the Watson and Crick strands of the double-stranded chromosomal DNA in a single cell and to randomly partition megabase-size DNA strands into multiple nanoliter compartments for amplification and construction of barcoded libraries for sequencing. The separation and partitioning of large single-stranded DNA fragments of the homologous chromosome pairs allows for the independent sequencing of each of the complementary and homologous strands. This enables the assembly of long haplotypes and reduction of sequence errors by using the redundant sequence information and haplotype-based error removal. We demonstrated the ability to sequence single-cell genomes with error rates as low as 10 -8 and average 500-kb-long DNA fragments that can be assembled into haplotype contigs with N50 greater than 7 Mb. The performance could be further improved with more uniform amplification and more accurate sequence alignment. The ability to obtain accurate genome sequences and haplotype information from single cells will enable applications of genome sequencing for diverse clinical needs. Copyright © 2017 the Author(s). Published by PNAS.
Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq.
Macaulay, Iain C; Teng, Mabel J; Haerty, Wilfried; Kumar, Parveen; Ponting, Chris P; Voet, Thierry
2016-11-01
Parallel sequencing of a single cell's genome and transcriptome provides a powerful tool for dissecting genetic variation and its relationship with gene expression. Here we present a detailed protocol for G&T-seq, a method for separation and parallel sequencing of genomic DNA and full-length polyA(+) mRNA from single cells. We provide step-by-step instructions for the isolation and lysis of single cells; the physical separation of polyA(+) mRNA from genomic DNA using a modified oligo-dT bead capture and the respective whole-transcriptome and whole-genome amplifications; and library preparation and sequence analyses of these amplification products. The method allows the detection of thousands of transcripts in parallel with the genetic variants captured by the DNA-seq data from the same single cell. G&T-seq differs from other currently available methods for parallel DNA and RNA sequencing from single cells, as it involves physical separation of the DNA and RNA and does not require bespoke microfluidics platforms. The process can be implemented manually or through automation. When performed manually, paired genome and transcriptome sequencing libraries from eight single cells can be produced in ∼3 d by researchers experienced in molecular laboratory work. For users with experience in the programming and operation of liquid-handling robots, paired DNA and RNA libraries from 96 single cells can be produced in the same time frame. Sequence analysis and integration of single-cell G&T-seq DNA and RNA data requires a high level of bioinformatics expertise and familiarity with a wide range of informatics tools.
Dialynas, D P; Murre, C; Quertermous, T; Boss, J M; Leiden, J M; Seidman, J G; Strominger, J L
1986-01-01
Complementary DNA (cDNA) encoding a human T-cell gamma chain has been cloned and sequenced. At the junction of the variable and joining regions, there is an apparent deletion of two nucleotides in the human cDNA sequence relative to the murine gamma-chain cDNA sequence, resulting simultaneously in the generation of an in-frame stop codon and in a translational frameshift. For this reason, the sequence presented here encodes an aberrantly rearranged human T-cell gamma chain. There are several surprising differences between the deduced human and murine gamma-chain amino acid sequences. These include poor homology in the variable region, poor homology in a discrete segment of the constant region precisely bounded by the expected junctions of exon CII, and the presence in the human sequence of five potential sites for N-linked glycosylation. Images PMID:3458221
Sanders, Ashley D; Falconer, Ester; Hills, Mark; Spierings, Diana C J; Lansdorp, Peter M
2017-06-01
The ability to distinguish between genome sequences of homologous chromosomes in single cells is important for studies of copy-neutral genomic rearrangements (such as inversions and translocations), building chromosome-length haplotypes, refining genome assemblies, mapping sister chromatid exchange events and exploring cellular heterogeneity. Strand-seq is a single-cell sequencing technology that resolves the individual homologs within a cell by restricting sequence analysis to the DNA template strands used during DNA replication. This protocol, which takes up to 4 d to complete, relies on the directionality of DNA, in which each single strand of a DNA molecule is distinguished based on its 5'-3' orientation. Culturing cells in a thymidine analog for one round of cell division labels nascent DNA strands, allowing for their selective removal during genomic library construction. To preserve directionality of template strands, genomic preamplification is bypassed and labeled nascent strands are nicked and not amplified during library preparation. Each single-cell library is multiplexed for pooling and sequencing, and the resulting sequence data are aligned, mapping to either the minus or plus strand of the reference genome, to assign template strand states for each chromosome in the cell. The major adaptations to conventional single-cell sequencing protocols include harvesting of daughter cells after a single round of BrdU incorporation, bypassing of whole-genome amplification, and removal of the BrdU + strand during Strand-seq library preparation. By sequencing just template strands, the structure and identity of each homolog are preserved.
Minson, A C; Darby, G K; Wildy, P
1979-11-01
Two independently derived cell lines which carry the herpes simplex type 2 thymidine kinase gene have been examined for the presence of HSV-2-specific DNA sequences. Both cell lines contained 1 to 3 copies per cell of a sequence lying within map co-ordinates 0.2 to 0.4 of the HSV-2 genome. Revertant cells, which contained no detectable thymidine kinase, did not contain this DNA sequence. The failure of EcoR1-restricted HSV-2 DNA to act as a donor of the thymidine kinase gene in transformation experiments suggests that the gene lies close to the EcoR1 restriction site within this sequence at a map position of approx. 0.3. The HSV-2 kinase gene is therefore approximately co-linear with the HSV-1 gene.
Taylor, Robert W.; Taylor, Geoffrey A.; Durham, Steve E.; Turnbull, Douglass M.
2001-01-01
Studies of single cells have previously shown intracellular clonal expansion of mitochondrial DNA (mtDNA) mutations to levels that can cause a focal cytochrome c oxidase (COX) defect. Whilst techniques are available to study mtDNA rearrangements at the level of the single cell, recent interest has focused on the possible role of somatic mtDNA point mutations in ageing, neurodegenerative disease and cancer. We have therefore developed a method that permits the reliable determination of the entire mtDNA sequence from single cells without amplifying contaminating, nuclear-embedded pseudogenes. Sequencing and PCR–RFLP analyses of individual COX-negative muscle fibres from a patient with a previously described heteroplasmic COX II (T7587C) mutation indicate that mutant loads as low as 30% can be reliably detected by sequencing. This technique will be particularly useful in identifying the mtDNA mutational spectra in age-related COX-negative cells and will increase our understanding of the pathogenetic mechanisms by which they occur. PMID:11470889
Fluorescence-tunable Ag-DNA biosensor with tailored cytotoxicity for live-cell applications
NASA Astrophysics Data System (ADS)
Bossert, Nelli; de Bruin, Donny; Götz, Maria; Bouwmeester, Dirk; Heinrich, Doris
2016-11-01
DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.
The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.
Murray, Vincent; Chen, Jon K; Tanaka, Mark M
2016-07-01
The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.
Walker, M D; Park, C W; Rosen, A; Aronheim, A
1990-01-01
Cell specific expression of the insulin gene is achieved through transcriptional mechanisms operating on multiple DNA sequence elements located in the 5' flanking region of the gene. Of particular importance in the rat insulin I gene are two closely similar 9 bp sequences (IEB1 and IEB2): mutation of either of these leads to 5-10 fold reduction in transcriptional activity. We have screened an expression cDNA library derived from mouse pancreatic endocrine beta cells with a radioactive DNA probe containing multiple copies of the IEB1 sequence. A cDNA clone (A1) isolated by this procedure encodes a protein which shows efficient binding to the IEB1 probe, but much weaker binding to either an unrelated DNA probe or to a probe bearing a single base pair insertion within the recognition sequence. DNA sequence analysis indicates a protein belonging to the helix-loop-helix family of DNA-binding proteins. The ability of the protein encoded by clone A1 to recognize a number of wild type and mutant DNA sequences correlates closely with the ability of each sequence element to support transcription in vivo in the context of the insulin 5' flanking DNA. We conclude that the isolated cDNA may encode a transcription factor that participates in control of insulin gene expression. Images PMID:2181401
Chernicky, C L; Tan, H; Burfeind, P; Ilan, J; Ilan, J
1996-02-01
There are several cell types within the placenta that produce cytokines which can contribute to the regulatory mechanisms that ensure normal pregnancy. The immunological milieu at the maternofetal interface is considered to be crucial for survival of the fetus. Interleukin-2 (IL-2) is expressed by the syncytiotrophoblast, the cell layer between the mother and the fetus. IL-2 appears to be a key factor in maintenance of pregnancy. Therefore, it was important to determine the sequence of human placental interleukin-2. Direct sequencing of human placental IL-2 cDNA was determined for the coding region. Subclone sequencing was carried out for the 5'- and 3'-untranslated regions (5'-UTR and 3'-UTR). The 5'-UTR for human placental IL-2 cDNA is 294 bp, which is 247 nucleotides longer than that reported for cDNA IL-2 derived from T cells. The sequence of the coding region is identical to that reported for T cell IL-2, while sequence analysis of the polymerase chain reaction (PCR) product showed that the cDNA from the 3' end was the same as that reported for cDNA from T cells. Human placental IL-2 cDNA is 1,028 base pairs (excluding the poly A tail), which is 247 bp longer at the 5' end than that reported for IL-2 T cell cDNA. Therefore, the extended 5'-UTR of the placental IL-2 cDNA may be a consequence of alternative promoter utilization in the placenta.
NASA Technical Reports Server (NTRS)
Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.
1990-01-01
The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.
DNA sequence responsible for the amplification of adjacent genes.
Pasion, S G; Hartigan, J A; Kumar, V; Biswas, D K
1987-10-01
A 10.3-kb DNA fragment in the 5'-flanking region of the rat prolactin (rPRL) gene was isolated from F1BGH(1)2C1, a strain of rat pituitary tumor cells (GH cells) that produces prolactin in response to 5-bromodeoxyuridine (BrdU). Following transfection and integration into genomic DNA of recipient mouse L cells, this DNA induced amplification of the adjacent thymidine kinase gene from Herpes simplex virus type 1 (HSV1TK). We confirmed the ability of this "Amplicon" sequence to induce amplification of other linked or unlinked genes in DNA-mediated gene transfer studies. When transferred into the mouse L cells with the 10.3-5'rPRL gene sequence of BrdU-responsive cells, both the human growth hormone and the HSV1TK genes are amplified in response to 5-bromodeoxyuridine. This observation is substantiated by BrdU-induced amplification of the cotransferred bacterial Neo gene. Cotransfection studies reveal that the BrdU-induced amplification capability is associated with a 4-kb DNA sequence in the 5'-flanking region of the rPRL gene of BrdU-responsive cells. These results demonstrate that genes of heterologous origin, linked or unlinked, and selected or unselected, can be coamplified when located within the amplification boundary of the Amplicon sequence.
A Method for Preparing DNA Sequencing Templates Using a DNA-Binding Microplate
Yang, Yu; Hebron, Haroun R.; Hang, Jun
2009-01-01
A DNA-binding matrix was immobilized on the surface of a 96-well microplate and used for plasmid DNA preparation for DNA sequencing. The same DNA-binding plate was used for bacterial growth, cell lysis, DNA purification, and storage. In a single step using one buffer, bacterial cells were lysed by enzymes, and released DNA was captured on the plate simultaneously. After two wash steps, DNA was eluted and stored in the same plate. Inclusion of phosphates in the culture medium was found to enhance the yield of plasmid significantly. Purified DNA samples were used successfully in DNA sequencing with high consistency and reproducibility. Eleven vectors and nine libraries were tested using this method. In 10 μl sequencing reactions using 3 μl sample and 0.25 μl BigDye Terminator v3.1, the results from a 3730xl sequencer gave a success rate of 90–95% and read-lengths of 700 bases or more. The method is fully automatable and convenient for manual operation as well. It enables reproducible, high-throughput, rapid production of DNA with purity and yields sufficient for high-quality DNA sequencing at a substantially reduced cost. PMID:19568455
Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors.
Adalsteinsson, Viktor A; Ha, Gavin; Freeman, Samuel S; Choudhury, Atish D; Stover, Daniel G; Parsons, Heather A; Gydush, Gregory; Reed, Sarah C; Rotem, Denisse; Rhoades, Justin; Loginov, Denis; Livitz, Dimitri; Rosebrock, Daniel; Leshchiner, Ignaty; Kim, Jaegil; Stewart, Chip; Rosenberg, Mara; Francis, Joshua M; Zhang, Cheng-Zhong; Cohen, Ofir; Oh, Coyin; Ding, Huiming; Polak, Paz; Lloyd, Max; Mahmud, Sairah; Helvie, Karla; Merrill, Margaret S; Santiago, Rebecca A; O'Connor, Edward P; Jeong, Seong H; Leeson, Rachel; Barry, Rachel M; Kramkowski, Joseph F; Zhang, Zhenwei; Polacek, Laura; Lohr, Jens G; Schleicher, Molly; Lipscomb, Emily; Saltzman, Andrea; Oliver, Nelly M; Marini, Lori; Waks, Adrienne G; Harshman, Lauren C; Tolaney, Sara M; Van Allen, Eliezer M; Winer, Eric P; Lin, Nancy U; Nakabayashi, Mari; Taplin, Mary-Ellen; Johannessen, Cory M; Garraway, Levi A; Golub, Todd R; Boehm, Jesse S; Wagle, Nikhil; Getz, Gad; Love, J Christopher; Meyerson, Matthew
2017-11-06
Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.
Dendritic Cell-Based Immunotherapy of Breast Cancer: Modulation by CpG DNA
2005-09-01
tumor-associated antigens and bacterial DNA oligodeoxynucleotides containing unmethylated CpG sequences (CpG DNA) further augment the immune priming...associated antigens by cytotoxic T lymphocytes, and bacterial DNA oligodeoxy- nucleotides containing unmethylated CpG sequences (CpG DNA) can further...further amplify their immunostimulatory capacity and bacterial DNA oligodeoxynucleotides (ODN) containing unmethylated CpG sequences (CpG DNA) provide such
Isolation and characterization of target sequences of the chicken CdxA homeobox gene.
Margalit, Y; Yarus, S; Shapira, E; Gruenbaum, Y; Fainsod, A
1993-01-01
The DNA binding specificity of the chicken homeodomain protein CDXA was studied. Using a CDXA-glutathione-S-transferase fusion protein, DNA fragments containing the binding site for this protein were isolated. The sources of DNA were oligonucleotides with random sequence and chicken genomic DNA. The DNA fragments isolated were sequenced and tested in DNA binding assays. Sequencing revealed that most DNA fragments are AT rich which is a common feature of homeodomain binding sites. By electrophoretic mobility shift assays it was shown that the different target sequences isolated bind to the CDXA protein with different affinities. The specific sequences bound by the CDXA protein in the genomic fragments isolated, were determined by DNase I footprinting. From the footprinted sequences, the CDXA consensus binding site was determined. The CDXA protein binds the consensus sequence A, A/T, T, A/T, A, T, A/G. The CAUDAL binding site in the ftz promoter is also included in this consensus sequence. When tested, some of the genomic target sequences were capable of enhancing the transcriptional activity of reporter plasmids when introduced into CDXA expressing cells. This study determined the DNA sequence specificity of the CDXA protein and it also shows that this protein can further activate transcription in cells in culture. Images PMID:7909943
Single-copy gene detection using branched DNA (bDNA) in situ hybridization.
Player, A N; Shen, L P; Kenny, D; Antao, V P; Kolberg, J A
2001-05-01
We have developed a branched DNA in situ hybridization (bDNA ISH) method for detection of human papillomavirus (HPV) DNA in whole cells. Using human cervical cancer cell lines with known copies of HPV DNA, we show that the bDNA ISH method is highly sensitive, detecting as few as one or two copies of HPV DNA per cell. By modifying sample pretreatment, viral mRNA or DNA sequences can be detected using the same set of oligonucleotide probes. In experiments performed on mixed populations of cells, the bDNA ISH method is highly specific and can distinguish cells with HPV-16 from cells with HPV-18 DNA. Furthermore, we demonstrate that the bDNA ISH method provides precise localization, yielding positive signals retained within the subcellular compartments in which the target nucleic acid sequences are localized. As an effective and convenient means for nucleic acid detection, the bDNA ISH method is applicable to the detection of cancers and infectious agents. (J Histochem Cytochem 49:603-611, 2001)
Localization of HTLV-I tax proviral DNA in mononuclear cells.
Zucker-Franklin, Dorothea; Pancake, Bette A; Najfeld, Vesna
2003-01-01
The tax sequence of HTLV-I is demonstrable in the skin and blood mononuclear cells of patients with mycosis fungoides, as well as in the mononuclear leukocytes of some healthy blood donors, but was not demonstrable when PCR/Southern analyses were carried out on preparations of high-molecular-weight genomic DNA. Therefore, it was postulated that tax DNA may not be integrated. To investigate this possibility fluorescence in situ hybridization was carried out on cells arrested in metaphase, using a probe containing the HTLV-I tax proviral DNA full-length open reading frame coding sequence. While metaphases prepared from C91PL cells, a cell line infected with HTLV-I, showed an abundance of chromosome-associated as well as extra-chromosomal signals, metaphases prepared with blood mononuclear cells from healthy tax sequence positive donors did not reveal any tax DNA associated with chromosomes. Such signals were readily detected extra-chromosomally. Although it has been demonstrated that transactivation of genes by gene products encoded by extra-chromosomal DNA may have nosocomial implications, whether transactivation by p40 tax generated from extra-chromosomal tax sequences is responsible for the development of neoplasia remains to be investigated.
Molecular design of sequence specific DNA alkylating agents.
Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi
2009-01-01
Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.
Guo, Hongshan; Zhu, Ping; Guo, Fan; Li, Xianlong; Wu, Xinglong; Fan, Xiaoying; Wen, Lu; Tang, Fuchou
2015-05-01
The heterogeneity of DNA methylation within a population of cells necessitates DNA methylome profiling at single-cell resolution. Recently, we developed a single-cell reduced-representation bisulfite sequencing (scRRBS) technique in which we modified the original RRBS method by integrating all the experimental steps before PCR amplification into a single-tube reaction. These modifications enable scRRBS to provide digitized methylation information on ∼1 million CpG sites within an individual diploid mouse or human cell at single-base resolution. Compared with the single-cell bisulfite sequencing (scBS) technique, scRRBS covers fewer CpG sites, but it provides better coverage for CpG islands (CGIs), which are likely to be the most informative elements for DNA methylation. The entire procedure takes ∼3 weeks, and it requires strong molecular biology skills.
Monitoring of organ transplants through genomic analyses of circulating cell-free DNA
NASA Astrophysics Data System (ADS)
de Vlaminck, Iwijn
Solid-organ transplantation is the preferred treatment for patients with end-stage organ diseases, but complications due to infection and acute rejection undermine its long-term benefits. While clinicians strive to carefully monitor transplant patients, diagnostic options are currently limited. My colleagues and I in the lab of Stephen Quake have found that a combination of next-generation sequencing with a phenomenon called circulating cell-free DNA enables non-invasive diagnosis of both infection and rejection in transplantation. A substantial amount of small fragments of cell-free DNA circulate in blood that are the debris of dead cells. We discovered that donor specific DNA is released in circulation during injury to the transplant organ and we show that the proportion of donor DNA in plasma is predictive of acute rejection in heart and lung transplantation. We profiled viral and bacterial DNA sequences in plasma of transplant patients and discovered that the relative representation of different viruses and bacteria is informative of immunosuppression. This discovery suggested a novel biological measure of a person's immune strength, a finding that we have more recently confirmed via B-cell repertoire sequencing. Lastly, our studies highlight applications of shotgun sequencing of cell-free DNA in the broad, hypothesis free diagnosis of infection.
Wolffe, E J; Gause, W C; Pelfrey, C M; Holland, S M; Steinberg, A D; August, J T
1990-01-05
We describe the isolation and sequencing of a cDNA encoding mouse Pgp-1. An oligonucleotide probe corresponding to the NH2-terminal sequence of the purified protein was synthesized by the polymerase chain reaction and used to screen a mouse macrophage lambda gt11 library. A cDNA clone with an insert of 1.2 kilobases was selected and sequenced. In Northern blot analysis, only cells expressing Pgp-1 contained mRNA species that hybridized with this Pgp-1 cDNA. The nucleotide sequence of the cDNA has a single open reading frame that yields a protein-coding sequence of 1076 base pairs followed by a 132-base pair 3'-untranslated sequence that includes a putative polyadenylation signal but no poly(A) tail. The translated sequence comprises a 13-amino acid signal peptide followed by a polypeptide core of 345 residues corresponding to an Mr of 37,800. Portions of the deduced amino acid sequence were identical to those obtained by amino acid sequence analysis from the purified glycoprotein, confirming that the cDNA encodes Pgp-1. The predicted structure of Pgp-1 includes an NH2-terminal extracellular domain (residues 14-265), a transmembrane domain (residues 266-286), and a cytoplasmic tail (residues 287-358). Portions of the mouse Pgp-1 sequence are highly similar to that of the human CD44 cell surface glycoprotein implicated in cell adhesion. The protein also shows sequence similarity to the proteoglycan tandem repeat sequences found in cartilage link protein and cartilage proteoglycan core protein which are thought to be involved in binding to hyaluronic acid.
Improved multiple displacement amplification (iMDA) and ultraclean reagents.
Motley, S Timothy; Picuri, John M; Crowder, Chris D; Minich, Jeremiah J; Hofstadler, Steven A; Eshoo, Mark W
2014-06-06
Next-generation sequencing sample preparation requires nanogram to microgram quantities of DNA; however, many relevant samples are comprised of only a few cells. Genomic analysis of these samples requires a whole genome amplification method that is unbiased and free of exogenous DNA contamination. To address these challenges we have developed protocols for the production of DNA-free consumables including reagents and have improved upon multiple displacement amplification (iMDA). A specialized ethylene oxide treatment was developed that renders free DNA and DNA present within Gram positive bacterial cells undetectable by qPCR. To reduce DNA contamination in amplification reagents, a combination of ion exchange chromatography, filtration, and lot testing protocols were developed. Our multiple displacement amplification protocol employs a second strand-displacing DNA polymerase, improved buffers, improved reaction conditions and DNA free reagents. The iMDA protocol, when used in combination with DNA-free laboratory consumables and reagents, significantly improved efficiency and accuracy of amplification and sequencing of specimens with moderate to low levels of DNA. The sensitivity and specificity of sequencing of amplified DNA prepared using iMDA was compared to that of DNA obtained with two commercial whole genome amplification kits using 10 fg (~1-2 bacterial cells worth) of bacterial genomic DNA as a template. Analysis showed >99% of the iMDA reads mapped to the template organism whereas only 0.02% of the reads from the commercial kits mapped to the template. To assess the ability of iMDA to achieve balanced genomic coverage, a non-stochastic amount of bacterial genomic DNA (1 pg) was amplified and sequenced, and data obtained were compared to sequencing data obtained directly from genomic DNA. The iMDA DNA and genomic DNA sequencing had comparable coverage 99.98% of the reference genome at ≥1X coverage and 99.9% at ≥5X coverage while maintaining both balance and representation of the genome. The iMDA protocol in combination with DNA-free laboratory consumables, significantly improved the ability to sequence specimens with low levels of DNA. iMDA has broad utility in metagenomics, diagnostics, ancient DNA analysis, pre-implantation embryo screening, single-cell genomics, whole genome sequencing of unculturable organisms, and forensic applications for both human and microbial targets.
Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications.
Kawamoto, Yusuke; Bando, Toshikazu; Sugiyama, Hiroshi
2018-05-01
Pyrrole-imidazole polyamides (Py-Im polyamides) are cell-permeable compounds that bind to the minor groove of double-stranded DNA in a sequence-specific manner without causing denaturation of the DNA. These compounds can be used to control gene expression and to stain specific sequences in cells. Here, we review the history, structural variations, and functional investigations of Py-Im polyamides. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kenny, Daryn; Shen, Lu-Ping; Kolberg, Janice A
2002-09-01
In situ hybridization (ISH) methods for detection of nucleic acid sequences have proved especially powerful for revealing genetic markers and gene expression in a morphological context. Although target and signal amplification technologies have enabled researchers to detect relatively low-abundance molecules in cell extracts, the sensitive detection of nucleic acid sequences in tissue specimens has proved more challenging. We recently reported the development of a branched DNA (bDNA) ISH method for detection of DNA and mRNA in whole cells. Based on bDNA signal amplification technology, bDNA ISH is highly sensitive and can detect one or two copies of DNA per cell. In this study we evaluated bDNA ISH for detection of nucleic acid sequences in tissue specimens. Using normal and human papillomavirus (HPV)-infected cervical biopsy specimens, we explored the cell type-specific distribution of HPV DNA and mRNA by bDNA ISH. We found that bDNA ISH allowed rapid, sensitive detection of nucleic acids with high specificity while preserving tissue morphology. As an adjunct to conventional histopathology, bDNA ISH may improve diagnostic accuracy and prognosis for viral and neoplastic diseases.
Detection of Merkel Cell Polyomavirus DNA in Serum Samples of Healthy Blood Donors
Mazzoni, Elisa; Rotondo, John C.; Marracino, Luisa; Selvatici, Rita; Bononi, Ilaria; Torreggiani, Elena; Touzé, Antoine; Martini, Fernanda; Tognon, Mauro G.
2017-01-01
Merkel cell polyomavirus (MCPyV) has been detected in 80% of Merkel cell carcinomas (MCC). In the host, the MCPyV reservoir remains elusive. MCPyV DNA sequences were revealed in blood donor buffy coats. In this study, MCPyV DNA sequences were investigated in the sera (n = 190) of healthy blood donors. Two MCPyV DNA sequences, coding for the viral oncoprotein large T antigen (LT), were investigated using polymerase chain reaction (PCR) methods and DNA sequencing. Circulating MCPyV sequences were detected in sera with a prevalence of 2.6% (5/190), at low-DNA viral load, which is in the range of 1–4 and 1–5 copies/μl by real-time PCR and droplet digital PCR, respectively. DNA sequencing carried out in the five MCPyV-positive samples indicated that the two MCPyV LT sequences which were analyzed belong to the MKL-1 strain. Circulating MCPyV LT sequences are present in blood donor sera. MCPyV-positive samples from blood donors could represent a potential vehicle for MCPyV infection in receivers, whereas an increase in viral load may occur with multiple blood transfusions. In certain patient conditions, such as immune-depression/suppression, additional disease or old age, transfusion of MCPyV-positive samples could be an additional risk factor for MCC onset. PMID:29238698
Zock, C; Iselt, A; Doerfler, W
1993-01-01
Human adenovirus type 12 (Ad12) cannot replicate in hamster cells, whereas human cells are permissive for Ad12. Ad12 DNA replication and late-gene and virus-associated RNA expression are blocked in hamster cells. Early Ad12 genes are transcribed, and the viral DNA can be integrated into the host genome. Ad12 DNA replication and late-gene transcription can be complemented in hamster cells by E1 functions of Ad2 or Ad5, for which hamster cells are fully permissive (for a review, see W. Doerfler, Adv. Virus Res. 39:89-128, 1991). We have previously demonstrated that a 33-nucleotide mitigator sequence, which is located in the downstream region of the major late promoter (MLP) of Ad12 DNA, is responsible for the inactivity of the Ad12 MLP in hamster cells (C. Zock and W. Doerfler, EMBO J. 9:1615-1623, 1990). A similar negative regulator has not been found in the MLP of Ad2 DNA. We have now studied the mechanism of action of this mitigator element. The results of nuclear run-on experiments document the absence of MLP transcripts in the nuclei of Ad12-infected BHK21 hamster cells. Surprisingly, the mitigator element cannot elicit its function in in vitro transcription experiments with nuclear extracts from both hamster BHK21 and human HeLa cells. Intact nuclear topology and/or tightly bound nuclear elements that cannot be eluted in nuclear extracts are somehow required for recognition of the Ad12 mitigator. Electrophoretic mobility shift assays have not revealed significant differences in the binding of proteins from human HeLa or hamster BHK21 cells to the mitigator sequence in the MLP of Ad12 DNA or to the corresponding sequence in Ad2 DNA. We have converted the sequence of the mitigator in the MLP of Ad12 DNA to the equivalent sequence in the MLP of Ad2 DNA by site-directed mutagenesis. This construct was not active in hamster cells. When the Ad12 mitigator, on the other hand, was inserted into the Ad2 MLP, the latter's function in hamster cells was not compromised. Deletions in the 5' upstream region of the Ad12 MLP have provided evidence for the existence of additional sequences that codetermine the deficiency of the Ad12 MLP in hamster cells. The amphifunctional YY1 protein from HeLa cells can bind specifically to the mitigator and to upstream elements of the MLP of Ad12 DNA.(ABSTRACT TRUNCATED AT 400 WORDS) Images PMID:8419643
The role of DNA repair in herpesvirus pathogenesis.
Brown, Jay C
2014-10-01
In cells latently infected with a herpesvirus, the viral DNA is present in the cell nucleus, but it is not extensively replicated or transcribed. In this suppressed state the virus DNA is vulnerable to mutagenic events that affect the host cell and have the potential to destroy the virus' genetic integrity. Despite the potential for genetic damage, however, herpesvirus sequences are well conserved after reactivation from latency. To account for this apparent paradox, I have tested the idea that host cell-encoded mechanisms of DNA repair are able to control genetic damage to latent herpesviruses. Studies were focused on homologous recombination-dependent DNA repair (HR). Methods of DNA sequence analysis were employed to scan herpesvirus genomes for DNA features able to activate HR. Analyses were carried out with a total of 39 herpesvirus DNA sequences, a group that included viruses from the alpha-, beta- and gamma-subfamilies. The results showed that all 39 genome sequences were enriched in two or more of the eight recombination-initiating features examined. The results were interpreted to indicate that HR can stabilize latent herpesvirus genomes. The results also showed, unexpectedly, that repair-initiating DNA features differed in alpha- compared to gamma-herpesviruses. Whereas inverted and tandem repeats predominated in alpha-herpesviruses, gamma-herpesviruses were enriched in short, GC-rich initiation sequences such as CCCAG and depleted in repeats. In alpha-herpesviruses, repair-initiating repeat sequences were found to be concentrated in a specific region (the S segment) of the genome while repair-initiating short sequences were distributed more uniformly in gamma-herpesviruses. The results suggest that repair pathways are activated differently in alpha- compared to gamma-herpesviruses. Copyright © 2014. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottlieb, J.; Muzyczka, N.
1988-06-01
When circular recombinant plasmids containing adeno-associated virus (AAV) DNA sequences are transfected into human cells, the AAV provirus is rescued. Using these circular AAV plasmids as substrates, the authors isolated an enzyme fraction from HeLa cell nuclear extracts that excises intact AAV DNA in vitro from vector DNA and produces linear DNA products. The recognition signal for the enzyme is a polypurine-polypyrimidine sequence which is at least 9 residues long and rich in G . C base pairs. Such sequences are present in AAV recombinant plasmids as part of the first 15 base pairs of the AAV terminal repeat andmore » in some cases as the result of cloning the AAV genome by G . C tailing. The isolated enzyme fraction does not have significant endonucleolytic activity on single-stranded or double-stranded DNA. Plasmid DNA that is transfected into tissue culture cells is cleaved in vivo to produce a pattern of DNA fragments similar to that seen with purified enzyme in vitro. The activity has been called endo R for rescue, and its behavior suggests that it may have a role in recombination of cellular chromosomes.« less
Chigira, M; Watanabe, H
1994-07-01
Preservation of the identity of DNA is the ultimate goal of multicellular organisms. An abnormal DNA sequence in cells within an individual means its parasitic nature in cell society as shown in tumors. Somatic gene arrangement and gene mutation in development may be considered as de novo formation of parasites. It is likely that the developmental process with genetic alterations means symbiosis between altered cells and germ line cells preserving genetic information without alterations, when somatic alteration of DNA sequence is a major mechanism of differentiation. According to the selfish gene theory of Dawkins, germ line cells permit symbiosis when somatic cell society derives clear profit for the replication of original DNA copies.
Tsui, Nancy B. Y.; Jiang, Peiyong; Chow, Katherine C. K.; Su, Xiaoxi; Leung, Tak Y.; Sun, Hao; Chan, K. C. Allen; Chiu, Rossa W. K.; Lo, Y. M. Dennis
2012-01-01
Background Fetal DNA in maternal urine, if present, would be a valuable source of fetal genetic material for noninvasive prenatal diagnosis. However, the existence of fetal DNA in maternal urine has remained controversial. The issue is due to the lack of appropriate technology to robustly detect the potentially highly degraded fetal DNA in maternal urine. Methodology We have used massively parallel paired-end sequencing to investigate cell-free DNA molecules in maternal urine. Catheterized urine samples were collected from seven pregnant women during the third trimester of pregnancies. We detected fetal DNA by identifying sequenced reads that contained fetal-specific alleles of the single nucleotide polymorphisms. The sizes of individual urinary DNA fragments were deduced from the alignment positions of the paired reads. We measured the fractional fetal DNA concentration as well as the size distributions of fetal and maternal DNA in maternal urine. Principal Findings Cell-free fetal DNA was detected in five of the seven maternal urine samples, with the fractional fetal DNA concentrations ranged from 1.92% to 4.73%. Fetal DNA became undetectable in maternal urine after delivery. The total urinary cell-free DNA molecules were less intact when compared with plasma DNA. Urinary fetal DNA fragments were very short, and the most dominant fetal sequences were between 29 bp and 45 bp in length. Conclusions With the use of massively parallel sequencing, we have confirmed the existence of transrenal fetal DNA in maternal urine, and have shown that urinary fetal DNA was heavily degraded. PMID:23118982
Characterization of proviruses cloned from mink cell focus-forming virus-infected cellular DNA.
Khan, A S; Repaske, R; Garon, C F; Chan, H W; Rowe, W P; Martin, M A
1982-01-01
Two proviruses were cloned from EcoRI-digested DNA extracted from mink cells chronically infected with AKR mink cell focus-forming (MCF) 247 murine leukemia virus (MuLV), using a lambda phage host vector system. One cloned MuLV DNA fragment (designated MCF 1) contained sequences extending 6.8 kilobases from an EcoRI restriction site in the 5' long terminal repeat (LTR) to an EcoRI site located in the envelope (env) region and was indistinguishable by restriction endonuclease mapping for 5.1 kilobases (except for the EcoRI site in the LTR) from the 5' end of AKR ecotropic proviral DNA. The DNA segment extending from 5.1 to 6.8 kilobases contained several restriction sites that were not present in the AKR ecotropic provirus. A 0.5-kilobase DNA segment located at the 3' end of MCF 1 DNA contained sequences which hybridized to a xenotropic env-specific DNA probe but not to labeled ecotropic env-specific DNA. This dual character of MCF 1 proviral DNA was also confirmed by analyzing heteroduplex molecules by electron microscopy. The second cloned proviral DNA (designated MCF 2) was a 6.9-kilobase EcoRI DNA fragment which contained LTR sequences at each end and a 2.0-kilobase deletion encompassing most of the env region. The MCF 2 proviral DNA proved to be a useful reagent for detecting LTRs electron microscopically due to the presence of nonoverlapping, terminally located LTR sequences which effected its circularization with DNAs containing homologous LTR sequences. Nucleotide sequence analysis demonstrated the presence of a 104-base-pair direct repeat in the LTR of MCF 2 DNA. In contrast, only a single copy of the reiterated component of the direct repeat was present in MCF 1 DNA. Images PMID:6281459
Falk, L; Lindahl, T; Bjursell, G; Klein, G
1979-07-15
Herpesvirus papio (HVP) is an indigenous B-lymphotropic virus of baboons (Papio sp.) present in latent form in baboon lymphoblastoid cell lines. It shares cross-reacting viral capsid and early antigens with the Epstein-Barr virus (EBV), and HVP DNA and EBV DNA show partial sequence homology. EBV-specific complementary RNA was employed here as a probe to investigate the physical state of the HVP DNA component in baboon lymphoblastoid cells after fractionation of cellular DNA by density gradient centrifugation. Five virus-producing cultures contained both free and integrated HVP DNA sequences while one non-producing cell line had two or three viral genome equivalents per cell in an apparently integrated form. Further analysis of one virus-producing line showed that the free HVP DNA fraction was composed of both linear and circular viral DNA. Contour length measurements of HVP circular DNA molecules by electron microscopy revealed that they were similar in length to the EBV circular DNA present in human lymphoblastoid cells.
Hou, Yu; Guo, Huahu; Cao, Chen; Li, Xianlong; Hu, Boqiang; Zhu, Ping; Wu, Xinglong; Wen, Lu; Tang, Fuchou; Huang, Yanyi; Peng, Jirun
2016-01-01
Single-cell genome, DNA methylome, and transcriptome sequencing methods have been separately developed. However, to accurately analyze the mechanism by which transcriptome, genome and DNA methylome regulate each other, these omic methods need to be performed in the same single cell. Here we demonstrate a single-cell triple omics sequencing technique, scTrio-seq, that can be used to simultaneously analyze the genomic copy-number variations (CNVs), DNA methylome, and transcriptome of an individual mammalian cell. We show that large-scale CNVs cause proportional changes in RNA expression of genes within the gained or lost genomic regions, whereas these CNVs generally do not affect DNA methylation in these regions. Furthermore, we applied scTrio-seq to 25 single cancer cells derived from a human hepatocellular carcinoma tissue sample. We identified two subpopulations within these cells based on CNVs, DNA methylome, or transcriptome of individual cells. Our work offers a new avenue of dissecting the complex contribution of genomic and epigenomic heterogeneities to the transcriptomic heterogeneity within a population of cells. PMID:26902283
Guérin, Frédéric; Arnaiz, Olivier; Boggetto, Nicole; Denby Wilkes, Cyril; Meyer, Eric; Sperling, Linda; Duharcourt, Sandra
2017-04-26
DNA elimination is developmentally programmed in a wide variety of eukaryotes, including unicellular ciliates, and leads to the generation of distinct germline and somatic genomes. The ciliate Paramecium tetraurelia harbors two types of nuclei with different functions and genome structures. The transcriptionally inactive micronucleus contains the complete germline genome, while the somatic macronucleus contains a reduced genome streamlined for gene expression. During development of the somatic macronucleus, the germline genome undergoes massive and reproducible DNA elimination events. Availability of both the somatic and germline genomes is essential to examine the genome changes that occur during programmed DNA elimination and ultimately decipher the mechanisms underlying the specific removal of germline-limited sequences. We developed a novel experimental approach that uses flow cell imaging and flow cytometry to sort subpopulations of nuclei to high purity. We sorted vegetative micronuclei and macronuclei during development of P. tetraurelia. We validated the method by flow cell imaging and by high throughput DNA sequencing. Our work establishes the proof of principle that developing somatic macronuclei can be sorted from a complex biological sample to high purity based on their size, shape and DNA content. This method enabled us to sequence, for the first time, the germline DNA from pure micronuclei and to identify novel transposable elements. Sequencing the germline DNA confirms that the Pgm domesticated transposase is required for the excision of all ~45,000 Internal Eliminated Sequences. Comparison of the germline DNA and unrearranged DNA obtained from PGM-silenced cells reveals that the latter does not provide a faithful representation of the germline genome. We developed a flow cytometry-based method to purify P. tetraurelia nuclei to high purity and provided quality control with flow cell imaging and high throughput DNA sequencing. We identified 61 germline transposable elements including the first Paramecium retrotransposons. This approach paves the way to sequence the germline genomes of P. aurelia sibling species for future comparative genomic studies.
Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood
Fan, H. Christina; Blumenfeld, Yair J.; Chitkara, Usha; Hudgins, Louanne; Quake, Stephen R.
2008-01-01
We directly sequenced cell-free DNA with high-throughput shotgun sequencing technology from plasma of pregnant women, obtaining, on average, 5 million sequence tags per patient sample. This enabled us to measure the over- and underrepresentation of chromosomes from an aneuploid fetus. The sequencing approach is polymorphism-independent and therefore universally applicable for the noninvasive detection of fetal aneuploidy. Using this method, we successfully identified all nine cases of trisomy 21 (Down syndrome), two cases of trisomy 18 (Edward syndrome), and one case of trisomy 13 (Patau syndrome) in a cohort of 18 normal and aneuploid pregnancies; trisomy was detected at gestational ages as early as the 14th week. Direct sequencing also allowed us to study the characteristics of cell-free plasma DNA, and we found evidence that this DNA is enriched for sequences from nucleosomes. PMID:18838674
Blochlinger, K; Diggelmann, H
1984-12-01
The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells.
Blochlinger, K; Diggelmann, H
1984-01-01
The DNA coding sequence for the hygromycin B phosphotransferase gene was placed under the control of the regulatory sequences of a cloned long terminal repeat of Moloney sarcoma virus. This construction allowed direct selection for hygromycin B resistance after transfection of eucaryotic cell lines not naturally resistant to this antibiotic, thus providing another dominant marker for DNA transfer in eucaryotic cells. Images PMID:6098829
Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus.
Sanford, J; Forrester, L; Chapman, V; Chandley, A; Hastie, N
1984-03-26
The major and the minor satellite sequences of Mus musculus were undermethylated in both sperm and oocyte DNAs relative to the amount of undermethylation observed in adult somatic tissue DNA. This hypomethylation was specific for satellite sequences in sperm DNA. Dispersed repetitive and low copy sequences show a high degree of methylation in sperm DNA; however, a dispersed repetitive sequence was undermethylated in oocyte DNA. This finding suggests a difference in the amount of total genomic DNA methylation between sperm and oocyte DNA. The methylation levels of the minor satellite sequences did not change during spermiogenesis, and were not associated with the onset of meiosis or a specific stage in sperm development.
Barrett, Angela N; Xiong, Li; Tan, Tuan Z; Advani, Henna V; Hua, Rui; Laureano-Asibal, Cecille; Soong, Richie; Biswas, Arijit; Nagarajan, Niranjan; Choolani, Mahesh
2017-01-01
Cell-free DNA from maternal plasma can be used for non-invasive prenatal testing for aneuploidies and single gene disorders, and also has applications as a biomarker for monitoring high-risk pregnancies, such as those at risk of pre-eclampsia. On average, the fractional cell-free fetal DNA concentration in plasma is approximately 15%, but can vary from less than 4% to greater than 30%. Although quantification of cell-free fetal DNA is straightforward in the case of a male fetus, there is no universal fetal marker; in a female fetus measurement is more challenging. We have developed a panel of multiplexed insertion/deletion polymorphisms that can measure fetal fraction in all pregnancies in a simple, targeted sequencing reaction. A multiplex panel of primers was designed for 35 indels plus a ZFX/ZFY amplicon. cfDNA was extracted from plasma from 157 pregnant women, and maternal genomic DNA was extracted for 20 of these samples for panel validation. Sixty-one samples from pregnancies with a male fetus were subjected to whole genome sequencing on the Ion Proton sequencing platform, and fetal fraction derived from Y chromosome counts was compared to fetal fraction measured using the indel panel. A total of 157 cell-free DNA samples were sequenced using the indel panel, and informativity was assessed, along with the proportion of fetal DNA. Using gDNA we optimised the indel panel, removing amplicons giving rise to PCR bias. Good correlation was found between fetal fraction using indels and using whole genome sequencing of the Y chromosome (Spearmans r = 0.69). A median of 12 indels were informative per sample. The indel panel was informative in 157/157 cases (mean fetal fraction 14.4% (±0.58%)). Using our targeted next generation sequencing panel we can readily assess the fetal DNA percentage in male and female pregnancies.
Xiong, Li; Tan, Tuan Z.; Advani, Henna V.; Hua, Rui; Laureano-Asibal, Cecille; Soong, Richie; Biswas, Arijit; Nagarajan, Niranjan; Choolani, Mahesh
2017-01-01
Objective Cell-free DNA from maternal plasma can be used for non-invasive prenatal testing for aneuploidies and single gene disorders, and also has applications as a biomarker for monitoring high-risk pregnancies, such as those at risk of pre-eclampsia. On average, the fractional cell-free fetal DNA concentration in plasma is approximately 15%, but can vary from less than 4% to greater than 30%. Although quantification of cell-free fetal DNA is straightforward in the case of a male fetus, there is no universal fetal marker; in a female fetus measurement is more challenging. We have developed a panel of multiplexed insertion/deletion polymorphisms that can measure fetal fraction in all pregnancies in a simple, targeted sequencing reaction. Methods A multiplex panel of primers was designed for 35 indels plus a ZFX/ZFY amplicon. cfDNA was extracted from plasma from 157 pregnant women, and maternal genomic DNA was extracted for 20 of these samples for panel validation. Sixty-one samples from pregnancies with a male fetus were subjected to whole genome sequencing on the Ion Proton sequencing platform, and fetal fraction derived from Y chromosome counts was compared to fetal fraction measured using the indel panel. A total of 157 cell-free DNA samples were sequenced using the indel panel, and informativity was assessed, along with the proportion of fetal DNA. Results Using gDNA we optimised the indel panel, removing amplicons giving rise to PCR bias. Good correlation was found between fetal fraction using indels and using whole genome sequencing of the Y chromosome (Spearmans r = 0.69). A median of 12 indels were informative per sample. The indel panel was informative in 157/157 cases (mean fetal fraction 14.4% (±0.58%)). Conclusions Using our targeted next generation sequencing panel we can readily assess the fetal DNA percentage in male and female pregnancies. PMID:29084245
Della Valle, G; Fenton, R G; Basilico, C
1981-01-01
To study the mechanism of deoxyribonucleic acid (DNA)-mediated gene transfer, normal rat cells were transfected with total cellular DNA extracted from polyoma virus-transformed cells. This resulted in the appearance of the transformed phenotype in 1 X 10(-6) to 3 X 10(-6) of the transfected cells. Transformation was invariably associated with the acquisition of integrated viral DNA sequences characteristic of the donor DNA. This was caused not by the integration of free DNA molecules, but by the transfer of large DNA fragments (10 to 20 kilobases) containing linked cellular and viral sequences. Although Southern blot analysis showed that integration did not appear to occur in a homologous region of the recipient chromosome, the frequency of transformation was rather high when compared with that of purified polyoma DNA, perhaps due to "position" effects or to the high efficiency of recombination of large DNA fragments. Images PMID:6100965
Nanoliter reactors improve multiple displacement amplification of genomes from single cells.
Marcy, Yann; Ishoey, Thomas; Lasken, Roger S; Stockwell, Timothy B; Walenz, Brian P; Halpern, Aaron L; Beeson, Karen Y; Goldberg, Susanne M D; Quake, Stephen R
2007-09-01
Since only a small fraction of environmental bacteria are amenable to laboratory culture, there is great interest in genomic sequencing directly from single cells. Sufficient DNA for sequencing can be obtained from one cell by the Multiple Displacement Amplification (MDA) method, thereby eliminating the need to develop culture methods. Here we used a microfluidic device to isolate individual Escherichia coli and amplify genomic DNA by MDA in 60-nl reactions. Our results confirm a report that reduced MDA reaction volume lowers nonspecific synthesis that can result from contaminant DNA templates and unfavourable interaction between primers. The quality of the genome amplification was assessed by qPCR and compared favourably to single-cell amplifications performed in standard 50-microl volumes. Amplification bias was greatly reduced in nanoliter volumes, thereby providing a more even representation of all sequences. Single-cell amplicons from both microliter and nanoliter volumes provided high-quality sequence data by high-throughput pyrosequencing, thereby demonstrating a straightforward route to sequencing genomes from single cells.
Single-cell paired-end genome sequencing reveals structural variation per cell cycle
Voet, Thierry; Kumar, Parveen; Van Loo, Peter; Cooke, Susanna L.; Marshall, John; Lin, Meng-Lay; Zamani Esteki, Masoud; Van der Aa, Niels; Mateiu, Ligia; McBride, David J.; Bignell, Graham R.; McLaren, Stuart; Teague, Jon; Butler, Adam; Raine, Keiran; Stebbings, Lucy A.; Quail, Michael A.; D’Hooghe, Thomas; Moreau, Yves; Futreal, P. Andrew; Stratton, Michael R.; Vermeesch, Joris R.; Campbell, Peter J.
2013-01-01
The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis. PMID:23630320
Vera-Rodriguez, M; Diez-Juan, A; Jimenez-Almazan, J; Martinez, S; Navarro, R; Peinado, V; Mercader, A; Meseguer, M; Blesa, D; Moreno, I; Valbuena, D; Rubio, C; Simon, C
2018-04-01
What is the origin and composition of cell-free DNA in human embryo spent culture media? Cell-free DNA from human embryo spent culture media represents a mix of maternal and embryonic DNA, and the mixture can be more complex for mosaic embryos. In 2016, ~300 000 human embryos were chromosomally and/or genetically analyzed using preimplantation genetic testing for aneuploidies (PGT-A) or monogenic disorders (PGT-M) before transfer into the uterus. While progress in genetic techniques has enabled analysis of the full karyotype in a single cell with high sensitivity and specificity, these approaches still require an embryo biopsy. Thus, non-invasive techniques are sought as an alternative. This study was based on a total of 113 human embryos undergoing trophectoderm biopsy as part of PGT-A analysis. For each embryo, the spent culture media used between Day 3 and Day 5 of development were collected for cell-free DNA analysis. In addition to the 113 spent culture media samples, 28 media drops without embryo contact were cultured in parallel under the same conditions to use as controls. In total, 141 media samples were collected and divided into two groups: one for direct DNA quantification (53 spent culture media and 17 controls), the other for whole-genome amplification (60 spent culture media and 11 controls) and subsequent quantification. Some samples with amplified DNA (N = 56) were used for aneuploidy testing by next-generation sequencing; of those, 35 samples underwent single-nucleotide polymorphism (SNP) sequencing to detect maternal contamination. Finally, from the 35 spent culture media analyzed by SNP sequencing, 12 whole blastocysts were analyzed by fluorescence in situ hybridization (FISH) to determine the level of mosaicism in each embryo, as a possible origin for discordance between sample types. Trophectoderm biopsies and culture media samples (20 μl) underwent whole-genome amplification, then libraries were generated and sequenced for an aneuploidy study. For SNP sequencing, triads including trophectoderm DNA, cell-free DNA, and follicular fluid DNA were analyzed. In total, 124 SNPs were included with 90 SNPs distributed among all autosomes and 34 SNPs located on chromosome Y. Finally, 12 whole blastocysts were fixed and individual cells were analyzed by FISH using telomeric/centromeric probes for the affected chromosomes. We found a higher quantity of cell-free DNA in spent culture media co-cultured with embryos versus control media samples (P ≤ 0.001). The presence of cell-free DNA in the spent culture media enabled a chromosomal diagnosis, although results differed from those of trophectoderm biopsy analysis in most cases (67%). Discordant results were mainly attributable to a high percentage of maternal DNA in the spent culture media, with a median percentage of embryonic DNA estimated at 8%. Finally, from the discordant cases, 91.7% of whole blastocysts analyzed by FISH were mosaic and 75% of the analyzed chromosomes were concordant with the trophectoderm DNA diagnosis instead of the cell-free DNA result. This study was limited by the sample size and the number of cells analyzed by FISH. This is the first study to combine chromosomal analysis of cell-free DNA, SNP sequencing to identify maternal contamination, and whole-blastocyst analysis for detecting mosaicism. Our results provide a better understanding of the origin of cell-free DNA in spent culture media, offering an important step toward developing future non-invasive karyotyping that must rely on the specific identification of DNA released from human embryos. This work was funded by Igenomix S.L. There are no competing interests.
Chaikind, Brian; Bessen, Jeffrey L.; Thompson, David B.; Hu, Johnny H.; Liu, David R.
2016-01-01
We describe the development of ‘recCas9’, an RNA-programmed small serine recombinase that functions in mammalian cells. We fused a catalytically inactive dCas9 to the catalytic domain of Gin recombinase using an optimized fusion architecture. The resulting recCas9 system recombines DNA sites containing a minimal recombinase core site flanked by guide RNA-specified sequences. We show that these recombinases can operate on DNA sites in mammalian cells identical to genomic loci naturally found in the human genome in a manner that is dependent on the guide RNA sequences. DNA sequencing reveals that recCas9 catalyzes guide RNA-dependent recombination in human cells with an efficiency as high as 32% on plasmid substrates. Finally, we demonstrate that recCas9 expressed in human cells can catalyze in situ deletion between two genomic sites. Because recCas9 directly catalyzes recombination, it generates virtually no detectable indels or other stochastic DNA modification products. This work represents a step toward programmable, scarless genome editing in unmodified cells that is independent of endogenous cellular machinery or cell state. Current and future generations of recCas9 may facilitate targeted agricultural breeding, or the study and treatment of human genetic diseases. PMID:27515511
A common deletion in two gamma ray induced rat pulmonary tumor cell lines.
Van Klaveren, P; De Bruijne, J; Van der Winden, H; Kal, H B; Bentvelzen, P
1994-01-01
Subtraction hybridization was performed on normal WAG/Rij rat DNA with DNA from a syngeneic Ir-192 induced pulmonary tumor cell line L37. The residual DNA was amplified by means of sequence-independent PCR. This procedure yielded a sequence, of which multiple copies are present in normal rat DNA. In the tumor line L37 two restriction fragments hybridizing with this repeat sequence are lacking. In another Ir-192 induced pulmonary tumor line, L33, one of these fragments was also lacking. This indicates a common deletion in the two tumor lines.
Beltman, Joost B; Urbanus, Jos; Velds, Arno; van Rooij, Nienke; Rohr, Jan C; Naik, Shalin H; Schumacher, Ton N
2016-04-02
Next generation sequencing (NGS) of amplified DNA is a powerful tool to describe genetic heterogeneity within cell populations that can both be used to investigate the clonal structure of cell populations and to perform genetic lineage tracing. For applications in which both abundant and rare sequences are biologically relevant, the relatively high error rate of NGS techniques complicates data analysis, as it is difficult to distinguish rare true sequences from spurious sequences that are generated by PCR or sequencing errors. This issue, for instance, applies to cellular barcoding strategies that aim to follow the amount and type of offspring of single cells, by supplying these with unique heritable DNA tags. Here, we use genetic barcoding data from the Illumina HiSeq platform to show that straightforward read threshold-based filtering of data is typically insufficient to filter out spurious barcodes. Importantly, we demonstrate that specific sequencing errors occur at an approximately constant rate across different samples that are sequenced in parallel. We exploit this observation by developing a novel approach to filter out spurious sequences. Application of our new method demonstrates its value in the identification of true sequences amongst spurious sequences in biological data sets.
p53 Specifically Binds Triplex DNA In Vitro and in Cells
Brázdová, Marie; Tichý, Vlastimil; Helma, Robert; Bažantová, Pavla; Polášková, Alena; Krejčí, Aneta; Petr, Marek; Navrátilová, Lucie; Tichá, Olga; Nejedlý, Karel; Bennink, Martin L.; Subramaniam, Vinod; Bábková, Zuzana; Martínek, Tomáš; Lexa, Matej; Adámik, Matej
2016-01-01
Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed. PMID:27907175
Upadhya, Archana; Sangave, Preeti C
2016-10-01
Cell penetrating peptides are useful tools for intracellular delivery of nucleic acids. Delivery of plasmid DNA, a large nucleic acid, poses a challenge for peptide mediated transport. The paper investigates and compares efficacy of five novel peptide designs for complexation of plasmid DNA and subsequent delivery into cells. The peptides were designed to contain reported DNA condensing agents and basic cell penetrating sequences, octa-arginine (R 8 ) and CHK 6 HC coupled to cell penetration accelerating peptides such as Bax inhibitory mutant peptide (KLPVM) and a peptide derived from the Kaposi fibroblast growth factor (kFGF) membrane translocating sequence. A tryptophan rich peptide, an analogue of Pep-3, flanked with CH 3 on either ends was also a part of the study. The peptides were analysed for plasmid DNA complexation, protection of peptide-plasmid DNA complexes against DNase I, serum components and competitive ligands by simple agarose gel electrophoresis techniques. Hemolysis of rat red blood corpuscles (RBCs) in the presence of the peptides was used as a measure of peptide cytotoxicity. Plasmid DNA delivery through the designed peptides was evaluated in two cell lines, human cervical cancer cell line (HeLa) and (NIH/3 T3) mouse embryonic fibroblasts via expression of the secreted alkaline phosphatase (SEAP) reporter gene. The importance of hydrophobic sequences in addition to cationic sequences in peptides for non-covalent plasmid DNA complexation and delivery has been illustrated. An alternative to the employment of fatty acid moieties for enhanced gene transfer has been proposed. Comparison of peptides for plasmid DNA complexation and delivery of peptide-plasmid DNA complexes to cells estimated by expression of a reporter gene, SEAP. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Mammalian DNA enriched for replication origins is enriched for snap-back sequences.
Zannis-Hadjopoulos, M; Kaufmann, G; Martin, R G
1984-11-15
Using the instability of replication loops as a method for the isolation of double-stranded nascent DNA, extruded DNA enriched for replication origins was obtained and denatured. Snap-back DNA, single-stranded DNA with inverted repeats (palindromic sequences), reassociates rapidly into stem-loop structures with zero-order kinetics when conditions are changed from denaturing to renaturing, and can be assayed by chromatography on hydroxyapatite. Origin-enriched nascent DNA strands from mouse, rat and monkey cells growing either synchronously or asynchronously were purified and assayed for the presence of snap-back sequences. The results show that origin-enriched DNA is also enriched for snap-back sequences, implying that some origins for mammalian DNA replication contain or lie near palindromic sequences.
DNA lability induced by nimustine and ramustine in rat glioma cells.
Mineura, K; Fushimi, S; Itoh, Y; Kowada, M
1988-01-01
The DNA labile sites induced by two nitrosoureas, nimustine (ACNU) and ramustine (MCNU) synthesised in Japan, have been examined in highly reiterated DNA sequences of rat glioma cells. Reiterated fragments of 167 and 203 base pairs (bp), obtained after Hind III and Hae III restriction endonuclease digestion of rat glioma cells DNA, were used as target DNA sequences to determine the labile sites. In vitro reaction with ACNU and MCNU resulted in scission products corresponding to the locations of guanine. Subsequent piperidine hydrolysis produced more frequent breaks of the phosphodiester bonds at guanine positions, thus forming alkali-labile sites. Images PMID:3236017
UV Decontamination of MDA Reagents for Single Cell Genomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Janey; Tighe, Damon; Sczyrba, Alexander
2011-03-18
Single cell genomics, the amplification and sequencing of genomes from single cells, can provide a glimpse into the genetic make-up and thus life style of the vast majority of uncultured microbial cells, making it an immensely powerful and increasingly popular tool. This is accomplished by use of multiple displacement amplification (MDA), which can generate billions of copies of a single bacterial genome producing microgram-range DNA required for shotgun sequencing. Here, we address a key challenge inherent to this approach and propose a solution for the improved recovery of single cell genomes. While DNA-free reagents for the amplification of a singlemore » cell genome are a prerequisite for successful single cell sequencing and analysis, DNA contamination has been detected in various reagents, which poses a considerable challenge. Our study demonstrates the effect of UV irradiation in efficient elimination of exogenous contaminant DNA found in MDA reagents, while maintaining Phi29 activity. Consequently, we also find that increased UV exposure to Phi29 does not adversely affect genome coverage of MDA amplified single cells. While additional challenges in single cell genomics remain to be resolved, the proposed methodology is relatively quick and simple and we believe that its application will be of high value for future single cell sequencing projects.« less
Harper, J R; Prince, J T; Healy, P A; Stuart, J K; Nauman, S J; Stallcup, W B
1991-03-01
We have isolated cDNA clones coding for the human homologue of the neuronal cell adhesion molecule L1. The nucleotide sequence of the cDNA clones and the deduced primary amino acid sequence of the carboxy terminal portion of the human L1 are homologous to the corresponding sequences of mouse L1 and rat NILE glycoprotein, with an especially high sequences identity in the cytoplasmic regions of the proteins. There is also protein sequence homology with the cytoplasmic region of the Drosophila cell adhesion molecule, neuroglian. The conservation of the cytoplasmic domain argues for an important functional role for this portion of the molecule.
Formation of rings from segments of HeLa-cell nuclear deoxyribonucleic acid
Hardman, Norman
1974-01-01
Duplex segments of HeLa-cell nuclear DNA were generated by cleavage with DNA restriction endonuclease from Haemophilus influenzae. About 20–25% of the DNA segments produced, when partly degraded with exonuclease III and annealed, were found to form rings visible in the electron microscope. A further 5% of the DNA segments formed structures that were branched in configuration. Similar structures were generated from HeLa-cell DNA, without prior treatment with restriction endonuclease, when the complementary polynucleotide chains were exposed by exonuclease III action at single-chain nicks. After exposure of an average single-chain length of 1400 nucleotides per terminus at nicks in HeLa-cell DNA by exonuclease III, followed by annealing, the physical length of ring closures was estimated and found to be 0.02–0.1μm, or 50–300 base pairs. An almost identical distribution of lengths was recorded for the regions of complementary base sequence responsible for branch formation. It is proposed that most of the rings and branches are formed from classes of reiterated base sequence with an average length of 180 base pairs arranged intermittenly in HeLa-cell DNA. From the rate of formation of branched structures when HeLa-cell DNA segments were heat-denatured and annealed, it is estimated that the reiterated sequences are in families containing approximately 2400–24000 copies. ImagesPLATE 2PLATE 1 PMID:4462738
Zill, Oliver A; Banks, Kimberly C; Fairclough, Stephen R; Mortimer, Stefanie; Vowles, James V; Mokhtari, Reza; Gandara, David R; Mack, Philip C; Odegaard, Justin I; Nagy, Rebecca J; Baca, Arthur M; Eltoukhy, Helmy; Chudova, Darya I; Lanman, Richard B; Talasaz, AmirAli
2018-05-18
Cell-free DNA (cfDNA) sequencing provides a non-invasive method for obtaining actionable genomic information to guide personalized cancer treatment, but the presence of multiple alterations in circulation related to treatment and tumor heterogeneity complicate the interpretation of the observed variants. Experimental Design: We describe the somatic mutation landscape of 70 cancer genes from cfDNA deep-sequencing analysis of 21,807 patients with treated, late-stage cancers across >50 cancer types. To facilitate interpretation of the genomic complexity of circulating tumor DNA in advanced, treated cancer patients, we developed methods to identify cfDNA copy-number driver alterations and cfDNA clonality. Patterns and prevalence of cfDNA alterations in major driver genes for non-small cell lung, breast, and colorectal cancer largely recapitulated those from tumor tissue sequencing compendia (TCGA and COSMIC; r=0.90-0.99), with the principle differences in alteration prevalence being due to patient treatment. This highly sensitive cfDNA sequencing assay revealed numerous subclonal tumor-derived alterations, expected as a result of clonal evolution, but leading to an apparent departure from mutual exclusivity in treatment-naïve tumors. Upon applying novel cfDNA clonality and copy-number driver identification methods, robust mutual exclusivity was observed among predicted truncal driver cfDNA alterations (FDR=5x10 -7 for EGFR and ERBB2 ), in effect distinguishing tumor-initiating alterations from secondary alterations. Treatment-associated resistance, including both novel alterations and parallel evolution, was common in the cfDNA cohort and was enriched in patients with targetable driver alterations (>18.6% patients). Together these retrospective analyses of a large cfDNA sequencing data set reveal subclonal structures and emerging resistance in advanced solid tumors. Copyright ©2018, American Association for Cancer Research.
