9. ENGINE TEST CELL BUILDING INTERIOR. CELL ACCESS ELEVATOR, CELLS ...
9. ENGINE TEST CELL BUILDING INTERIOR. CELL ACCESS ELEVATOR, CELLS 2 AND 4, BASEMENT LEVEL. LOOKING SOUTHEAST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA
Brodsky, Arthur Nathan; Caldwell, Mary; Bae, Sooneon; Harcum, Sarah W.
2014-01-01
NS0 and Chinese hamster ovary (CHO) cell lines are used to produce recombinant proteins for human therapeutics; however, ammonium accumulation can negatively impact cell growth, recombinant protein production, and protein glycosylation. To improve product quality and decrease costs, the relationship between ammonium and protein glycosylation needs to be elucidated. While ammonium has been shown to adversely affect glycosylation-related gene expression in CHO cells, NS0 studies have not been performed. Therefore, this study sought to determine if glycosylation in NS0 cells were ammonium-sensitive at the gene expression level. Using a DNA microarray that contained mouse glycosylation-related and housekeeping genes, the of these genes was analysed in response to various culture conditions – elevated ammonium, elevated salt, and elevated ammonium with proline. Surprisingly, no significant differences in gene expression levels were observed between the control and these conditions. Further, the elevated ammonium cultures were analysed using real-time quantitative reverse transcriptase PCR (qRT-PCR) for key glycosylation genes, and the qRT-PCR results corroborated the DNA microarray results, demonstrating that NS0 cells are ammonium-insensitive at the gene expression level. Since NS0 are known to have elevated nucleotide sugar pools under ammonium stress, and none of the genes directly responsible for these metabolic pools were changed, consequently cellular control at the translational or substrate-level must be responsible for the universally observed decreased glycosylation quality under elevated ammonium. PMID:25062658
Cardiac troponin I in sickle cell crisis.
Aslam, Ahmad K; Rodriguez, Carlos; Aslam, Ahmed F; Vasavada, Balendu C; Khan, Ijaz A
2009-03-20
Gross and microscopic findings consistent with acute and healed myocardial injury without coronary artery disease have been described in autopsy studies of patients with sickle cell crisis. The present study was designed to determine whether serum levels of cardiac troponin I are elevated in sickle cell crisis. Cardiac troponin I levels were measured in 32 patients age>18 years with the admission diagnosis of sickle cell crisis. All patients had cardiac troponin I level drawn >24 h after the onset of symptoms. The clinical profile and electrocardiograms were analyzed. Out of 32 patients, 2 patients had serum cardiac troponin I elevated, both had presented with acute chest syndrome. Serum cardiac troponin I may be elevated during sickle cell crisis, possibly by myocardial ischemia resulting from microvascular coronary obstruction during sickle cell crisis.
Expression of p21Waf1/Cip1 and cyclin D1 is increased in butyrate-resistant HeLa cells.
Derjuga, A; Richard, C; Crosato, M; Wright, P S; Chalifour, L; Valdez, J; Barraso, A; Crissman, H A; Nishioka, W; Bradbury, E M; Th'ng, J P
2001-10-12
Sodium butyrate induced cell cycle arrest in mammalian cells through an increase in p21Waf1/Cip1, although another study showed that this arrest is related to pRB signaling. We isolated variants of HeLa cells adapted to growth in 5 mm butyrate. One of these variants, clone 5.1, constitutively expressed elevated levels of p21Waf1/Cip1 when incubated in regular growth medium and in the presence of butyrate. Despite this elevated level of p21Waf1/Cip1, the cells continue to proliferate, albeit at a slower rate than parental HeLa cells. Western blot analyses showed that other cell cycle regulatory proteins were not up-regulated to compensate for the elevated expression of p21Waf1/Cip1. However, cyclin D1 was down-regulated by butyrate in HeLa cells but not in clone 5.1. We conclude that continued expression of cyclin D1 allowed clone 5.1 to grow in the presence of butyrate and elevated levels of p21Waf1/Cip1.
In-vitro Wound Healing Effect of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor from Plant.
Karna, Sandeep
2017-01-01
Prostaglandins (PGs) have short existence in vivo because they are rapidly metabolized by NAD + -dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) to 15-ketoprostaglandins. Inhibition of 15-PGDH causes elevated level of PGE 2 in cellular system. It will be valuable for the therapeutic management of diseases requiring elevated PGE 2 levels, like wound healing. Ninety-eight plant samples were screened for the discovery of potent 15-PGDH inhibitor. Among them, top five plant extracts as potent 15-PGDH inhibitor were chosen to determine PGE 2 release from HaCaT (Keratinocyte cell line) cell line. Finally, top 15-PGDH inhibitor was selected to evaluate in vitro wound healing effect on HaCaT scratch model. The inhibitory activity for 15-PGDH inhibitors was evaluated using fluorescence spectrophotometer by measuring the formation of NADH at 468 nm following excitation at 340 nm. Cell viability assay and PGE 2 release was evaluated in HaCaT cell line after treatment of 15-PGDH inhibitors. Scratches were made using sterile 200 μL on HaCaT cell and wound-healing effect was evaluated after treatment of 15-PGDH inhibitor. 15-PGDH inhibitors elevated PGE 2 levels in concentration-dependent manner. Ethanol extract of Artocarpus heterophyllus (EEAH), the most potent 15-PGDH inhibitor (IC 50 = 0.62 µg/mL) with least cytotoxicity (IC 50 = 670 µg/ml), elevated both intracellular and extracellular PGE 2 levels. EEAH facilitated in-vitro wound healing in a HaCaT (Keratinocyte cell line) scratch model. EEAH might apply to treat dermal wounds by elevating PGE 2 levels via COX-1 induction and 15-PGDH inhibition. Biological inactivation of 15-PGDH causes elevated level of PGE 2 which will be useful for the management of disease that requires elevated level of PGE 2 . Abbreviations used: 15-PGDH: 15-hydroxyprostaglandin dehydrogenase, COX: Cyclooxygenase, DTT: Dithiothreitol, DMEM: Dulbecco's modified Eagle's media, EEAH: Ethanol extract of Artocarpus heterophyllus, MRP4: Multidrug resistance 4, PGs: Prostaglandins, PGT: Prostaglandin transporter, SDS: Sodium dodecylsulfate.
Santoso, D; Thornburg, R
2000-08-01
We have selected 143 independent Nicotiana plumbaginifolia cell lines that survive in the presence of 5-fluoroorotic acid. These lines show several diverse phenotypes. The majority of these cell lines showed reduced levels of UMP synthase. However, one particular phenotype, which represents 14% of the total independent lines (20 cell lines), showed an unexpected, high level of UMP synthase and was therefore analyzed in detail. The selected cell lines showed no differences with wild-type cells with respect to uptake of orotic acid, affinity of UMP synthase for its substrates, or UMP synthase gene-copy number. Alternative detoxification mechanisms were also excluded. The elevated enzyme activity was correlated with elevated UMP synthase protein levels as well as elevated UMP synthase mRNA levels. In contrast to wild-type cell lines, the fluoroorotic acid-selected cell lines did not respond to thymine or to other biochemicals that affect thymine levels. In addition, there was also a concomitant up-regulation of aspartate transcarbamoylase, however, dihydroorotase and dihydroorotate dehydrogenase are not up-regulated in these cell lines.
Santoso, Djoko; Thornburg, Robert
2000-01-01
We have selected 143 independent Nicotiana plumbaginifolia cell lines that survive in the presence of 5-fluoroorotic acid. These lines show several diverse phenotypes. The majority of these cell lines showed reduced levels of UMP synthase. However, one particular phenotype, which represents 14% of the total independent lines (20 cell lines), showed an unexpected, high level of UMP synthase and was therefore analyzed in detail. The selected cell lines showed no differences with wild-type cells with respect to uptake of orotic acid, affinity of UMP synthase for its substrates, or UMP synthase gene-copy number. Alternative detoxification mechanisms were also excluded. The elevated enzyme activity was correlated with elevated UMP synthase protein levels as well as elevated UMP synthase mRNA levels. In contrast to wild-type cell lines, the fluoroorotic acid-selected cell lines did not respond to thymine or to other biochemicals that affect thymine levels. In addition, there was also a concomitant up-regulation of aspartate transcarbamoylase, however, dihydroorotase and dihydroorotate dehydrogenase are not up-regulated in these cell lines. PMID:10938367
The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling
Fagerberg, Linn; Hallström, Björn M.; Schwenk, Jochen M.; Uhlén, Mathias; Korsgren, Olle; Lindskog, Cecilia
2014-01-01
The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects. PMID:25546435
Breen, Elizabeth Crabb; Hussain, Shehnaz K.; Magpantay, Larry; Jacobson, Lisa P.; Detels, Roger; Rabkin, Charles S.; Kaslow, Richard A.; Variakojis, Daina; Bream, Jay H.; Rinaldo, Charles R.; Ambinder, Richard F.; Martínez-Maza, Otoniel
2011-01-01
Background The risk of developing non-Hodgkin lymphoma (NHL) is greatly increased in HIV infection. The aim of this study was to determine if elevated serum levels of molecules associated with B cell activation precede the diagnosis of AIDS-associated NHL. Methods Serum levels of B cell activation-associated molecules, interleukin-6 (IL6), interleukin-10 (IL10), soluble CD23 (sCD23), soluble CD27 (sCD27), soluble CD30 (sCD30), C-reactive protein (CRP), and IgE were determined in 179 NHL cases and HIV+ controls in the Multicenter AIDS Cohort Study, collected at up to three time points per subject, 0–5 years prior to AIDS-NHL diagnosis. Results Serum IL6, IL10, CRP, sCD23, sCD27, and sCD30 levels were all significantly elevated in the AIDS-NHL group, when compared to HIV+ controls or to AIDS controls, after adjusting for CD4 T cell number. Elevated serum levels of B cell activation-associated molecules were seen to be associated with the development of systemic (non-CNS) NHL, but not with the development of primary CNS lymphoma. Conclusions Levels of certain B cell stimulatory cytokines and molecules associated with immune activation are elevated for several years preceding the diagnosis of systemic AIDS-NHL. This observation is consistent with the hypothesis that chronic B cell activation contributes to the development of these hematologic malignancies. Impact Marked differences in serum levels of several molecules are seen for several years pre-diagnosis in those who eventually develop AIDS-NHL. Some of these molecules may serve as candidate biomarkers and provide valuable information to better define the etiology of NHL. PMID:21527584
Elevated Cyclic AMP Levels in T Lymphocytes Transformed by Human T-Cell Lymphotropic Virus Type 1▿
Kress, Andrea K.; Schneider, Grit; Pichler, Klemens; Kalmer, Martina; Fleckenstein, Bernhard; Grassmann, Ralph
2010-01-01
Human T-cell lymphotropic virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), transforms CD4+ T cells to permanent growth through its transactivator Tax. HTLV-1-transformed cells share phenotypic properties with memory and regulatory T cells (T-reg). Murine T-reg-mediated suppression employs elevated cyclic AMP (cAMP) levels as a key regulator. This led us to determine cAMP levels in HTLV-1-transformed cells. We found elevated cAMP concentrations as a consistent feature of all HTLV-1-transformed cell lines, including in vitro-HTLV-1-transformed, Tax-transformed, and patient-derived cells. In transformed cells with conditional Tax expression, high cAMP levels coincided with the presence of Tax but were lost without it. However, transient ectopic expression of Tax alone was not sufficient to induce cAMP. We found specific downregulation of the cAMP-degrading phosphodiesterase 3B (PDE3B) in HTLV-1-transformed cells, which was independent of Tax in transient expression experiments. This is in line with the notion that PDE3B transcripts and cAMP levels are inversely correlated. Overexpression of PDE3B led to a decrease of cAMP in HTLV-1-transformed cells. Decreased expression of PDE3B was associated with inhibitory histone modifications at the PDE3B promoter and the PDE3B locus. In summary, Tax transformation and its continuous expression contribute to elevated cAMP levels, which may be regulated through PDE3B suppression. This shows that HTLV-1-transformed cells assume biological features of long-lived T-cell populations that potentially contribute to viral persistence. PMID:20573814
Widney, Daniel P.; Olafsen, Tove; Wu, Anna M.; Kitchen, Christina M. R.; Said, Jonathan W.; Smith, Jeffrey B.; Peña, Guadalupe; Magpantay, Larry I.; Penichet, Manuel L.; Martinez-Maza, Otoniel
2013-01-01
Currently, few rodent models of AIDS-associated non-Hodgkin’s lymphoma (AIDS-NHL) exist. In these studies, a novel mouse/human xenograft model of AIDS-associated Burkitt lymphoma (AIDS-BL) was created by injecting cells of the human AIDS-BL cell line, 2F7, intraperitoneally into NOD-SCID mice. Mice developed tumors in the peritoneal cavity, with metastases to the spleen, thymus, and mesenteric lymph nodes. Expression of the chemokine receptor, CXCR5, was greatly elevated in vivo on BL tumor cells in this model, as shown by flow cytometry. CXCL13 is the ligand for CXCR5, and serum and ascites levels of murine, but not human, CXCL13 showed a striking elevation in tumor-bearing mice, with levels as high as 200,000 pg/ml in ascites, as measured by ELISA. As shown by immunohistochemistry, murine CXCL13 was associated with macrophage-like tumor-infiltrating cells that appeared to be histiocytes. Blocking CXCR5 on 2F7 cells with neutralizing antibodies prior to injection into the mice substantially delayed tumor formation. The marked elevations in tumor cell CXCR5 expression and in murine CXCL13 levels seen in the model may potentially identify an important link between tumor-interacting histiocytes and tumor cells in AIDS-BL. These results also identify CXCL13 as a potential biomarker for this disease, which is consistent with previous studies showing that serum levels of CXCL13 were elevated in human subjects who developed AIDS-lymphoma. This mouse model may be useful for future studies on the interactions of the innate immune system and AIDS-BL tumor cells, as well as for the assessment of potential tumor biomarkers for this disease. PMID:23936541
Widney, Daniel P; Olafsen, Tove; Wu, Anna M; Kitchen, Christina M R; Said, Jonathan W; Smith, Jeffrey B; Peña, Guadalupe; Magpantay, Larry I; Penichet, Manuel L; Martinez-Maza, Otoniel
2013-01-01
Currently, few rodent models of AIDS-associated non-Hodgkin's lymphoma (AIDS-NHL) exist. In these studies, a novel mouse/human xenograft model of AIDS-associated Burkitt lymphoma (AIDS-BL) was created by injecting cells of the human AIDS-BL cell line, 2F7, intraperitoneally into NOD-SCID mice. Mice developed tumors in the peritoneal cavity, with metastases to the spleen, thymus, and mesenteric lymph nodes. Expression of the chemokine receptor, CXCR5, was greatly elevated in vivo on BL tumor cells in this model, as shown by flow cytometry. CXCL13 is the ligand for CXCR5, and serum and ascites levels of murine, but not human, CXCL13 showed a striking elevation in tumor-bearing mice, with levels as high as 200,000 pg/ml in ascites, as measured by ELISA. As shown by immunohistochemistry, murine CXCL13 was associated with macrophage-like tumor-infiltrating cells that appeared to be histiocytes. Blocking CXCR5 on 2F7 cells with neutralizing antibodies prior to injection into the mice substantially delayed tumor formation. The marked elevations in tumor cell CXCR5 expression and in murine CXCL13 levels seen in the model may potentially identify an important link between tumor-interacting histiocytes and tumor cells in AIDS-BL. These results also identify CXCL13 as a potential biomarker for this disease, which is consistent with previous studies showing that serum levels of CXCL13 were elevated in human subjects who developed AIDS-lymphoma. This mouse model may be useful for future studies on the interactions of the innate immune system and AIDS-BL tumor cells, as well as for the assessment of potential tumor biomarkers for this disease.
In-vitro Wound Healing Effect of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor from Plant
Karna, Sandeep
2017-01-01
Background: Prostaglandins (PGs) have short existence in vivo because they are rapidly metabolized by NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) to 15-ketoprostaglandins. Inhibition of 15-PGDH causes elevated level of PGE2 in cellular system. It will be valuable for the therapeutic management of diseases requiring elevated PGE2 levels, like wound healing. Objective: Ninety-eight plant samples were screened for the discovery of potent 15-PGDH inhibitor. Among them, top five plant extracts as potent 15-PGDH inhibitor were chosen to determine PGE2 release from HaCaT (Keratinocyte cell line) cell line. Finally, top 15-PGDH inhibitor was selected to evaluate in vitro wound healing effect on HaCaT scratch model. Method: The inhibitory activity for 15-PGDH inhibitors was evaluated using fluorescence spectrophotometer by measuring the formation of NADH at 468 nm following excitation at 340 nm. Cell viability assay and PGE2 release was evaluated in HaCaT cell line after treatment of 15-PGDH inhibitors. Scratches were made using sterile 200 μL on HaCaT cell and wound-healing effect was evaluated after treatment of 15-PGDH inhibitor. Results: 15-PGDH inhibitors elevated PGE2 levels in concentration-dependent manner. Ethanol extract of Artocarpus heterophyllus (EEAH), the most potent 15-PGDH inhibitor (IC50 = 0.62 µg/mL) with least cytotoxicity (IC50 = 670 µg/ml), elevated both intracellular and extracellular PGE2 levels. EEAH facilitated in-vitro wound healing in a HaCaT (Keratinocyte cell line) scratch model. Conclusion: EEAH might apply to treat dermal wounds by elevating PGE2 levels via COX-1 induction and 15-PGDH inhibition. SUMMARY Biological inactivation of 15-PGDH causes elevated level of PGE2 which will be useful for the management of disease that requires elevated level of PGE2. Abbreviations used: 15-PGDH: 15-hydroxyprostaglandin dehydrogenase, COX: Cyclooxygenase, DTT: Dithiothreitol, DMEM: Dulbecco's modified Eagle's media, EEAH: Ethanol extract of Artocarpus heterophyllus, MRP4: Multidrug resistance 4, PGs: Prostaglandins, PGT: Prostaglandin transporter, SDS: Sodium dodecylsulfate PMID:28479736
Prior irradiation results in elevated programmed cell death protein 1 (PD-1) in T cells.
Li, Deguan; Chen, Renxiang; Wang, Yi-Wen; Fornace, Albert J; Li, Heng-Hong
2018-05-01
In this study we addressed the question whether radiation-induced adverse effects on T cell activation are associated with alterations of T cell checkpoint receptors. Expression levels of checkpoint receptors on T cell subpopulations were analyzed at multiple post-radiation time points ranging from one to four weeks in mice receiving a single fraction of 1 or 4 Gy of γ-ray. T cell activation associated metabolic changes were assessed. Our results showed that prior irradiation resulted in significant elevated expression of programmed cell death protein 1 (PD-1) in both CD4+ and CD8+ populations, at all three post-radiation time points. T cells with elevated PD-1 mostly were either central memory or naïve cells. In addition, the feedback induction of PD-1 expression in activated T cells declined after radiation. Taken together, the elevated PD-1 level observed at weeks after radiation exposure is connected to T cell dysfunction. Recent preclinical and clinical studies have showed that a combination of radiotherapy and T cell checkpoint blockade immunotherapy including targeting the programmed death-ligand 1 (PD-L1)/PD-1 axis may potentiate the antitumor response. Understanding the dynamic changes in PD-1 levels in T cells after radiation should help in the development of a more effective therapeutic strategy.
tRNA and Its Activation Targets as Biomarkers and Regulators of Breast Cancer
2013-09-01
linked tRNA misregulation to cancer. We have previously reported that tRNA levels are significantly elevated in breast cancer and multiple myeloma ...significantly elevated in breast cancer and multiple myeloma cells. To further investigate the cellular and physiological effects of tRNA overexpression, we...tRNA levels are elevated in breast cancer and multiple myeloma cell lines (Pavon-Eternod et al. 2009; Zhou et al. 2009). Though abnormal RNA polymerase
Glucocorticoid effects on immune cell activation by staphylococcal exotoxins and lipopolysaccharide
NASA Technical Reports Server (NTRS)
Chapes, S. K.; Kopydlowski, K. M.; Fleming, S. D.; Iandolo, J. J.; Spooner, B. S. (Principal Investigator)
1992-01-01
Experiments were conducted to determine the effects of physiologically elevated corticosterone on the activation of macrophages and T cells. These studies find that the elevation of corticosterone does not affect the expression of membrane receptors on macrophages and does not affect the activation of macrophages to produce cytokines. In contrast, elevated corticosterone levels correlate with enhanced T cell proliferation to both mitogens and superantigens.
Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells
Burugula, Balabharathi; Ganesh, Bhagyalaxmi S.