Molecular dynamics studies on the DNA-binding process of ERG.
Beuerle, Matthias G; Dufton, Neil P; Randi, Anna M; Gould, Ian R
2016-11-15
The ETS family of transcription factors regulate gene targets by binding to a core GGAA DNA-sequence. The ETS factor ERG is required for homeostasis and lineage-specific functions in endothelial cells, some subset of haemopoietic cells and chondrocytes; its ectopic expression is linked to oncogenesis in multiple tissues. To date details of the DNA-binding process of ERG including DNA-sequence recognition outside the core GGAA-sequence are largely unknown. We combined available structural and experimental data to perform molecular dynamics simulations to study the DNA-binding process of ERG. In particular we were able to reproduce the ERG DNA-complex with a DNA-binding simulation starting in an unbound configuration with a final root-mean-square-deviation (RMSD) of 2.1 Å to the core ETS domain DNA-complex crystal structure. This allowed us to elucidate the relevance of amino acids involved in the formation of the ERG DNA-complex and to identify Arg385 as a novel key residue in the DNA-binding process. Moreover we were able to show that water-mediated hydrogen bonds are present between ERG and DNA in our simulations and that those interactions have the potential to achieve sequence recognition outside the GGAA core DNA-sequence. The methodology employed in this study shows the promising capabilities of modern molecular dynamics simulations in the field of protein DNA-interactions.
Siracusa, L D; Chapman, V M; Bennett, K L; Hastie, N D; Pietras, D F; Rossant, J
1983-02-01
Mammalian chimaeras have proved useful for investigating early steps in embryonic development. However, a complete clonal analysis of cell lineages has been limited by the lack of a marker which is ubiquitous and can distinguish parental cell types in situ. We have developed a cell marker system which fulfils these criteria. Chimaeric mice were successfully produced from two mouse species which possess sufficient genetic differences to allow unequivocal identification of parental cell types. DNA-DNA in situ hybridization with cloned, species-specific sequences was performed to distinguish the parental cell types. We have identified a cloned, Mus musculus satellite DNA sequence which shows hybridization differences between Mus musculus and Mus caroli DNA. This clone was used a a probe in in situ hybridizations to bone marrow chromosomes from Mus musculus, Mus caroli, and an interspecific F1 hybrid. The clone could qualitatively distinguish Mus musculus from Mus caroli chromosomes after in situ hybridization, even when they were derived from the same F1 hybrid cell. Quantitation of this hybridization to interphase nuclei from bone marrow spreads indicates that the probe can successfully distinguish Mus musculus from Mus caroli cells and can determine the percentage contribution of Mus musculus in mixtures of bone marrow cells of these species and in chimaeric bone marrow cell preparations.
Sonnenberg, Avery; Marciniak, Jennifer Y.; Skowronski, Elaine A.; Manouchehri, Sareh; Rassenti, Laura; Ghia, Emanuela M.; Widhopf, George F.; Kipps, Thomas J.; Heller, Michael J.
2014-01-01
Conventional methods for the isolation of cancer-related circulating cell-free (ccf) DNA from patient blood (plasma) are time consuming and laborious. A DEP approach utilizing a microarray device now allows rapid isolation of ccf-DNA directly from a small volume of unprocessed blood. In this study, the DEP device is used to compare the ccf-DNA isolated directly from whole blood and plasma from 11 chronic lymphocytic leukemia (CLL) patients and one normal individual. Ccf-DNA from both blood and plasma samples was separated into DEP high-field regions, after which cells (blood), proteins, and other biomolecules were removed by a fluidic wash. The concentrated ccf-DNA was detected on-chip by fluorescence, and then eluted for PCR and DNA sequencing. The complete process from blood to PCR required less than 10 min; an additional 15 min was required to obtain plasma from whole blood. Ccf-DNA from the equivalent of 5 µL of CLL blood and 5 µL of plasma was amplified by PCR using Ig heavy-chain variable (IGHV) specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone. The PCR and DNA sequencing results obtained by DEP from all 11 CLL blood samples and from 8 of the 11 CLL plasma samples were exactly comparable to the DNA sequencing results obtained from genomic DNA isolated from CLL patient leukemic B cells (gold standard). PMID:24723219
Sonnenberg, Avery; Marciniak, Jennifer Y; Skowronski, Elaine A; Manouchehri, Sareh; Rassenti, Laura; Ghia, Emanuela M; Widhopf, George F; Kipps, Thomas J; Heller, Michael J
2014-07-01
Conventional methods for the isolation of cancer-related circulating cell-free (ccf) DNA from patient blood (plasma) are time consuming and laborious. A DEP approach utilizing a microarray device now allows rapid isolation of ccf-DNA directly from a small volume of unprocessed blood. In this study, the DEP device is used to compare the ccf-DNA isolated directly from whole blood and plasma from 11 chronic lymphocytic leukemia (CLL) patients and one normal individual. Ccf-DNA from both blood and plasma samples was separated into DEP high-field regions, after which cells (blood), proteins, and other biomolecules were removed by a fluidic wash. The concentrated ccf-DNA was detected on-chip by fluorescence, and then eluted for PCR and DNA sequencing. The complete process from blood to PCR required less than 10 min; an additional 15 min was required to obtain plasma from whole blood. Ccf-DNA from the equivalent of 5 μL of CLL blood and 5 μL of plasma was amplified by PCR using Ig heavy-chain variable (IGHV) specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone. The PCR and DNA sequencing results obtained by DEP from all 11 CLL blood samples and from 8 of the 11 CLL plasma samples were exactly comparable to the DNA sequencing results obtained from genomic DNA isolated from CLL patient leukemic B cells (gold standard). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single-Cell RNA Sequencing of Glioblastoma Cells.
Sen, Rajeev; Dolgalev, Igor; Bayin, N Sumru; Heguy, Adriana; Tsirigos, Aris; Placantonakis, Dimitris G
2018-01-01
Single-cell RNA sequencing (sc-RNASeq) is a recently developed technique used to evaluate the transcriptome of individual cells. As opposed to conventional RNASeq in which entire populations are sequenced in bulk, sc-RNASeq can be beneficial when trying to better understand gene expression patterns in markedly heterogeneous populations of cells or when trying to identify transcriptional signatures of rare cells that may be underrepresented when using conventional bulk RNASeq. In this method, we describe the generation and analysis of cDNA libraries from single patient-derived glioblastoma cells using the C1 Fluidigm system. The protocol details the use of the C1 integrated fluidics circuit (IFC) for capturing, imaging and lysing cells; performing reverse transcription; and generating cDNA libraries that are ready for sequencing and analysis.
SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells.
Han, Kyung Yeon; Kim, Kyu-Tae; Joung, Je-Gun; Son, Dae-Soon; Kim, Yeon Jeong; Jo, Areum; Jeon, Hyo-Jeong; Moon, Hui-Sung; Yoo, Chang Eun; Chung, Woosung; Eum, Hye Hyeon; Kim, Sangmin; Kim, Hong Kwan; Lee, Jeong Eon; Ahn, Myung-Ju; Lee, Hae-Ock; Park, Donghyun; Park, Woong-Yang
2018-01-01
Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level. © 2018 Han et al.; Published by Cold Spring Harbor Laboratory Press.
SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells
Han, Kyung Yeon; Kim, Kyu-Tae; Joung, Je-Gun; Son, Dae-Soon; Kim, Yeon Jeong; Jo, Areum; Jeon, Hyo-Jeong; Moon, Hui-Sung; Yoo, Chang Eun; Chung, Woosung; Eum, Hye Hyeon; Kim, Sangmin; Kim, Hong Kwan; Lee, Jeong Eon; Ahn, Myung-Ju; Lee, Hae-Ock; Park, Donghyun; Park, Woong-Yang
2018-01-01
Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level. PMID:29208629
1987-10-13
after multiple passages in vivo and in vitro. J. Gen. Virol. 67, 1741- 1744. Sabin , A.B. (1985). Oral poliovirus vaccine : history of its development...IN (N NEW APPROACHES TO ATTENUATED HEPATITIS A VACCINE DEVELOPMENT: Q) CLONING AND SEQUENCING OF CELL-CULTURE ADAPTED VIRAL cDNA I ANNUAL REPORT...6ll02Bsl0 A 055 11. TITLE (Include Security Classification) New Approaches to Attenuated Hepatitis A Vaccine Development: Cloning and Sequencing of Cell
Detection of Bacterial Pathogens from Broncho-Alveolar Lavage by Next-Generation Sequencing.
Leo, Stefano; Gaïa, Nadia; Ruppé, Etienne; Emonet, Stephane; Girard, Myriam; Lazarevic, Vladimir; Schrenzel, Jacques
2017-09-20
The applications of whole-metagenome shotgun sequencing (WMGS) in routine clinical analysis are still limited. A combination of a DNA extraction procedure, sequencing, and bioinformatics tools is essential for the removal of human DNA and for improving bacterial species identification in a timely manner. We tackled these issues with a broncho-alveolar lavage (BAL) sample from an immunocompromised patient who had developed severe chronic pneumonia. We extracted DNA from the BAL sample with protocols based either on sequential lysis of human and bacterial cells or on the mechanical disruption of all cells. Metagenomic libraries were sequenced on Illumina HiSeq platforms. Microbial community composition was determined by k-mer analysis or by mapping to taxonomic markers. Results were compared to those obtained by conventional clinical culture and molecular methods. Compared to mechanical cell disruption, a sequential lysis protocol resulted in a significantly increased proportion of bacterial DNA over human DNA and higher sequence coverage of Mycobacterium abscessus , Corynebacterium jeikeium and Rothia dentocariosa , the bacteria reported by clinical microbiology tests. In addition, we identified anaerobic bacteria not searched for by the clinical laboratory. Our results further support the implementation of WMGS in clinical routine diagnosis for bacterial identification.
Weinert, T A; Hartwell, L H
1990-12-01
In eucaryotic cells, incompletely replicated or damaged chromosomes induce cell cycle arrest in G2 before mitosis, and in the yeast Saccharomyces cerevisiae the RAD9 gene is essential for the cell cycle arrest (T.A. Weinert and L. H. Hartwell, Science 241:317-322, 1988). In this report, we extend the analysis of RAD9-dependent cell cycle control. We found that both induction of RAD9-dependent arrest in G2 and recovery from arrest could occur in the presence of the protein synthesis inhibitor cycloheximide, showing that the mechanism of RAD9-dependent control involves a posttranslational mechanism(s). We have isolated and determined the DNA sequence of the RAD9 gene, confirming the DNA sequence reported previously (R. H. Schiestl, P. Reynolds, S. Prakash, and L. Prakash, Mol. Cell. Biol. 9:1882-1886, 1989). The predicted protein sequence for the Rad9 protein bears no similarity to sequences of known proteins. We also found that synthesis of the RAD9 transcript in the cell cycle was constitutive and not induced by X-irradiation. We constructed yeast cells containing a complete deletion of the RAD9 gene; the rad9 null mutants were viable, sensitive to X- and UV irradiation, and defective for cell cycle arrest after DNA damage. Although Rad+ and rad9 delta cells had similar growth rates and cell cycle kinetics in unirradiated cells, the spontaneous rate of chromosome loss (in unirradiated cells) was elevated 7- to 21-fold in rad9 delta cells. These studies show that in the presence of induced or endogenous DNA damage, RAD9 is a negative regulator that inhibits progression from G2 in order to preserve cell viability and to maintain the fidelity of chromosome transmission.
Scarlatti, G; Leitner, T; Halapi, E; Wahlberg, J; Marchisio, P; Clerici-Schoeller, M A; Wigzell, H; Fenyö, E M; Albert, J; Uhlén, M
1993-01-01
We have compared the variable region 3 sequences from 10 human immunodeficiency virus type 1 (HIV-1)-infected infants to virus sequences from the corresponding mothers. The sequences were derived from DNA of uncultured peripheral blood mononuclear cells (PBMC), DNA of cultured PBMC, and RNA from serum collected at or shortly after delivery. The infected infants, in contrast to the mothers, harbored homogeneous virus populations. Comparison of sequences from the children and clones derived from DNA of the corresponding mothers showed that the transmitted virus represented either a minor or a major virus population of the mother. In contrast to an earlier study, we found no evidence of selection of minor virus variants during transmission. Furthermore, the transmitted virus variant did not show any characteristic molecular features. In some cases the transmitted virus was more related to the virus RNA population of the mother and in other cases it was more related to the virus DNA population. This suggests that either cell-free or cell-associated virus may be transmitted. These data will help AIDS researchers to understand the mechanism of transmission and to plan strategies for prevention of transmission. PMID:8446584
H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells
Fernández, Agustín F.; Bayón, Gustavo F.; Urdinguio, Rocío G.; Toraño, Estela G.; García, María G.; Carella, Antonella; Petrus-Reurer, Sandra; Ferrero, Cecilia; Martinez-Camblor, Pablo; Cubillo, Isabel; García-Castro, Javier; Delgado-Calle, Jesús; Pérez-Campo, Flor M.; Riancho, José A.; Bueno, Clara; Menéndez, Pablo; Mentink, Anouk; Mareschi, Katia; Claire, Fabian; Fagnani, Corrado; Medda, Emanuela; Toccaceli, Virgilia; Brescianini, Sonia; Moran, Sebastián; Esteller, Manel; Stolzing, Alexandra; de Boer, Jan; Nisticò, Lorenza; Stazi, Maria A.
2015-01-01
In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type–independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors. PMID:25271306
Pfeiffer, H; Hühne, J; Ortmann, C; Waterkamp, K; Brinkmann, B
1999-01-01
The analysis of mitochondrial DNA (mtDNA) from shed hairs has gained high importance in forensic casework since telogen hairs are one of the most common types of evidence left at the crime scene. In this systematic study of hair shafts from 20 individuals, the correlation of mtDNA recovery with hair morphology (length, diameter, volume, colour), with sex, and with body localisation (head, armpit, pubis) was investigated. The highest average success rate of hypervariable region 1 (HV 1) sequencing was found in head hair shafts (75%) followed by pubic (66%) and axillary hair shafts (52%). No statistically significant correlation between morphological parameters or sex and the success rate of sequencing was found. MtDNA sequences of buccal cells, head, pubic and axillary hair shafts did not show intraindividual differences. Heteroplasmic base positions were observed neither in the hair shafts nor in control samples of buccal cells.
Jaeger, Alex M.; Makley, Leah N.; Gestwicki, Jason E.; Thiele, Dennis J.
2014-01-01
The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer. PMID:25204655
Isotachophoresis for fractionation and recovery of cytoplasmic RNA and nucleus from single cells.
Kuriyama, Kentaro; Shintaku, Hirofumi; Santiago, Juan G
2015-07-01
There is a substantial need for simultaneous analyses of RNA and DNA from individual single cells. Such analysis provides unique evidence of cell-to-cell differences and the correlation between gene expression and genomic mutation in highly heterogeneous cell populations. We present a novel microfluidic system that leverages isotachophoresis to fractionate and isolate cytoplasmic RNA and genomic DNA (gDNA) from single cells. The system uniquely enables independent, sequence-specific analyses of these critical markers. Our system uses a microfluidic chip with a simple geometry and four end-channel electrodes, and completes the entire process in <5 min, including lysis, purification, fractionation, and delivery to DNA and RNA output reservoirs, each containing high quality and purity aliquots with no measurable cross-contamination of cytoplasmic RNA versus gDNA. We demonstrate our system with simultaneous, sequence-specific quantitation using off-chip RT-qPCR and qPCR for simultaneous cytoplasmic RNA and gDNA analyses, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Identification of tissue-specific cell death using methylation patterns of circulating DNA
Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J.; Wasserfall, Clive H.; Schatz, Desmond A.; Greenbaum, Carla J.; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K.; Golan, Talia; Ben Sasson, Shmuel A.; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A. M. James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval
2016-01-01
Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics. PMID:26976580
Peitl, Paulo; Mello, Stephano S; Camparoto, Marjori L; Passos, Geraldo A S; Hande, Manoor P; Cardoso, Renato S; Sakamoto-Hojo, Elza T
2002-01-01
Chromosomal instability involving telomeric DNA sequences was studied in mouse Balb/3T3 fibroblasts transfected with a mutated human c-Ha-ras-1 gene (B61 cells) and spontaneously immortalized normal parental cells (A31 cells), using fluorescence in situ hybridization (FISH). FISH analysis with a telomeric probe revealed high frequencies of chromosome alterations involving telomeric regions, mainly stable and unstable Robertsonian fusion-like configurations (RLC) (0.25 and 1.95/cell in A31 and B61 cells, respectively) and chromosome ends lacking telomeric signals in one (LTS') or both chromatids (LTS") (5.9 and 17.5/cell for A31 and B61 cells, respectively). Interstitial telomeric sequences (ITS) were also detected at both non-telomeric sites and in the centromeres of RLC. The frequencies of RLCs with ITS located in the centromeres were 3-fold higher in B61 compared with A31 cells. We demonstrated a high level of chromosome instability involving telomeric DNA sequences in ras-transfected cells overexpressing ras mRNA, which could be a consequence of rapid cell cycle progression associated with a deficient telomere capping mechanism.
Analysis of mutational spectra by denaturant capillary electrophoresis
Ekstrøm, Per O.; Khrapko, Konstantin; Li-Sucholeiki, Xiao-Cheng; Hunter, Ian W.; Thilly, William G.
2009-01-01
Numbers and kinds of point mutant within DNA from cells, tissues and human population may be discovered for nearly any 75–250bp DNA sequence. High fidelity DNA amplification incorporating a thermally stable DNA “clamp” is followed by separation by denaturing capillary electrophoresis (DCE). DCE allows for peak collection and verification sequencing. DCE in a mode of cycling temperature, e.g.+/− 5°C, CyDCE, permits high resolution of mutant sequences using computer defined analytes without preliminary optimization experiments. DNA sequencers have been modified to permit higher throughput CyDCE and a massively parallel,~25,000 capillary system, has been designed for pangenomic scans in large human populations. DCE has been used to define quantitative point mutational spectra for study a wide variety of genetic phenomena: errors of DNA polymerases, mutations induced in human cells by chemicals and irradiation, testing of human gene-common disease associations and the discovery of origins of point mutations in human development and carcinogenesis. PMID:18600220
DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A NATURAL BIO-DEFENSE MECHANISM
DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A natural bio-defense mechanism
Anuradha Mudipalli.
Maintenance of genetic information, including the correct sequence of nucleotides in DNA, is essential for replication, gene expression, and protein synthesis. DNA lesions onto...
Copy number variants calling for single cell sequencing data by multi-constrained optimization.
Xu, Bo; Cai, Hongmin; Zhang, Changsheng; Yang, Xi; Han, Guoqiang
2016-08-01
Variations in DNA copy number carry important information on genome evolution and regulation of DNA replication in cancer cells. The rapid development of single-cell sequencing technology allows one to explore gene expression heterogeneity among single-cells, thus providing important cancer cell evolution information. Single-cell DNA/RNA sequencing data usually have low genome coverage, which requires an extra step of amplification to accumulate enough samples. However, such amplification will introduce large bias and makes bioinformatics analysis challenging. Accurately modeling the distribution of sequencing data and effectively suppressing the bias influence is the key to success variations analysis. Recent advances demonstrate the technical noises by amplification are more likely to follow negative binomial distribution, a special case of Poisson distribution. Thus, we tackle the problem CNV detection by formulating it into a quadratic optimization problem involving two constraints, in which the underling signals are corrupted by Poisson distributed noises. By imposing the constraints of sparsity and smoothness, the reconstructed read depth signals from single-cell sequencing data are anticipated to fit the CNVs patterns more accurately. An efficient numerical solution based on the classical alternating direction minimization method (ADMM) is tailored to solve the proposed model. We demonstrate the advantages of the proposed method using both synthetic and empirical single-cell sequencing data. Our experimental results demonstrate that the proposed method achieves excellent performance and high promise of success with single-cell sequencing data. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Sequence of retrovirus provirus resembles that of bacterial transposable elements
NASA Astrophysics Data System (ADS)
Shimotohno, Kunitada; Mizutani, Satoshi; Temin, Howard M.
1980-06-01
The nucleotide sequences of the terminal regions of an infectious integrated retrovirus cloned in the modified λ phage cloning vector Charon 4A have been elucidated. There is a 569-base pair direct repeat at both ends of the viral DNA. The cell-virus junctions at each end consist of a 5-base pair direct repeat of cell DNA next to a 3-base pair inverted repeat of viral DNA. This structure resembles that of a transposable element and is consistent with the protovirus hypothesis that retroviruses evolved from the cell genome.
Cooper, James; Ding, Yi; Song, Jiuzhou; Zhao, Keji
2017-11-01
Increased chromatin accessibility is a feature of cell-type-specific cis-regulatory elements; therefore, mapping of DNase I hypersensitive sites (DHSs) enables the detection of active regulatory elements of transcription, including promoters, enhancers, insulators and locus-control regions. Single-cell DNase sequencing (scDNase-seq) is a method of detecting genome-wide DHSs when starting with either single cells or <1,000 cells from primary cell sources. This technique enables genome-wide mapping of hypersensitive sites in a wide range of cell populations that cannot be analyzed using conventional DNase I sequencing because of the requirement for millions of starting cells. Fresh cells, formaldehyde-cross-linked cells or cells recovered from formalin-fixed paraffin-embedded (FFPE) tissue slides are suitable for scDNase-seq assays. To generate scDNase-seq libraries, cells are lysed and then digested with DNase I. Circular carrier plasmid DNA is included during subsequent DNA purification and library preparation steps to prevent loss of the small quantity of DHS DNA. Libraries are generated for high-throughput sequencing on the Illumina platform using standard methods. Preparation of scDNase-seq libraries requires only 2 d. The materials and molecular biology techniques described in this protocol should be accessible to any general molecular biology laboratory. Processing of high-throughput sequencing data requires basic bioinformatics skills and uses publicly available bioinformatics software.
Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Roxbury, Daniel
It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation solution, which suggested an energy-dependent pathway. Additionally, by means of pharmacological inhibition and vector-induced gene knockout studies, the DNA-SWCNTs were shown to enter the cells via Rac1-mediated macropinocytosis.
RNA-programmed genome editing in human cells
Jinek, Martin; East, Alexandra; Cheng, Aaron; Lin, Steven; Ma, Enbo; Doudna, Jennifer
2013-01-01
Type II CRISPR immune systems in bacteria use a dual RNA-guided DNA endonuclease, Cas9, to cleave foreign DNA at specific sites. We show here that Cas9 assembles with hybrid guide RNAs in human cells and can induce the formation of double-strand DNA breaks (DSBs) at a site complementary to the guide RNA sequence in genomic DNA. This cleavage activity requires both Cas9 and the complementary binding of the guide RNA. Experiments using extracts from transfected cells show that RNA expression and/or assembly into Cas9 is the limiting factor for Cas9-mediated DNA cleavage. In addition, we find that extension of the RNA sequence at the 3′ end enhances DNA targeting activity in vivo. These results show that RNA-programmed genome editing is a facile strategy for introducing site-specific genetic changes in human cells. DOI: http://dx.doi.org/10.7554/eLife.00471.001 PMID:23386978
Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics.
Farlik, Matthias; Sheffield, Nathan C; Nuzzo, Angelo; Datlinger, Paul; Schönegger, Andreas; Klughammer, Johanna; Bock, Christoph
2015-03-03
Methods for single-cell genome and transcriptome sequencing have contributed to our understanding of cellular heterogeneity, whereas methods for single-cell epigenomics are much less established. Here, we describe a whole-genome bisulfite sequencing (WGBS) assay that enables DNA methylation mapping in very small cell populations (μWGBS) and single cells (scWGBS). Our assay is optimized for profiling many samples at low coverage, and we describe a bioinformatic method that analyzes collections of single-cell methylomes to infer cell-state dynamics. Using these technological advances, we studied epigenomic cell-state dynamics in three in vitro models of cellular differentiation and pluripotency, where we observed characteristic patterns of epigenome remodeling and cell-to-cell heterogeneity. The described method enables single-cell analysis of DNA methylation in a broad range of biological systems, including embryonic development, stem cell differentiation, and cancer. It can also be used to establish composite methylomes that account for cell-to-cell heterogeneity in complex tissue samples. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Muller, Ryan Y; Hammond, Ming C; Rio, Donald C; Lee, Yeon J
2015-12-01
The Encyclopedia of DNA Elements (ENCODE) Project aims to identify all functional sequence elements in the human genome sequence by use of high-throughput DNA/cDNA sequencing approaches. To aid the standardization, comparison, and integration of data sets produced from different technologies and platforms, the ENCODE Consortium selected several standard human cell lines to be used by the ENCODE Projects. The Tier 1 ENCODE cell lines include GM12878, K562, and H1 human embryonic stem cell lines. GM12878 is a lymphoblastoid cell line, transformed with the Epstein-Barr virus, that was selected by the International HapMap Project for whole genome and transcriptome sequencing by use of the Illumina platform. K562 is an immortalized myelogenous leukemia cell line. The GM12878 cell line is attractive for the ENCODE Projects, as it offers potential synergy with the International HapMap Project. Despite the vast amount of sequencing data available on the GM12878 cell line through the ENCODE Project, including transcriptome, chromatin immunoprecipitation-sequencing for histone marks, and transcription factors, no small interfering siRNA-mediated knockdown studies have been performed in the GM12878 cell line, as cationic lipid-mediated transfection methods are inefficient for lymphoid cell lines. Here, we present an efficient and reproducible method for transfection of a variety of siRNAs into the GM12878 and K562 cell lines, which subsequently results in targeted protein depletion.
Epigenetic Telomere Protection by Drosophila DNA Damage Response Pathways
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-01-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms. PMID:16710445
Epigenetic telomere protection by Drosophila DNA damage response pathways.
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-05-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms.
Ståhlberg, Anders; Krzyzanowski, Paul M; Jackson, Jennifer B; Egyud, Matthew; Stein, Lincoln; Godfrey, Tony E
2016-06-20
Detection of cell-free DNA in liquid biopsies offers great potential for use in non-invasive prenatal testing and as a cancer biomarker. Fetal and tumor DNA fractions however can be extremely low in these samples and ultra-sensitive methods are required for their detection. Here, we report an extremely simple and fast method for introduction of barcodes into DNA libraries made from 5 ng of DNA. Barcoded adapter primers are designed with an oligonucleotide hairpin structure to protect the molecular barcodes during the first rounds of polymerase chain reaction (PCR) and prevent them from participating in mis-priming events. Our approach enables high-level multiplexing and next-generation sequencing library construction with flexible library content. We show that uniform libraries of 1-, 5-, 13- and 31-plex can be generated. Utilizing the barcodes to generate consensus reads for each original DNA molecule reduces background sequencing noise and allows detection of variant alleles below 0.1% frequency in clonal cell line DNA and in cell-free plasma DNA. Thus, our approach bridges the gap between the highly sensitive but specific capabilities of digital PCR, which only allows a limited number of variants to be analyzed, with the broad target capability of next-generation sequencing which traditionally lacks the sensitivity to detect rare variants. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Anderson, Carl W.; Connelly, Margery A.
2004-10-12
The present invention provides a method for detecting DNA-activated protein kinase (DNA-PK) activity in a biological sample. The method includes contacting a biological sample with a detectably-labeled phosphate donor and a synthetic peptide substrate defined by the following features to provide specific recognition and phosphorylation by DNA-PK: (1) a phosphate-accepting amino acid pair which may include serine-glutamine (Ser-Gln) (SQ), threonine-glutamine (Thr-Gln) (TQ), glutamine-serine (Gln-Ser) (QS), or glutamine-threonine (Gln-Thr) (QT); (2) enhancer amino acids which may include glutamic acid or glutamine immediately adjacent at the amino- or carboxyl- side of the amino acid pair and forming an amino acid pair-enhancer unit; (3) a first spacer sequence at the amino terminus of the amino acid pair-enhancer unit; (4) a second spacer sequence at the carboxyl terminus of the amino acid pair-enhancer unit, which spacer sequences may include any combination of amino acids that does not provide a phosphorylation site consensus sequence motif; and, (5) a tag moiety, which may be an amino acid sequence or another chemical entity that permits separating the synthetic peptide from the phosphate donor. A compostion and a kit for the detection of DNA-PK activity are also provided. Methods for detecting DNA, protein phosphatases and substances that alter the activity of DNA-PK are also provided. The present invention also provides a method of monitoring protein kinase and DNA-PK activity in living cells. -A composition and a kit for monitoring protein kinase activity in vitro and a composition and a kit for monitoring DNA-PK activities in living cells are also provided. A method for identifying agents that alter protein kinase activity in vitro and a method for identifying agents that alter DNA-PK activity in living cells are also provided.
Cloning, sequencing, and expression of cDNA for human. beta. -glucuronidase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshima, A.; Kyle, J.W.; Miller, R.D.
1987-02-01
The authors report here the cDNA sequence for human placental ..beta..-glucuronidase (..beta..-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH/sub 2/-terminal amino acid sequence determined for human spleen ..beta..-glucuronidase agreed with that inferred from the DNAmore » sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human ..beta..-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human ..beta..-glucuronidase, demonstrate the existence of two populations of mRNA for ..beta..-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length.« less
NASA Astrophysics Data System (ADS)
Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.
2014-09-01
Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.
Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.
2014-01-01
Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology. PMID:25252596
Burger, C; Fanning, E
1983-04-15
Large tumor antigen (T antigen) occurs in at least three different oligomeric subclasses in cells infected or transformed by simian virus 40 (SV40): 5-7 S, 14-16 S, and 23-25 S. The 23-25 S form is complexed with a host phosphoprotein (p53). The DNA binding properties of these three subclasses of T antigen from nine different cell lines and free p53 protein were compared using an immunoprecipitation assay. All three subclasses of T antigen bound specifically to SV40 DNA sequences near the origin of replication. However, the DNA binding activity varied between different cell lines over a 40- to 50-fold range. The 23-25 S and 14-16 S forms from most of the cell lines tested bound much less SV40 origin DNA than 5-7 S T antigen. The free p53 phosphoprotein did not bind specifically to any SV40 DNA sequences.
Retroviral DNA Integration Directed by HIV Integration Protein in Vitro
NASA Astrophysics Data System (ADS)
Bushman, Frederic D.; Fujiwara, Tamio; Craigie, Robert
1990-09-01
Efficient retroviral growth requires integration of a DNA copy of the viral RNA genome into a chromosome of the host. As a first step in analyzing the mechanism of integration of human immunodeficiency virus (HIV) DNA, a cell-free system was established that models the integration reaction. The in vitro system depends on the HIV integration (IN) protein, which was partially purified from insect cells engineered to express IN protein in large quantities. Integration was detected in a biological assay that scores the insertion of a linear DNA containing HIV terminal sequences into a λ DNA target. Some integration products generated in this assay contained five-base pair duplications of the target DNA at the recombination junctions, a characteristic of HIV integration in vivo; the remaining products contained aberrant junctional sequences that may have been produced in a variation of the normal reaction. These results indicate that HIV IN protein is the only viral protein required to insert model HIV DNA sequences into a target DNA in vitro.
Theoretical modeling of masking DNA application in aptamer-facilitated biomarker discovery.
Cherney, Leonid T; Obrecht, Natalia M; Krylov, Sergey N
2013-04-16
In aptamer-facilitated biomarker discovery (AptaBiD), aptamers are selected from a library of random DNA (or RNA) sequences for their ability to specifically bind cell-surface biomarkers. The library is incubated with intact cells, and cell-bound DNA molecules are separated from those unbound and amplified by the polymerase chain reaction (PCR). The partitioning/amplification cycle is repeated multiple times while alternating target cells and control cells. Efficient aptamer selection in AptaBiD relies on the inclusion of masking DNA within the cell and library mixture. Masking DNA lacks primer regions for PCR amplification and is typically taken in excess to the library. The role of masking DNA within the selection mixture is to outcompete any nonspecific binding sequences within the initial library, thus allowing specific DNA sequences (i.e., aptamers) to be selected more efficiently. Efficient AptaBiD requires an optimum ratio of masking DNA to library DNA, at which aptamers still bind specific binding sites but nonaptamers within the library do not bind nonspecific binding sites. Here, we have developed a mathematical model that describes the binding processes taking place within the equilibrium mixture of masking DNA, library DNA, and target cells. An obtained mathematical solution allows one to estimate the concentration of masking DNA that is required to outcompete the library DNA at a desirable ratio of bound masking DNA to bound library DNA. The required concentration depends on concentrations of the library and cells as well as on unknown cell characteristics. These characteristics include the concentration of total binding sites on the cell surface, N, and equilibrium dissociation constants, K(nsL) and K(nsM), for nonspecific binding of the library DNA and masking DNA, respectively. We developed a theory that allows the determination of N, K(nsL), and K(nsM) based on measurements of EC50 values for cells mixed separately with the library and masking DNA (EC50 is the concentration of fluorescently labeled DNA at which half of the maximum fluorescence signal from DNA-bound cells is reached). We also obtained expressions for signals from bound DNA (measured by flow cytometry) in terms of N, K(nsL), and K(nsM). These expressions can be used for the verification of N, K(nsL), and K(nsM) values found from EC50 measurements. The developed procedure was applied to MCF-7 breast cancer cells, and corresponding values of N, K(nsL), and K(nsM) were established for the first time. The concentration of masking DNA required for AptaBiD with MCF-7 breast cancer cells was also estimated.
Comar, Manola; D'Agaro, Pierlanfranco; Andolina, Marino; Maximova, Natasha; Martini, Fernanda; Tognon, Mauro; Campello, Cesare
2004-08-27
Late-onset hemorrhagic cystitis (HC) is a well-known severe complication of bone marrow transplantation (BMT), both in adults and in children. Protracted postengraftment HC is associated with graft-versus-host disease and viral infections, mainly caused by BK virus (BKV) or adenovirus (AV). This study investigated whether simian virus 40 (SV40) DNA sequences can be detected in specimens from pediatric patients affected by severe postengraftment HC. The clinical diagnosis of HC was made in 7 of 28 BMT children. DNA from peripheral blood mononuclear cells (PBMC) and urine sediment cells and supernatants was analyzed by polymerase chain reaction (PCR) for human cytomegalovirus (HCMV), AV, BKV, JC virus (JCV), and SV40. DNA filter hybridization and sequencing was carried out in SV40-positive samples. SV40 footprints were detected in two of seven cases of HC. Specific SV40 DNA sequences were detected by PCR and by filter hybridization both in urine and in PBMC samples at the HC onset and during the follow-up. The DNA sequencing proved that the amplicons belonged to the SV40 wild-type. Urine samples of the two HC cases tested negative by cell cultures, PCR, or both for HCMV, BKV, JCV, and AV. The detection of SV40 DNA sequences suggest that this simian polyomavirus could be involved, at least in some cases, in the HC occurring in children after BMT.
H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells.
Fernández, Agustín F; Bayón, Gustavo F; Urdinguio, Rocío G; Toraño, Estela G; García, María G; Carella, Antonella; Petrus-Reurer, Sandra; Ferrero, Cecilia; Martinez-Camblor, Pablo; Cubillo, Isabel; García-Castro, Javier; Delgado-Calle, Jesús; Pérez-Campo, Flor M; Riancho, José A; Bueno, Clara; Menéndez, Pablo; Mentink, Anouk; Mareschi, Katia; Claire, Fabian; Fagnani, Corrado; Medda, Emanuela; Toccaceli, Virgilia; Brescianini, Sonia; Moran, Sebastián; Esteller, Manel; Stolzing, Alexandra; de Boer, Jan; Nisticò, Lorenza; Stazi, Maria A; Fraga, Mario F
2015-01-01
In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors. © 2015 Fernández et al.; Published by Cold Spring Harbor Laboratory Press.
The Viral Evolution Core within the AIDS and Cancer Virus Program will extract viral RNA/DNA from cell-free or cell-associated samples. Complementary (cDNA) will be generated as needed, and cDNA or DNA will be diluted to a single copy prior to nested
Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing.
Kim, Charissa; Gao, Ruli; Sei, Emi; Brandt, Rachel; Hartman, Johan; Hatschek, Thomas; Crosetto, Nicola; Foukakis, Theodoros; Navin, Nicholas E
2018-05-03
Triple-negative breast cancer (TNBC) is an aggressive subtype that frequently develops resistance to chemotherapy. An unresolved question is whether resistance is caused by the selection of rare pre-existing clones or alternatively through the acquisition of new genomic aberrations. To investigate this question, we applied single-cell DNA and RNA sequencing in addition to bulk exome sequencing to profile longitudinal samples from 20 TNBC patients during neoadjuvant chemotherapy (NAC). Deep-exome sequencing identified 10 patients in which NAC led to clonal extinction and 10 patients in which clones persisted after treatment. In 8 patients, we performed a more detailed study using single-cell DNA sequencing to analyze 900 cells and single-cell RNA sequencing to analyze 6,862 cells. Our data showed that resistant genotypes were pre-existing and adaptively selected by NAC, while transcriptional profiles were acquired by reprogramming in response to chemotherapy in TNBC patients. Copyright © 2018 Elsevier Inc. All rights reserved.
Non-invasive method to obtain DNA from freshwater mussels (Bivalvia: Unionidae)
Henley, W.F.; Grobler, P.J.; Neves, R.J.
2006-01-01
To determine whether DNA could be isolated from tissues obtained by brush-swabbing the mantle, viscera and foot, mantle-clips and swabbed cells were obtained from eight Quadrula pustulosa (Lea, 1831). DNA yields from clips and swabbings were 447.0 and 975.3 ??g/??L, respectively. Furthermore, comparisons of sequences from the ND-1 mitochondrial gene region showed a 100% sequence agreement of DNA from cells obtained by clips and swabs. To determine the number of swabs needed to obtain adequate yields of DNA for analyses, the visceras and feet of 5 Q. pustulosa each were successively swabbed 2, 4 and 6 times. DNA yields from the 2, 4 and 6 swabbed mussel groups were 399.4, 833.8 and 852.6 ng/??L, respectively. ND-1 sequences from the lowest yield still provided 846-901 bp for the ND-1 region. Nevertheless, to ensure adequate DNA yield from cell samples obtained by swabbing, we recommend that 4 swab-strokes of the viscera and foot be obtained. The use of integumental swabbing for collection of cells for determination of genetic relationships among freshwater mussels is noninvasive, when compared with tissue collection by mantle-clipping. Therefore, its use is recommended for freshwater mussels, especially state-protected or federally listed mussel species.
Novel numerical and graphical representation of DNA sequences and proteins.
Randić, M; Novic, M; Vikić-Topić, D; Plavsić, D
2006-12-01
We have introduced novel numerical and graphical representations of DNA, which offer a simple and unique characterization of DNA sequences. The numerical representation of a DNA sequence is given as a sequence of real numbers derived from a unique graphical representation of the standard genetic code. There is no loss of information on the primary structure of a DNA sequence associated with this numerical representation. The novel representations are illustrated with the coding sequences of the first exon of beta-globin gene of half a dozen species in addition to human. The method can be extended to proteins as is exemplified by humanin, a 24-aa peptide that has recently been identified as a specific inhibitor of neuronal cell death induced by familial Alzheimer's disease mutant genes.
Calibrating genomic and allelic coverage bias in single-cell sequencing.
Zhang, Cheng-Zhong; Adalsteinsson, Viktor A; Francis, Joshua; Cornils, Hauke; Jung, Joonil; Maire, Cecile; Ligon, Keith L; Meyerson, Matthew; Love, J Christopher
2015-04-16
Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate genomic information from single-cell genomes and require different analytical strategies from bulk genome analysis. Here, we describe statistical methods to quantitatively assess the amplification bias resulting from whole-genome amplification of single-cell genomic DNA. Analysis of single-cell DNA libraries generated by different technologies revealed universal features of the genome coverage bias predominantly generated at the amplicon level (1-10 kb). The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (∼0.1 × ) to predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We further provide a benchmark comparison of single-cell libraries generated by multi-strand displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-genome amplification and demonstrate a census-based strategy for efficient and accurate variant detection from low-input biopsy samples.
Calibrating genomic and allelic coverage bias in single-cell sequencing
Francis, Joshua; Cornils, Hauke; Jung, Joonil; Maire, Cecile; Ligon, Keith L.; Meyerson, Matthew; Love, J. Christopher
2016-01-01
Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate genomic information from single-cell genomes and require different analytical strategies from bulk genome analysis. Here, we describe statistical methods to quantitatively assess the amplification bias resulting from whole-genome amplification of single-cell genomic DNA. Analysis of single-cell DNA libraries generated by different technologies revealed universal features of the genome coverage bias predominantly generated at the amplicon level (1–10 kb). The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (~0.1 ×) to predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We further provide a benchmark comparison of single-cell libraries generated by multi-strand displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-genome amplification and demonstrate a census-based strategy for efficient and accurate variant detection from low-input biopsy samples. PMID:25879913
Mora-Castilla, Sergio; To, Cuong; Vaezeslami, Soheila; Morey, Robert; Srinivasan, Srimeenakshi; Dumdie, Jennifer N; Cook-Andersen, Heidi; Jenkins, Joby; Laurent, Louise C
2016-08-01
As the cost of next-generation sequencing has decreased, library preparation costs have become a more significant proportion of the total cost, especially for high-throughput applications such as single-cell RNA profiling. Here, we have applied novel technologies to scale down reaction volumes for library preparation. Our system consisted of in vitro differentiated human embryonic stem cells representing two stages of pancreatic differentiation, for which we prepared multiple biological and technical replicates. We used the Fluidigm (San Francisco, CA) C1 single-cell Autoprep System for single-cell complementary DNA (cDNA) generation and an enzyme-based tagmentation system (Nextera XT; Illumina, San Diego, CA) with a nanoliter liquid handler (mosquito HTS; TTP Labtech, Royston, UK) for library preparation, reducing the reaction volume down to 2 µL and using as little as 20 pg of input cDNA. The resulting sequencing data were bioinformatically analyzed and correlated among the different library reaction volumes. Our results showed that decreasing the reaction volume did not interfere with the quality or the reproducibility of the sequencing data, and the transcriptional data from the scaled-down libraries allowed us to distinguish between single cells. Thus, we have developed a process to enable efficient and cost-effective high-throughput single-cell transcriptome sequencing. © 2016 Society for Laboratory Automation and Screening.
Naveilhan, P; Baudet, C; Jabbour, W; Wion, D
1994-09-01
A model that may explain the limited division potential of certain cells such as human fibroblasts in culture is presented. The central postulate of this theory is that there exists, prior to certain key exons that code for materials needed for cell division, a unique sequence of specific repeating segments of DNA. One copy of such repeating segments is deleted during each cell cycle in cells that are not protected from such deletion through methylation of their cytosine residues. According to this theory, the means through which such repeated sequences are removed, one per cycle, is through the sequential action of enzymes that act much as bacterial restriction enzymes do--namely to produce scissions in both strands of DNA in areas that correspond to the DNA base sequence recognition specificities of such enzymes. After the first scission early in a replicative cycle, that enzyme becomes inhibited, but the cleavage of the first site exposes the closest site in the repetitive element to the action of a second restriction enzyme after which that enzyme also becomes inhibited. Then repair occurs, regenerating the original first site. Through this sequential activation and inhibition of two different restriction enzymes, only one copy of the repeating sequence is deleted during each cell cycle. In effect, the repeating sequence operates as a precise counter of the numbers of cell doubling that have occurred since the cells involved differentiated during development.
The problems and promise of DNA barcodes for species diagnosis of primate biomaterials
Lorenz, Joseph G; Jackson, Whitney E; Beck, Jeanne C; Hanner, Robert
2005-01-01
The Integrated Primate Biomaterials and Information Resource (www.IPBIR.org) provides essential research reagents to the scientific community by establishing, verifying, maintaining, and distributing DNA and RNA derived from primate cell cultures. The IPBIR uses mitochondrial cytochrome c oxidase subunit I sequences to verify the identity of samples for quality control purposes in the accession, cell culture, DNA extraction processes and prior to shipping to end users. As a result, IPBIR is accumulating a database of ‘DNA barcodes’ for many species of primates. However, this quality control process is complicated by taxon specific patterns of ‘universal primer’ failure, as well as the amplification or co-amplification of nuclear pseudogenes of mitochondrial origins. To overcome these difficulties, taxon specific primers have been developed, and reverse transcriptase PCR is utilized to exclude these extraneous sequences from amplification. DNA barcoding of primates has applications to conservation and law enforcement. Depositing barcode sequences in a public database, along with primer sequences, trace files and associated quality scores, makes this species identification technique widely accessible. Reference DNA barcode sequences should be derived from, and linked to, specimens of known provenance in web-accessible collections in order to validate this system of molecular diagnostics. PMID:16214744
Methods of introducing nucleic acids into cellular DNA
Lajoie, Marc J.; Gregg, Christopher J.; Mosberg, Joshua A.; Church, George M.
2017-06-27
A method of introducing a nucleic acid sequence into a cell is provided where the cell has impaired or inhibited or disrupted DnaG primase activity or impaired or inhibited or disrupted DnaB helicase activity, or larger or increased gaps or distance between Okazaki fragments or lowered or reduced frequency of Okazaki fragment initiation, or the cell has increased single stranded DNA (ssDNA) on the lagging strand of the replication fork including transforming the cell through recombination with a nucleic acid oligomer.
DNA Clutch Probes for Circulating Tumor DNA Analysis.
Das, Jagotamoy; Ivanov, Ivaylo; Sargent, Edward H; Kelley, Shana O
2016-08-31
Progress toward the development of minimally invasive liquid biopsies of disease is being bolstered by breakthroughs in the analysis of circulating tumor DNA (ctDNA): DNA released from cancer cells into the bloodstream. However, robust, sensitive, and specific methods of detecting this emerging analyte are lacking. ctDNA analysis has unique challenges, since it is imperative to distinguish circulating DNA from normal cells vs mutation-bearing sequences originating from tumors. Here we report the electrochemical detection of mutated ctDNA in samples collected from cancer patients. By developing a strategy relying on the use of DNA clutch probes (DCPs) that render specific sequences of ctDNA accessible, we were able to readout the presence of mutated ctDNA. DCPs prevent reassociation of denatured DNA strands: they make one of the two strands of a dsDNA accessible for hybridization to a probe, and they also deactivate other closely related sequences in solution. DCPs ensure thereby that only mutated sequences associate with chip-based sensors detecting hybridization events. The assay exhibits excellent sensitivity and specificity in the detection of mutated ctDNA: it detects 1 fg/μL of a target mutation in the presence of 100 pg/μL of wild-type DNA, corresponding to detecting mutations at a level of 0.01% relative to wild type. This approach allows accurate analysis of samples collected from lung cancer and melanoma patients. This work represents the first detection of ctDNA without enzymatic amplification.
Rapid Electrokinetic Isolation of Cancer-Related Circulating Cell-Free DNA Directly from Blood
Sonnenberg, Avery; Marciniak, Jennifer Y.; Rassenti, Laura; Ghia, Emanuela M.; Skowronski, Elaine A.; Manouchehri, Sareh; McCanna, James; Widhopf, George F.; Kipps, Thomas J.; Heller, Michael J.
2014-01-01
BACKGROUND Circulating cell-free DNA (ccf-DNA) is becoming an important biomarker for cancer diagnostics and therapy monitoring. The isolation of ccf-DNA from plasma as a “liquid biopsy” may begin to replace more invasive tissue biopsies for the detection and analysis of cancer-related mutations. Conventional methods for the isolation of ccf-DNA from plasma are costly, time-consuming, and complex, preventing the use of ccf-DNA biomarkers for point-of-care diagnostics and limiting other biomedical research applications. METHODS We used an AC electrokinetic device to rapidly isolate ccf-DNA from 25 μL unprocessed blood. ccf-DNA from 15 chronic lymphocytic leukemia (CLL) patients and 3 healthy individuals was separated into dielectrophoretic (DEP) high-field regions, after which other blood components were removed by a fluidic wash. Concentrated ccf-DNA was detected by fluorescence and eluted for quantification,PCR,and DNA sequencing. The complete process, blood to PCR, required <10 min. ccf-DNA was amplified by PCR with immunoglobulin heavy chain variable region (IGHV)-specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone, and then sequenced. RESULTS PCR and DNA sequencing results obtained by DEP from 25 μL CLL blood matched results obtained by use of conventional methods for ccf-DNA isolation from 1 mL plasma and for genomic DNA isolation from CLL patient leukemic B cells isolated from 15–20 mL blood. CONCLUSIONS Rapid isolation of ccf-DNA directly from a drop of blood will advance disease-related biomarker research, accelerate the transition from tissue to liquid biopsies, and enable point-of-care diagnostic systems for patient monitoring. PMID:24270796
Rapid electrokinetic isolation of cancer-related circulating cell-free DNA directly from blood.
Sonnenberg, Avery; Marciniak, Jennifer Y; Rassenti, Laura; Ghia, Emanuela M; Skowronski, Elaine A; Manouchehri, Sareh; McCanna, James; Widhopf, George F; Kipps, Thomas J; Heller, Michael J
2014-03-01
Circulating cell-free DNA (ccf-DNA) is becoming an important biomarker for cancer diagnostics and therapy monitoring. The isolation of ccf-DNA from plasma as a "liquid biopsy" may begin to replace more invasive tissue biopsies for the detection and analysis of cancer-related mutations. Conventional methods for the isolation of ccf-DNA from plasma are costly, time-consuming, and complex, preventing the use of ccf-DNA biomarkers for point-of-care diagnostics and limiting other biomedical research applications. We used an AC electrokinetic device to rapidly isolate ccf-DNA from 25 μL unprocessed blood. ccf-DNA from 15 chronic lymphocytic leukemia (CLL) patients and 3 healthy individuals was separated into dielectrophoretic (DEP) high-field regions, after which other blood components were removed by a fluidic wash. Concentrated ccf-DNA was detected by fluorescence and eluted for quantification, PCR, and DNA sequencing. The complete process, blood to PCR, required <10 min. ccf-DNA was amplified by PCR with immunoglobulin heavy chain variable region (IGHV)-specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone, and then sequenced. PCR and DNA sequencing results obtained by DEP from 25 μL CLL blood matched results obtained by use of conventional methods for ccf-DNA isolation from 1 mL plasma and for genomic DNA isolation from CLL patient leukemic B cells isolated from 15-20 mL blood. Rapid isolation of ccf-DNA directly from a drop of blood will advance disease-related biomarker research, accelerate the transition from tissue to liquid biopsies, and enable point-of-care diagnostic systems for patient monitoring.
Alexandrov, Boian S; Fukuyo, Yayoi; Lange, Martin; Horikoshi, Nobuo; Gelev, Vladimir; Rasmussen, Kim Ø; Bishop, Alan R; Usheva, Anny
2012-11-01
The genome-wide mapping of the major gene expression regulators, the transcription factors (TFs) and their DNA binding sites, is of great importance for describing cellular behavior and phenotypic diversity. Presently, the methods for prediction of genomic TF binding produce a large number of false positives, most likely due to insufficient description of the physiochemical mechanisms of protein-DNA binding. Growing evidence suggests that, in the cell, the double-stranded DNA (dsDNA) is subject to local transient strands separations (breathing) that contribute to genomic functions. By using site-specific chromatin immunopecipitations, gel shifts, BIOBASE data, and our model that accurately describes the melting behavior and breathing dynamics of dsDNA we report a specific DNA breathing profile found at YY1 binding sites in cells. We find that the genomic flanking sequence variations and SNPs, may exert long-range effects on DNA dynamics and predetermine YY1 binding. The ubiquitous TF YY1 has a fundamental role in essential biological processes by activating, initiating or repressing transcription depending upon the sequence context it binds. We anticipate that consensus binding sequences together with the related DNA dynamics profile may significantly improve the accuracy of genomic TF binding sites and TF binding-related functional SNPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Audemard, Eric
2014-08-22
Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellularmore » vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells.« less
Methods and materials relating to IMPDH and GMP production
Collart, Frank R.; Huberman, Eliezer
1997-01-01
Disclosed are purified and isolated DNA sequences encoding eukaryotic proteins possessing biological properties of inosine 5'-monophosphate dehydrogenase ("IMPDH"). Illustratively, mammalian (e.g., human) IMPDH-encoding DNA sequences are useful in transformation or transfection of host cells for the large scale recombinant production of the enzymatically active expression products and/or products (e.g., GMP) resulting from IMPDH catalyzed synthesis in cells. Vectors including IMPDH-encoding DNA sequences are useful in gene amplification procedures. Recombinant proteins and synthetic peptides provided by the invention are useful as immunological reagents and in the preparation of antibodies (including polyclonal and monoclonal antibodies) for quantitative detection of IMPDH.
Human papillomavirus type 16 DNA in periungual squamous cell carcinomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moy, R.L.; Eliezri, Y.D.; Bennett, R.G.
1989-05-12
Ten squamous cell carcinomas (in situ or invasive) of the fingernail region were analyzed for the presence of DNA sequences homologous to human papilloma-virus (HPV) by dot blot hybridization. In most patients, the lesions were verrucae of long-term duration that were refractory to conventional treatment methods. Eight of the lesions contained HPV DNA sequences, and in six of these the sequences were related to HPV 16 as deduced from low-stringency nucleic acid hybridization followed by low- and high-stringency washes. Furthermore, the restriction endonuclease digestion pattern of DNA isolated from four of these lesions was diagnostic of episomal HPV 16. Themore » high-frequency association of HPV 16 with periungual squamous cell carcinoma is similar to that reported for HPV 16 with squamous cell carcinomas on mucous membranes at other sites, notably the genital tract. The findings suggest that HPV 16 may play an important role in the development of squamous cell carcinomas of the finger, most notably those lesions that are chronic and located in the periungual area.« less
Estimating Genomic Distance from DNA Sequence Location in Cell Nuclei by a Random Walk Model
NASA Astrophysics Data System (ADS)
van den Engh, Ger; Sachs, Rainer; Trask, Barbara J.
1992-09-01
The folding of chromatin in interphase cell nuclei was studied by fluorescent in situ hybridization with pairs of unique DNA sequence probes. The sites of DNA sequences separated by 100 to 2000 kilobase pairs (kbp) are distributed in interphase chromatin according to a random walk model. This model provides the basis for calculating the spacing of sequences along the linear DNA molecule from interphase distance measurements. An interphase mapping strategy based on this model was tested with 13 probes from a 4-megabase pair (Mbp) region of chromosome 4 containing the Huntington disease locus. The results confirmed the locations of the probes and showed that the remaining gap in the published maps of this region is negligible in size. Interphase distance measurements should facilitate construction of chromosome maps with an average marker density of one per 100 kbp, approximately ten times greater than that achieved by hybridization to metaphase chromosomes.
Cloning and expression of cDNA coding for bouganin.
den Hartog, Marcel T; Lubelli, Chiara; Boon, Louis; Heerkens, Sijmie; Ortiz Buijsse, Antonio P; de Boer, Mark; Stirpe, Fiorenzo
2002-03-01
Bouganin is a ribosome-inactivating protein that recently was isolated from Bougainvillea spectabilis Willd. In this work, the cloning and expression of the cDNA encoding for bouganin is described. From the cDNA, the amino-acid sequence was deduced, which correlated with the primary sequence data obtained by amino-acid sequencing on the native protein. Bouganin is synthesized as a pro-peptide consisting of 305 amino acids, the first 26 of which act as a leader signal while the 29 C-terminal amino acids are cleaved during processing of the molecule. The mature protein consists of 250 amino acids. Using the cDNA sequence encoding the mature protein of 250 amino acids, a recombinant protein was expressed, purified and characterized. The recombinant molecule had similar activity in a cell-free protein synthesis assay and had comparable toxicity on living cells as compared to the isolated native bouganin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Yoshiyuki; Matsuoka, Makoto; Yamanoto, Naoki
A cDNA clone for phenylalanine ammonia-lyase (PAL) induced in wounded sweet potato (Ipomoea batatas Lam.) root was obtained by immunoscreening a cDNA library. The protein produced in Escherichia coli cells containing the plasmid pPAL02 was indistinguishable from sweet potato PAL as judged by Ouchterlony double diffusion assays. The M{sub r} of its subunit was 77,000. The cells converted ({sup 14}C)-L-phenylalanine into ({sup 14}C)-t-cinnamic acid and PAL activity was detected in the homogenate of the cells. The activity was dependent on the presence of the pPAL02 plasmid DNA. The nucleotide sequence of the cDNA contained a 2,121-base pair (bp) open-reading framemore » capable of coding for a polypeptide with 707 amino acids (M{sub r} 77,137), a 22-bp 5{prime}-noncoding region and a 207-bp 3{prime}-noncoding region. The results suggest that the insert DNA fully encoded the amino acid sequence for sweet potato PAL that is induced by wounding. Comparison of the deduced amino acid sequence with that of a PAL cDNA fragment from Phaseolus vulgaris revealed 78.9% homology. The sequence from amino acid residues 258 to 494 was highly conserved, showing 90.7% homology.« less
Inaugural Genomics Automation Congress and the coming deluge of sequencing data.
Creighton, Chad J
2010-10-01
Presentations at Select Biosciences's first 'Genomics Automation Congress' (Boston, MA, USA) in 2010 focused on next-generation sequencing and the platforms and methodology around them. The meeting provided an overview of sequencing technologies, both new and emerging. Speakers shared their recent work on applying sequencing to profile cells for various levels of biomolecular complexity, including DNA sequences, DNA copy, DNA methylation, mRNA and microRNA. With sequencing time and costs continuing to drop dramatically, a virtual explosion of very large sequencing datasets is at hand, which will probably present challenges and opportunities for high-level data analysis and interpretation, as well as for information technology infrastructure.
Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M
2018-01-30
Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Integrated digital error suppression for improved detection of circulating tumor DNA
Kurtz, David M.; Chabon, Jacob J.; Scherer, Florian; Stehr, Henning; Liu, Chih Long; Bratman, Scott V.; Say, Carmen; Zhou, Li; Carter, Justin N.; West, Robert B.; Sledge, George W.; Shrager, Joseph B.; Loo, Billy W.; Neal, Joel W.; Wakelee, Heather A.; Diehn, Maximilian; Alizadeh, Ash A.
2016-01-01
High-throughput sequencing of circulating tumor DNA (ctDNA) promises to facilitate personalized cancer therapy. However, low quantities of cell-free DNA (cfDNA) in the blood and sequencing artifacts currently limit analytical sensitivity. To overcome these limitations, we introduce an approach for integrated digital error suppression (iDES). Our method combines in silico elimination of highly stereotypical background artifacts with a molecular barcoding strategy for the efficient recovery of cfDNA molecules. Individually, these two methods each improve the sensitivity of cancer personalized profiling by deep sequencing (CAPP-Seq) by ~3 fold, and synergize when combined to yield ~15-fold improvements. As a result, iDES-enhanced CAPP-Seq facilitates noninvasive variant detection across hundreds of kilobases. Applied to clinical non-small cell lung cancer (NSCLC) samples, our method enabled biopsy-free profiling of EGFR kinase domain mutations with 92% sensitivity and 96% specificity and detection of ctDNA down to 4 in 105 cfDNA molecules. We anticipate that iDES will aid the noninvasive genotyping and detection of ctDNA in research and clinical settings. PMID:27018799
Method for identifying mutagenic agents which induce large, multilocus deletions in DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, W.E.C.; Belouchi, A.; Dewyse, P.
1993-07-13
A method of identifying a mutagenic agent is described which includes a large, multilocus deletions in DNA in mammalian cells comprising: (i) exposing a class III heterozygous CHO cell line to a potential mutagenic agent under investigation, and allowing any mutation of the cell line to proceed, said cell line being characterized in that a restriction fragment length variation exists in on mutation it becomes resistant to 2,6-diaminopurine and in that the DNA sequence adjacent to the two alleles of the APRT gene such that the DNA sequence adjacent to one of the two alleles can be digested with themore » enzyme BclI but the DNA sequence variation adjacent to the other of the two alleles cannot be digested with BclI, (ii) isolating induced mutations of the cell line deficient in APRT function, (iii) isolating DNA from the induced mutants, (iv) digesting the isolated DNA with BclI enzyme to produce digested fragments including a 19 kb fragment and any 2 kb fragment, which fragments hybridize with the labeled probe derived from DNA fragment PDI, (v) separating any digested fragments, (vi) transferring the separated fragments of (v) to a solid support, (vii) hybridizing the supported separated fragments with a labeled probe derived from the clone DNA fragment PD 1, (viii) determining fragments having undergone loss of the 2 kb band identified by the probe, as an identification of parent mutants in which the loss occurred, and (ix) evaluating the mutating ability of the potential mutagenic agent.« less
Environmental Control Of A Genetic Process
NASA Technical Reports Server (NTRS)
Khosla, Chaitan; Bailey, James E.
1991-01-01
E. coli bacteria altered to contain DNA sequence encoding production of hemoglobin made to produce hemoglobin at rates decreasing with increases in concentration of oxygen in culture media. Represents amplification of part of method described in "Cloned Hemoglobin Genes Enhance Growth Of Cells" (NPO-17517). Manipulation of promoter/regulator DNA sequences opens promising new subfield of recombinant-DNA technology for environmental control of expression of selected DNA sequences. New recombinant-DNA fusion gene products, expression vectors, and nucleotide-base sequences will emerge. Likely applications include such aerobic processes as manufacture of cloned proteins and synthesis of metabolites, production of chemicals by fermentation, enzymatic degradation, treatment of wastes, brewing, and variety of oxidative chemical reactions.
Mechanism of chimera formation during the Multiple Displacement Amplification reaction.