2011-01-01
Purpose. Staurosporine (SS) causes retinal ganglion cell (RGC) death in vivo, but the underlying mechanisms have been unclear. Since previous studies on RGC-5 cells indicated that SS induces cell death by elevating proteases, this study was undertaken to investigate whether SS induces RGC loss by elevating proteases in the retina, and curcumin prevents SS-mediated death of RGCs. Methods. Transformed mouse retinal ganglion-like cells (RGC-5) were treated with 2.0 μM SS and various doses of curcumin. Two optimal doses of SS (12.5 and 100 nM) and curcumin (2.5 and 10 μM) were injected into the vitreous of C57BL/6 mice. Matrix metalloproteinase (MMP)-9, tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) activities were assessed by zymography assays. Viability of RGC-5 cells was assessed by MTT assays. RGC and amacrine cell loss in vivo was assessed by immunostaining with Brn3a and ChAT antibodies, respectively. Frozen retinal cross sections were immunostained for nuclear factor-κB (NF-κB). Results. Staurosporine induced uPA and tPA levels in RGC-5 cells, and MMP-9, uPA, and tPA levels in the retinas and promoted the death of RGC-5 cells in vitro and RGCs and amacrine cells in vivo. In contrast, curcumin attenuated RGC and amacrine cell loss, despite elevated levels of proteases. An NF-κB inhibitory peptide reversed curcumin-mediated protective effect on RGC-5 cells, but did not inhibit protease levels. Curcumin did not inhibit protease levels in vivo, but attenuated RGC and amacrine cell loss by restoring NF-κB expression. Conclusions. The results show that curcumin attenuates RGC and amacrine cell death despite elevated levels of proteases and raises the possibility that it may be used as a plausible adjuvant therapeutic agent to prevent the loss of these cells in retinal degenerative conditions. PMID:21498608
Murata, Teruasa; Honda, Tetsuya; Egawa, Gyohei; Yamamoto, Yasuo; Ichijo, Ryo; Toyoshima, Fumiko; Dainichi, Teruki; Kabashima, Kenji
2018-04-26
Epidermal keratinocytes achieve sequential differentiation from basal to granular layers, and undergo a specific programmed cell death, cornification, to form an indispensable barrier of the body. Although elevation of the cytoplasmic calcium ion concentration ([Ca 2+ ] i ) is one of the factors predicted to regulate cornification, the dynamics of [Ca 2+ ] i in epidermal keratinocytes is largely unknown. Here using intravital imaging, we captured the dynamics of [Ca 2+ ] i in mouse skin. [Ca 2+ ] i was elevated in basal cells on the second time scale in three spatiotemporally distinct patterns. The transient elevation of [Ca 2+ ] i also occurred at the most apical granular layer at a single cell level, and lasted for approximately 40 min. The transient elevation of [Ca 2+ ] i at the granular layer was followed by cornification, which was completed within 10 min. This study demonstrates the tightly regulated elevation of [Ca 2+ ] i preceding the cornification of epidermal keratinocytes, providing possible clues to the mechanisms of cornification.
Heat-shock proteins (HSPs) play important roles in regulating cell growth and protecting cells from adverse effects of heat and chemical stress. In many types of cancer, elevated HSP70 levels are associated with poor prognosis and resistance to chemotherapeutic agents. In the pre...
Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.
2015-01-01
The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887
Horta, Mariana; Cunha, Teresa Margarida; Marques, Rita Canas; Félix, Ana
2014-01-01
Here we describe the case of a 19-year-old woman with a poorly differentiated ovarian Sertoli-Leydig cell tumor and an elevated serum alpha-fetoprotein level. The patient presented with diffuse abdominal pain and bloating. Physical examination, ultrasound, and magnetic resonance imaging revealed a right ovarian tumor that was histopathologically diagnosed as a poorly differentiated Sertoli-Leydig cell tumor with heterologous elements. Her alpha-fetoprotein serum level was undetectable after tumor resection. Sertoli-Leydig cell tumors are rare sex cord-stromal tumors that account for 0.5% of all ovarian neoplasms. Sertoli-Leydig cell tumors tend to be unilateral and occur in women under 30 years of age. Although they are the most common virilizing tumor of the ovary, about 60% are endocrine-inactive tumors. Elevated serum levels of alpha-fetoprotein are rarely associated with Sertoli-Leydig cell tumors, with only approximately 30 such cases previously reported in the literature. The differential diagnosis should include common alpha-fetoprotein-producing ovarian entities such as germ cell tumors, as well as other non-germ cell tumors that have been rarely reported to produce this tumor marker. PMID:25926909
Horta, Mariana; Cunha, Teresa Margarida; Marques, Rita Canas; Félix, Ana
2014-11-01
Here we describe the case of a 19-year-old woman with a poorly differentiated ovarian Sertoli-Leydig cell tumor and an elevated serum alpha-fetoprotein level. The patient presented with diffuse abdominal pain and bloating. Physical examination, ultrasound, and magnetic resonance imaging revealed a right ovarian tumor that was histopathologically diagnosed as a poorly differentiated Sertoli-Leydig cell tumor with heterologous elements. Her alpha-fetoprotein serum level was undetectable after tumor resection. Sertoli-Leydig cell tumors are rare sex cord-stromal tumors that account for 0.5% of all ovarian neoplasms. Sertoli-Leydig cell tumors tend to be unilateral and occur in women under 30 years of age. Although they are the most common virilizing tumor of the ovary, about 60% are endocrine-inactive tumors. Elevated serum levels of alpha-fetoprotein are rarely associated with Sertoli-Leydig cell tumors, with only approximately 30 such cases previously reported in the literature. The differential diagnosis should include common alpha-fetoprotein-producing ovarian entities such as germ cell tumors, as well as other non-germ cell tumors that have been rarely reported to produce this tumor marker.
Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; ...
2015-09-25
The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacteriumAzospirillum brasilensenavigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motileA. brasilensecells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities,more » we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Finally, cell-to-cell clumping may thus license diazotrophy to microaerophilicA. brasilensecells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy
The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacteriumAzospirillum brasilensenavigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motileA. brasilensecells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities,more » we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Finally, cell-to-cell clumping may thus license diazotrophy to microaerophilicA. brasilensecells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.« less
Elevated IL-8 levels during sickle cell crisis.
Duits, A J; Schnog, J B; Lard, L R; Saleh, A W; Rojer, R A
1998-11-01
The vaso-occlusive process (VOC) in sickle cell disease is of a complex nature. It involves intricate interactions between sickle red blood cells, endothelium and probably also leukocytes. As these interactions are regulated by cytokines, we analyzed the role of the potent neutrophil chemokine IL-8 by measuring serum levels in sickle cell patients during sickle cell crisis. These results were compared to nonsymptomatics and healthy controls. In patients having a vaso-occlusive crisis both HbSS and HbSC patients showed significantly enhanced serum IL-8 levels compared to healthy controls. Several of these patients showed extremely elevated serum IL-8 levels which were independent of the crisis inducing factor. Furthermore, a sickle cell patient with VOC as a complication of rhGM-CSF treatment similarly showed high IL-8 serum levels at crisis onset. Nonsymptomatic sickle cell patients serum IL-8 levels were comparable to healthy controls. These results implicate a role for IL-8 at or during (the initiation of) sickle cell crisis.
Toy, P T; Chin, C A; Reid, M E; Burns, M A
1985-01-01
During routine pretransfusion testing, the presence of IgG on patient red cells is suggested by a positive autocontrol and confirmed by a positive direct antiglobulin test (DAT) using monospecific anti-IgG sera. Most IgG on patient red cells detected in this manner are of unknown etiology. We recently showed an association between elevated serum globulin levels and positive DAT with unreactive eluate in patients with acquired immunodeficiency syndrome (AIDS). In the present study, we wished to determine whether elevated serum globulin levels contribute to some of the positive DAT encountered in pretransfusion testing of patients without AIDS. 76 patients with positive DAT were compared with 90 controls without IgG detected on their red cells during pretransfusion testing. The rate of elevated serum globulin levels was 75% in positive DAT cases versus 29% in controls (p less than 0.001); the odds ratio was 7.6. Elevated blood urea nitrogen levels occurred in 42% of cases versus 19% of controls (p less than 0.025); the odds ratio was 3.1. Cases and controls were not significantly different with regard to age, sex, race, quinidine usage, or hyperalimentation. Elevated serum globulin and blood urea nitrogen levels are significantly associated with a positive DAT with unreactive eluate in pretransfusion patients.
Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys
2015-12-01
The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Can germ cell neoplasia in situ be diagnosed by measuring serum levels of microRNA371a-3p?
Radtke, A; Cremers, J-F; Kliesch, S; Riek, S; Junker, K; Mohamed, S A; Anheuser, P; Belge, G; Dieckmann, K-P
2017-11-01
Diagnosing germ cell neoplasia in situ (GCNis) can detect germ cell tumours (GCTs) at the pre-invasive stage. To date, testicular biopsy with the potential of surgical complications is the only way of safely diagnosing GCNis. Recently, microRNAs (miRs) 371-3, and miR 367 were shown to be valuable serum biomarkers of GCTs. We explored the usefulness of these candidate miRs as a marker for GCNis. 27 patients with GCNis and no concomitant GCT were enrolled. All patients underwent measuring serum levels of miR-371a-3p and miR-367-3p before treatment, 11 had repeat measurement after treatment, 2 also had testicular vein blood examinations. Serum levels were measured by quantitative PCR. In addition, four orchiectomy specimens of patients with GCT were examined immunohistochemically and by in situ hybridization (ISH) with a probe specific for miR-371a-3p to look for the presence of this miR in GCNis cells. The median serum level of miR-371a-3p was significantly higher in patients with GCNis than in controls, miR-367 levels were not elevated. Overall, 14 patients (51.9%) had elevated serum levels of miR-371a-3p. The highest levels were found in patients with bilateral GCNis. Levels in testicular vein serum were elevated in both of the cases. After treatment, all elevated levels dropped to normal. In two orchiectomy specimens, miR-371a-3p was detected by ISH in GCNis cells. Measuring miR-371a-3p serum levels can replace control biopsies after treatment of GCNis. In addition, the test can guide clinical decision making regarding the need of testicular biopsy in cases suspicious of GCNis.
Martin, Larry G.; Demers, G. William; Galloway, Denise A.
1998-01-01
The development of neoplasia frequently involves inactivation of the p53 and retinoblastoma (Rb) tumor suppressor pathways and disruption of cell cycle checkpoints that monitor the integrity of replication and cell division. The human papillomavirus type 16 (HPV-16) oncoproteins, E6 and E7, have been shown to bind p53 and Rb, respectively. To further delineate the mechanisms by which E6 and E7 affect cell cycle control, we examined various aspects of the cell cycle machinery. The low-risk HPV-6 E6 and E7 proteins did not cause any significant change in the levels of cell cycle proteins analyzed. HPV-16 E6 resulted in very low levels of p53 and p21 and globally elevated cyclin-dependent kinase (CDK) activity. In contrast, HPV-16 E7 had a profound effect on several aspects of the cell cycle machinery. A number of cyclins and CDKs were elevated, and despite the elevation of the levels of at least two CDK inhibitors, p21 and p16, CDK activity was globally increased. Most strikingly, cyclin E expression was deregulated both transcriptionally and posttranscriptionally and persisted at high levels in S and G2/M. Transit through G1 was shortened by the premature activation of cyclin E-associated kinase activity. Elevation of cyclin E levels required both the CR1 and CR2 domains of E7. These data suggest that cyclin E may be a critical target of HPV-16 E7 in the disruption of G1/S cell cycle progression and that the ability of E7 to regulate cyclin E involves activities in addition to the release of E2F. PMID:9444990
Sappington, Rebecca M.; Sidorova, Tatiana; Long, Daniel J.; Calkins, David J.
2013-01-01
Purpose Elevated hydrostatic pressure induces retinal ganglion cell (RGC) apoptosis in culture. The authors investigated whether the transient receptor potential vanilloid 1 (TRPV1) channel, which contributes to pressure sensing and Ca2+-dependent cell death in other systems, also contributes to pressure-induced RGC death and whether this contribution involves Ca2+. Methods trpv1 mRNA expression in RGCs was probed with the use of PCR and TRPV1 protein localization through immunocytochemistry. Subunit-specific antagonism (iodo-resiniferatoxin) and agonism (capsaicin) were used to probe how TRPV1 activation affects the survival of isolated RGCs at ambient and elevated hydrostatic pressure (+70 mm Hg). Finally, for RGCs under pressure, the authors tested whether EGTA chelation of Ca2+ improves survival and whether, with the Ca2+ dye Fluo-4 AM, TRPV1 contributes to increased intracellular Ca2+. Results RGCs express trpv1 mRNA, with robust TRPV1 protein localization to the cell body and axon. For isolated RGCs under pressure, TRPV1 antagonism increased cell density and reduced apoptosis to ambient levels (P ≤ 0.05), whereas for RGCs at ambient pressure, TRPV1 agonism reduced density and increased apoptosis to levels for elevated pressure (P ≤ 0.01). Chelation of extracellular Ca2+ reduced RGC apoptosis at elevated pressure by nearly twofold (P ≤ 0.01). Exposure to elevated hydrostatic pressure induced a fourfold increase in RGC intracellular Ca2+ that was reduced by half with TRPV1 antagonism. Finally, in the DBA/2 mouse model of glaucoma, levels of TRPV1 in RGCs increased with elevated IOP. Conclusions RGC apoptosis induced by elevated hydrostatic pressure arises substantially through TRPV1, likely through the influx of extracellular Ca2+. PMID:18952924
Inactivation of Mirk/Dyrk1b Kinase Targets Quiescent Pancreatic Cancer Cells *
Ewton, Daina Z.; Hu, Jing; Vilenchik, Maria; Deng, Xiaobing; Luk, Kin-chun; Polonskaia, Ann; Hoffman, Ann F.; Zipf, Karen; Boylan, John F.; Friedman, Eileen A.
2011-01-01
A major problem in the treatment of cancer arises from quiescent cancer cells that are relatively insensitive to most chemotherapeutic drugs and radiation. Such residual cancer cells can cause tumor regrowth or recurrence when they re-enter the cell cycle. Earlier studies demonstrated that levels of the serine/theronine kinase Mirk/dyrk1B are elevated up to 10-fold in quiescent G0 tumor cells, that Mirk uses several mechanisms to block cell cycling, and that Mirk increases expression of antioxidant genes which lower ROS levels and increase quiescent cell viability. We now show that a novel small molecule Mirk kinase inhibitor blocked tumor cells from undergoing reversible arrest in a quiescent G0 state and enabled some cells to exit quiescence. The inhibitor increased cycling in Panc1, AsPc1 and SW620 cells that expressed Mirk, but not in HCT116 cells that did not. Mirk kinase inhibition elevated ROS levels and DNA damage detected by increased phosphorylation of the histone protein H2AX and by S phase checkpoints. The Mirk kinase inhibitor increased cleavage of the apoptotic proteins PARP and caspase 3, and increased tumor cell kill several-fold by gemcitabine and cisplatin. A phenocopy of these effects occurred following Mirk depletion, showing drug specificity. In prior studies Mirk knockout or depletion had no detectable effect on normal tissue, suggesting that the Mirk kinase inhibitor could have a selective effect on cancer cells expressing elevated levels of Mirk kinase. PMID:21878655
Fatemi, Ahmad; Kazemi, Ahmad; Kashiri, Meysam; Safa, Majid
2015-01-01
Recognition of the molecular mechanisms of cAMP action against DNA damage-induced apoptosis can be useful to improve the efficacy of DNA damaging therapeutic agents. Considering the critical role of bcl-2-associated death promoter (BAD) and p53 proteins in DNA damage -induced apoptosis, the aim of this study was to assess the effect of cAMP-elevating agents on these proteins in doxorubicin-treated pre-B acute lymphoblastic leukemia (pre-B ALL) NALM-6 cells.The pre-B ALL cell line NALM-6 was cultured and treated with doxorubicin in combination with or without cAMP-elevating agents forskolin and 3-isobutyl-1-methylxanthine (IBMX). Cell viability was measured by trypan blue staining and MTT assay. For evaluation of apoptosis, annexin-V staining by flow cytometry and caspase-3 activity assay were used. Protein expression of p53, BAD and phoshorylated BAD was detected by western blotting analysis.cAMP-increasing agents diminished the doxorubicin-mediated cytotoxicity in NALM-6 cells as indicated by the viability assays. Annexin-V apoptosis assay showed that the cAMP-elevating agents decreased doxorubicin-induced apoptosis. Moreover, doxorubicin-induced caspase-3 activity was attenuated in the presence of cAMP-increasing agents. Western blot results revealed the reduced expression of p53 protein in cells treated with combination of cAMP-elevating agents and doxorubicin in contrast to cells treated with doxorubicin alone. Expression of total BAD protein was not affected by doxorubicin and cAMP-elevating agents. However, phosphorylation of BAD protein was induced in the presence of cAMP-elevating agents. Our study suggests that elevated cAMP levels inhibit doxorubicin-induced apoptosis in pre-B ALL cells through induction of BAD phosphorylation and abrogation of p53 accumulation.
Elevated blood histamine levels and mast cell degranulation in solar urticaria.
Hawk, J L; Eady, R A; Challoner, A V; Kobza-Black, A; Keahey, T M; Greaves, M W
1980-01-01
1 Ultraviolet radiation (UVR)-induced wealing was studied in four patients with solar urticaria, whose measured action spectra were within the range 300 to 700 nm. 2 Elevated histamine levels were found in blood draining wealed skin in all four patients. 3 Histological and electron microscopial studies of the irradiated skin showed evidence of mast cell degranulation. 4 These findings demonstrate an association between histamine release from mast cells and wealing in solar urticaria, and should encourage evaluation of drugs which suppress histamine release in this disorder. Images Figure 2 PMID:7356907
Neuwelt, Alexander J.; Nguyen, Tam; Wu, Y. Jeffrey; Donson, Andrew M.; Vibhakar, Rajeev; Venkatamaran, Sujatha; Amani, Vladimir; Neuwelt, Edward A.; Rapkin, Louis B.; Foreman, Nicholas K.
2016-01-01
Background Atypical teratoid rhabdoid tumors (AT-RT) are pediatric tumors of the central nervous system with limited treatment options and poor survival rate. We investigated whether enhancing chemotherapy toxicity by depleting intracellular glutathione (GSH; a key molecule in cisplatin resistance) with high dose acetaminophen (AAP), may improve therapeutic efficacy in AT-RT in vitro. Procedure BT16 (cisplatin-resistant) and BT12 (cisplatin-sensitive) AT-RT cell lines were treated with combinations of AAP, cisplatin, and the anti-oxidant N-acetylcysteine (NAC). Cell viability, GSH and peroxide concentrations, mitochondrial damage, and apoptosis were evaluated in vitro. Results AAP enhanced cisplatin cytotoxicity in cisplatin-resistant BT16 cells but not cisplatin-sensitive BT12 cells. Baseline GSH levels were elevated in BT16 cells compared to BT12 cells, and AAP decreased GSH to a greater magnitude in BT16 cells than BT12 cells. Unlike BT12 cells, BT16 cells did not have elevated peroxide levels upon treatment with cisplatin alone, but did have elevated levels when treated with AAP + cisplatin. Both cell lines had markedly increased mitochondrial injury when treated with AAP + cisplatin relative to either drug treatment alone. The enhanced toxic effects were partially reversed with concurrent administration of NAC. Conclusions Our results suggest that AAP could be used as a chemo-enhancement agent to potentiate cisplatin chemotherapeutic efficacy particularly in cisplatin-resistant AT-RT tumors with high GSH levels in clinical settings. PMID:23956023
Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Hur, Eun Mi; Schafer, Peter H; Ringheim, Garth E
2017-10-01
BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27 + memory and memory-like CD27 - IgD - double-negative (DN) B cells, but not CD27 - IgD + naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27 + memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. Copyright © 2017 by The American Association of Immunologists, Inc.
Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Schafer, Peter H.
2017-01-01
BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27+ memory and memory-like CD27−IgD− double-negative (DN) B cells, but not CD27−IgD+ naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27+ memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. PMID:28848067
Knull, H R; Bronstein, W W; Porter, P J
1978-09-15
The levels of ATP and ATP plus DPG were significantly elevated in erythrocytes from Down's syndrome patients when compared to erythrocytes from age matched controls. The hemoglobin content and hematocrit values were significantly reduced. The resultant tendency towards anemia probably explains the elevation in metabolite levels.
Meador, Jarah A.; Su, Yanrong; Ravanat, Jean-Luc; Balajee, Adayabalam S.
2010-01-01
Brain tumor cells respond poorly to radiotherapy and chemotherapy due to inherently efficient anti-apoptotic and DNA repair mechanisms. This necessitates the development of new strategies for brain cancer therapy. Here, we report that the DNA-demethylating agent Zebularine preferentially sensitizes the killing of human glioblastomas deficient in DNA-dependent protein kinase (DNA-PK). In contrast to DNA-PK-proficient human glioblastoma cells (MO59K), cytotoxicity assay with increasing Zebularine concentrations up to 300 μM resulted in a specific elevation of cell killing in DNA-PK-deficient MO59J cells. Further, an elevated frequency of polyploid cells observed in MO59J cells after Zebularine treatment pointed out a deficiency in mitotic checkpoint control. Existence of mitotic checkpoint deficiency in MO59J cells was confirmed by the abnormal centrosome number observed in Zebularine-treated MO59J cells. Although depletion of DNA methyltransferase 1 by Zebularine occurred at similar levels in both cell lines, MO59J cells displayed increased extent of DNA demethylation detected both at the gene promoter-specific level and at the genome overall level. Consistent with increased sensitivity, deoxy-Zebularine adduct level in the genomic DNA was 3- to 6-fold higher in MO59J than in MO59K cells. Elevated micronuclei frequency observed after Zebularine treatment in MO59J cells indicates the impairment of DNA repair response in MO59J cells. Collectively, our study suggests that DNA-PK is the major determining factor for cellular response to Zebularine. PMID:19933707
Watson, Bonnie S.; Bedair, Mohamed F.; Urbanczyk-Wochniak, Ewa; Huhman, David V.; Yang, Dong Sik; Allen, Stacy N.; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W.