Lasken, Roger S; Stockwell, Timothy B
2007-04-12
Multiple Displacement Amplification (MDA) is a method used for amplifying limiting DNA sources. The high molecular weight amplified DNA is ideal for DNA library construction. While this has enabled genomic sequencing from one or a few cells of unculturable microorganisms, the process is complicated by the tendency of MDA to generate chimeric DNA rearrangements in the amplified DNA. Determining the source of the DNA rearrangements would be an important step towards reducing or eliminating them. Here, we characterize the major types of chimeras formed by carrying out an MDA whole genome amplification from a single E. coli cell and sequencing by the 454 Life Sciences method. Analysis of 475 chimeras revealed the predominant reaction mechanisms that create the DNA rearrangements. The highly branched DNA synthesized in MDA can assume many alternative secondary structures. DNA strands extended on an initial template can be displaced becoming available to prime on a second template creating the chimeras. Evidence supports a model in which branch migration can displace 3'-ends freeing them to prime on the new templates. More than 85% of the resulting DNA rearrangements were inverted sequences with intervening deletions that the model predicts. Intramolecular rearrangements were favored, with displaced 3'-ends reannealing to single stranded 5'-strands contained within the same branched DNA molecule. In over 70% of the chimeric junctions, the 3' termini had initiated priming at complimentary sequences of 2-21 nucleotides (nts) in the new templates. Formation of chimeras is an important limitation to the MDA method, particularly for whole genome sequencing. Identification of the mechanism for chimera formation provides new insight into the MDA reaction and suggests methods to reduce chimeras. The 454 sequencing approach used here will provide a rapid method to assess the utility of reaction modifications.
Mechanism of chimera formation during the Multiple Displacement Amplification reaction
Lasken, Roger S; Stockwell, Timothy B
2007-01-01
Background Multiple Displacement Amplification (MDA) is a method used for amplifying limiting DNA sources. The high molecular weight amplified DNA is ideal for DNA library construction. While this has enabled genomic sequencing from one or a few cells of unculturable microorganisms, the process is complicated by the tendency of MDA to generate chimeric DNA rearrangements in the amplified DNA. Determining the source of the DNA rearrangements would be an important step towards reducing or eliminating them. Results Here, we characterize the major types of chimeras formed by carrying out an MDA whole genome amplification from a single E. coli cell and sequencing by the 454 Life Sciences method. Analysis of 475 chimeras revealed the predominant reaction mechanisms that create the DNA rearrangements. The highly branched DNA synthesized in MDA can assume many alternative secondary structures. DNA strands extended on an initial template can be displaced becoming available to prime on a second template creating the chimeras. Evidence supports a model in which branch migration can displace 3'-ends freeing them to prime on the new templates. More than 85% of the resulting DNA rearrangements were inverted sequences with intervening deletions that the model predicts. Intramolecular rearrangements were favored, with displaced 3'-ends reannealing to single stranded 5'-strands contained within the same branched DNA molecule. In over 70% of the chimeric junctions, the 3' termini had initiated priming at complimentary sequences of 2–21 nucleotides (nts) in the new templates. Conclusion Formation of chimeras is an important limitation to the MDA method, particularly for whole genome sequencing. Identification of the mechanism for chimera formation provides new insight into the MDA reaction and suggests methods to reduce chimeras. The 454 sequencing approach used here will provide a rapid method to assess the utility of reaction modifications. PMID:17430586
Zill, Oliver A.; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A.; Divers, Stephen G.; Hoon, Dave S. B.; Kopetz, E. Scott; Lee, Jeeyun; Nikolinakos, Petros G.; Baca, Arthur M.; Kermani, Bahram G.; Eltoukhy, Helmy; Talasaz, AmirAli
2015-01-01
Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital SequencingTM is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999%) enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient’s cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing. PMID:26474073
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, J.; Schlehofer, J.R.; Mergener, K.
1989-09-01
Treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or irradiation with ultraviolet light (uv254 nm) induces amplification of integrated as well as episomal sequences of bovine papillomavirus (BPV) type 1 DNA in BPV-1-transformed mouse C127 cells (i.e., ID13 cells). This is shown by filter in situ hybridization and Southern blot analysis of cellular DNA. Similarly, infection of ID13 cells with herpes simplex virus (HSV) type 1 which has been shown to be mutagenic for host cell DNA leads to amplification of BPV DNA sequences. In contrast to this induction of DNA amplification by initiators, treatment of ID13 cells with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA)more » does not result in increased synthesis of BPV DNA nor does TPA treatment modulate the initiator-induced DNA amplification. Similar to other cell systems infection with adeno-associated virus (AAV) type 2 inhibits BPV-1 DNA amplification irrespective of the inducing agent. In contrast to initiator-induced DNA amplification, treatment with carcinogen (MNNG) or tumor promoters or combination of MNNG and promoter of C127 cells prior to transformation by BPV-1 does not lead to an increase in the number of transformed foci. The induction of amplification of papillomavirus DNA by initiating agents possibly represents one of the mechanisms by which the observed synergism between papillomavirus infection and initiators in tumorigenesis might occur.« less
Chromosome specific repetitive DNA sequences
Moyzis, Robert K.; Meyne, Julianne
1991-01-01
A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
Honda, Takashi; Morimoto, Daichi; Sako, Yoshihiko; Yoshida, Takashi
2018-05-17
Previously, we showed that DNA replication and cell division in toxic cyanobacterium Microcystis aeruginosa are coordinated by transcriptional regulation of cell division gene ftsZ and that an unknown protein specifically bound upstream of ftsZ (BpFz; DNA-binding protein to an upstream site of ftsZ) during successful DNA replication and cell division. Here, we purified BpFz from M. aeruginosa strain NIES-298 using DNA-affinity chromatography and gel-slicing combined with gel electrophoresis mobility shift assay (EMSA). The N-terminal amino acid sequence of BpFz was identified as TNLESLTQ, which was identical to that of transcription repressor LexA from NIES-843. EMSA analysis using mutant probes showed that the sequence GTACTAN 3 GTGTTC was important in LexA binding. Comparison of the upstream regions of lexA in the genomes of closely related cyanobacteria suggested that the sequence TASTRNNNNTGTWC could be a putative LexA recognition sequence (LexA box). Searches for TASTRNNNNTGTWC as a transcriptional regulatory site (TRS) in the genome of M. aeruginosa NIES-843 showed that it was present in genes involved in cell division, photosynthesis, and extracellular polysaccharide biosynthesis. Considering that BpFz binds to the TRS of ftsZ during normal cell division, LexA may function as a transcriptional activator of genes related to cell reproduction in M. aeruginosa, including ftsZ. This may be an example of informality in the control of bacterial cell division.
Hussey, Richard S; Huang, Guozhong; Allen, Rex
2011-01-01
Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.
Jiwaji, Meesbah; Sandison, Mairi E.; Reboud, Julien; Stevenson, Ross; Daly, Rónán; Barkess, Gráinne; Faulds, Karen; Kolch, Walter; Graham, Duncan; Girolami, Mark A.; Cooper, Jonathan M.; Pitt, Andrew R.
2014-01-01
Introduction Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell. Methods In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA), single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis. Findings We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles. Conclusions The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein. PMID:24926959
Flow cytometry for enrichment and titration in massively parallel DNA sequencing
Sandberg, Julia; Ståhl, Patrik L.; Ahmadian, Afshin; Bjursell, Magnus K.; Lundeberg, Joakim
2009-01-01
Massively parallel DNA sequencing is revolutionizing genomics research throughout the life sciences. However, the reagent costs and labor requirements in current sequencing protocols are still substantial, although improvements are continuously being made. Here, we demonstrate an effective alternative to existing sample titration protocols for the Roche/454 system using Fluorescence Activated Cell Sorting (FACS) technology to determine the optimal DNA-to-bead ratio prior to large-scale sequencing. Our method, which eliminates the need for the costly pilot sequencing of samples during titration is capable of rapidly providing accurate DNA-to-bead ratios that are not biased by the quantification and sedimentation steps included in current protocols. Moreover, we demonstrate that FACS sorting can be readily used to highly enrich fractions of beads carrying template DNA, with near total elimination of empty beads and no downstream sacrifice of DNA sequencing quality. Automated enrichment by FACS is a simple approach to obtain pure samples for bead-based sequencing systems, and offers an efficient, low-cost alternative to current enrichment protocols. PMID:19304748
2005-12-01
dinucleotide and were more common in the genomes of bacteria compared to humans. Immunostimulatory sequences in bacterial ( bDNA ) that are structurally defined...stimulates B cells, natural killer (NK) cells, dendritic cells (DC), and macrophages, regardless of whether the DNA is in the form of genomic bDNA or
Satellite DNA-based artificial chromosomes for use in gene therapy.
Hadlaczky, G
2001-04-01
Satellite DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian species. These artificially generated accessory chromosomes are composed of predictable DNA sequences and they contain defined genetic information. Prototype human SATACs have been successfully constructed in different cell types from 'neutral' endogenous DNA sequences from the short arm of the human chromosome 15. SATACs have already passed a number of hurdles crucial to their further development as gene therapy vectors, including: large-scale purification; transfer of purified artificial chromosomes into different cells and embryos; generation of transgenic animals and germline transmission with purified SATACs; and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals.
Murray, V
1999-01-01
This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.
Kobayashi, Takehito; Yagi, Yusuke; Nakamura, Takahiro
2016-01-01
The pentatricopeptide repeat (PPR) motif is a sequence-specific RNA/DNA-binding module. Elucidation of the RNA/DNA recognition mechanism has enabled engineering of PPR motifs as new RNA/DNA manipulation tools in living cells, including for genome editing. However, the biochemical characteristics of PPR proteins remain unknown, mostly due to the instability and/or unfolding propensities of PPR proteins in heterologous expression systems such as bacteria and yeast. To overcome this issue, we constructed reporter systems using animal cultured cells. The cell-based system has highly attractive features for PPR engineering: robust eukaryotic gene expression; availability of various vectors, reagents, and antibodies; highly efficient DNA delivery ratio (>80 %); and rapid, high-throughput data production. In this chapter, we introduce an example of such reporter systems: a PPR-based sequence-specific translational activation system. The cell-based reporter system can be applied to characterize plant genes of interested and to PPR engineering.
DNA activates human immune cells through a CpG sequence-dependent manner
Bauer, M; Heeg, K; Wagner, H; Lipford, G B
1999-01-01
While bacterial DNA and cytosine–guanosine-dinucleotide-containing oligonucleotides (CpG ODN) are well described activators of murine immune cells, their effect on human cells is inconclusive. We investigated their properties on human peripheral blood mononuclear cells (PBMC) and subsets thereof, such as purified monocytes, T and B cells. Here we demonstrate that bacterial DNA and CpG ODN induce proliferation of B cells, while other subpopulations, such as monocytes and T cells, did not proliferate. PBMC mixed cell cultures, as well as purified monocytes, produced interleukin-6 (IL-6), IL-12 and tumour necrosis factor-α upon stimulation with bacterial DNA; however, only IL-6 and IL-12 secretion became induced upon CpG ODN stimulation. We conclude that monocytes, but not B or T cells, represent the prime source of cytokines. Monocytes up-regulated expression of antigen-presenting, major histocompatibility complex class I and class II molecules in response to CpG DNA. In addition, both monocytes and B cells up-regulate costimulatory CD86 and CD40 molecules. The activation by CpG ODN depended on sequence motifs containing the core dinucleotide CG since destruction of the motif strongly reduced immunostimulatory potential. PMID:10457226
Lin, Jin-Ching; Wang, Chen-Chi; Jiang, Rong-San; Wang, Wen-Yi; Liu, Shih-An
2015-01-01
Objectives The aim of this study was to investigate somatic mutations in the D-loop of mitochondrial DNA (mtDNA) and their impact on survival in oral squamous cell carcinoma patients. Materials and Methods Surgical specimen confirmed by pathological examination and corresponding non-cancerous tissues were collected from 120 oral squamous cell carcinoma patients. The sequence in the D-loop of mtDNA from non-cancerous tissues was compared with that from paired cancer samples and any sequence differences were recognized as somatic mutations. Results Somatic mutations in the D-loop of mtDNA were identified in 75 (62.5%) oral squamous cell carcinoma patients and most of them occurred in the poly-C tract. Although there were no significant differences in demographic and tumor-related features between participants with and without somatic mutation, the mutation group had a better survival rate (5 year disease-specific survival rate: 64.0% vs. 43.0%, P = 0.0266). Conclusion Somatic mutation in D-loop of mtDNA was associated with a better survival in oral squamous cell carcinoma patients. PMID:25906372
Physics behind the mechanical nucleosome positioning code
NASA Astrophysics Data System (ADS)
Zuiddam, Martijn; Everaers, Ralf; Schiessel, Helmut
2017-11-01
The positions along DNA molecules of nucleosomes, the most abundant DNA-protein complexes in cells, are influenced by the sequence-dependent DNA mechanics and geometry. This leads to the "nucleosome positioning code", a preference of nucleosomes for certain sequence motives. Here we introduce a simplified model of the nucleosome where a coarse-grained DNA molecule is frozen into an idealized superhelical shape. We calculate the exact sequence preferences of our nucleosome model and find it to reproduce qualitatively all the main features known to influence nucleosome positions. Moreover, using well-controlled approximations to this model allows us to come to a detailed understanding of the physics behind the sequence preferences of nucleosomes.
Aguilar, William; Paz, Manuel M; Vargas, Anayatzinc; Clement, Cristina C; Cheng, Shu-Yuan; Champeil, Elise
2018-04-20
Mitomycin C (MC), a potent antitumor drug, and decarbamoylmitomycin C (DMC), a derivative lacking the carbamoyl group, form highly cytotoxic DNA interstrand crosslinks. The major interstrand crosslink formed by DMC is the C1'' epimer of the major crosslink formed by MC. The molecular basis for the stereochemical configuration exhibited by DMC was investigated using biomimetic synthesis. The formation of DNA-DNA crosslinks by DMC is diastereospecific and diastereodivergent: Only the 1''S-diastereomer of the initially formed monoadduct can form crosslinks at GpC sequences, and only the 1''R-diastereomer of the monoadduct can form crosslinks at CpG sequences. We also show that CpG and GpC sequences react with divergent diastereoselectivity in the first alkylation step: 1"S stereochemistry is favored at GpC sequences and 1''R stereochemistry is favored at CpG sequences. Therefore, the first alkylation step results, at each sequence, in the selective formation of the diastereomer able to generate an interstrand DNA-DNA crosslink after the "second arm" alkylation. Examination of the known DNA adduct pattern obtained after treatment of cancer cell cultures with DMC indicates that the GpC sequence is the major target for the formation of DNA-DNA crosslinks in vivo by this drug. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of a Stable Cell Line, Overexpressing Human T-cell Immunoglobulin Mucin 1
Ebrahimi, Mina; Kazemi, Tohid; Ganjalikhani-hakemi, Mazdak; Majidi, Jafar; khanahmad, Hossein; Rahimmanesh, Ilnaz; Homayouni, Vida; Kohpayeh, Shirin
2015-01-01
Background Recent researches have demonstrated that human T-cell immunoglobulin mucin 1 (TIM-1) glycoprotein plays important roles in regulation of autoimmune and allergic diseases, as well as in tumor immunity and response to viral infections. Therefore, targeting TIM-1 could be a potential therapeutic approach against such diseases. Objectives In this study, we aimed to express TIM-1 protein on Human Embryonic kidney (HEK) 293T cell line in order to have an available source of the TIM-1 antigen. Materials and Methods The cDNA was synthesized after RNA extraction from peripheral blood mononuclear cells (PBMC) and TIM-1 cDNA was amplified by PCR with specific primers. The PCR product was cloned in pcDNA™3.1/Hygro (+) and transformed in Escherichia coli TOP 10 F’. After cloning, authenticity of DNA sequence was checked and expressed in HEK 293T cells. Finally, expression of TIM-1 was analyzed by flow cytometry and real-time PCR. Results The result of DNA sequencing demonstrated correctness of TIM-1 DNA sequence. The flow cytometry results indicated that TIM-1 was expressed in about 90% of transfected HEK 293T cells. The real-time PCR analysis showed TIM-1 mRNA expression increased 195-fold in transfected cells compared with un-transfected cells. Conclusions Findings of present study demonstrated the successful cloning and expression of TIM-1 on HEK 293T cells. These cells could be used as an immunogenic source for production of specific monoclonal antibodies, nanobodies and aptamers against human TIM-1. PMID:28959306
Widespread recombination in published animal mtDNA sequences.
Tsaousis, A D; Martin, D P; Ladoukakis, E D; Posada, D; Zouros, E
2005-04-01
Mitochondrial DNA (mtDNA) recombination has been observed in several animal species, but there are doubts as to whether it is common or only occurs under special circumstances. Animal mtDNA sequences retrieved from public databases were unambiguously aligned and rigorously tested for evidence of recombination. At least 30 recombination events were detected among 186 alignments examined. Recombinant sequences were found in invertebrates and vertebrates, including primates. It appears that mtDNA recombination may occur regularly in the animal cell but rarely produces new haplotypes because of homoplasmy. Common animal mtDNA recombination would necessitate a reexamination of phylogenetic and biohistorical inference based on the assumption of clonal mtDNA transmission. Recombination may also have an important role in producing and purging mtDNA mutations and thus in mtDNA-based diseases and senescence.
Rizk, Francine; Laverdure, Sylvain; d'Alençon, Emmanuelle; Bossin, Hervé; Dupressoir, Thierry
2018-01-01
The Lepidopteran ambidensovirus 1 isolated from Junonia coenia (hereafter JcDV) is an invertebrate parvovirus considered as a viral transduction vector as well as a potential tool for the biological control of insect pests. Previous works showed that JcDV-based circular plasmids experimentally integrate into insect cells genomic DNA. In order to approach the natural conditions of infection and possible integration, we generated linear JcDV- gfp based molecules which were transfected into non permissive Spodoptera frugiperda ( Sf9 ) cultured cells. Cells were monitored for the expression of green fluorescent protein (GFP) and DNA was analyzed for integration of transduced viral sequences. Non-structural protein modulation of the VP-gene cassette promoter activity was additionally assayed. We show that linear JcDV-derived molecules are capable of long term genomic integration and sustained transgene expression in Sf9 cells. As expected, only the deletion of both inverted terminal repeats (ITR) or the polyadenylation signals of NS and VP genes dramatically impairs the global transduction/expression efficiency. However, all the integrated viral sequences we characterized appear "scrambled" whatever the viral content of the transfected vector. Despite a strong GFP expression, we were unable to recover any full sequence of the original constructs and found rearranged viral and non-viral sequences as well. Cellular flanking sequences were identified as non-coding ones. On the other hand, the kinetics of GFP expression over time led us to investigate the apparent down-regulation by non-structural proteins of the VP-gene cassette promoter. Altogether, our results show that JcDV-derived sequences included in linear DNA molecules are able to drive efficiently the integration and expression of a foreign gene into the genome of insect cells, whatever their composition, provided that at least one ITR is present. However, the transfected sequences were extensively rearranged with cellular DNA during or after random integration in the host cell genome. Lastly, the non-structural proteins seem to participate in the regulation of p9 promoter activity rather than to the integration of viral sequences.
Recognition of Local DNA Structures by p53 Protein
Brázda, Václav; Coufal, Jan
2017-01-01
p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells. PMID:28208646
Fisher-Adams, G; Wong, K K; Podsakoff, G; Forman, S J; Chatterjee, S
1996-07-15
Gene transfer vectors based on adeno-associated virus (AAV) appear promising because of their high transduction frequencies regardless of cell cycle status and ability to integrate into chromosomal DNA. We tested AAV-mediated gene transfer into a panel of human bone marrow or umbilical cord-derived CD34+ hematopoietic progenitor cells, using vectors encoding several transgenes under the control of viral and cellular promoters. Gene transfer was evaluated by (1) chromosomal integration of vector sequences and (2) analysis of transgene expression. Southern hybridization and fluorescence in situ hybridization analysis of transduced CD34 genomic DNA showed the presence of integrated vector sequences in chromosomal DNA in a portion of transduced cells and showed that integrated vector sequences were replicated along with cellular DNA during mitosis. Transgene expression in transduced CD34 cells in suspension cultures and in myeloid colonies differentiating in vitro from transduced CD34 cells approximated that predicted by the multiplicity of transduction. This was true in CD34 cells from different donors, regardless of the transgene or selective pressure. Comparisons of CD34 cell transduction either before or after cytokine stimulation showed similar gene transfer frequencies. Our findings suggest that AAV transduction of CD34+ hematopoietic progenitor cells is efficient, can lead to stable integration in a population of transduced cells, and may therefore provide the basis for safe and efficient ex vivo gene therapy of the hematopoietic system.
Tokuhiro, Keizo; Miyagawa, Yasushi; Yamada, Shuichi; Hirose, Mika; Ohta, Hiroshi; Nishimune, Yoshitake; Tanaka, Hiromitsu
2007-03-01
Haspin is a unique protein kinase expressed predominantly in haploid male germ cells. The genomic structure of haspin (Gsg2) has revealed it to be intronless, and the entire transcription unit is in an intron of the integrin alphaE (Itgae) gene. Transcription occurs from a bidirectional promoter that also generates an alternatively spliced integrin alphaE-derived mRNA (Aed). In mice, the testis-specific alternative splicing of Aed is expressed bidirectionally downstream from the Gsg2 transcription initiation site, and a segment consisting of 26 bp transcribes both genomic DNA strands between Gsg2 and the Aed transcription initiation sites. To investigate the mechanisms for this unique gene regulation, we cloned and characterized the Gsg2 promoter region. The 193-bp genomic fragment from the 5' end of the Gsg2 and Aed genes, fused with EGFP and DsRed genes, drove the expression of both proteins in haploid germ cells of transgenic mice. This promoter element contained only a GC-rich sequence, and not the previously reported DNA sequences known to bind various transcription factors--with the exception of E2F1, TCFAP2A1 (AP2), and SP1. Here, we show that the 193-bp DNA sequence is sufficient for the specific, bidirectional, and synchronous expression in germ cells in the testis. We also demonstrate the existence of germ cell nuclear factors specifically bound to the promoter sequence. This activity may be regulated by binding to the promoter sequence with germ cell-specific nuclear complex(es) without regulation via DNA methylation.
Koch, P J; Goldschmidt, M D; Walsh, M J; Zimbelmann, R; Schmelz, M; Franke, W W
1991-05-01
Desmosomes are cell-type-specific intercellular junctions found in epithelium, myocardium and certain other tissues. They consist of assemblies of molecules involved in the adhesion of specific cell types and in the anchorage of cell-type-specific cytoskeletal elements, the intermediate-size filaments, to the plasma membrane. To explore the individual desmosomal components and their functions we have isolated DNA clones encoding the desmosomal glycoprotein, desmocollin, using antibodies and a cDNA expression library from bovine muzzle epithelium. The cDNA-deduced amino-acid sequence of desmocollin (presently we cannot decide to which of the two desmocollins, DC I or DC II, this clone relates) defines a polypeptide with a calculated molecular weight of 85,000, with a single candidate sequence of 24 amino acids sufficiently long for a transmembrane arrangement, and an extracellular aminoterminal portion of 561 amino acid residues, compared to a cytoplasmic part of only 176 amino acids. Amino acid sequence comparisons have revealed that desmocollin is highly homologous to members of the cadherin family of cell adhesion molecules, including the previously sequenced desmoglein, another desmosome-specific cadherin. Using riboprobes derived from cDNAs for Northern-blot analyses, we have identified an mRNA of approximately 6 kb in stratified epithelia such as muzzle epithelium and tongue mucosa but not in two epithelial cell culture lines containing desmosomes and desmoplakins. The difference may indicate drastic differences in mRNA concentration or the existence of cell-type-specific desmocollin subforms. The molecular topology of desmocollin(s) is discussed in relation to possible functions of the individual molecular domains.
Kang, Shuli; Li, Qingjiao; Chen, Quan; Zhou, Yonggang; Park, Stacy; Lee, Gina; Grimes, Brandon; Krysan, Kostyantyn; Yu, Min; Wang, Wei; Alber, Frank; Sun, Fengzhu; Dubinett, Steven M; Li, Wenyuan; Zhou, Xianghong Jasmine
2017-03-24
We propose a probabilistic method, CancerLocator, which exploits the diagnostic potential of cell-free DNA by determining not only the presence but also the location of tumors. CancerLocator simultaneously infers the proportions and the tissue-of-origin of tumor-derived cell-free DNA in a blood sample using genome-wide DNA methylation data. CancerLocator outperforms two established multi-class classification methods on simulations and real data, even with the low proportion of tumor-derived DNA in the cell-free DNA scenarios. CancerLocator also achieves promising results on patient plasma samples with low DNA methylation sequencing coverage.
Page, David B; Yuan, Jianda; Redmond, David; Wen, Y Hanna; Durack, Jeremy C; Emerson, Ryan; Solomon, Stephen; Dong, Zhiwan; Wong, Phillip; Comstock, Christopher; Diab, Adi; Sung, Janice; Maybody, Majid; Morris, Elizabeth; Brogi, Edi; Morrow, Monica; Sacchini, Virgilio; Elemento, Olivier; Robins, Harlan; Patil, Sujata; Allison, James P; Wolchok, Jedd D; Hudis, Clifford; Norton, Larry; McArthur, Heather L
2016-10-01
In early-stage breast cancer, the degree of tumor-infiltrating lymphocytes (TIL) predicts response to chemotherapy and overall survival. Combination immunotherapy with immune checkpoint antibody plus tumor cryoablation can induce lymphocytic infiltrates and improve survival in mice. We used T-cell receptor (TCR) DNA sequencing to evaluate both the effect of cryoimmunotherapy in humans and the feasibility of TCR sequencing in early-stage breast cancer. In a pilot clinical trial, 18 women with early-stage breast cancer were treated preoperatively with cryoablation, single-dose anti-CTLA-4 (ipilimumab), or cryoablation + ipilimumab. TCRs within serially collected peripheral blood and tumor tissue were sequenced. In baseline tumor tissues, T-cell density as measured by TCR sequencing correlated with TIL scores obtained by hematoxylin and eosin (H&E) staining. However, tumors with little or no lymphocytes by H&E contained up to 3.6 × 10 6 TCR DNA sequences, highlighting the sensitivity of the ImmunoSEQ platform. In this dataset, ipilimumab increased intratumoral T-cell density over time, whereas cryoablation ± ipilimumab diversified and remodeled the intratumoral T-cell clonal repertoire. Compared with monotherapy, cryoablation plus ipilimumab was associated with numerically greater numbers of peripheral blood and intratumoral T-cell clones expanding robustly following therapy. In conclusion, TCR sequencing correlates with H&E lymphocyte scoring and provides additional information on clonal diversity. These findings support further study of the use of TCR sequencing as a biomarker for T-cell responses to therapy and for the study of cryoimmunotherapy in early-stage breast cancer. Cancer Immunol Res; 4(10); 835-44. ©2016 AACR. ©2016 American Association for Cancer Research.
Eberwine, James; Bartfai, Tamas
2011-01-01
We report on an ‘unbiased’ molecular characterization of individual, adult neurons, active in a central, anterior hypothalamic neuronal circuit, by establishing cDNA libraries from each individual, electrophysiologically identified warm sensitive neuron (WSN). The cDNA libraries were analyzed by Affymetrix microarray. The presence and frequency of cDNAs was confirmed and enhanced with Illumina sequencing of each single cell cDNA library. cDNAs encoding the GABA biosynthetic enzyme. GAD1 and of adrenomedullin, galanin, prodynorphin, somatostatin, and tachykinin were found in the WSNs. The functional cellular and in vivo studies on dozens of the more than 500 neurotransmitter -, hormone- receptors and ion channels, whose cDNA was identified and sequence confirmed, suggest little or no discrepancy between the transcriptional and functional data in WSNs; whenever agonists were available for a receptor whose cDNA was identified, a functional response was found.. Sequencing single neuron libraries permitted identification of rarely expressed receptors like the insulin receptor, adiponectin receptor2 and of receptor heterodimers; information that is lost when pooling cells leads to dilution of signals and mixing signals. Despite the common electrophysiological phenotype and uniform GAD1 expression, WSN- transcriptomes show heterogenity, suggesting strong epigenetic influence on the transcriptome. Our study suggests that it is well-worth interrogating the cDNA libraries of single neurons by sequencing and chipping. PMID:20970451
Nafissi, Nafiseh; Slavcev, Roderick
2012-12-06
While safer than their viral counterparts, conventional non-viral gene delivery DNA vectors offer a limited safety profile. They often result in the delivery of unwanted prokaryotic sequences, antibiotic resistance genes, and the bacterial origins of replication to the target, which may lead to the stimulation of unwanted immunological responses due to their chimeric DNA composition. Such vectors may also impart the potential for chromosomal integration, thus potentiating oncogenesis. We sought to engineer an in vivo system for the quick and simple production of safer DNA vector alternatives that were devoid of non-transgene bacterial sequences and would lethally disrupt the host chromosome in the event of an unwanted vector integration event. We constructed a parent eukaryotic expression vector possessing a specialized manufactured multi-target site called "Super Sequence", and engineered E. coli cells (R-cell) that conditionally produce phage-derived recombinase Tel (PY54), TelN (N15), or Cre (P1). Passage of the parent plasmid vector through R-cells under optimized conditions, resulted in rapid, efficient, and one step in vivo generation of mini lcc--linear covalently closed (Tel/TelN-cell), or mini ccc--circular covalently closed (Cre-cell), DNA constructs, separated from the backbone plasmid DNA. Site-specific integration of lcc plasmids into the host chromosome resulted in chromosomal disruption and 10(5) fold lower viability than that seen with the ccc counterpart. We offer a high efficiency mini DNA vector production system that confers simple, rapid and scalable in vivo production of mini lcc DNA vectors that possess all the benefits of "minicircle" DNA vectors and virtually eliminate the potential for undesirable vector integration events.
Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P
1988-02-01
Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators.
Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P
1988-01-01
Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators. Images PMID:3257578
Hamula, Camille L A; Peng, Hanyong; Wang, Zhixin; Tyrrell, Gregory J; Li, Xing-Fang; Le, X Chris
2016-03-15
Streptococcus pyogenes is a clinically important pathogen consisting of various serotypes determined by different M proteins expressed on the cell surface. The M type is therefore a useful marker to monitor the spread of invasive S. pyogenes in a population. Serotyping and nucleic acid amplification/sequencing methods for the identification of M types are laborious, inconsistent, and usually confined to reference laboratories. The primary objective of this work is to develop a technique that enables generation of aptamers binding to specific M-types of S. pyogenes. We describe here an in vitro technique that directly used live bacterial cells and the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) strategy. Live S. pyogenes cells were incubated with DNA libraries consisting of 40-nucleotides randomized sequences. Those sequences that bound to the cells were separated, amplified using polymerase chain reaction (PCR), purified using gel electrophoresis, and served as the input DNA pool for the next round of SELEX selection. A specially designed forward primer containing extended polyA20/5Sp9 facilitated gel electrophoresis purification of ssDNA after PCR amplification. A counter-selection step using non-target cells was introduced to improve selectivity. DNA libraries of different starting sequence diversity (10(16) and 10(14)) were compared. Aptamer pools from each round of selection were tested for their binding to the target and non-target cells using flow cytometry. Selected aptamer pools were then cloned and sequenced. Individual aptamer sequences were screened on the basis of their binding to the 10 M-types that were used as targets. Aptamer pools obtained from SELEX rounds 5-8 showed high affinity to the target S. pyogenes cells. Tests against non-target Streptococcus bovis, Streptococcus pneumoniae, and Enterococcus species demonstrated selectivity of these aptamers for binding to S. pyogenes. Several aptamer sequences were found to bind preferentially to the M11 M-type of S. pyogenes. Estimated binding dissociation constants (Kd) were in the low nanomolar range for the M11 specific sequences; for example, sequence E-CA20 had a Kd of 7±1 nM. These affinities are comparable to those of a monoclonal antibody. The improved bacterial cell-SELEX technique is successful in generating aptamers selective for S. pyogenes and some of its M-types. These aptamers are potentially useful for detecting S. pyogenes, achieving binding profiles of the various M-types, and developing new M-typing technologies for non-specialized laboratories or point-of-care testing. Copyright © 2015 Elsevier Inc. All rights reserved.
Biochip-Based Detection of KRAS Mutation in Non-Small Cell Lung Cancer
Kriegshäuser, Gernot; Fabjani, Gerhild; Ziegler, Barbara; Zöchbauer-Müller, Sabine; End, Adelheid; Zeillinger, Robert
2011-01-01
This study is aimed at evaluating the potential of a biochip assay to sensitively detect KRAS mutation in DNA from non-small cell lung cancer (NSCLC) tissue samples. The assay covers 10 mutations in codons 12 and 13 of the KRAS gene, and is based on mutant-enriched PCR followed by reverse-hybridization of biotinylated amplification products to an array of sequence-specific probes immobilized on the tip of a rectangular plastic stick (biochip). Biochip hybridization identified 17 (21%) samples to carry a KRAS mutation of which 16 (33%) were adenocarcinomas and 1 (3%) was a squamous cell carcinoma. All mutations were confirmed by DNA sequencing. Using 10 ng of starting DNA, the biochip assay demonstrated a detection limit of 1% mutant sequence in a background of wild-type DNA. Our results suggest that the biochip assay is a sensitive alternative to protocols currently in use for KRAS mutation testing on limited quantity samples. PMID:22272089
The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome.
González-Prieto, Coral; Gabriel, Richard; Dehio, Christoph; Schmidt, Manfred; Llosa, Matxalen
2017-06-15
Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery. IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site-specific integrase activity in bacteria, as an integrase in human cells. Although it is not efficient as a site-specific integrase, we found that TrwC is active in human cells and promotes random integration of the transferred DNA in the human genome, probably acting as a DNA chaperone until it is integrated by host mechanisms. TrwC-DNA complexes can be delivered to human cells through a type IV secretion system involved in pathogenesis. Thus, TrwC could be used in vivo to transfer the DNA of interest into the appropriate cell and promote its integration. If used in combination with a site-specific nuclease, it could lead to site-specific integration of the incoming DNA by homologous recombination. Copyright © 2017 American Society for Microbiology.
The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome
González-Prieto, Coral; Gabriel, Richard; Dehio, Christoph; Schmidt, Manfred
2017-01-01
ABSTRACT Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery. IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site-specific integrase activity in bacteria, as an integrase in human cells. Although it is not efficient as a site-specific integrase, we found that TrwC is active in human cells and promotes random integration of the transferred DNA in the human genome, probably acting as a DNA chaperone until it is integrated by host mechanisms. TrwC-DNA complexes can be delivered to human cells through a type IV secretion system involved in pathogenesis. Thus, TrwC could be used in vivo to transfer the DNA of interest into the appropriate cell and promote its integration. If used in combination with a site-specific nuclease, it could lead to site-specific integration of the incoming DNA by homologous recombination. PMID:28411218
The bglA Gene of Aspergillus kawachii Encodes Both Extracellular and Cell Wall-Bound β-Glucosidases
Iwashita, Kazuhiro; Nagahara, Tatsuya; Kimura, Hitoshi; Takano, Makoto; Shimoi, Hitoshi; Ito, Kiyoshi
1999-01-01
We cloned the genomic DNA and cDNA of bglA, which encodes β-glucosidase in Aspergillus kawachii, based on a partial amino acid sequence of purified cell wall-bound β-glucosidase CB-1. The nucleotide sequence of the cloned bglA gene revealed a 2,933-bp open reading frame with six introns that encodes an 860-amino-acid protein. Based on the deduced amino acid sequence, we concluded that the bglA gene encodes cell wall-bound β-glucosidase CB-1. The amino acid sequence exhibited high levels of homology with the amino acid sequences of fungal β-glucosidases classified in subfamily B. We expressed the bglA cDNA in Saccharomyces cerevisiae and detected the recombinant β-glucosidase in the periplasm fraction of the recombinant yeast. A. kawachii can produce two extracellular β-glucosidases (EX-1 and EX-2) in addition to the cell wall-bound β-glucosidase. A. kawachii in which the bglA gene was disrupted produced none of the three β-glucosidases, as determined by enzyme assays and a Western blot analysis. Thus, we concluded that the bglA gene encodes both extracellular and cell wall-bound β-glucosidases in A. kawachii. PMID:10584016
Characterization of an In Vivo Z-DNA Detection Probe Based on a Cell Nucleus Accumulating Intrabody.
Gulis, Galina; Silva, Izabel Cristina Rodrigues; Sousa, Herdson Renney; Sousa, Isabel Garcia; Bezerra, Maryani Andressa Gomes; Quilici, Luana Salgado; Maranhao, Andrea Queiroz; Brigido, Marcelo Macedo
2016-09-01
Left-handed Z-DNA is a physiologically unstable DNA conformation, and its existence in vivo can be attributed to localized torsional distress. Despite evidence for the existence of Z-DNA in vivo, its precise role in the control of gene expression is not fully understood. Here, an in vivo probe based on an anti-Z-DNA intrabody is proposed for native Z-DNA detection. The probe was used for chromatin immunoprecipitation of potential Z-DNA-forming sequences in the human genome. One of the isolated putative Z-DNA-forming sequences was cloned upstream of a reporter gene expression cassette under control of the CMV promoter. The reporter gene encoded an antibody fragment fused to GFP. Transient co-transfection of this vector along with the Z-probe coding vector improved reporter gene expression. This improvement was demonstrated by measuring reporter gene mRNA and protein levels and the amount of fluorescence in co-transfected CHO-K1 cells. These results suggest that the presence of the anti-Z-DNA intrabody can interfere with a Z-DNA-containing reporter gene expression. Therefore, this in vivo probe for the detection of Z-DNA could be used for global correlation of Z-DNA-forming sequences and gene expression regulation.
Evers, R; Grummt, I
1995-01-01
Both the DNA elements and the nuclear factors that direct termination of ribosomal gene transcription exhibit species-specific differences. Even between mammals--e.g., human and mouse--the termination signals are not identical and the respective transcription termination factors (TTFs) which bind to the terminator sequence are not fully interchangeable. To elucidate the molecular basis for this species-specificity, we have cloned TTF-I from human and mouse cells and compared their structural and functional properties. Recombinant TTF-I exhibits species-specific DNA binding and terminates transcription both in cell-free transcription assays and in transfection experiments. Chimeric constructs of mouse TTF-I and human TTF-I reveal that the major determinant for species-specific DNA binding resides within the C terminus of TTF-I. Replacing 31 C-terminal amino acids of mouse TTF-I with the homologous human sequences relaxes the DNA-binding specificity and, as a consequence, allows the chimeric factor to bind the human terminator sequence and to specifically stop rDNA transcription. Images Fig. 2 Fig. 3 Fig. 4 PMID:7597036
Rasmussen, Thomas A; McMahon, James; Chang, J Judy; Symons, Jori; Roche, Michael; Dantanarayana, Ashanti; Okoye, Afam; Hiener, Bonnie; Palmer, Sarah; Lee, Wen Shi; Kent, Stephen J; Van Der Weyden, Carrie; Prince, H Miles; Cameron, Paul U; Lewin, Sharon R
2017-08-24
To study the effects of alemtuzumab on HIV persistence in an HIV-infected individual on antiretroviral therapy (ART) with Sezary syndrome, a rare malignancy of CD4 T cells. Case report. Blood was collected 30 and 18 months prior to presentation with Sezary syndrome, at the time of presentation and during alemtuzumab. T-cell subsets in malignant (CD7-CD26-TCR-VBeta2+) and nonmalignant cells were quantified by flow cytometry. HIV-DNA in total CD4 T cells, in sorted malignant and nonmalignant CD4 T cells, was quantified by PCR and clonal expansion of HIV-DNA assessed by full-length next-generation sequencing. HIV-hepatitis B virus coinfection was diagnosed and antiretroviral therapy initiated 4 years prior to presentation with Sezary syndrome and primary cutaneous anaplastic large cell lymphoma. The patient received alemtuzumab 10 mg three times per week for 4 weeks but died 6 weeks post alemtuzumab. HIV-DNA was detected in nonmalignant but not in malignant CD4 T cells, consistent with expansion of a noninfected CD4 T-cell clone. Full-length HIV-DNA sequencing demonstrated multiple defective viruses but no identical or expanded sequences. Alemtuzumab extensively depleted T cells, including more than 1 log reduction in total T cells and more than 3 log reduction in CD4 T cells. Finally, alemtuzumab decreased HIV-DNA in CD4 T cells by 57% but HIV-DNA remained detectable at low levels even after depletion of nearly all CD4 T cells. Alemtuzumab extensively depleted multiple T-cell subsets and decreased the frequency of but did not eliminate HIV-infected CD4 T cells. Studying the effects on HIV persistence following immune recovery in HIV-infected individuals who require alemtuzumab for malignancy or in animal studies may provide further insights into novel cure strategies.
NASA Astrophysics Data System (ADS)
Goubin, Gerard; Goldman, Debra S.; Luce, Judith; Neiman, Paul E.; Cooper, Geoffrey M.
1983-03-01
A transforming gene detected by transfection of chicken B-cell lymphoma DNA has been isolated by molecular cloning. It is homologous to a conserved family of sequences present in normal chicken and human DNAs but is not related to transforming genes of acutely transforming retroviruses. The nucleotide sequence of the cloned transforming gene suggests that it encodes a protein that is partially homologous to the amino terminus of transferrin and related proteins although only about one tenth the size of transferrin.
Tang, Danming; Lam, Cynthia; Louie, Salina; Hoi, Kam Hon; Shaw, David; Yim, Mandy; Snedecor, Brad; Misaghi, Shahram
2018-01-01
In the process of generating stable monoclonal antibody (mAb) producing cell lines, reagents such as methotrexate (MTX) or methionine sulfoximine (MSX) are often used. However, using such selection reagent(s) increases the possibility of having higher occurrence of sequence variants in the expressed antibody molecules due to the effects of MTX or MSX on de novo nucleotide synthesis. Since MSX inhibits glutamine synthase (GS) and results in both amino acid and nucleoside starvation, it is questioned whether supplementing nucleosides into the media could lower sequence variant levels without affecting titer. The results show that the supplementation of nucleosides to the media during MSX selection decreased genomic DNA mutagenesis rates in the selected cells, probably by reducing nucleotide mis-incorporation into the DNA. Furthermore, addition of nucleosides enhance clone recovery post selection and does not affect antibody expression. It is further observed that nucleoside supplements lowered DNA mutagenesis rates only at the initial stage of the clone selection and do not have any effect on DNA mutagenesis rates after stable cell lines are established. Therefore, the data suggests that addition of nucleosides during early stages of MSX selection can lower sequence variant levels without affecting titer or clone stability in antibody expression. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Goldfarb, Ilona Telefus; Adeli, Sharareh; Berk, Tucker; Phillippe, Mark
2018-05-01
While there is evidence for a relationship between cell-free fetal DNA (cffDNA) and parturition, questions remain regarding whether cffDNA could trigger a pro-inflammatory response on the pathway to parturition. We hypothesized that placental and/or fetal DNA stimulates toll-like receptor 9 (TLR9) leading to secretion of pro-inflammatory cytokines by macrophage cells. Four in vitro DNA stimulation studies were performed using RAW 264.7 mouse peritoneal macrophage cells incubated in media containing the following DNA particles: an oligodeoxynucleotide (ODN2395), intact genomic DNA (from mouse placentas, fetuses and adult liver), mouse DNA complexed with DOTAP (a cationic liposome forming compound), and telomere-depleted mouse DNA. Interleukin 6 (IL6) secretion was measured in the media by enzyme-linked immunosorbent assay; and the cell pellet was homogenized for protein content (picograms IL6/mg protein). Robust IL6 secretion was observed in response to ODN2395 (a CpG-rich TLR9 agonist), mouse DNA-DOTAP complexes, and telomere-depleted mouse DNA in concentrations of 5 to 15 μg/mL. In contrast, ODN A151 (containing telomere sequence motifs), intact genomic mouse DNA, and restriction enzyme-digested DNA had no effect on IL6 secretion. The IL6 response was significantly inhibited by chloroquine (10 μg/mL), thereby confirming the important role for TLR9 in the response by macrophage cells. DNA derived from mouse placentas and fetuses, and depleted of telomeric sequences, stimulates a robust pro-inflammatory response by macrophage cells, thereby supporting the hypothesis that cffDNA is able to stimulate an innate immune response that could trigger the onset of parturition. These findings are of clinical importance, as we search for effective treatment/prevention of preterm parturition.
Fluorescent probes for nucleic Acid visualization in fixed and live cells.
Boutorine, Alexandre S; Novopashina, Darya S; Krasheninina, Olga A; Nozeret, Karine; Venyaminova, Alya G
2013-12-11
This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.
Kieff, Elliott; Levine, Judith
1974-01-01
At least 90% of the sequences of purified, in vitro labeled, DNA from Epstein-Barr virus (prepared from HR-1, Burkitt's lymphoblastoid cells) are homologous to the DNA of the herpes virus contained in cell lines derived from patients with infectious mononucleosis. The thermal stability of the homologous and heterologous hybrid DNA molecules could not be differentiated, indicating at least 97% matching of base pairs between DNA of Epstein-Barr virus and the herpes viral DNA contained in the lymphoblasts from patients with infectious mononucleosis. PMID:4360941
Greenberg, Jay R.; Perry, Robert P.
1971-01-01
The relationship of the DNA sequences from which polyribosomal messenger RNA (mRNA) and heterogeneous nuclear RNA (NRNA) of mouse L cells are transcribed was investigated by means of hybridization kinetics and thermal denaturation of the hybrids. Hybridization was performed in formamide solutions at DNA excess. Under these conditions most of the hybridizing mRNA and NRNA react at values of Dot (DNA concentration multiplied by time) expected for RNA transcribed from the nonrepeated or rarely repeated fraction of the genome. However, a fraction of both mRNA and NRNA hybridize at values of Dot about 10,000 times lower, and therefore must be transcribed from highly redundant DNA sequences. The fraction of NRNA hybridizing to highly repeated sequences is about 1.7 times greater than the corresponding fraction of mRNA. The hybrids formed by the rapidly reacting fractions of both NRNA and mRNA melt over a narrow temperature range with a midpoint about 11°C below that of native L cell DNA. This indicates that these hybrids consist of partially complementary sequences with approximately 11% mismatching of bases. Hybrids formed by the slowly reacting fraction of NRNA melt within 4°–6°C of native DNA, indicating very little, if any, mismatching of bases. Hybrids of the slowly reacting components of mRNA, formed under conditions of sufficiently low RNA input, have a high thermal stability, similar to that observed for hybrids of the slowly reacting NRNA component. However, when higher inputs of mRNA are used, hybrids are formed which have a strikingly lower thermal stability. This observation can be explained by assuming that there is sufficient similarity among the relatively rare DNA sequences coding for mRNA so that under hybridization conditions, in which these DNA sequences are not truly in excess, reversible hybrids exhibiting a considerable amount of mispairing are formed. The fact that a comparable phenomenon has not been observed for NRNA may mean that there is less similarity among the relatively rare DNA sequences coding for NRNA than there is among the rare sequences coding for mRNA. PMID:4999767
SivaRaman, L; Subramanian, S; Thimmappaya, B
1986-01-01
Utilizing the gel electrophoresis/DNA binding assay, a factor specific for the upstream transcriptional control sequence of the EIA-inducible adenovirus EIIA-early promoter has been detected in HeLa cell nuclear extract. Analysis of linker-scanning mutants of the promoter by DNA binding assays and methylation-interference experiments show that the factor binds to the 17-nucleotide sequence 5' TGGAGATGACGTAGTTT 3' located between positions -66 and -82 upstream from the cap site. This sequence has been shown to be essential for transcription of this promoter. The EIIA-early-promoter specific factor was found to be present at comparable levels in uninfected HeLa cells and in cells infected with either wild-type adenovirus or the EIA-deletion mutant dl312 under conditions in which the EIA proteins are induced to high levels [7 or 20 hr after infection in the presence of arabinonucleoside (cytosine arabinoside)]. Based on the quantitation in DNA binding assays, it appears that the mechanism of EIA-activated transcription of the EIIA-early promoter does not involve a net change in the amounts of this factor. Images PMID:2942943
Siede, W; Friedberg, E C
1992-03-01
In the yeast Saccharomyces cerevisiae the RAD2 gene is absolutely required for damage-specific incision of DNA during nucleotide excision repair and is inducible by DNA-damaging agents. In the present study we correlated sensitivity to killing by DNA-damaging agents with the deletion of previously defined specific promoter elements. Deletion of the element DRE2 increased the UV sensitivity of cells in both the G1/early S and S/G2 phases of the cell cycle as well as in stationary phase. On the other hand, increased UV sensitivity associated with deletion of the sequence-related element DRE1 was restricted to cells irradiated in G1/S. Specific binding of protein(s) to the promoter elements DRE1 and DRE2 was observed under non-inducing conditions using gel retardation assays. Exposure of cells to DNA-damaging agents resulted in increased protein binding that was dependent on de novo protein synthesis.
Hall, Amanda C.; Ostrowski, Lauren A.; Mekhail, Karim
2017-01-01
ABSTRACT Cells have evolved intricate mechanisms to maintain genome stability despite allowing mutational changes to drive evolutionary adaptation. Repetitive DNA sequences, which represent the bulk of most genomes, are a major threat to genome stability often driving chromosome rearrangements and disease. The major source of repetitive DNA sequences and thus the most vulnerable constituents of the genome are the rDNA (rDNA) repeats, telomeres, and transposable elements. Maintaining the stability of these loci is critical to overall cellular fitness and lifespan. Therefore, cells have evolved mechanisms to regulate rDNA copy number, telomere length and transposon activity, as well as DNA repair at these loci. In addition, non-canonical structure-forming DNA motifs can also modulate the function of these repetitive DNA loci by impacting their transcription, replication, and stability. Here, we discuss key mechanisms that maintain rDNA repeats, telomeres, and transposons in yeast and human before highlighting emerging roles for non-canonical DNA structures at these repetitive loci. PMID:28406751
Tang, Aifa; Huang, Yi; Li, Zesong; Wan, Shengqing; Mou, Lisha; Yin, Guangliang; Li, Ning; Xie, Jun; Xia, Yudong; Li, Xianxin; Luo, Liya; Zhang, Junwen; Chen, Shen; Wu, Song; Sun, Jihua; Sun, Xiaojuan; Jiang, Zhimao; Chen, Jing; Li, Yingrui; Wang, Jian; Wang, Jun; Cai, Zhiming; Gui, Yaoting
2016-01-01
Differential methylation of the homologous chromosomes, a well-known mechanism leading to genomic imprinting and X-chromosome inactivation, is widely reported at the non-imprinted regions on autosomes. To evaluate the transgenerational DNA methylation patterns in human, we analyzed the DNA methylomes of somatic and germ cells in a four-generation family. We found that allelic asymmetry of DNA methylation was pervasive at the non-imprinted loci and was likely regulated by cis-acting genetic variants. We also observed that the allelic methylation patterns for the vast majority of the cis-regulated loci were shared between the somatic and germ cells from the same individual. These results demonstrated the interaction between genetic and epigenetic variations and suggested the possibility of widespread sequence-dependent transmission of DNA methylation during spermatogenesis. PMID:26758766
Herrera, Alex F.; Kim, Haesook T.; Kong, Katherine A.; Faham, Malek; Sun, Heather; Sohani, Aliyah R.; Alyea, Edwin P.; Carlton, Victoria E.; Chen, Yi-Bin; Cutler, Corey S.; Ho, Vincent T.; Koreth, John; Kotwaliwale, Chitra; Nikiforow, Sarah; Ritz, Jerome; Rodig, Scott J.; Soiffer, Robert J.; Antin, Joseph H.; Armand, Philippe
2016-01-01
Summary Next-generation sequencing (NGS)-based circulating tumour DNA (ctDNA) detection is a promising monitoring tool for lymphoid malignancies. We evaluated whether the presence of ctDNA was associated with outcome after allogeneic haematopoietic stem cell transplantation (HSCT) in lymphoma patients. We studied 88 patients drawn from a phase 3 clinical trial of reduced-intensity conditioning HSCT in lymphoma. Conventional restaging and collection of peripheral blood samples occurred at pre-specified time points before and after HSCT and were assayed for ctDNA by sequencing of the immunoglobulin or T-cell receptor genes. Tumour clonotypes were identified in 87% of patients with adequate tumour samples. Sixteen of 19 (84%) patients with disease progression after HSCT had detectable ctDNA prior to progression at a median of 3.7 months prior to relapse/progression. Patients with detectable ctDNA 3 months after HSCT had inferior progression-free survival (PFS) (2-year PFS 58% versus 84% in ctDNA-negative patients, p=0.033). In multivariate models, detectable ctDNA was associated with increased risk of progression/death (Hazard ratio 3.9, p=0.003) and increased risk of relapse/progression (Hazard ratio 10.8, p=0.0006). Detectable ctDNA is associated with an increased risk of relapse/progression, but further validation studies are necessary to confirm these findings and determine the clinical utility of NGS-based minimal residual disease monitoring in lymphoma patients after HSCT. PMID:27711974
DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafaye, Céline; Barbier, Ewa; Miscioscia, Audrey
2014-03-28
Highlights: • 5-hmC epigenetic modification is measurable in HeLa, SH-SY5Y and UT7-MPL cell lines. • ZBTB2 binds to DNA probes containing 5-mC but not to sequences containing 5-hmC. • This differential binding is verified with DNA sequences involved in p21 regulation. - Abstract: Recent studies have demonstrated that the modified base 5-hydroxymethylcytosine (5-hmC) is detectable at various rates in DNA extracted from human tissues. This oxidative product of 5-methylcytosine (5-mC) constitutes a new and important actor of epigenetic mechanisms. We designed a DNA pull down assay to trap and identify nuclear proteins bound to 5-hmC and/or 5-mC. We applied thismore » strategy to three cancerous cell lines (HeLa, SH-SY5Y and UT7-MPL) in which we also measured 5-mC and 5-hmC levels by HPLC-MS/MS. We found that the putative oncoprotein Zinc finger and BTB domain-containing protein 2 (ZBTB2) is associated with methylated DNA sequences and that this interaction is inhibited by the presence of 5-hmC replacing 5-mC. As published data mention ZBTB2 recognition of p21 regulating sequences, we verified that this sequence specific binding was also alleviated by 5-hmC. ZBTB2 being considered as a multifunctional cell proliferation activator, notably through p21 repression, this work points out new epigenetic processes potentially involved in carcinogenesis.« less
Alu repeated DNAs are differentially methylated in primate germ cells.
Rubin, C M; VandeVoort, C A; Teplitz, R L; Schmid, C W
1994-01-01
A significant fraction of Alu repeats in human sperm DNA, previously found to be unmethylated, is nearly completely methylated in DNA from many somatic tissues. A similar fraction of unmethylated Alus is observed here in sperm DNA from rhesus monkey. However, Alus are almost completely methylated at the restriction sites tested in monkey follicular oocyte DNA. The Alu methylation patterns in mature male and female monkey germ cells are consistent with Alu methylation in human germ cell tumors. Alu sequences are hypomethylated in seminoma DNAs and more methylated in a human ovarian dysgerminoma. These results contrast with methylation patterns reported for germ cell single-copy, CpG island, satellite, and L1 sequences. The function of Alu repeats is not known, but differential methylation of Alu repeats in the male and female germ lines suggests that they may serve as markers for genomic imprinting or in maintaining differences in male and female meiosis. Images PMID:7800508
Roberts, C H; Turino, C; Madrigal, J A; Marsh, S G E
2007-06-01
DNA enrichment by allele-specific hybridization (DEASH) was used as a means to isolate individual alleles of the killer cell immunoglobulin-like receptor (KIR2DL4) gene from heterozygous genomic DNA. Using long-template polymerase chain reaction (LT-PCR), the complete KIR2DL4 gene was amplified from a cell line that had previously been characterized for its KIR gene content by PCR using sequence-specific primers (PCR-SSP). The whole gene amplicons were sequenced and we identified two heterozygous positions in accordance with the predictions of the PCR-SSP. The amplicons were then hybridized to allele-specific, biotinylated oligonucleotide probes and through binding to streptavidin-coated beads, the targeted alleles were enriched. A second PCR amplified only the exonic regions of the enriched allele, and these were then sequenced in full. We show DEASH to be capable of enriching single alleles from a heterozygous PCR product, and through sequencing the enriched DNA, we are able to produce complete coding sequences of the KIR2DL4 alleles in accordance with the typing predicted by PCR-SSP.
MPN estimation of qPCR target sequence recoveries from whole cell calibrator samples.
Sivaganesan, Mano; Siefring, Shawn; Varma, Manju; Haugland, Richard A
2011-12-01
DNA extracts from enumerated target organism cells (calibrator samples) have been used for estimating Enterococcus cell equivalent densities in surface waters by a comparative cycle threshold (Ct) qPCR analysis method. To compare surface water Enterococcus density estimates from different studies by this approach, either a consistent source of calibrator cells must be used or the estimates must account for any differences in target sequence recoveries from different sources of calibrator cells. In this report we describe two methods for estimating target sequence recoveries from whole cell calibrator samples based on qPCR analyses of their serially diluted DNA extracts and most probable number (MPN) calculation. The first method employed a traditional MPN calculation approach. The second method employed a Bayesian hierarchical statistical modeling approach and a Monte Carlo Markov Chain (MCMC) simulation method to account for the uncertainty in these estimates associated with different individual samples of the cell preparations, different dilutions of the DNA extracts and different qPCR analytical runs. The two methods were applied to estimate mean target sequence recoveries per cell from two different lots of a commercially available source of enumerated Enterococcus cell preparations. The mean target sequence recovery estimates (and standard errors) per cell from Lot A and B cell preparations by the Bayesian method were 22.73 (3.4) and 11.76 (2.4), respectively, when the data were adjusted for potential false positive results. Means were similar for the traditional MPN approach which cannot comparably assess uncertainty in the estimates. Cell numbers and estimates of recoverable target sequences in calibrator samples prepared from the two cell sources were also used to estimate cell equivalent and target sequence quantities recovered from surface water samples in a comparative Ct method. Our results illustrate the utility of the Bayesian method in accounting for uncertainty, the high degree of precision attainable by the MPN approach and the need to account for the differences in target sequence recoveries from different calibrator sample cell sources when they are used in the comparative Ct method. Published by Elsevier B.V.
Parrilla-Doblas, Jara Teresa; Ariza, Rafael R.; Roldán-Arjona, Teresa
2017-01-01
ABSTRACT DNA methylation is a crucial epigenetic mark associated to gene silencing, and its targeted removal is a major goal of epigenetic editing. In animal cells, DNA demethylation involves iterative 5mC oxidation by TET enzymes followed by replication-dependent dilution and/or replication-independent DNA repair of its oxidized derivatives. In contrast, plants use specific DNA glycosylases that directly excise 5mC and initiate its substitution for unmethylated C in a base excision repair process. In this work, we have fused the catalytic domain of Arabidopsis ROS1 5mC DNA glycosylase (ROS1_CD) to the DNA binding domain of yeast GAL4 (GBD). We show that the resultant GBD-ROS1_CD fusion protein binds specifically a GBD-targeted DNA sequence in vitro. We also found that transient in vivo expression of GBD-ROS1_CD in human cells specifically reactivates transcription of a methylation-silenced reporter gene, and that such reactivation requires both ROS1_CD catalytic activity and GBD binding capacity. Finally, we show that reactivation induced by GBD-ROS1_CD is accompanied by decreased methylation levels at several CpG sites of the targeted promoter. All together, these results show that plant 5mC DNA glycosylases can be used for targeted active DNA demethylation in human cells. PMID:28277978
Unternaehrer, Eva; Meyer, Andrea Hans; Burkhardt, Susan C A; Dempster, Emma; Staehli, Simon; Theill, Nathan; Lieb, Roselind; Meinlschmidt, Gunther
2015-01-01
In adults, reporting low and high maternal care in childhood, we compared DNA methylation in two stress-associated genes (two target sequences in the oxytocin receptor gene, OXTR; one in the brain-derived neurotrophic factor gene, BDNF) in peripheral whole blood, in a cross-sectional study (University of Basel, Switzerland) during 2007-2008. We recruited 89 participants scoring < 27 (n = 47, 36 women) or > 33 (n = 42, 35 women) on the maternal care subscale of the Parental Bonding Instrument (PBI) at a previous assessment of a larger group (N = 709, range PBI maternal care = 0-36, age range = 19-66 years; median 24 years). 85 participants gave blood for DNA methylation analyses (Sequenom(R) EpiTYPER, San Diego, CA) and cell count (Sysmex PocH-100i™, Kobe, Japan). Mixed model statistical analysis showed greater DNA methylation in the low versus high maternal care group, in the BDNF target sequence [Likelihood-Ratio (1) = 4.47; p = 0.035] and in one OXTR target sequence Likelihood-Ratio (1) = 4.33; p = 0.037], but not the second OXTR target sequence [Likelihood-Ratio (1) < 0.001; p = 0.995). Mediation analyses indicated that differential blood cell count did not explain associations between low maternal care and BDNF (estimate = -0.005, 95% CI = -0.025 to 0.015; p = 0.626) or OXTR DNA methylation (estimate = -0.015, 95% CI = -0.038 to 0.008; p = 0.192). Hence, low maternal care in childhood was associated with greater DNA methylation in an OXTR and a BDNF target sequence in blood cells in adulthood. Although the study has limitations (cross-sectional, a wide age range, only three target sequences in two genes studied, small effects, uncertain relevance of changes in blood cells to gene methylation in brain), the findings may indicate components of the epiphenotype from early life stress.
Lu, L; Komada, M; Kitamura, N
1998-06-15
Hrs is a 115kDa zinc finger protein which is rapidly tyrosine phosphorylated in cells stimulated with various growth factors. We previously purified the protein from a mouse cell line and cloned its cDNA. In the present study, we cloned a human Hrs cDNA from a human placenta cDNA library by cross-hybridization, using the mouse cDNA as a probe, and determined its nucleotide sequence. The human Hrs cDNA encoded a 777-amino-acid protein whose sequence was 93% identical to that of mouse Hrs. Northern blot analysis showed that the Hrs mRNA was about 3.0kb long and was expressed in all the human adult and fetal tissues tested. In addition, we showed by genomic Southern blot analysis that the human Hrs gene was a single-copy gene with a size of about 20kb. Furthermore, the human Hrs gene was mapped to chromosome 17 by Southern blotting of genomic DNAs from human/rodent somatic cell hybrids. Copyright 1998 Elsevier Science B.V. All rights reserved.