2015-01-01
Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4′-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4′-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously. PMID:25667316
Benninger, R K P; Head, W Steven; Zhang, Min; Satin, Leslie S; Piston, David W
2011-11-15
Cell-cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca(2+)](i)) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca(2+)](i) ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell-cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36(-/-)), and these results were compared to those obtained using fully isolated β-cells. K(ATP) loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36(-/-) islets, elevations in [Ca(2+)](i) persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36(-/-) islets was minimally altered. [Ca(2+)](i) was further elevated under basal conditions, but insulin release still suppressed in K(ATP) loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell-cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca(2+)](i) signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion.
Saraswathula, Anirudh; Reap, Elizabeth A; Choi, Bryan D; Schmittling, Robert J; Norberg, Pamela K; Sayour, Elias J; Herndon, James E; Healy, Patrick; Congdon, Kendra L; Archer, Gerald E; Sanchez-Perez, Luis; Sampson, John H
2016-02-01
Regulatory B cells that secrete IL-10 (IL-10(+) Bregs) represent a suppressive subset of the B cell compartment with prominent anti-inflammatory capacity, capable of suppressing cellular and humoral responses to cancer and vaccines. B lymphocyte stimulator (BLyS) is a key regulatory molecule in IL-10(+) Breg biology with tightly controlled serum levels. However, BLyS levels can be drastically altered upon chemotherapeutic intervention. We have previously shown that serum BLyS levels are elevated, and directly associated, with increased antigen-specific antibody titers in patients with glioblastoma (GBM) undergoing lymphodepletive temozolomide chemotherapy and vaccination. In this study, we examined corresponding IL-10(+) Breg responses within this patient population and demonstrate that the IL-10(+) Breg compartment remains constant before and after administration of the vaccine, despite elevated BLyS levels in circulation. IL-10(+) Breg frequencies were not associated with serum BLyS levels, and ex vivo stimulation with a physiologically relevant concentration of BLyS did not increase IL-10(+) Breg frequency. However, BLyS stimulation did increase the frequency of the overall B cell compartment and promoted B cell proliferation upon B cell receptor engagement. Therefore, using BLyS as an adjuvant with therapeutic peptide vaccination could promote humoral immunity with no increase in immunosuppressive IL-10(+) Bregs. These results have implications for modulating humoral responses in human peptide vaccine trials in patients with GBM.
Elevated levels of IL-2 and IL-21 produced by CD4+ T cells in inflammatory bowel disease.
Ebrahimpour, S; Shahbazi, M; Khalili, A; Tahoori, M T; Zavaran Hosseini, A; Amari, A; Aghili, B; Abediankenari, S; Mohammadizad, H; Mohammadnia-Afrouzi, M
2017-01-01
CD4+ T cells are considered as a subset of cells that play a pivotal role in the development of inflammatory bowel disease (IBD). The aim of this study was to assess the levels of interleukin (IL)-2, IL-21 and their receptors produced by CD4+ T cells in patients with inflammatory bowel disease. Thirty-two patients with ulcerative colitis (UC) and mean age of 37.93±10.37 years, as well as 22 patients with Crohns disease (CD) and mean age of 37.04±10.44 years, were studied. The healthy controls (HC) included 31 subjects with a mean age of 36.7±10.48 years. Peripheral blood mononuclear cells (PBMCs) were isolated from all the participants. The CD4+ T cells were isolated and the expression of IL-2 and IL-21 and also their receptors were examined by flow cytometry. The level of IL-2+ cells was significantly increased in UC patients compared with HC (40.71±6.04 vs 37.24±6.54, respectively, p=0.04). The level of IL-21+ cells was also significantly elevated in CD patients compared with HC (4.44±1 vs 3.83±0.74, respectively, p=0.02). Furthermore, we found a significant positive correlation between clinical activity index (CAI) and IL-21+ cells. According to the results, we hypothesize that the elevated level of IL-2+ and IL-21+ T cells and a positive correlation between IL-21+ cells with CAI in UC patients may contribute to the pathogenesis of disease. Moreover, the assessment of cells producing such cytokines constitutes a potential diagnostic and therapeutic strategy for IBD.
Evaluation of uridine 5'-eicosylphosphate as a stimulant of cyclic AMP-dependent cellular function.
Yutani, Masahiro; Ogita, Akira; Fujita, Ken-Ichi; Usuki, Yoshinosuke; Tanaka, Toshio
2011-03-01
Sporulation of the yeast Saccharomyces cerevisiae is negatively regulated by cyclic AMP (cAMP). This microbial cell differentiation process was applied for the screening of a substance that can elevate the intracellular cAMP level. Among nucleoside 5'-alkylphosphates, uridine 5'-eicosylphosphate (UMPC20) selectively and predominantly inhibited ascospore formation of the yeast cells. We suppose the inhibitory effect of UMPC20 could indeed reflect the elevation of the cellular cAMP level.
Fazal, Shaline V; Gomez-Sanchez, Jose A; Wagstaff, Laura J; Musner, Nicolo; Otto, Georg; Janz, Martin; Mirsky, Rhona; Jessen, Kristján R
2017-12-13
Schwann cell c-Jun is implicated in adaptive and maladaptive functions in peripheral nerves. In injured nerves, this transcription factor promotes the repair Schwann cell phenotype and regeneration and promotes Schwann-cell-mediated neurotrophic support in models of peripheral neuropathies. However, c-Jun is associated with tumor formation in some systems, potentially suppresses myelin genes, and has been implicated in demyelinating neuropathies. To clarify these issues and to determine how c-Jun levels determine its function, we have generated c-Jun OE/+ and c-Jun OE/OE mice with graded expression of c-Jun in Schwann cells and examined these lines during development, in adulthood, and after injury using RNA sequencing analysis, quantitative electron microscopic morphometry, Western blotting, and functional tests. Schwann cells are remarkably tolerant of elevated c-Jun because the nerves of c-Jun OE/+ mice, in which c-Jun is elevated ∼6-fold, are normal with the exception of modestly reduced myelin thickness. The stronger elevation of c-Jun in c-Jun OE/OE mice is, however, sufficient to induce significant hypomyelination pathology, implicating c-Jun as a potential player in demyelinating neuropathies. The tumor suppressor P19 ARF is strongly activated in the nerves of these mice and, even in aged c-Jun OE/OE mice, there is no evidence of tumors. This is consistent with the fact that tumors do not form in injured nerves, although they contain proliferating Schwann cells with strikingly elevated c-Jun. Furthermore, in crushed nerves of c-Jun OE/+ mice, where c-Jun levels are overexpressed sufficiently to accelerate axonal regeneration, myelination and function are restored after injury. SIGNIFICANCE STATEMENT In injured and diseased nerves, the transcription factor c-Jun in Schwann cells is elevated and variously implicated in controlling beneficial or adverse functions, including trophic Schwann cell support for neurons, promotion of regeneration, tumorigenesis, and suppression of myelination. To analyze the functions of c-Jun, we have used transgenic mice with graded elevation of Schwann cell c-Jun. We show that high c-Jun elevation is a potential pathogenic mechanism because it inhibits myelination. Conversely, we did not find a link between c-Jun elevation and tumorigenesis. Modest c-Jun elevation, which is beneficial for regeneration, is well tolerated during Schwann cell development and in the adult and is compatible with restoration of myelination and nerve function after injury. Copyright © 2017 Fazal, Gomez-Sanchez et al.
Fazal, Shaline V.; Wagstaff, Laura J.; Musner, Nicolo; Janz, Martin
2017-01-01
Schwann cell c-Jun is implicated in adaptive and maladaptive functions in peripheral nerves. In injured nerves, this transcription factor promotes the repair Schwann cell phenotype and regeneration and promotes Schwann-cell-mediated neurotrophic support in models of peripheral neuropathies. However, c-Jun is associated with tumor formation in some systems, potentially suppresses myelin genes, and has been implicated in demyelinating neuropathies. To clarify these issues and to determine how c-Jun levels determine its function, we have generated c-Jun OE/+ and c-Jun OE/OE mice with graded expression of c-Jun in Schwann cells and examined these lines during development, in adulthood, and after injury using RNA sequencing analysis, quantitative electron microscopic morphometry, Western blotting, and functional tests. Schwann cells are remarkably tolerant of elevated c-Jun because the nerves of c-Jun OE/+ mice, in which c-Jun is elevated ∼6-fold, are normal with the exception of modestly reduced myelin thickness. The stronger elevation of c-Jun in c-Jun OE/OE mice is, however, sufficient to induce significant hypomyelination pathology, implicating c-Jun as a potential player in demyelinating neuropathies. The tumor suppressor P19ARF is strongly activated in the nerves of these mice and, even in aged c-Jun OE/OE mice, there is no evidence of tumors. This is consistent with the fact that tumors do not form in injured nerves, although they contain proliferating Schwann cells with strikingly elevated c-Jun. Furthermore, in crushed nerves of c-Jun OE/+ mice, where c-Jun levels are overexpressed sufficiently to accelerate axonal regeneration, myelination and function are restored after injury. SIGNIFICANCE STATEMENT In injured and diseased nerves, the transcription factor c-Jun in Schwann cells is elevated and variously implicated in controlling beneficial or adverse functions, including trophic Schwann cell support for neurons, promotion of regeneration, tumorigenesis, and suppression of myelination. To analyze the functions of c-Jun, we have used transgenic mice with graded elevation of Schwann cell c-Jun. We show that high c-Jun elevation is a potential pathogenic mechanism because it inhibits myelination. Conversely, we did not find a link between c-Jun elevation and tumorigenesis. Modest c-Jun elevation, which is beneficial for regeneration, is well tolerated during Schwann cell development and in the adult and is compatible with restoration of myelination and nerve function after injury. PMID:29109239
Ward, Christopher S.; Eriksson, Pia; Izquierdo-Garcia, Jose L.; Brandes, Alissa H.; Ronen, Sabrina M.
2013-01-01
Histone deacetylase (HDAC) inhibitors have emerged as effective antineoplastic agents in the clinic. Studies from our lab and others have reported that magnetic resonance spectroscopy (MRS)-detectable phosphocholine (PC) is elevated following SAHA treatment, providing a potential noninvasive biomarker of response. Typically, elevated PC is associated with cancer while a decrease in PC accompanies response to antineoplastic treatment. The goal of this study was therefore to elucidate the underlying biochemical mechanism by which HDAC inhibition leads to elevated PC. We investigated the effect of SAHA on MCF-7 breast cancer cells using 13C MRS to monitor [1,2-13C] choline uptake and phosphorylation to PC. We found that PC synthesis was significantly higher in treated cells, representing 154±19% of control. This was within standard deviation of the increase in total PC levels detected by 31P MRS (129±7% of control). Furthermore, cellular choline kinase activity was elevated (177±31%), while cytidylyltransferase activity was unchanged. Expression of the intermediate-affinity choline transporter SLC44A1 and choline kinase α increased (144% and 161%, respectively) relative to control, as determined by mRNA microarray analysis with protein-level confirmation by Western blotting. Taken together, our findings indicate that the increase in PC levels following SAHA treatment results from its elevated synthesis. Additionally, the concentration of glycerophosphocholine (GPC) increased significantly with treatment to 210±45%. This is likely due to the upregulated expression of several phospholipase A2 (PLA2) isoforms, resulting in increased PLA2 activity (162±18%) in SAHA-treated cells. Importantly, the levels of total choline (tCho)-containing metabolites, comprised of choline, PC and GPC, are readily detectable clinically using 1H MRS. Our findings thus provide an important step in validating clinically translatable non-invasive imaging methods for follow-up diagnostics of HDAC inhibitor treatment. PMID:23626839
Kim, Si Hyoung; Kang, Jun Goo; Kim, Chul Sik; Ihm, Sung-Hee; Choi, Moon Gi; Yoo, Hyung Joon; Lee, Seong Jin
2015-12-01
We studied the effect of apigenin in combination with tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on cell survival and the influence of AKT inhibition on the combined effect of apigenin with TRAIL in anaplastic thyroid carcinoma (ATC) cells. The human 8505C and CAL62 ATC cell lines were used. Apigenin in combination with TRAIL, compared to apigenin alone, reduced cell viability and Bcl2 protein levels, elevated the percentage of dead cells, as well as the protein levels of cleaved PARP and phospho-ERK1/2. The protein levels of Bcl-xL, Bax, Bid, total ERK1/2, and total and phospho-AKT were unchanged. Administration of wortmannin further reduced cell viability, and elevated the percentage of dead cells, cytotoxic activity and cleaved PARP protein levels. Apigenin synergizes with TRAIL through regulation of Bcl2 family proteins in inducing cytotoxicity, and suppression of AKT potentiates synergistic cytotoxicity of apigenin with TRAIL in ATC cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Akin, C; Schwartz, L B; Kitoh, T; Obayashi, H; Worobec, A S; Scott, L M; Metcalfe, D D
2000-08-15
Systemic mastocytosis is a disease of mast cell proliferation that may be associated with hematologic disorders. There are no features on examination that allow the diagnosis of systemic disease, and mast cell-derived mediators, which may be elevated in urine or blood, may also be elevated in individuals with severe allergic disorders. Thus, the diagnosis usually depends on results of bone marrow biopsy. To facilitate evaluation, surrogate markers of the extent and severity of the disease are needed. Because of the association of mastocytosis with hematologic disease, plasma levels were measured for soluble KIT (sKIT) and soluble interleukin-2 receptor alpha chain (sCD25), which are known to be cleaved in part from the mast cell surface and are elevated in some hematologic malignancies. Results revealed that levels of both soluble receptors are increased in systemic mastocytosis. Median plasma sKIT concentrations as expressed by AU/mL (1 AU = 1.4 ng/mL) were as follows: controls, 176 (n = 60); urticaria pigmentosa without systemic involvement, 194 (n = 8); systemic indolent mastocytosis, 511 (n = 30); systemic mastocytosis with an associated hematologic disorder, 1320 (n = 7); aggressive mastocytosis, 3390 (n = 3). Plasma sCD25 levels were elevated in systemic mastocytosis; the highest levels were associated with extensive bone marrow involvement. Levels of sKIT correlated with total tryptase levels, sCD25 levels, and bone marrow pathology. These results demonstrate that sKIT and sCD25 are useful surrogate markers of disease severity in patients with mastocytosis and should aid in diagnosis, in the selection of those needing a bone marrow biopsy, and in the documentation of disease progression. (Blood. 2000;96:1267-1273)
Wang, Shuchao; Hu, Tu; Wang, Zhen; Li, Na; Zhou, Lihong; Liao, Lvshuang; Wang, Mi; Liao, Libin; Wang, Hui; Zeng, Leping; Fan, Chunling; Zhou, Hongkang; Xiong, Kun; Huang, Jufang; Chen, Dan
2017-01-01
Many studies on retinal injury and repair following elevated intraocular pressure suggest that the survival ratio of retinal neurons has been improved by various measures. However, the visual function recovery is far lower than expected. The homeostasis of retinal synapses in the visual signal pathway is the key structural basis for the delivery of visual signals. Our previous studies found that complicated changes in the synaptic structure between retinal neurons occurred much earlier than obvious degeneration of retinal ganglion cells in rat retinae. The lack of consideration of these earlier retinal synaptic changes in the rescue strategy may be partly responsible for the limited visual function recovery with the types of protective methods for retinal neurons used following elevated intraocular pressure. Thus, research on the modulatory mechanisms of the synaptic changes after elevated intraocular pressure injury may give new light to visual function rescue. In this study, we found that thrombospondin 2, an important regulator of synaptogenesis in central nervous system development, was distributed in retinal macroglia cells, and its receptor α2δ-1 was in retinal neurons. Cell cultures including mixed retinal macroglia cells/neuron cultures and retinal neuron cultures were exposed to elevated hydrostatic pressure for 2 h. The expression levels of glial fibrillary acidic protein (the marker of activated macroglia cells), thrombospondin 2, α2δ-1 and presynaptic proteins were increased following elevated hydrostatic pressure in mixed cultures, but the expression levels of postsynaptic proteins were not changed. SiRNA targeting thrombospondin 2 could decrease the upregulation of presynaptic proteins induced by the elevated hydrostatic pressure. However, in retinal neuron cultures, elevated hydrostatic pressure did not affect the expression of presynaptic or postsynaptic proteins. Rather, the retinal neuron cultures with added recombinant thrombospondin 2 protein upregulated the level of presynaptic proteins. Finally, gabapentin decreased the expression of presynaptic proteins in mixed cultures by blocking the interaction of thrombospondin 2 and α2δ-1. Taken together, these results indicate that activated macroglia cells may participate in alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure, and macroglia-derived thrombospondin 2 may modulate these changes via binding to its neuronal receptor α2δ-1.
Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells.
La, Xiaoqin; Zhang, Lichao; Li, Zhuoyu; Yang, Peng; Wang, Yingying
2017-03-28
Berberine, an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been shown to induce cancer cell autophagic death. Glucose regulated protein 78 (GRP78) is associated with stress-induced autophagy. However, the related mechanisms between berberine-induced cancer cell autophagy and GRP78 remain to be elucidated. Here, we report that berberine can induce autophagic cancer cell death by elevating levels of GRP78. These results further demonstrated that berberine enhanced GRP78 by suppression of ubiquitination / proteasomal degradation of GRP78 and activation of ATF6. Moreover, fluorescence spectrum assay revealed that berberine could bind to GRP78 and form complexes. Finally, co-IP analysis showed that the ability of GRP78 to bind to VPS34 was increased with berberine treatment. Taken together, our results suggest that berberine induces autophagic cancer cell death via enhancing GRP78 levels and the ability of GRP78 to bind to VPS34.
Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells
Li, Zhuoyu; Yang, Peng; Wang, Yingying
2017-01-01
Berberine, an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been shown to induce cancer cell autophagic death. Glucose regulated protein 78 (GRP78) is associated with stress-induced autophagy. However, the related mechanisms between berberine-induced cancer cell autophagy and GRP78 remain to be elucidated. Here, we report that berberine can induce autophagic cancer cell death by elevating levels of GRP78. These results further demonstrated that berberine enhanced GRP78 by suppression of ubiquitination / proteasomal degradation of GRP78 and activation of ATF6. Moreover, fluorescence spectrum assay revealed that berberine could bind to GRP78 and form complexes. Finally, co-IP analysis showed that the ability of GRP78 to bind to VPS34 was increased with berberine treatment. Taken together, our results suggest that berberine induces autophagic cancer cell death via enhancing GRP78 levels and the ability of GRP78 to bind to VPS34. PMID:28157699
Elevated Cell Wall Chitin in Candida albicans Confers Echinocandin Resistance In Vivo
Lee, Keunsook K.; MacCallum, Donna M.; Jacobsen, Mette D.; Walker, Louise A.; Odds, Frank C.