A Novel Model System to Examine Agents Used in Breast Cancer Therapy.
1996-07-01
DNA replication (DNA synthesome) isolated from MDA MB 468 human breast cancer cells, human breast tumor tissue and human breast tumor cell xenografts In the presence of the viral large T-antigen and simian virus 40 (SV40) origin sequences, the DNA synthesome executes all of the steps required for the in vitro replication of the SV40 genome. Furthermore, the DNA synthesome isolated from human breast cancer cells possesses a lower fidelity for DNA synthesis in vitro than the synthesome purified from a non-malignant breast cell line. Our studies indicate that the following
Vuillemin, Aurèle; Horn, Fabian; Alawi, Mashal; Henny, Cynthia; Wagner, Dirk; Crowe, Sean A.; Kallmeyer, Jens
2017-01-01
Extracellular DNA is ubiquitous in soil and sediment and constitutes a dominant fraction of environmental DNA in aquatic systems. In theory, extracellular DNA is composed of genomic elements persisting at different degrees of preservation produced by processes occurring on land, in the water column and sediment. Extracellular DNA can be taken up as a nutrient source, excreted or degraded by microorganisms, or adsorbed onto mineral matrices, thus potentially preserving information from past environments. To test whether extracellular DNA records lacustrine conditions, we sequentially extracted extracellular and intracellular DNA from anoxic sediments of ferruginous Lake Towuti, Indonesia. We applied 16S rRNA gene Illumina sequencing on both fractions to discriminate exogenous from endogenous sources of extracellular DNA in the sediment. Environmental sequences exclusively found as extracellular DNA in the sediment originated from multiple sources. For instance, Actinobacteria, Verrucomicrobia, and Acidobacteria derived from soils in the catchment. Limited primary productivity in the water column resulted in few sequences of Cyanobacteria in the oxic photic zone, whereas stratification of the water body mainly led to secondary production by aerobic and anaerobic heterotrophs. Chloroflexi and Planctomycetes, the main degraders of sinking organic matter and planktonic sequences at the water-sediment interface, were preferentially preserved during the initial phase of burial. To trace endogenous sources of extracellular DNA, we used relative abundances of taxa in the intracellular DNA to define which microbial populations grow, decline or persist at low density with sediment depth. Cell lysis became an important additional source of extracellular DNA, gradually covering previous genetic assemblages as other microbial genera became more abundant with depth. The use of extracellular DNA as nutrient by active microorganisms led to selective removal of sequences with lowest GC contents. We conclude that extracellular DNA preserved in shallow lacustrine sediments reflects the initial environmental context, but is gradually modified and thereby shifts from its stratigraphic context. Discrimination of exogenous and endogenous sources of extracellular DNA allows simultaneously addressing in-lake and post-depositional processes. In deeper sediments, the accumulation of resting stages and sequences from cell lysis would require stringent extraction and specific primers if ancient DNA is targeted. PMID:28798742
Durand, Adeline; Desfontaines, Jean-Michel; Iurchenko, Ielyzaveta; Auger, Hélène; Leach, David R. F.
2017-01-01
Marker frequency analysis of the Escherichia coli recB mutant chromosome has revealed a deficit of DNA in a specific zone of the terminus, centred on the dif/TerC region. Using fluorescence microscopy of a marked chromosomal site, we show that the dif region is lost after replication completion, at the time of cell division, in one daughter cell only, and that the phenomenon is transmitted to progeny. Analysis by marker frequency and microscopy shows that the position of DNA loss is not defined by the replication fork merging point since it still occurs in the dif/TerC region when the replication fork trap is displaced in strains harbouring ectopic Ter sites. Terminus DNA loss in the recB mutant is also independent of dimer resolution by XerCD at dif and of Topo IV action close to dif. It occurs in the terminus region, at the point of inversion of the GC skew, which is also the point of convergence of specific sequence motifs like KOPS and Chi sites, regardless of whether the convergence of GC skew is at dif (wild-type) or a newly created sequence. In the absence of FtsK-driven DNA translocation, terminus DNA loss is less precisely targeted to the KOPS convergence sequence, but occurs at a similar frequency and follows the same pattern as in FtsK+ cells. Importantly, using ftsIts, ftsAts division mutants and cephalexin treated cells, we show that DNA loss of the dif region in the recB mutant is decreased by the inactivation of cell division. We propose that it results from septum-induced chromosome breakage, and largely contributes to the low viability of the recB mutant. PMID:28968392
Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways
NASA Astrophysics Data System (ADS)
Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna
2013-12-01
DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications. Electronic supplementary information (ESI) available: Detailed description of all oligonucleotide sequences used in this study; list of figures that support claims from the main text. Mainly these show sensor sequences, phage display results, scFv purification and binding data, cell images clamped at different pH and co-localization studies with endocytic tracers. See DOI: 10.1039/c3nr03769j
Programmable RNA recognition and cleavage by CRISPR/Cas9.
O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A
2014-12-11
The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.
Programmable RNA recognition and cleavage by CRISPR/Cas9
O’Connell, Mitchell R.; Oakes, Benjamin L.; Sternberg, Samuel H.; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A.
2014-01-01
The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA:DNA complementarity to identify target sites for sequence-specific doublestranded DNA (dsDNA) cleavage1-5. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, the protospacer adjacent motif (PAM), next to and on the strand opposite the 20-nucleotide target site in dsDNA4-7. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in many cell types and organisms8, but it has been thought to be incapable of targeting RNA5. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalyzed DNA cleavage7. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous mRNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable and tagless transcript recognition. PMID:25274302
Robinson, Lois; Panayiotakis, Alexandra; Papas, Takis S.; Kola, Ismail; Seth, Arun
1997-01-01
ETS transcription factors play important roles in hematopoiesis, angiogenesis, and organogenesis during murine development. The ETS genes also have a role in neoplasia, for example in Ewing’s sarcomas and retrovirally induced cancers. The ETS genes encode transcription factors that bind to specific DNA sequences and activate transcription of various cellular and viral genes. To isolate novel ETS target genes, we used two approaches. In the first approach, we isolated genes by the RNA differential display technique. Previously, we have shown that the overexpression of ETS1 and ETS2 genes effects transformation of NIH 3T3 cells and specific transformants produce high levels of the ETS proteins. To isolate ETS1 and ETS2 responsive genes in these transformed cells, we prepared RNA from ETS1, ETS2 transformants, and normal NIH 3T3 cell lines and converted it into cDNA. This cDNA was amplified by PCR and displayed on sequencing gels. The differentially displayed bands were subcloned into plasmid vectors. By Northern blot analysis, several clones showed differential patterns of mRNA expression in the NIH 3T3-, ETS1-, and ETS2-expressing cell lines. Sixteen clones were analyzed by DNA sequence analysis, and 13 of them appeared to be unique because their DNA sequences did not match with any of the known genes present in the gene bank. Three known genes were found to be identical to the CArG box binding factor, phospholipase A2-activating protein, and early growth response 1 (Egr1) genes. In the second approach, to isolate ETS target promoters directly, we performed ETS1 binding with MboI-cleaved genomic DNA in the presence of a specific mAb followed by whole genome PCR. The immune complex-bound ETS binding sites containing DNA fragments were amplified and subcloned into pBluescript and subjected to DNA sequence and computer analysis. We found that, of a large number of clones isolated, 43 represented unique sequences not previously identified. Three clones turned out to contain regulatory sequences derived from human serglycin, preproapolipoprotein C II, and Egr1 genes. The ETS binding sites derived from these three regulatory sequences showed specific binding with recombinant ETS proteins. Of interest, Egr1 was identified by both of these techniques, suggesting strongly that it is indeed an ETS target gene. PMID:9207063
Epigenetic Instability due to Defective Replication of Structured DNA
Sarkies, Peter; Reams, Charlie; Simpson, Laura J.; Sale, Julian E.
2010-01-01
Summary The accurate propagation of histone marks during chromosomal replication is proposed to rely on the tight coupling of replication with the recycling of parental histones to the daughter strands. Here, we show in the avian cell line DT40 that REV1, a key regulator of DNA translesion synthesis at the replication fork, is required for the maintenance of repressive chromatin marks and gene silencing in the vicinity of DNA capable of forming G-quadruplex (G4) structures. We demonstrate a previously unappreciated requirement for REV1 in replication of G4 forming sequences and show that transplanting a G4 forming sequence into a silent locus leads to its derepression in REV1-deficient cells. Together, our observations support a model in which failure to maintain processive DNA replication at G4 DNA in REV1-deficient cells leads to uncoupling of DNA synthesis from histone recycling, resulting in localized loss of repressive chromatin through biased incorporation of newly synthesized histones. PMID:21145480
Bhattachary, R; Bukkapatnam, R; Prawoko, I; Soto, J; Morgan, M; Salup, R R
2002-05-01
Despite early diagnosis and improved therapy, 31,500 men will die from prostate cancer (PC) this year. The HER2/neu oncoprotein is an important effector of cell growth found in the majority of high-grade prostatic tumors and is capable of rendering immunogenicity. The antigenicity of this oncoprotein might prove useful in the development of PC vaccines. Our goal is to prove the principle that a single DNA vaccine can provide reliable immunity against PC in the MatLyLu (MLL) translational tumor model. The parental rat MatLyLu PC cell line expresses low to moderate levels of the rat neu protein. To simulate in vivo human PC, MatLyLu cells were transfected with a truncated sequence of human HER2/neu cDNA cloned into the pCI-neo vector. This HER2/neu cDNA sequence encodes the first 433 amino acids of the extracellular domain (ECD). MatLyLu cells were also transfected with the same HER2/neu cDNA sequence cloned into the N1-terminal sequence of EGFP reporter gene to produce a fusion protein. The partial ECD sequence of HER2/neu includes five rat major histocompatibility (MHC)-II-restricted peptides with complete human-to-rat cross-species homology. The HER2/neu protein overexpression was documented by Western Blot analysis, and the expression of fusion protein was monitored by confocal microscopy and fluorimetry. Vaccination with a single injection of HER2/neu cDNA protected 50% of animals against HER2/neu-MatLyLu tumors (P < 0.01). When the tumor cells were engineered to express HER2/neu-EGFP fusion protein, the antitumor immunity was enhanced, as following vaccination with HER2/neu-EGFP cDNA, 80% of these rats rejected HER2/neu-EGFP-MatLyLu (P<0.001). Both vaccines induced HER2/neu-specific antibody titers. Rats vaccinated with EGFP-cDNA rejected 80% of EGFP-MatLyLu tumors and, interestingly, 40% of HER2/neu-MatLyLu tumors. None of the cDNA vaccines induced immunity against parental MatLyLu cells. Our data clearly demonstrate that a single injection of HER2/neu-EGFP cDNA is a very effective vaccine against PC tumors expressing the cognate tumor-associated antigen (TA). The antitumor immunity is significantly more pronounced if the tumors express xenogeneic HER2/neu-EGFP fusion protein as opposed to only the syngeneic HER2/neu oncoprotein. Our data suggests that the HER2/neu-EGFP-MatLyLu tumor is a potential animal tumor model for investigating therapeutic vaccine strategies against PC in vivo and demonstrates the limitations of a cDNA vaccine only encoding for MHC-II-restricted HER2/neu-ECD sequence peptides.
Regulatory link between DNA methylation and active demethylation in Arabidopsis
Lei, Mingguang; Zhang, Huiming; Julian, Russell; Tang, Kai; Xie, Shaojun; Zhu, Jian-Kang
2015-01-01
De novo DNA methylation through the RNA-directed DNA methylation (RdDM) pathway and active DNA demethylation play important roles in controlling genome-wide DNA methylation patterns in plants. Little is known about how cells manage the balance between DNA methylation and active demethylation activities. Here, we report the identification of a unique RdDM target sequence, where DNA methylation is required for maintaining proper active DNA demethylation of the Arabidopsis genome. In a genetic screen for cellular antisilencing factors, we isolated several REPRESSOR OF SILENCING 1 (ros1) mutant alleles, as well as many RdDM mutants, which showed drastically reduced ROS1 gene expression and, consequently, transcriptional silencing of two reporter genes. A helitron transposon element (TE) in the ROS1 gene promoter negatively controls ROS1 expression, whereas DNA methylation of an RdDM target sequence between ROS1 5′ UTR and the promoter TE region antagonizes this helitron TE in regulating ROS1 expression. This RdDM target sequence is also targeted by ROS1, and defective DNA demethylation in loss-of-function ros1 mutant alleles causes DNA hypermethylation of this sequence and concomitantly causes increased ROS1 expression. Our results suggest that this sequence in the ROS1 promoter region serves as a DNA methylation monitoring sequence (MEMS) that senses DNA methylation and active DNA demethylation activities. Therefore, the ROS1 promoter functions like a thermostat (i.e., methylstat) to sense DNA methylation levels and regulates DNA methylation by controlling ROS1 expression. PMID:25733903
Meng, Ran; Zhou, Jin; Sui, Meng; Li, ZhiYong; Feng, GuoSheng; Yang, BaoFeng
2010-01-01
This study aimed to investigate the effects of arsenic trioxide (As(2)O(3)) on the mitochondrial DNA (mtDNA) of acute promyelocytic leukemia (APL) cells. The NB4 cell line was treated with 2.0 micromol/L As(2)O(3) in vitro, and the primary APL cells were treated with 2.0 micromol/L As(2)O(3) in vitro and 0.16 mg kg(-1) d(-1) As(2)O(3) in vivo. The mitochondrial DNA of all the cells above was amplified by PCR, directly sequenced and analyzed by Sequence Navigatore and Factura software. The apoptosis rates were assayed by flow cytometry. Mitochondrial DNA mutation in the D-loop region was found in NB4 and APL cells before As(2)O(3) use, but the mutation spots were remarkably increased after As(2)O(3) treatment, which was positively correlated to the rates of cellular apoptosis, the correlation coefficient: r (NB4-As2O3)=0.973818, and r (APL-As2O3)=0.934703. The mutation types include transition, transversion, codon insertion or deletion, and the mutation spots in all samples were not constant and regular. It is revealed that As(2)O(3) aggravates mtDNA mutation in the D-loop region of acute promyelocytic leukemia cells both in vitro and in vivo. Mitochondrial DNA might be one of the targets of As(2)O(3) in APL treatment.
ERIC Educational Resources Information Center
Rowland-Goldsmith, Melissa
2009-01-01
DNA microarray is an ordered grid containing known sequences of DNA, which represent many of the genes in a particular organism. Each DNA sequence is unique to a specific gene. This technology enables the researcher to screen many genes from cells or tissue grown in different conditions. We developed an undergraduate lecture and laboratory…
Fidelity of DNA Replication in Normal and Malignant Human Brest Cells.
1995-08-31
cellular DNA replication machinery, we have initiated experiments that utilize a multiprotein DNA replication complex (MRC) isolated from breast cancer...gene in an in vitro DNA replication assay. By utilizing the target gene in a bacterial mutant selection assay we have begun to determine the...frequency with which mutational sequence errors occur as a result of the in vitro DNA replication mediated by the breast cancer cell MRC and the normal breast
Cloning, sequencing and expression in MEL cells of a cDNA encoding the mouse ribosomal protein S5.
Vanegas, N; Castañeda, V; Santamaría, D; Hernández, P; Schvartzman, J B; Krimer, D B
1997-06-05
We describe the isolation and characterization of a cDNA encoding the mouse S5 ribosomal protein. It was isolated from a MEL (murine erythroleukemia) cell cDNA library by differential hybridization as a down regulated sequence during HMBA-induced differentiation. Northern series analysis showed that S5 mRNA expression is reduced 5-fold throughout the differentiation process. The mouse S5 mRNA is 760 bp long and encodes for a 204 amino acid protein with 94% homology with the human and rat S5.
White, Eric J; Emanuelsson, Olof; Scalzo, David; Royce, Thomas; Kosak, Steven; Oakeley, Edward J; Weissman, Sherman; Gerstein, Mark; Groudine, Mark; Snyder, Michael; Schübeler, Dirk
2004-12-21
Duplication of the genome during the S phase of the cell cycle does not occur simultaneously; rather, different sequences are replicated at different times. The replication timing of specific sequences can change during development; however, the determinants of this dynamic process are poorly understood. To gain insights into the contribution of developmental state, genomic sequence, and transcriptional activity to replication timing, we investigated the timing of DNA replication at high resolution along an entire human chromosome (chromosome 22) in two different cell types. The pattern of replication timing was correlated with respect to annotated genes, gene expression, novel transcribed regions of unknown function, sequence composition, and cytological features. We observed that chromosome 22 contains regions of early- and late-replicating domains of 100 kb to 2 Mb, many (but not all) of which are associated with previously described chromosomal bands. In both cell types, expressed sequences are replicated earlier than nontranscribed regions. However, several highly transcribed regions replicate late. Overall, the DNA replication-timing profiles of the two different cell types are remarkably similar, with only nine regions of difference observed. In one case, this difference reflects the differential expression of an annotated gene that resides in this region. Novel transcribed regions with low coding potential exhibit a strong propensity for early DNA replication. Although the cellular function of such transcripts is poorly understood, our results suggest that their activity is linked to the replication-timing program.
Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding.
Shahi, Payam; Kim, Samuel C; Haliburton, John R; Gartner, Zev J; Abate, Adam R
2017-03-14
Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.
Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding
NASA Astrophysics Data System (ADS)
Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.
2017-03-01
Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.
Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding
Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.
2017-01-01
Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing. PMID:28290550
Chelomina, Galina N; Rozhkovan, Konstantin V; Voronova, Anastasia N; Burundukova, Olga L; Muzarok, Tamara I; Zhuravlev, Yuri N
2016-04-01
Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440-640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine.
Chelomina, Galina N.; Rozhkovan, Konstantin V.; Voronova, Anastasia N.; Burundukova, Olga L.; Muzarok, Tamara I.; Zhuravlev, Yuri N.
2015-01-01
Background Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. Methods The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. Results In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440–640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. Conclusion This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine. PMID:27158239
Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding.
Lan, Freeman; Demaree, Benjamin; Ahmed, Noorsher; Abate, Adam R
2017-07-01
The application of single-cell genome sequencing to large cell populations has been hindered by technical challenges in isolating single cells during genome preparation. Here we present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics to isolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencing of pooled DNA. We demonstrate ultra-high-throughput sequencing of >50,000 cells per run in a synthetic community of Gram-negative and Gram-positive bacteria and fungi. The sequenced genomes can be sorted in silico based on characteristic sequences. We use this approach to analyze the distributions of antibiotic-resistance genes, virulence factors, and phage sequences in microbial communities from an environmental sample. The ability to routinely sequence large populations of single cells will enable the de-convolution of genetic heterogeneity in diverse cell populations.
Bjourson, A J; Stone, C E; Cooper, J E
1992-01-01
A novel subtraction hybridization procedure, incorporating a combination of four separation strategies, was developed to isolate unique DNA sequences from a strain of Rhizobium leguminosarum bv. trifolii. Sau3A-digested DNA from this strain, i.e., the probe strain, was ligated to a linker and hybridized in solution with an excess of pooled subtracter DNA from seven other strains of the same biovar which had been restricted, ligated to a different, biotinylated, subtracter-specific linker, and amplified by polymerase chain reaction to incorporate dUTP. Subtracter DNA and subtracter-probe hybrids were removed by phenol-chloroform extraction of a streptavidin-biotin-DNA complex. NENSORB chromatography of the sequences remaining in the aqueous layer captured biotinylated subtracter DNA which may have escaped removal by phenol-chloroform treatment. Any traces of contaminating subtracter DNA were removed by digestion with uracil DNA glycosylase. Finally, remaining sequences were amplified by polymerase chain reaction with a probe strain-specific primer, labelled with 32P, and tested for specificity in dot blot hybridizations against total genomic target DNA from each strain in the subtracter pool. Two rounds of subtraction-amplification were sufficient to remove cross-hybridizing sequences and to give a probe which hybridized only with homologous target DNA. The method is applicable to the isolation of DNA and RNA sequences from both procaryotic and eucaryotic cells. Images PMID:1637166
Eberwine, James; Bartfai, Tamas
2011-03-01
We report on an 'unbiased' molecular characterization of individual, adult neurons, active in a central, anterior hypothalamic neuronal circuit, by establishing cDNA libraries from each individual, electrophysiologically identified warm sensitive neuron (WSN). The cDNA libraries were analyzed by Affymetrix microarray. The presence and frequency of cDNAs were confirmed and enhanced with Illumina sequencing of each single cell cDNA library. cDNAs encoding the GABA biosynthetic enzyme Gad1 and of adrenomedullin, galanin, prodynorphin, somatostatin, and tachykinin were found in the WSNs. The functional cellular and in vivo studies on dozens of the more than 500 neurotransmitters, hormone receptors and ion channels, whose cDNA was identified and sequence confirmed, suggest little or no discrepancy between the transcriptional and functional data in WSNs; whenever agonists were available for a receptor whose cDNA was identified, a functional response was found. Sequencing single neuron libraries permitted identification of rarely expressed receptors like the insulin receptor, adiponectin receptor 2 and of receptor heterodimers; information that is lost when pooling cells leads to dilution of signals and mixing signals. Despite the common electrophysiological phenotype and uniform Gad1 expression, WSN transcriptomes show heterogeneity, suggesting strong epigenetic influence on the transcriptome. Our study suggests that it is well-worth interrogating the cDNA libraries of single neurons by sequencing and chipping. Copyright © 2010 Elsevier Inc. All rights reserved.
Wang, Nidan; Li, Yijia; Han, Yang; Xie, Jing; Li, Taisheng
2017-06-01
The association between baseline human immunodeficiency virus (HIV) sequence diversity and HIV DNA decay after the initiation of antiretroviral therapy (ART) remains uncharacterized during the early stages of HIV infection. Samples were obtained from a cohort of 17 patients with early HIV infection (<6 months after infection) who initiated ART, and the C2V5 region of the HIV-1 envelope (env) gene was amplified via single genome amplification (SGA) to determine the peripheral plasma HIV quasispecies. We categorized HIV quasispecies into two groups according to baseline viral sequence genetic distance, which was determined by the Poisson-Fitter tool. Total HIV DNA in peripheral blood mononuclear cells (PBMCs), viral load, and T cell subsets were measured prior to and after the initiation of ART. The median SGA sequence number was 17 (range 6-28). At baseline, we identified 7 patients with homogeneous viral populations (designated the Homogeneous group) and 10 patients with heterogeneous viral populations (designated the Heterogeneous group) based on SGA sequences. Both groups exhibited similar HIV DNA decay rates during the first 6 months of ART (P > 0.99), but the Homogenous group experienced more prominent decay than the Heterogeneous group after 6 months (P = 0.037). The Heterogeneous group had higher CD4 cell counts after ART initiation; however, both groups had comparable recovery in terms of CD4/CD8 ratios and CD8 T cell activation levels. Viral population homogeneity upon the initiation of ART is associated with a decrease in HIV DNA levels during ART. J. Med. Virol. 89:982-988, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Identification of Prostate Cancer-Specific microDNAs
2016-02-01
circular DNA by rolling circle amplification (RCA) and then amplified DNA fragments were subject to deep sequencing. Deep sequencing of the...demonstrate the existence of microDNAs in prostate cancer. We adopted multiple displacement amplification (MDA) with random 2 primers for enriched...prostate cancer cells through multiple displacement amplification and next generation sequencing. R e la ti v e c e ll g ro w th ( % ) 0 20
Preparation of Low-Input and Ligation-Free ChIP-seq Libraries Using Template-Switching Technology.
Bolduc, Nathalie; Lehman, Alisa P; Farmer, Andrew
2016-10-10
Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) has become the gold standard for mapping of transcription factors and histone modifications throughout the genome. However, for ChIP experiments involving few cells or targeting low-abundance transcription factors, the small amount of DNA recovered makes ligation of adapters very challenging. In this unit, we describe a ChIP-seq workflow that can be applied to small cell numbers, including a robust single-tube and ligation-free method for preparation of sequencing libraries from sub-nanogram amounts of ChIP DNA. An example ChIP protocol is first presented, resulting in selective enrichment of DNA-binding proteins and cross-linked DNA fragments immobilized on beads via an antibody bridge. This is followed by a protocol for fast and easy cross-linking reversal and DNA recovery. Finally, we describe a fast, ligation-free library preparation protocol, featuring DNA SMART technology, resulting in samples ready for Illumina sequencing. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Prescott, D M
1994-01-01
Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons. Images PMID:8078435
Zhang, Bo; Wu, Wen-Qiang; Liu, Na-Nv; Duan, Xiao-Lei; Li, Ming; Dou, Shuo-Xing; Hou, Xi-Miao; Xi, Xu-Guang
2016-01-01
Alternative DNA structures that deviate from B-form double-stranded DNA such as G-quadruplex (G4) DNA can be formed by G-rich sequences that are widely distributed throughout the human genome. We have previously shown that Pif1p not only unfolds G4, but also unwinds the downstream duplex DNA in a G4-stimulated manner. In the present study, we further characterized the G4-stimulated duplex DNA unwinding phenomenon by means of single-molecule fluorescence resonance energy transfer. It was found that Pif1p did not unwind the partial duplex DNA immediately after unfolding the upstream G4 structure, but rather, it would dwell at the ss/dsDNA junction with a ‘waiting time’. Further studies revealed that the waiting time was in fact related to a protein dimerization process that was sensitive to ssDNA sequence and would become rapid if the sequence is G-rich. Furthermore, we identified that the G-rich sequence, as the G4 structure, equally stimulates duplex DNA unwinding. The present work sheds new light on the molecular mechanism by which G4-unwinding helicase Pif1p resolves physiological G4/duplex DNA structures in cells. PMID:27471032
RNA-Seq analysis to capture the transcriptome landscape of a single cell
Tang, Fuchou; Barbacioru, Catalin; Nordman, Ellen; Xu, Nanlan; Bashkirov, Vladimir I; Lao, Kaiqin; Surani, M. Azim
2013-01-01
We describe here a protocol for digital transcriptome analysis in a single mouse blastomere using a deep sequencing approach. An individual blastomere was first isolated and put into lysate buffer by mouth pipette. Reverse transcription was then performed directly on the whole cell lysate. After this, the free primers were removed by Exonuclease I and a poly(A) tail was added to the 3′ end of the first-strand cDNA by Terminal Deoxynucleotidyl Transferase. Then the single cell cDNAs were amplified by 20 plus 9 cycles of PCR. Then 100-200 ng of these amplified cDNAs were used to construct a sequencing library. The sequencing library can be used for deep sequencing using the SOLiD system. Compared with the cDNA microarray technique, our assay can capture up to 75% more genes expressed in early embryos. The protocol can generate deep sequencing libraries within 6 days for 16 single cell samples. PMID:20203668
Cheng, Linzhao; Hansen, Nancy F.; Zhao, Ling; Du, Yutao; Zou, Chunlin; Donovan, Frank X.; Chou, Bin-Kuan; Zhou, Guangyu; Li, Shijie; Dowey, Sarah N.; Ye, Zhaohui; Chandrasekharappa, Settara C.; Yang, Huanming; Mullikin, James C.; Liu, P. Paul
2012-01-01
Summary The utility of induced pluripotent stem cells (iPSCs) as models to study diseases and as sources for cell therapy depends on the integrity of their genomes. Despite recent publications of DNA sequence variations in the iPSCs, the true scope of such changes for the entire genome is not clear. Here we report the whole-genome sequencing of three human iPSC lines derived from two cell types of an adult donor by episomal vectors. The vector sequence was undetectable in the deeply sequenced iPSC lines. We identified 1058–1808 heterozygous single nucleotide variants (SNVs), but no copy number variants, in each iPSC line. Six to twelve of these SNVs were within coding regions in each iPSC line, but ~50% of them are synonymous changes and the remaining are not selectively enriched for known genes associated with cancers. Our data thus suggest that episome-mediated reprogramming is not inherently mutagenic during integration-free iPSC induction. PMID:22385660
Nonparametric Bayesian clustering to detect bipolar methylated genomic loci.
Wu, Xiaowei; Sun, Ming-An; Zhu, Hongxiao; Xie, Hehuang
2015-01-16
With recent development in sequencing technology, a large number of genome-wide DNA methylation studies have generated massive amounts of bisulfite sequencing data. The analysis of DNA methylation patterns helps researchers understand epigenetic regulatory mechanisms. Highly variable methylation patterns reflect stochastic fluctuations in DNA methylation, whereas well-structured methylation patterns imply deterministic methylation events. Among these methylation patterns, bipolar patterns are important as they may originate from allele-specific methylation (ASM) or cell-specific methylation (CSM). Utilizing nonparametric Bayesian clustering followed by hypothesis testing, we have developed a novel statistical approach to identify bipolar methylated genomic regions in bisulfite sequencing data. Simulation studies demonstrate that the proposed method achieves good performance in terms of specificity and sensitivity. We used the method to analyze data from mouse brain and human blood methylomes. The bipolar methylated segments detected are found highly consistent with the differentially methylated regions identified by using purified cell subsets. Bipolar DNA methylation often indicates epigenetic heterogeneity caused by ASM or CSM. With allele-specific events filtered out or appropriately taken into account, our proposed approach sheds light on the identification of cell-specific genes/pathways under strong epigenetic control in a heterogeneous cell population.
Liu, Betty R.; Huang, Yue-Wern; Aronstam, Robert S.; Lee, Han-Jung
2016-01-01
Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy. PMID:26942714
Liu, Betty R; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung
2016-01-01
Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.
Li, Chunmei; Yu, Zhilong; Fu, Yusi; Pang, Yuhong; Huang, Yanyi
2017-04-26
We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.
Khan, A S
1984-01-01
The sequence of 363 nucleotides near the 3' end of the pol gene and 564 nucleotides from the 5' terminus of the env gene in an endogenous murine leukemia viral (MuLV) DNA segment, cloned from AKR/J mouse DNA and designated as A-12, was obtained. For comparison, the nucleotide sequence in an analogous portion of AKR mink cell focus-forming (MCF) 247 MuLV provirus was also determined. Sequence features unique to MCF247 MuLV DNA in the 3' pol and 5' env regions were identified by comparison with nucleotide sequences in analogous regions of NFS -Th-1 xenotropic and AKR ecotropic MuLV proviruses. These included (i) an insertion of 12 base pairs encoding four amino acids located 60 base pairs from the 3' terminus of the pol gene and immediately preceding the env gene, (ii) the deletion of 12 base pairs (encoding four amino acids) and the insertion of 3 base pairs (encoding one amino acid) in the 5' portion of the env gene, and (iii) single base substitutions resulting in 2 MCF247 -specific amino acids in the 3' pol and 23 in the 5' env regions. Nucleotide sequence comparison involving the 3' pol and 5' env regions of AKR MCF247 , NFS xenotropic, and AKR ecotropic MuLV proviruses with the cloned endogenous MuLV DNA indicated that MCF247 proviral DNA sequences were conserved in the cloned endogenous MuLV proviral segment. In fact, total nucleotide sequence identity existed between the endogenous MuLV DNA and the MCF247 MuLV provirus in the 3' portion of the pol gene. In the 5' env region, only 4 of 564 nucleotides were different, resulting in three amino acid changes between AKR MCF247 MuLV DNA and the endogenous MuLV DNA present in clone A-12. In addition, nucleotide sequence comparison indicated that Moloney-and Friend-MCF MuLVs were also highly related in the 3' pol and 5' env regions to the cloned endogenous MuLV DNA. These results establish the role of endogenous MuLV DNA segments in generation of recombinant MCF viruses. PMID:6328017
Diagnosis of Lung Cancer by Fractal Analysis of Damaged DNA
Namazi, Hamidreza; Kiminezhadmalaie, Mona
2015-01-01
Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers. PMID:26539245
Zaboikin, Michail; Zaboikina, Tatiana; Freter, Carl; Srinivasakumar, Narasimhachar
2017-01-01
Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.
Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells.
Guo, Fan; Li, Lin; Li, Jingyun; Wu, Xinglong; Hu, Boqiang; Zhu, Ping; Wen, Lu; Tang, Fuchou
2017-08-01
Single-cell epigenome sequencing techniques have recently been developed. However, the combination of different layers of epigenome sequencing in an individual cell has not yet been achieved. Here, we developed a single-cell multi-omics sequencing technology (single-cell COOL-seq) that can analyze the chromatin state/nucleosome positioning, DNA methylation, copy number variation and ploidy simultaneously from the same individual mammalian cell. We used this method to analyze the reprogramming of the chromatin state and DNA methylation in mouse preimplantation embryos. We found that within < 12 h of fertilization, each individual cell undergoes global genome demethylation together with the rapid and global reprogramming of both maternal and paternal genomes to a highly opened chromatin state. This was followed by decreased openness after the late zygote stage. Furthermore, from the late zygote to the 4-cell stage, the residual DNA methylation is preferentially preserved on intergenic regions of the paternal alleles and intragenic regions of maternal alleles in each individual blastomere. However, chromatin accessibility is similar between paternal and maternal alleles in each individual cell from the late zygote to the blastocyst stage. The binding motifs of several pluripotency regulators are enriched at distal nucleosome depleted regions from as early as the 2-cell stage. This indicates that the cis-regulatory elements of such target genes have been primed to an open state from the 2-cell stage onward, long before pluripotency is eventually established in the ICM of the blastocyst. Genes may be classified into homogeneously open, homogeneously closed and divergent states based on the chromatin accessibility of their promoter regions among individual cells. This can be traced to step-wise transitions during preimplantation development. Our study offers the first single-cell and parental allele-specific analysis of the genome-scale chromatin state and DNA methylation dynamics at single-base resolution in early mouse embryos and provides new insights into the heterogeneous yet highly ordered features of epigenomic reprogramming during this process.
Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells
Guo, Fan; Li, Lin; Li, Jingyun; Wu, Xinglong; Hu, Boqiang; Zhu, Ping; Wen, Lu; Tang, Fuchou
2017-01-01
Single-cell epigenome sequencing techniques have recently been developed. However, the combination of different layers of epigenome sequencing in an individual cell has not yet been achieved. Here, we developed a single-cell multi-omics sequencing technology (single-cell COOL-seq) that can analyze the chromatin state/nucleosome positioning, DNA methylation, copy number variation and ploidy simultaneously from the same individual mammalian cell. We used this method to analyze the reprogramming of the chromatin state and DNA methylation in mouse preimplantation embryos. We found that within < 12 h of fertilization, each individual cell undergoes global genome demethylation together with the rapid and global reprogramming of both maternal and paternal genomes to a highly opened chromatin state. This was followed by decreased openness after the late zygote stage. Furthermore, from the late zygote to the 4-cell stage, the residual DNA methylation is preferentially preserved on intergenic regions of the paternal alleles and intragenic regions of maternal alleles in each individual blastomere. However, chromatin accessibility is similar between paternal and maternal alleles in each individual cell from the late zygote to the blastocyst stage. The binding motifs of several pluripotency regulators are enriched at distal nucleosome depleted regions from as early as the 2-cell stage. This indicates that the cis-regulatory elements of such target genes have been primed to an open state from the 2-cell stage onward, long before pluripotency is eventually established in the ICM of the blastocyst. Genes may be classified into homogeneously open, homogeneously closed and divergent states based on the chromatin accessibility of their promoter regions among individual cells. This can be traced to step-wise transitions during preimplantation development. Our study offers the first single-cell and parental allele-specific analysis of the genome-scale chromatin state and DNA methylation dynamics at single-base resolution in early mouse embryos and provides new insights into the heterogeneous yet highly ordered features of epigenomic reprogramming during this process. PMID:28621329
Amplification and chromosomal dispersion of human endogenous retroviral sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, P.E.; Martin, M.A.; Rabson, A.B.
1986-09-01
Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification andmore » dispersion events may be linked.« less
Accurate multiplex polony sequencing of an evolved bacterial genome.
Shendure, Jay; Porreca, Gregory J; Reppas, Nikos B; Lin, Xiaoxia; McCutcheon, John P; Rosenbaum, Abraham M; Wang, Michael D; Zhang, Kun; Mitra, Robi D; Church, George M
2005-09-09
We describe a DNA sequencing technology in which a commonly available, inexpensive epifluorescence microscope is converted to rapid nonelectrophoretic DNA sequencing automation. We apply this technology to resequence an evolved strain of Escherichia coli at less than one error per million consensus bases. A cell-free, mate-paired library provided single DNA molecules that were amplified in parallel to 1-micrometer beads by emulsion polymerase chain reaction. Millions of beads were immobilized in a polyacrylamide gel and subjected to automated cycles of sequencing by ligation and four-color imaging. Cost per base was roughly one-ninth as much as that of conventional sequencing. Our protocols were implemented with off-the-shelf instrumentation and reagents.
Genomic Insights into Geothermal Spring Community Members using a 16S Agnostic Single-Cell Approach
NASA Astrophysics Data System (ADS)
Bowers, R. M.
2016-12-01
INSTUTIONS (ALL): DOE Joint Genome Institute, Walnut Creek, CA USA. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME USA. Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada. ABSTRACT BODY: With recent advances in DNA sequencing, rapid and affordable screening of single-cell genomes has become a reality. Single-cell sequencing is a multi-step process that takes advantage of any number of single-cell sorting techniques, whole genome amplification (WGA), and 16S rRNA gene based PCR screening to identify the microbes of interest prior to shotgun sequencing. However, the 16S PCR based screening step is costly and may lead to unanticipated losses of microbial diversity, as cells that do not produce a clean 16S amplicon are typically omitted from downstream shotgun sequencing. While many of the sorted cells that fail the 16S PCR step likely originate from poor quality amplified DNA, some of the cells with good WGA kinetics may instead represent bacteria or archaea with 16S genes that fail to amplify due to primer mis-matches or the presence of intervening sequences. Using cell material from Dewar Creek, a hot spring in British Columbia, we sequenced all sorted cells with good WGA kinetics irrespective of their 16S amplification success. We show that this high-throughput approach to single-cell sequencing (i) can reduce the overall cost of single-cell genome production, and (ii). may lead to the discovery of previously unknown branches on the microbial tree of life.
Gomes, S L; Gober, J W; Shapiro, L
1990-01-01
Caulobacter crescentus has a single dnaK gene that is highly homologous to the hsp70 family of heat shock genes. Analysis of the cloned and sequenced dnaK gene has shown that the deduced amino acid sequence could encode a protein of 67.6 kilodaltons that is 68% identical to the DnaK protein of Escherichia coli and 49% identical to the Drosophila and human hsp70 protein family. A partial open reading frame 165 base pairs 3' to the end of dnaK encodes a peptide of 190 amino acids that is 59% identical to DnaJ of E. coli. Northern blot analysis revealed a single 4.0-kilobase mRNA homologous to the cloned fragment. Since the dnaK coding region is 1.89 kilobases, dnaK and dnaJ may be transcribed as a polycistronic message. S1 mapping and primer extension experiments showed that transcription initiated at two sites 5' to the dnaK coding sequence. A single start site of transcription was identified during heat shock at 42 degrees C, and the predicted promoter sequence conformed to the consensus heat shock promoters of E. coli. At normal growth temperature (30 degrees C), a different start site was identified 3' to the heat shock start site that conformed to the E. coli sigma 70 promoter consensus sequence. S1 protection assays and analysis of expression of the dnaK gene fused to the lux transcription reporter gene showed that expression of dnaK is temporally controlled under normal physiological conditions and that transcription occurs just before the initiation of DNA replication. Thus, in both human cells (I. K. L. Milarski and R. I. Morimoto, Proc. Natl. Acad. Sci. USA 83:9517-9521, 1986) and in a simple bacterium, the transcription of a hsp70 gene is temporally controlled as a function of the cell cycle under normal growth conditions. Images PMID:2345134
Application of advanced cytometric and molecular technologies to minimal residual disease monitoring
NASA Astrophysics Data System (ADS)
Leary, James F.; He, Feng; Reece, Lisa M.
2000-04-01
Minimal residual disease monitoring presents a number of theoretical and practical challenges. Recently it has been possible to meet some of these challenges by combining a number of new advanced biotechnologies. To monitor the number of residual tumor cells requires complex cocktails of molecular probes that collectively provide sensitivities of detection on the order of one residual tumor cell per million total cells. Ultra-high-speed, multi parameter flow cytometry is capable of analyzing cells at rates in excess of 100,000 cells/sec. Residual tumor selection marker cocktails can be optimized by use of receiver operating characteristic analysis. New data minimizing techniques when combined with multi variate statistical or neural network classifications of tumor cells can more accurately predict residual tumor cell frequencies. The combination of these techniques can, under at least some circumstances, detect frequencies of tumor cells as low as one cell in a million with an accuracy of over 98 percent correct classification. Detection of mutations in tumor suppressor genes requires insolation of these rare tumor cells and single-cell DNA sequencing. Rare residual tumor cells can be isolated at single cell level by high-resolution single-cell cell sorting. Molecular characterization of tumor suppressor gene mutations can be accomplished using a combination of single- cell polymerase chain reaction amplification of specific gene sequences followed by TA cloning techniques and DNA sequencing. Mutations as small as a single base pair in a tumor suppressor gene of a single sorted tumor cell have been detected using these methods. Using new amplification procedures and DNA micro arrays it should be possible to extend the capabilities shown in this paper to screening of multiple DNA mutations in tumor suppressor and other genes on small numbers of sorted metastatic tumor cells.
Cellulases and coding sequences
Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong
2001-02-20
The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.
Cellulases and coding sequences
Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong
2001-01-01
The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.
Thurn, Kenneth T; Paunesku, Tatjana; Wu, Aiguo; Brown, Eric M B; Lai, Barry; Vogt, Stefan; Maser, Jörg; Aslam, Mohammed; Dravid, Vinayak; Bergan, Raymond; Woloschak, Gayle E
2009-06-01
Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single-stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photoinducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging with the addition of gadolinium Gd(III) contrast agents. Herein two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents are described. This permits direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>10(4) cells). X-ray fluorescence microscopy (XFM) is combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates and used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell shows an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.
Herrera, Alex F; Kim, Haesook T; Kong, Katherine A; Faham, Malek; Sun, Heather; Sohani, Aliyah R; Alyea, Edwin P; Carlton, Victoria E; Chen, Yi-Bin; Cutler, Corey S; Ho, Vincent T; Koreth, John; Kotwaliwale, Chitra; Nikiforow, Sarah; Ritz, Jerome; Rodig, Scott J; Soiffer, Robert J; Antin, Joseph H; Armand, Philippe
2016-12-01
Next-generation sequencing (NGS)-based circulating tumour DNA (ctDNA) detection is a promising monitoring tool for lymphoid malignancies. We evaluated whether the presence of ctDNA was associated with outcome after allogeneic haematopoietic stem cell transplantation (HSCT) in lymphoma patients. We studied 88 patients drawn from a phase 3 clinical trial of reduced-intensity conditioning HSCT in lymphoma. Conventional restaging and collection of peripheral blood samples occurred at pre-specified time points before and after HSCT and were assayed for ctDNA by sequencing of the immunoglobulin or T-cell receptor genes. Tumour clonotypes were identified in 87% of patients with adequate tumour samples. Sixteen of 19 (84%) patients with disease progression after HSCT had detectable ctDNA prior to progression at a median of 3·7 months prior to relapse/progression. Patients with detectable ctDNA 3 months after HSCT had inferior progression-free survival (PFS) (2-year PFS 58% vs. 84% in ctDNA-negative patients, P = 0·033). In multivariate models, detectable ctDNA was associated with increased risk of progression/death (Hazard ratio 3·9, P = 0·003) and increased risk of relapse/progression (Hazard ratio 10·8, P = 0·0006). Detectable ctDNA is associated with an increased risk of relapse/progression, but further validation studies are necessary to confirm these findings and determine the clinical utility of NGS-based minimal residual disease monitoring in lymphoma patients after HSCT. © 2016 John Wiley & Sons Ltd.
Mitochondrial DNA repairs double-strand breaks in yeast chromosomes.
Ricchetti, M; Fairhead, C; Dujon, B
1999-11-04
The endosymbiotic theory for the origin of eukaryotic cells proposes that genetic information can be transferred from mitochondria to the nucleus of a cell, and genes that are probably of mitochondrial origin have been found in nuclear chromosomes. Occasionally, short or rearranged sequences homologous to mitochondrial DNA are seen in the chromosomes of different organisms including yeast, plants and humans. Here we report a mechanism by which fragments of mitochondrial DNA, in single or tandem array, are transferred to yeast chromosomes under natural conditions during the repair of double-strand breaks in haploid mitotic cells. These repair insertions originate from noncontiguous regions of the mitochondrial genome. Our analysis of the Saccharomyces cerevisiae mitochondrial genome indicates that the yeast nuclear genome does indeed contain several short sequences of mitochondrial origin which are similar in size and composition to those that repair double-strand breaks. These sequences are located predominantly in non-coding regions of the chromosomes, frequently in the vicinity of retrotransposon long terminal repeats, and appear as recent integration events. Thus, colonization of the yeast genome by mitochondrial DNA is an ongoing process.
A novel self-powered and sensitive label-free DNA biosensor in microbial fuel cell.
Asghary, Maryam; Raoof, Jahan Bakhsh; Rahimnejad, Mostafa; Ojani, Reza
2016-08-15
In this work, a novel self-powered, sensitive, low-cost, and label-free DNA biosensor is reported by applying a two-chambered microbial fuel cell (MFC) as a power supply. A graphite electrode and an Au nanoparticles modified graphite electrode (AuNP/graphite electrode) were used as anode and cathode in the MFC system, respectively. The active biocatalyst in the anodic chamber was a mixed culture of microorganisms. The sensing element of the biosensor was fabricated by the well-known Au-thiol binding the ssDNA probe on the surface of an AuNP/graphite cathode. Electrons produced by microorganisms were transported from the anode to the cathode through an external circuit, which could be detected by the terminal multi-meter detector. The difference between power densities of the ssDNA probe modified cathode in the absence and presence of complementary sequence served as the detection signal of the DNA hybridization with detection limit of 3.1nM. Thereafter, this biosensor was employed for diagnosis and determination of complementary sequence in a human serum sample. The hybridization specificity studies further revealed that the developed DNA biosensor could distinguish fully complementary sequences from one-base mismatched and non-complementary sequences. Copyright © 2016 Elsevier B.V. All rights reserved.
Genome editing with CompoZr custom zinc finger nucleases (ZFNs).
Hansen, Keith; Coussens, Matthew J; Sago, Jack; Subramanian, Shilpi; Gjoka, Monika; Briner, Dave
2012-06-14
Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the project goals, 2) apply this knowledge to develop a sound targeting strategy, 3) then design, build, and functionally validate ZFNs for activity in a relevant cell line. The investigator receives positive control genomic DNA and primers, and ready-to-use ZFN reagents supplied in both plasmid DNA and in-vitro transcribed mRNA format. These reagents may then be delivered for transient expression in the investigator's cell line or cell type of choice. Samples are then tested for gene editing at the locus of interest by standard molecular biology techniques including PCR amplification, enzymatic digest, and electrophoresis. After positive signal for gene editing is detected in the initial population, cells are single-cell cloned and genotyped for identification of mutant clones/alleles.
Zambelli, Filippo; Mertens, Joke; Dziedzicka, Dominika; Sterckx, Johan; Markouli, Christina; Keller, Alexander; Tropel, Philippe; Jung, Laura; Viville, Stephane; Van de Velde, Hilde; Geens, Mieke; Seneca, Sara; Sermon, Karen; Spits, Claudia
2018-06-07
In this study, we deep-sequenced the mtDNA of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) and their source cells and found that the majority of variants pre-existed in the cells used to establish the lines. Early-passage hESCs carried few and low-load heteroplasmic variants, similar to those identified in oocytes and inner cell masses. The number and heteroplasmic loads of these variants increased with prolonged cell culture. The study of 120 individual cells of early- and late-passage hESCs revealed a significant diversity in mtDNA heteroplasmic variants at the single-cell level and that the variants that increase during time in culture are always passenger to the appearance of chromosomal abnormalities. We found that early-passage hiPSCs carry much higher loads of mtDNA variants than hESCs, which single-fibroblast sequencing proved pre-existed in the source cells. Finally, we show that these variants are stably transmitted during short-term differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Agúndez, Leticia; González-Prieto, Coral; Machón, Cristina; Llosa, Matxalen
2012-01-01
Background Bacterial conjugation is a mechanism for horizontal DNA transfer between bacteria which requires cell to cell contact, usually mediated by self-transmissible plasmids. A protein known as relaxase is responsible for the processing of DNA during bacterial conjugation. TrwC, the relaxase of conjugative plasmid R388, is also able to catalyze site-specific integration of the transferred DNA into a copy of its target, the origin of transfer (oriT), present in a recipient plasmid. This reaction confers TrwC a high biotechnological potential as a tool for genomic engineering. Methodology/Principal Findings We have characterized this reaction by conjugal mobilization of a suicide plasmid to a recipient cell with an oriT-containing plasmid, selecting for the cointegrates. Proteins TrwA and IHF enhanced integration frequency. TrwC could also catalyze integration when it is expressed from the recipient cell. Both Y18 and Y26 catalytic tyrosil residues were essential to perform the reaction, while TrwC DNA helicase activity was dispensable. The target DNA could be reduced to 17 bp encompassing TrwC nicking and binding sites. Two human genomic sequences resembling the 17 bp segment were accepted as targets for TrwC-mediated site-specific integration. TrwC could also integrate the incoming DNA molecule into an oriT copy present in the recipient chromosome. Conclusions/Significance The results support a model for TrwC-mediated site-specific integration. This reaction may allow R388 to integrate into the genome of non-permissive hosts upon conjugative transfer. Also, the ability to act on target sequences present in the human genome underscores the biotechnological potential of conjugative relaxase TrwC as a site-specific integrase for genomic modification of human cells. PMID:22292089
Pan, W J; Blackburn, E H
1995-01-01
The rRNA genes in the somatic macronucleus of Tetrahymena thermophila are normally on 21 kb linear palindromic molecules (rDNA). We examined the effect on rRNA gene dosage of transforming T.thermophila macronuclei with plasmid constructs containing a pair of tandemly repeated rDNA replication origin regions unlinked to the rRNA gene. A significant proportion of the plasmid sequences were maintained as high copy circular molecules, eventually consisting solely of tandem arrays of origin regions. As reported previously for cells transformed by a construct in which the same tandem rDNA origins were linked to the rRNA gene [Yu, G.-L. and Blackburn, E. H. (1990) Mol. Cell. Biol., 10, 2070-2080], origin sequences recombined to form linear molecules bearing several tandem repeats of the origin region, as well as rRNA genes. The total number of rDNA origin sequences eventually exceeded rRNA gene copies by approximately 20- to 40-fold and the number of circular replicons carrying only rDNA origin sequences exceeded rRNA gene copies by 2- to 3-fold. However, the rRNA gene dosage was unchanged. Hence, simply monitoring the total number of rDNA origin regions is not sufficient to regulate rRNA gene copy number. Images PMID:7784211
Lo, Y M Dennis
2013-12-01
The discovery of cell-free fetal DNA in maternal plasma in 1997 has stimulated a rapid development of non-invasive prenatal testing. The recent advent of massively parallel sequencing has allowed the analysis of circulating cell-free fetal DNA to be performed with unprecedented sensitivity and precision. Fetal trisomies 21, 18 and 13 are now robustly detectable in maternal plasma and such analyses have been available clinically since 2011. Fetal genome-wide molecular karyotyping and whole-genome sequencing have now been demonstrated in a number of proof-of-concept studies. Genome-wide and targeted sequencing of maternal plasma has been shown to allow the non-invasive prenatal testing of β-thalassaemia and can potentially be generalized to other monogenic diseases. It is thus expected that plasma DNA-based non-invasive prenatal testing will play an increasingly important role in future obstetric care. It is thus timely and important that the ethical, social and legal issues of non-invasive prenatal testing be discussed actively by all parties involved in prenatal care. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Composition and immuno-stimulatory properties of extracellular DNA from mouse gut flora.
Qi, Ce; Li, Ya; Yu, Ren-Qiang; Zhou, Sheng-Li; Wang, Xing-Guo; Le, Guo-Wei; Jin, Qing-Zhe; Xiao, Hang; Sun, Jin
2017-11-28
To demonstrate that specific bacteria might release bacterial extracellular DNA (eDNA) to exert immunomodulatory functions in the mouse small intestine. Extracellular DNA was extracted using phosphate buffered saline with 0.5 mmol/L dithiothreitol combined with two phenol extractions. TOTO-1 iodide, a cell-impermeant and high-affinity nucleic acid stain, was used to confirm the existence of eDNA in the mucus layers of the small intestine and colon in healthy Male C57BL/6 mice. Composition difference of eDNA and intracellular DNA (iDNA) of the small intestinal mucus was studied by Illumina sequencing and terminal restriction fragment length polymorphism (T-RFLP). Stimulation of cytokine production by eDNA was studied in RAW264.7 cells in vitro . TOTO-1 iodide staining confirmed existence of eDNA in loose mucus layer of the mouse colon and thin surface mucus layer of the small intestine. Illumina sequencing analysis and T-RFLP revealed that the composition of the eDNA in the small intestinal mucus was significantly different from that of the iDNA of the small intestinal mucus bacteria. Illumina Miseq sequencing showed that the eDNA sequences came mainly from Gram-negative bacteria of Bacteroidales S24-7. By contrast, predominant bacteria of the small intestinal flora comprised Gram-positive bacteria. Both eDNA and iDNA were added to native or lipopolysaccharide-stimulated Raw267.4 macrophages, respectively. The eDNA induced significantly lower tumor necrosis factor-α/interleukin-10 (IL-10) and IL-6/IL-10 ratios than iDNA, suggesting the predominance for maintaining immune homeostasis of the gut. Our results indicated that degraded bacterial genomic DNA was mainly released by Gram-negative bacteria, especially Bacteroidales-S24-7 and Stenotrophomonas genus in gut mucus of mice. They decreased pro-inflammatory activity compared to total gut flora genomic DNA.
Perrier, Jean-Philippe; Sellem, Eli; Prézelin, Audrey; Gasselin, Maxime; Jouneau, Luc; Piumi, François; Al Adhami, Hala; Weber, Michaël; Fritz, Sébastien; Boichard, Didier; Le Danvic, Chrystelle; Schibler, Laurent; Jammes, Hélène; Kiefer, Hélène
2018-05-29
Spermatozoa have a remarkable epigenome in line with their degree of specialization, their unique nature and different requirements for successful fertilization. Accordingly, perturbations in the establishment of DNA methylation patterns during male germ cell differentiation have been associated with infertility in several species. While bull semen is widely used in artificial insemination, the literature describing DNA methylation in bull spermatozoa is still scarce. The purpose of this study was therefore to characterize the bull sperm methylome relative to both bovine somatic cells and the sperm of other mammals through a multiscale analysis. The quantification of DNA methylation at CCGG sites using luminometric methylation assay (LUMA) highlighted the undermethylation of bull sperm compared to the sperm of rams, stallions, mice, goats and men. Total blood cells displayed a similarly high level of methylation in bulls and rams, suggesting that undermethylation of the bovine genome was specific to sperm. Annotation of CCGG sites in different species revealed no striking bias in the distribution of genome features targeted by LUMA that could explain undermethylation of bull sperm. To map DNA methylation at a genome-wide scale, bull sperm was compared with bovine liver, fibroblasts and monocytes using reduced representation bisulfite sequencing (RRBS) and immunoprecipitation of methylated DNA followed by microarray hybridization (MeDIP-chip). These two methods exhibited differences in terms of genome coverage, and consistently, two independent sets of sequences differentially methylated in sperm and somatic cells were identified for RRBS and MeDIP-chip. Remarkably, in the two sets most of the differentially methylated sequences were hypomethylated in sperm. In agreement with previous studies in other species, the sequences that were specifically hypomethylated in bull sperm targeted processes relevant to the germline differentiation program (piRNA metabolism, meiosis, spermatogenesis) and sperm functions (cell adhesion, fertilization), as well as satellites and rDNA repeats. These results highlight the undermethylation of bull spermatozoa when compared with both bovine somatic cells and the sperm of other mammals, and raise questions regarding the dynamics of DNA methylation in bovine male germline. Whether sperm undermethylation has potential interactions with structural variation in the cattle genome may deserve further attention.
Baxter, Laura L; Hsu, Benjamin J; Umayam, Lowell; Wolfsberg, Tyra G; Larson, Denise M; Frith, Martin C; Kawai, Jun; Hayashizaki, Yoshihide; Carninci, Piero; Pavan, William J
2007-06-01
As part of the RIKEN mouse encyclopedia project, two cDNA libraries were prepared from melanocyte-derived cell lines, using techniques of full-length clone selection and subtraction/normalization to enrich for rare transcripts. End sequencing showed that these libraries display over 83% complete coding sequence at the 5' end and 96-97% complete coding sequence at the 3' end. Evaluation of the libraries, derived from B16F10Y tumor cells and melan-c cells, revealed that they contain clones for a majority of the genes previously demonstrated to function in melanocyte biology. Analysis of genomic locations for transcripts revealed that the distribution of melanocyte genes is non-random throughout the genome. Three genomic regions identified that showed significant clustering of melanocyte-expressed genes contain one or more genes previously shown to regulate melanocyte development or function. A catalog of genes expressed in these libraries is presented, providing a valuable resource of cDNA clones and sequence information that can be used for identification of new genes important for melanocyte development, function, and disease.
Vinner, Lasse; Mourier, Tobias; Friis-Nielsen, Jens; Gniadecki, Robert; Dybkaer, Karen; Rosenberg, Jacob; Langhoff, Jill Levin; Cruz, David Flores Santa; Fonager, Jannik; Izarzugaza, Jose M G; Gupta, Ramneek; Sicheritz-Ponten, Thomas; Brunak, Søren; Willerslev, Eske; Nielsen, Lars Peter; Hansen, Anders Johannes
2015-08-19
Although nearly one fifth of all human cancers have an infectious aetiology, the causes for the majority of cancers remain unexplained. Despite the enormous data output from high-throughput shotgun sequencing, viral DNA in a clinical sample typically constitutes a proportion of host DNA that is too small to be detected. Sequence variation among virus genomes complicates application of sequence-specific, and highly sensitive, PCR methods. Therefore, we aimed to develop and characterize a method that permits sensitive detection of sequences despite considerable variation. We demonstrate that our low-stringency in-solution hybridization method enables detection of <100 viral copies. Furthermore, distantly related proviral sequences may be enriched by orders of magnitude, enabling discovery of hitherto unknown viral sequences by high-throughput sequencing. The sensitivity was sufficient to detect retroviral sequences in clinical samples. We used this method to conduct an investigation for novel retrovirus in samples from three cancer types. In accordance with recent studies our investigation revealed no retroviral infections in human B-cell lymphoma cells, cutaneous T-cell lymphoma or colorectal cancer biopsies. Nonetheless, our generally applicable method makes sensitive detection possible and permits sequencing of distantly related sequences from complex material.
Use of electroporation for high-molecular-weight DNA-mediated gene transfer.
Jastreboff, M M; Ito, E; Bertino, J R; Narayanan, R
1987-08-01
Electroporation was used to introduce high-molecular-weight DNA into murine hematopoietic cells and NIH3T3 cells. CCRF-CEM cells were stably transfected with SV2NEO plasmid and the genomic DNA from G-418-resistant clones (greater than 65 kb) was introduced into mouse bone marrow and NIH3T3 cells by electroporation. NEO sequences and expression were detected in the hematopoietic tissues of lethally irradiated mice, with 24% of individual spleen colonies expressing NEO. The frequency of genomic DNA transfer into NIH3T3 cells was 0.25 X 10(-3). Electroporation thus offers a powerful mode of gene transfer not only of cloned genes but also of high-molecular-weight DNA into cells.
NASA Astrophysics Data System (ADS)
Lau, Yun-Fai; Kan, Yuet Wai
1983-09-01
We have developed a series of cosmids that can be used as vectors for genomic recombinant DNA library preparations, as expression vectors in mammalian cells for both transient and stable transformations, and as shuttle vectors between bacteria and mammalian cells. These cosmids were constructed by inserting one of the SV2-derived selectable gene markers-SV2-gpt, SV2-DHFR, and SV2-neo-in cosmid pJB8. High efficiency of genomic cloning was obtained with these cosmids and the size of the inserts was 30-42 kilobases. We isolated recombinant cosmids containing the human α -globin gene cluster from these genomic libraries. The simian virus 40 DNA in these selectable gene markers provides the origin of replication and enhancer sequences necessary for replication in permissive cells such as COS 7 cells and thereby allows transient expression of α -globin genes in these cells. These cosmids and their recombinants could also be stably transformed into mammalian cells by using the respective selection systems. Both of the adult α -globin genes were more actively expressed than the embryonic zeta -globin genes in these transformed cell lines. Because of the presence of the cohesive ends of the Charon 4A phage in the cosmids, the transforming DNA sequences could readily be rescued from these stably transformed cells into bacteria by in vitro packaging of total cellular DNA. Thus, these cosmid vectors are potentially useful for direct isolation of structural genes.
Distinctive archaebacterial species associated with anaerobic rumen protozoan Entodinium caudatum.
Tóthová, T; Piknová, M; Kisidayová, S; Javorský, P; Pristas, P
2008-01-01
The diversity of archaebacteria associated with anaerobic rumen protozoan Entodinium caudatum in long term in vitro culture was investigated by denaturing gradient gel electrophoresis (DGGE) analysis of hypervariable V3 region of archaebacterial 16S rRNA gene. PCR was accomplished directly from DNA extracted from a single protozoal cell and from total community genomic DNA and the obtained fingerprints were compared. The analysis indicated the presence of a solitary intensive band present in Entodinium caudatum single cell DNA, which had no counterparts in the profile from total DNA. The identity of archaebacterium represented by this band was determined by sequence analysis which showed that the sequence fell to the cluster of ciliate symbiotic methanogens identified recently by 16S gene library approach.
Sargent, R Geoffrey; Suzuki, Shingo; Gruenert, Dieter C
2014-01-01
Recent developments in methods to specifically modify genomic DNA using sequence-specific endonucleases and donor DNA have opened the door to a new therapeutic paradigm for cell and gene therapy of inherited diseases. Sequence-specific endonucleases, in particular transcription activator-like (TAL) effector nucleases (TALENs), have been coupled with polynucleotide small/short DNA fragments (SDFs) to correct the most common mutation in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene, a 3-base-pair deletion at codon 508 (delF508), in induced pluripotent stem (iPS) cells. The studies presented here describe the generation of candidate TALENs and their co-transfection with wild-type (wt) CFTR-SDFs into CF-iPS cells homozygous for the delF508 mutation. Using an allele-specific PCR (AS-PCR)-based cyclic enrichment protocol, clonal populations of corrected CF-iPS cells were isolated and expanded.