2012-01-01
Candida albicans cells with increased cell wall chitin have reduced echinocandin susceptibility in vitro. The aim of this study was to investigate whether C. albicans cells with elevated chitin levels have reduced echinocandin susceptibility in vivo. BALB/c mice were infected with C. albicans cells with normal chitin levels and compared to mice infected with high-chitin cells. Caspofungin therapy was initiated at 24 h postinfection. Mice infected with chitin-normal cells were successfully treated with caspofungin, as indicated by reduced kidney fungal burdens, reduced weight loss, and decreased C. albicans density in kidney lesions. In contrast, mice infected with high-chitin C. albicans cells were less susceptible to caspofungin, as they had higher kidney fungal burdens and greater weight loss during early infection. Cells recovered from mouse kidneys at 24 h postinfection with high-chitin cells had 1.6-fold higher chitin levels than cells from mice infected with chitin-normal cells and maintained a significantly reduced susceptibility to caspofungin when tested in vitro. At 48 h postinfection, caspofungin treatment induced a further increase in chitin content of C. albicans cells harvested from kidneys compared to saline treatment. Some of the recovered clones had acquired, at a low frequency, a point mutation in FKS1 resulting in a S645Y amino acid substitution, a mutation known to confer echinocandin resistance. This occurred even in cells that had not been exposed to caspofungin. Our results suggest that the efficacy of caspofungin against C. albicans was reduced in vivo due to either elevation of chitin levels in the cell wall or acquisition of FKS1 point mutations. PMID:21986821
Simon, Krzysztof Adam; Pazgan-Simon, Monika
2015-01-01
Aim of the study To determine plausible associations between liver cirrhosis and circulating endothelial cell-derived microparticles (EMPs), vascular endothelial growth factor (VEGF) levels and plasma nitric oxide (NO) metabolites. Material and methods Sixty patients with cirrhosis and 20 healthy control subjects were enrolled in the study. Circulating EMPs from platelet-poor plasma samples were examined by flow cytometry. These microparticles were categorized into endothelial cell-derived activated MPs (EMP-ac) (CD31+ CD42b– AN-V–) and endothelial cell-derived apoptotic MPs (EMP-ap) (CD31+ CD42b– AN-V+). Plasma VEGF levels were measured by enzyme-linked immunosorbent assay. Plasma NO metabolites (NOx–) levels were determined using a Greiss reaction method. Results Compared with the healthy control subjects, the patients with cirrhosis showed a significant increase in plasma levels of both phenotypes of EMPs. When the presence of ascites was considered, the plasma levels of EMP-ap were higher (p < 0.01), as well as NOx– (p < 0.05). EMP-ap positively correlated with VEGF level in all cirrhotic patients and this correlation was stronger in decompensated cirrhotic patients. In multivariate logistic regression analysis, the independent factors associated with the presence of ascites were high EMP-ap levels and elevated VEGF levels. Conclusions Elevated plasma levels of EMP-ap in addition to high levels of VEGF might be considered as valuable parameters for predicting the occurrence of ascites in cirrhotic patients. PMID:28856256
Paris, D H; Jenjaroen, K; Blacksell, S D; Phetsouvanh, R; Wuthiekanun, V; Newton, P N; Day, N P J; Turner, G D H
2008-01-01
Scrub typhus is responsible for a large proportion of undifferentiated fevers in south-east Asia. The cellular tropism and pathophysiology of the causative agent, Orientia tsutsugamushi, remain poorly understood. We measured endothelial and leucocyte activation by soluble cell adhesion molecule enzyme-linked immunosorbent assays in 242 Lao and Thai patients with scrub or murine typhus, leptospirosis, dengue, typhoid and uncomplicated falciparum malaria on admission to hospital. Soluble E-selectin (sE-selectin) levels were lowest in dengue, sL-selectin highest in scrub typhus with a high sE-selectin to sL-selectin ratio in leptospirosis patients. In scrub typhus patients elevated sL-selectin levels correlated with the duration of skin rash (P = 0·03) and the presence of eschar (P = 0·03), elevated white blood cell (WBC) count (P = 0·007), elevated lymphocyte (P = 0·007) and neutrophil counts (P = 0·015) and elevated levels of sE-selectin correlated with the duration of illness before admission (P = 0·03), the presence of lymphadenopathy (P = 0·033) and eschar (P = 0·03), elevated WBC (P = 0·005) and neutrophil counts (P = 0·0003). In comparison, soluble selectin levels in murine typhus patients correlated only with elevated WBC counts (P = 0·03 for sE-selectin and sL-selectin). Soluble intercellular adhesion molecule-1 and soluble vascular adhesion molecule-1 levels were not associated significantly with any clinical parameters in scrub or murine typhus patients. The data presented suggest mononuclear cell activation in scrub typhus. As adhesion molecules direct leucocyte migration and induce inflammatory and immune responses, this may represent O. tsutsugamushi tropism during early dissemination, or local immune activation within the eschar. PMID:18505434
Paris, D H; Jenjaroen, K; Blacksell, S D; Phetsouvanh, R; Wuthiekanun, V; Newton, P N; Day, N P J; Turner, G D H
2008-07-01
Scrub typhus is responsible for a large proportion of undifferentiated fevers in south-east Asia. The cellular tropism and pathophysiology of the causative agent, Orientia tsutsugamushi, remain poorly understood. We measured endothelial and leucocyte activation by soluble cell adhesion molecule enzyme-linked immunosorbent assays in 242 Lao and Thai patients with scrub or murine typhus, leptospirosis, dengue, typhoid and uncomplicated falciparum malaria on admission to hospital. Soluble E-selectin (sE-selectin) levels were lowest in dengue, sL-selectin highest in scrub typhus with a high sE-selectin to sL-selectin ratio in leptospirosis patients. In scrub typhus patients elevated sL-selectin levels correlated with the duration of skin rash (P = 0.03) and the presence of eschar (P = 0.03), elevated white blood cell (WBC) count (P = 0.007), elevated lymphocyte (P = 0.007) and neutrophil counts (P = 0.015) and elevated levels of sE-selectin correlated with the duration of illness before admission (P = 0.03), the presence of lymphadenopathy (P = 0.033) and eschar (P = 0.03), elevated WBC (P = 0.005) and neutrophil counts (P = 0.0003). In comparison, soluble selectin levels in murine typhus patients correlated only with elevated WBC counts (P = 0.03 for sE-selectin and sL-selectin). Soluble intercellular adhesion molecule-1 and soluble vascular adhesion molecule-1 levels were not associated significantly with any clinical parameters in scrub or murine typhus patients. The data presented suggest mononuclear cell activation in scrub typhus. As adhesion molecules direct leucocyte migration and induce inflammatory and immune responses, this may represent O. tsutsugamushi tropism during early dissemination, or local immune activation within the eschar.
Chromogranin A as a useful neuroendocrine marker in patients with autoimmune Addison's disease.
El Ali, Z; Fichna, M; Piniewska, J; Kosowicz, J; Grzymisławski, M
2010-03-01
Antiparietal cells antibodies (APC-Ab) are commonly found in patients with autoimmune Addison's disease (AAD), usually pointing to autoimmune atrophic gastritis and pernicious anemia. The autoaggression to the gastric proton pumpmay result in a long-term hypergastrinemia, which predisposes to enterochromaffin-like cell hyper/dysplasia and gastric carcinoids. We evaluated the clinical utility of assessing serum chromogranin A levels in patients with AAD. Serum chromogranin A, gastrin, and gastric APC-Ab levels were determined in 40 patients with AAD using commercially available kits. Serum chromogranin A and gastrin levels were found to be elevated in 27.5 and 22.5% of patients with AAD, respectively. The Addison's patients with elevated APC-Ab had significantly higher chromogranin A and gastrin levels, as compared to individuals with normal APC-Ab (chromogranin A: 128.00+/-123.08 vs 57.68+/-36.50 ng/ml, p=0.0036; gastrin: 141.38+/-191.43 vs 49.50+/-75.36 muU/ml, p=0.003). Additionally, the patients with AAD and coexisting elevated serum APC-Ab, contrary to those with normal levels, showed a significant correlation between the chromogranin A and gastrin concentrations (r=0.52, p=0.0092 vs r=0.211, p=0.43). Serum chromogranin A appeared also significantly correlated with APC-Ab levels (r=0.431, p=0.005). In patients with autoimmune Addison's disease hyperchromograninemia and hypergastrinemia occur with a prevalence of 27.5 and 22.5%, respectively. Addison's patients with coexisting elevated gastric APC-Ab, particularly with elevated gastrin levels, are at risk of enterochromaffin-like cells hyper/dysplasia. Serum chromogranin A assessment may complement histology for the early diagnosis of gastric carcinoid in these patients.
Ikematsu, H; Nabeshima, A; Yamaga, S; Yamaji, K; Kakuda, K; Ueno, K; Hayashi, J; Shirai, T; Hara, H; Kashiwagi, S
1997-06-01
To investigate the clinical implication of peak body temperature, peripheral blood white blood cell (WBC) count, and serum C-reactive protein (CRP) level in febrile symptoms among geriatric hospitalized patients, they were analyzed in 968 febrile episodes obtained from 433 hospitalized patients in the referred hospital. Episodes of one day duration were most frequent (41.6%). WBC count was elevated over 8000/microliters in 475 episodes (49.1%) and CRP exceeded 1.0 mg/dl in 770 episodes (79.5%). Frequency of WBC elevation decreased and frequency of CRP elevation increased according to the time course. The mean value of CRP increased significantly according to the time course. The frequency of WBC count increase and CRP elevation and their averages correlated to the peak body temperature. The peak body temperature displayed the most striking correlation to the length of febrile episodes among three clinical indicators, peak body temperature, WBC count, and CRP level. These results indicate that the elevation of WBC count and/or CRP level is frequent in geriatric patients with febrile symptoms. Peak body temperature may serve as a clinical indicator of the severy of the febrile disease occurring in geriatric patients.
Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells.
Wilmer, Martijn J G; de Graaf-Hess, Adriana; Blom, Henk J; Dijkman, Henry B P M; Monnens, Leo A; van den Heuvel, Lambertus P; Levtchenko, Elena N
2005-11-18
Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.
CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Wen Min; Doucet, Michele; Huang, David
2013-07-26
Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found thatmore » CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co-activator of ER in breast cancer cells and that its increased expression in tumors may result in estrogen-independent ER activation, thereby reducing estrogen dependence and response to anti-estrogen therapy.« less
Thrombotic thrombocytopenic purpura and sickle cell crisis.
Shelat, Suresh G
2010-04-01
Described is a case of acute chest syndrome in a sickle-cell patient (hemoglobin SS) who also developed signs and symptoms of thrombotic thrombocytopenic purpura, including thrombocytopenia and hemolysis (anemia, elevated lactate dehydrogenase, presence of schistocytes, dark-colored plasma, and elevations in nucleated red blood cells). The ADAMTS13 activity level was normal. Discussed are the diagnosis and therapeutic management issues and the challenges of differentiating the vasoocclusive and hemolytic complications of sickling red blood cells from the thrombotic microangiopathy of thrombotic thrombocytopenic purpura.
Increase in Ca2+ current by sustained cAMP levels enhances proliferation rate in GH3 cells.
Rodrigues, Andréia Laura; Brescia, Marcella; Koschinski, Andreas; Moreira, Thaís Helena; Cameron, Ryan T; Baillie, George; Beirão, Paulo S L; Zaccolo, Manuela; Cruz, Jader S
2018-01-01
Ca 2+ and cAMP are important intracellular modulators. In order to generate intracellular signals with various amplitudes, as well as different temporal and spatial properties, a tightly and precise control of these modulators in intracellular compartments is necessary. The aim of this study was to evaluate the effects of elevated and sustained cAMP levels on voltage-dependent Ca 2+ currents and proliferation in pituitary tumor GH3 cells. Effect of long-term exposure to forskolin and dibutyryl-cyclic AMP (dbcAMP) on Ca 2+ current density and cell proliferation rate were determined by using the whole-cell patch-clamp technique and real time cell monitoring system. The cAMP levels were assayed, after exposing transfected GH3 cells with the EPAC-1 cAMP sensor to forskolin and dbcAMP, by FRET analysis. Sustained forskolin treatment (24 and 48h) induced a significant increase in total Ca 2+ current density in GH3 cells. Accordingly, dibutyryl-cAMP incubation (dbcAMP) also elicited increase in Ca 2+ current density. However, the maximum effect of dbcAMP occurred only after 72h incubation, whereas forskolin showed maximal effect at 48h. FRET-experiments confirmed that the time-course to elevate intracellular cAMP was distinct between forskolin and dbcAMP. Mibefradil inhibited the fast inactivating current component selectively, indicating the recruitment of T-type Ca 2+ channels. A significant increase on cell proliferation rate, which could be related to the elevated and sustained intracellular levels of cAMP was observed. We conclude that maintaining high levels of intracellular cAMP will cause an increase in Ca 2+ current density and this phenomenon impacts proliferation rate in GH3 cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Mullooly, Niamh; Vernon, Wendy; Smith, David M; Newsholme, Philip
2014-03-01
Recent metabolic profiling studies have identified a correlation between branched-chain amino acid levels, insulin resistance associated with prediabetes and susceptibility to type 2 diabetes. Glucose and lipids in chronic excess have been reported to induce toxic effects in pancreatic β-cells, but the effect of elevated amino acid concentrations on primary islet cell function has not been investigated to date. The aim of this study was to investigate the effect of chronic exposure to various amino acids on islet cell function in vitro. Isolated rat islets were incubated over periods of 48 h with a range of concentrations of individual amino acids (0.1 μm to 10 mm). After 48 h, islets were assessed for glucose-dependent insulin secretion capacity, proliferation or islet cell apoptosis. We report that elevated levels of branched-chain amino acids have little effect on pancreatic islet cell function or viability; however, increased levels of the amino acid l-arginine were found to be β-cell toxic, causing a dose-dependent decrease in insulin secretion accompanied by a decrease in islet cell proliferation and an increase in islet cell apoptosis. These effects were not due to l-arginine-dependent increases in production of nitric oxide but arose through elicitation of the islet cell endoplasmic reticulum stress response. This novel finding indicates, for the first time, that the l-arginine concentration in vitro may impact negatively on islet cell function, thus indicating further complexity in relationship to in vivo susceptibility of β-cells to nutrient-induced dysfunction.
Heat shock response and mammal adaptation to high elevation (hypoxia).
Wang, Xiaolin; Xu, Cunshuan; Wang, Xiujie; Wang, Dongjie; Wang, Qingshang; Zhang, Baochen
2006-10-01
The mammal's high elevation (hypoxia) adaptation was studied by using the immunological and the molecular biological methods to understand the significance of Hsp (hypoxia) adaptation in the organic high elevation, through the mammal heat shock response. (1) From high elevation to low elevation (natural hypoxia): Western blot and conventional RT-PCR and real-time fluorescence quota PCR were adopted. Expression difference of heat shock protein of 70 (Hsp70) and natural expression of brain tissue of Hsp70 gene was determined in the cardiac muscle tissue among the different elevation mammals (yak). (2) From low elevation to high elevation (hypoxia induction): The mammals (domestic rabbits) from the low elevation were sent directly to the areas with different high elevations like 2300, 3300 and 5000 m above sea level to be raised for a period of 3 weeks before being slaughtered and the genetic inductive expression of the brain tissue of Hsp70 was determined with RT-PCR. The result indicated that all of the mammals at different elevations possessed their heat shock response gene. Hsp70 of the high elevation mammal rose abruptly under stress and might be induced to come into being by high elevation (hypoxia). The speedy synthesis of Hsp70 in the process of heat shock response is suitable to maintain the cells' normal physiological functions under stress. The Hsp70 has its threshold value. The altitude of 5000 m above sea level is the best condition for the heat shock response, and it starts to reduce when the altitude is over 6000 m above sea level. The Hsp70 production quantity and the cell hypoxia bearing capacity have their direct ratio.
Levin, Lynn I; Breen, Elizabeth C; Birmann, Brenda M; Batista, Julie L; Magpantay, Larry I; Li, Yuanzhang; Ambinder, Richard F; Mueller, Nancy E; Martínez-Maza, Otoniel
2017-07-01
Background: We investigated whether an immune system environment characterized by elevated serum levels of B-cell activation molecules was associated with the subsequent development of classical Hodgkin lymphoma (cHL). Methods: We measured serum levels of B-cell-stimulatory cytokines, IL6 and IL10, soluble CD30 (sCD30), and total IgE prior to cHL diagnosis in 103 cases and 206 matched controls with archived specimens in the DoD Serum Repository. Results: Prediagnosis serum sCD30 and IL6 levels had strong positive associations with risk of a cHL diagnosis 0 to 1 year prior to diagnosis [sCD30 OR = 5.5; 95% confidence interval (CI), 3.4-9.0; IL6 OR = 4.6; 95% CI, 2.9-7.5] and >1 year to 2 years pre-cHL diagnosis (sCD30 OR = 3.3; 95% CI, 1.6-6.7; IL6 OR = 2.9; 95% CI, 1.3-6.5). We observed similar, albeit not consistently significant positive associations, over 4 or more years preceding diagnosis. We did not observe a clear association with IgE levels. Of note, detectable IL10 levels were significantly associated with Epstein-Barr virus (EBV)-positive cHL cases compared with EBV-negative cases. Conclusion: In this prospective analysis, elevated sCD30 and IL6 levels and detectable IL10 preceded cHL diagnosis. Impact: The associations of these cytokines with cHL risk may reflect the production of these molecules by proliferating nascent cHL tumor cells, or by immune cells responding to their presence, prior to clinical detection. The stable elevation in cHL risk, 4 or more years prediagnosis, also suggests that a B-cell-stimulatory immune system milieu precedes, and may promote, lymphomagenesis. Cancer Epidemiol Biomarkers Prev; 26(7); 1114-23. ©2017 AACR . ©2017 American Association for Cancer Research.
Sensing, physiological effects and molecular response to elevated CO2 levels in eukaryotes
Sharabi, Kfir; Lecuona, Emilia; Helenius, Iiro Taneli; Beitel, Greg J; Sznajder, Jacob Iasha; Gruenbaum, Yosef
2009-01-01
Carbon dioxide (CO2) is an important gaseous molecule that maintains biosphere homeostasis and is an important cellular signalling molecule in all organisms. The transport of CO2 through membranes has fundamental roles in most basic aspects of life in both plants and animals. There is a growing interest in understanding how CO2 is transported into cells, how it is sensed by neurons and other cell types and in understanding the physiological and molecular consequences of elevated CO2 levels (hypercapnia) at the cell and organism levels. Human pulmonary diseases and model organisms such as fungi, C. elegans, Drosophila and mice have been proven to be important in understanding of the mechanisms of CO2 sensing and response. PMID:19863692
Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells.
Ramsuran, Veron; Naranbhai, Vivek; Horowitz, Amir; Qi, Ying; Martin, Maureen P; Yuki, Yuko; Gao, Xiaojiang; Walker-Sperling, Victoria; Del Prete, Gregory Q; Schneider, Douglas K; Lifson, Jeffrey D; Fellay, Jacques; Deeks, Steven G; Martin, Jeffrey N; Goedert, James J; Wolinsky, Steven M; Michael, Nelson L; Kirk, Gregory D; Buchbinder, Susan; Haas, David; Ndung'u, Thumbi; Goulder, Philip; Parham, Peter; Walker, Bruce D; Carlson, Jonathan M; Carrington, Mary
2018-01-05
The highly polymorphic human leukocyte antigen ( HLA ) locus encodes cell surface proteins that are critical for immunity. HLA-A expression levels vary in an allele-dependent manner, diversifying allele-specific effects beyond peptide-binding preference. Analysis of 9763 HIV-infected individuals from 21 cohorts shows that higher HLA-A levels confer poorer control of HIV. Elevated HLA-A expression provides enhanced levels of an HLA-A-derived signal peptide that specifically binds and determines expression levels of HLA-E, the ligand for the inhibitory NKG2A natural killer (NK) cell receptor. HLA-B haplotypes that favor NKG2A-mediated NK cell licensing (i.e., education) exacerbate the deleterious effect of high HLA-A on HIV control, consistent with NKG2A-mediated inhibition impairing NK cell clearance of HIV-infected targets. Therapeutic blockade of HLA-E:NKG2A interaction may yield benefit in HIV disease. Copyright © 2017, American Association for the Advancement of Science.
The Role of Calgranulin Overexpression in Breast Cancer Progression
2005-09-01
transfected cells. As shown in Figure 4, exposure of MCF-7 cells to 25ng/ml OSM for 24 hours caused a very significant increase in Cal A levels . Interestingly...Cal A expression was not observed in the parental or vector alone cells, but the transfected cells showed an elevation in Cal A levels . The
Uncovering the Path That Leads to Diabetes | Center for Cancer Research
The origins of diabetes have been the subject of intense scientific research, but the genetic factors that cause certain people to develop the disease have remained elusive. In healthy individuals, glucose levels in the bloodstream are transiently elevated after a meal. The increase in glucose triggers β cells in the pancreatic islet to release the hormone insulin. Insulin is delivered to tissues throughout the body, and stimulates to import of glucose into cells. If a person does not produce insulin, or their cells have become insensitive to the hormone, glucose uptake does not occur and the level of glucose in the bloodstream remains elevated.
NASA Technical Reports Server (NTRS)
Alexander, R. A.; Lang, C. K.; Steele, M. K.; Corbin, B. J.; Wade, C. E.
1995-01-01
The mean CO2 concentration on the Space Shuttle is 0.3% and has reached 0.7%, for extended periods of time. Following space flight, it has been shown that both humans and animals have significant changes in red blood cell counts (RBC) and white blood cell counts (WBC). In other studies, where no significant change did occur in the total WBC, a significant change did occur in the distribution of WBC. WBC are affected by circulating levels of glucocorticoids, which often increase when animals or humans are exposed to adverse and/or novel stimuli (e.g. elevated CO2 levels or weightlessness). The purpose of this study was to determine if elevations in CO2 concentration produce changes in total WBC and/or their distribution.
Yoo, Jae-Myung; Lee, Youn-Sun; Choi, Heon-Kyo; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Oh, Seikwan; Yoo, Hwan-Soo
2005-03-01
Oxidative stress has been reported to elevate ceramide level during cell death. The purpose of the present study was to modulate cell death in relation to cellular glutathione (GSH) level and GST (glutathione S-transferase) expression by regulating the sphingolipid metabolism. LLC-PK1 cells were treated with H2O2 in the absence of serum to induce cell death. Subsequent to exposure to H2O2, LLC-PK1 cells were treated with desipramine, sphingomyelinase inhibitor, and N-acetylcysteine (NAC), GSH substrate. Based on comparative visual observation with H2O2-treated control cells, it was observed that 0.5 microM of desipramine and 25 mM of NAC exhibited about 90 and 95% of cytoprotection, respectively, against H2O2-induced cell death. Desipramine and NAC lowered the release of LDH activity by 36 and 3%, respectively, when compared to 71% in H2O2-exposed cells. Cellular glutathione level in 500 microM H2O2-treated cells was reduced to 890 pmol as compared to control level of 1198 pmol per mg protein. GST P1-1 expression was decreased in H2O2-treated cells compared to healthy normal cells. In conclusion, it has been inferred that H2O2-induced cell death is closely related to cellular GSH level and GST P1-1 expression in LLC-PK1 cells and occurs via ceramide elevation by sphingomyelinase activation.
Light Levels, Refractive Development, and Myopia – a Speculative Review
Norton, Thomas T.; Siegwart, John T.
2013-01-01
Recent epidemiological evidence in children indicates that time spent outdoors is protective against myopia. Studies in animal models (chick, macaque, tree shrew) have found that light levels (similar to being in the shade outdoors) that are mildly elevated compared to indoor levels, slow form-deprivation myopia and (in chick and tree shrew) lens-induced myopia. Normal chicks raised in low light levels (50 lux) with a circadian light on/off cycle often develop spontaneous myopia. We propose a model in which the ambient illuminance levels produce a continuum of effects on normal refractive development and the response to myopiagenic stimuli such that low light levels favor myopia development and elevated levels are protective. Among possible mechanisms, elevation of retinal dopamine activity seems the most likely. Inputs from intrinsically-photosensitive retinal ganglion cells (ipRGCs) at elevated light levels may be involved, providing additional activation of retinal dopaminergic pathways. PMID:23680160
Matsushita, Takashi; Hasegawa, Minoru; Matsushita, Yukiyo; Echigo, Takeshi; Wayaku, Takamasa; Horikawa, Mayuka; Ogawa, Fumihide; Takehara, Kazuhiko; Sato, Shinichi
2007-02-01
Serum levels of B-cell activating factor belonging to the tumor necrosis factor family (BAFF), a potent B-cell survival factor, are elevated in patients with systemic autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis and systemic sclerosis (SSc). The objective of this study was to determine serum BAFF levels and relate the results to the clinical features in patients with organ-specific autoimmune diseases of the skin, such as localized scleroderma and autoimmune bullous diseases. Serum BAFF levels were examined by enzyme-linked immunosorbent assay in 44 patients with localized scleroderma, 20 with pemphigus vulgaris/pemphigus foliaceus, 20 with bullous pemphigoid and 30 healthy controls. Twenty patients with SSc and 20 with SLE were also examined as disease controls. Serum BAFF levels were elevated in localized scleroderma patients compared with healthy controls. Concerning localized scleroderma subgroups, patients with generalized morphea, the severest form of localized scleroderma, had higher serum BAFF levels than linear scleroderma or morphea patients. The BAFF levels of generalized morphea were comparable with those of SSc or SLE. Furthermore, serum BAFF levels correlated positively with antihistone antibody levels and the severity of skin lesion as well as the number of skin lesions. By contrast, serum BAFF levels were not significantly elevated in patients with pemphigus or pemphigoid. These results suggest that BAFF may be contributing to autoimmunity and disease development in localized scleroderma.
The elevation and its distribution in geomorphological regions of the European Russia
NASA Astrophysics Data System (ADS)
Kharchenko, S. V.; Ermolaev, O. P.; Mukharamova, S. S.
2018-01-01
Spatial differences of elevation were analysed by side of view of geomorphological boundaries on the European Russia territory. Geomorphological pattern of the studied territory was taken from Geomorphological Map of the USSR at scale of 1: 2 500 000. There 2401 fragments for combinations of 58 types of structural landforms and 22 types of sculptural landforms were allocated. The elevation values computed by digital elevation model (cell size - 200 m, number of cells - 322M) based on SRTM (south of 60 nl.) and GDEM 2010 (north of 60 nl.) resampled data. It was founded that some types of structural (16 types) and sculptural (6 types) landforms located in the relatively thin intervals of elevation. Using of elevation above sea level is needed for effective automatic recognizing these landform regions.
Immune System Dysregulation and Herpesvirus Reactivation Persist During Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Crucian, B. E.; Stowe, R. P.; Mehta, S.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. F.
2010-01-01
Background: Immunity, latent herpesvirus reactivation, physiological stress and circadian rhythms were assessed during six month spaceflight onboard ISS. Blood and saliva samples were collected early, mid and late in-flight and returned for immediate analysis. Mid-point study data (10 of 17 planned subjects) will be presented. Results: Some shifts in leukocyte distribution occurred during flight, including alterations in CD8+ T cell maturation. General T cell function was consistently reduced early in-flight. Levels CD8+/IFNg+ producing T cells were depressed early in-flight, and immediately upon landing. Persistent mitogen-dependant reductions were observed in IFNg, IL-17a, IL-10, TNFa and IL-6 production. Monocyte production of IL-10 was reduced, whereas IL-8 levels were increased. Levels of mRNA for the TNFa, IL-6 and IFNg were transiently elevated early in-flight, and the dynamics of TNF and IL-6 gene expression were somewhat antagonistic to their corresponding receptors during flight. The number of virus-specific CD8+ T-cells was measured using MHC tetramers, while their function was measured using intracellular cytokine analysis following peptide stimulation. Both the number and function of EBV-specific cells decreased during flight as compared to preflight levels. The number of CMV-specific T-cells generally increased as the mission progressed while their function was variable. Viral (EBV) load in blood was elevated postflight. Anti-EBV VCA antibodies were significantly elevated by R+0; anti-EA antibodies were not significantly elevated at landing; and anti-CMV antibodies were somewhat elevated during flight. Higher levels of salivary EBV DNA were found during flight. VZV DNA reactivation occurred in 50 % of astronauts during flight, continuing for up to 30 days post-flight. CMV was shed in 35 % the in-flight and 30% of postflight urine samples of the crewmembers. There was generally a higher level of cortisol as measured in urine and saliva in the astronauts during flight, but plasma cortisol was relatively unchanged during flight. Circadian rhythm of salivary cortisol was altered during flight. Conclusion. Some alterations in immunity do not resolve during six month spaceflight, consequentially resulting in persistent herpesvirus reactivation. Ongoing immune dysregulation may represent specific clinical risks for exploration-class space missions.
Pan, Xuan; Jones, Morgan; Jiang, Jie; Zaprazna, Kristina; Yu, Duonan; Pear, Warren; Maillard, Ivan; Atchison, Michael L.
2012-01-01
Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs. PMID:22292011
DiGuilio, K M; Valenzano, M C; Rybakovsky, E; Mullin, J M
2018-01-05
Elevation of the transcription factor HIF-1 is a prominent mediator of not only processes that accompany hypoxia, but also the tumor microenvironment and tissue regeneration. This study uses mediators of "chemical hypoxia" to ask the question whether HIF-1α elevation in a healthy epithelial cell layer leads to leakiness in its tight junctional seals. Transepithelial electrical resistance and transepithelial diffusion of 14 C-D-mannitol and other radiolabeled probes are used as indicators of transepithelial barrier function of CaCo-2 BBe human gastrointestinal epithelial cell layers cultured on permeable supports. Western immunoblot analyses of integral tight junctional proteins (occludin and claudins) are used as further indicators of barrier function change. Cobalt, an inhibitor of the prolyl hydroxylase enzymes governing HIF-1α breakdown in the cell, induces transepithelial leakiness in CaCo-2 BBe cell layers in a time and concentration-dependent manner. This increased leakiness is accompanied by significant changes in certain specific integral tight junctional (TJ) proteins such as a decreased level of occludin and increased level of claudin-5. Similar results regarding barrier function compromise also occur with other chemical inhibitors of HIF-1α breakdown, namely ciclopiroxolamine (CPX) and dimethyloxalylglycine (DMOG). The increased leak is manifested by both decreased transepithelial electrical resistance (R t ) and increased paracellular diffusion of D-mannitol (J m ). The induced transepithelial leak shows significant size selectivity, consistent with induced effects on TJ permeability. Less-differentiated cell layers were significantly more affected than well-differentiated cell layers regarding induced transepithelial leak. A genetically modified CaCo-2 variant with reduced levels of HIF-1β, showed reduced transepithelial leak in response to cobalt exposure, further indicating that elevation of HIF-1α levels induced by agents of "chemical hypoxia" is responsible for the compromised barrier function of the CaCo-2 BBe cell layers. Exposure to inducers of chemical hypoxia elevated HIF-1α levels and increased transepithelial leak. The degree of epithelial differentiation has significant effects on this action, possibly explaining the varying effects of HIF-1 modulation in epithelial and endothelial barrier function in different physiological and pathophysiological conditions.
Serum levels of endothelial and neural cell adhesion molecules in prostate cancer.
Lynch, D F; Hassen, W; Clements, M A; Schellhammer, P F; Wright, G L
1997-08-01
Tumorigenesis and progression to metastatic disease are accompanied by changes in the expression of cell adhesion molecules (CAMs). Normally expressed CAMs, such as E-cadherin, are lost, while others, i.e., ICAM-1, VCAM-1, NCAM, and E-selectin, are altered and overexpressed in progressive disease and metastases. Abnormal levels of these latter CAMs have been observed in melanoma and carcinomas of the colon and breast, and NCAM is overexpressed in small-cell lung carcinoma (SCLC). The objective of this study was to determine if serum levels of ICAM-1, VCAM-1, NCAM, and E-selectin could differentiate patients with benign prostate hypertrophy (BPH) from those with prostate carcinoma (CaP) and identify prostate cancers with high potential for progression to metastatic disease. Serum levels of these CAMs were determined by ELISA in serum from normal males and females and from patients with BPH and CaP before and after treatment. Sera from patients with breast carcinoma, colon carcinoma, melanoma, and small-cell lung carcinoma were also evaluated, as soluble CAMs have been reported to be elevated in these cancer patients. ICAM-1 levels were elevated in sera from patients with breast carcinoma (P = 0.0004) and melanoma (P = 0.0001). VCAM-1 levels were elevated in sera from patients with colon carcinoma (P = 0.0001). NCAM levels were elevated in the sera of patients with SCLC (P = 0.0001). Normal levels of ICAM-1, E-selectin, and NCAM were found in both BPH and pretreatment CaP patients. Median NCAM levels in hormone-refractive CaP patients were significantly greater than in BPH (P = 0.0005) and CaP patients with pathologically determined organ-confined (P = 0.0014) or nonorgan-confined disease (P = 0.0385). VCAM-1 levels were significantly elevated in both BPH patients (P = 0.0002) and CaP patients (P = 0.0002) when compared with levels for normal age-matched donors. None of the CAMs were found to offer an advantage over prostatic-specific antigen (PSA) for monitoring CaP patients following definitive radiotherapy, radical prostatectomy, or hormonal therapy. The results of this study indicate that serum ICAM-1, VCAM-1, NCAM, and E-selectin are not clinically useful biomarkers for differentiating CaP from BPH, for predicting progression, for identifying metastatic potential, or for monitoring treatment.
Grabowska, Wioleta; Suszek, Małgorzata; Wnuk, Maciej; Lewinska, Anna; Wasiak, Emilia; Sikora, Ewa; Bielak-Zmijewska, Anna
2016-01-01
It is believed that curcumin, a component of the turmeric that belongs to hormetins, possesses anti-aging propensity. This property of curcumin can be partially explained by its influence on the level of sirtuins. Previously, we have shown that relatively high (2.5-10 μM) doses of curcumin induce senescence of cancer cells and cells building the vasculature. In the present study we examined whether curcumin at low doses (0.1 and 1 μM) is able to delay cell senescence and upregulate the level of sirtuins in human cells building the vasculature, namely vascular smooth muscle (VSMC) and endothelial (EC) cells. To this end we used cells senescing in a replicative and premature manner. We showed that low doses of curcumin in case of VSMC neither postponed the replicative senescence nor protected from premature senescence induced by doxorubicin. Moreover, curcumin slightly accelerated replicative senescence of EC. Despite some fluctuations, a clear increasing tendency in the level of sirtuins was observed in curcumin-treated young, senescing or already senescent cells. Sirtuin activation could be caused by the activation of AMPK resulting from superoxide elevation and ATP reduction. Our results show that curcumin at low doses can increase the level of sirtuins without delaying senescence of VSMC. PMID:27034011
Park, Jeongho; Goergen, Craig J; HogenEsch, Harm; Kim, Chang H
2016-03-01
Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10(+) regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and they induced T cell-mediated ureteritis, leading to kidney hydronephrosis (hereafter called acetate-induced renal disease, or C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mammalian target of rapamycin activation, T cell-derived inflammatory cytokines such as IFN-γ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals, respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. Copyright © 2016 by The American Association of Immunologists, Inc.
Jennings, Jeanine E; Ramkumar, Thiruvamoor; Mao, Jingnan; Boyd, Jessica; Castro, Mario; Field, Joshua J; Strunk, Robert C; DeBaun, Michael R
2008-08-01
Cysteinyl leukotrienes (CsyLTs) are inflammatory mediators produced by white blood cells. Leukotriene LTE(4) is the stable metabolite of CsyLTs, which can be measured in urine. We tested two hypotheses among children with sickle cell disease (SCD): (1) baseline urinary LTE(4) levels are elevated in children with SCD when compared with controls; and (2) baseline LTE(4) levels are associated with an increased incidence rate of hospitalization for SCD-related pain. Baseline LTE(4) levels were measured in children with SCD (cases) and children without SCD matched for age and ethnicity (controls). Medical records of cases were reviewed to assess the frequency of hospitalization for pain within 3 years of study entry. LTE(4) levels were obtained in 71 cases and 22 controls. LTE(4) levels were higher in cases compared with controls (median LTE(4): 100 vs. 57 pg/mg creatinine, P < 0.001). After adjustment for age and asthma diagnosis, a greater incidence rate of hospitalization for pain was observed among children with SCD in the highest LTE(4) tertile when compared with the lowest (114 vs. 52 episodes per 100 patient-years, P = 0.038). LTE(4) levels are elevated in children with SCD when compared with controls. LTE(4) levels are associated with an increased rate of hospitalizations for pain. Copyright 2008 Wiley-Liss, Inc.
JIANG, NAN; CHEN, WEI; ZHANG, JIAN-WEN; LI, YANG; ZENG, XIAN-CHENG; ZHANG, TONG; FU, BIN-SHENG; YI, HUI-MIN; ZHANG, QI
2015-01-01
Cancer stem cells (CSCs) in hepatocellular carcinoma (HCC) are frequently resistant to current therapeutic regimens and therefore responsible for tumor recurrence. Previous studies have reported that expression levels of dysadherin in CSCs may be used as a prognostic indicator, which is also responsible for treatment failure and poor survival rates. The present study analyzed the association of enhanced dysadherin levels with drug resistance and evasion of apoptosis in human HCC SP cells. An SP of 3.7% was isolated from human HCC cells using fluorescence-activated cell sorting. These SP cells displayed elevated levels of dysadherin and stemness proteins as well as high resistance to chemotherapeutic drugs and apoptosis. In order to reveal the possible link between dysadherin levels and tumorigenesis of SP cells, small interfering RNA technology was used to knockdown the expression of dysadherin in SP cells. Of note, the siRNA-transfected SP cells showed significantly reduced levels of stemness proteins, and were more sensitive to DNA-targeting drugs and apoptotic cell death as compared to non-transfected cells. Furthermore, in vivo experiments in NON/SCID mice indicated that dysadherin-expressing SP cells were highly tumorigenic, as they were able to induce tumor growth. The SP cell-derived tumor tissues in turn showed elevated dysadherin levels. The results of the present study therefore suggested that knockdown of dysadherin suppressed the tumorigenic properties of cancer stem-like SP cells. Hence, dysadherin is a valuable potential target for the development of novel anti-cancer drugs. PMID:26458963
Mello, Rodrigo; Mello, Ricardo; Gomes, Diego; Paz, Gabriel Andrade; Nasser, Igor; Miranda, Humberto; Salerno, Verônica P
2017-01-01
The present study investigated the effects of a moderate-intensity soccer training session on the production of reactive oxygen species (ROS) and the antioxidant capacity in athletes along with the biomarkers creatine kinase and transaminases for lesions in muscle and liver cells. Twenty-two male soccer players participated in this study. Blood samples were collected 5 min before and after a moderate-intensity game simulation. The results showed a decrease in the concentration of reduced glutathione (GSH) from an elevation in the production of ROS that maintained the redox homeostasis. Although the session promoted an elevated energy demand, observed by an increase in lactate and glucose levels, damage to muscle and/or liver cells was only suggested by a significant elevation in the levels of alanine transaminase (ALT). Of the two biomarkers analysed, the results suggest that measurements of the ALT levels could be adopted as a method to monitor recovery in athletes.
Bai, Shaochun; Wang, Hongwei; Shen, Jikun; Zhou, Randal; Bushinsky, David A; Favus, Murray J
2010-01-01
Patients with idiopathic hypercalciuria (IH) and genetic hypercalciuric stone-forming (GHS) rats, an animal model of IH, are both characterized by normal serum Ca, hypercalciuria, Ca nephrolithiasis, reduced renal Ca reabsorption, and increased bone resorption. Serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels are elevated or normal in IH and are normal in GHS rats. In GHS rats, vitamin D receptor (VDR) protein levels are elevated in intestinal, kidney, and bone cells, and in IH, peripheral blood monocyte VDR levels are high. The high VDR is thought to amplify the target-tissue actions of normal circulating 1,25(OH)2D levels to increase Ca transport. The aim of this study was to elucidate the molecular mechanisms whereby Snail may contribute to the high VDR levels in GHS rats. In the study, Snail gene expression and protein levels were lower in GHS rat tissues and inversely correlated with VDR gene expression and protein levels in intestine and kidney cells. In human kidney and colon cell lines, ChIP assays revealed endogenous Snail binding close to specific E-box sequences within the human VDR promoter region, whereas only one E-box specifically bound Snail in the rat promoter. Snail binding to rat VDR promoter E-box regions was reduced in GHS compared with normal control intestine and was accompanied by hyperacetylation of histone H3. These results provide evidence that elevated VDR in GHS rats likely occurs because of derepression resulting from reduced Snail binding to the VDR promoter and hyperacetylation of histone H3. © 2010 American Society for Bone and Mineral Research. PMID:19929616
Katayama, M; Hirai, S; Yasumoto, M; Nishikawa, K; Nagata, S; Otsuka, M; Kamihagi, K; Kato, I
1994-11-01
E-cadherin (Ecad) is well known to be a calcium-ion-dependent cell-cell adhesion molecule expressed mostly in epithelial tissues. Previous immunohistochemical studies suggested that this cell adhesion molecule acts as an invasion suppressor and is negligibly detected in cancer metastatic regions. Soluble Ecad fragments derived from the proteolysed membrane-associated form were detected in culture supernatants of two cell lines, COLO 205 and A-431, with normal distribution of cell surface Ecad. Soluble Ecad levels released into culture of COLO 205 exhibiting reduced cell-cell adhesion were apparently elevated above those of A-431 with tight cell-cell adhesion. Furthermore, human circulation and urine continuously contain soluble Ecad which consists mainly of homogeneous 75-85 kDa extracellular domains. Soluble Ecad urinary level per urinary creatinine level was found to be significantly elevated in 53% of patients suffering from various types of cancers including lung, liver, stomach, colon and rectal cancers, as compared with those in the age-matched healthy subjects. These results suggest that dysfunction of cell surface Ecad is responsible for its enhanced proteolytic shedding in tumorigenesis, which may lead to the decrease of cell surface Ecads. Furthermore, excretion of high levels of soluble Ecad fragments potentially indicates the progression of epithelial tumors excessively degrading cell surface Ecad in clinical subjects.
Namkoong, Sim; Lee, Eun-Ju; Jang, Ik-Soon; Park, Junsoo
2012-10-19
Replication protein A (RPA) is a eukaryotic single-stranded DNA binding protein that is essential for DNA replication, repair, and recombination, and human RPA interacting protein α (hRIPα) is the nuclear transporter of RPA. Here, we report the regulatory role of hRIPα protein in cell proliferation. Western blot analysis revealed that the level of hRIPα was frequently elevated in cervical tumors tissues and hRIPα knockdown by siRNA inhibited cellular proliferation through deregulation of the cell cycle. In addition, overexpression of hRIPα resulted in increased clonogenicity. These results indicate that hRIPα is involved in cell proliferation through regulation of RPA transport. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Effect of HSP27 on Human Breast Tumor Cell Growth and Motility.