Zhang, Ao; Bogerd, Hal; Villinger, Francois; Gupta, Jaydip Das; Dong, Beihua; Klein, Eric A.; Hackett, John; Schochetman, Gerald; Cullen, Bryan R.; Silverman, Robert H.
2011-01-01
The gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV), replicates to high titers in some human cell lines and is able to infect non-human primates. To determine whether APOBEC3 (A3) proteins restrict XMRV infections in a non-human primate model, we sequenced proviral DNA from peripheral blood mononuclear cells of XMRV-infected rhesus macaques. Hypermutation characteristic of A3DE, A3F and A3G activities was observed in the XMRV proviral sequences in vivo. Furthermore, expression of rhesus A3DE, A3F, or A3G in human cells inhibited XMRV infection and caused hypermutation of XMRV DNA. These studies show that some rhesus A3 isoforms are highly effective against XMRV in the blood of a non-human primate model of infection and in cultured human cells. PMID:21982221
Pediatric Glioblastoma Therapies Based on Patient-Derived Stem Cell Resources
2014-11-01
genomic DNA and then subjected to Illumina high-throughput sequencing . In this analysis, shRNAs lost in the GSC population represent candidate gene...and genomic DNA and then subjected to Illumina high-throughput sequencing . In this analysis, shRNAs lost in the GSC population represent candidate...PRISM 7900 Sequence Detection System ( Genomics Resource, FHCRC). Relative transcript abundance was analyzed using the 2−ΔΔCt method. TRIzol (Invitrogen
Tumorigenic Potential of Transit Amplifying Prostate Cells
2012-06-01
by ChIP-Seq showed that in both the human prostate cell line LNCaP and in mouse prostate, NKX3.1 bound DNA fragments are significantly enriched in...progression. Cancer Cell. 2010;17(5):443–454. 29. Steadman DJ, Giuffrida D, Gelmann EP. DNA - binding sequence of the human prostate-specific...bind nucleosomal DNA and destabilize nucleosomes thereby allowing other transcription factors to access their sites (7),(8). BODY Aim 1: To
Teaching Biology around Themes: Teach Proteins and DNA Together.
ERIC Educational Resources Information Center
Offner, Susan
1992-01-01
Proposes as a unifying theme for high school biology the question of "how chromosomes determine what we are." Describes a sequence of lessons in which students learn about proteins, enzymes, and amino acids. Includes three dry laboratory exercises to demonstrate the DNA sequences for sickle cell anemia and cystic fibrosis. (MDH)
Ludgate, Jackie L; Wright, James; Stockwell, Peter A; Morison, Ian M; Eccles, Michael R; Chatterjee, Aniruddha
2017-08-31
Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis. Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing. The main features and advantages of this protocol are: An optimized method for extracting good quality DNA from FFPE tissues. An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue. Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing. We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue.
Albitar, Adam; Ma, Wanlong; DeDios, Ivan; Estella, Jeffrey; Ahn, Inhye; Farooqui, Mohammed; Wiestner, Adrian; Albitar, Maher
2017-03-14
Patients with chronic lymphocytic leukemia (CLL) that develop resistance to Bruton tyrosine kinase (BTK) inhibitors are typically positive for mutations in BTK or phospholipase c gamma 2 (PLCγ2). We developed a high sensitivity (HS) assay utilizing wild-type blocking polymerase chain reaction achieved via bridged and locked nucleic acids. We used this high sensitivity assay in combination with Sanger sequencing and next generation sequencing (NGS) and tested cellular DNA and cell-free DNA (cfDNA) from patients with CLL treated with the BTK inhibitor, ibrutinib. We also tested ibrutinib-naïve patients with CLL. HS testing achieved 100x greater sensitivity than Sanger. HS Sanger sequencing was capable of detecting < 1 mutant allele in background of 1000 wild-type alleles (1:1000). Similar sensitivity was achieved with HS NGS. No BTK or PLCγ2 mutations were detected in any of the 44 ibrutinib-naïve CLL patients. We demonstrate that without the HS testing 56% of positive samples would have been missed for BTK and 85% of PLCγ2 would have been missed. With the use of HS, we were able to detect multiple mutant clones in the same sample in 37.5% of patients; most would have been missed without HS testing. We also demonstrate that with HS sequencing, plasma cfDNA is more reliable than cellular DNA in detecting mutations. Our studies indicate that wild-type blocking and HS sequencing is necessary for proper and early detection of BTK or PLCγ2 mutations in monitoring patients treated with BTK inhibitors. Furthermore, cfDNA from plasma is very reliable sample-type for testing.
The Relationship Between Human Nucleolar Organizer Regions and Nucleoli, Probed by 3D-ImmunoFISH.
van Sluis, Marjolein; van Vuuren, Chelly; McStay, Brian
2016-01-01
3D-immunoFISH is a valuable technique to compare the localization of DNA sequences and proteins in cells where three-dimensional structure has been preserved. As nucleoli contain a multitude of protein factors dedicated to ribosome biogenesis and form around specific chromosomal loci, 3D-immunoFISH is a particularly relevant technique for their study. In human cells, nucleoli form around transcriptionally active ribosomal gene (rDNA) arrays termed nucleolar organizer regions (NORs) positioned on the p-arms of each of the acrocentric chromosomes. Here, we provide a protocol for fixing and permeabilizing human cells grown on microscope slides such that nucleolar proteins can be visualized using antibodies and NORs visualized by DNA FISH. Antibodies against UBF recognize transcriptionally active rDNA/NORs and NOP52 antibodies provide a convenient way of visualizing the nucleolar volume. We describe a probe designed to visualize rDNA and introduce a probe comprised of NOR distal sequences, which can be used to identify or count individual NORs.
DNA Breaks and End Resection Measured Genome-wide by End Sequencing.
Canela, Andres; Sridharan, Sriram; Sciascia, Nicholas; Tubbs, Anthony; Meltzer, Paul; Sleckman, Barry P; Nussenzweig, André
2016-09-01
DNA double-strand breaks (DSBs) arise during physiological transcription, DNA replication, and antigen receptor diversification. Mistargeting or misprocessing of DSBs can result in pathological structural variation and mutation. Here we describe a sensitive method (END-seq) to monitor DNA end resection and DSBs genome-wide at base-pair resolution in vivo. We utilized END-seq to determine the frequency and spectrum of restriction-enzyme-, zinc-finger-nuclease-, and RAG-induced DSBs. Beyond sequence preference, chromatin features dictate the repertoire of these genome-modifying enzymes. END-seq can detect at least one DSB per cell among 10,000 cells not harboring DSBs, and we estimate that up to one out of 60 cells contains off-target RAG cleavage. In addition to site-specific cleavage, we detect DSBs distributed over extended regions during immunoglobulin class-switch recombination. Thus, END-seq provides a snapshot of DNA ends genome-wide, which can be utilized for understanding genome-editing specificities and the influence of chromatin on DSB pathway choice. Published by Elsevier Inc.
Generation of Leishmania Hybrids by Whole Genomic DNA Transformation
Coelho, Adriano C.; Leprohon, Philippe; Ouellette, Marc
2012-01-01
Genetic exchange is a powerful tool to study gene function in microorganisms. Here, we tested the feasibility of generating Leishmania hybrids by electroporating genomic DNA of donor cells into recipient Leishmania parasites. The donor DNA was marked with a drug resistance marker facilitating the selection of DNA transfer into the recipient cells. The transferred DNA was integrated exclusively at homologous locus and was as large as 45 kb. The independent generation of L. infantum hybrids with L. major sequences was possible for several chromosomal regions. Interfering with the mismatch repair machinery by inactivating the MSH2 gene enabled an increased efficiency of recombination between divergent sequences, hence favouring the selection of hybrids between species. Hybrids were shown to acquire the phenotype derived from the donor cells, as demonstrated for the transfer of drug resistance genes from L. major into L. infantum. The described method is a first step allowing the generation of in vitro hybrids for testing gene functions in a natural genomic context in the parasite Leishmania. PMID:23029579
A test of the transcription model for biased inheritance of yeast mitochondrial DNA.
Lorimer, H E; Brewer, B J; Fangman, W L
1995-09-01
Two strand-specific origins of replication appear to be required for mammalian mitochondrial DNA (mtDNA) replication. Structural equivalents of these origins are found in the rep sequences of Saccharomyces cerevisiae mtDNA. These striking similarities have contributed to a universal model for the initiation of mtDNA replication in which a primer is created by cleavage of an origin region transcript. Consistent with this model are the properties of deletion mutants of yeast mtDNA ([rho-]) with a high density of reps (HS [rho-]). These mutant mtDNAs are preferentially inherited by the progeny resulting from the mating of HS [rho-] cells with cells containing wild-type mtDNA ([rho+]). This bias is presumed to result from a replication advantage conferred on HS [rho-] mtDNA by the high density of rep sequences acting as origins. To test whether transcription is indeed required for the preferential inheritance of HS [rho-] mtDNA, we deleted the nuclear gene (RPO41) for the mitochondrial RNA polymerase, reducing transcripts by at least 1000-fold. Since [rho-] genomes, but not [rho+] genomes, are stable when RPO41 is deleted, we examined matings between HS [rho-] and neutral [rho-] cells. Neutral [rho-] mtDNAs lack rep sequences and are not preferentially inherited in [rho-] x [rho+] crosses. In HS [rho-] x neutral [rho-] matings, the HS [rho-] mtDNA was preferentially inherited whether both parents were wild type or both were deleted for RPO41. Thus, transcription from the rep promoter does not appear to be necessary for biased inheritance. Our results, and analysis of the literature, suggest that priming by transcription is not a universal mechanism for mtDNA replication initiation.
Noncoding sequence classification based on wavelet transform analysis: part I
NASA Astrophysics Data System (ADS)
Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.
2017-09-01
DNA sequences in human genome can be divided into the coding and noncoding ones. Coding sequences are those that are read during the transcription. The identification of coding sequences has been widely reported in literature due to its much-studied periodicity. Noncoding sequences represent the majority of the human genome. They play an important role in gene regulation and differentiation among the cells. However, noncoding sequences do not exhibit periodicities that correlate to their functions. The ENCODE (Encyclopedia of DNA elements) and Epigenomic Roadmap Project projects have cataloged the human noncoding sequences into specific functions. We study characteristics of noncoding sequences with wavelet analysis of genomic signals.
Elder, Robert M; Jayaraman, Arthi
2013-10-10
Gene therapy relies on the delivery of DNA into cells, and polycations are one class of vectors enabling efficient DNA delivery. Nuclear localization sequences (NLS), cationic oligopeptides that target molecules for nuclear entry, can be incorporated into polycations to improve their gene delivery efficiency. We use simulations to study the effect of peptide chemistry and sequence on the DNA-binding behavior of NLS-grafted polycations by systematically mutating the residues in the grafts, which are based on the SV40 NLS (peptide sequence PKKKRKV). Replacing arginine (R) with lysine (K) reduces binding strength by eliminating arginine-DNA interactions, but placing R in a less hindered location (e.g., farther from the grafting point to the polycation backbone) has surprisingly little effect on polycation-DNA binding strength. Changing the positions of the hydrophobic proline (P) and valine (V) residues relative to the polycation backbone changes hydrophobic aggregation within the polycation and, consequently, changes the conformational entropy loss that occurs upon polycation-DNA binding. Since conformational entropy loss affects the free energy of binding, the positions of P and V in the grafts affect DNA binding affinity. The insight from this work guides synthesis of polycations with tailored DNA binding affinity and, in turn, efficient DNA delivery.
Conserved Sequences at the Origin of Adenovirus DNA Replication
Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.
1982-01-01
The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575
Johnston, L H; Eberly, S L; Chapman, J W; Araki, H; Sugino, A
1990-01-01
Several Saccharomyces cerevisiae dbf mutants defective in DNA synthesis have been described previously. In this paper, one of them, dbf2, is characterized in detail. The DBF2 gene has been cloned and mapped, and its nucleotide sequence has been determined. This process has identified an open reading frame capable of encoding a protein of molecular weight 64,883 (561 amino acids). The deduced amino acid sequence contains all 11 conserved domains found in various protein kinases. DBF2 was periodically expressed in the cell cycle at a time that clearly differed from the time of expression of either the histone H2A or DNA polymerase I gene. Its first function was completed very near to initiation of DNA synthesis. However, DNA synthesis in the mutant was only delayed at 37 degrees C, and the cells blocked in nuclear division. Consistent with this finding, the execution point occurred about 1 h after DNA synthesis, and the nuclear morphology of the mutant at the restrictive temperature was that of cells blocked in late nuclear division. DBF2 is therefore likely to encode a protein kinase that may function in initiation of DNA synthesis and also in late nuclear division. Images PMID:2181271
Michlewski, Gracjan; Finnegan, David J.; Elfick, Alistair; Rosser, Susan J.
2017-01-01
Abstract Delivery of DNA to cells and its subsequent integration into the host genome is a fundamental task in molecular biology, biotechnology and gene therapy. Here we describe an IP-free one-step method that enables stable genome integration into either prokaryotic or eukaryotic cells. A synthetic mariner transposon is generated by flanking a DNA sequence with short inverted repeats. When purified recombinant Mos1 or Mboumar-9 transposase is co-transfected with transposon-containing plasmid DNA, it penetrates prokaryotic or eukaryotic cells and integrates the target DNA into the genome. In vivo integrations by purified transposase can be achieved by electroporation, chemical transfection or Lipofection of the transposase:DNA mixture, in contrast to other published transposon-based protocols which require electroporation or microinjection. As in other transposome systems, no helper plasmids are required since transposases are not expressed inside the host cells, thus leading to generation of stable cell lines. Since it does not require electroporation or microinjection, this tool has the potential to be applied for automated high-throughput creation of libraries of random integrants for purposes including gene knock-out libraries, screening for optimal integration positions or safe genome locations in different organisms, selection of the highest production of valuable compounds for biotechnology, and sequencing. PMID:28204586
Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr
2014-04-01
Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.
Sequencing to Station in 12 Months (Targeting Orbital 5 Launch, March 30th)
NASA Technical Reports Server (NTRS)
Smith, David J.; Burton, Aaron Steven
2015-01-01
The Biomolecule Sequencer is a Commercial Off-The-Shelf device developed by Oxford Nanopore Technologies and implements a method of DNA sequencing unlike any other current sequencers. The device measures changes in electrical current through a nanopore depending on the sequence of the DNA strand that is passing through it. Since the technology is built on nanometer-scale ion pores, the hardware itself is exceptionally small (3 x 1 x 58 inches), lightweight (less than 120 grams with USB cable), and powered only by a USB connection. The sequencing device is permanent, while the flow cells, to which the samples are added, are periodically replaced. The goal of our upcoming technology demonstration on ISS is to provide evidence that DNA sequencing in space is possible, which holds the exciting potential to enable the identification of microorganisms, monitor changes in microbes and humans in response to spaceflight, and possibly aid in the detection of DNA-based life elsewhere in the universe.
Diatom centromeres suggest a mechanism for nuclear DNA acquisition
Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.; ...
2017-07-18
Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less
Diatom centromeres suggest a mechanism for nuclear DNA acquisition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.
Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less
Habermann, Bianca; Bebin, Anne-Gaelle; Herklotz, Stephan; Volkmer, Michael; Eckelt, Kay; Pehlke, Kerstin; Epperlein, Hans Henning; Schackert, Hans Konrad; Wiebe, Glenis; Tanaka, Elly M
2004-01-01
Background The ambystomatid salamander, Ambystoma mexicanum (axolotl), is an important model organism in evolutionary and regeneration research but relatively little sequence information has so far been available. This is a major limitation for molecular studies on caudate development, regeneration and evolution. To address this lack of sequence information we have generated an expressed sequence tag (EST) database for A. mexicanum. Results Two cDNA libraries, one made from stage 18-22 embryos and the other from day-6 regenerating tail blastemas, generated 17,352 sequences. From the sequenced ESTs, 6,377 contigs were assembled that probably represent 25% of the expressed genes in this organism. Sequence comparison revealed significant homology to entries in the NCBI non-redundant database. Further examination of this gene set revealed the presence of genes involved in important cell and developmental processes, including cell proliferation, cell differentiation and cell-cell communication. On the basis of these data, we have performed phylogenetic analysis of key cell-cycle regulators. Interestingly, while cell-cycle proteins such as the cyclin B family display expected evolutionary relationships, the cyclin-dependent kinase inhibitor 1 gene family shows an unusual evolutionary behavior among the amphibians. Conclusions Our analysis reveals the importance of a comprehensive sequence set from a representative of the Caudata and illustrates that the EST sequence database is a rich source of molecular, developmental and regeneration studies. To aid in data mining, the ESTs have been organized into an easily searchable database that is freely available online. PMID:15345051
van der Kuyl, A C; Kuiken, C L; Dekker, J T; Perizonius, W R; Goudsmit, J
1995-06-01
Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.
Salimnia, H; Fairfax, M R; Chandrasekar, P H
2014-12-01
Cytomegalovirus (CMV) causes significant morbidity and mortality in solid organ and bone marrow transplant recipients. DNA vaccines can provide both humoral and cellular immunity without exposing immune-compromised persons to replication-competent CMV. We studied the kinetics of CMV vaccine DNA in plasma. The samples were obtained from vaccine recipients who were enrolled in a double-blinded, placebo-controlled clinical trial of an intramuscular, plasmid-based, bivalent DNA vaccine for CMV in stem cell transplant recipients. Residual specimens on patients enrolled in the vaccine trial were saved until the trial was unblinded and published. Quantitative real-time polymerase chain reaction (PCR) was used to detect and quantify CMV glycoprotein B (gB) DNA in plasma from 4 recipients of the vaccine. The melting temperature of the vaccine gB amplicon was 62.4°C, compared to 68.8°C, which is seen with the wild-type virus. Sequence analysis revealed that there were 3 mismatches between the fluorescent resonance energy transfer probe and the vaccine DNA sequence. Because preemptive treatment of CMV disease in stem cell transplant patients is based on quantitative PCR analysis of viral sequences in plasma, it is important that vaccine sequences not be confused with those in wild-type virus. Confusion could lead to treatment with toxic medications, potentially compromising the transplant. Effects of PCR target choice and amplicon detection techniques on patient management and vaccine trials are discussed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lawless, Oliver J; Bellanti, Joseph A; Brown, Milton L; Sandberg, Kathryn; Umans, Jason G; Zhou, Li; Chen, Weiqian; Wang, Julie; Wang, Kan; Zheng, Song Guo
2018-03-01
Allergic and autoimmune diseases comprise a group of inflammatory disorders caused by aberrant immune responses in which CD25+ Forkhead box P3-positive (FOXP3+) T regulatory (Treg) cells that normally suppress inflammatory events are often poorly functioning. This has stimulated an intensive investigative effort to find ways of increasing Tregs as a method of therapy for these conditions. One such line of investigation includes the study of how ligation of Toll-like receptors (TLRs) by CpG oligonucleotides (ODN) results in an immunostimulatory cascade that leads to induction of T-helper (Th) type 1 and Treg-type immune responses. The present study investigated the mechanisms by which calf thymus mammalian double-stranded DNA (CT-DNA) and a synthetic methylated DNA CpG ODN sequence suppress in vitro lymphoproliferative responses to antigens, mitogens, and alloantigens when measured by [3H]-thymidine incorporation and promote FoxP3 expression in human CD4+ T cells in the presence of transforming growth factor (TGF) beta and interleukin-2 (IL-2). Lymphoproliferative responses of peripheral blood mononuclear cells from four healthy subjects or nine subjects with systemic lupus erythematosus to CT-DNA or phytohemagglutinin (PHA) was measured by tritiated thymidine ([3H]-TdR) incorporation expressed as a stimulation index. Mechanisms of immunosuppressive effects of CT-DNA were evaluated by measurement of the degree of inhibition to lymphoproliferative responses to streptokinase-streptodornase, phytohemagglutinin (PHA), concanavalin A (Con A), pokeweed mitogen (PWM), or alloantigens by a Con A suppressor assay. The effects of CpG methylation on induction of FoxP3 expression in human T cells were measured by comparing inhibitory responses of synthetic methylated and nonmethylated 8-mer CpG ODN sequences by using cell sorting, in vitro stimulation, and suppressor assay. Here, we showed that CT-DNA and a synthetic methylated DNA 8-mer sequence could suppress antigen-, mitogen-, and alloantigen-induced lymphoproliferation in vitro when measured by [3H]-thymidine. The synthetic methylated DNA CpG ODN but not an unmethylated CpG ODN sequence was shown to promote FoxP3 expression in human CD4+ T cells in the presence of TGF beta and IL-2. The induction of FoxP3+ suppressor cells is dose dependent and offers a potential clinical therapeutic application in allergic and autoimmune and inflammatory diseases. The use of this methylated CpG ODN offers a broad clinical application as a novel therapeutic method for Treg induction and, because of its low cost and small size, should facilitate delivery via nasal, respiratory, gastrointestinal routes, and/or by injection, routes of administration important for vaccine delivery to target sites responsible for respiratory, gastrointestinal, and systemic forms of allergic and autoimmune disease.
Enhanced sequencing coverage with digital droplet multiple displacement amplification
Sidore, Angus M.; Lan, Freeman; Lim, Shaun W.; Abate, Adam R.
2016-01-01
Sequencing small quantities of DNA is important for applications ranging from the assembly of uncultivable microbial genomes to the identification of cancer-associated mutations. To obtain sufficient quantities of DNA for sequencing, the small amount of starting material must be amplified significantly. However, existing methods often yield errors or non-uniform coverage, reducing sequencing data quality. Here, we describe digital droplet multiple displacement amplification, a method that enables massive amplification of low-input material while maintaining sequence accuracy and uniformity. The low-input material is compartmentalized as single molecules in millions of picoliter droplets. Because the molecules are isolated in compartments, they amplify to saturation without competing for resources; this yields uniform representation of all sequences in the final product and, in turn, enhances the quality of the sequence data. We demonstrate the ability to uniformly amplify the genomes of single Escherichia coli cells, comprising just 4.7 fg of starting DNA, and obtain sequencing coverage distributions that rival that of unamplified material. Digital droplet multiple displacement amplification provides a simple and effective method for amplifying minute amounts of DNA for accurate and uniform sequencing. PMID:26704978
Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using
Weier, H.U.G.; Gray, J.W.
1995-06-27
A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers and probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity. 18 figs.
Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using
Weier, Heinz-Ulrich G.; Gray, Joe W.
1995-01-01
A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers ard probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity.
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV-1) is a cell-associated alphaherpesvirus that induces rapid-onset T-cell lymphomas in poultry. The genomes of 6 strains have been sequenced using both Sanger didoxy sequencing and 454 Life Science pyrosequencing. These genomes largely represent cell culture adapted strains...
NASA Technical Reports Server (NTRS)
Balcer-Kubiczek, E. K.; Meltzer, S. J.; Han, L. H.; Zhang, X. F.; Shi, Z. M.; Harrison, G. H.; Abraham, J. M.
1997-01-01
A novel polymerase chain reaction (PCR)-based method was used to identify candidate genes whose expression is altered in cancer cells by ionizing radiation. Transcriptional induction of randomly selected genes in control versus irradiated human HL60 cells was compared. Among several complementary DNA (cDNA) clones recovered by this approach, one cDNA clone (CL68-5) was downregulated in X-irradiated HL60 cells but unaffected by 12-O-tetradecanoyl phorbol-13-acetate, forskolin, or cyclosporin-A. DNA sequencing of the CL68-5 cDNA revealed 100% nucleotide sequence homology to the reported human Csa-19 gene. Northern blot analysis of RNA from control and irradiated cells revealed the expression of a single 0.7-kilobase (kb) messenger RNA (mRNA) transcript. This 0.7-kb Csa-19 mRNA transcript was also expressed in a variety of human adult and corresponding fetal normal tissues. Moreover, when the effect of X- or fission neutron-irradiation on Csa-19 mRNA was compared in cultured human cells differing in p53 gene status (p53-/- versus p53+/+), downregulation of Csa-19 by X-rays or fission neutrons was similar in p53-wild type and p53-null cell lines. Our results provide the first known example of a radiation-responsive gene in human cancer cells whose expression is not associated with p53, adenylate cyclase or protein kinase C.
Assignment of the human caltractin gene (CALT) to Xq28 by fluorescence in situ hybridization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Tanaka; Okui, Keiko; Nakamura, Yusuke
1994-12-01
The centrosome is the major microtubule-organizing center of interphase eukaryotic cells, an its duplication is essential to eukaryotic cell division. Caltractin, a structural component of centrosomes, is highly homologous in amino acid sequence to the product of the CDC31 gene of Saccharomyces cerevisiae. In S. cerevisiae, an important role for CDC31 in duplication of the spindle pole body (SPB), a kind of microtubule-organizing center, has been demonstrated by an experiment in which mutant CDC31 prevented SPB duplication and led to formation of a monopolar spindle. In view of the localization of human caltractin in centrosomes and the sequence homology itmore » bears to yeast CDC31, it is reasonable to assume that caltractin functions in humans as CDC31 does in yeast. As a part of the Human Genome Project, we have been determining nucleotide sequences of DNA clones randomly selected from a directionally cloned cDNA library constructed from fetal brain mRNA obtained from Clontech (La Jolla, CA). By comparing 5{prime} partial DNA sequences of these cDNA clones with known DNA sequences in the database, we found one clone that was highly homologous to the caltractin gene of Chlamydomonas, which turned out to be the same as a human gene identified recently. 4 refs., 1 fig.« less
Allison, J; Hall, L; MacIntyre, I; Craig, R K
1981-01-01
(1) Total poly(A)-containing RNA isolated from human thyroid medullary carcinoma tissue was shown to direct the synthesis in the wheat germ cell-free system of a major (Mr 21000) and several minor forms of human calcitonin precursor polyproteins. Evidence for processing of these precursor(s) by the wheat germ cell-free system is also presented. (2) A small complementary DNA (cDNA) plasmid library has been constructed in the PstI site of the plasmid pAT153, using total human thyroid medullary carcinoma poly(A)-containing RNA as the starting material. (3) Plasmids containing abundant cDNA sequences were selected by hybridization in situ, and two of these (ph T-B3 and phT-B6) were characterized by hybridization--translation and restriction analysis. Each was shown to contain human calcitonin precursor polyprotein cDNA sequences. (4) RNA blotting techniques demonstrate that the human calcitonin precursor polyprotein is encoded within a mRNA containing 1000 bases. (5) The results demonstrate that human calcitonin is synthesized as a precursor polyprotein. Images Fig. 1. Fig. 2. Fig. 3. PMID:6896146
Egge, Elianne; Bittner, Lucie; Andersen, Tom; Audic, Stéphane; de Vargas, Colomban; Edvardsen, Bente
2013-01-01
Next generation sequencing of ribosomal DNA is increasingly used to assess the diversity and structure of microbial communities. Here we test the ability of 454 pyrosequencing to detect the number of species present, and assess the relative abundance in terms of cell numbers and biomass of protists in the phylum Haptophyta. We used a mock community consisting of equal number of cells of 11 haptophyte species and compared targeting DNA and RNA/cDNA, and two different V4 SSU rDNA haptophyte-biased primer pairs. Further, we tested four different bioinformatic filtering methods to reduce errors in the resulting sequence dataset. With sequencing depth of 11000–20000 reads and targeting cDNA with Haptophyta specific primers Hap454 we detected all 11 species. A rarefaction analysis of expected number of species recovered as a function of sampling depth suggested that minimum 1400 reads were required here to recover all species in the mock community. Relative read abundance did not correlate to relative cell numbers. Although the species represented with the largest biomass was also proportionally most abundant among the reads, there was generally a weak correlation between proportional read abundance and proportional biomass of the different species, both with DNA and cDNA as template. The 454 sequencing generated considerable spurious diversity, and more with cDNA than DNA as template. With initial filtering based only on match with barcode and primer we observed 100-fold more operational taxonomic units (OTUs) at 99% similarity than the number of species present in the mock community. Filtering based on quality scores, or denoising with PyroNoise resulted in ten times more OTU99% than the number of species. Denoising with AmpliconNoise reduced the number of OTU99% to match the number of species present in the mock community. Based on our analyses, we propose a strategy to more accurately depict haptophyte diversity using 454 pyrosequencing. PMID:24069303
Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka
2016-04-01
The clustered regularly interspaced short palindromic repeats (CRISPR) system is widely used for various biological applications, including genome editing. We developed engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR to isolate target genomic regions from cells for their biochemical characterization. In this study, we developed 'in vitro enChIP' using recombinant CRISPR ribonucleoproteins (RNPs) to isolate target genomic regions. in vitro enChIP has the great advantage over conventional enChIP of not requiring expression of CRISPR complexes in cells. We first showed that in vitro enChIP using recombinant CRISPR RNPs can be used to isolate target DNA from mixtures of purified DNA in a sequence-specific manner. In addition, we showed that this technology can be used to efficiently isolate target genomic regions, while retaining their intracellular molecular interactions, with negligible contamination from irrelevant genomic regions. Thus, in vitro enChIP technology is of potential use for sequence-specific isolation of DNA, as well as for identification of molecules interacting with genomic regions of interest in vivo in combination with downstream analysis. © 2016 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Santos, Sara; Chaves, Raquel; Adega, Filomena; Bastos, Estela; Guedes-Pinto, Henrique
2006-01-01
Most mammalian chromosomes have satellite DNA sequences located at or near the centromeres, organized in arrays of variable size and higher order structure. The implications of these specific repetitive DNA sequences and their organization for centromere function are still quite cloudy. In contrast to most mammalian species, the domestic cat seems to have the major satellite DNA family (FA-SAT) localized primarily at the telomeres and secondarily at the centromeres of the chromosomes. In the present work, we analyzed chromosome preparations from a fibrosarcoma, in comparison with nontumor cells (epithelial tissue) from the same individual, by in situ hybridization of the FA-SAT cat satellite DNA family. This repetitive sequence was found to be amplified in the cat tumor chromosomes analyzed. The amplification of these satellite DNA sequences in the cat chromosomes with variable number and appearance (marker chromosomes) is discussed and might be related to mitotic instability, which could explain the exhibition of complex patterns of chromosome aberrations detected in the fibrosarcoma analyzed.
In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.
Chen, Xiaoyu; Janssen, Josephine M; Liu, Jin; Maggio, Ignazio; 't Jong, Anke E J; Mikkers, Harald M M; Gonçalves, Manuel A F V
2017-09-22
Precise genome editing involves homologous recombination between donor DNA and chromosomal sequences subjected to double-stranded DNA breaks made by programmable nucleases. Ideally, genome editing should be efficient, specific, and accurate. However, besides constituting potential translocation-initiating lesions, double-stranded DNA breaks (targeted or otherwise) are mostly repaired through unpredictable and mutagenic non-homologous recombination processes. Here, we report that the coordinated formation of paired single-stranded DNA breaks, or nicks, at donor plasmids and chromosomal target sites by RNA-guided nucleases based on CRISPR-Cas9 components, triggers seamless homology-directed gene targeting of large genetic payloads in human cells, including pluripotent stem cells. Importantly, in addition to significantly reducing the mutagenicity of the genome modification procedure, this in trans paired nicking strategy achieves multiplexed, single-step, gene targeting, and yields higher frequencies of accurately edited cells when compared to the standard double-stranded DNA break-dependent approach.CRISPR-Cas9-based gene editing involves double-strand breaks at target sequences, which are often repaired by mutagenic non-homologous end-joining. Here the authors use Cas9 nickases to generate coordinated single-strand breaks in donor and target DNA for precise homology-directed gene editing.
Oikonomopoulos, Spyros; Wang, Yu Chang; Djambazian, Haig; Badescu, Dunarel; Ragoussis, Jiannis
2016-08-24
To assess the performance of the Oxford Nanopore Technologies MinION sequencing platform, cDNAs from the External RNA Controls Consortium (ERCC) RNA Spike-In mix were sequenced. This mix mimics mammalian mRNA species and consists of 92 polyadenylated transcripts with known concentration. cDNA libraries were generated using a template switching protocol to facilitate the direct comparison between different sequencing platforms. The MinION performance was assessed for its ability to sequence the cDNAs directly with good accuracy in terms of abundance and full length. The abundance of the ERCC cDNA molecules sequenced by MinION agreed with their expected concentration. No length or GC content bias was observed. The majority of cDNAs were sequenced as full length. Additionally, a complex cDNA population derived from a human HEK-293 cell line was sequenced on an Illumina HiSeq 2500, PacBio RS II and ONT MinION platforms. We observed that there was a good agreement in the measured cDNA abundance between PacBio RS II and ONT MinION (rpearson = 0.82, isoforms with length more than 700bp) and between Illumina HiSeq 2500 and ONT MinION (rpearson = 0.75). This indicates that the ONT MinION can sequence quantitatively both long and short full length cDNA molecules.
Laursen, J R; di Liu, H; Wu, X J; Yoshino, T P
1997-11-01
Sublethal heat-shock of cells of the Bge (Biomphalaria glabrata embryonic) snail cell line resulted in increased or new expression of metabolically labeled polypeptides of approximately 21.5, 41, 70, and 74 kDa molecular mass. Regulation of this response appeared to be at the transcriptional level since a similar protein banding pattern was seen upon SDS-PAGE/fluorographic analysis of polypeptides produced by in vitro translation of total RNA from cells subjected to heat shock. Using a yeast (Saccharomyces cerevisiae) 70-kDa heat-shock protein (HSP70) probe to screen a cDNA library from heat-treated Bge cells, we isolated a full-length cDNA clone encoding a putative Bge HSP70. The cDNA was 2453 bp in length and contained an open reading frame of 1908 bp encoding a 636-amino-acid polypeptide with calculated molecular mass of 70,740 Da. Comparison of a conserved region of 209 amino acid residues revealed > 80% identity between the deduced amino acid sequence of Bge HSP70 and that of yeast (81%), the human blood fluke Schistosoma mansoni (for which B. glabrata serves as intermediate host) (81%), Drosophila (81%), human (84%), and the marine gastropod Aplysia californica (88%, 90%). In addition to the extensive sharing of sequence homology, the identification of several eukaryotic HSP70 signature sequences and an N-linked glycosylation site characteristic of cytoplasmic HSPs strongly support the identity of the Bge cDNA as encoding an authentic HSP70. Results of a Northern blot analysis, using Bge HSP70 clone-specific probes, indicated that gene expression was heat inducible and not constitutively expressed. This is the first reported sequence of an inducible HSP70 from cells originating from a freshwater gastropod and provides a first step in the development of a genetic transformation system for molluscs of medical importance.
Henderson, R A; Krissansen, G W; Yong, R Y; Leung, E; Watson, J D; Dholakia, J N
1994-12-02
Protein synthesis in mammalian cells is regulated at the level of the guanine nucleotide exchange factor, eIF-2B, which catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. We have isolated and sequenced cDNA clones encoding the delta-subunit of murine eIF-2B. The cDNA sequence encodes a polypeptide of 544 amino acids with molecular mass of 60 kDa. Antibodies against a synthetic polypeptide of 30 amino acids deduced from the cDNA sequence specifically react with the delta-subunit of mammalian eIF-2B. The cDNA-derived amino acid sequence shows significant homology with the yeast translational regulator Gcd2, supporting the hypothesis that Gcd2 may be the yeast homolog of the delta-subunit of mammalian eIF-2B. Primer extension studies and anchor polymerase chain reaction analysis were performed to determine the 5'-end of the transcript for the delta-subunit of eIF-2B. Results of these experiments demonstrate two different mRNAs for the delta-subunit of eIF-2B in murine cells. The isolation and characterization of two different full-length cDNAs also predicts the presence of two alternate forms of the delta-subunit of eIF-2B in murine cells. These differ at their amino-terminal end but have identical nucleotide sequences coding for amino acids 31-544.
Mansuroglu, Z; Josse, T; Gilleron, J; Billecocq, A; Leger, P; Bouloy, M; Bonnefoy, E
2010-01-01
Rift Valley fever virus (RVFV) is an emerging, highly pathogenic virus; RVFV infection can lead to encephalitis, retinitis, or fatal hepatitis associated with hemorrhagic fever in humans, as well as death, abortions, and fetal deformities in animals. RVFV nonstructural NSs protein, a major factor of the virulence, forms filamentous structures in the nuclei of infected cells. In order to further understand RVFV pathology, we investigated, by chromatin immunoprecipitation, immunofluorescence, fluorescence in situ hybridization, and confocal microscopy, the capacity of NSs to interact with the host genome. Our results demonstrate that even though cellular DNA is predominantly excluded from NSs filaments, NSs interacts with some specific DNA regions of the host genome such as clusters of pericentromeric gamma-satellite sequence. Targeting of these sequences by NSs was correlated with the induction of chromosome cohesion and segregation defects in RVFV-infected murine, as well as sheep cells. Using recombinant nonpathogenic virus rZHDeltaNSs210-230, expressing a NSs protein deleted of its region of interaction with cellular factor SAP30, we showed that the NSs-SAP30 interaction was essential for NSs to target pericentromeric sequences, as well as for induction of chromosome segregation defects. The effect of RVFV upon the inheritance of genetic information is discussed with respect to the pathology associated with fetal deformities and abortions, highlighting the main role played by cellular cofactor SAP30 on the establishment of NSs interactions with host DNA sequences and RVFV pathogenesis.
Belkorchia, Abdel; Biderre, Corinne; Militon, Cécile; Polonais, Valérie; Wincker, Patrick; Jubin, Claire; Delbac, Frédéric; Peyretaillade, Eric; Peyret, Pierre
2008-03-01
Brachiola algerae has a broad host spectrum from human to mosquitoes. The successful infection of two mosquito cell lines (Mos55: embryonic cells and Sua 4.0: hemocyte-like cells) and a human cell line (HFF) highlights the efficient adaptive capacity of this microsporidian pathogen. The molecular karyotype of this microsporidian species was determined in the context of the B. algerae genome sequencing project, showing that its haploid genome consists of 30 chromosomal-sized DNAs ranging from 160 to 2240 kbp giving an estimated genome size of 23 Mbp. A contig of 12,269 bp including the DNA sequence of the B. algerae ribosomal transcription unit has been built from initial genomic sequences and the secondary structure of the large subunit rRNA constructed. The data obtained indicate that B. algerae should be an excellent parasitic model to understand genome evolution in relation to infectious capacity.
Vacca, Davide; Cancila, Valeria; Gulino, Alessandro; Lo Bosco, Giosuè; Belmonte, Beatrice; Di Napoli, Arianna; Florena, Ada Maria; Tripodo, Claudio; Arancio, Walter
2018-02-01
The MinION is a miniaturized high-throughput next generation sequencing platform of novel conception. The use of nucleic acids derived from formalin-fixed paraffin-embedded samples is highly desirable, but their adoption for molecular assays is hurdled by the high degree of fragmentation and by the chemical-induced mutations stemming from the fixation protocols. In order to investigate the suitability of MinION sequencing on formalin-fixed paraffin-embedded samples, the presence and frequency of BRAF c.1799T > A mutation was investigated in two archival tissue specimens of Hairy cell leukemia and Hairy cell leukemia Variant. Despite the poor quality of the starting DNA, BRAF mutation was successfully detected in the Hairy cell leukemia sample with around 50% of the reads obtained within 2 h of the sequencing start. Notably, the mutational burden of the Hairy cell leukemia sample as derived from nanopore sequencing proved to be comparable to a sensitive method for the detection of point mutations, namely the Digital PCR, using a validated assay. Nanopore sequencing can be adopted for targeted sequencing of genetic lesions on critical DNA samples such as those extracted from archival routine formalin-fixed paraffin-embedded samples. This result let speculating about the possibility that the nanopore sequencing could be trustably adopted for the real-time targeted sequencing of genetic lesions. Our report opens the window for the adoption of nanopore sequencing in molecular pathology for research and diagnostics.
USDA-ARS?s Scientific Manuscript database
DNA methylation is an epigenetic mechanism central to the development and maintenance of complex mammalian tissues, but our understanding of its role in intestinal development is limited. We used whole genome bisulfite sequencing, and found that differentiation of mouse colonic intestinal stem cell...
A fundamental principle of non-mutagenic chemical carcinogenesis is that increased cell proliferation enhances spontaneous DNA damage. Over time, this damage drives mutations in oncogenic genes that ultimately lead to cancer. This concept is a central part of cancer mode of actio...
Quality Assurance in the Polio Laboratory. Cell Sensitivity and Cell Authentication Assays.
Dunn, Glynis
2016-01-01
The accuracy of poliovirus surveillance is largely dependent on the quality of the cell lines used for virus isolation, which is the foundation of poliovirus diagnostic work. Many cell lines are available for the isolation of enteroviruses, whilst genetically modified L20B cells can be used as a diagnostic tool for the identification of polioviruses. To be confident that cells can consistently isolate the virus of interest, it is necessary to have a quality assurance system in place, which will ensure that the cells in use are not contaminated with other cell lines or microorganisms and that they remain sensitive to the viruses being studied.The sensitivity of cell lines can be assessed by the regular testing of a virus standard of known titer in the cell lines used for virus isolation. The titers obtained are compared to previously obtained titers in the same assay, so that any loss of sensitivity can be detected.However, the detection of cell line cross contamination is more difficult. DNA bar coding is a technique that uses a short DNA sequence from a standardized position in the genome as a molecular diagnostic assay for species-level identification. For almost all groups of higher animals, the cytochrome c oxidase subunit 1 of mitochondrial DNA (CO1) is emerging as the standard barcode region. This region is 648 nucleotide base pairs long in most phylogenetic groups and is flanked by regions of conserved sequences, making it relatively easy to isolate and analyze. DNA barcodes vary among individuals of the same species to a very minor degree (generally less than 1-2 %), and a growing number of studies have shown that the COI sequences of even closely related species differ by several per cent, making it possible to identify different species with high confidence.
Zannis-Hadjopoulos, M; Kaufmann, G; Wang, S S; Lechner, R L; Karawya, E; Hesse, J; Martin, R G
1985-07-01
Twelve clones of monkey DNA obtained by a procedure that enriches 10(3)- to 10(4)-fold for nascent sequences activated early in S phase (G. Kaufmann, M. Zannis-Hadjopoulos, and R. G. Martin, Mol. Cell. Biol. 5:721-727, 1985) have been examined. Only 2 of the 12 ors sequences (origin-enriched sequences) are unique (ors1 and ors8). Three contain the highly reiterated Alu family (ors3, ors9, and ors11). One contains the highly reiterated alpha-satellite family (ors12), but none contain the Kpn family. Those remaining contain middle repetitive sequences. Two examples of the same middle repetitive sequence were found (ors2 and ors6). Three of the middle repetitive sequences (the ors2-ors6 pair, ors5, and ors10) are moderately dispersed; one (ors4) is highly dispersed. The last, ors7, has been mapped to the bona fide replication origin of the D loop of mitochondrial DNA. Of the nine ors sequences tested, half possess snapback (intrachain reannealing) properties.
Wu, Yueh-Lung; Wu, Carol-P; Huang, Yu-Hui; Huang, Sheng-Ping; Lo, Huei-Ru; Chang, Hao-Shuo; Lin, Pi-Hsiu; Wu, Ming-Cheng; Chang, Chia-Jung; Chao, Yu-Chan
2014-11-01
The p143 gene from Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) has been found to increase the expression of luciferase, which is driven by the polyhedrin gene promoter, in a plasmid with virus coinfection. Further study indicated that this is due to the presence of a replication origin (ori) in the coding region of this gene. Transient DNA replication assays showed that a specific fragment of the p143 coding sequence, p143-3, underwent virus-dependent DNA replication in Spodoptera frugiperda IPLB-Sf-21 (Sf-21) cells. Deletion analysis of the p143-3 fragment showed that subfragment p143-3.2a contained the essential sequence of this putative ori. Sequence analysis of this region revealed a unique distribution of imperfect palindromes with high AT contents. No sequence homology or similarity between p143-3.2a and any other known ori was detected, suggesting that it is a novel baculovirus ori. Further study showed that the p143-3.2a ori can replicate more efficiently in infected Sf-21 cells than baculovirus homologous regions (hrs), the major baculovirus ori, or non-hr oris during virus replication. Previously, hr on its own was unable to replicate in mammalian cells, and for mammalian viral oris, viral proteins are generally required for their proper replication in host cells. However, the p143-3.2a ori was, surprisingly, found to function as an efficient ori in mammalian cells without the need for any viral proteins. We conclude that p143 contains a unique sequence that can function as an ori to enhance gene expression in not only insect cells but also mammalian cells. Baculovirus DNA replication relies on both hr and non-hr oris; however, so far very little is known about the latter oris. Here we have identified a new non-hr ori, the p143 ori, which resides in the coding region of p143. By developing a novel DNA replication-enhanced reporter system, we have identified and located the core region required for the p143 ori. This ori contains a large number of imperfect inverted repeats and is the most active ori in the viral genome during virus infection in insect cells. We also found that it is a unique ori that can replicate in mammalian cells without the assistance of baculovirus gene products. The identification of this ori should contribute to a better understanding of baculovirus DNA replication. Also, this ori is very useful in assisting with gene expression in mammalian cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Yoshino, T P; Wu, X J; Liu, H D
1998-09-01
Studies were initiated to begin developing a genetic transformation system for cells derived from the freshwater gastropod, Biomphalaria glabrata, an intermediate host of the human blood fluke Schistosoma mansoni. Using a 70-kD heat-shock protein (HSP70) cDNA probe obtained from the B. glabrata embryonic (Bge) cell line, we cloned from Bge cells a complete HSP70 gene including a 1-kb genomic DNA fragment in its 5'-flanking region containing sequences indicative of a HSP promoter. Identified in the 5'-half (416 nucleotides) of this genomic fragment were TATA and CAAT boxes, two putative transcription initiation sites, and a series of palindromic DNA repeats with shared homology to the heat-shock element consensus sequence (Bge HSP70(0.5k) promoter). The 3'-half of this upstream flanking region was comprised of a 508-base intron located immediately 5' of the ATG start codon. To determine the functionality of the putative snail promoter sequence, Bge HSP promoter/luciferase (Luc) reporter gene constructs were introduced into Bge cells by N-(1-(2,3-dioleoyloxy) propyl)-N,N,N-trimethylammonium methylsulfate (DOTAP)-mediated transfection methods, and assayed for Luc activity 48 hr following a 1.5-hr heat-shock treatment (40 degrees C). Compared with control vectors or the Bge HSP70(0.5k/1.0k) promoter constructs at 26 degrees C, a 10- to 300-fold increase in Luc expression was obtained only in the Bge HSP70 promoter/Luc-transfected cells following heat-shock. Results of transfection experiments demonstrate that the Bge HSP70(0.5k) DNA segment contains appropriate promoter sequences for driving temperature-inducible gene expression in the Bge snail cell line. This report represents the first isolation and functional characterization of an inducible promoter from a freshwater gastropod mollusc. Successful transient expression of a foreign reporter gene in Bge cells using a homologous, inducible promoter sequence now paves the way for development of methods for stable integration and expression of snail genes of interest into the Bge cell line.
Povedano, Eloy; Valverde, Alejandro; Ruiz-Valdepeñas Montiel, Víctor; Pedrero, María; Yáñez-Sedeño, Paloma; Barderas, Rodrigo; San Segundo-Acosta, Pablo; Peláez-García, Alberto; Mendiola, Marta; Hardisson, David; Campuzano, Susana; Pingarron, José Manuel
2018-05-09
We report a rapid and sensitive electrochemical strategy for the detection of gene-specific 5-methylcytosine DNA methylation. Magnetic beads (MBs) modified with an antibody specific for 5-methylcytosines (5-mC) are employed for the selective capture of any 5-mC methylated single-stranded (ss)DNA sequence. A flanking region next to the 5-mCs of the captured methylated ssDNA is recognized by selective hybridization with a synthetic biotinylated DNA sequence, further labeled with an HRP streptavidin conjugate. Amperometric transduction at disposable screen-printed carbon electrodes (SPCEs) is employed. The developed biosensor exhibits a dynamic range from 3.9 to 500 pM and a detection limit of 1.2 pM for the methylated synthetic sequence of the tumor suppressor gene O-6-methylguanine-DNA methyltransferase (MGMT) promoter region. The applicability of this strategy is demonstrated through the 45 min-analysis of specific methylation in the MGMT promoter region directly in raw spiked human serum samples and in genomic DNA extracted from U-87 glioblastoma cells and paraffin-embedded brain tumor tissues without any amplification and pretreatment step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hsieh, Tsung-Han; Liu, Yun-Ru; Chang, Ting-Yu; Liang, Muh-Lii; Chen, Hsin-Hung; Wang, Hsei-Wei; Yen, Yun; Wong, Tai-Tong
2018-03-27
Pediatric central nervous system germ cell tumors (CNSGCTs) are rare and heterogeneous neoplasms, which can be divided into germinomas and nongerminomatous germ cell tumors (NGGCTs). NGGCTs are further subdivided into mature teratomas and nongerminomatous malignant GCTs (NGMGCTs). Clinical outcomes suggest that NGMGCTs have poor prognosis and survival and that they require more extensive radiotherapy and adjuvant chemotherapy. However, the mechanisms underlying this difference are still unclear. DNA methylation alteration is generally acknowledged to cause therapeutic resistance in cancers. We hypothesized that the pediatric NGMGCTs exhibit a different genome-wide DNA methylation pattern, which is involved in the mechanism of its therapeutic resistance. We performed methylation and hydroxymethylation DNA immunoprecipitation sequencing, mRNA expression microarray, and small RNA sequencing (smRNA-seq) to determine methylation-regulated genes, including microRNAs (miRNAs). The expression levels of 97 genes and 8 miRNAs were correlated with promoter DNA methylation and hydroxymethylation status, such as the miR-199/-214 cluster, and treatment with DNA demethylating agent 5-aza-2'-deoxycytidine elevated its expression level. Furthermore, smRNA-seq analysis showed 27 novel miRNA candidates with differential expression between germinomas and NGMGCTs. Overexpresssion of miR-214-3p in NCCIT cells leads to reduced expression of the pro-apoptotic protein BCL2-like 11 and induces cisplatin resistance. We interrogated the differential DNA methylation patterns between germinomas and NGMGCTs and proposed a mechanism for chemoresistance in NGMGCTs. In addition, our sequencing data provide a roadmap for further pediatric CNSGCT research and potential targets for the development of new therapeutic strategies.
Detection of Human Papillomavirus Type 2 Related Sequence in Oral Papilloma
Yamaguchi, Taihei; Shindoh, Masanobu; Amemiya, Akira; Inoue, Nobuo; Kawamura, Masaaki; Sakaoka, Hiroshi; Inoue, Masakazu; Fujinaga, Kei
1998-01-01
Oral papilloma is a benign tumourous lesion. Part of this lesion is associated with human papillomavirus (HPV) infection. We analysed the genetical and histopathological evidence for HPV type 2 infection in three oral papillomas. Southern blot hybridization showed HPV 2a sequence in one lesion. Cells of the positive specimen appeared to contain high copy numbers of the viral DNA in an episomal state. In situ staining demonstrated virus capsid antigen in koilocytotic cells and surrounding cells in the hyperplastic epithelial layer. Two other specimens contained no HPV sequences by labeled probe of full length linear HPVs 2a, 6b, 11, 16, 18, 31 and 33 DNA under low stringency hybridization conditions. These results showed the possibility that HPV 2 plays a role in oral papilloma. PMID:9699941
Molecular cytogenetics using fluorescence in situ hybridization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J.W.; Kuo, Wen-Lin; Lucas, J.
1990-12-07
Fluorescence in situ hybridization (FISH) with chromosome-specific probes enables several new areas of cytogenetic investigation by allowing visual determination of the presence and normality of specific genetic sequences in single metaphase or interphase cells. in this approach, termed molecular cytogenetics, the genetic loci to be analyzed are made microscopically visible in single cells using in situ hybridization with nucleic acid probes specific to these loci. To accomplish this, the DNA in the target cells is made single stranded by thermal denaturation and incubated with single-stranded, chemically modified probe under conditions where the probe will anneal only with DNA sequences tomore » which it has high DNA sequence homology. The bound probe is then made visible by treatment with a fluorescent reagent such as fluorescein that binds to the chemical modification carried by the probe. The DNA to which the probe does not bind is made visible by staining with a dye such as propidium iodide that fluoresces at a wavelength different from that of the reagent used for probe visualization. We show in this report that probes are now available that make this technique useful for biological dosimetry, prenatal diagnosis and cancer biology. 31 refs., 3 figs.« less
Nouchi, A; Nguyen, T; Valantin, M A; Simon, A; Sayon, S; Agher, R; Calvez, V; Katlama, C; Marcelin, A G; Soulie, C
2018-05-29
To investigate the dynamics of HIV-1 variants archived in cells harbouring drug resistance-associated mutations (DRAMs) to lamivudine/emtricitabine, etravirine and rilpivirine in patients under effective ART free from selective pressure on these DRAMs, in order to assess the possibility of recycling molecules with resistance history. We studied 25 patients with at least one DRAM to lamivudine/emtricitabine, etravirine and/or rilpivirine identified on an RNA sequence in their history and with virological control for at least 5 years under a regimen excluding all drugs from the resistant class. Longitudinal ultra-deep sequencing (UDS) and Sanger sequencing of the reverse transcriptase region were performed on cell-associated HIV-1 DNA samples taken over the 5 years of follow-up. Viral variants harbouring the analysed DRAMs were no longer detected by UDS over the 5 years in 72% of patients, with viruses susceptible to the molecules of interest found after 5 years in 80% of patients with UDS and in 88% of patients with Sanger. Residual viraemia with <50 copies/mL was detected in 52% of patients. The median HIV DNA level remained stable (2.4 at baseline versus 2.1 log10 copies/106 cells 5 years later). These results show a clear trend towards clearance of archived DRAMs to reverse transcriptase inhibitors in cell-associated HIV-1 DNA after a long period of virological control, free from therapeutic selective pressure on these DRAMs, reflecting probable residual replication in some reservoirs of the fittest viruses and leading to persistent evolution of the archived HIV-1 DNA resistance profile.
Paweletz, Cloud P; Sacher, Adrian G; Raymond, Chris K; Alden, Ryan S; O'Connell, Allison; Mach, Stacy L; Kuang, Yanan; Gandhi, Leena; Kirschmeier, Paul; English, Jessie M; Lim, Lee P; Jänne, Pasi A; Oxnard, Geoffrey R
2016-02-15
Tumor genotyping is a powerful tool for guiding non-small cell lung cancer (NSCLC) care; however, comprehensive tumor genotyping can be logistically cumbersome. To facilitate genotyping, we developed a next-generation sequencing (NGS) assay using a desktop sequencer to detect actionable mutations and rearrangements in cell-free plasma DNA (cfDNA). An NGS panel was developed targeting 11 driver oncogenes found in NSCLC. Targeted NGS was performed using a novel methodology that maximizes on-target reads, and minimizes artifact, and was validated on DNA dilutions derived from cell lines. Plasma NGS was then blindly performed on 48 patients with advanced, progressive NSCLC and a known tumor genotype, and explored in two patients with incomplete tumor genotyping. NGS could identify mutations present in DNA dilutions at ≥ 0.4% allelic frequency with 100% sensitivity/specificity. Plasma NGS detected a broad range of driver and resistance mutations, including ALK, ROS1, and RET rearrangements, HER2 insertions, and MET amplification, with 100% specificity. Sensitivity was 77% across 62 known driver and resistance mutations from the 48 cases; in 29 cases with common EGFR and KRAS mutations, sensitivity was similar to droplet digital PCR. In two cases with incomplete tumor genotyping, plasma NGS rapidly identified a novel EGFR exon 19 deletion and a missed case of MET amplification. Blinded to tumor genotype, this plasma NGS approach detected a broad range of targetable genomic alterations in NSCLC with no false positives including complex mutations like rearrangements and unexpected resistance mutations such as EGFR C797S. Through use of widely available vacutainers and a desktop sequencing platform, this assay has the potential to be implemented broadly for patient care and translational research. ©2015 American Association for Cancer Research.
Paweletz, Cloud P.; Sacher, Adrian G.; Raymond, Chris K.; Alden, Ryan S.; O'Connell, Allison; Mach, Stacy L.; Kuang, Yanan; Gandhi, Leena; Kirschmeier, Paul; English, Jessie M.; Lim, Lee P.; Jänne, Pasi A.; Oxnard, Geoffrey R.
2015-01-01
Purpose Tumor genotyping is a powerful tool for guiding non-small cell lung cancer (NSCLC) care, however comprehensive tumor genotyping can be logistically cumbersome. To facilitate genotyping, we developed a next-generation sequencing (NGS) assay using a desktop sequencer to detect actionable mutations and rearrangements in cell-free plasma DNA (cfDNA). Experimental Design An NGS panel was developed targeting 11 driver oncogenes found in NSCLC. Targeted NGS was performed using a novel methodology that maximizes on-target reads, and minimizes artifact, and was validated on DNA dilutions derived from cell lines. Plasma NGS was then blindly performed on 48 patients with advanced, progressive NSCLC and a known tumor genotype, and explored in two patients with incomplete tumor genotyping. Results NGS could identify mutations present in DNA dilutions at ≥0.4% allelic frequency with 100% sensitivity/specificity. Plasma NGS detected a broad range of driver and resistance mutations, including ALK, ROS1, and RET rearrangements, HER2 insertions, and MET amplification, with 100% specificity. Sensitivity was 77% across 62 known driver and resistance mutations from the 48 cases; in 29 cases with common EGFR and KRAS mutations, sensitivity was similar to droplet digital PCR. In two cases with incomplete tumor genotyping, plasma NGS rapidly identified a novel EGFR exon 19 deletion and a missed case of MET amplification. Conclusion Blinded to tumor genotype, this plasma NGS approach detected a broad range of targetable genomic alterations in NSCLC with no false positives including complex mutations like rearrangements and unexpected resistance mutations such as EGFR C797S. Through use of widely available vacutainers and a desktop sequencing platform, this assay has the potential to be implemented broadly for patient care and translational research. PMID:26459174
Three closely related herpesviruses are associated with fibropapillomatosis in marine turtles
Quackenbush, S.L.; Work, Thierry M.; Balazs, George H.; Casey, Rufina N.; Rovnak, J.; Chaves, A.; duToit, L.; Baines, J.D.; Parrish, C.R.; Bowser, Paul R.; Casey, James W.
1998-01-01
Green turtle fibropapillomatosis is a neoplastic disease of increasingly significant threat to the survivability of this species. Degenerate PCR primers that target highly conserved regions of genes encoding herpesvirus DNA polymerases were used to amplify a DNA sequence from fibropapillomas and fibromas from Hawaiian and Florida green turtles. All of the tumors tested (n= 23) were found to harbor viral DNA, whereas no viral DNA was detected in skin biopsies from tumor-negative turtles. The tissue distribution of the green turtle herpesvirus appears to be generally limited to tumors where viral DNA was found to accumulate at approximately two to five copies per cell and is occasionally detected, only by PCR, in some tissues normally associated with tumor development. In addition, herpesviral DNA was detected in fibropapillomas from two loggerhead and four olive ridley turtles. Nucleotide sequencing of a 483-bp fragment of the turtle herpesvirus DNA polymerase gene determined that the Florida green turtle and loggerhead turtle sequences are identical and differ from the Hawaiian green turtle sequence by five nucleotide changes, which results in two amino acid substitutions. The olive ridley sequence differs from the Florida and Hawaiian green turtle sequences by 15 and 16 nucleotide changes, respectively, resulting in four amino acid substitutions, three of which are unique to the olive ridley sequence. Our data suggest that these closely related turtle herpesviruses are intimately involved in the genesis of fibropapillomatosis.
Onozawa, Masahiro; Zhang, Zhenhua; Kim, Yoo Jung; Goldberg, Liat; Varga, Tamas; Bergsagel, P Leif; Kuehl, W Michael; Aplan, Peter D
2014-05-27
We used the I-SceI endonuclease to produce DNA double-strand breaks (DSBs) and observed that a fraction of these DSBs were repaired by insertion of sequences, which we termed "templated sequence insertions" (TSIs), derived from distant regions of the genome. These TSIs were derived from genic, retrotransposon, or telomere sequences and were not deleted from the donor site in the genome, leading to the hypothesis that they were derived from reverse-transcribed RNA. Cotransfection of RNA and an I-SceI expression vector demonstrated insertion of RNA-derived sequences at the DNA-DSB site, and TSIs were suppressed by reverse-transcriptase inhibitors. Both observations support the hypothesis that TSIs were derived from RNA templates. In addition, similar insertions were detected at sites of DNA DSBs induced by transcription activator-like effector nuclease proteins. Whole-genome sequencing of myeloma cell lines revealed additional TSIs, demonstrating that repair of DNA DSBs via insertion was not restricted to experimentally produced DNA DSBs. Analysis of publicly available databases revealed that many of these TSIs are polymorphic in the human genome. Taken together, these results indicate that insertional events should be considered as alternatives to gross chromosomal rearrangements in the interpretation of whole-genome sequence data and that this mutagenic form of DNA repair may play a role in genetic disease, exon shuffling, and mammalian evolution.
Bacterial Genome Engineering and Synthetic Biology: Combating Pathogens
2016-11-04
engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats ( CRISPR ), and bacterial cell-cell...Cholera# Yersinia pseudotuberculosis# Staphylococcus aureus* Phage Engineering CRISPR /Cas9 Delivery of CRISPR genes and RNA guides for sequence...bear very close sequence alignment to the harmless strains via the use of the CRISPR /Cas9 system. The CRISPR system specifically targets a DNA sequence
The use of enzymopathic human red cells in the study of malarial parasite glucose metabolism.
Roth, E; Joulin, V; Miwa, S; Yoshida, A; Akatsuka, J; Cohen-Solal, M; Rosa, R
1988-05-01
The in vitro growth of Plasmodium falciparum malaria parasites was assayed in mutant red cells deficient in either diphosphoglycerate mutase (DPGM) or phosphoglycerate kinase (PGK). In addition, cDNA probes developed for human DNA sequences coding for these enzymes were used to examine the parasite genome by means of restriction endonuclease digestion and Southern blot analysis of parasite DNA. In both types of enzymopathic red cells, parasite growth was normal. In infected DPGM deficient red cells, no DPGM activity could be detected, and in normal red cells, DPGM activity declined slightly in a manner suggestive of parasite catabolism of host protein. However, in infected PGK deficient red cells, there was a 100-fold increase in PGK activity, and in normal red cells, a threefold increase in PGK activity was observed. Parasite PGK could be recovered from isolated parasites, and a marked increase in heat instability of parasite PGK as compared with the host cell enzyme was noted. Neither cDNA probe was found to cross-react with DNA sequences in the parasite genome. It is concluded that the parasite has no requirement for DPGM, and probably has no gene for this enzyme. On the other hand, the parasite does require PGK, (an adenosine triphosphate [ATP] generating enzyme) and synthesizes its own enzyme, which must have been encoded in the parasite genome. The parasite PGK gene most likely lacks sufficient homology to be detected by a human cDNA probe. Enzymopathic red cells are useful tools for elucidating the glycolytic enzymology of parasites and their co-evolution with their human hosts.
Imamura, Fumio; Uchida, Junji; Kukita, Yoji; Kumagai, Toru; Nishino, Kazumi; Inoue, Takako; Kimura, Madoka; Oba, Shigeyuki; Kato, Kikuya
2016-04-01
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have dramatic effects on EGFR-mutant non-small-cell lung cancer (NSCLC). However, most patients experience disease recurrences, approximately half of which are T790M-mediated. Monitoring EGFR status with re-biopsy has spatiotemporal limitations. EGFR circulating tumor DNA (ctDNA) in serial plasma samples was amplified and 10(5) of them were sequenced with a next-generation sequencer. Plasma mutation (PM) score was defined as the number of reads containing deletions/substitutions in 10(5)EGFR cell free DNA (cfDNA). PM scores of various EGFR mutations showed dynamic, case-specific changes during EGFR-TKI treatments in 52 patients. The effects of the treatment on EGFR ctDNA were evaluated in 38 patients with elevated pre-treatment PM scores. The ctDNA responses correlated well with radiologic responses in radiologic good responders, whereas correlation was poor in non-responders. In addition to the peaks for the most prevalent ctDNA, small peaks of ctDNA with different types of activating EGFR mutations or the T790M mutation (early T790M ctDNA) appeared transiently in 10.5% and 26.3%, respectively. Early T790M ctDNA disappeared in all patients, including 7 who eventually developed acquired resistance accompanied by elevated levels of T790M ctDNA. Monitoring ctDNA is useful in evaluating treatment responses and monitoring driver oncogene status in NSCLC. ctDNA revealed clonal heterogeneity and genetic processes of cancer evolution in individual patients. The simple presence of the T790M mutation may be insufficient to confer EGFR-TKI resistance to tumor cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hu, Jiazhi; Meyers, Robin M; Dong, Junchao; Panchakshari, Rohit A; Alt, Frederick W; Frock, Richard L
2016-05-01
Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.
Salton, S R
1991-09-01
A nervous system-specific mRNA that is rapidly induced in PC12 cells to a greater extent by nerve growth factor (NGF) than by epidermal growth factor treatment has been cloned. The polypeptide deduced from the nucleic acid sequence of the NGF33.1 cDNA clone contains regions of amino acid sequence identity with that predicted by the cDNA clone VGF, and further analysis suggests that both NGF33.1 and VGF cDNA clones very likely correspond to the same mRNA (VGF). In this report both the nucleic acid sequence that corresponds to VGF mRNA and the polypeptide predicted by the NGF33.1 cDNA clone are presented. Genomic Southern analysis and database comparison did not detect additional sequences with high homology to the VGF gene. Induction of VGF mRNA by depolarization and phorbol 12-myristate 13-acetate treatment was greater than by serum stimulation or protein kinase A pathway activation. These studies suggest that VGF mRNA is induced to the greatest extent by NGF treatment and that VGF is one of the most rapidly regulated neuronal mRNAs identified in PC12 cells.
DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila
Liu, Jun; Zimmer, Kurt; Rusch, Douglas B.; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R.
2015-01-01
Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC. PMID:26227968
Gaber, Rania; Watermann, Iris; Kugler, Christian; Vollmer, Ekkehard; Perner, Sven; Reck, Martin; Goldmann, Torsten
2017-01-01
Targeting epidermal growth factor receptor (EGFR) in patients with non-small-cell lung cancer (NSCLC) having EGFR mutations is associated with an improved overall survival. The aim of this study is to verify, if EGFR mutations detected by immunohistochemistry (IHC) is a convincing way to preselect patients for DNA-sequencing and to figure out, the statistical association between EGFR mutation, wild-type EGFR overexpression, gene copy number gain, which are the main factors inducing EGFR tumorigenic activity and the clinicopathological data. Two hundred sixteen tumor tissue samples of primarily chemotherapeutic naïve NSCLC patients were analyzed for EGFR mutations E746-A750del and L858R and correlated with DNA-sequencing. Two hundred six of which were assessed by IHC, using 6B6 and 43B2 specific antibodies followed by DNA-sequencing of positive cases and 10 already genotyped tumor tissues were also included to investigate debugging accuracy of IHC. In addition, EGFR wild-type overexpression was IHC evaluated and EGFR gene copy number determination was performed by fluorescence in situ hybridization (FISH). Forty-one÷206 (19.9%) cases were positive for mutated EGFR by IHC. Eight of them had EGFR mutations of exons 18-21 by DNA-sequencing. Hit rate of 10 already genotyped NSCLC mutated cases was 90% by IHC. Positive association was found between EGFR mutations determined by IHC and both EGFR overexpression and increased gene copy number (p=0.002 and p<0.001, respectively). Additionally, positive association was detected between EGFR mutations, high tumor grade and clinical stage (p<0.001). IHC staining with mutation specific antibodies was demonstrated as a possible useful screening test to preselect patients for DNA-sequencing.
Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.
Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro
2010-05-07
Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.
Development of Fibroblast Cell Lines From the Cow Used to Sequence the Bovine Genome
USDA-ARS?s Scientific Manuscript database
Two cell lines, designated MARC.BGCF.2 and MARC.BGCF.1-3, were initiated from skin biopsies obtained from the Hereford cow whose DNA was used in sequencing the bovine genome. These cell lines were submitted to American Type Culture Collection (ATCC, Manassas, VA, USA) and will be made publicly avai...
Hogg, Matthew; Seki, Mineaki; Wood, Richard D; Doublié, Sylvie; Wallace, Susan S
2011-01-21
DNA polymerase θ (POLQ, polθ) is a large, multidomain DNA polymerase encoded in higher eukaryotic genomes. It is important for maintaining genetic stability in cells and helping protect cells from DNA damage caused by ionizing radiation. POLQ contains an N-terminal helicase-like domain, a large central domain of indeterminate function, and a C-terminal polymerase domain with sequence similarity to the A-family of DNA polymerases. The enzyme has several unique properties, including low fidelity and the ability to insert and extend past abasic sites and thymine glycol lesions. It is not known whether the abasic site bypass activity is an intrinsic property of the polymerase domain or whether helicase activity is also required. Three "insertion" sequence elements present in POLQ are not found in any other A-family DNA polymerase, and it has been proposed that they may lend some unique properties to POLQ. Here, we analyzed the activity of the DNA polymerase in the absence of each sequence insertion. We found that the pol domain is capable of highly efficient bypass of abasic sites in the absence of the helicase-like or central domains. Insertion 1 increases the processivity of the polymerase but has little, if any, bearing on the translesion synthesis properties of the enzyme. However, removal of insertions 2 and 3 reduces activity on undamaged DNA and completely abrogates the ability of the enzyme to bypass abasic sites or thymine glycol lesions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hu, Lin-Yong; Cui, Chen-Chen; Song, Yu-Jie; Wang, Xiang-Guo; Jin, Ya-Ping; Wang, Ai-Hua; Zhang, Yong
2012-07-01
cDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.
Expression of exogenous DNA methyltransferases: application in molecular and cell biology.
Dyachenko, O V; Tarlachkov, S V; Marinitch, D V; Shevchuk, T V; Buryanov, Y I
2014-02-01
DNA methyltransferases might be used as powerful tools for studies in molecular and cell biology due to their ability to recognize and modify nitrogen bases in specific sequences of the genome. Methylation of the eukaryotic genome using exogenous DNA methyltransferases appears to be a promising approach for studies on chromatin structure. Currently, the development of new methods for targeted methylation of specific genetic loci using DNA methyltransferases fused with DNA-binding proteins is especially interesting. In the present review, expression of exogenous DNA methyltransferase for purposes of in vivo analysis of the functional chromatin structure along with investigation of the functional role of DNA methylation in cell processes are discussed, as well as future prospects for application of DNA methyltransferases in epigenetic therapy and in plant selection.
Mutagenic cost of ribonucleotides in bacterial DNA
Schroeder, Jeremy W.; Randall, Justin R.; Hirst, William G.; O’Donnell, Michael E.; Simmons, Lyle A.
2017-01-01
Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context–dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE. PMID:29078353
The effects of cytosine methylation on general transcription factors
NASA Astrophysics Data System (ADS)
Jin, Jianshi; Lian, Tengfei; Gu, Chan; Yu, Kai; Gao, Yi Qin; Su, Xiao-Dong
2016-07-01
DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs.
Degaki, Theri Leica; Demasi, Marcos Angelo Almeida; Sogayar, Mari Cleide
2009-11-01
Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 amino acids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressor gene, with possible relevance for glioblastoma therapy.
Scarano, Simona; Ermini, Maria Laura; Spiriti, Maria Michela; Mascini, Marco; Bogani, Patrizia; Minunni, Maria
2011-08-15
Surface plasmon resonance imaging (SPRi) was used as the transduction principle for the development of optical-based sensing for transgenes detection in human cell lines. The objective was to develop a multianalyte, label-free, and real-time approach for DNA sequences that are identified as markers of transgenosis events. The strategy exploits SPRi sensing to detect the transgenic event by targeting selected marker sequences, which are present on shuttle vector backbone used to carry out the transfection of human embryonic kidney (HEK) cell lines. Here, we identified DNA sequences belonging to the Cytomegalovirus promoter and the Enhanced Green Fluorescent Protein gene. System development is discussed in terms of probe efficiency and influence of secondary structures on biorecognition reaction on sensor; moreover, optimization of PCR samples pretreatment was carried out to allow hybridization on biosensor, together with an approach to increase SPRi signals by in situ mass enhancement. Real-time PCR was also employed as reference technique for marker sequences detection on human HEK cells. We can foresee that the developed system may have potential applications in the field of antidoping research focused on the so-called gene doping.
Matsunaga, Hiroko; Goto, Mari; Arikawa, Koji; Shirai, Masataka; Tsunoda, Hiroyuki; Huang, Huan; Kambara, Hideki
2015-02-15
Analyses of gene expressions in single cells are important for understanding detailed biological phenomena. Here, a highly sensitive and accurate method by sequencing (called "bead-seq") to obtain a whole gene expression profile for a single cell is proposed. A key feature of the method is to use a complementary DNA (cDNA) library on magnetic beads, which enables adding washing steps to remove residual reagents in a sample preparation process. By adding the washing steps, the next steps can be carried out under the optimal conditions without losing cDNAs. Error sources were carefully evaluated to conclude that the first several steps were the key steps. It is demonstrated that bead-seq is superior to the conventional methods for single-cell gene expression analyses in terms of reproducibility, quantitative accuracy, and biases caused during sample preparation and sequencing processes. Copyright © 2014 Elsevier Inc. All rights reserved.
A Novel Model System to Examine Agents Used in Breast Cancer Therapy.
1995-07-01
We have recently characterized a multiprotein DNA replication complex (MRC) that was purified from NODA NIB 468 human breast cancer cells by a series...proliferating cell nuclear antigen (PCNA), RE-C RP-A and DNA topoisomerase I. Based upon its requirements for DNA replication activity and its...SV4O) origin sequences, the MRC executes all of the steps required for the in vitro, bidirectional replication of the SV4O genome. Several of the DNA
2002-08-01
We study the process of DNA replication in proliferating human cells. Our efforts are directed to the identification and characterization of proteins...that promote DNA replication (initiators) as well as the DNA sequences recognized by them (replicators) . We have focused in a group of initiator...to be a critical factor for the coordination of DNA replication with the cell division cycle. hOrclp levels are higher between the exit of mitosis and
Stringer, J R; Kuhn, R M; Newman, J L; Meade, J C
1985-01-01
Cultured rat cells deficient in endogenous thymidine kinase activity (tk) were stably transformed with a recombination-indicator DNA substrate constructed in vitro by rearrangement of the herpes simplex virus tk gene sequences into a partially redundant permutation of the functional gene. The recombination-indicator DNA did not express tk, but was designed to allow formation of a functional tk gene via homologous recombination. A clonal cell line (519) was isolated that harbored several permuted herpes simplex virus tk genes. 519 cells spontaneously produced progeny that survived in medium containing hypoxanthine, aminopterin, and thymidine. Acquisition of resistance to hypoxanthine, aminopterin, and thymidine was accompanied by the rearrangement of the defective tk gene to functional configuration. The rearrangement apparently occurred by unequal exchange between one permuted tk gene and a replicated copy of itself. Recombination was between 500-base-pair tracts of DNA sequence homology that were separated by 3.4 kilobases. Exchanges occurred spontaneously at a frequency of approximately 5 X 10(-6) events per cell per generation. Recombination also mediated reversion to the tk- phenotype; however, the predominant mechanism by which cells escaped death in the presence of drugs rendered toxic by thymidine kinase was not recombination, but rather inactivation of the intact tk gene. Images PMID:3016511
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fradkin, L.G.; Yoshinaga, S.K.; Berk, A.J.
1987-11-01
The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription ofmore » RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoted, however, was not altered by infection of cells with the virus. The authors conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirtus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.« less
Nakamura, Mikiko; Suzuki, Ayako; Akada, Junko; Tomiyoshi, Keisuke; Hoshida, Hisashi; Akada, Rinji
2015-12-01
Mammalian gene expression constructs are generally prepared in a plasmid vector, in which a promoter and terminator are located upstream and downstream of a protein-coding sequence, respectively. In this study, we found that front terminator constructs-DNA constructs containing a terminator upstream of a promoter rather than downstream of a coding region-could sufficiently express proteins as a result of end joining of the introduced DNA fragment. By taking advantage of front terminator constructs, FLAG substitutions, and deletions were generated using mutagenesis primers to identify amino acids specifically recognized by commercial FLAG antibodies. A minimal epitope sequence for polyclonal FLAG antibody recognition was also identified. In addition, we analyzed the sequence of a C-terminal Ser-Lys-Leu peroxisome localization signal, and identified the key residues necessary for peroxisome targeting. Moreover, front terminator constructs of hepatitis B surface antigen were used for deletion analysis, leading to the identification of regions required for the particle formation. Collectively, these results indicate that front terminator constructs allow for easy manipulations of C-terminal protein-coding sequences, and suggest that direct gene expression with PCR-amplified DNA is useful for high-throughput protein analysis in mammalian cells.
Wycliffe, Paul; Sitbon, Folke; Wernersson, Jonny; Ezcurra, Inés; Ellerström, Mats; Rask, Lars
2005-10-01
Brassica napus complementary deoxyribonucleic acid (cDNA) clones encoding a DNA-binding protein, BnPEND, were isolated by Southwestern screening. A distinctive feature of the protein was a bZIP-like sequence in the amino-terminal portion, which, after expression in Escherichia coli, bound DNA. BnPEND transcripts were present in B. napus roots and flower buds, and to a lesser extent in stems, flowers and young leaves. Treatment in the dark for 72 h markedly increased the amount of BnPEND transcript in leaves of all ages. Sequence comparison showed that BnPEND was similar to a presumed transcription factor from B. napus, GSBF1, a protein deduced from an Arabidopsis thaliana cDNA (BX825084) and the PEND protein from Pisum sativum, believed to anchor the plastid DNA to the envelope early during plastid development. Homology to expressed sequence tag (EST) sequences from additional species suggested that BnPEND homologues are widespread among the angiosperms. Transient expression of BnPEND fused with green fluorescent protein (GFP) in Nicotiana benthamiana epidermal cells showed that BnPEND is a plastid protein, and that the 15 amino acids at the amino-terminal contain information about plastid targeting. Expression of BnPEND in Nicotiana tabacum from the Cauliflower Mosaic Virus 35S promoter gave stable transformants with different extents of white to light-green areas in the leaves, and even albino plants. In the white areas, but not in adjacent green tissue, the development of palisade cells and chloroplasts was disrupted. Our data demonstrate that the BnPEND protein, when over-expressed at an inappropriate stage, functionally blocks the development of plastids and leads to altered leaf anatomy, possibly by preventing the release of plastid DNA from the envelope.
Prenatal detection of fetal triploidy from cell-free DNA testing in maternal blood.
Nicolaides, Kypros H; Syngelaki, Argyro; del Mar Gil, Maria; Quezada, Maria Soledad; Zinevich, Yana
2014-01-01
To investigate potential performance of cell-free DNA (cfDNA) testing in maternal blood in detecting fetal triploidy. Plasma and buffy coat samples obtained at 11-13 weeks' gestation from singleton pregnancies with diandric triploidy (n=4), digynic triploidy (n=4), euploid fetuses (n=48) were sent to Natera, Inc. (San Carlos, Calif., USA) for cfDNA testing. Multiplex polymerase chain reaction amplification of cfDNA followed by sequencing of single nucleotide polymorphic loci covering chromosomes 13, 18, 21, X, and Y was performed. Sequencing data were analyzed using the NATUS algorithm which identifies copy number for each of the five chromosomes. cfDNA testing provided a result in 44 (91.7%) of the 48 euploid cases and correctly predicted the fetal sex and the presence of two copies each of chromosome 21, 18 and 13. In diandric triploidy, cfDNA testing identified multiple paternal haplotypes (indicating fetal trisomy 21, trisomy 18 and trisomy 13) suggesting the presence of either triploidy or dizygotic twins. In digynic triploidy the fetal fraction corrected for maternal weight and gestational age was below the 0.5th percentile. cfDNA testing by targeted sequencing and allelic ratio analysis of single nucleotide polymorphisms covering chromosomes 21, 18, 13, X, and Y can detect diandric triploidy and raise the suspicion of digynic triploidy. © 2013 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, T.A.
1993-06-01
This study investigates the molecular events of vacuole ontogeny in rapidly elongated cotton plant cells. Within the DNA coding region, the cotton and carrot cDNA clones exhibit 82.2% nucleotide sequence homology; at the amino acid level cotton and carrot catalytic subunits exhibited 95.7% identity and 2.1% amino acid similarity. When aligned with the analogous sequences from yeast, the cotton protein shared only 60.5% amino acid identity and 12.7% similarity. 10 refs., 1 tab.
Chitty, Lyn S.; Lo, Y. M. Dennis
2015-01-01
The identification of cell-free fetal DNA (cffDNA) in maternal plasma in 1997 heralded the most significant change in obstetric care for decades, with the advent of safer screening and diagnosis based on analysis of maternal blood. Here, we describe how the technological advances offered by next-generation sequencing have allowed for the development of a highly sensitive screening test for aneuploidies as well as definitive prenatal molecular diagnosis for some monogenic disorders. PMID:26187875
Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer
2015-09-01
Award Number: W81XWH-12-1-0333 TITLE: Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer PRINCIPAL...COVERED 15 Aug 2012 – 14 Aug 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-12-1-0333 Determining the Location of DNA Modification and Mutation ...sequencing libraries generated for both yeast and human cells show pyrimidine bias on the 5’ end, indicating that we are sequencing the dimers
Walter, Christiane; Pozzorini, Christian; Reinhardt, Katarina; Geffers, Robert; Xu, Zhenyu; Reinhardt, Dirk; von Neuhoff, Nils; Hanenberg, Helmut
2018-02-01
The small portion of leukemic stem cells (LSCs) in acute myeloid leukemia (AML) present in children and adolescents is often masked by the high background of AML blasts and normal hematopoietic cells. The aim of the current study was to establish a simple workflow for reliable genetic analysis of single LSC-enriched blasts from pediatric patients. For three AMLs with mutations in nucleophosmin 1 and/or fms-like tyrosine kinase 3, we performed whole genome amplification on sorted single-cell DNA followed by whole exome sequencing (WES). The corresponding bulk bone marrow DNAs were also analyzed by WES and by targeted sequencing (TS) that included 54 genes associated with myeloid malignancies. Analysis revealed that read coverage statistics were comparable between single-cell and bulk WES data, indicating high-quality whole genome amplification. From 102 single-cell variants, 72 single nucleotide variants and insertions or deletions (70%) were consistently found in the two bulk DNA analyses. Variants reliably detected in single cells were also present in TS. However, initial screening by WES with read counts between 50-72× failed to detect rare AML subclones in the bulk DNAs. In summary, our study demonstrated that single-cell WES combined with bulk DNA TS is a promising tool set for detecting AML subclones and possibly LSCs. © 2017 Wiley Periodicals, Inc.
An atlas of DNA methylation in diverse bovine tissues
USDA-ARS?s Scientific Manuscript database
We launched an effort to produce a reference cattle DNA methylation resource to improve animal production. We will employ experimental pipelines built around next generation sequencing technologies to map DNA methylation in cultured cells and primary tissues systems frequently involved in animal pro...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barness, L.A.
This book discusses the advances made in pediatrics. The topics discussed are--Molecular biology of thalassemia; genetic mapping of humans; technology of recombinant-DNA; DNA-sequencing and human chromosomes and etiology of hereditary diseases; acne; and T-cell abnormalities.
Cell-free DNA and next-generation sequencing in the service of personalized medicine for lung cancer
Bennett, Catherine W.; Berchem, Guy; Kim, Yeoun Jin; El-Khoury, Victoria
2016-01-01
Personalized medicine has emerged as the future of cancer care to ensure that patients receive individualized treatment specific to their needs. In order to provide such care, molecular techniques that enable oncologists to diagnose, treat, and monitor tumors are necessary. In the field of lung cancer, cell free DNA (cfDNA) shows great potential as a less invasive liquid biopsy technique, and next-generation sequencing (NGS) is a promising tool for analysis of tumor mutations. In this review, we outline the evolution of cfDNA and NGS and discuss the progress of using them in a clinical setting for patients with lung cancer. We also present an analysis of the role of cfDNA as a liquid biopsy technique and NGS as an analytical tool in studying EGFR and MET, two frequently mutated genes in lung cancer. Ultimately, we hope that using cfDNA and NGS for cancer diagnosis and treatment will become standard for patients with lung cancer and across the field of oncology. PMID:27589834
[The future of forensic DNA analysis for criminal justice].
Laurent, François-Xavier; Vibrac, Geoffrey; Rubio, Aurélien; Thévenot, Marie-Thérèse; Pène, Laurent
2017-11-01
In the criminal framework, the analysis of approximately 20 DNA microsatellites enables the establishment of a genetic profile with a high statistical power of discrimination. This technique gives us the possibility to establish or exclude a match between a biological trace detected at a crime scene and a suspect whose DNA was collected via an oral swab. However, conventional techniques do tend to complexify the interpretation of complex DNA samples, such as degraded DNA and mixture DNA. The aim of this review is to highlight the powerness of new forensic DNA methods (including high-throughput sequencing or single-cell sequencing) to facilitate the interpretation of the expert with full compliance with existing french legislation. © 2017 médecine/sciences – Inserm.
Westhoff, Connie M.; Uy, Jon Michael; Aguad, Maria; Smeland‐Wagman, Robin; Kaufman, Richard M.; Rehm, Heidi L.; Green, Robert C.; Silberstein, Leslie E.
2015-01-01
BACKGROUND There are 346 serologically defined red blood cell (RBC) antigens and 33 serologically defined platelet (PLT) antigens, most of which have known genetic changes in 45 RBC or six PLT genes that correlate with antigen expression. Polymorphic sites associated with antigen expression in the primary literature and reference databases are annotated according to nucleotide positions in cDNA. This makes antigen prediction from next‐generation sequencing data challenging, since it uses genomic coordinates. STUDY DESIGN AND METHODS The conventional cDNA reference sequences for all known RBC and PLT genes that correlate with antigen expression were aligned to the human reference genome. The alignments allowed conversion of conventional cDNA nucleotide positions to the corresponding genomic coordinates. RBC and PLT antigen prediction was then performed using the human reference genome and whole genome sequencing (WGS) data with serologic confirmation. RESULTS Some major differences and alignment issues were found when attempting to convert the conventional cDNA to human reference genome sequences for the following genes: ABO, A4GALT, RHD, RHCE, FUT3, ACKR1 (previously DARC), ACHE, FUT2, CR1, GCNT2, and RHAG. However, it was possible to create usable alignments, which facilitated the prediction of all RBC and PLT antigens with a known molecular basis from WGS data. Traditional serologic typing for 18 RBC antigens were in agreement with the WGS‐based antigen predictions, providing proof of principle for this approach. CONCLUSION Detailed mapping of conventional cDNA annotated RBC and PLT alleles can enable accurate prediction of RBC and PLT antigens from whole genomic sequencing data. PMID:26634332
Resolution of model Holliday junctions by yeast endonuclease: effect of DNA structure and sequence.
Parsons, C A; Murchie, A I; Lilley, D M; West, S C
1989-01-01
The resolution of Holliday junctions in DNA involves specific cleavage at or close to the site of the junction. A nuclease from Saccharomyces cerevisiae cleaves model Holliday junctions in vitro by the introduction of nicks in regions of duplex DNA adjacent to the crossover point. In previous studies [Parsons and West (1988) Cell, 52, 621-629] it was shown that cleavage occurred within homologous arm sequences with precise symmetry across the junction. In contrast, junctions with heterologous arm sequences were cleaved asymmetrically. In this work, we have studied the effect of sequence changes and base modification upon the site of cleavage. It is shown that the specificity of cleavage is unchanged providing that perfect homology is maintained between opposing arm sequences. However, in the absence of homology, cleavage depends upon sequence context and is affected by minor changes such as base modification. These data support the proposed mechanism for cleavage of a Holliday junction, which requires homologous alignment of arm sequences in an enzyme--DNA complex as a prerequisite for symmetrical cleavage by the yeast endonuclease. Images PMID:2653810
Lee, Michael; Hills, Mark; Conomos, Dimitri; Stutz, Michael D.; Dagg, Rebecca A.; Lau, Loretta M.S.; Reddel, Roger R.; Pickett, Hilda A.
2014-01-01
Telomeres are terminal repetitive DNA sequences on chromosomes, and are considered to comprise almost exclusively hexameric TTAGGG repeats. We have evaluated telomere sequence content in human cells using whole-genome sequencing followed by telomere read extraction in a panel of mortal cell strains and immortal cell lines. We identified a wide range of telomere variant repeats in human cells, and found evidence that variant repeats are generated by mechanistically distinct processes during telomerase- and ALT-mediated telomere lengthening. Telomerase-mediated telomere extension resulted in biased repeat synthesis of variant repeats that differed from the canonical sequence at positions 1 and 3, but not at positions 2, 4, 5 or 6. This indicates that telomerase is most likely an error-prone reverse transcriptase that misincorporates nucleotides at specific positions on the telomerase RNA template. In contrast, cell lines that use the ALT pathway contained a large range of variant repeats that varied greatly between lines. This is consistent with variant repeats spreading from proximal telomeric regions throughout telomeres in a stochastic manner by recombination-mediated templating of DNA synthesis. The presence of unexpectedly large numbers of variant repeats in cells utilizing either telomere maintenance mechanism suggests a conserved role for variant sequences at human telomeres. PMID:24225324
The blood DNA virome in 8,000 humans.
Moustafa, Ahmed; Xie, Chao; Kirkness, Ewen; Biggs, William; Wong, Emily; Turpaz, Yaron; Bloom, Kenneth; Delwart, Eric; Nelson, Karen E; Venter, J Craig; Telenti, Amalio
2017-03-01
The characterization of the blood virome is important for the safety of blood-derived transfusion products, and for the identification of emerging pathogens. We explored non-human sequence data from whole-genome sequencing of blood from 8,240 individuals, none of whom were ascertained for any infectious disease. Viral sequences were extracted from the pool of sequence reads that did not map to the human reference genome. Analyses sifted through close to 1 Petabyte of sequence data and performed 0.5 trillion similarity searches. With a lower bound for identification of 2 viral genomes/100,000 cells, we mapped sequences to 94 different viruses, including sequences from 19 human DNA viruses, proviruses and RNA viruses (herpesviruses, anelloviruses, papillomaviruses, three polyomaviruses, adenovirus, HIV, HTLV, hepatitis B, hepatitis C, parvovirus B19, and influenza virus) in 42% of the study participants. Of possible relevance to transfusion medicine, we identified Merkel cell polyomavirus in 49 individuals, papillomavirus in blood of 13 individuals, parvovirus B19 in 6 individuals, and the presence of herpesvirus 8 in 3 individuals. The presence of DNA sequences from two RNA viruses was unexpected: Hepatitis C virus is revealing of an integration event, while the influenza virus sequence resulted from immunization with a DNA vaccine. Age, sex and ancestry contributed significantly to the prevalence of infection. The remaining 75 viruses mostly reflect extensive contamination of commercial reagents and from the environment. These technical problems represent a major challenge for the identification of novel human pathogens. Increasing availability of human whole-genome sequences will contribute substantial amounts of data on the composition of the normal and pathogenic human blood virome. Distinguishing contaminants from real human viruses is challenging.
Lichenase and coding sequences
Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong
2000-08-15
The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.
Wu, Ping; Tu, Yunqiu; Qian, Yingdan; Zhang, Hui; Cai, Chenxin
2014-01-28
We report a new strategy for evaluating multiple miRNA expressions in cancer cells based on DNA strand-displacement-induced fluorescence enhancement. This assay has the ability to discriminate the target from even single-base mismatched sequences or other miRNAs.
Differentially Methylated DNA Sequences Associated with Exposure to Arsenite in Cultures of Human Cells Identified by Methylation-Sensitive-Primed PCR
Arsenic, a known human carcinogen, is converted to methylated derivatives by a methyltransferase (Mtase) and its biotra...
DNA context represents transcription regulation of the gene in mouse embryonic stem cells
NASA Astrophysics Data System (ADS)
Ha, Misook; Hong, Soondo
2016-04-01
Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.
DNA context represents transcription regulation of the gene in mouse embryonic stem cells.
Ha, Misook; Hong, Soondo
2016-04-14
Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.
Geranyl diphosphate synthase from mint
Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan
1999-01-01
A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.
Geranyl diphosphate synthase from mint
Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.
1999-03-02
A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.
Pott, Sebastian
2017-01-01
Gaining insights into the regulatory mechanisms that underlie the transcriptional variation observed between individual cells necessitates the development of methods that measure chromatin organization in single cells. Here I adapted Nucleosome Occupancy and Methylome-sequencing (NOMe-seq) to measure chromatin accessibility and endogenous DNA methylation in single cells (scNOMe-seq). scNOMe-seq recovered characteristic accessibility and DNA methylation patterns at DNase hypersensitive sites (DHSs). An advantage of scNOMe-seq is that sequencing reads are sampled independently of the accessibility measurement. scNOMe-seq therefore controlled for fragment loss, which enabled direct estimation of the fraction of accessible DHSs within individual cells. In addition, scNOMe-seq provided high resolution of chromatin accessibility within individual loci which was exploited to detect footprints of CTCF binding events and to estimate the average nucleosome phasing distances in single cells. scNOMe-seq is therefore well-suited to characterize the chromatin organization of single cells in heterogeneous cellular mixtures. DOI: http://dx.doi.org/10.7554/eLife.23203.001 PMID:28653622
Droplet Microfluidics for Compartmentalized Cell Lysis and Extension of DNA from Single-Cells
NASA Astrophysics Data System (ADS)
Zimny, Philip; Juncker, David; Reisner, Walter
Current single cell DNA analysis methods suffer from (i) bias introduced by the need for molecular amplification and (ii) limited ability to sequence repetitive elements, resulting in (iii) an inability to obtain information regarding long range genomic features. Recent efforts to circumvent these limitations rely on techniques for sensing single molecules of DNA extracted from single-cells. Here we demonstrate a droplet microfluidic approach for encapsulation and biochemical processing of single-cells inside alginate microparticles. In our approach, single-cells are first packaged inside the alginate microparticles followed by cell lysis, DNA purification, and labeling steps performed off-chip inside this microparticle system. The alginate microparticles are then introduced inside a micro/nanofluidic system where the alginate is broken down via a chelating buffer, releasing long DNA molecules which are then extended inside nanofluidic channels for analysis via standard mapping protocols.
Vesicular monoamine transporter-1 (VMAT-1) mRNA and immunoreactive proteins in mouse brain.
Ashe, Karen M; Chiu, Wan-Ling; Khalifa, Ahmed M; Nicolas, Antoine N; Brown, Bonnie L; De Martino, Randall R; Alexander, Clayton P; Waggener, Christopher T; Fischer-Stenger, Krista; Stewart, Jennifer K
2011-01-01
Vesicular monoamine transporter 1 (VMAT-1) mRNA and protein were examined (1) to determine whether adult mouse brain expresses full-length VMAT-1 mRNA that can be translated to functional transporter protein and (2) to compare immunoreactive VMAT-1 proteins in brain and adrenal. VMAT-1 mRNA was detected in mouse brain with RT-PCR. The cDNA was sequenced, cloned into an expression vector, transfected into COS-1 cells, and cell protein was assayed for VMAT-1 activity. Immunoreactive proteins were examined on western blots probed with four different antibodies to VMAT-1. Sequencing confirmed identity of the entire coding sequences of VMAT-1 cDNA from mouse medulla oblongata/pons and adrenal to a Gen-Bank reference sequence. Transfection of the brain cDNA into COS-1 cells resulted in transporter activity that was blocked by the VMAT inhibitor reserpine and a proton ionophore, but not by tetrabenazine, which has a high affinity for VMAT-2. Antibodies to either the C- or N- terminus of VMAT-1 detected two proteins (73 and 55 kD) in transfected COS-1 cells. The C-terminal antibodies detected both proteins in extracts of mouse medulla/pons, cortex, hypothalamus, and cerebellum but only the 73 kD protein and higher molecular weight immunoreactive proteins in mouse adrenal and rat PC12 cells, which are positive controls for rodent VMAT-1. These findings demonstrate that a functional VMAT-1 mRNA coding sequence is expressed in mouse brain and suggest processing of VMAT-1 protein differs in mouse adrenal and brain.
Sun, Kun; Jiang, Peiyong; Chan, K. C. Allen; Wong, John; Cheng, Yvonne K. Y.; Liang, Raymond H. S.; Chan, Wai-kong; Ma, Edmond S. K.; Chan, Stephen L.; Cheng, Suk Hang; Chan, Rebecca W. Y.; Tong, Yu K.; Ng, Simon S. M.; Wong, Raymond S. M.; Hui, David S. C.; Leung, Tse Ngong; Leung, Tak Y.; Lai, Paul B. S.; Chiu, Rossa W. K.; Lo, Yuk Ming Dennis
2015-01-01
Plasma consists of DNA released from multiple tissues within the body. Using genome-wide bisulfite sequencing of plasma DNA and deconvolution of the sequencing data with reference to methylation profiles of different tissues, we developed a general approach for studying the major tissue contributors to the circulating DNA pool. We tested this method in pregnant women, patients with hepatocellular carcinoma, and subjects following bone marrow and liver transplantation. In most subjects, white blood cells were the predominant contributors to the circulating DNA pool. The placental contributions in the plasma of pregnant women correlated with the proportional contributions as revealed by fetal-specific genetic markers. The graft-derived contributions to the plasma in the transplant recipients correlated with those determined using donor-specific genetic markers. Patients with hepatocellular carcinoma showed elevated plasma DNA contributions from the liver, which correlated with measurements made using tumor-associated copy number aberrations. In hepatocellular carcinoma patients and in pregnant women exhibiting copy number aberrations in plasma, comparison of methylation deconvolution results using genomic regions with different copy number status pinpointed the tissue type responsible for the aberrations. In a pregnant woman diagnosed as having follicular lymphoma during pregnancy, methylation deconvolution indicated a grossly elevated contribution from B cells into the plasma DNA pool and localized B cells as the origin of the copy number aberrations observed in plasma. This method may serve as a powerful tool for assessing a wide range of physiological and pathological conditions based on the identification of perturbed proportional contributions of different tissues into plasma. PMID:26392541
Toubart, P; Desiderio, A; Salvi, G; Cervone, F; Daroda, L; De Lorenzo, G
1992-05-01
Polygalacturonase-inhibiting protein (PGIP) is a cell wall protein purified from hypocotyls of true bean (Phaseolus vulgaris L.). PGIP inhibits fungal endopolygalacturonases and is considered to be an important factor for plant resistance to phytopathogenic fungi (Albersheim and Anderson, 1971; Cervone et al., 1987). The amino acid sequences of the N-terminus and one internal tryptic peptide of the PGIP purified from P. vulgaris cv. Pinto were used to design redundant oligonucleotides that were successfully utilized as primers in a polymerase chain reaction (PCR) with total DNA of P. vulgaris as a template. A DNA band of 758 bp (a specific PCR amplification product of part of the gene coding for PGIP) was isolated and cloned. By using the 758-bp DNA as a hybridization probe, a lambda clone containing the PGIP gene was isolated from a genomic library of P. vulgaris cv. Saxa. The coding and immediate flanking regions of the PGIP gene, contained on a subcloned 3.3 kb SalI-SalI DNA fragment, were sequenced. A single, continuous ORF of 1026 nt (342 amino acids) was present in the genomic clone. The nucleotide and deduced amino acid sequences of the PGIP gene showed no significant similarity with any known databank sequence. Northern blotting analysis of poly(A)+ RNAs, isolated from various tissues of bean seedlings or from suspension-cultured bean cells, were also performed using the cloned PCR-generated DNA as a probe. A 1.2 kb transcript was detected in suspension-cultured cells and, to a lesser extent, in leaves, hypocotyls, and flowers.(ABSTRACT TRUNCATED AT 250 WORDS)
Gu, Xuan; Zhang, Xiao-qin; Song, Xiao-na; Zang, Yi-mei; Li Yan-peng; Ma, Chang-hua; Zhao, Bai-xiao; Liu, Chun-sheng
2014-12-01
The fruit of Lycium ruthenicum is a common folk medicine in China. Now it is popular for its antioxidative effect and other medical functions. The adulterants of the herb confuse consumers. In order to identify a new adulterant of L. ruthenicum, a research was performed based on NCBI Nucleotide Database ITS Sequence, combined analysis of the origin and morphology of the adulterant to traceable varieties. Total genomic DNA was isolated from the materials, and nuclear DNA ITS sequences were amplified and sequenced; DNA fragments were collated and matched by using ContingExpress. Similarity identification of BLAST analysis was performed. Besides, the distribution of plant origin and morphology were considered to further identification and verification. Families and genera were identified by molecular identification method. The adulterant was identified as plant belonging to Berberis. Origin analysis narrowed the range of sample identification. Seven different kinds of plants in Berberis were potential sources of the sample. Adulterants variety was traced by morphological analysis. The united molecular identification-origin-morphology research proves to be a preceding way to medical herbs traceability with time-saving and economic advantages and the results showed the new adulterant of L. ruthenicum was B. kaschgarica. The main differences between B. kaschgarica and L. ruthenicum are as follows: in terms of the traits, the surface of B. kaschgarica is smooth and crispy, and that of L. ruthenicum is shrinkage, solid and hard. In microscopic characteristics, epicarp cells of B. aschgarica thickening like a string of beads, stone cells as the rectangle, and the stone cell walls of L. ruthenicum is wavy, obvious grain layer. In molecular sequences, the length of ITS sequence of B. kaschgarica is 606 bp, L. ruthenicum is 654 bp, the similarity of the two sequences is 53.32%.
Lancini, Cesare; Gargiulo, Gaetano; van den Berk, Paul C M; Citterio, Elisabetta
2016-03-01
The data described here provide genome-wide expression profiles of murine primitive hematopoietic stem and progenitor cells (LSK) and of B cell populations, obtained by high throughput sequencing. Cells are derived from wild-type mice and from mice deficient for the ubiquitin-specific protease 3 (USP3; Usp3Δ/Δ). Modification of histone proteins by ubiquitin plays a crucial role in the cellular response to DNA damage (DDR) (Jackson and Durocher, 2013) [1]. USP3 is a histone H2A deubiquitinating enzyme (DUB) that regulates ubiquitin-dependent DDR in response to DNA double-strand breaks (Nicassio et al., 2007; Doil et al., 2008) [2], [3]. Deletion of USP3 in mice increases the incidence of spontaneous tumors and affects hematopoiesis [4]. In particular, Usp3-knockout mice show progressive loss of B and T cells and decreased functional potential of hematopoietic stem cells (HSCs) during aging. USP3-deficient cells, including HSCs, display enhanced histone ubiquitination, accumulate spontaneous DNA damage and are hypersensitive to ionizing radiation (Lancini et al., 2014) [4]. To address whether USP3 loss leads to deregulation of specific molecular pathways relevant to HSC homeostasis and/or B cell development, we have employed the RNA-sequencing technology and investigated transcriptional differences between wild-type and Usp3Δ/Δ LSK, naïve B cells or in vitro activated B cells. The data relate to the research article "Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells" (Lancini et al., 2014) [4]. The RNA-sequencing and analysis data sets have been deposited in NCBI׳s Gene Expression Omnibus (Edgar et al., 2002) [5] and are accessible through GEO Series accession number GSE58495 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58495). With this article, we present validation of the RNA-seq data set through quantitative real-time PCR and comparative analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funabashi, Hisakage; Takatsu, Makoto; Saito, Mikako
2010-10-01
Research highlights: {yields} SV40-DTS worked as a DTS in ES cells as well as other types of cells. {yields} Sox2 regulatory region 2 worked as a DTS in ES cells and thus was termed as SRR2-DTS. {yields} SRR2-DTS was suggested as an ES cell-specific DTS. -- Abstract: In this report, the effects of two DNA nuclear targeting sequence (DTS) candidates on the gene expression efficiency in ES cells were investigated. Reporter plasmids containing the simian virus 40 (SV40) promoter/enhancer sequence (SV40-DTS), a DTS for various types of cells but not being reported yet for ES cells, and the 81 basemore » pairs of Sox2 regulatory region 2 (SRR2) where two transcriptional factors in ES cells, Oct3/4 and Sox2, are bound (SRR2-DTS), were introduced into cytoplasm in living cells by femtoinjection. The gene expression efficiencies of each plasmid in mouse insulinoma cell line MIN6 cells and mouse ES cells were then evaluated. Plasmids including SV40-DTS and SRR2-DTS exhibited higher gene expression efficiency comparing to plasmids without these DTSs, and thus it was concluded that both sequences work as a DTS in ES cells. In addition, it was suggested that SRR2-DTS works as an ES cell-specific DTS. To the best of our knowledge, this is the first report to confirm the function of DTSs in ES cells.« less
Sastre-Garau, X; Favre, M; Couturier, J; Orth, G
2000-08-01
We previously described two genital carcinomas (IC2, IC4) containing human papillomavirus type 16 (HPV-16)- or HPV-18-related sequences integrated in chromosomal bands containing the c-myc (8q24) or N-myc (2p24) gene, respectively. The c-myc gene was rearranged and amplified in IC2 cells without evidence of overexpression. The N-myc gene was amplified and highly transcribed in IC4 cells. Here, the sequence of an 8039 bp IC4 DNA fragment containing the integrated viral sequences and the cellular junctions is reported. A 3948 bp segment of the genome of HPV-45 encompassing the upstream regulatory region and the E6 and E7 ORFs was integrated into the untranslated part of N-myc exon 3, upstream of the N-myc polyadenylation signal. Both N-myc and HPV-45 sequences were amplified 10- to 20-fold. The 3' ends of the major N-myc transcript were mapped upstream of the 5' junction. A minor N-myc/HPV-45 fusion transcript was also identified, as well as two abundant transcripts from the HPV-45 E6-E7 region. Large amounts of N-myc protein were detected in IC4 cells. A major alteration of c-myc sequences in IC2 cells involved the insertion of a non-coding sequence into the second intron and their co-amplification with the third exon, without any evidence for the integration of HPV-16 sequences within or close to the gene. Different patterns of myc gene alterations may thus be associated with integration of HPV DNA in genital tumours, including the activation of the protooncogene via a mechanism of insertional mutagenesis and/or gene amplification.
DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing.
Castle, John C; Biery, Matthew; Bouzek, Heather; Xie, Tao; Chen, Ronghua; Misura, Kira; Jackson, Stuart; Armour, Christopher D; Johnson, Jason M; Rohl, Carol A; Raymond, Christopher K
2010-04-16
DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.
DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing
2010-01-01
Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads. PMID:20398377
Detection of BRAF mutations from solid tumors using Tumorplex™ technology
Yo, Jacob; Hay, Katie S.L.; Vinayagamoorthy, Dilanthi; Maryanski, Danielle; Carter, Mark; Wiegel, Joseph; Vinayagamoorthy, Thuraiayah
2015-01-01
Allele specific multiplex sequencing (Tumorplex™) is a new molecular platform for the detection of single base mutation in tumor biopsies with high sensitivity for clinical testing. Tumorplex™ is a novel modification of Sanger sequencing technology that generates both mutant and wild type nucleotide sequences simultaneously in the same electropherogram. The molecular weight of the two sequencing primers are different such that the two sequences generated are separated, thus eliminating possible suppression of mutant signal by the more abundant wild type signal. Tumorplex™ platform technology was tested using BRAF mutation V600E. These studies were performed with cloned BRAF mutations and genomic DNA extracted from tumor cells carrying 50% mutant allele. The lower limit of detection for BRAF V600E was found to be 20 genome equivalents (GE) using genomic DNA extracted from mutation specific cell lines. Sensitivity of the assay was tested by challenging the mutant allele with wild type allele at 20 GE, and was able to detect BRAF mutant signal at a GE ration of 20:1 × 107 (mutant to wild-type). This level of sensitivity can detect low abundance of clonal mutations in tumor biopsies and eliminate the need for cell enrichment. • Tumorplex™ is a single tube assay that permits the recognition of mutant allele without suppression by wildtype signal. • Tumorplex™ provides a high level of sensitivity. • Tumorplex™ can be used with small sample size with mixed population of cells carrying heterogeneous gDNA. PMID:26258049
The promise and challenge of high-throughput sequencing of the antibody repertoire
Georgiou, George; Ippolito, Gregory C; Beausang, John; Busse, Christian E; Wardemann, Hedda; Quake, Stephen R
2014-01-01
Efforts to determine the antibody repertoire encoded by B cells in the blood or lymphoid organs using high-throughput DNA sequencing technologies have been advancing at an extremely rapid pace and are transforming our understanding of humoral immune responses. Information gained from high-throughput DNA sequencing of immunoglobulin genes (Ig-seq) can be applied to detect B-cell malignancies with high sensitivity, to discover antibodies specific for antigens of interest, to guide vaccine development and to understand autoimmunity. Rapid progress in the development of experimental protocols and informatics analysis tools is helping to reduce sequencing artifacts, to achieve more precise quantification of clonal diversity and to extract the most pertinent biological information. That said, broader application of Ig-seq, especially in clinical settings, will require the development of a standardized experimental design framework that will enable the sharing and meta-analysis of sequencing data generated by different laboratories. PMID:24441474
Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data.
Chin, Chen-Shan; Alexander, David H; Marks, Patrick; Klammer, Aaron A; Drake, James; Heiner, Cheryl; Clum, Alicia; Copeland, Alex; Huddleston, John; Eichler, Evan E; Turner, Stephen W; Korlach, Jonas
2013-06-01
We present a hierarchical genome-assembly process (HGAP) for high-quality de novo microbial genome assemblies using only a single, long-insert shotgun DNA library in conjunction with Single Molecule, Real-Time (SMRT) DNA sequencing. Our method uses the longest reads as seeds to recruit all other reads for construction of highly accurate preassembled reads through a directed acyclic graph-based consensus procedure, which we follow with assembly using off-the-shelf long-read assemblers. In contrast to hybrid approaches, HGAP does not require highly accurate raw reads for error correction. We demonstrate efficient genome assembly for several microorganisms using as few as three SMRT Cell zero-mode waveguide arrays of sequencing and for BACs using just one SMRT Cell. Long repeat regions can be successfully resolved with this workflow. We also describe a consensus algorithm that incorporates SMRT sequencing primary quality values to produce de novo genome sequence exceeding 99.999% accuracy.
Kerr, M; Fischer, J E; Purushotham, K R; Gao, D; Nakagawa, Y; Maeda, N; Ghanta, V; Hiramoto, R; Chegini, N; Humphreys-Beher, M G
1994-08-02
The murine transformed cell line YC-8 and beta-adrenergic receptor agonist (isoproternol) treated rat and mouse parotid gland acinar cells ectopically express cell surface beta 1-4 galactosyltransferase during active proliferation. This activity is dependent upon the expression of the GTA-kinase (p58) in these cells. Using total RNA, cDNA clones for the protein coding region of the kinase were isolated by reverse transcriptase-PCR cloning. DNA sequence analysis failed to show sequence differences with the normal homolog from mouse cells although Southern blot analysis of YC-8, and a second cell line KI81, indicated changes in the restriction enzyme digestion profile relative to murine cell lines which do not express cell surface galactosyltransferase. The rat cDNA clone from isoproterenol-treated salivary glands showed a high degree of protein and nucleic acid sequence homology to the GTA-kinase from both murine and human sources. Northern blot analysis of YC-8 and a control cell line LSTRA revealed the synthesis of a major 3.0 kb mRNA from both cell lines plus the unique expression of a 4.5 kb mRNA in the YC-8 cells. Reverse transcriptase-PCR of LSTRA and YC-8 confirmed the increased steady state levels of the GTA-kinase mRNA in YC-8. In the mouse, induction of cell proliferation by isoproterenol resulted in a 50-fold increase in steady state mRNA levels for the kinase over the low level of expression in quiescent cells. Expression of the rat 3' untranslated region in rat parotid cells in vitro led to an increased rate of DNA synthesis, cell number an ectopic expression of cell surface galactosyltransferase in the sense orientation. Antisense expression or vector alone did not alter growth characteristics of acinar cells. A polyclonal antibody monospecific to a murine amino terminal peptide sequence revealed a uniform distribution of GTA-kinase over the cytoplasm of acinar and duct cells of control mouse parotid glands. However, upon growth stimulation, kinase was detected primarily in a perinuclear and nuclear immunostaining pattern. Western blot analysis confirmed a translocation from a cytoplasmic localization in both LSTRA and quiescent salivary cells to a membrane-associated localization in YC-8 and proliferating salivary cells.
Vázquez, Olalla; Blanco-Canosa, Juan B; Vázquez, M Eugenio; Martínez-Costas, Jose; Castedo, Luis; Mascareñas, José L
2008-11-24
Efficient targeting of DNA by designed molecules requires not only careful fine-tuning of their DNA-recognition properties, but also appropriate cell internalization of the compounds so that they can reach the cell nucleus in a short period of time. Previous observations in our group on the relatively high affinity displayed by conjugates between distamycin derivatives and bZIP basic regions for A-rich DNA sites, led us to investigate whether the covalent attachment of a positively charged cell-penetrating peptide to a distamycin-like tripyrrole might yield high affinity DNA binders with improved cell internalization properties. Our work has led to the discovery of synthetic tripyrrole-octa-arginine conjugates that are capable of targeting specific DNA sites that contain A-rich tracts with low nanomolar affinity; they simultaneously exhibit excellent membrane and nuclear translocation properties in living HeLa cells.
Whole-genome multiple displacement amplification from single cells.
Spits, Claudia; Le Caignec, Cédric; De Rycke, Martine; Van Haute, Lindsey; Van Steirteghem, André; Liebaers, Inge; Sermon, Karen
2006-01-01
Multiple displacement amplification (MDA) is a recently described method of whole-genome amplification (WGA) that has proven efficient in the amplification of small amounts of DNA, including DNA from single cells. Compared with PCR-based WGA methods, MDA generates DNA with a higher molecular weight and shows better genome coverage. This protocol was developed for preimplantation genetic diagnosis, and details a method for performing single-cell MDA using the phi29 DNA polymerase. It can also be useful for the amplification of other minute quantities of DNA, such as from forensic material or microdissected tissue. The protocol includes the collection and lysis of single cells, and all materials and steps involved in the MDA reaction. The whole procedure takes 3 h and generates 1-2 microg of DNA from a single cell, which is suitable for multiple downstream applications, such as sequencing, short tandem repeat analysis or array comparative genomic hybridization.
Yasuno, Rie; Wada, Hajime
1998-01-01
Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide. PMID:9808738
LaPolla, R J; Mayne, K M; Davidson, N
1984-01-01
A mouse cDNA clone has been isolated that contains the complete coding region of a protein highly homologous to the delta subunit of the Torpedo acetylcholine receptor (AcChoR). The cDNA library was constructed in the vector lambda 10 from membrane-associated poly(A)+ RNA from BC3H-1 mouse cells. Surprisingly, the delta clone was selected by hybridization with cDNA encoding the gamma subunit of the Torpedo AcChoR. The nucleotide sequence of the mouse cDNA clone contains an open reading frame of 520 amino acids. This amino acid sequence exhibits 59% and 50% sequence homology to the Torpedo AcChoR delta and gamma subunits, respectively. However, the mouse nucleotide sequence has several stretches of high homology with the Torpedo gamma subunit cDNA, but not with delta. The mouse protein has the same general structural features as do the Torpedo subunits. It is encoded by a 3.3-kilobase mRNA. There is probably only one, but at most two, chromosomal genes coding for this or closely related sequences. Images PMID:6096870
Hashimoto, Masami; Bacman, Sandra R; Peralta, Susana; Falk, Marni J; Chomyn, Anne; Chan, David C; Williams, Sion L; Moraes, Carlos T
2015-01-01
We have designed mitochondrially targeted transcription activator-like effector nucleases or mitoTALENs to cleave specific sequences in the mitochondrial DNA (mtDNA) with the goal of eliminating mtDNA carrying pathogenic point mutations. To test the generality of the approach, we designed mitoTALENs to target two relatively common pathogenic mtDNA point mutations associated with mitochondrial diseases: the m.8344A>G tRNALys gene mutation associated with myoclonic epilepsy with ragged red fibers (MERRF) and the m.13513G>A ND5 mutation associated with MELAS/Leigh syndrome. Transmitochondrial cybrid cells harbouring the respective heteroplasmic mtDNA mutations were transfected with the respective mitoTALEN and analyzed after different time periods. MitoTALENs efficiently reduced the levels of the targeted pathogenic mtDNAs in the respective cell lines. Functional assays showed that cells with heteroplasmic mutant mtDNA were able to recover respiratory capacity and oxidative phosphorylation enzymes activity after transfection with the mitoTALEN. To improve the design in the context of the low complexity of mtDNA, we designed shorter versions of the mitoTALEN specific for the MERRF m.8344A>G mutation. These shorter mitoTALENs also eliminated the mutant mtDNA. These reductions in size will improve our ability to package these large sequences into viral vectors, bringing the use of these genetic tools closer to clinical trials. PMID:26159306
Wang, Wen-Chung; Lee, Ya-Ting; Lai, Yen-Chein
2017-03-27
Granulosa cell tumors are rare ovarian malignancies. Their characteristics include unpredictable indolent growth with malignant potential and late recurrence. Approximately 95% are of adult type. Recent molecular studies have characterized the FOXL2 402C > G mutation in adult granulosa cell tumor. Our previous case report showed that unique FOXL2 402C > G mutation and defective DNA mismatch repair system are associated with the development of adult granulosa cell tumor. In this study, the DNA sequences of four genes, MSH2, MLH1, MSH6, and PMS2, in the DNA mismatch repair system were determined via direct sequencing to elucidate the exact mechanism for the development of this granulosa cell tumor. The results showed that two missense germline mutations, T485K and N775L, inactivate the PMS2 gene. The results of this case study indicated that although FOXL2 402C > G mutation determines the development of granulosa cell tumor, PMS2 mutation may be the initial driver of carcinogenesis. Immunohistochemistry-based tumor testing for mismatch repair gene expression may be necessary for granulosa cell tumors to determine their malignant potential or if they are part of Lynch syndrome.
Maruyama, Toru; Yamagishi, Keisuke; Mori, Tetsushi; Takeyama, Haruko
2015-01-01
Whole genome amplification (WGA) is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA), using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL) within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples. PMID:26389587
Yu, Bing; Ni, Ming; Li, Wen-Han; Lei, Ping; Xing, Wei; Xiao, Dai-Wen; Huang, Yu; Tang, Zhen-Jie; Zhu, Hui-Fen; Shen, Guan-Xin
2005-07-14
To identify the scFv antibody fragments specific for hepatocellular carcinoma by biopanning from a large human naive scFv phage display library. A large human naive scFv phage library was used to search for the specific targets by biopanning with the hepatocellular carcinoma cell line HepG2 for the positive-selecting and the normal liver cell line L02 for the counter-selecting. After three rounds of biopanning, individual scFv phages binding selectively to HepG2 cells were picked out. PCR was carried out for identification of the clones containing scFv gene sequence. The specific scFv phages were selected by ELISA and flow cytometry. DNA sequences of positive clones were analyzed by using Applied Biosystem Automated DNA sequencers 3 730. The expression proteins of the specific scFv antibody fragments in E.coli HB2151 were purified by the affinity chromatography and detected by SDS-PAGE, Western blot and ELISA. The biological effect of the soluble antibody fragments on the HepG2 cells was investigated by observing the cell proliferation. Two different positive clones were obtained and the functional variable sequences were identified. Their DNA sequences of the scFv antibody fragments were submitted to GenBank (accession nos: AY686498 and AY686499). The soluble scFv antibody fragments were successfully expressed in E.coli HB2151. The relative molecular mass of the expression products was about 36 ku, according to its predicted M(r) value. The two soluble scFv antibody fragments also had specific binding activity and obvious growth inhibition properties to HepG2 cells. The phage library biopanning permits identification of specific antibody fragments for hepatocellular carcinoma and affords experiment evidence for its immunotherapy study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie
2009-11-20
RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR)more » shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.« less
Alternative polyadenylation of the gene transcripts encoding a rat DNA polymerase beta.
Konopiński, R; Nowak, R; Siedlecki, J A
1996-10-17
Rat cells produce two different transcripts of DNA polymerase beta (beta-Pol). The low-molecular-weight transcript (1.4 kb) was already sequenced. We report here the cloning and sequencing of the full-length cDNA, corresponding to the high-molecular-weight (HMW) transcript (4.0 kb) of beta-Pol. Sequence data strongly suggest that both transcripts are produced from a single gene by alternative polyadenylation. The HMW transcript contains the entire 1.4 kb transcript sequence and additional 2.2 kb on the 3' end. The 3' UTR of the HMW transcript contains some regulatory sequences which are not present in the 1.4-kb transcript. The A + U-rich fragment and (GU)21 sequence are believed to influence the stability of the mRNA. The functional significance of the A-rich region locally destabilizing double-stranded secondary structure remains unknown.
NASA Technical Reports Server (NTRS)
Smith, David J.; Burton, Aaron; Castro-Wallace, Sarah; John, Kristen; Stahl, Sarah E.; Dworkin, Jason Peter; Lupisella, Mark L.
2016-01-01
On the International Space Station (ISS), technologies capable of rapid microbial identification and disease diagnostics are not currently available. NASA still relies upon sample return for comprehensive, molecular-based sample characterization. Next-generation DNA sequencing is a powerful approach for identifying microorganisms in air, water, and surfaces onboard spacecraft. The Biomolecule Sequencer payload, manifested to SpaceX-9 and scheduled on the Increment 4748 research plan (June 2016), will assess the functionality of a commercially-available next-generation DNA sequencer in the microgravity environment of ISS. The MinION device from Oxford Nanopore Technologies (Oxford, UK) measures picoamp changes in electrical current dependent on nucleotide sequences of the DNA strand migrating through nanopores in the system. The hardware is exceptionally small (9.5 x 3.2 x 1.6 cm), lightweight (120 grams), and powered only by a USB connection. For the ISS technology demonstration, the Biomolecule Sequencer will be powered by a Microsoft Surface Pro3. Ground-prepared samples containing lambda bacteriophage, Escherichia coli, and mouse genomic DNA, will be launched and stored frozen on the ISS until experiment initiation. Immediately prior to sequencing, a crew member will collect and thaw frozen DNA samples, connect the sequencer to the Surface Pro3, inject thawed samples into a MinION flow cell, and initiate sequencing. At the completion of the sequencing run, data will be downlinked for ground analysis. Identical, synchronous ground controls will be used for data comparisons to determine sequencer functionality, run-time sequence, current dynamics, and overall accuracy. We will present our latest results from the ISS flight experiment the first time DNA has ever been sequenced in space and discuss the many potential applications of the Biomolecule Sequencer for environmental monitoring, medical diagnostics, higher fidelity and more adaptable Space Biology Human Research Program investigations, and even life detection experiments for astrobiology missions.