1997-09-01
the small heat shock protein, Hsp27 , on growth and motility characteristics of human mammary tumor cell lines. Since Hsp27 regulates actin...microfilament dynamics, we hypothesize that cells expressing high levels of Hsp27 will show increased motility and altered chemotactic properties, in addition to...significantly elevated levels of Hsp27 has proven to be daunting. Down regulation of Hsp27 levels in MCF7 cells using antisense technology has also
Zhang, Yu; Huo, Xia; Cao, Junjun; Yang, Tian; Xu, Long; Xu, Xijin
2016-06-01
Lead (Pb) has been proved to exert immunotoxicity to influence immune homeostasis in humans. To monitor the internal Pb level and evaluate its effect on natural killer (NK) cells and cytokine/chemokine concentrations, we recruited 285 preschool children from Guiyu, one of the largest electronic waste (e-waste) destinations and recycling areas in the world, and known to have high concentrations of Pb in the air, soil, water, sediment and plants. A total of 126 preschool children were selected from Haojiang as a reference group. Results showed that children in Guiyu, the exposed area, had higher blood Pb levels and lower percentages of NK cells than children from the reference area. A significantly negative association was found between the percentage of NK cells and increasing Pb levels. Moreover, children in Guiyu area had higher platelet counts and IL-1β concentrations, and lower levels of IL-2, IL-27, MIP-1α and MIP-1β were observed in the exposed children. These changes might not be conducive to the development and differentiation of NK cells. Taken together, the elevated Pb levels result in the lower percentages of NK cells, but also alter the levels of platelets, IL-1β and IL-27, which might be unconducive to the activity and function of NK cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
CD14+CD33+ myeloid cell-CCL11-eosinophil signature in ulcerative colitis.
Lampinen, Maria; Waddell, Amanda; Ahrens, Richard; Carlson, Marie; Hogan, Simon P
2013-11-01
This study tested the hypothesis that eotaxins (CCL11, CCL24, and CCL26) and IL-5 contribute to eosinophil recruitment to the intestine in UC and that intestinal macrophages are important producers of CCL11 in this disease. Peripheral blood and rectal biopsy samples were obtained from patients with active (n=18) and quiescent UC (n=9), and control patients (n=7). Eosinophil and macrophage levels and activation were analyzed by flow cytometry. Rectal mRNA levels of CCL11, CCL24, CCL26, and IL-5 were determined by qRT-PCR. The cellular source of CCL11 was visualized by immunofluorescence analyses. Eosinophil numbers were elevated in the blood and rectum of active and quiescent UC patients compared with controls. Levels of activated eosinophils (CD66b(high)) correlated with disease severity. Rectal CCL11, CCL24, and CCL26 mRNA levels were increased in active UC, whereas only CCL11 was elevated in quiescent UC. Levels of CCL11, but not CCL24 and CCL26, positively correlated with eosinophil numbers. Numbers of CD14(+)CD33(+) cells correlated with CCL11 and eosinophil levels. Immunofluorescence analyses revealed the presence of CD14(+)CCL11(+) mononuclear cells in colonic biopsies in UC. These results support the hypothesis that CCL11 contributes to eosinophil recruitment in UC and that intestinal myeloid cells are a source of CCL11. Interestingly, rectal levels of CCL24, CCL26, and IL-5 only increase during active UC, coinciding with further elevation of eosinophil numbers and with the activation of rectal eosinophils. In conclusion, there is a link among CD14(+)CD33(+) myeloid cells, CCL11, and eosinophils in adult UC.
CD14+CD33+ myeloid cell-CCL11-eosinophil signature in ulcerative colitis
Lampinen, Maria; Waddell, Amanda; Ahrens, Richard; Carlson, Marie; Hogan, Simon P.
2013-01-01
This study tested the hypothesis that eotaxins (CCL11, CCL24, and CCL26) and IL-5 contribute to eosinophil recruitment to the intestine in UC and that intestinal macrophages are important producers of CCL11 in this disease. Peripheral blood and rectal biopsy samples were obtained from patients with active (n=18) and quiescent UC (n=9), and control patients (n=7). Eosinophil and macrophage levels and activation were analyzed by flow cytometry. Rectal mRNA levels of CCL11, CCL24, CCL26, and IL-5 were determined by qRT-PCR. The cellular source of CCL11 was visualized by immunofluorescence analyses. Eosinophil numbers were elevated in the blood and rectum of active and quiescent UC patients compared with controls. Levels of activated eosinophils (CD66bhigh) correlated with disease severity. Rectal CCL11, CCL24, and CCL26 mRNA levels were increased in active UC, whereas only CCL11 was elevated in quiescent UC. Levels of CCL11, but not CCL24 and CCL26, positively correlated with eosinophil numbers. Numbers of CD14+CD33+ cells correlated with CCL11 and eosinophil levels. Immunofluorescence analyses revealed the presence of CD14+CCL11+ mononuclear cells in colonic biopsies in UC. These results support the hypothesis that CCL11 contributes to eosinophil recruitment in UC and that intestinal myeloid cells are a source of CCL11. Interestingly, rectal levels of CCL24, CCL26, and IL-5 only increase during active UC, coinciding with further elevation of eosinophil numbers and with the activation of rectal eosinophils. In conclusion, there is a link among CD14+CD33+ myeloid cells, CCL11, and eosinophils in adult UC. PMID:23904440
Ebert, Sandra; Zeretzke, Moritz; Nau, Roland; Michel, Uwe
2007-02-21
Activin A levels are elevated in the cerebrospinal fluid (CSF) of patients with meningitis and in the sera of patients with sepsis. The source(s) of the elevated concentrations of activin A in CSF and serum have not yet been discovered. Here we demonstrate that primary mouse microglial cells and peritoneal macrophages release activin A after treatment with agonists of Toll-like receptor (TLR) 2, 4, and 9. These findings provide further evidence for a role of activin in the innate immune response and suggest that microglial cells and macrophages are a source of elevated activin A concentrations observed in the CSF during bacterial meningitis and in the systemic circulation during sepsis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxia; Gao, Ying; Cheng, Hairong
Cervical cancer is one of the most common carcinomas in the female reproductive system. Treatment of cervical cancer involves surgical removal and chemotherapy. Resistance to platinum-based chemotherapy drugs including cisplatin has increasingly become an important problem in the treatment of cervical cancer patients. We found in this study that stanniocalcin 2 (STC2) expression was upregulated in both cervical cancer tissues and cell lines. The levels of STC2 expression in cervical cancer cell lines were positively correlated with the rate of cell proliferation. Furthermore, in cisplatin resistant cervical cancer cells, the levels of STC2 expression were significantly elevated. Modulation of STC2more » expression by siRNA or overexpression in cisplatin resistant cells resulted in altered cell survival, apoptosis, and cisplatin resistance. Finally, we found that there was significant difference in the activity of the MAPK signaling pathway between cisplatin sensitive and resistant cervical cancer cells, and that STC2 could regulate the activity of the MAPK signaling pathway. - Highlights: • STC2 was upregulated in cervical cancer and promoted cervical cancer cell proliferation. • Cisplatin resistant cells had elevated STC2 levels and enhanced proliferation. • STC2 regulated cisplatin chemosensitivity in cervical cancer cells. • STC2 regulated the activity of the MAPK signaling pathway.« less
De Latour, Bertrand; Fadel, Elie; Mercier, Olaf; Mussot, Sacha; Fabre, Dominique; Fizazi, Karim; Dartevelle, Philippe
2012-07-01
Platinum-based chemotherapy followed by surgical resection of residual masses has become the standard treatment of patients with primary mediastinal non-seminomatous germ cell tumours (NSGCTs). Persistent serum tumour marker (STM) elevation after chemotherapy usually indicates a poor prognosis. We retrospectively assessed surgical outcomes in patients with high STM levels after chemotherapy for primary mediastinal NSGCT. Between 1983 and 2010, residual tumour excision was performed in 21 patients, 20 men and one woman with a median age of 30 years (range: 19-49 years), with primary mediastinal NSGCTs and high STM levels after platinum-based chemotherapy, followed by second-line chemotherapy in 11 patients. Alpha-fetoprotein was elevated in all 21 patients and β-human chorionic gonadotropin in three patients. Permanent histology demonstrated viable germ cell tumour (n=13), teratoma (n=3) or necrosis (n=5). After surgery, the STM levels returned to normal in 11 patients. Eight patients are alive with a median follow-up of 98 months. The 5-year survival rate was 36% and was not significantly affected by the use of preoperative second-line chemotherapy. At univariate analysis, only postoperative STM elevation and residual viable tumour, indicating incomplete resection, were significantly associated with lower survival (P=0.018 and P=0.04, respectively). In patients with primary mediastinal NSGCTs and elevated post-chemotherapy STMs, surgery is warranted when complete resection is deemed feasible. In specialized oncology centres, this aggressive approach can provide a cure in some patients.
Th22 cells are associated with hepatocellular carcinoma development and progression
Qin, Shanyu; Ma, Shijia; Huang, Xiaoli; Lu, Donghong
2014-01-01
Objective IL-22-producing CD4+ T helper cells (Th22 cells) have been identified as major inducers of tissue inflammation and immune responses. Currently, no previous study explored the role of Th22 cells in the pathogenesis of hepatocellular carcinoma (HCC). The study aimed to determine the biological function of Th22 cells and its effector IL-22 in HCC patients. Methods Forty-five HCC patients and 19 healthy controls were recruited and their peripheral blood was collected. The fresh HCC tissues, adjacent HCC tissues and ten normal liver tissues were also collected. Flow cytometry analysis was used to determine the frequencies of circulating Th22 cells and Th17 cells. Serum IL-22 levels were tested by enzyme-linked immunosorbent assay (ELISA). Immunohistochemical staining and real-time polymerase chain reaction (PCR) were used to detect IL-22 protein and mRNA in tissues specimens, respectively. Results Circulating Th22 cells, Th17 cells and serum IL-22 levels were significantly elevated in HCC patients compared with those of healthy controls (P<0.001). Th22 cells were showed to be positively correlated with IL-22 in HCC patients (P<0.05), but not in healthy controls. No significant differences were found in HCC patients with HBeAg positivity or negativity in term of Th22 cells and serum IL-22 levels. The expression of IL-22 protein and mRNA was highest in HCC tissues, followed by adjacent HCC tissues and normal liver tissues. Furthermore, Th22 cells, serum IL-22 levels and IL-22 mRNA were elevated at stage III-IV compared with stage I-II of HCC (P<0.05). Conclusions Elevation of circulating Th22 cells and IL-22 may be implicated in the pathogenesis of HCC, and potentially be cellular targets for therapeutic intervention. PMID:24826053
Cochran, Blake J.; Hou, Liming; Manavalan, Anil Paul Chirackal; Moore, Benjamin M.; Tabet, Fatiha; Sultana, Afroza; Cuesta Torres, Luisa; Tang, Shudi; Shrestha, Sudichhya; Senanayake, Praween; Patel, Mili; Ryder, William J.; Bongers, Andre; Maraninchi, Marie; Wasinger, Valerie C.; Westerterp, Marit; Tall, Alan R.; Barter, Philip J.
2016-01-01
Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes. PMID:27702832
Wise, Catherine F.; Wise, Sandra S.; Thompson, W. Douglas; Perkins, Christopher; Wise, John Pierce
2015-01-01
Hexavalent chromium (Cr(VI)) is present in the marine environment and is a known carcinogen and reproductive toxicant. Cr(VI) is the form of chromium that is well absorbed through the cell membrane. It is also the most prevalent form in seawater. We measured the total Cr levels in skin biopsies obtained from healthy free-ranging fin whales from the Gulf of Maine and found elevated levels relative to marine mammals in other parts of the world. The levels in fin whale biopsies ranged from 1.71 ug/g to 19.6 ug/g with an average level of 10.07 ug/g. We also measured the cytotoxicity and genotoxicity of Cr(VI) in fin whale skin cells. We found that particulate and soluble Cr(VI) are both cytotoxic and genotoxic to fin whale skin cells in a concentration-dependent manner. The concentration range used in our cell culture studies used environmentally relevant concentrations based on the biopsy measurements. These data suggest that Cr(VI) may be a concern for whales in the Gulf of Maine. PMID:25805270
Zhang, Yin-Zhuang; Wang, Lei; Zhang, Jie-Jie; Xiong, Xiao-Ming; Zhang, Di; Tang, Xuan-Meng; Luo, Xiu-Ju; Ma, Qi-Lin; Peng, Jun
2018-05-03
Vascular peroxidase 1 (VPO1) plays a key role in mediation of cardiovascular oxidative injury. This study aims to determine whether VPO1 can promote programmed necrosis of endothelial cells and the underlying mechanisms. Human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low-density lipoprotein (ox-LDL, 100 μg/mL) for 48 h to induce cell injury, which showed an elevation in cell necrosis (reflected by the increased propidium iodide (PI) positive-staining cells, LDH release and decreased cell viability), concomitant with an increase in programmed necrosis-relevant proteins including receptor-interacting protein kinase 1/3 (RIPK1/3), p-RIPK3 and mixed lineage kinase domain like (MLKL); these phenomena were attenuated by necrostatin-1(Nec-1) and RIPK3 siRNA. Meanwhile, VPO1 was up-regulated in ox-LDL-treated endothelial cells accompanied by a decrease in GSK-3β activity and p-β-catenin levels, and an elevation of β-catenin levels; these phenomena were reversed in the presence of VPO1 siRNA or hypochlorous acid (HOCl) inhibitor; replacement of ox-LDL with HOCl could also induce endothelial programmed necrosis and activate the β-catenin signaling; β-catenin inhibitor could also suppress ox-LDL-induced RIPK-dependent necrosis. In hyperlipidemic patients, the plasma level of VPO1 was obviously increased concomitant with an elevation in plasma levels of RIPK1, RIPK3 and MLKL, and they were positively correlated. VPO1 plays an important role in promotion of endothelial programmed necrosis under hyperlipidemic conditions through activation of β-catenin signaling. It may serve as a novel therapeutic target for prevention of endothelial dysfunction in hyperlipidemia. Copyright © 2018 Elsevier B.V. All rights reserved.
Tokarz, Richard D.
1983-01-01
A liquid level sensing device comprising a load cell supporting a column or stack of segments freely resting on one another. The density of each element is substantially identical to that of the surrounding liquid. The elements are freely guided within a surrounding tube. As each element is exposed above the liquid level, its weight will be impressed through the column to the load cell, thereby providing a signal at the load cell directly proportional to the liquid level elevation.
1984-10-26
focused initially on EF because it seemed possible that this component, like cholera toxin, might cause edema in skin through elevation of cellular cAMP...behavior differed from that seen in cells exposed to cholera toxin, where cellular cAMP levels remain elevated upon toxin removal. Studies in CHO cell...LF, the rat bioassay is not likely to be an appropriate system for studying the cellular and molecular mechanisms of action of LF. Therefore, a survey
Mechanisms Underlying Endothelin-1 Level Elevations Caused by Excessive Fluoride Exposure.
Sun, Liyan; Gao, Yanhui; Zhang, Wei; Liu, Xiaona; Li, Bingyun; Cui, Xiaohui; Sun, Dianjun
2016-01-01
To explore the mechanisms underlying endothelin-1 (ET-1) elevations induced by excessive fluoride exposure. We measured serum and bone fluoride ion content and plasma ET-1 levels and compared these parameters among different groups in an animal model. We also observed morphological changes in the aorta and endothelium of rabbits. In cell experiments, human umbilical vein endothelial cells (HUVECs) were treated with varying concentrations of NaF for 24h, with or without 10 µM U0126 pretreatment for 1 h. ET-1 levels in culture fluid and intracellular reactive oxygen species (ROS) levels, as well as ET1 gene, endothelin-converting enzyme-1 (ECE-1), extracellular signal-regulating kinase 1/2 (ERK1/2), pERK1/2 expression levels and RAS activation were measured and compared among the groups. Plasma ET-1 levels of rabbits increased significantly in fluorinated groups compared with those in the control group. The rabbit thoracic aortas became slightly hardened in fluorinated groups compared with those in the control group, and some vacuoles were present in the endothelial cell cytoplasm of the rabbits in fluorinated groups. In our cell experiments, ET1 gene and ECE-1 expression levels in HUVECs and ET-1 expression levels in the cell culture supernatants increased significantly in some experimental groups compared with those in the control group. These trends paralleled the changes in intracellular ROS levels, RAS activation, and the pERK1/2-to-ERK1/2 ratio. After U0126 was added, ECE-1 expression and ET-1 levels decreased significantly. Excessive fluoride exposure leads to characteristic endothelial damage (vacuoles), thoracic aorta hardening, and plasma ET-1 level elevations in rabbits. In addition, the ROS-RAS-MEK1/2-pERK1/2/ERK1/2 pathway plays a crucial-and at least partial-role in ET-1 over-expression, which is promoted by excessive fluoride exposure. © 2016 The Author(s) Published by S. Karger AG, Basel.
Azad, Gajendra Kumar; Singh, Vikash; Baranwal, Shivani; Thakare, Mayur Jankiram; Tomar, Raghuvir S
2015-01-02
Yeast repressor activator protein (Rap1p) is involved in genomic stability and transcriptional regulation. We explored the function of Rap1p in yeast physiology using Rap1p truncation mutants. Our results revealed that the N-terminal truncation of Rap1p (Rap1ΔN) leads to hypersensitivity towards elevated temperature and cell-wall perturbing agents. Cell wall analysis showed an increase in the chitin and glucan content in Rap1ΔN cells as compared with wild type cells. Accordingly, mutant cells had a twofold thicker cell wall, as observed by electron microscopy. Furthermore, Rap1ΔN cells had increased levels of phosphorylated Slt2p, a MAP kinase of the cell wall integrity pathway. Mutant cells also had elevated levels of cell wall integrity response transcripts. Taken together, our findings suggest a connection between Rap1p and cell wall homeostasis. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Serum Inflammatory Mediators as Markers of Human Lyme Disease Activity
Soloski, Mark J.; Crowder, Lauren A.; Lahey, Lauren J.; Wagner, Catriona A.
2014-01-01
Chemokines and cytokines are key signaling molecules that orchestrate the trafficking of immune cells, direct them to sites of tissue injury and inflammation and modulate their states of activation and effector cell function. We have measured, using a multiplex-based approach, the levels of 58 immune mediators and 7 acute phase markers in sera derived from of a cohort of patients diagnosed with acute Lyme disease and matched controls. This analysis identified a cytokine signature associated with the early stages of infection and allowed us to identify two subsets (mediator-high and mediator-low) of acute Lyme patients with distinct cytokine signatures that also differed significantly (p<0.0005) in symptom presentation. In particular, the T cell chemokines CXCL9 (MIG), CXCL10 (IP-10) and CCL19 (MIP3B) were coordinately increased in the mediator-high group and levels of these chemokines could be associated with seroconversion status and elevated liver function tests (p = 0.027 and p = 0.021 respectively). There was also upregulation of acute phase proteins including CRP and serum amyloid A. Consistent with the role of CXCL9/CXCL10 in attracting immune cells to the site of infection, CXCR3+ CD4 T cells are reduced in the blood of early acute Lyme disease (p = 0.01) and the decrease correlates with chemokine levels (p = 0.0375). The levels of CXCL9/10 did not relate to the size or number of skin lesions but elevated levels of serum CXCL9/CXCL10 were associated with elevated liver enzymes levels. Collectively these results indicate that the levels of serum chemokines and the levels of expression of their respective chemokine receptors on T cell subsets may prove to be informative biomarkers for Lyme disease and related to specific disease manifestations. PMID:24740099
Taylor, Robert M; Severns, Virginia; Brown, David C; Bisoffi, Marco; Sillerud, Laurel O
2012-04-01
Membrane receptors are frequent targets of cancer therapeutic and imaging agents. However, promising in vitro results often do not translate to in vivo clinical applications. To better understand this obstacle, we measured the expression differences in receptor signatures among several human prostate cancer cell lines and xenografts as a function of tumorigenicity. Messenger RNA and protein expression levels for integrin α(ν) β(3), neurotensin receptor 1 (NTSR1), prostate specific membrane antigen (PSMA), and prostate stem cell antigen (PSCA) were measured in LNCaP, C4-2, and PC-3 human prostate cancer cell lines and in murine xenografts using quantitative reverse transcriptase polymerase chain reaction, flow cytometry, and immunohistochemistry. Stable expression patterns were observed for integrin α(ν) and PSMA in all cells and corresponding xenografts. Integrin β(3) mRNA expression was greatly reduced in C4-2 xenografts and greatly elevated in PC-3 xenografts compared with the corresponding cultured cells. NTSR1 mRNA expression was greatly elevated in LNCaP and PC-3 xenografts. PSCA mRNA expression was elevated in C4-2 xenografts when compared with C4-2 cells cultured in vitro. Furthermore, at the protein level, PSCA was re-expressed in all xenografts compared with cells in culture. The regulation of mRNA and protein expression of the cell-surface target proteins α(ν) β(3), NTSR1, PSMA, and PSCA, in prostate cancer cells with different tumorigenic potential, was influenced by factors of the microenvironment, differing between cell cultures and murine xenotransplants. Integrin α(ν) β(3), NTRS1 and PSCA mRNA expression increased with tumorigenic potential, but mRNA expression levels for these proteins do not translate directly to equivalent expression levels of membrane bound protein. Copyright © 2011 Wiley Periodicals, Inc.