Library construction for next-generation sequencing: Overviews and challenges
Head, Steven R.; Komori, H. Kiyomi; LaMere, Sarah A.; Whisenant, Thomas; Van Nieuwerburgh, Filip; Salomon, Daniel R.; Ordoukhanian, Phillip
2014-01-01
High-throughput sequencing, also known as next-generation sequencing (NGS), has revolutionized genomic research. In recent years, NGS technology has steadily improved, with costs dropping and the number and range of sequencing applications increasing exponentially. Here, we examine the critical role of sequencing library quality and consider important challenges when preparing NGS libraries from DNA and RNA sources. Factors such as the quantity and physical characteristics of the RNA or DNA source material as well as the desired application (i.e., genome sequencing, targeted sequencing, RNA-seq, ChIP-seq, RIP-seq, and methylation) are addressed in the context of preparing high quality sequencing libraries. In addition, the current methods for preparing NGS libraries from single cells are also discussed. PMID:24502796
High Mitochondrial DNA Stability in B-Cell Chronic Lymphocytic Leukemia
Cerezo, María; Bandelt, Hans-Jürgen; Martín-Guerrero, Idoia; Ardanaz, Maite; Vega, Ana; Carracedo, Ángel; García-Orad, África; Salas, Antonio
2009-01-01
Background Chronic Lymphocytic Leukemia (CLL) leads to progressive accumulation of lymphocytes in the blood, bone marrow, and lymphatic tissues. Previous findings have suggested that the mtDNA could play an important role in CLL. Methodology/Principal Findings The mitochondrial DNA (mtDNA) control-region was analyzed in lymphocyte cell DNA extracts and compared with their granulocyte counterpart extract of 146 patients suffering from B-Cell CLL; B-CLL (all recruited from the Basque country). Major efforts were undertaken to rule out methodological artefacts that would render a high false positive rate for mtDNA instabilities and thus lead to erroneous interpretation of sequence instabilities. Only twenty instabilities were finally confirmed, most of them affecting the homopolymeric stretch located in the second hypervariable segment (HVS-II) around position 310, which is well known to constitute an extreme mutational hotspot of length polymorphism, as these mutations are frequently observed in the general human population. A critical revision of the findings in previous studies indicates a lack of proper methodological standards, which eventually led to an overinterpretation of the role of the mtDNA in CLL tumorigenesis. Conclusions/Significance Our results suggest that mtDNA instability is not the primary causal factor in B-CLL. A secondary role of mtDNA mutations cannot be fully ruled out under the hypothesis that the progressive accumulation of mtDNA instabilities could finally contribute to the tumoral process. Recommendations are given that would help to minimize erroneous interpretation of sequencing results in mtDNA studies in tumorigenesis. PMID:19924307
Gauthier-Rouvière, C; Cavadore, J C; Blanchard, J M; Lamb, N J; Fernandez, A
1991-01-01
Indirect immunofluorescence analysis, using antibodies directed against peptide sequences outside the DNA-binding domain of the 67-kDa serum response factor (p67SRF), revealed a punctuated nuclear staining, constant throughout the cell cycle and in all different cell lines tested. p67SRF was also tightly associated with chromatin through all stages of mitosis. Inhibition of p67SRF activity in vivo, through microinjection of anti-p67SRF antibodies, specifically suppressed DNA synthesis induced after serum addition or ras microinjection, suggesting that these antibodies were effective in preventing expression of serum response element (SRE)-regulated genes. A similar inhibition was also obtained in cells injected with oligonucleotides corresponding to the DNA binding sequence for p67SRF protein, SRE. Moreover, this inhibition of DNA synthesis by anti-p67SRF or SRE injection was still observed in cells injected during late G1, well after c-fos induction. These data imply that genes regulated by p67SRF are continuously involved in the proliferation pathway throughout G1 and that p67SRF forms an integral component of mammalian cell transcriptional control. Images PMID:1782216
Spermine Condenses DNA, but Not RNA Duplexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Andrea M.; Tolokh, Igor S.; Pabit, Suzette A.
Interactions between the polyamine spermine and nucleic acids drive important cellular processes. Spermine condenses DNA, and some RNAs such as poly(rA):poly(rU). A large fraction of the spermine present in cells is bound to RNA, but apparently does not condense it. Here, we study the effect of spermine binding to short duplex RNA and DNA and compare our findings with predictions of molecular dynamics simulations. When small numbers of spermine are introduced, RNA with a designed sequence, containing a mixture of 14 GC pairs and 11 AU pairs, resists condensation relative to DNA of an equivalent sequence or to 25 basemore » pair poly(rA):poly(rU) RNA. Comparison of wide-angle x-ray scattering profiles with simulation suggests that spermine is sequestered deep within the major groove of mixed sequence RNA, preventing condensation by limiting opportunities to bridge to other molecules as well as stabilizing the RNA by locking it into a particular conformation. In contrast, for DNA, simulations suggest that spermine binds external to the duplex, offering opportunities for intermolecular interaction. The goal of this study is to explain how RNA can remain soluble, and available for interaction with other molecules in the cell, despite the presence of spermine at concentrations high enough to precipitate DNA.« less
High-throughput single-cell PCR using microfluidic emulsions
NASA Astrophysics Data System (ADS)
Guo, Mira; Mazutis, Linas; Agresti, Jeremy; Sommer, Morten; Dantas, Gautam; Church, George; Turnbaugh, Peter; Weitz, David
2012-02-01
The human gut and other environmental samples contain large populations of diverse bacteria that are poorly characterized and unculturable, yet have many functions relevant to human health. Our goal is to identify exactly which species carry some gene of interest, such as a carbohydrate metabolism gene. Conventional metagenomic assays sequence DNA extracted in bulk from populations of mixed cell types, and are therefore unable to associate a gene of interest with a species-identifying 16S gene, to determine that the two genes originated from the same cell. We solve this problem by microfluidically encapsulating single bacteria cells in drops, using PCR to amplify the two genes inside any drop whose encapsulated cell contains both genes, and sequencing the DNA from those drops that contain both amplification products.
Chang, F; Syrjänen, S; Shen, Q; Cintorino, M; Santopietro, R; Tosi, P; Syrjänen, K
2000-01-01
Certain viruses, notably human papillomavirus (HPV), cytomegalovirus (CMV), herpes simplex virus (HSV) and Epstein-Barr virus (EBV), are known to produce tumors in animals and cell transformation in vitro and they have been implicated in the pathogenesis of human cancers. All these viruses are also known to infect the esophagus. This study was aimed to determine whether these viruses play any causal role in the etiology of esophageal squamous cell carcinoma. A series of 103 esophageal squamous cell carcinomas derived from patients in the high-incidence area of northern China were analyzed by DNA in situ hybridization and polymerase chain reaction (PCR) for the presence of HPV DNA sequences and, using immunohistochemistry, for the demonstration of CMV, HSV and EBV infections. Six (5.8%) of the 103 tumors were found to contain HPV 16, 18 or 30 DNA sequences. HPV types 6, 11 and 53 were not detected in any of the cases. Amplified HPV DNA sequences were found in 17 out of 101 (16.8%) carcinoma specimens by PCR with L1 consensus primers. None of the 103 carcinomas tested was immunohistochemically positive for CMV, HSV or EBV. Our results confirmed the HPV involvement in esophageal carcinomas and provided further evidence to support a causal association of HPV infection with esophageal squamous cell carcinoma. However, the three herpesviruses, CMV, HSV and EBV, are highly unlikely to be involved in the pathogenesis of this malignancy in the high-incidence area of China.
Surveying the repair of ancient DNA from bones via high-throughput sequencing.
Mouttham, Nathalie; Klunk, Jennifer; Kuch, Melanie; Fourney, Ron; Poinar, Hendrik
2015-07-01
DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive.
Cost-Effective Sequencing of Full-Length cDNA Clones Powered by a De Novo-Reference Hybrid Assembly
Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka
2010-01-01
Background Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. Methodology We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence ∼800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. Conclusions The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only ∼US$3 per clone, demonstrating a significant advantage over previous approaches. PMID:20479877
Partial DNA-guided Cas9 enables genome editing with reduced off-target activity
Yin, Hao; Song, Chun-Qing; Suresh, Sneha; Kwan, Suet-Yan; Wu, Qiongqiong; Walsh, Stephen; Ding, Junmei; Bogorad, Roman L; Zhu, Lihua Julie; Wolfe, Scot A; Koteliansky, Victor; Xue, Wen; Langer, Robert; Anderson, Daniel G
2018-01-01
CRISPR–Cas9 is a versatile RNA-guided genome editing tool. Here we demonstrate that partial replacement of RNA nucleotides with DNA nucleotides in CRISPR RNA (crRNA) enables efficient gene editing in human cells. This strategy of partial DNA replacement retains on-target activity when used with both crRNA and sgRNA, as well as with multiple guide sequences. Partial DNA replacement also works for crRNA of Cpf1, another CRISPR system. We find that partial DNA replacement in the guide sequence significantly reduces off-target genome editing through focused analysis of off-target cleavage, measurement of mismatch tolerance and genome-wide profiling of off-target sites. Using the structure of the Cas9–sgRNA complex as a guide, the majority of the 3′ end of crRNA can be replaced with DNA nucleotide, and the 5 - and 3′-DNA-replaced crRNA enables efficient genome editing. Cas9 guided by a DNA–RNA chimera may provide a generalized strategy to reduce both the cost and the off-target genome editing in human cells. PMID:29377001
Lenzmeier, B A; Giebler, H A; Nyborg, J K
1998-02-01
Efficient human T-cell leukemia virus type 1 (HTLV-1) replication and viral gene expression are dependent upon the virally encoded oncoprotein Tax. To activate HTLV-1 transcription, Tax interacts with the cellular DNA binding protein cyclic AMP-responsive element binding protein (CREB) and recruits the coactivator CREB binding protein (CBP), forming a nucleoprotein complex on the three viral cyclic AMP-responsive elements (CREs) in the HTLV-1 promoter. Short stretches of dG-dC-rich (GC-rich) DNA, immediately flanking each of the viral CREs, are essential for Tax recruitment of CBP in vitro and Tax transactivation in vivo. Although the importance of the viral CRE-flanking sequences is well established, several studies have failed to identify an interaction between Tax and the DNA. The mechanistic role of the viral CRE-flanking sequences has therefore remained enigmatic. In this study, we used high resolution methidiumpropyl-EDTA iron(II) footprinting to show that Tax extended the CREB footprint into the GC-rich DNA flanking sequences of the viral CRE. The Tax-CREB footprint was enhanced but not extended by the KIX domain of CBP, suggesting that the coactivator increased the stability of the nucleoprotein complex. Conversely, the footprint pattern of CREB on a cellular CRE lacking GC-rich flanking sequences did not change in the presence of Tax or Tax plus KIX. The minor-groove DNA binding drug chromomycin A3 bound to the GC-rich flanking sequences and inhibited the association of Tax and the Tax-CBP complex without affecting CREB binding. Tax specifically cross-linked to the viral CRE in the 5'-flanking sequence, and this cross-link was blocked by chromomycin A3. Together, these data support a model where Tax interacts directly with both CREB and the minor-groove viral CRE-flanking sequences to form a high-affinity binding site for the recruitment of CBP to the HTLV-1 promoter.
Cong, Le; Zhou, Ruhong; Kuo, Yu-chi; Cunniff, Margaret; Zhang, Feng
2012-01-01
Transcription activator-like effectors (TALE) are sequence-specific DNA binding proteins that harbor modular, repetitive DNA binding domains. TALEs have enabled the creation of customizable designer transcriptional factors and sequence-specific nucleases for genome engineering. Here we report two improvements of the TALE toolbox for achieving efficient activation and repression of endogenous gene expression in mammalian cells. We show that the naturally occurring repeat variable diresidue (RVD) Asn-His (NH) has high biological activity and specificity for guanine, a highly prevalent base in mammalian genomes. We also report an effective TALE transcriptional repressor architecture for targeted inhibition of transcription in mammalian cells. These findings will improve the precision and effectiveness of genome engineering that can be achieved using TALEs. PMID:22828628
Luo, Si-Wei; Liang, Zhi; Wu, Jia-Rui
2017-01-01
Quantitatively detecting correlations of multiple protein-protein interactions (PPIs) in vivo is a big challenge. Here we introduce a novel method, termed Protein-interactome Footprinting (PiF), to simultaneously measure multiple PPIs in one cell. The principle of PiF is that each target physical PPI in the interactome is simultaneously transcoded into a specific DNA sequence based on dimerization of the target proteins fused with DNA-binding domains. The interaction intensity of each target protein is quantified as the copy number of the specific DNA sequences bound by each fusion protein dimers. Using PiF, we quantitatively reveal dynamic patterns of PPIs and their correlation network in E. coli two-component systems. PMID:28338015
Molecular sled sequences are common in mammalian proteins.
Xiong, Kan; Blainey, Paul C
2016-03-18
Recent work revealed a new class of molecular machines called molecular sleds, which are small basic molecules that bind and slide along DNA with the ability to carry cargo along DNA. Here, we performed biochemical and single-molecule flow stretching assays to investigate the basis of sliding activity in molecular sleds. In particular, we identified the functional core of pVIc, the first molecular sled characterized; peptide functional groups that control sliding activity; and propose a model for the sliding activity of molecular sleds. We also observed widespread DNA binding and sliding activity among basic polypeptide sequences that implicate mammalian nuclear localization sequences and many cell penetrating peptides as molecular sleds. These basic protein motifs exhibit weak but physiologically relevant sequence-nonspecific DNA affinity. Our findings indicate that many mammalian proteins contain molecular sled sequences and suggest the possibility that substantial undiscovered sliding activity exists among nuclear mammalian proteins. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Sequence analysis of Leukemia DNA
NASA Astrophysics Data System (ADS)
Nacong, Nasria; Lusiyanti, Desy; Irawan, Muhammad. Isa
2018-03-01
Cancer is a very deadly disease, one of which is leukemia disease or better known as blood cancer. The cancer cell can be detected by taking DNA in laboratory test. This study focused on local alignment of leukemia and non leukemia data resulting from NCBI in the form of DNA sequences by using Smith-Waterman algorithm. SmithWaterman algorithm was invented by TF Smith and MS Waterman in 1981. These algorithms try to find as much as possible similarity of a pair of sequences, by giving a negative value to the unequal base pair (mismatch), and positive values on the same base pair (match). So that will obtain the maximum positive value as the end of the alignment, and the minimum value as the initial alignment. This study will use sequences of leukemia and 3 sequences of non leukemia.
G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV
Madireddy, Advaitha; Purushothaman, Pravinkumar; Loosbroock, Christopher P.; Robertson, Erle S.; Schildkraut, Carl L.; Verma, Subhash C.
2016-01-01
Kaposi's sarcoma associated herpesvirus (KSHV) establishes life-long latent infection by persisting as an extra-chromosomal episome in the infected cells and by maintaining its genome in dividing cells. KSHV achieves this by tethering its epigenome to the host chromosome by latency associated nuclear antigen (LANA), which binds in the terminal repeat (TR) region of the viral genome. Sequence analysis of the TR, a GC-rich DNA element, identified several potential Quadruplex G-Rich Sequences (QGRS). Since quadruplexes have the tendency to obstruct DNA replication, we used G-quadruplex stabilizing compounds to examine their effect on latent DNA replication and the persistence of viral episomes. Our results showed that these G-quadruplex stabilizing compounds led to the activation of dormant origins of DNA replication, with preferential bi-directional pausing of replications forks moving out of the TR region, implicating the role of the G-rich TR in the perturbation of episomal DNA replication. Over time, treatment with PhenDC3 showed a loss of viral episomes in the infected cells. Overall, these data show that G-quadruplex stabilizing compounds retard the progression of replication forks leading to a reduction in DNA replication and episomal maintenance. These results suggest a potential role for G-quadruplex stabilizers in the treatment of KSHV-associated diseases. PMID:26837574
Diagnosis of skin cancer by correlation and complexity analyses of damaged DNA
Namazi, Hamidreza; Kulish, Vladimir V.; Delaviz, Fatemeh; Delaviz, Ali
2015-01-01
Skin cancer is a common, low-grade cancerous (malignant) growth of the skin. It starts from cells that begin as normal skin cells and transform into those with the potential to reproduce in an out-of-control manner. Cancer develops when DNA, the molecule found in cells that encodes genetic information, becomes damaged and the body cannot repair the damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to diagnose the skin cancer, first DNA walk plots of genomes of patients with skin cancer were generated. Then, the data so obtained was checked for complexity by computing the fractal dimension. Furthermore, the Hurst exponent has been employed in order to study the correlation of damaged DNA. By analysing different samples it has been found that the damaged DNA sequences are exhibiting higher degree of complexity and less correlation compared to normal DNA sequences. This investigation confirms that this method can be used for diagnosis of skin cancer. The method discussed in this research is useful not only for diagnosis of skin cancer but can be applied for diagnosis and growth analysis of different types of cancers. PMID:26497203
Complementation of a Fanconi anemia group A cell line by UbA{sup 52}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, R.E.; Heina, J.A.; Jakobs, P.M.
1994-09-01
Cells from patients with Fanconi anemia (FA) display chromosomal instability and increased sensitivity to mitomycin C (MMC) and diepoxybutane (DEB) relative to normal cells. Several genes act in this pathway of DNA damage processing based upon four known complementation groups in FA. We have made a cDNA expression library in a vector with a G418 selectable marker to identify FA genes other than the FA-C group. Approximately 1 x 10{sup 6} independent cDNA clones were isolated with an average cDNA size of 1.5 kb. Five cell lines resistant to MMC and DEB were isolated from 6 x 10{sup 6} G418-resistantmore » transfectants from 65 individual transfections of the FA-A fibroblast line GM6914. The isolated cell lines also showed normal chromosome stability. The same cDNA (600 bp) was recovered from three independent cell lines by PCR using flanking sequence primers. The gene has sequence identity with a known gene, the ubiquitin fusion gene, UbA{sub 52}. Interestingly, each of the cDNAs were inserted in antisense orientation relative to the cytomegalovirus (CMV) promoter as determined by sequencing and PCR using UbA{sub 52}-specific internal primers. Southern blot analysis indicated the cell lines had distinct chromosomal insertion sites. Mutation analysis by chemical cleavage showed no reading frame mutations, indicating that UbA{sub 52} is not the FA-A gene. Re-transfection with the UbA{sub 52} gene in antisense gave complementation for MMC, DEB and chromosome stability to varying degrees. Re-transfection of the antisense construct with the CMV promotor removed or with a sense construct did not alter the MMC sensitivity. We conclude that the antisense UbA{sub 52} gene has a non-specific effect, perhaps acting by altering the cell cycle or susceptibility to apoptosis.« less
2012-01-01
Background While safer than their viral counterparts, conventional non-viral gene delivery DNA vectors offer a limited safety profile. They often result in the delivery of unwanted prokaryotic sequences, antibiotic resistance genes, and the bacterial origins of replication to the target, which may lead to the stimulation of unwanted immunological responses due to their chimeric DNA composition. Such vectors may also impart the potential for chromosomal integration, thus potentiating oncogenesis. We sought to engineer an in vivo system for the quick and simple production of safer DNA vector alternatives that were devoid of non-transgene bacterial sequences and would lethally disrupt the host chromosome in the event of an unwanted vector integration event. Results We constructed a parent eukaryotic expression vector possessing a specialized manufactured multi-target site called “Super Sequence”, and engineered E. coli cells (R-cell) that conditionally produce phage-derived recombinase Tel (PY54), TelN (N15), or Cre (P1). Passage of the parent plasmid vector through R-cells under optimized conditions, resulted in rapid, efficient, and one step in vivo generation of mini lcc—linear covalently closed (Tel/TelN-cell), or mini ccc—circular covalently closed (Cre-cell), DNA constructs, separated from the backbone plasmid DNA. Site-specific integration of lcc plasmids into the host chromosome resulted in chromosomal disruption and 105 fold lower viability than that seen with the ccc counterpart. Conclusion We offer a high efficiency mini DNA vector production system that confers simple, rapid and scalable in vivo production of mini lcc DNA vectors that possess all the benefits of “minicircle” DNA vectors and virtually eliminate the potential for undesirable vector integration events. PMID:23216697
Koeppel, Florence; Blanchard, Steven; Jovelet, Cécile; Genin, Bérengère; Marcaillou, Charles; Martin, Emmanuel; Rouleau, Etienne; Solary, Eric; Soria, Jean-Charles; André, Fabrice; Lacroix, Ludovic
2017-01-01
Tumor mutation load (TML) has been proposed as a biomarker of patient response to immunotherapy in several studies. TML is usually determined by tumor biopsy DNA (tDNA) whole exome sequencing (WES), therefore TML evaluation is limited by informative biopsy availability. Circulating cell free DNA (cfDNA) provided by liquid biopsy is a surrogate specimen to biopsy for molecular profiling. Nevertheless performing WES on DNA from plasma is technically challenging and the ability to determine tumor mutation load from liquid biopsies remains to be demonstrated. In the current study, WES was performed on cfDNA from 32 metastatic patients of various cancer types included into MOSCATO 01 (NCT01566019) and/or MATCHR (NCT02517892) molecular triage trials. Results from targeted gene sequencing (TGS) and WES performed on cfDNA were compared to results from tumor tissue biopsy. In cfDNA samples, WES mutation detection sensitivity was 92% compared to targeted sequencing (TGS). When comparing cfDNA-WES to tDNA-WES, mutation detection sensitivity was 53%, consistent with previously published prospective study comparing cfDNA-TGS to tDNA-TGS. For samples in which presence of tumor DNA was confirmed in cfDNA, tumor mutation load from liquid biopsy was correlated with tumor biopsy. Taken together, this study demonstrated that liquid biopsy may be applied to determine tumor mutation load. Qualification of liquid biopsy for interpretation is a crucial point to use cfDNA for mutational load estimation.
Blanchard, Steven; Jovelet, Cécile; Genin, Bérengère; Marcaillou, Charles; Martin, Emmanuel; Rouleau, Etienne; Solary, Eric; Soria, Jean-Charles; André, Fabrice; Lacroix, Ludovic
2017-01-01
Tumor mutation load (TML) has been proposed as a biomarker of patient response to immunotherapy in several studies. TML is usually determined by tumor biopsy DNA (tDNA) whole exome sequencing (WES), therefore TML evaluation is limited by informative biopsy availability. Circulating cell free DNA (cfDNA) provided by liquid biopsy is a surrogate specimen to biopsy for molecular profiling. Nevertheless performing WES on DNA from plasma is technically challenging and the ability to determine tumor mutation load from liquid biopsies remains to be demonstrated. In the current study, WES was performed on cfDNA from 32 metastatic patients of various cancer types included into MOSCATO 01 (NCT01566019) and/or MATCHR (NCT02517892) molecular triage trials. Results from targeted gene sequencing (TGS) and WES performed on cfDNA were compared to results from tumor tissue biopsy. In cfDNA samples, WES mutation detection sensitivity was 92% compared to targeted sequencing (TGS). When comparing cfDNA-WES to tDNA-WES, mutation detection sensitivity was 53%, consistent with previously published prospective study comparing cfDNA-TGS to tDNA-TGS. For samples in which presence of tumor DNA was confirmed in cfDNA, tumor mutation load from liquid biopsy was correlated with tumor biopsy. Taken together, this study demonstrated that liquid biopsy may be applied to determine tumor mutation load. Qualification of liquid biopsy for interpretation is a crucial point to use cfDNA for mutational load estimation. PMID:29161279
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adámik, Matej; Bažantová, Pavla; Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava
Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt,more » which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed.« less
Bacterial identification and subtyping using DNA microarray and DNA sequencing.
Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D
2012-01-01
The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.
DNA-based methods have considerably increased our understanding of the bacterial diversity of water distribution systems (WDS). However, as DNA may persist after cell death, the use of DNA-based methods cannot be used to describe metabolically-active microbes. In contrast, intra...
CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.
Modell, Joshua W; Jiang, Wenyan; Marraffini, Luciano A
2017-04-06
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems provide protection against viral and plasmid infection by capturing short DNA sequences from these invaders and integrating them into the CRISPR locus of the prokaryotic host. These sequences, known as spacers, are transcribed into short CRISPR RNA guides that specify the cleavage site of Cas nucleases in the genome of the invader. It is not known when spacer sequences are acquired during viral infection. Here, to investigate this, we tracked spacer acquisition in Staphylococcus aureus cells harbouring a type II CRISPR-Cas9 system after infection with the staphylococcal bacteriophage ϕ12. We found that new spacers were acquired immediately after infection preferentially from the cos site, the viral free DNA end that is first injected into the cell. Analysis of spacer acquisition after infection with mutant phages demonstrated that most spacers are acquired during DNA injection, but not during other stages of the viral cycle that produce free DNA ends, such as DNA replication or packaging. Finally, we showed that spacers acquired from early-injected genomic regions, which direct Cas9 cleavage of the viral DNA immediately after infection, provide better immunity than spacers acquired from late-injected regions. Our results reveal that CRISPR-Cas systems exploit the phage life cycle to generate a pattern of spacer acquisition that ensures a successful CRISPR immune response.
Hadji Sfaxi, Imen; Ezzine, Aymen; Coquet, Laurent; Cosette, Pascal; Jouenne, Thierry; Marzouki, M Nejib
2012-09-01
Superoxide dismutases (SODs; EC 1.15.1.1) are key enzymes in the cells protection against oxidant agents. Thus, SODs play a major role in the protection of aerobic organisms against oxygen-mediated damages. Three SOD isoforms were previously identified by zymogram staining from Allium sativum bulbs. The purified Cu, Zn-SOD2 shows an antagonist effect to an anticancer drug and alleviate cytotoxicity inside tumor cells lines B16F0 (mouse melanoma cells) and PAE (porcine aortic endothelial cells). To extend the characterization of Allium SODs and their corresponding genes, a proteomic approach was applied involving two-dimensional gel electrophoresis and LC-MS/MS analyses. From peptide sequence data obtained by mass spectrometry and sequences homologies, primers were defined and a cDNA fragment of 456 bp was amplified by RT-PCR. The cDNA nucleotide sequence analysis revealed an open reading frame coding for 152 residues. The deduced amino acid sequence showed high identity (82-87%) with sequences of Cu, Zn-SODs from other plant species. Molecular analysis was achieved by a protein 3D structural model.
Selection of homeotic proteins for binding to a human DNA replication origin.
de Stanchina, E; Gabellini, D; Norio, P; Giacca, M; Peverali, F A; Riva, S; Falaschi, A; Biamonti, G
2000-06-09
We have previously shown that a cell cycle-dependent nucleoprotein complex assembles in vivo on a 74 bp sequence within the human DNA replication origin associated to the Lamin B2 gene. Here, we report the identification, using a one-hybrid screen in yeast, of three proteins interacting with the 74 bp sequence. All of them, namely HOXA13, HOXC10 and HOXC13, are orthologues of the Abdominal-B gene of Drosophila melanogaster and are members of the homeogene family of developmental regulators. We describe the complete open reading frame sequence of HOXC10 and HOXC13 along with the structure of the HoxC13 gene. The specificity of binding of these two proteins to the Lamin B2 origin is confirmed by both band-shift and in vitro footprinting assays. In addition, the ability of HOXC10 and HOXC13 to increase the activity of a promoter containing the 74 bp sequence, as assayed by CAT-assay experiments, demonstrates a direct interaction of these homeoproteins with the origin sequence in mammalian cells. We also show that HOXC10 expression is cell-type-dependent and positively correlates with cell proliferation. Copyright 2000 Academic Press.
Detection of Hepatocyte Clones Containing Integrated Hepatitis B Virus DNA Using Inverse Nested PCR.
Tu, Thomas; Jilbert, Allison R
2017-01-01
Chronic hepatitis B virus (HBV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC), leading to ~600,000 deaths per year worldwide. Many of the steps that occur during progression from the normal liver to cirrhosis and/or HCC are unknown. Integration of HBV DNA into random sites in the host cell genome occurs as a by-product of the HBV replication cycle and forms a unique junction between virus and cellular DNA. Analyses of integrated HBV DNA have revealed that HCCs are clonal and imply that they develop from the transformation of hepatocytes, the only liver cell known to be infected by HBV. Integrated HBV DNA has also been shown, at least in some tumors, to cause insertional mutagenesis in cancer driver genes, which may facilitate the development of HCC. Studies of HBV DNA integration in the histologically normal liver have provided additional insight into HBV-associated liver disease, suggesting that hepatocytes with a survival or growth advantage undergo high levels of clonal expansion even in the absence of oncogenic transformation. Here we describe inverse nested PCR (invPCR), a highly sensitive method that allows detection, sequencing, and enumeration of virus-cell DNA junctions formed by the integration of HBV DNA. The invPCR protocol is composed of two major steps: inversion of the virus-cell DNA junction and single-molecule nested PCR. The invPCR method is highly specific and inexpensive and can be tailored to DNA extracted from large or small amounts of liver. This procedure also allows detection of genome-wide random integration of any known DNA sequence and is therefore a useful technique for molecular biology, virology, and genetic research.
Applications of alignment-free methods in epigenomics.
Pinello, Luca; Lo Bosco, Giosuè; Yuan, Guo-Cheng
2014-05-01
Epigenetic mechanisms play an important role in the regulation of cell type-specific gene activities, yet how epigenetic patterns are established and maintained remains poorly understood. Recent studies have supported a role of DNA sequences in recruitment of epigenetic regulators. Alignment-free methods have been applied to identify distinct sequence features that are associated with epigenetic patterns and to predict epigenomic profiles. Here, we review recent advances in such applications, including the methods to map DNA sequence to feature space, sequence comparison and prediction models. Computational studies using these methods have provided important insights into the epigenetic regulatory mechanisms.
Microfluidic single-cell whole-transcriptome sequencing.
Streets, Aaron M; Zhang, Xiannian; Cao, Chen; Pang, Yuhong; Wu, Xinglong; Xiong, Liang; Yang, Lu; Fu, Yusi; Zhao, Liang; Tang, Fuchou; Huang, Yanyi
2014-05-13
Single-cell whole-transcriptome analysis is a powerful tool for quantifying gene expression heterogeneity in populations of cells. Many techniques have, thus, been recently developed to perform transcriptome sequencing (RNA-Seq) on individual cells. To probe subtle biological variation between samples with limiting amounts of RNA, more precise and sensitive methods are still required. We adapted a previously developed strategy for single-cell RNA-Seq that has shown promise for superior sensitivity and implemented the chemistry in a microfluidic platform for single-cell whole-transcriptome analysis. In this approach, single cells are captured and lysed in a microfluidic device, where mRNAs with poly(A) tails are reverse-transcribed into cDNA. Double-stranded cDNA is then collected and sequenced using a next generation sequencing platform. We prepared 94 libraries consisting of single mouse embryonic cells and technical replicates of extracted RNA and thoroughly characterized the performance of this technology. Microfluidic implementation increased mRNA detection sensitivity as well as improved measurement precision compared with tube-based protocols. With 0.2 M reads per cell, we were able to reconstruct a majority of the bulk transcriptome with 10 single cells. We also quantified variation between and within different types of mouse embryonic cells and found that enhanced measurement precision, detection sensitivity, and experimental throughput aided the distinction between biological variability and technical noise. With this work, we validated the advantages of an early approach to single-cell RNA-Seq and showed that the benefits of combining microfluidic technology with high-throughput sequencing will be valuable for large-scale efforts in single-cell transcriptome analysis.
ParTIES: a toolbox for Paramecium interspersed DNA elimination studies.
Denby Wilkes, Cyril; Arnaiz, Olivier; Sperling, Linda
2016-02-15
Developmental DNA elimination occurs in a wide variety of multicellular organisms, but ciliates are the only single-celled eukaryotes in which this phenomenon has been reported. Despite considerable interest in ciliates as models for DNA elimination, no standard methods for identification and characterization of the eliminated sequences are currently available. We present the Paramecium Toolbox for Interspersed DNA Elimination Studies (ParTIES), designed for Paramecium species, that (i) identifies eliminated sequences, (ii) measures their presence in a sequencing sample and (iii) detects rare elimination polymorphisms. ParTIES is multi-threaded Perl software available at https://github.com/oarnaiz/ParTIES. ParTIES is distributed under the GNU General Public Licence v3. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Single Cell Total RNA Sequencing through Isothermal Amplification in Picoliter-Droplet Emulsion.
Fu, Yusi; Chen, He; Liu, Lu; Huang, Yanyi
2016-11-15
Prevalent single cell RNA amplification and sequencing chemistries mainly focus on polyadenylated RNAs in eukaryotic cells by using oligo(dT) primers for reverse transcription. We develop a new RNA amplification method, "easier-seq", to reverse transcribe and amplify the total RNAs, both with and without polyadenylate tails, from a single cell for transcriptome sequencing with high efficiency, reproducibility, and accuracy. By distributing the reverse transcribed cDNA molecules into 1.5 × 10 5 aqueous droplets in oil, the cDNAs are isothermally amplified using random primers in each of these 65-pL reactors separately. This new method greatly improves the ease of single-cell RNA sequencing by reducing the experimental steps. Meanwhile, with less chance to induce errors, this method can easily maintain the quality of single-cell sequencing. In addition, this polyadenylate-tail-independent method can be seamlessly applied to prokaryotic cell RNA sequencing.
Cornforth, Michael N; Anur, Pavana; Wang, Nicholas; Robinson, Erin; Ray, F Andrew; Bedford, Joel S; Loucas, Bradford D; Williams, Eli S; Peto, Myron; Spellman, Paul; Kollipara, Rahul; Kittler, Ralf; Gray, Joe W; Bailey, Susan M
2018-05-11
Chromosome rearrangements are large-scale structural variants that are recognized drivers of oncogenic events in cancers of all types. Cytogenetics allows for their rapid, genome-wide detection, but does not provide gene-level resolution. Massively parallel sequencing (MPS) promises DNA sequence-level characterization of the specific breakpoints involved, but is strongly influenced by bioinformatics filters that affect detection efficiency. We sought to characterize the breakpoint junctions of chromosomal translocations and inversions in the clonal derivatives of human cells exposed to ionizing radiation. Here, we describe the first successful use of DNA paired-end analysis to locate and sequence across the breakpoint junctions of a radiation-induced reciprocal translocation. The analyses employed, with varying degrees of success, several well-known bioinformatics algorithms, a task made difficult by the involvement of repetitive DNA sequences. As for underlying mechanisms, the results of Sanger sequencing suggested that the translocation in question was likely formed via microhomology-mediated non-homologous end joining (mmNHEJ). To our knowledge, this represents the first use of MPS to characterize the breakpoint junctions of a radiation-induced chromosomal translocation in human cells. Curiously, these same approaches were unsuccessful when applied to the analysis of inversions previously identified by directional genomic hybridization (dGH). We conclude that molecular cytogenetics continues to provide critical guidance for structural variant discovery, validation and in "tuning" analysis filters to enable robust breakpoint identification at the base pair level.
Maruyama, Sandra Regina; Castro-Jorge, Luiza Antunes; Ribeiro, José Marcos Chaves; Gardinassi, Luiz Gustavo; Garcia, Gustavo Rocha; Brandão, Lucinda Giampietro; Rodrigues, Aline Rezende; Okada, Marcos Ituo; Abrão, Emiliana Pereira; Ferreira, Beatriz Rossetti; da Fonseca, Benedito Antonio Lopes; de Miranda-Santos, Isabel Kinney Ferreira
2013-01-01
Transcripts similar to those that encode the nonstructural (NS) proteins NS3 and NS5 from flaviviruses were found in a salivary gland (SG) complementary DNA (cDNA) library from the cattle tick Rhipicephalus microplus. Tick extracts were cultured with cells to enable the isolation of viruses capable of replicating in cultured invertebrate and vertebrate cells. Deep sequencing of the viral RNA isolated from culture supernatants provided the complete coding sequences for the NS3 and NS5 proteins and their molecular characterisation confirmed similarity with the NS3 and NS5 sequences from other flaviviruses. Despite this similarity, phylogenetic analyses revealed that this potentially novel virus may be a highly divergent member of the genus Flavivirus. Interestingly, we detected the divergent NS3 and NS5 sequences in ticks collected from several dairy farms widely distributed throughout three regions of Brazil. This is the first report of flavivirus-like transcripts in R. microplus ticks. This novel virus is a potential arbovirus because it replicated in arthropod and mammalian cells; furthermore, it was detected in a cDNA library from tick SGs and therefore may be present in tick saliva. It is important to determine whether and by what means this potential virus is transmissible and to monitor the virus as a potential emerging tick-borne zoonotic pathogen. PMID:24626302
“Agrolistic” transformation of plant cells: Integration of T-strands generated in planta
Hansen, Geneviève; Chilton, Mary-Dell
1996-01-01
We describe a novel plant transformation technique, termed “agrolistic,” that combines the advantages of the Agrobacterium transformation system with the high efficiency of biolistic DNA delivery. Agrolistic transformation allows integration of the gene of interest without undesired vector sequence. The virulence genes virD1 and virD2 from Agrobacterium tumefaciens that are required in bacteria for excision of T-strands from the tumor-inducing plasmid were placed under the control of the CaMV35S promoter and codelivered with a target plasmid containing border sequences flanking the gene of interest. Transient expression assays in tobacco and in maize cells indicated that vir gene products caused strand-specific nicking in planta at the right border sequence, similar to VirD1/VirD2-catalyzed T-strand excision observed in Agrobacterium. Agrolistically transformed tobacco calli were obtained after codelivery of virD1 and virD2 genes together with a selectable marker flanked by border sequences. Some inserts exhibited right junctions with plant DNA that corresponded precisely to the sequence expected for T-DNA (portion of the tumor-inducing plasmid that is transferred to plant cells) insertion events. We designate these as “agrolistic” inserts, as distinguished from “biolistic” inserts. Both types of inserts were found in some transformed lines. The frequency of agrolistic inserts was 20% that of biolistic inserts. PMID:8962167
Cryptic splice site in the complementary DNA of glucocerebrosidase causes inefficient expression.
Bukovac, Scott W; Bagshaw, Richard D; Rigat, Brigitte A; Callahan, John W; Clarke, Joe T R; Mahuran, Don J
2008-10-15
The low levels of human lysosomal glucocerebrosidase activity expressed in transiently transfected Chinese hamster ovary (CHO) cells were investigated. Reverse transcription PCR (RT-PCR) demonstrated that a significant portion of the transcribed RNA was misspliced owing to the presence of a cryptic splice site in the complementary DNA (cDNA). Missplicing results in the deletion of 179 bp of coding sequence and a premature stop codon. A repaired cDNA was constructed abolishing the splice site without changing the amino acid sequence. The level of glucocerebrosidase expression was increased sixfold. These data demonstrate that for maximum expression of any cDNA construct, the transcription products should be examined.
Methylation pattern of fish lymphocystis disease virus DNA.
Wagner, H; Simon, D; Werner, E; Gelderblom, H; Darai, C; Flügel, R M
1985-03-01
The content and distribution of 5-methylcytosine in DNA from fish lymphocystis disease virus was analyzed by high-pressure liquid chromatography, nearest-neighbor analysis, and with restriction endonucleases. We found that 22% of all C residues were methylated, including methylation of the following dinucleotide sequences: CpG to 75%, CpC to ca. 1%, and CpA to 2 to 5%. Comparison of relative digestion of viral DNA with MspI and HpaII indicated that CCGG sequences were almost completely methylated at the inner C. The degree of methylation of GCGC was much lower. The methylation pattern of fish lymphocystis disease virus DNA differed from that of the host cell DNA.
Methylation pattern of fish lymphocystis disease virus DNA.
Wagner, H; Simon, D; Werner, E; Gelderblom, H; Darai, C; Flügel, R M
1985-01-01
The content and distribution of 5-methylcytosine in DNA from fish lymphocystis disease virus was analyzed by high-pressure liquid chromatography, nearest-neighbor analysis, and with restriction endonucleases. We found that 22% of all C residues were methylated, including methylation of the following dinucleotide sequences: CpG to 75%, CpC to ca. 1%, and CpA to 2 to 5%. Comparison of relative digestion of viral DNA with MspI and HpaII indicated that CCGG sequences were almost completely methylated at the inner C. The degree of methylation of GCGC was much lower. The methylation pattern of fish lymphocystis disease virus DNA differed from that of the host cell DNA. Images PMID:3973962
Duplication of the genome in normal and cancer cell cycles.
Bandura, Jennifer L; Calvi, Brian R
2002-01-01
It is critical to discover the mechanisms of normal cell cycle regulation if we are to fully understand what goes awry in cancer cells. The normal eukaryotic cell tightly regulates the activity of origins of DNA replication so that the genome is duplicated exactly once per cell cycle. Over the last ten years much has been learned concerning the cell cycle regulation of origin activity. It is now clear that the proteins and cell cycle mechanisms that control origin activity are largely conserved from yeast to humans. Despite this conservation, the composition of origins of DNA replication in higher eukaryotes remains ill defined. A DNA consensus for predicting origins has yet to emerge, and it is of some debate whether primary DNA sequence determines where replication initiates. In this review we outline what is known about origin structure and the mechanism of once per cell cycle DNA replication with an emphasis on recent advances in mammalian cells. We discuss the possible relevance of these regulatory pathways for cancer biology and therapy.
Quantitative analysis and prediction of G-quadruplex forming sequences in double-stranded DNA
Kim, Minji; Kreig, Alex; Lee, Chun-Ying; Rube, H. Tomas; Calvert, Jacob; Song, Jun S.; Myong, Sua
2016-01-01
Abstract G-quadruplex (GQ) is a four-stranded DNA structure that can be formed in guanine-rich sequences. GQ structures have been proposed to regulate diverse biological processes including transcription, replication, translation and telomere maintenance. Recent studies have demonstrated the existence of GQ DNA in live mammalian cells and a significant number of potential GQ forming sequences in the human genome. We present a systematic and quantitative analysis of GQ folding propensity on a large set of 438 GQ forming sequences in double-stranded DNA by integrating fluorescence measurement, single-molecule imaging and computational modeling. We find that short minimum loop length and the thymine base are two main factors that lead to high GQ folding propensity. Linear and Gaussian process regression models further validate that the GQ folding potential can be predicted with high accuracy based on the loop length distribution and the nucleotide content of the loop sequences. Our study provides important new parameters that can inform the evaluation and classification of putative GQ sequences in the human genome. PMID:27095201
Light-Inducible Gene Regulation with Engineered Zinc Finger Proteins
Polstein, Lauren R.; Gersbach, Charles A.
2014-01-01
The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells. PMID:24718797
Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles
Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia
2016-01-01
The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development. PMID:27684368
Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles.
Fischer, Stefanie; Cornils, Kerstin; Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia
The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development.
Fedoreyeva, L I; Kireev, I I; Khavinson, V Kh; Vanyushin, B F
2011-11-01
Marked fluorescence in cytoplasm, nucleus, and nucleolus was observed in HeLa cells after incubation with each of several fluorescein isothiocyanate-labeled peptides (epithalon, Ala-Glu-Asp-Gly; pinealon, Glu-Asp-Arg; testagen, Lys-Glu-Asp-Gly). This means that short biologically active peptides are able to penetrate into an animal cell and its nucleus and, in principle they may interact with various components of cytoplasm and nucleus including DNA and RNA. It was established that various initial (intact) peptides differently affect the fluorescence of the 5,6-carboxyfluorescein-labeled deoxyribooligonucleotides and DNA-ethidium bromide complexes. The Stern-Volmer constants characterizing the degree of fluorescence quenching of various single- and double-stranded fluorescence-labeled deoxyribooligonucleotides with short peptides used were different depending on the peptide primary structures. This indicates the specific interaction between short biologically active peptides and nucleic acid structures. On binding to them, the peptides discriminate between different nucleotide sequences and recognize even their cytosine methylation status. Judging from corresponding constants of the fluorescence quenching, the epithalon, pinealon, and bronchogen (Ala-Glu-Asp-Leu) bind preferentially with deoxyribooligonucleotides containing CNG sequence (CNG sites are targets for cytosine DNA methylation in eukaryotes). Epithalon, testagen, and pinealon seem to preferentially bind with CAG- but bronchogen with CTG-containing sequences. The site-specific interactions of peptides with DNA can control epigenetically the cell genetic functions, and they seem to play an important role in regulation of gene activity even at the earliest stages of life origin and in evolution.
Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer
2013-09-01
we obtain cleavage patterns consistent with the administered UV dosage and that sequencing libraries generated for both yeast and human cells show...understanding the mutations they cause. 15. SUBJECT TERMS UV DNA modification, HeLa cells, Skin Cancer 16. SECURITY CLASSIFICATION OF: 17...of mutations that are caused by UV light in cells and correlate them to modification frequencies. Understanding the initial chemical changes
Adachi, Noboru; Umetsu, Kazuo; Shojo, Hideki
2014-01-01
Mitochondrial DNA (mtDNA) is widely used for DNA analysis of highly degraded samples because of its polymorphic nature and high number of copies in a cell. However, as endogenous mtDNA in deteriorated samples is scarce and highly fragmented, it is not easy to obtain reliable data. In the current study, we report the risks of direct sequencing mtDNA in highly degraded material, and suggest a strategy to ensure the quality of sequencing data. It was observed that direct sequencing data of the hypervariable segment (HVS) 1 by using primer sets that generate an amplicon of 407 bp (long-primer sets) was different from results obtained by using newly designed primer sets that produce an amplicon of 120-139 bp (mini-primer sets). The data aligned with the results of mini-primer sets analysis in an amplicon length-dependent manner; the shorter the amplicon, the more evident the endogenous sequence became. Coding region analysis using multiplex amplified product-length polymorphisms revealed the incongruence of single nucleotide polymorphisms between the coding region and HVS 1 caused by contamination with exogenous mtDNA. Although the sequencing data obtained using long-primer sets turned out to be erroneous, it was unambiguous and reproducible. These findings suggest that PCR primers that produce amplicons shorter than those currently recognized should be used for mtDNA analysis in highly degraded samples. Haplogroup motif analysis of the coding region and HVS should also be performed to improve the reliability of forensic mtDNA data. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Scherer, Florian; Kurtz, David M; Newman, Aaron M; Stehr, Henning; Craig, Alexander F M; Esfahani, Mohammad Shahrokh; Lovejoy, Alexander F; Chabon, Jacob J; Klass, Daniel M; Liu, Chih Long; Zhou, Li; Glover, Cynthia; Visser, Brendan C; Poultsides, George A; Advani, Ranjana H; Maeda, Lauren S; Gupta, Neel K; Levy, Ronald; Ohgami, Robert S; Kunder, Christian A; Diehn, Maximilian; Alizadeh, Ash A
2016-11-09
Patients with diffuse large B cell lymphoma (DLBCL) exhibit marked diversity in tumor behavior and outcomes, yet the identification of poor-risk groups remains challenging. In addition, the biology underlying these differences is incompletely understood. We hypothesized that characterization of mutational heterogeneity and genomic evolution using circulating tumor DNA (ctDNA) profiling could reveal molecular determinants of adverse outcomes. To address this hypothesis, we applied cancer personalized profiling by deep sequencing (CAPP-Seq) analysis to tumor biopsies and cell-free DNA samples from 92 lymphoma patients and 24 healthy subjects. At diagnosis, the amount of ctDNA was found to strongly correlate with clinical indices and was independently predictive of patient outcomes. We demonstrate that ctDNA genotyping can classify transcriptionally defined tumor subtypes, including DLBCL cell of origin, directly from plasma. By simultaneously tracking multiple somatic mutations in ctDNA, our approach outperformed immunoglobulin sequencing and radiographic imaging for the detection of minimal residual disease and facilitated noninvasive identification of emergent resistance mutations to targeted therapies. In addition, we identified distinct patterns of clonal evolution distinguishing indolent follicular lymphomas from those that transformed into DLBCL, allowing for potential noninvasive prediction of histological transformation. Collectively, our results demonstrate that ctDNA analysis reveals biological factors that underlie lymphoma clinical outcomes and could facilitate individualized therapy. Copyright © 2016, American Association for the Advancement of Science.
Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells.
Ju, Young Seok; Tubio, Jose M C; Mifsud, William; Fu, Beiyuan; Davies, Helen R; Ramakrishna, Manasa; Li, Yilong; Yates, Lucy; Gundem, Gunes; Tarpey, Patrick S; Behjati, Sam; Papaemmanuil, Elli; Martin, Sancha; Fullam, Anthony; Gerstung, Moritz; Nangalia, Jyoti; Green, Anthony R; Caldas, Carlos; Borg, Åke; Tutt, Andrew; Lee, Ming Ta Michael; van't Veer, Laura J; Tan, Benita K T; Aparicio, Samuel; Span, Paul N; Martens, John W M; Knappskog, Stian; Vincent-Salomon, Anne; Børresen-Dale, Anne-Lise; Eyfjörd, Jórunn Erla; Myklebost, Ola; Flanagan, Adrienne M; Foster, Christopher; Neal, David E; Cooper, Colin; Eeles, Rosalind; Bova, Steven G; Lakhani, Sunil R; Desmedt, Christine; Thomas, Gilles; Richardson, Andrea L; Purdie, Colin A; Thompson, Alastair M; McDermott, Ultan; Yang, Fengtang; Nik-Zainal, Serena; Campbell, Peter J; Stratton, Michael R
2015-06-01
Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells. © 2015 Ju et al.; Published by Cold Spring Harbor Laboratory Press.
Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells
Ju, Young Seok; Tubio, Jose M.C.; Mifsud, William; Fu, Beiyuan; Davies, Helen R.; Ramakrishna, Manasa; Li, Yilong; Yates, Lucy; Gundem, Gunes; Tarpey, Patrick S.; Behjati, Sam; Papaemmanuil, Elli; Martin, Sancha; Fullam, Anthony; Gerstung, Moritz; Nangalia, Jyoti; Green, Anthony R.; Caldas, Carlos; Borg, Åke; Tutt, Andrew; Lee, Ming Ta Michael; van't Veer, Laura J.; Tan, Benita K.T.; Aparicio, Samuel; Span, Paul N.; Martens, John W.M.; Knappskog, Stian; Vincent-Salomon, Anne; Børresen-Dale, Anne-Lise; Eyfjörd, Jórunn Erla; Flanagan, Adrienne M.; Foster, Christopher; Neal, David E.; Cooper, Colin; Eeles, Rosalind; Lakhani, Sunil R.; Desmedt, Christine; Thomas, Gilles; Richardson, Andrea L.; Purdie, Colin A.; Thompson, Alastair M.; McDermott, Ultan; Yang, Fengtang; Nik-Zainal, Serena; Campbell, Peter J.; Stratton, Michael R.
2015-01-01
Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells. PMID:25963125
NASA Technical Reports Server (NTRS)
Dar, M. E.; Winters, T. A.; Jorgensen, T. J.
1997-01-01
Ataxia-telangiectasia (A-T) is an autosomal-recessive lethal human disease. Homozygotes suffer from a number of neurological disorders, as well as very high cancer incidence. Heterozygotes may also have a higher than normal risk of cancer, particularly for the breast. The gene responsible for the disease (ATM) has been cloned, but its role in mechanisms of the disease remain unknown. Cellular A-T phenotypes, such as radiosensitivity and genomic instability, suggest that a deficiency in the repair of DNA double-strand breaks (DSBs) may be the primary defect; however, overall levels of DSB rejoining appear normal. We used the shuttle vector, pZ189, containing an oxidatively-induced DSB, to compare the integrity of DSB rejoining in one normal and two A-T fibroblast cells lines. Mutation frequencies were two-fold higher in A-T cells, and the mutational spectrum was different. The majority of the mutations found in all three cell lines were deletions (44-63%). The DNA sequence analysis indicated that 17 of the 17 plasmids with deletion mutations in normal cells occurred between short direct-repeat sequences (removing one of the repeats plus the intervening sequences), implicating illegitimate recombination in DSB rejoining. The combined data from both A-T cell lines showed that 21 of 24 deletions did not involve direct-repeats sequences, implicating a defect in the illegitimate recombination pathway. These findings suggest that the A-T gene product may either directly participate in illegitimate recombination or modulate the pathway. Regardless, this defect is likely to be important to a mechanistic understanding of this lethal disease.
Maggi, Elaine C; Gravina, Silvia; Cheng, Haiying; Piperdi, Bilal; Yuan, Ziqiang; Dong, Xiao; Libutti, Steven K; Vijg, Jan; Montagna, Cristina
2018-01-01
The goal of this study was to develop a method for whole genome cell-free DNA (cfDNA) methylation analysis in humans and mice with the ultimate goal to facilitate the identification of tumor derived DNA methylation changes in the blood. Plasma or serum from patients with pancreatic neuroendocrine tumors or lung cancer, and plasma from a murine model of pancreatic adenocarcinoma was used to develop a protocol for cfDNA isolation, library preparation and whole-genome bisulfite sequencing of ultra low quantities of cfDNA, including tumor-specific DNA. The protocol developed produced high quality libraries consistently generating a conversion rate >98% that will be applicable for the analysis of human and mouse plasma or serum to detect tumor-derived changes in DNA methylation.
Supramolecular Hydrogels Based on DNA Self-Assembly.
Shao, Yu; Jia, Haoyang; Cao, Tianyang; Liu, Dongsheng
2017-04-18
Extracellular matrix (ECM) provides essential supports three dimensionally to the cells in living organs, including mechanical support and signal, nutrition, oxygen, and waste transportation. Thus, using hydrogels to mimic its function has attracted much attention in recent years, especially in tissue engineering, cell biology, and drug screening. However, a hydrogel system that can merit all parameters of the natural ECM is still a challenge. In the past decade, deoxyribonucleic acid (DNA) has arisen as an outstanding building material for the hydrogels, as it has unique properties compared to most synthetic or natural polymers, such as sequence designability, precise recognition, structural rigidity, and minimal toxicity. By simple attachment to polymers as a side chain, DNA has been widely used as cross-links in hydrogel preparation. The formed secondary structures could confer on the hydrogel designable responsiveness, such as response to temperature, pH, metal ions, proteins, DNA, RNA, and small signal molecules like ATP. Moreover, single or multiple DNA restriction enzyme sites could be incorporated into the hydrogels by sequence design and greatly expand the latitude of their responses. Compared with most supramolecular hydrogels, these DNA cross-linked hydrogels could be relatively strong and easily adjustable via sequence variation, but it is noteworthy that these hydrogels still have excellent thixotropic properties and could be easily injected through a needle. In addition, the quick formation of duplex has also enabled the multilayer three-dimensional injection printing of living cells with the hydrogel as matrix. When the matrix is built purely by DNA assembly structures, the hydrogel inherits all the previously described characteristics; however, the long persistence length of DNA structures excluded the small size meshes of the network and made the hydrogel permeable to nutrition for cell proliferation. This unique property greatly expands the cell viability in the three-dimensional matrix to several weeks and also provides an easy way to prepare interpenetrating double network materials. In this Account, we outline the stream of hydrogels based on DNA self-assembly and discuss the mechanism that brings outstanding properties to the materials. Unlike most reported hydrogel systems, the all-in-one character of the DNA hydrogel avoids the "cask effect" in the properties. We believe the hydrogel will greatly benefit cell behavior studies especially in the following aspects: (1) stem cell differentiation can be studied with solely tunable mechanical strength of the matrix; (2) the dynamic nature of the network can allow cell migration through the hydrogel, which will help to build a more realistic model to observe the migration of cancer cells in vivo; (3) combination with rapidly developing three-dimension printing technology, the hydrogel will boost the construction of three-dimensional tissues and artificial organs.
Kanda, Teru; Furuse, Yuki; Oshitani, Hitoshi; Kiyono, Tohru
2016-05-01
The Epstein-Barr virus (EBV) is etiologically linked to approximately 10% of gastric cancers, in which viral genomes are maintained as multicopy episomes. EBV-positive gastric cancer cells are incompetent for progeny virus production, making viral DNA cloning extremely difficult. Here we describe a highly efficient strategy for obtaining bacterial artificial chromosome (BAC) clones of EBV episomes by utilizing a CRISPR/Cas9-mediated strand break of the viral genome and subsequent homology-directed repair. EBV strains maintained in two gastric cancer cell lines (SNU719 and YCCEL1) were cloned, and their complete viral genome sequences were determined. Infectious viruses of gastric cancer cell-derived EBVs were reconstituted, and the viruses established stable latent infections in immortalized keratinocytes. While Ras oncoprotein overexpression caused massive vacuolar degeneration and cell death in control keratinocytes, EBV-infected keratinocytes survived in the presence of Ras expression. These results implicate EBV infection in predisposing epithelial cells to malignant transformation by inducing resistance to oncogene-induced cell death. Recent progress in DNA-sequencing technology has accelerated EBV whole-genome sequencing, and the repertoire of sequenced EBV genomes is increasing progressively. Accordingly, the presence of EBV variant strains that may be relevant to EBV-associated diseases has begun to attract interest. Clearly, the determination of additional disease-associated viral genome sequences will facilitate the identification of any disease-specific EBV variants. We found that CRISPR/Cas9-mediated cleavage of EBV episomal DNA enabled the cloning of disease-associated viral strains with unprecedented efficiency. As a proof of concept, two gastric cancer cell-derived EBV strains were cloned, and the infection of epithelial cells with reconstituted viruses provided important clues about the mechanism of EBV-mediated epithelial carcinogenesis. This experimental system should contribute to establishing the relationship between viral genome variation and EBV-associated diseases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Modeling the Activity of Single Genes
NASA Technical Reports Server (NTRS)
Mjolsness, Eric; Gibson, Michael
1999-01-01
The central dogma of molecular biology states that information is stored in DNA, transcribed to messenger RNA (mRNA) and then translated into proteins. This picture is significantly augmentated when we consider the action of certain proteins in regulating transcription. These transcription factors provide a feedback pathway by which genes can regulate one another's expression as mRNA and then as protein. To review: DNA, RNA and proteins have different functions. DNA is the molecular storehouse of genetic information. When cells divide, the DNA is replicated, so that each daughter cell maintains the same genetic information as the mother cell. RNA acts as a go-between from DNA to proteins. Only a single copy of DNA is present, but multiple copies of the same piece of RNA may be present, allowing cells to make huge amounts of protein. In eukaryotes (organisms with a nucleus), DNA is found in the nucleus only. RNA is copied in the nucleus then translocates(moves) outside the nucleus, where it is transcribed into proteins. Along the way, the RNA may be spliced, i.e., may have pieces cut out. RNA then attaches to ribosomes and is translated to proteins. Proteins are the machinery of the cell other than DNA and RNA, all the complex molecules of the cell are proteins. Proteins are specialized machines, each of which fulfills its own task, which may be transporting oxygen, catalyzing reactions, or responding to extracellular signals, just to name a few. One of the more interesting functions a protein may have is binding directly or indirectly to DNA to perform transcriptional regulation, thus forming a closed feedback loop of gene regulation. The structure of DNA and the central dogma were understood in the 50s; in the early 80s it became possible to make arbitrary modifications to DNA and use cellular machinery to transcribe and translate the resulting genes; more recently, genomes (i.e., the complete DNA sequence) of many organisms have been sequenced. This large-scale sequencing began with simple organisms, viruses and bacteria, progressed to eukaryotes such as yeast, and more recently (1998) progressed to a multi-cellular animal, the nematode Caenorhabditis elegans. Sequencers have now moved on to the fruit fly Drosophila melanogaster, whose sequence is slated for completion by the end of 1999. The human genome project is expected to determine the complete sequence of all 3 billion bases of human DNA within the next five years. In the wake of genome-scale sequencing, further instrumentation is being developed to assay gene expression and function on a comparably large scale. Much of the work in computational biology focuses on computational tools used in sequencing, finding genes that are related to a particular gene, finding which parts of the DNA code for proteins and which do not, understanding what proteins will be formed from a given length of DNA, predicting how the proteins will fold from a one-dimensional structure into a three dimensional structure, and so on. Much less computational work has been done regarding the function of proteins. One reason for this is that different proteins function very differently, and so work on protein function is very specific to certain classes of proteins. There are, for example, proteins such enzymes that catalyze various intracellular reactions, receptors that respond to extracellular signals and ion channels that regulate the flow of charged particles into and out of the cell. In this chapter, we will consider a particular class of proteins called transcription factors(TFs), which are responsible for regulating when a certain gene is expressed in a certain cell, which cells it is express in, and how much is expressed. Understanding these processes will involve developing a deeper understanding of transcription, translation, and the cellular processes that control those processes. All of these elements fall under the aegis of gene regulation or more narrowly transcriptional regulation. Some of the key questions in gene regulation are: What genes are expressed in a certain cell at a certain time? How does gene expression differ from cell to cell in a multicellular organism? Which proteins act as transcription factors, i.e., are important in regulating gene expression? From questions like these, we hope to understand which genes are important for various macroscopic processes. Nearly all of the cells of a multicellular organism contain the same DNA. Yet this same genetic information yields a large number of different cell types. The fundamental difference between a neuron and a liver cell, for example, is which genes are expressed. Thus understanding gene regulation is an important step in understanding development. Furthermore, understanding the usual genes that are expressed in cells may give important clues about various diseases. Some diseases, such as sickle cell anemia and cystic fibrosis, are caused by defects in single, non-regulatory genes; others, such as certain cancers, are caused when the cellular control circuitry malfunctions - an understanding of these diseases will involve pathways of multiple interacting gene products. There are numerous challenges in the area of understanding and modeling gene regulation. First and foremost, biologists would like to develop a deeper understanding of the processes involved, including which genes and families of genes are important, how they interact, etc. From a computation point of view, there has been embarrassingly little work done. In this chapter there are many areas in which we can phrase meaningful, non-trivial computational questions, but questions that have not been addressed. Some of these are purely computational (what is a good algorithm for dealing with a model of type X) and others are more mathematical (given a system with certain characteristics, what sort of model can one use? How does one find biochemical parameters from system-level behavior using as few experiments as possible?). In addition to biological and algorithmic problems, there is also the ever-present issue of theoretical biology - what general principles can be derived from these systems, what can one do with models other than just simulate time-courses, what can be deduced about a class of systems without knowing all the details? The fundamental challenge to computationalists and theorists is to add value to the biology - to use models, modeling techniques and algorithms to understand the biology in new ways.
Li, Qian-Nan; Guo, Lei; Hou, Yi; Ou, Xiang-Hong; Liu, Zhonghua; Sun, Qing-Yuan
2018-06-22
Polycystic ovary syndrome (PCOS), a familial aggregation disease that causes anovulation in women, has well-recognised characteristics, two of which are hyperinsulinaemia and hyperandrogenaemia. To determine whether the DNA methylation status is altered in oocytes by high insulin and androgen levels, we generated a mouse model with hyperinsulinaemia and hyperandrogenaemia by injection of insulin and human chorionic gonadotrophin and investigated DNA methylation changes through single-cell level whole genome bisulphite sequencing. Our results showed that hyperinsulinaemia and hyperandrogenaemia had no significant effects on the global DNA methylation profile and different functional regions of genes, but did alter methylation status of some genes, which were significantly enriched in 17 gene ontology (GO) terms (P<0.05) by GO analysis. Among differently methylated genes, some were related to the occurrence of PCOS. Based on our results, we suggest that hyperinsulinaemia and hyperandrogenaemia may cause changes in some DNA methylation loci in oocytes.
The contribution of alu elements to mutagenic DNA double-strand break repair.
Morales, Maria E; White, Travis B; Streva, Vincent A; DeFreece, Cecily B; Hedges, Dale J; Deininger, Prescott L
2015-03-01
Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events.
Genetic programs can be compressed and autonomously decompressed in live cells
NASA Astrophysics Data System (ADS)
Lapique, Nicolas; Benenson, Yaakov
2018-04-01
Fundamental computer science concepts have inspired novel information-processing molecular systems in test tubes1-13 and genetically encoded circuits in live cells14-21. Recent research has shown that digital information storage in DNA, implemented using deep sequencing and conventional software, can approach the maximum Shannon information capacity22 of two bits per nucleotide23. In nature, DNA is used to store genetic programs, but the information content of the encoding rarely approaches this maximum24. We hypothesize that the biological function of a genetic program can be preserved while reducing the length of its DNA encoding and increasing the information content per nucleotide. Here we support this hypothesis by describing an experimental procedure for compressing a genetic program and its subsequent autonomous decompression and execution in human cells. As a test-bed we choose an RNAi cell classifier circuit25 that comprises redundant DNA sequences and is therefore amenable for compression, as are many other complex gene circuits15,18,26-28. In one example, we implement a compressed encoding of a ten-gene four-input AND gate circuit using only four genetic constructs. The compression principles applied to gene circuits can enable fitting complex genetic programs into DNA delivery vehicles with limited cargo capacity, and storing compressed and biologically inert programs in vivo for on-demand activation.
Selective DNA demethylation by fusion of TDG with a sequence-specific DNA-binding domain
Gregory, David J.; Mikhaylova, Lyudmila; Fedulov, Alexey V.
2012-01-01
Our ability to selectively manipulate gene expression by epigenetic means is limited, as there is no approach for targeted reactivation of epigenetically silenced genes, in contrast to what is available for selective gene silencing. We aimed to develop a tool for selective transcriptional activation by DNA demethylation. Here we present evidence that direct targeting of thymine-DNA-glycosylase (TDG) to specific sequences in the DNA can result in local DNA demethylation at potential regulatory sequences and lead to enhanced gene induction. When TDG was fused to a well-characterized DNA-binding domain [the Rel-homology domain (RHD) of NFκB], we observed decreased DNA methylation and increased transcriptional response to unrelated stimulus of inducible nitric oxide synthase (NOS2). The effect was not seen for control genes lacking either RHD-binding sites or high levels of methylation, nor in control mock-transduced cells. Specific reactivation of epigenetically silenced genes may thus be achievable by this approach, which provides a broadly useful strategy to further our exploration of biological mechanisms and to improve control over the epigenome. PMID:22419066
AP1 Keeps Chromatin Poised for Action | Center for Cancer Research
The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins called chromatin that compacts the DNA in the nucleus, strongly restricting access to DNA sequences. As a result, regulatory factors only interact with a small subset of their potential binding elements in a given cell to regulate genes. How factors recognize and select sites in chromatin across the genome is not well understood -- but several discoveries in CCR’s Laboratory of Receptor Biology and Gene Expression (LRBGE) have shed light on the mechanisms that direct factors to DNA.
Weld, R; Heinemann, J; Eady, C
2001-03-01
The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells from Agrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.
Botero, Adriana; Kapeller, Irit; Cooper, Crystal; Clode, Peta L; Shlomai, Joseph; Thompson, R C Andrew
2018-05-17
Kinetoplast DNA (kDNA) is the mitochondrial genome of trypanosomatids. It consists of a few dozen maxicircles and several thousand minicircles, all catenated topologically to form a two-dimensional DNA network. Minicircles are heterogeneous in size and sequence among species. They present one or several conserved regions that contain three highly conserved sequence blocks. CSB-1 (10 bp sequence) and CSB-2 (8 bp sequence) present lower interspecies homology, while CSB-3 (12 bp sequence) or the Universal Minicircle Sequence is conserved within most trypanosomatids. The Universal Minicircle Sequence is located at the replication origin of the minicircles, and is the binding site for the UMS binding protein, a protein involved in trypanosomatid survival and virulence. Here, we describe the structure and organisation of the kDNA of Trypanosoma copemani, a parasite that has been shown to infect mammalian cells and has been associated with the drastic decline of the endangered Australian marsupial, the woylie (Bettongia penicillata). Deep genomic sequencing showed that T. copemani presents two classes of minicircles that share sequence identity and organisation in the conserved sequence blocks with those of Trypanosoma cruzi and Trypanosoma lewisi. A 19,257 bp partial region of the maxicircle of T. copemani that contained the entire coding region was obtained. Comparative analysis of the T. copemani entire maxicircle coding region with the coding regions of T. cruzi and T. lewisi showed they share 71.05% and 71.28% identity, respectively. The shared features in the maxicircle/minicircle organisation and sequence between T. copemani and T. cruzi/T. lewisi suggest similarities in their process of kDNA replication, and are of significance in understanding the evolution of Australian trypanosomes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Identification of Prostate Cancer-Specific microDNAs
2014-12-01
displacement amplification (MDA). 2 adopted multiple displacement amplification (MDA) with random primers for enriched circular DNA by rolling circle ... amplification (RCA) (Fig. 1) and then amplified DNA fragments were subject to deep sequencing. Sequence NO of Reads seq 1 184 seq 2 133 seq 3 2407 seq...prostate cancer cells through multiple displacement amplification . Clone #7 is the top candidate which has been cloned in an expression vector and it
Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.
Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude
2011-01-01
Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.
Li, Xingang; Lu, Hongming; Fan, Guilian; He, Miao; Sun, Yu; Xu, Kai; Shi, Fengjun
2017-11-01
Osteosarcoma (OS) is one of the most prevalent primary malignant bone tumors in adolescent. HOTAIR is highly expressed and associated with the epigenetic modifications, especially DNA methylation, in cancer. However, the regulation mechanism between HOTAIR and DNA methylation and the biological effects of them in the pathogenesis of osteosarcoma remains elusive. Through RNA-sequencing and computational analysis, followed by a variety of experimental validations, we report a novel interplay between HOTAIR, miR-126, and DNA methylation in OS. We found that HOTAIR is highly expressed in OS cells and the knockdown of HOTAIR leads to the down-regulation of DNMT1, as well as the decrease of global DNA methylation level. RNA-sequencing analysis of HOTAIR-regulated gene shows that CDKN2A is significantly repressed by HOTAIR. A series of experiments show that HOTAIR represses the expression of CDKN2A through inhibiting the promoter activity of CDKN2A by DNA hypermethylation. Further evidence shows that HOTAIR activates the expression of DNMT1 through repressing miR-126, which is the negative regulator of DNMT1. Functionally, HOTAIR depletion increases the sensibility of OS cells to DNMT1 inhibitor through regulating the viability and apoptosis of OS cells via HOTAIR-miR126-DNMT1-CDKN2A axis. These results not only enrich our understanding of the regulation relationship between non-coding RNA, DNA methylation, and gene expression, however, also provide a novel direction in developing more sophisticated therapeutic strategies for OS patients.
Steward, N; Kusano, T; Sano, H
2000-09-01
A cDNA fragment encoding part of a DNA methyltransferase was isolated from maize. The putative amino acid sequence identically matched that deduced from a genomic sequence in the database (accession no. AF063403), and the corresponding gene was designated as ZmMET1. Bacterially expressed ZmMET1 actively methylated DNA in vitro. Transcripts of ZmMET1 could be shown to exclusively accumulate in actively proliferating cells of the meristems of mesocotyls and root apices, suggesting ZmMET1 expression to be associated with DNA replication. This was confirmed by simultaneous decrease of transcripts of ZmMET1 and histone H3, a marker for DNA replication, in seedlings exposed to wounding, desiccation and salinity, all of which suppress cell division. Cold stress also depressed both transcripts in root tissues. In contrast, however, accumulation of ZmMET1 transcripts in shoot mesocotyls was not affected by cold stress, whereas those for H3 sharply decreased. Such a differential accumulation of ZmMET1 transcripts was consistent with ZmMET1 protein levels as revealed by western blotting. Expression of ZmMET1 is thus coexistent, but not completely dependent on DNA replication. Southern hybridization analysis with a methylation-sensitive restriction enzyme revealed that cold treatment induced demethylation of DNA in the Ac/Ds transposon region, but not in other genes, and that such demethylation primarily occurred in roots. These results suggested that the methylation level was decreased selectively by cold treatment, and that ZmMET1 may, at least partly, prevent such demethylation.
Alawad, Abdullah; Alharbi, Sultan; Alhazzaa, Othman; Alagrafi, Faisal; Alkhrayef, Mohammed; Alhamdan, Ziyad; Alenazi, Abdullah; Al-Johi, Hasan; Alanazi, Ibrahim O; Hammad, Mohamed
2016-01-01
Although the sequencing information of Sox2 cDNA for many mammalian is available, the Sox2 cDNA of Camelus dromedaries has not yet been characterized. The objective of this study was to sequence and characterize Sox2 cDNA from the brain of C. dromedarius (also known as Arabian camel). A full coding sequence of the Sox2 gene from the brain of C. dromedarius was amplified by reverse transcription PCRjmc and then sequenced using the 3730XL series platform Sequencer (Applied Biosystem) for the first time. The cDNA sequence displayed an open reading frame of 822 nucleotides, encoding a protein of 273 amino acids. The molecular weight and the isoelectric point of the translated protein were calculated as 29.825 kDa and 10.11, respectively, using bioinformatics analysis. The predicted cSox2 protein sequence exhibited high identity: 99% for Homo sapiens, Mus musculus, Bos taurus, and Vicugna pacos; 98% for Sus scrofa and 93% for Camelus ferus. A 3D structure was built based on the available crystal structure of the HMG-box domain of human stem cell transcription factor Sox2 (PDB: 2 LE4) with 81 residues and predicting bioinformatics software for 273 amino acid residues. The comparison confirms the presence of the HMG-box domain in the cSox2 protein. The orthologous phylogenetic analysis showed that the Sox2 isoform from C. dromedarius was grouped with humans, alpacas, cattle, and pigs. We believe that this genetic and structural information will be a helpful source for the annotation. Furthermore, Sox2 is one of the transcription factors that contributes to the generation-induced pluripotent stem cells (iPSCs), which in turn will probably help generate camel induced pluripotent stem cells (CiPSCs).
The dynamics of genome replication using deep sequencing
Müller, Carolin A.; Hawkins, Michelle; Retkute, Renata; Malla, Sunir; Wilson, Ray; Blythe, Martin J.; Nakato, Ryuichiro; Komata, Makiko; Shirahige, Katsuhiko; de Moura, Alessandro P.S.; Nieduszynski, Conrad A.
2014-01-01
Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology. PMID:24089142
The production and repair of aflatoxin B sub 1 -induced DNA damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leadon, S.A.
To investigate the influence of function or activity of a DNA sequence on its repair, we have studied excision repair of aflatoxin B{sub 1} (AFB{sub 1})-induced damage in the nontranscribed, heterochromatic alpha DNA of monkey cells and in the metallothionein genes of human cells. In confluent cells, AFB{sub 1} adducts are produced in similar frequencies in alpha and in the rest of the DNA, but removal from alpha DNA is severely deficient, however, removal of AFB{sub 1} adducts from alpha DNA is enhanced by small doses of UV. The repair deficiencies are not observed in actively growing cells. We havemore » also shown that there is preferential repair of AFB{sub 1} damage in active genes. AFB{sub 1} damage is efficiently repaired in the active human metallothionein (hMT) genes, but deficiently repaired in inactive hMT genes. 51 refs., 3 tabs.« less
Extraction of genomic DNA from yeasts for PCR-based applications.
Lõoke, Marko; Kristjuhan, Kersti; Kristjuhan, Arnold
2011-05-01
We have developed a quick and low-cost genomic DNA extraction protocol from yeast cells for PCR-based applications. This method does not require any enzymes, hazardous chemicals, or extreme temperatures, and is especially powerful for simultaneous analysis of a large number of samples. DNA can be efficiently extracted from different yeast species (Kluyveromyces lactis, Hansenula polymorpha, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris, and Saccharomyces cerevisiae). The protocol involves lysis of yeast colonies or cells from liquid culture in a lithium acetate (LiOAc)-SDS solution and subsequent precipitation of DNA with ethanol. Approximately 100 nanograms of total genomic DNA can be extracted from 1 × 10(7) cells. DNA extracted by this method is suitable for a variety of PCR-based applications (including colony PCR, real-time qPCR, and DNA sequencing) for amplification of DNA fragments of ≤ 3500 bp.
Biophysics of protein-DNA interactions and chromosome organization
Marko, John F.
2014-01-01
The function of DNA in cells depends on its interactions with protein molecules, which recognize and act on base sequence patterns along the double helix. These notes aim to introduce basic polymer physics of DNA molecules, biophysics of protein-DNA interactions and their study in single-DNA experiments, and some aspects of large-scale chromosome structure. Mechanisms for control of chromosome topology will also be discussed. PMID:25419039
Schilmiller, Anthony L; Miner, Dennis P; Larson, Matthew; McDowell, Eric; Gang, David R; Wilkerson, Curtis; Last, Robert L
2010-07-01
Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces beta-caryophyllene and alpha-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells.
Schilmiller, Anthony L.; Miner, Dennis P.; Larson, Matthew; McDowell, Eric; Gang, David R.; Wilkerson, Curtis; Last, Robert L.
2010-01-01
Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces β-caryophyllene and α-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells. PMID:20431087
Freeman, S.; Redman, R.S.; Grantham, G.; Rodriguez, R.J.
1997-01-01
A 7.4-kilobase (kb) DNA plasmid was isolated from Glomerella musae isolate 927 and designated pGML1. Exonuclease treatments indicated that pGML1 was a linear plasmid with blocked 5' termini. Cell-fractionation experiments combined with sequence-specific PCR amplification revealed that pGML1 resided in mitochondria. The pGML1 plasmid hybridized to cesium chloride-fractionated nuclear DNA but not to A + T-rich mitochondrial DNA. An internal 7.0-kb section of pGML1 was cloned and did not hybridize with either nuclear or mitochondrial DNA from G. musae. Sequence analysis revealed identical terminal inverted repeats (TIR) of 520 bp at the ends of the cloned 7.0-kb section of pGML1. The occurrence of pGML1 did not correspond with the pathogenicity of G. musae on banana fruit. Four additional isolates of G. musae possessed extrachromosomal DNA fragments similar in size and sequence to pGML1.
Thieme, Frank; Marillonnet, Sylvestre
2014-01-01
Identification of unknown sequences that flank known sequences of interest requires PCR amplification of DNA fragments that contain the junction between the known and unknown flanking sequences. Since amplified products often contain a mixture of specific and nonspecific products, the quick and clean (QC) cloning procedure was developed to clone specific products only. QC cloning is a ligation-independent cloning procedure that relies on the exonuclease activity of T4 DNA polymerase to generate single-stranded extensions at the ends of the vector and insert. A specific feature of QC cloning is the use of vectors that contain a sequence called catching sequence that allows cloning specific products only. QC cloning is performed by a one-pot incubation of insert and vector in the presence of T4 DNA polymerase at room temperature for 10 min followed by direct transformation of the incubation mix in chemo-competent Escherichia coli cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pater, A.; Pater, M.M.
Primary human embryonic kidney (HEK) cells were transformed by a focus assay with BK virus (BKV) DNA molecularly cloned at its unique EcoRI site. Both viral DNA sequences and viral tumor antigens were present and expressed in all the foci that the authors examined. However, cells isolated from foci were incapable of growth in soft agar. They then examined the transformation of HEK cells after their transfection with a combination of BKV DNA and either the normal or the activated form of the human Ha-ras oncogene (EJ c-Ha-ras-1). Only the cells transfected with a combination of BKV DNA and themore » activated form of Ha-ras DNAs were present in the transformed colonies. BKV tumor antigens and the Ha-ras p21 protein were also expressed.« less
Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells
Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z.; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung’u, Thumbi; Walker, Bruce D.; Rosenberg, Eric S.; Yu, Xu G.
2017-01-01
HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells. PMID:28628034
Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells.
Lee, Guinevere Q; Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung'u, Thumbi; Walker, Bruce D; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias
2017-06-30
HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.
Chimeric TALE recombinases with programmable DNA sequence specificity.
Mercer, Andrew C; Gaj, Thomas; Fuller, Roberta P; Barbas, Carlos F
2012-11-01
Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.
[Tripeptides slow down aging process in renal cell culture].
Khavinson, V Kh; Tarnovskaia, S I; Lin'kova, N S; Poliakova, V O; Durnova, A O; Nichik, T E; Kvetnoĭ, I M; D'iakonov, M M; Iakutseni, P P
2014-01-01
The mechanism of geroprotective effect of peptides AED and EDL was studied in ageing renal cell culture. Peptide AED and EDL increase cell proliferation, decreasing expression of marker of aging p16, p21, p53 and increasing expression of SIRT-6 in young and aged renal cell culture. The reduction of SIRT-6 synthesis in cell is one of the causes of cell senescence. On the basis of experimental data models of interaction of peptides with various sites of DNA were constructed. Both peptides form most energetically favorable complexes with d(ATATATATAT)2 sequences in minor groove of DNA. It is shown that interaction of peptides AED and EDL with DNA is the cause of gene expression, encoded marker of ageing in renal cells.
The molecular biology of environmental aromatic hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, S.B.
The induction of mutations in living cells by polycyclic aromatic hydrocarbons (PAH) has been recognized for many years. Although the mechanism for this occurrence has been examined by numerous investigators, the precise nature and type of mutations induced is still unclear. Earlier investigations of DNA damage and repair were primarily examined by the random alkylation of bacterial and mammalian DNAs, in vivo, using a variety of different PAH agents. This procedure is still used today. Though informative, such studies have not offered any explanation of the mechanism by which PAH agents induce carcinogenesis. We have attempted to examine the repairmore » of PAH-damaged DNA using small DNA oligomer constructs as targets for site-specific alkylation. DNA constructs containing a single BPDE alkylated site in each duplex strand were ligated into M13 RF DNA and used to transfect E. coli. Progeny M13 DNA was isolated from E. coli colonies grown on agar plates containing IPTG and Xgal. DNA sequence analysis of the isolated progeny M13 DNA, at the site of construct insertion, was found to contain large deletions and illegitimate recombinants. These sequence rearrangements occurred in either recA{sup +} or recA{sup -} host cells suggesting that SOS processing was not involved in the deletions and the recombinants observed. The mechanism by which BPDE induces illegitimate recombinants has not been resolved, however, it is possible that the closely spaced adducts activate the recombinant machinery in our DNA-damaged cells. 1 ref., 6 figs., 1 tab.« less
Primer in Genetics and Genomics, Article 6: Basics of Epigenetic Control.
Fessele, Kristen L; Wright, Fay
2018-01-01
The epigenome is a collection of chemical compounds that attach to and overlay the DNA sequence to direct gene expression. Epigenetic marks do not alter DNA sequence but instead allow or silence gene activity and the subsequent production of proteins that guide the growth and development of an organism, direct and maintain cell identity, and allow for the production of primordial germ cells (PGCs; ova and spermatozoa). The three main epigenetic marks are (1) histone modification, (2) DNA methylation, and (3) noncoding RNA, and each works in a different way to regulate gene expression. This article reviews these concepts and discusses their role in normal functions such as X-chromosome inactivation, epigenetic reprogramming during embryonic development and PGC production, and the clinical example of the imprinting disorders Angelman and Prader-Willi syndromes.
Bypassing bacterial infection in phage display by sequencing DNA released from phage particles.
Villequey, Camille; Kong, Xu-Dong; Heinis, Christian
2017-11-01
Phage display relies on a bacterial infection step in which the phage particles are replicated to perform multiple affinity selection rounds and to enable the identification of isolated clones by DNA sequencing. While this process is efficient for wild-type phage, the bacterial infection rate of phage with mutant or chemically modified coat proteins can be low. For example, a phage mutant with a disulfide-free p3 coat protein, used for the selection of bicyclic peptides, has a more than 100-fold reduced infection rate compared to the wild-type. A potential strategy for bypassing the bacterial infection step is to directly sequence DNA extracted from phage particles after a single round of phage panning using high-throughput sequencing. In this work, we have quantified the fraction of phage clones that can be identified by directly sequencing DNA from phage particles. The results show that the DNA of essentially all of the phage particles can be 'decoded', and that the sequence coverage for mutants equals that of amplified DNA extracted from cells infected with wild-type phage. This procedure is particularly attractive for selections with phage that have a compromised infection capacity, and it may allow phage display to be performed with particles that are not infective at all. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Biomarker Discovery and Mechanistic Studies of Prostate Cancer using Targeted Proteomic Approaches
2012-07-01
basigin in Drosophila ) tightly regulates cytoskeleton rearrangement in Drosophila melanogaster [23]. Based on the present results and the existing...from OligoEngine according to the manufac- turer’s instruction. Plasmids were amplified in DH5a cell and confirmed by sequencing . Subconfluent cell...electrophoresis and the results are shown in Figure 1 (Panel C). The RT-PCR products were cloned and subjected to DNA sequenc - ing. The sequencing
How life changes itself: the Read-Write (RW) genome.
Shapiro, James A
2013-09-01
The genome has traditionally been treated as a Read-Only Memory (ROM) subject to change by copying errors and accidents. In this review, I propose that we need to change that perspective and understand the genome as an intricately formatted Read-Write (RW) data storage system constantly subject to cellular modifications and inscriptions. Cells operate under changing conditions and are continually modifying themselves by genome inscriptions. These inscriptions occur over three distinct time-scales (cell reproduction, multicellular development and evolutionary change) and involve a variety of different processes at each time scale (forming nucleoprotein complexes, epigenetic formatting and changes in DNA sequence structure). Research dating back to the 1930s has shown that genetic change is the result of cell-mediated processes, not simply accidents or damage to the DNA. This cell-active view of genome change applies to all scales of DNA sequence variation, from point mutations to large-scale genome rearrangements and whole genome duplications (WGDs). This conceptual change to active cell inscriptions controlling RW genome functions has profound implications for all areas of the life sciences. © 2013 Elsevier B.V. All rights reserved.
Robust and effective methodologies for cryopreservation and DNA extraction from anaerobic gut fungi.
Solomon, Kevin V; Henske, John K; Theodorou, Michael K; O'Malley, Michelle A
2016-04-01
Cell storage and DNA isolation are essential to developing an expanded suite of microorganisms for biotechnology. However, many features of non-model microbes, such as an anaerobic lifestyle and rigid cell wall, present formidable challenges to creating strain repositories and extracting high quality genomic DNA. Here, we establish accessible, high efficiency, and robust techniques to store lignocellulolytic anaerobic gut fungi long term without specialized equipment. Using glycerol as a cryoprotectant, gut fungal isolates were preserved for a minimum of 23 months at -80 °C. Unlike previously reported approaches, this improved protocol is non-toxic and rapid, with samples surviving twice as long with negligible growth impact. Genomic DNA extraction for these isolates was optimized to yield samples compatible with next generation sequencing platforms (e.g. Illumina, PacBio). Popular DNA isolation kits and precipitation protocols yielded preps that were unsuitable for sequencing due to carbohydrate contaminants from the chitin-rich cell wall and extensive energy reserves of gut fungi. To address this, we identified a proprietary method optimized for hardy plant samples that rapidly yielded DNA fragments in excess of 10 kb with minimal RNA, protein or carbohydrate contamination. Collectively, these techniques serve as fundamental tools to manipulate powerful biomass-degrading gut fungi and improve their accessibility among researchers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gray, Jennifer Sue; Birmingham, Janette Marie; Fenton, Jenifer Imig
2009-01-01
ARTICLE SUMMARY Cell culture model systems are utilized for their ease of use, relative inexpensiveness, and potentially limitless sample size. Reliable results cannot be obtained, however, when cultures contain contamination. This report discusses the observation and identification of mobile black specks observed in multiple cell lines. Cultures of the contamination were grown, and DNA was purified from isolated colonies. The 16S rDNA gene was PCR amplified using primers that will amplify the gene from many genera, and then sequenced. Sequencing results matched the members of the genus Achromobacter, bacteria common in the environment. Achromobacter species have been shown to be resistant to multiple antibiotics. Attempts to decontaminate the eukaryotic cell culture used multiple antibiotics at different concentrations. The contaminating Achromobacter was eventually eliminated, without permanently harming the eukaryotic cells, using a combination of the antibiotics ciprofloxacin and piperacillin. PMID:19926304
Wang, Dai; Parrish, Colin R.
1999-01-01
Phage display of cDNA clones prepared from feline cells was used to identify host cell proteins that bound to DNA-containing feline panleukopenia virus (FPV) capsids but not to empty capsids. One gene found in several clones encoded a heterogeneous nuclear ribonucleoprotein (hnRNP)-related protein (DBP40) that was very similar in sequence to the A/B-type hnRNP proteins. DBP40 bound specifically to oligonucleotides representing a sequence near the 5′ end of the genome which is exposed on the outside of the full capsid but did not bind most other terminal sequences. Adding purified DBP40 to an in vitro fill-in reaction using viral DNA as a template inhibited the production of the second strand after nucleotide (nt) 289 but prior to nt 469. DBP40 bound to various regions of the viral genome, including a region between nt 295 and 330 of the viral genome which has been associated with transcriptional attenuation of the parvovirus minute virus of mice, which is mediated by a stem-loop structure of the DNA and cellular proteins. Overexpression of the protein in feline cells from a plasmid vector made them largely resistant to FPV infection. Mutagenesis of the protein binding site within the 5′ end viral genome did not affect replication of the virus. PMID:10438866
Bacterial DNA indicated as an important inducer of fish cathelicidins.
Maier, Valerie Helene; Schmitt, Clemens Nikolaus Zeno; Gudmundsdottir, Sigridur; Gudmundsson, Gudmundur Hrafn
2008-04-01
Cathelicidins are antimicrobial peptides indicated as important in the control of the natural microflora as well as in the fight against bacterial invasion in mammals. Little is known about cathelicidins in fish and here the Chinook salmon (Oncorhynchus tshawytscha) embryo cell line (CHSE-214) was used as a model system to study the expression of cathelicidins due to fish pathogenic bacteria. The cDNA of cathelicidin from CHSE-214 cells (csCath) was cloned and shown to be closely related to gene 2 of both rainbow trout and Atlantic salmon. The deducted amino acid sequence showed highest sequence identity to rtCath2 with 95% and 72% for the cathelin and the antibacterial part, respectively. Cathelicidin gene expression was studied and various Gram positive and Gram negative bacteria caused the upregulation of the gene (csCath). Bacterial DNA and protein were shown important for the induction of cathelicidin expression in these cells. LPS (Escherichia coli) also causes the upregulation of cathelicidins, but digestion of the LPS with DNase I before incubation of the cells, totally abolished the upregulation of cathelicidin and suggests DNA contamination in the LPS to be the trigger for this effect. These results could explain the limited responsiveness of fish cells towards pure LPS and confirm previous suggestions that fish cells are less sensitive to LPS than mammalian cells.
Li, Zibo; Guo, Xinwu; Tang, Lili; Peng, Limin; Chen, Ming; Luo, Xipeng; Wang, Shouman; Xiao, Zhi; Deng, Zhongping; Dai, Lizhong; Xia, Kun; Wang, Jun
2016-10-01
Circulating cell-free DNA (cfDNA) has been considered as a potential biomarker for non-invasive cancer detection. To evaluate the methylation levels of six candidate genes (EGFR, GREM1, PDGFRB, PPM1E, SOX17, and WRN) in plasma cfDNA as biomarkers for breast cancer early detection, quantitative analysis of the promoter methylation of these genes from 86 breast cancer patients and 67 healthy controls was performed by using microfluidic-PCR-based target enrichment and next-generation bisulfite sequencing technology. The predictive performance of different logistic models based on methylation status of candidate genes was investigated by means of the area under the ROC curve (AUC) and odds ratio (OR) analysis. Results revealed that EGFR, PPM1E, and 8 gene-specific CpG sites showed significantly hypermethylation in cancer patients' plasma and significantly associated with breast cancer (OR ranging from 2.51 to 9.88). The AUC values for these biomarkers were ranging from 0.66 to 0.75. Combinations of multiple hypermethylated genes or CpG sites substantially improved the predictive performance for breast cancer detection. Our study demonstrated the feasibility of quantitative measurement of candidate gene methylation in cfDNA by using microfluidic-PCR-based target enrichment and bisulfite next-generation sequencing, which is worthy of further validation and potentially benefits a broad range of applications in clinical oncology practice. Quantitative analysis of methylation pattern of plasma cfDNA by next-generation sequencing might be a valuable non-invasive tool for early detection of breast cancer.
In Vivo Control of CpG and Non-CpG DNA Methylation by DNA Methyltransferases
Arand, Julia; Spieler, David; Karius, Tommy; Branco, Miguel R.; Meilinger, Daniela; Meissner, Alexander; Jenuwein, Thomas; Xu, Guoliang; Leonhardt, Heinrich; Wolf, Verena; Walter, Jörn
2012-01-01
The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites). The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position–, cell type–, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM) to calculate the relative contribution of DNA methyltransferases (Dnmts) for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs. PMID:22761581
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.
1986-07-15
The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. Asmore » reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells.« less
Langley, Alexander R.; Gräf, Stefan; Smith, James C.; Krude, Torsten
2016-01-01
Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. PMID:27587586
Langley, Alexander R; Gräf, Stefan; Smith, James C; Krude, Torsten
2016-12-01
Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Technical Reports Server (NTRS)
Fouladi, B.; Waldren, C. A.; Rydberg, B.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)
2000-01-01
We have optimized a pulsed-field gel electrophoresis assay that measures induction and repair of double-strand breaks (DSBs) in specific regions of the genome (Lobrich et al., Proc. Natl. Acad. Sci. USA 92, 12050-12054, 1995). The increased sensitivity resulting from these improvements makes it possible to analyze the size distribution of broken DNA molecules immediately after the introduction of DSBs and after repair incubation. This analysis shows that the distribution of broken DNA pieces after exposure to sparsely ionizing radiation is consistent with the distribution expected from randomly induced DSBs. It is apparent from the distribution of rejoined DNA pieces after repair incubation that DNA ends continue to rejoin between 3 and 24 h postirradiation and that some of these rejoining events are in fact misrejoining events, since novel restriction fragments both larger and smaller than the original fragment are generated after repair. This improved assay was also used to study the kinetics of DSB rejoining and the extent of misrejoining in identical DNA sequences in human GM38 cells and human-hamster hybrid A(L) cells containing a single human chromosome 11. Despite the numerous differences between these cells, which include species and tissue of origin, levels of TP53, expression of telomerase, and the presence or absence of a homologous chromosome for the restriction fragments examined, the kinetics of rejoining of radiation-induced DSBs and the extent of misrejoining were similar in the two cell lines when studied in the G(1) phase of the cell cycle. Furthermore, DSBs were removed from the single-copy human chromosome in the hamster A(L) cells with similar kinetics and misrejoining frequency as at a locus on this hybrid's CHO chromosomes.
MSuPDA: A Memory Efficient Algorithm for Sequence Alignment.
Khan, Mohammad Ibrahim; Kamal, Md Sarwar; Chowdhury, Linkon
2016-03-01
Space complexity is a million dollar question in DNA sequence alignments. In this regard, memory saving under pushdown automata can help to reduce the occupied spaces in computer memory. Our proposed process is that anchor seed (AS) will be selected from given data set of nucleotide base pairs for local sequence alignment. Quick splitting techniques will separate the AS from all the DNA genome segments. Selected AS will be placed to pushdown automata's (PDA) input unit. Whole DNA genome segments will be placed into PDA's stack. AS from input unit will be matched with the DNA genome segments from stack of PDA. Match, mismatch and indel of nucleotides will be popped from the stack under the control unit of pushdown automata. During the POP operation on stack, it will free the memory cell occupied by the nucleotide base pair.
Oncogenic LINE-1 Retroelements Sustain Prostate Tumor Cells and Promote Metastatic Progression
2015-10-01
elements in prostate cancer contribute to its progression by activating oncogenic DNA sequences, or silencing tumor suppressor like sequences. We have...prostate cancer cells. Experiments are ongoing to determine if PIWIL-1 expression in prostate cancer cells will reduce their growth, thereby providing...proof of principle for future gene-based therapeutics for this cancer . 15. SUBJECT TERMS Prostate cancer , LINE-1, PIWIL-1, retrotransposons 16
Heterologous mitochondrial DNA recombination in human cells.
D'Aurelio, Marilena; Gajewski, Carl D; Lin, Michael T; Mauck, William M; Shao, Leon Z; Lenaz, Giorgio; Moraes, Carlos T; Manfredi, Giovanni
2004-12-15
Inter-molecular heterologous mitochondrial DNA (mtDNA) recombination is known to occur in yeast and plants. Nevertheless, its occurrence in human cells is still controversial. To address this issue we have fused two human cytoplasmic hybrid cell lines, each containing a distinct pathogenic mtDNA mutation and specific sets of genetic markers. In this hybrid model, we found direct evidence of recombination between these two mtDNA haplotypes. Recombinant mtDNA molecules in the hybrid cells were identified using three independent experimental approaches. First, recombinant molecules containing genetic markers from both parental alleles were demonstrated with restriction fragment length polymorphism of polymerase chain reaction products, by measuring the relative frequencies of each marker. Second, fragments of recombinant mtDNA were cloned and sequenced to identify the regions involved in the recombination events. Finally, recombinant molecules were demonstrated directly by Southern blot using appropriate combinations of polymorphic restriction sites and probes. This combined approach confirmed the existence of heterogeneous species of recombinant mtDNA molecules in the hybrid cells. These findings have important implications for mtDNA-related diseases, the interpretation of human evolution and population genetics and forensic analyses based on mtDNA genotyping.
Heterogeneous RNA-binding protein M4 is a receptor for carcinoembryonic antigen in Kupffer cells.
Bajenova, O V; Zimmer, R; Stolper, E; Salisbury-Rowswell, J; Nanji, A; Thomas, P
2001-08-17
Here we report the isolation of the recombinant cDNA clone from rat macrophages, Kupffer cells (KC) that encodes a protein interacting with carcinoembryonic antigen (CEA). To isolate and identify the CEA receptor gene we used two approaches: screening of a KC cDNA library with a specific antibody and the yeast two-hybrid system for protein interaction using as a bait the N-terminal part of the CEA encoding the binding site. Both techniques resulted in the identification of the rat heterogeneous RNA-binding protein (hnRNP) M4 gene. The rat ortholog cDNA sequence has not been previously described. The open reading frame for this gene contains a 2351-base pair sequence with the polyadenylation signal AATAAA and a termination poly(A) tail. The mRNA shows ubiquitous tissue expression as a 2.4-kilobase transcript. The deduced amino acid sequence comprised a 78-kDa membrane protein with 3 putative RNA-binding domains, arginine/methionine/glutamine-rich C terminus and 3 potential membrane spanning regions. When hnRNP M4 protein is expressed in pGEX4T-3 vector system in Escherichia coli it binds (125)I-labeled CEA in a Ca(2+)-dependent fashion. Transfection of rat hnRNP M4 cDNA into a non-CEA binding mouse macrophage cell line p388D1 resulted in CEA binding. These data provide evidence for a new function of hnRNP M4 protein as a CEA-binding protein in Kupffer cells.
The Control Region of Mitochondrial DNA Shows an Unusual CpG and Non-CpG Methylation Pattern
Bellizzi, Dina; D'Aquila, Patrizia; Scafone, Teresa; Giordano, Marco; Riso, Vincenzo; Riccio, Andrea; Passarino, Giuseppe
2013-01-01
DNA methylation is a common epigenetic modification of the mammalian genome. Conflicting data regarding the possible presence of methylated cytosines within mitochondrial DNA (mtDNA) have been reported. To clarify this point, we analysed the methylation status of mtDNA control region (D-loop) on human and murine DNA samples from blood and cultured cells by bisulphite sequencing and methylated/hydroxymethylated DNA immunoprecipitation assays. We found methylated and hydroxymethylated cytosines in the L-strand of all samples analysed. MtDNA methylation particularly occurs within non-C-phosphate-G (non-CpG) nucleotides, mainly in the promoter region of the heavy strand and in conserved sequence blocks, suggesting its involvement in regulating mtDNA replication and/or transcription. We observed DNA methyltransferases within the mitochondria, but the inactivation of Dnmt1, Dnmt3a, and Dnmt3b in mouse embryonic stem (ES) cells results in a reduction of the CpG methylation, while the non-CpG methylation shows to be not affected. This suggests that D-loop epigenetic modification is only partially established by these enzymes. Our data show that DNA methylation occurs in the mtDNA control region of mammals, not only at symmetrical CpG dinucleotides, typical of nuclear genome, but in a peculiar non-CpG pattern previously reported for plants and fungi. The molecular mechanisms responsible for this pattern remain an open question. PMID:23804556
Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.
Ahn, Eun Hyun; Hirohata, Kensen; Kohrn, Brendan F; Fox, Edward J; Chang, Chia-Cheng; Loeb, Lawrence A
2015-01-01
Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.
Salazar, Edith L; Mercado, E; Calzada, L
2005-01-01
The prevalence of human papillomavirus HPV-16DNA sequences in 57 penile carcinoma biopsies was examined using the polymerase chain reaction (PCR) with type specific internal probes, employing HPV consensus primers from the L1 region. The cases comprised 39 typical squamous cell carcinoma and 18 specimens with different subtype. PCR products were analyzed and HPV-16DNA was detected in a high percentage of specimens. Thirty-eight biopsies were HPV-16DNA positive. This determination was correlated with cellular differentiation and growth pattern. Our data corroborates that squamous cell carcinoma was invariably associated with HPV-16DNA.
DNA recombination protein-dependent mechanism of homoplasmy and its proposed functions.
Shibata, Takehiko; Ling, Feng
2007-01-01
Homoplasmy is a basic genetic state of mitochondria, in which all of the hundreds to thousands of mitochondrial (mt)DNA copies within a cell or an individual have the same nucleotide-sequence. It was recently found that "vegetative segregation" to generate homoplasmic cells is an active process under genetic control. In the yeast Saccharomyces cerevisiae, the Mhr1 protein which catalyzes a key reaction in mtDNA homologous recombination, plays a pivotal role in vegetative segregation. Conversely, within the nuclear genome, homologous DNA recombination causes genetic diversity. Considering these contradictory roles of this key reaction in DNA recombination, possible functions of homoplasmy are discussed.
Davlieva, Milya; Shi, Yiwen; Leonard, Paul G.; ...
2015-04-19
LiaR is a ‘master regulator’ of the cell envelope stress response in enterococci and many other Gram-positive organisms. Mutations to liaR can lead to antibiotic resistance to a variety of antibiotics including the cyclic lipopeptide daptomycin. LiaR is phosphorylated in response to membrane stress to regulate downstream target operons. Using DNA footprinting of the regions upstream of the liaXYZ and liaFSR operons we show that LiaR binds an extended stretch of DNA that extends beyond the proposed canonical consensus sequence suggesting a more complex level of regulatory control of target operons. We go on to determine the biochemical and structuralmore » basis for increased resistance to daptomycin by the adaptive mutation to LiaR (D191N) first identified from the pathogen Enterococcus faecalis S613. LiaR D191N increases oligomerization of LiaR to form a constitutively activated tetramer that has high affinity for DNA even in the absence of phosphorylation leading to increased resistance. The crystal structures of the LiaR DNA binding domain complexed to the putative consensus sequence as well as an adjoining secondary sequence show that upon binding, LiaR induces DNA bending that is consistent with increased recruitment of RNA polymerase to the transcription start site and upregulation of target operons.« less
Javidi-Parsijani, Parisa; Niu, Guoguang; Davis, Meghan; Lu, Pin; Atala, Anthony; Lu, Baisong
2017-01-01
The argonaute protein from the thermophilic bacterium Thermus thermophilus shows DNA-guided DNA interfering activity at high temperatures, complicating its application in mammalian cells. A recent work reported that the argonaute protein from Natronobacterium gregoryi (NgAgo) had DNA-guided genome editing activity in mammalian cells. We compared the genome editing activities of NgAgo and Staphylococcus aureus Cas9 (SaCas9) in human HEK293T cells side by side. EGFP reporter assays and DNA sequencing consistently revealed high genome editing activity from SaCas9. However, these assays did not demonstrate genome editing activity by NgAgo. We confirmed that the conditions allowed simultaneous transfection of the NgAgo expressing plasmid DNA and DNA guides, as well as heterologous expression of NgAgo in the HEK293T cells. Our data show that NgAgo is not a robust genome editing tool, although it may have such activity under other conditions.
G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV.
Madireddy, Advaitha; Purushothaman, Pravinkumar; Loosbroock, Christopher P; Robertson, Erle S; Schildkraut, Carl L; Verma, Subhash C
2016-05-05
Kaposi's sarcoma associated herpesvirus (KSHV) establishes life-long latent infection by persisting as an extra-chromosomal episome in the infected cells and by maintaining its genome in dividing cells. KSHV achieves this by tethering its epigenome to the host chromosome by latency associated nuclear antigen (LANA), which binds in the terminal repeat (TR) region of the viral genome. Sequence analysis of the TR, a GC-rich DNA element, identified several potential Quadruplex G-Rich Sequences (QGRS). Since quadruplexes have the tendency to obstruct DNA replication, we used G-quadruplex stabilizing compounds to examine their effect on latent DNA replication and the persistence of viral episomes. Our results showed that these G-quadruplex stabilizing compounds led to the activation of dormant origins of DNA replication, with preferential bi-directional pausing of replications forks moving out of the TR region, implicating the role of the G-rich TR in the perturbation of episomal DNA replication. Over time, treatment with PhenDC3 showed a loss of viral episomes in the infected cells. Overall, these data show that G-quadruplex stabilizing compounds retard the progression of replication forks leading to a reduction in DNA replication and episomal maintenance. These results suggest a potential role for G-quadruplex stabilizers in the treatment of KSHV-associated diseases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
A cost effective 5΄ selective single cell transcriptome profiling approach with improved UMI design
Arguel, Marie-Jeanne; LeBrigand, Kevin; Paquet, Agnès; Ruiz García, Sandra; Zaragosi, Laure-Emmanuelle; Waldmann, Rainer
2017-01-01
Abstract Single cell RNA sequencing approaches are instrumental in studies of cell-to-cell variability. 5΄ selective transcriptome profiling approaches allow simultaneous definition of the transcription start size and have advantages over 3΄ selective approaches which just provide internal sequences close to the 3΄ end. The only currently existing 5΄ selective approach requires costly and labor intensive fragmentation and cell barcoding after cDNA amplification. We developed an optimized 5΄ selective workflow where all the cell indexing is done prior to fragmentation. With our protocol, cell indexing can be performed in the Fluidigm C1 microfluidic device, resulting in a significant reduction of cost and labor. We also designed optimized unique molecular identifiers that show less sequence bias and vulnerability towards sequencing errors resulting in an improved accuracy of molecule counting. We provide comprehensive experimental workflows for Illumina and Ion Proton sequencers that allow single cell sequencing in a cost range comparable to qPCR assays. PMID:27940562
Non-invasive prenatal testing using cell-free fetal DNA in maternal circulation.
Liao, Gary J W; Gronowski, Ann M; Zhao, Zhen
2014-01-20
The identification of cell-free fetal DNA (cffDNA) in maternal circulation has made non-invasive prenatal testing (NIPT) possible. Maternal plasma cell free DNA is a mixture of maternal and fetal DNA, of which, fetal DNA represents a minor population in maternal plasma. Therefore, methods with high sensitivity and precision are required to detect and differentiate fetal DNA from the large background of maternal DNA. In recent years, technical advances in the molecular analysis of fetal DNA (e.g., digital PCR and massively parallel sequencing (MPS)) has enabled the successful implementation of noninvasive testing into clinical practice, such as fetal sex assessment, RhD genotyping, and fetal chromosomal aneuploidy detection.With the ability to decipher the entire fetal genome from maternal plasma DNA, we foresee that an increased number of non-invasive prenatal tests will be available for detecting many single-gene disorders in the near future. This review briefly summarizes the technical aspects of the NIPT and application of NIPT in clinical practice.
Brouilette, Scott; Kuersten, Scott; Mein, Charles; Bozek, Monika; Terry, Anna; Dias, Kerith-Rae; Bhaw-Rosun, Leena; Shintani, Yasunori; Coppen, Steven; Ikebe, Chiho; Sawhney, Vinit; Campbell, Niall; Kaneko, Masahiro; Tano, Nobuko; Ishida, Hidekazu; Suzuki, Ken; Yashiro, Kenta
2012-10-01
Deep sequencing of single cell-derived cDNAs offers novel insights into oncogenesis and embryogenesis. However, traditional library preparation for RNA-seq analysis requires multiple steps with consequent sample loss and stochastic variation at each step significantly affecting output. Thus, a simpler and better protocol is desirable. The recently developed hyperactive Tn5-mediated library preparation, which brings high quality libraries, is likely one of the solutions. Here, we tested the applicability of hyperactive Tn5-mediated library preparation to deep sequencing of single cell cDNA, optimized the protocol, and compared it with the conventional method based on sonication. This new technique does not require any expensive or special equipment, which secures wider availability. A library was constructed from only 100 ng of cDNA, which enables the saving of precious specimens. Only a few steps of robust enzymatic reaction resulted in saved time, enabling more specimens to be prepared at once, and with a more reproducible size distribution among the different specimens. The obtained RNA-seq results were comparable to the conventional method. Thus, this Tn5-mediated preparation is applicable for anyone who aims to carry out deep sequencing for single cell cDNAs. Copyright © 2012 Wiley Periodicals, Inc.
Technical Considerations for Reduced Representation Bisulfite Sequencing with Multiplexed Libraries
Chatterjee, Aniruddha; Rodger, Euan J.; Stockwell, Peter A.; Weeks, Robert J.; Morison, Ian M.
2012-01-01
Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background. PMID:23193365
Sangiuolo, Federica; Scaldaferri, Maria Lucia; Filareto, Antonio; Spitalieri, Paola; Guerra, Lorenzo; Favia, Maria; Caroppo, Rosa; Mango, Ruggiero; Bruscia, Emanuela; Gruenert, Dieter C; Casavola, Valeria; De Felici, Massimo; Novelli, Giuseppe
2008-01-01
Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.
Rueckert, Sonja; Simdyanov, Timur G.; Aleoshin, Vladimir V.; Leander, Brian S.
2011-01-01
Background Environmental SSU rDNA surveys have significantly improved our understanding of microeukaryotic diversity. Many of the sequences acquired using this approach are closely related to lineages previously characterized at both morphological and molecular levels, making interpretation of these data relatively straightforward. Some sequences, by contrast, appear to be phylogenetic orphans and are sometimes inferred to represent “novel lineages” of unknown cellular identity. Consequently, interpretation of environmental DNA surveys of cellular diversity rely on an adequately comprehensive database of DNA sequences derived from identified species. Several major taxa of microeukaryotes, however, are still very poorly represented in these databases, and this is especially true for diverse groups of single-celled parasites, such as gregarine apicomplexans. Methodology/Principal Findings This study attempts to address this paucity of DNA sequence data by characterizing four different gregarine species, isolated from the intestines of crustaceans, at both morphological and molecular levels: Thiriotia pugettiae sp. n. from the graceful kelp crab (Pugettia gracilis), Cephaloidophora cf. communis from two different species of barnacles (Balanus glandula and B. balanus), Heliospora cf. longissima from two different species of freshwater amphipods (Eulimnogammarus verrucosus and E. vittatus), and Heliospora caprellae comb. n. from a skeleton shrimp (Caprella alaskana). SSU rDNA sequences were acquired from isolates of these gregarine species and added to a global apicomplexan alignment containing all major groups of gregarines characterized so far. Molecular phylogenetic analyses of these data demonstrated that all of the gregarines collected from crustacean hosts formed a very strongly supported clade with 48 previously unidentified environmental DNA sequences. Conclusions/Significance This expanded molecular phylogenetic context enabled us to establish a major clade of intestinal gregarine parasites and infer the cellular identities of several previously unidentified environmental SSU rDNA sequences, including several sequences that have formerly been discussed broadly in the literature as a suspected “novel” lineage of eukaryotes. PMID:21483868
Smolina, Irina; Lee, Charles; Frank-Kamenetskii, Maxim
2007-01-01
An approach is proposed for in situ detection of short signature DNA sequences present in single copies per bacterial genome. The site is locally opened by peptide nucleic acids, and a circular oligonucleotide is assembled. The amplicon generated by rolling circle amplification is detected by hybridization with fluorescently labeled decorator probes. PMID:17293504
Trofimova, Irina; Krasikova, Alla
2016-12-01
Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription.
Krasikova, Alla
2016-01-01
ABSTRACT Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription. PMID:27763817
Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing.
Senkevich, Tatiana G; Bruno, Daniel; Martens, Craig; Porcella, Stephen F; Wolf, Yuri I; Moss, Bernard
2015-09-01
Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.
Method for isolating chromosomal DNA in preparation for hybridization in suspension
Lucas, Joe N.
2000-01-01
A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. Chromosomal DNA in a sample containing cell debris is prepared for hybridization in suspension by treating the mixture with RNase. The treated DNA can also be fixed prior to hybridization.
Quality Control Test for Sequence-Phenotype Assignments
Ortiz, Maria Teresa Lara; Rosario, Pablo Benjamín Leon; Luna-Nevarez, Pablo; Gamez, Alba Savin; Martínez-del Campo, Ana; Del Rio, Gabriel
2015-01-01
Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10–20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function. We further show that this level of incorrect DNA sequence-phenotype assignments may significantly alter our understanding about the structure-function relationship of proteins. We have made available an implementation of our method at http://bis.ifc.unam.mx/en/software/chispas. PMID:25700273
Cloning and analysis of DnaJ family members in the silkworm, Bombyx mori.
Li, Yinü; Bu, Cuiyu; Li, Tiantian; Wang, Shibao; Jiang, Feng; Yi, Yongzhu; Yang, Huipeng; Zhang, Zhifang
2016-01-15
Heat shock proteins (Hsps) are involved in a variety of critical biological functions, including protein folding, degradation, and translocation and macromolecule assembly, act as molecular chaperones during periods of stress by binding to other proteins. Using expressed sequence tag (EST) and silkworm (Bombyx mori) transcriptome databases, we identified 27 cDNA sequences encoding the conserved J domain, which is found in DnaJ-type Hsps. Of the 27 J domain-containing sequences, 25 were complete cDNA sequences. We divided them into three types according to the number and presence of conserved domains. By analyzing the gene structures, intron numbers, and conserved domains and constructing a phylogenetic tree, we found that the DnaJ family had undergone convergent evolution, obtaining new domains to expand the diversity of its family members. The acquisition of the new DnaJ domains most likely occurred prior to the evolutionary divergence of prokaryotes and eukaryotes. The expression of DnaJ genes in the silkworm was generally higher in the fat body. The tissue distribution of DnaJ1 proteins was detected by western blotting, demonstrating that in the fifth-instar larvae, the DnaJ1 proteins were expressed at their highest levels in hemocytes, followed by the fat body and head. We also found that the DnaJ1 transcripts were likely differentially translated in different tissues. Using immunofluorescence cytochemistry, we revealed that in the blood cells, DnaJ1 was mainly localized in the cytoplasm. Copyright © 2015 Elsevier B.V. All rights reserved.
Huang, Xuan; Zheng, Jing; Chen, Min; Zhao, Yangyu; Zhang, Chunlei; Liu, Lifu; Xie, Weiwei; Shi, Shuqiong; Wei, Yuan; Lei, Dongzhu; Xu, Chenming; Wu, Qichang; Guo, Xiaoling; Shi, Xiaomei; Zhou, Yi; Liu, Qiufang; Gao, Ya; Jiang, Fuman; Zhang, Hongyun; Su, Fengxia; Ge, Huijuan; Li, Xuchao; Pan, Xiaoyu; Chen, Shengpei; Chen, Fang; Fang, Qun; Jiang, Hui; Lau, Tze Kin; Wang, Wei
2014-04-01
The objective of this study is to assess the performance of noninvasive prenatal testing for trisomies 21 and 18 on the basis of massively parallel sequencing of cell-free DNA from maternal plasma in twin pregnancies. A double-blind study was performed over 12 months. A total of 189 pregnant women carrying twins were recruited from seven hospitals. Maternal plasma DNA sequencing was performed to detect trisomies 21 and 18. The fetal karyotype was used as gold standard to estimate the sensitivity and specificity of sequencing-based noninvasive prenatal test. There were nine cases of trisomy 21 and two cases of trisomy 18 confirmed by karyotyping. Plasma DNA sequencing correctly identified nine cases of trisomy 21 and one case of trisomy 18. The discordant case of trisomy 18 was an unusual case of monozygotic twin with discordant fetal karyotype (one normal and the other trisomy 18). The sensitivity and specificity of maternal plasma DNA sequencing for fetal trisomy 21 were both 100% and for fetal trisomy 18 were 50% and 100%, respectively. Our study further supported that sequencing-based noninvasive prenatal testing of trisomy 21 in twin pregnancies could be achieved with a high accuracy, which could effectively avoid almost 95% of invasive prenatal diagnosis procedures. © 2013 John Wiley & Sons, Ltd.
High-throughput automated microfluidic sample preparation for accurate microbial genomics
Kim, Soohong; De Jonghe, Joachim; Kulesa, Anthony B.; Feldman, David; Vatanen, Tommi; Bhattacharyya, Roby P.; Berdy, Brittany; Gomez, James; Nolan, Jill; Epstein, Slava; Blainey, Paul C.
2017-01-01
Low-cost shotgun DNA sequencing is transforming the microbial sciences. Sequencing instruments are so effective that sample preparation is now the key limiting factor. Here, we introduce a microfluidic sample preparation platform that integrates the key steps in cells to sequence library sample preparation for up to 96 samples and reduces DNA input requirements 100-fold while maintaining or improving data quality. The general-purpose microarchitecture we demonstrate supports workflows with arbitrary numbers of reaction and clean-up or capture steps. By reducing the sample quantity requirements, we enabled low-input (∼10,000 cells) whole-genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil micro-colonies with superior results. We also leveraged the enhanced throughput to sequence ∼400 clinical Pseudomonas aeruginosa libraries and demonstrate excellent single-nucleotide polymorphism detection performance that explained phenotypically observed antibiotic resistance. Fully-integrated lab-on-chip sample preparation overcomes technical barriers to enable broader deployment of genomics across many basic research and translational applications. PMID:28128213
Chen, Ya-Bing; Lan, Dao-Liang; Tang, Cheng; Yang, Xiao-Nong; Li, Jian
2015-01-01
To more efficiently identify the microbial community of the yak rumen, the standardization of DNA extraction is key to ensure fidelity while studying environmental microbial communities. In this study, we systematically compared the efficiency of several extraction methods based on DNA yield, purity, and 16S rDNA sequencing to determine the optimal DNA extraction methods whose DNA products reflect complete bacterial communities. The results indicate that method 6 (hexadecyltrimethylammomium bromide-lysozyme-physical lysis by bead beating) is recommended for the DNA isolation of the rumen microbial community due to its high yield, operational taxonomic unit, bacterial diversity, and excellent cell-breaking capability. The results also indicate that the bead-beating step is necessary to effectively break down the cell walls of all of the microbes, especially Gram-positive bacteria. Another aim of this study was to preliminarily analyze the bacterial community via 16S rDNA sequencing. The microbial community spanned approximately 21 phyla, 35 classes, 75 families, and 112 genera. A comparative analysis showed some variations in the microbial community between yaks and cattle that may be attributed to diet and environmental differences. Interestingly, numerous uncultured or unclassified bacteria were found in yak rumen, suggesting that further research is required to determine the specific functional and ecological roles of these bacteria in yak rumen. In summary, the investigation of the optimal DNA extraction methods and the preliminary evaluation of the bacterial community composition of yak rumen support further identification of the specificity of the rumen microbial community in yak and the discovery of distinct gene resources.
Janku, Filip; Zhang, Shile; Waters, Jill; Liu, Li; Huang, Helen J; Subbiah, Vivek; Hong, David S; Karp, Daniel D; Fu, Siqing; Cai, Xuyu; Ramzanali, Nishma M; Madwani, Kiran; Cabrilo, Goran; Andrews, Debra L; Zhao, Yue; Javle, Milind; Kopetz, E Scott; Luthra, Rajyalakshmi; Kim, Hyunsung J; Gnerre, Sante; Satya, Ravi Vijaya; Chuang, Han-Yu; Kruglyak, Kristina M; Toung, Jonathan; Zhao, Chen; Shen, Richard; Heymach, John V; Meric-Bernstam, Funda; Mills, Gordon B; Fan, Jian-Bing; Salathia, Neeraj S
2017-09-15
Purpose: Tumor-derived cell-free DNA (cfDNA) in plasma can be used for molecular testing and provide an attractive alternative to tumor tissue. Commonly used PCR-based technologies can test for limited number of alterations at the time. Therefore, novel ultrasensitive technologies capable of testing for a broad spectrum of molecular alterations are needed to further personalized cancer therapy. Experimental Design: We developed a highly sensitive ultradeep next-generation sequencing (NGS) assay using reagents from TruSeqNano library preparation and NexteraRapid Capture target enrichment kits to generate plasma cfDNA sequencing libraries for mutational analysis in 61 cancer-related genes using common bioinformatics tools. The results were retrospectively compared with molecular testing of archival primary or metastatic tumor tissue obtained at different points of clinical care. Results: In a study of 55 patients with advanced cancer, the ultradeep NGS assay detected 82% (complete detection) to 87% (complete and partial detection) of the aberrations identified in discordantly collected corresponding archival tumor tissue. Patients with a low variant allele frequency (VAF) of mutant cfDNA survived longer than those with a high VAF did ( P = 0.018). In patients undergoing systemic therapy, radiological response was positively associated with changes in cfDNA VAF ( P = 0.02), and compared with unchanged/increased mutant cfDNA VAF, decreased cfDNA VAF was associated with longer time to treatment failure (TTF; P = 0.03). Conclusions: Ultradeep NGS assay has good sensitivity compared with conventional clinical mutation testing of archival specimens. A high VAF in mutant cfDNA corresponded with shorter survival. Changes in VAF of mutated cfDNA were associated with TTF. Clin Cancer Res; 23(18); 5648-56. ©2017 AACR . ©2017 American Association for Cancer Research.
Houdebine, L M; Chourrout, D
1991-09-15
Gene transfer into fish embryo is being performed in several species (trout, salmon, carps, tilapia, medaka, goldfish, zebrafish, loach, catfish, etc.). In most cases, pronuclei are not visible and microinjection must be done into the cytoplasm of early embryos. Several million copies of the gene are generally injected. In medaka, transgenesis was attempted by injection of the foreign gene into the nucleus of oocyte. Several reports indicate that the injected DNA was rapidly replicated in the early phase of embryo development, regardless of the origin and the sequence of the foreign DNA. The survival of the injected embryos was reasonably good and a large number reached maturity. The proportion of transgenic animals ranged from 1 to 50% or more, according to species and to experimentators. The reasons for this discrepancy have not been elucidated. In all species, the transgenic animals were mosaic. The copy number of the foreign DNA was different in the various tissues of an animal and a proportion lower than 50% of F1 offsprings received the gene from their parents. This suggests that the foreign DNA was integrated into the fish genome at the two cells stage or later. An examination of the integrated DNA in different cell types of an animal revealed that integration occurred mainly during early development. The transgene was found essentially unrearranged in the fish genome of the founders and offsprings. The transgenes were therefore stably transmitted to progeny in a Mendelian fashion. Southern blot analysis revealed the presence of possible junction fragments and also of minor bands which may result from a rearrangement of the injected DNA. In all species, the integrated DNA appeared mainly as random end-to-end concatemers. In adult trout blood cells, a small proportion of the foreign DNA was maintained in the form of non-integrated concatemers, as judged by the existence of end fragments. The transgenes were generally only poorly expressed. The majority of the injected gene constructs contained essentially mammalian or higher vertebrates sequences. The comparison of the expression efficiency of these constructs in transfected fish and mammalian cells indicates that some of the mammalian DNA sequences are most efficiently understood by the fish cell machinery. Chloramphenicol acetyl transferase gene under the control of promoters from Rous sarcoma virus, and human cytomegalovirus, was expressed in several tissues of transgenic fish. Chicken delta-crystallin gene was expressed in several tissues of transgenic fish.(ABSTRACT TRUNCATED AT 400 WORDS)
Enhancing magnetic nanoparticle-based DNA transfection: Intracellular-active cassette features
NASA Astrophysics Data System (ADS)
Vernon, Matthew Martin
Efficient plasmid DNA transfection of embryonic stem cells, mesenchymal stem cells, neural cell lines and the majority of primary cell lines is a current challenge in gene therapy research. Magnetic nanoparticle-based DNA transfection is a gene vectoring technique that is promising because it is capable of outperforming most other non-viral transfection methods in terms of both transfection efficiency and cell viability. The nature of the DNA vector implemented depends on the target cell phenotype, where the particle surface chemistry and DNA binding/unbinding kinetics of the DNA carrier molecule play a critical role in the many steps required for successful gene transfection. Accordingly, Neuromag, an iron oxide/polymer nanoparticle optimized for transfection of neural phenotypes, outperforms many other nanoparticles and lipidbased DNA carriers. Up to now, improvements to nanomagnetic transfection techniques have focused mostly on particle functionalization and transfection parameter optimization (cell confluence, growth media, serum starvation, magnet oscillation parameters, etc.). None of these parameters are capable of assisting the nuclear translocation of delivered plasmid DNA once the particle-DNA complex is released from the endosome and dissociates in the cell's cytoplasm. In this study, incorporation of a DNA targeting sequence (DTS) feature in the transfecting plasmid DNA confers improved nuclear translocation, demonstrating significant improvement in nanomagnetic transfection efficiency in differentiated SH-SY5Y neuroblastoma cells. Other parameters, such as days in vitro, are also found to play a role and represent potential targets for further optimization.
Woodcock, Clayton B; Yakubov, Aziz B; Reich, Norbert O
2017-08-01
Caulobacter crescentus relies on DNA methylation by the cell cycle-regulated methyltransferase (CcrM) in addition to key transcription factors to control the cell cycle and direct cellular differentiation. CcrM is shown here to efficiently methylate its cognate recognition site 5'-GANTC-3' in single-stranded and hemimethylated double-stranded DNA. We report the K m , k cat , k methylation , and K d for single-stranded and hemimethylated substrates, revealing discrimination of 10 7 -fold for noncognate sequences. The enzyme also shows a similar discrimination against single-stranded RNA. Two independent assays clearly show that CcrM is highly processive with single-stranded and hemimethylated DNA. Collectively, the data provide evidence that CcrM and other DNA-modifying enzymes may use a new mechanism to recognize DNA in a key epigenetic process.