Young, Brett C.; Stanic, Aleksandar K.; Panda, Britta; Rueda, Bo R.; Panda, Alexander
2014-01-01
OBJECTIVE Toll-like receptors (TLRs) are integral parts of the innate immune system and have been implicated in complications of pregnancy. The longitudinal expression of TLRs on dendritic cells in the maternal circulation during uncomplicated pregnancies is unknown. The objective of this study was to prospectively evaluate TLRs 1-9 as expressed on dendritic cells in the maternal circulation at defined intervals throughout pregnancy and postpartum. STUDY DESIGN This was a prospective cohort of 30 pregnant women with uncomplicated pregnancies and 30 nonpregnant controls. TLRs and cytokine expression was measured in unstimulated dendritic cells at 4 defined intervals during pregnancy and postpartum. Basal expression of TLRs and cytokines was measured by multicolor flow cytometry. The percent-positive dendritic cells for each TLRs were compared with both nonpregnant and postpartum levels with multivariate linear regression. RESULTS TLRs 1, 7, and 9 were elevated compared with nonpregnant controls with persistent elevation of TLR 1 and interleukin-12 (IL-12) into the postpartum period. Concordantly, levels of IL-6, IL-12, interferon alpha, and tumor necrosis factor alpha increased during pregnancy and returned to levels similar to nonpregnant controls during the postpartum period. The elevated levels of TLR 1 and IL-12 were persistent postpartum, challenging notions that immunologic changes during pregnancy resolve after the prototypical postpartum period. CONCLUSION Normal pregnancy is associated with time-dependent changes in TLR expression compared with nonpregnant controls; these findings may help elucidate immunologic dysfunction in complicated pregnancies. PMID:24291497
Masaldan, Shashank; Clatworthy, Sharnel A S; Gamell, Cristina; Smith, Zoe M; Francis, Paul S; Denoyer, Delphine; Meggyesy, Peter M; Fontaine, Sharon La; Cater, Michael A
2018-06-01
Cellular senescence is characterized by irreversible growth arrest incurred through either replicative exhaustion or by pro-oncogenic cellular stressors (radioactivity, oxidative stress, oncogenic activation). The enrichment of senescent cells in tissues with age has been associated with tissue dyshomeostasis and age-related pathologies including cancers, neurodegenerative disorders (e.g. Alzheimer's, Parkinson's, etc.) and metabolic disorders (e.g. diabetes). We identified copper accumulation as being a universal feature of senescent cells [mouse embryonic fibroblasts (MEF), human prostate epithelial cells and human diploid fibroblasts] in vitro. Elevated copper in senescent MEFs was accompanied by elevated levels of high-affinity copper uptake protein 1 (Ctr1), diminished levels of copper-transporting ATPase 1 (Atp7a) (copper export) and enhanced antioxidant defence reflected by elevated levels of glutathione (GSH), superoxide dismutase 1 (SOD1) and glutaredoxin 1 (Grx1). The levels of intracellular copper were further increased in senescent MEFs cultured in copper supplemented medium and in senescent Mottled Brindled (Mo br ) MEFs lacking functional Atp7a. Finally, we demonstrated that the restoration/preservation of autophagic-lysosomal degradation in senescent MEFs following rapamycin treatment correlated with attenuation of copper accumulation in these cells despite a further decrease in Atp7a levels. This study for the first time establishes a link between Atp7a and the autophagic-lysosomal pathway, and a requirement for both to effect efficient copper export. Such a connection between cellular autophagy and copper homeostasis is significant, as both have emerged as important facets of age-associated degenerative disease. Copyright © 2018. Published by Elsevier B.V.
Hypereosinophilia with abnormal T cells, trisomy 7 and elevated TARC serum level.
Roumier, A S; Grardel, N; Laï, J L; Becqueriaux, I; Ghomari, K; de Lavareille, A; Roufosse, F; Prin, L; Capron, M
2003-07-01
The idiopathic hypereosinophilic syndrome (HES) is a rare heterogeneous disorder, characterized by persistent blood eosinophilia with possible organ involvement. We describe here the case of a 20-year-old atopic male presenting chronic hypereosinophilia and eczema since childhood. Biological findings included hypereosinophilia (9.5 x 10(9)/L), hyperlymphocytosis (10.9 x 10(9)/L), polyclonal hypergammaglobulinemia and elevated IgE serum level. Flow cytometric analysis of blood lymphoid cells showed a population of CD2+CD3-CD4+TCRab-TCRgd- lymphocytes. These cells displayed a Th0/Th2 cytokine profile, and a clonal TCR rearrangement pattern. A high serum TARC level was observed. Karyotype studies on blood stimulated culture or lymph nodes revealed a cellular hyperdiploïd clone 47, XY, +7. To our knowledge, this chromosomal aberration has never been reported in such case.
Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Michael T., E-mail: mttsen01@louisville.edu; Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu; Duan, Xiaoxian, E-mail: x0duan02@louisville.edu
2012-04-15
Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestrationmore » by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells, stellate cells and hepatocytes. ► Biopersistence of nanoceria induced hepatic granuloma formation. ► Chronic presence of nanoceria elevated hepatic protein carbonyl levels.« less
Radiosensitization of HT-29 cells and xenografts by the nitric oxide donor DETANONOate.
Gao, Xiaohuan; Saha, Debabrata; Kapur, Payal; Anthony, Thomas; Livingston, Edward H; Huerta, Sergio
2009-08-01
Mechanisms of radioresistance in rectal cancer remain unclear. To determine mechanisms of radioresistance in rectal cancer cells and to assess the role of the nitric oxide donor DETANONOate as a radiosensitizing agent. Survival was determined by clonogenic assays, apoptosis by PARP-1 cleavage, and phenotypic differences by Western blot analysis. SCID mice bearing HT-29 xenografts were treated with ionizing radiation (IR) [2.0 Gy x 5], DETANONOate [0.4 mg/kg i.p.], or combination treatment. Colorectal cancer HT-29-p53-null cells were resistant and HCT-116-p53 wild-type cells sensitive to IR, which correlated with cleaved PARP-1. Increased levels of p21 occurred in HCT-116 cells, while Bcl-2 and survivin were elevated in HT-29 cells. Radiosensitization was achieved with a substantial elevation of cleaved PARP-1 in DETANONOate-HT-29-treated versus control cells, which was accompanied by elevation of p21, p27, and BAX, and a concomitant decrease in Bcl-2. SCID mice bearing HT-29 xenografts demonstrated a 37.6%, 51.1%, and 70.1% inhibition in tumor growth in mice receiving IR, DETANONOate, and combination treatment versus control, respectively. Radioresistant HT-29 cells are p53-null and have substantially decreased levels of p21. DETANONOate radiosensitized HT-29 cells in vitro and in vivo by an additive effect in apoptosis.
IP-10 protects while MIP-2 promotes experimental anesthetic hapten - induced hepatitis
Njoku, Dolores B.; Li, Zhaoxia; Mellerson, Jenelle L; Sharma, Rajni; Talor, Monica V.; Barat, Nicole; Rose, Noel R.
2009-01-01
MIP-2 and IFN-γ inducible protein-10 (IP-10) and their respective receptors, CXCR2 and CXCR3, modulate tissue inflammation by recruiting neutrophils or T cells from the spleen or bone marrow. Yet, how these chemokines modulate diseases such as immune-mediated drug-induced liver injury (DILI) is essentially unknown. To investigate how chemokines modulate experimental DILI in our model we used susceptible BALB/c (WT) and IL-4−/− (KO) mice that develop significantly reduced hepatitis and splenic T cell priming to anesthetic haptens and self proteins following TFA-S100 immunizations. We detected CXCR2+ splenic granulocytes in all mice two weeks following immunizations; by 3 weeks, MIP-2 levels (p<0.001) and GR1+ cells were elevated in WT livers, suggesting MIP-2-recruited granulocytes. Elevated splenic CXCR3+ CD4+T cells were identified after 2 weeks in KO mice indicating elevated IP-10 levels which were confirmed during T cell priming. This result suggested that IP-10 reduced T cell priming to critical DILI antigens. Increased T cell proliferation following co-culture of TFA-S100-primed WT splenocytes with anti-IP-10 (p<0.05) confirmed that IP-10 reduced T cell priming to CYP2E1 and TFA. We propose that MIP-2 promotes and IP-10 protects against the development of hepatitis and T cell priming in this murine model. PMID:19131211
Changes in renal function and fluid and electrolyte regulation in space flight
NASA Technical Reports Server (NTRS)
Leach, C. S.
1992-01-01
The cephalad fluid redistribution resulting from weightlessness has a number of physiologic consequences. Plasma volume is reduced soon after weightlessness is reached, and red blood cell mass reduction follows. Plasma atrial natriuretic peptide, which inhibits aldosterone secretion, was elevated during space flight while plasma aldosterone was below preflight levels. Serum sodium was also reduced and potassium was elevated. Antidiuretic hormone (ADH) was markedly elevated at almost all measurement times in the first eight days of flight, but plasma volume did not return to preflight levels.
Loperamide: A positive modulator for store-operated calcium channels?
Harper, Jacquie L.; Shin, Yangmee; Daly, John W.
1997-01-01
The depletion of inositol trisphosphate-sensitive intracellular pools of calcium causes activation of store-operated calcium (SOC) channels. Loperamide at 10–30 μM has no effect on intracellular calcium levels alone, but augments calcium levels in cultured cells when SOC channels have been activated. In HL-60 leukemic cells, the apparent positive modulatory effect of loperamide on SOC channels occurs when these channels have been activated after ATP, thapsigargin, or ionomycin-elicited depletion of calcium from intracellular storage sites. Loperamide has no effect when levels of intracellular calcium are elevated through a mechanism not involving SOC channels by using sphingosine. Loperamide caused augmentation of intracellular calcium levels after activation of SOC channels in NIH 3T3 fibroblasts, astrocytoma 1321N cells, smooth muscle DDT-MF2 cells, RBL-2H3 mast cells, and pituitary GH4C1 cells. Only in astrocytoma cells did loperamide cause an elevation in intracellular calcium in the absence of activation of SOC channels. The augmentation of intracellular calcium elicited by loperamide in cultured cells was dependent on extracellular calcium and was somewhat resistant to agents (SKF 96365, miconazole, clotrimazole, nitrendipine, and trifluoperazine) that in the absence of loperamide effectively blocked SOC channels. It appears that loperamide augments influx of calcium through activated SOC channels. PMID:9405713
Hung, Hui-Hsing; Kao, Lung-Sen; Liu, Pei-Shan; Huang, Chien-Chang; Yang, De-Ming; Pan, Chien-Yuan
2017-07-01
Zinc ion (Zn 2+ ), the second most abundant transition metal after iron in the body, is essential for neuronal activity and also induces toxicity if the concentration is abnormally high. Our previous results show that exposure of cultured cortical neurons to dopamine elevates intracellular Zn 2+ concentrations ([Zn 2+ ] i ) and induces autophagosome formation but the mechanism is not clear. In this study, we characterized the signaling pathway responsible for the dopamine-induced elevation of [Zn 2+ ] i and the effect of [Zn 2+ ] i in modulating the autophagy in cultured rat embryonic cortical neurons. N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a membrane-permeable Zn 2+ chelator, could rescue the cell death and suppress the autophagosome puncta number induced by dopamine. Dopamine treatment increased the lipidation level of the endogenous microtubule-associated protein 1A/1B-light chain 3 (LC3 II), an autophagosome marker. TPEN added 1h before, but not after, dopamine treatment suppressed the dopamine-induced elevation of LC3 II level. Inhibitors of the dopamine D1-like receptor, protein kinase A (PKA), and NOS suppressed the dopamine-induced elevation of [Zn 2+ ] i . PKA activators and NO generators directly increased [Zn 2+ ] i in cultured neurons. Through cell fractionation, proteins with m.w. values between 5 and 10kD were found to release Zn 2+ following NO stimulation. In addition, TPEN pretreatment and an inhibitor against PKA could suppress the LC3 II level increased by NO and dopamine, respectively. Therefore, our results demonstrate that dopamine-induced elevation of [Zn 2+ ] i is mediated by the D1-like receptor-PKA-NO pathway and is important in modulating the cell death and autophagy. Copyright © 2017 Elsevier Inc. All rights reserved.
Demoruelle, M. Kristen; Harrall, Kylie K.; Ho, Linh; Purmalek, Monica M.; Seto, Nickie L.; Rothfuss, Heather M.; Weisman, Michael H.; Solomon, Joshua J.; Fischer, Aryeh; Okamoto, Yuko; Kelmenson, Lindsay B.; Parish, Mark C.; Feser, Marie; Fleischer, Chelsie; Anderson, Courtney; Mahler, Michael; Norris, Jill M.; Kaplan, Mariana J.; Cherrington, Brian D.; Holers, V. Michael; Deane, Kevin D.
2017-01-01
Objectives Studies suggest that rheumatoid arthritis (RA)-related autoimmunity is initiated at a mucosal site. However, the factors associated with the mucosal generation of this autoimmunity are unknown, especially in individuals who are at-risk for future RA. Therefore, we tested anti-cyclic citrullinated peptide (anti-CCP) antibodies in the sputum of RA-free first-degree relatives (FDRs) of RA patients and patients with classifiable RA. Methods We evaluated induced sputum and serum from 67 FDRs and 20 RA subjects for anti-CCP-IgA and anti-CCP-IgG, with cut-off levels for positivity determined in a control population. Sputum was also evaluated for cell counts, neutrophil extracellular traps (NETs) using sandwich ELISAs for protein/nucleic acid complexes, and total citrulline. Results Sputum anti-CCP-IgA and/or anti-CCP-IgG was positive in 17/67 (25%) FDRs and 14/20 (70%) RA subjects, including a portion of FDRs who were serum anti-CCP negative. In FDRs, elevations of sputum anti-CCP-IgA and anti-CCP-IgG were associated with elevated sputum cell counts and levels of NET complexes. Anti-CCP-IgA was associated with ever-smoking and elevated sputum citrulline levels. Conclusions Anti-CCP is elevated in the sputum of FDRs, including seronegative FDRs, suggesting the lung may be one site of anti-CCP generation in this population. The association of anti-CCP with elevated cell counts and NET levels in FDRs supports a hypothesis that local airway inflammation and NET formation may drive anti-CCP production in the lung and may promote the early stages of RA development. Longitudinal studies are needed to follow the evolution of these processes relative to the development of systemic autoimmunity and articular RA. PMID:28182854
Ram, Babul Moni; Dolpady, Jayashree; Kulkarni, Rakesh; Usha, R; Bhoria, Usha; Poli, Usha Rani; Islam, Mojahidul; Trehanpati, Nirupma; Ramakrishna, Gayatri
2018-01-01
The calcineurin-NFAT signaling pathway regulates cell proliferation, differentiation, and development in diverse cell types and organ systems. Deregulation of calcineurin-NFAT signaling has been reported in leukaemias and few solid tumors such as breast and colon. In the present study, we found elevated calcineurin protein levels and phosphatase activity in cervical cancer cell lines and depletion of the same attenuated cell proliferation. Additionally, nuclear levels of NFAT2, a downstream target of calcineurin, viz, was found elevated in human papillomavirus (HPV) infected cells, HeLa and SiHa, compared to the HPV negative cells, HaCaT and C33A, indicative of its higher DNA binding activity. The nuclear levels of both NFAT1 and NFAT3 remain unaltered implicating they have little role in cervical carcinogenesis. Similar to the in vitro studies, the HPV infected human squamous cell carcinoma specimens showed higher NFAT2 levels compared to the normal cervical epithelium. Depletion of NFAT2 by RNAi attenuated growth of SiHa cells. Overexpression of HPV16 oncoproteins viz, E6 and E7 increased NFAT2 expression levels and DNA binding activity, while knockdown of E6 by RNAi decreased the same. Briefly, we now report an activation of calcineurin-NFAT2 axis in cervical cancer and a novel role of HPV oncoprotein in facilitating NFAT2 dependent cell proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.
Rubinstein, D; Warrendorf, E
1975-06-01
The levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate in freshly drawn human erythrocytes can be tripled by a 2 h incubation at 37 degrees C in a medium containing 21 mM glucose, 1.8 mM adenine, 5 mM pyruvate, 10 mM inosine, and 96 mM phosphate. Similar incubation conditions will restore the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood levels preserved for 12 and 15 weeks, respectively, to those of fresh cells. Omission of pyruvate from the incubation medium further increases the level of ATP slightly, but there is little elevation of 2,3-diphosphoglycerate. Under these conditions labelled pyruvate and lactate production from [14-C]glucose or [14-C]inosine is not diminished, but labelled fructose 1,6-diphosphate, rather than 2,3-diphosphoglycerate, accumulates. In addition, omission of pyruvate from the incubation medium, with a concomitant decrease in accumulation of 2,3-diphosphoglycerate, diminishes the concentration of inorganic phosphate required for optimal ATP elevation. A 5 h incubation in the glucose-adenine-pyruvate-inosine-phosphate medium elevates the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood preserved in the cold for 15 weeks to twice that of fresh cells, indicating that the cells retain their metabolic potential even after prolonged storage at 2 degrees C. The medium may provide a method of rejuvenating 10-12 week cold-preserved erythrocytes for transfusion purposes, by a 1 h incubation at 37 degrees C.
Hepatectomy-Related Hypophosphatemia: A Novel Phosphaturic Factor in the Liver-Kidney Axis
Nomura, Kengo; Miyagawa, Atsumi; Shiozaki, Yuji; Sasaki, Shohei; Kaneko, Ichiro; Ito, Mikiko; Kido, Shinsuke; Segawa, Hiroko; Sano, Mitsue; Fukuwatari, Tsutomu; Shibata, Katsumi
2014-01-01
Marked hypophosphatemia is common after major hepatic resection, but the pathophysiologic mechanism remains unknown. We used a partial hepatectomy (PH) rat model to investigate the molecular basis of hypophosphatemia. PH rats exhibited hypophosphatemia and hyperphosphaturia. In renal and intestinal brush-border membrane vesicles isolated from PH rats, Na+-dependent phosphate (Pi) uptake decreased by 50%–60%. PH rats also exhibited significantly decreased levels of renal and intestinal Na+-dependent Pi transporter proteins (NaPi-IIa [NaPi-4], NaPi-IIb, and NaPi-IIc). Parathyroid hormone was elevated at 6 hours after PH. Hyperphosphaturia persisted, however, even after thyroparathyroidectomy in PH rats. Moreover, DNA microarray data revealed elevated levels of nicotinamide phosphoribosyltransferase (Nampt) mRNA in the kidney after PH, and Nampt protein levels and total NAD concentration increased significantly in the proximal tubules. PH rats also exhibited markedly increased levels of the Nampt substrate, urinary nicotinamide (NAM), and NAM catabolites. In vitro analyses using opossum kidney cells revealed that NAM alone did not affect endogenous NaPi-4 levels. However, in cells overexpressing Nampt, the addition of NAM led to a marked decrease in cell surface expression of NaPi-4 that was blocked by treatment with FK866, a specific Nampt inhibitor. Furthermore, FK866-treated mice showed elevated renal Pi reabsorption and hypophosphaturia. These findings indicate that hepatectomy-induced hypophosphatemia is due to abnormal NAM metabolism, including Nampt activation in renal proximal tubular cells. PMID:24262791
The Mechanism of Blood Function and Production After Injury.
1980-02-01
radioactive 59Fe labeled red cell dilution method described by Garcia7 . Red cell 2,3 diphosphoglycerate levels were measured using a commercial kit...and protein depleted rats was also associated with elevated 2,3 diphosphoglycerate levels (p<.05)(Table IV) suggesting partial compensation for anemic...Brewer, G.J.: The relationship between red cell 2,3 diphosphoglycerate and levels of hemoglobin in the human. Proc.Soc. Exp.Biol.Med. 150(1): 215-9
Tichy, Elisia D; Pillai, Resmi; Deng, Li; Liang, Li; Tischfield, Jay; Schwemberger, Sandy J; Babcock, George F; Stambrook, Peter J
2010-11-01
Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.
Rayegan, Samira; Dehpour, Ahmad Reza; Sharifi, Ali Mohammad
2017-02-01
Overproduction of reactive oxygen species (ROS) by NADPH oxidase (NOX) activation has been considered the essential mechanism induced by hyperglycemia in various tissues. However, there is no comprehensive study on the role of NOXs in high glucose (HG)-induced toxic effect in neural tissues. Recently, a therapeutic strategy in oxidative related pathologies has been introduced by blocking the undesirable actions of NOX enzymes by small molecules. The protective roles of Statins in ameliorating oxidative stress by NOX inhibition have been shown in some tissues except neural. We hypothesized then, that different NOXs may have role in HG-induced neural cell injury. Furthermore, we postulate that Atorvastatin as a small molecule may modulate this NOXs activity to protect neural cells. Undifferentiated PC12 cells were treated with HG (140 mM/24 h) in the presence and absence of Atorvastatin (1 μM/96 h). The cell viability was measured by MTT assay and the gene and protein expressions profile of NOX (1-4) were determined by RT-PCR and western blotting, respectively. Levels of ROS and malondialdehyde (MDA) were also evaluated. Gene and protein expression levels of NOX (1-4) and consequently ROS and MDA levels were elevated in HG-treated PC12 cells. Atorvastatin could significantly decrease HG-induced NOXs, ROS and MDA elevation and improve impaired cell viability. It can be concluded that HG could elevate NOXs activity, ROS and MDA levels in neural tissues and Atorvastatin as a small molecule NOX inhibitor drug may prevent and delay diabetic complications, particularly neuropathy.
Elliptical storm cell modeling of digital radar data
NASA Technical Reports Server (NTRS)
Altman, F. J.
1972-01-01
A model for spatial distributions of reflectivity in storm cells was fitted to digital radar data. The data were taken with a modified WSR-57 weather radar with 2.6-km resolution. The data consisted of modified B-scan records on magnetic tape of storm cells tracked at 0 deg elevation for several hours. The MIT L-band radar with 0.8-km resolution produced cross-section data on several cells at 1/2 deg elevation intervals. The model developed uses ellipses for contours of constant effective-reflectivity factor Z with constant orientation and eccentricity within a horizontal cell cross section at a given time and elevation. The centers of the ellipses are assumed to be uniformly spaced on a straight line, with areas linearly related to log Z. All cross sections are similar at different heights (except for cell tops, bottoms, and splitting cells), especially for the highest reflectivities; wind shear causes some translation and rotation between levels. Goodness-of-fit measures and parameters of interest for 204 ellipses are considered.
Wang, Lina; Hu, Lei; Grygorczyk, Ryszard; Shen, Xueyong; Schwarz, Wolfgang
2015-01-01
Low-level-laser therapy (LLLT) is an effective complementary treatment, especially for anti-inflammation and wound healing in which dermis or mucus mast cells (MCs) are involved. In periphery, MCs crosstalk with neurons via purinergic signals and participate in various physiological and pathophysiological processes. Whether extracellular ATP, an important purine in purinergic signaling, of MCs and neurons could be modulated by irradiation remains unknown. In this study, effects of red-laser irradiation on extracellular ATP content of MCs and dorsal root ganglia (DRG) neurons were investigated and underlying mechanisms were explored in vitro. Our results show that irradiation led to elevation of extracellular ATP level in the human mast cell line HMC-1 in a dose-dependent manner, which was accompanied by elevation of intracellular ATP content, an indicator for ATP synthesis, together with [Ca(2+)]i elevation, a trigger signal for exocytotic ATP release. In contrast to MCs, irradiation attenuated the extracellular ATP content of neurons, which could be abolished by ARL 67156, a nonspecific ecto-ATPases inhibitor. Our results suggest that irradiation potentiates extracellular ATP of MCs by promoting ATP synthesis and release and attenuates extracellular ATP of neurons by upregulating ecto-ATPase activity. The opposite responses of these two cell types indicate complex mechanisms underlying LLLT.
Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors
Xu, Zhenzhu; Jiang, Yanling; Jia, Bingrui; Zhou, Guangsheng
2016-01-01
Stomata control the flow of gases between plants and the atmosphere. This review is centered on stomatal responses to elevated CO2 concentration and considers other key environmental factors and underlying mechanisms at multiple levels. First, an outline of general responses in stomatal conductance under elevated CO2 is presented. Second, stomatal density response, its development, and the trade-off with leaf growth under elevated CO2 conditions are depicted. Third, the molecular mechanism regulating guard cell movement at elevated CO2 is suggested. Finally, the interactive effects of elevated CO2 with other factors critical to stomatal behavior are reviewed. It may be useful to better understand how stomata respond to elevated CO2 levels while considering other key environmental factors and mechanisms, including molecular mechanism, biochemical processes, and ecophysiological regulation. This understanding may provide profound new insights into how plants cope with climate change. PMID:27242858
Stress and Traumatic Brain Injury: A Behavioral, Proteomics, and Histological Study
2011-03-07
time point. They had elevated levels of serum corticosterone (CORT) and hippocampal IL-6 but no other cellular or protein changes. Stressed injured...rats had an increased number of TUNEL-positive cells in the HC and elevated GFAP and Iba1 immunoreactivity in the HC and the PFC. Our findings suggest...neuronal and glial cell loss, inflammation, and gliosis. These findings may have implications in the development of diagnostic and therapeutic measures
Jiang, Xinguo; Patterson, Nicole M; Ling, Yan; Xie, Jianwei; Helferich, William G; Shapiro, David J
2008-11-01
The risks and benefits of diets and supplements containing the estrogenic soy isoflavone genistein are not well established. We report that 10 nm genistein potently induces the granzyme B inhibitor, proteinase inhibitor 9 (PI-9) in MCF-7 human breast cancer cells. By inducing PI-9, genistein inhibits the ability of human natural killer (NK) cells to lyse the target breast cancer cells. In ERalphaHA cells, stably transfected MCF-7 cells, which contain elevated levels of estrogen receptor-alpha (ERalpha), 100 pm genistein or 17beta-estradiol potently induce PI-9 and prevent NK cells from killing the target breast cancer cells. The concentrations of genistein that fully induce PI-9 in MCF-7 cells, and in ERalphaHA cells, are far lower than those previously reported to elicit estrogenic responses through ERalpha. Because 4-hydroxytamoxifen, raloxifene, and ICI 182,780/Faslodex all block genistein induction of PI-9 and elevated levels of ERalpha enhance induction of PI-9, genistein acts via ERalpha to induce PI-9. Increasing levels of ERalpha in breast cancer cells results in a progressive increase in induction of PI-9 by genistein and in the cell's ability to evade killing by NK cells. Moderate levels of dietary genistein and soy flour effectively induce PI-9 in human breast cancers grown in ovariectomized athymic mice. A significant population consumes levels of genistein in soy products that may be high enough to induce PI-9, perhaps potentiating the survival of some preexisting breast cancers by enabling them to evade immunosurveillance.
Ye, Yi Quan; Jin, Chong Wei; Fan, Shi Kai; Mao, Qian Qian; Sun, Cheng Liang; Yu, Yan; Lin, Xian Yong
2015-01-01
Cell wall is the major component of root apoplast which is the main reservoir for iron in roots, while nitric oxide (NO) is involved in regulating the synthesis of cell wall. However, whether such regulation could influence the reutilization of iron stored in root apoplast remains unclear. In this study, we observed that iron deficiency elevated NO level in tomato (Solanum lycopersicum) roots. However, application of S-nitrosoglutathione, a NO donor, significantly enhanced iron retention in root apoplast of iron-deficient plants, accompanied with a decrease of iron level in xylem sap. Consequently, S-nitrosoglutathione treatment increased iron concentration in roots, but decreased it in shoots. The opposite was true for the NO scavenging treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, S-nitrosoglutathione treatment increased pectin methylesterase activity and decreased degree of pectin methylation in root cell wall of both iron-deficient and iron-sufficient plants, which led to an increased iron retention in pectin fraction, thus increasing the binding capacity of iron to the extracted cell wall. Altogether, these results suggested that iron-deficiency-induced elevation of NO increases iron immobilization in root apoplast by decreasing pectin methylation in cell wall. PMID:26073914
NO and H2O2 contribute to SO2 toxicity via Ca2+ signaling in Vicia faba guard cells.
Yi, Min; Bai, Heli; Xue, Meizhao; Yi, Huilan
2017-04-01
NO and H 2 O 2 have been implicated as important signals in biotic and abiotic stress responses of plants to the environment. Previously, we have shown that SO 2 exposure increased the levels of NO and H 2 O 2 in plant cells. We hypothesize that, as signaling molecules, NO and H 2 O 2 mediate SO 2 -caused toxicity. In this paper, we show that SO 2 hydrates caused guard cell death in a concentration-dependent manner in the concentration range of 0.25 to 6 mmol L -1 , which was associated with elevation of intracellular NO, H 2 O 2 , and Ca 2+ levels in Vicia faba guard cells. NO donor SNP enhanced SO 2 toxicity, while NO scavenger c-PTIO and NO synthesis inhibitors L-NAME and tungstate significantly prevented SO 2 toxicity. ROS scavenger ascorbic acid (AsA) and catalase (CAT), Ca 2+ chelating agent EGTA, and Ca 2+ channel inhibitor LaCl 3 also markedly blocked SO 2 toxicity. In addition, both c-PTIO and AsA could completely block SO 2 -induced elevation of intracellular Ca 2+ level. Moreover, c-PTIO efficiently blocked SO 2 -induced H 2 O 2 elevation, and AsA significantly blocked SO 2 -induced NO elevation. These results indicate that extra NO and H 2 O 2 are produced and accumulated in SO 2 -treated guard cells, which further activate Ca 2+ signaling to mediate SO 2 toxicity. Our findings suggest that both NO and H 2 O 2 contribute to SO 2 toxicity via Ca 2+ signaling.
Ackerstaff, E; Pflug, B R; Nelson, J B; Bhujwalla, Z M
2001-05-01
In this study, a panel of normal human prostate cells (HPCs) and tumor cells derived from metastases were studied by (1)H NMR spectroscopy to determine whether the malignant transformation of HPCs results in the elevation of choline compounds. Although an elevated choline signal has been observed previously in clinical studies, the contribution of the different Cho compounds to this elevation, as well as their quantification, has not been established until now. Here we have shown that HPCs derived from metastases exhibit significantly higher phosphocholine as well as glycerophosphocholine levels compared with normal prostate epithelial and stromal cells. Thus the elevation of the choline peak observed clinically in prostate cancer is attributable to an alteration of phospholipid metabolism and not simply to increased cell density, doubling time, or other nonspecific effects. Androgen deprivation of the androgen receptor-positive cell lines resulted in a significant increase of choline compounds after chronic androgen deprivation of the LNCaP cell line and in a decrease of choline compounds after a more acute androgen deprivation of the LAPC-4 cell line. These data strongly support the use of proton magnetic resonance spectroscopic imaging to detect the presence of prostate cancer for diagnosis, to detect response subsequent to androgen ablation therapy, and to detect recurrence.
Chromosome breakage in humans exposed to methyl mercury through fish consumption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skerfving, S.; Hansson, K.; Lindsten, J.
1980-08-01
Chromosome analysis was performed on cells from lymphocyte cultures from nine subjects with increased levels of mercury in their red blood cells and in four healthy controls. The elevated mercury levels were likely to have originated from dietary fish with high levels of methyl mercury. A statistically significant rank correlation was found between the frequency of cells with chromosome breaks and mercury concentration. The biological significance of these findings is at present unknown.
IgG4-related Pleuritis with Elevated Adenosine Deaminase in Pleural Effusion: A Case Report.
Nagayasu, Atsushi; Kubo, Satoshi; Nakano, Kazuhisa; Nakayamada, Shingo; Iwata, Shigeru; Miyagawa, Ippei; Fukuyo, Shunsuke; Saito, Kazuyoshi; Tanaka, Yoshiya
2018-03-09
An 81-year-old man was admitted with bilateral pleural effusion. A clinical examination showed lymphocytic pleura effusion and elevated serum IgG4 levels, so that IgG4-related disease was suggested, whereas tuberculous pleurisy was suspected because of high adenosine deaminase (ADA) levels in the pleural effusion. A surgical pleural biopsy revealed that there were large numbers of IgG4-positive cells and IgG4/IgG positive cell ratio exceeded 40% in several sites. Accordingly, we diagnosed IgG4-related pleuritis and treated with the patient with glucocorticoid therapy. The ADA levels in pleural effusion can increase in IgG4-related pleuritis, and it is therefore important to perform a pleural biopsy.
Inhibitory effects and underlying mechanism of 7-hydroxyflavone phosphate ester in HeLa cells.
Zhang, Ting; Du, Jiang; Liu, Liguo; Chen, Xiaolan; Yang, Fang; Jin, Qi
2012-01-01
Chrysin and its phosphate ester have previously been shown to inhibit cell proliferation and induce apoptosis in Hela cells; however, the underlying mechanism remains to be characterized. In the present study, we therefore synthesized diethyl flavon-7-yl phosphate (FP, C(19)H(19)O(6)P) by a simplified Atheron-Todd reaction, and explored its anti-tumor characteristics and mechanisms. Cell proliferation, cell cycle progression and apoptosis were measured by MTS, flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling techniques, respectively in human cervical cancer HeLa cells treated with 7-hydroxyflavone (HF) and FP. p21, proliferating cell nuclear antigen (PCNA) and cAMP levels in Hela cells were analyzed by western blot and radioimmunoassay. Both HF and FP inhibited proliferation and induced apoptosis in HeLa cells via induction of PCNA/p21 expression, cleaved caspase-3/poly (ADP-ribose) polymerase (PARP)-1, elevation of cAMP levels, and cell cycle arrest with accumulation of cells in the G0/G1 fraction. The effects of FP were more potent than those of HF. The interactions of FP with Ca(2+)-calmodulin (CaM) and Ca(2+)-CaM-phosphodiesterase (PDE)1 were explored by electrospray ionization-mass spectrometry and fluorescence spectra. FP, but not HF, formed non-covalent complexes with Ca(2+)-CaM-PDE1, indicating that FP is an inhibitor of PDE1, and resulting in elevated cellular cAMP levels. It is possible that the elevated cAMP levels inhibit growth and induce apoptosis in Hela cells through induction of p21 and cleaved caspase-3/PARP-1 expression, and causing down-regulation of PCNA and cell cycle arrest with accumulation of cells in the G0/G1 and G2/M fractions. In conclusion, FP was shown to be a Ca(2+)-CaM-PDE inhibitor, which might account for its underlying anti-cancer mechanism in HeLa cells. These observations clearly demonstrate the special roles of phosphorylated flavonoids in biological processes, and suggest that FP might represent a potential new drug for the therapy of human cervical carcinoma.
Inhibitory Effects and Underlying Mechanism of 7-Hydroxyflavone Phosphate Ester in HeLa Cells
Liu, Liguo; Chen, Xiaolan; Yang, Fang; Jin, Qi
2012-01-01
Chrysin and its phosphate ester have previously been shown to inhibit cell proliferation and induce apoptosis in Hela cells; however, the underlying mechanism remains to be characterized. In the present study, we therefore synthesized diethyl flavon-7-yl phosphate (FP, C19H19O6P) by a simplified Atheron-Todd reaction, and explored its anti-tumor characteristics and mechanisms. Cell proliferation, cell cycle progression and apoptosis were measured by MTS, flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling techniques, respectively in human cervical cancer HeLa cells treated with 7-hydroxyflavone (HF) and FP. p21, proliferating cell nuclear antigen (PCNA) and cAMP levels in Hela cells were analyzed by western blot and radioimmunoassay. Both HF and FP inhibited proliferation and induced apoptosis in HeLa cells via induction of PCNA/p21 expression, cleaved caspase-3/poly (ADP-ribose) polymerase (PARP)-1, elevation of cAMP levels, and cell cycle arrest with accumulation of cells in the G0/G1 fraction. The effects of FP were more potent than those of HF. The interactions of FP with Ca2+-calmodulin (CaM) and Ca2+-CaM-phosphodiesterase (PDE)1 were explored by electrospray ionization-mass spectrometry and fluorescence spectra. FP, but not HF, formed non-covalent complexes with Ca2+-CaM-PDE1, indicating that FP is an inhibitor of PDE1, and resulting in elevated cellular cAMP levels. It is possible that the elevated cAMP levels inhibit growth and induce apoptosis in Hela cells through induction of p21 and cleaved caspase-3/PARP-1 expression, and causing down-regulation of PCNA and cell cycle arrest with accumulation of cells in the G0/G1 and G2/M fractions. In conclusion, FP was shown to be a Ca2+-CaM-PDE inhibitor, which might account for its underlying anti-cancer mechanism in HeLa cells. These observations clearly demonstrate the special roles of phosphorylated flavonoids in biological processes, and suggest that FP might represent a potential new drug for the therapy of human cervical carcinoma. PMID:22574207
Polyamines and Nonmelanoma Skin Cancer
Gilmour, Susan K.
2007-01-01
Elevated levels of polyamines have long been associated with skin tumorigenesis. Tightly regulated metabolism of polyamines is critical for cell survival and normal skin homeostasis, and these controls are dysregulated in skin tumorigenesis. A key enzyme in polyamine biosynthesis, ornithine decarboxylase (ODC) is upregulated in skin tumors compared to normal skin. Use of transgenic mouse models has demonstrated that polyamines play an essential role in the early promotional phase of skin tumorigenesis. The formation of skin tumors in these transgenic mice is dependent upon polyamine biosynthesis, especially putrescine, since treatment with inhibitors of ODC activity blocks the formation of skin tumors and causes the rapid regression of existing tumors. Although the mechanism by which polyamines promote skin tumorigenesis are not well understood, elevated levels of polyamines have been shown to stimulate epidermal proliferation, alter keratinocyte differentiation status, increase neovascularization, and increase synthesis of extracellular matrix proteins in a manner similar to that seen in wound healing. It is becoming increasingly apparent that elevated polyamine levels activate not only epidermal cells but also underlying stromal cells in the skin to promote the development and progression of skin tumors. The inhibition of polyamine biosynthesis has potential to be an effective chemoprevention strategy for nonmelanoma skin cancer. PMID:17234230
Mende, Nicole; Kuchen, Erika E.; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D.; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico
2015-01-01
Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1–CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1–CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1–CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. PMID:26150472
Mende, Nicole; Kuchen, Erika E; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico; Waskow, Claudia
2015-07-27
Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1-CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1-CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1-CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. © 2015 Mende et al.
Elevated serum RANTES chemokine levels in autoimmune Addison disease.
Fichna, Marta; Żurawek, Magdalena; Budny, Bartłomiej; Komarowska, Hanna; Niechciał, Elżbieta; Fichna, Piotr; Ruchała, Marek
2018-04-30
INTRODUCTION Regulated on activation, normal T‑cell expressed and secreted chemokine (RANTES), the product of the CCL5 gene, is involved in trafficking immune cells into the inflammation site. It acts as coactivator of T cells and promotes polarization of the immune response towards the Th1 profile. In autoimmune Addison disease (AAD), the adrenal cortex is gradually destroyed by adrenal‑specific immune cell infiltration. RANTES might be implicated in autoimmune adrenal failure through recruitment and activation of the immune cells. Furthermore, the promoter CCL5 variant, rs2107538, seems to be associated with autoimmune endocrine conditions: diabetes and thyroid disease. OBJECTIVES Our analysis was designed to evaluate the prevalence of rs2107538 and serum RANTES levels in AAD. PATIENTS AND METHODS rs2107538 was genotyped using TaqMan technology in 239 individuals with AAD and 542 controls, while serum RANTES levels were evaluated by an enzyme‑linked immunosorbent assay in 114 patients with AAD and 111 healthy age- and sex‑matched individuals. RESULTS No differences were found in rs2107538 genotype or allele frequencies between patients and controls (P = 0.53 and P = 0.39, respectively), and no association was detected with age at AAD onset (P = 0.14). Serum RANTES levels were elevated in patients with AAD compared with controls (mean [SD], 59.2 [30.3] ng/ml vs 45.5 [20.4] ng/ml, P = 0.001). Healthy carriers of various rs2107538 genotypes demonstrated differences in serum RANTES levels (P = 0.02), whereas AAD patients did not (P = 0.26). No correlation was found between circulating RANTES levels and age, AAD duration, serum autoantibodies, hydrocortisone dose, and body mass (P >0.05). CONCLUSIONS This study demonstrates for the first time elevated serum RANTES levels in AAD and confirms that rs2107538 may affect serum chemokine levels.
O-linked GlcNAcylation elevated by HPV E6 mediates viral oncogenesis.
Zeng, Qinghua; Zhao, Rui-Xun; Chen, Jianfeng; Li, Yining; Li, Xiang-Dong; Liu, Xiao-Long; Zhang, Wei-Ming; Quan, Cheng-Shi; Wang, Yi-Shu; Zhai, Ying-Xian; Wang, Jian-Wei; Youssef, Mariam; Cui, Rutao; Liang, Jiyong; Genovese, Nicholas; Chow, Louise T; Li, Yu-Lin; Xu, Zhi-Xiang
2016-08-16
High-risk human papillomaviruses (HPVs) are causative agents of anogenital cancers and a fraction of head and neck cancers. The mechanisms involved in the progression of HPV neoplasias to cancers remain largely unknown. Here, we report that O-linked GlcNAcylation (O-GlcNAc) and O-GlcNAc transferase (OGT) were markedly increased in HPV-caused cervical neoplasms relative to normal cervix, whereas O-GlcNAcase (OGA) levels were not altered. Transduction of HPV16 oncogene E6 or E6/E7 into mouse embryonic fibroblasts (MEFs) up-regulated OGT mRNA and protein, elevated the level of O-GlcNAc, and promoted cell proliferation while reducing cellular senescence. Conversely, in HPV-18-transformed HeLa cervical carcinoma cells, inhibition of O-GlcNAc with a low concentration of a chemical inhibitor impaired the transformed phenotypes in vitro. We showed that E6 elevated c-MYC via increased protein stability attributable to O-GlcNAcylation on Thr58. Reduction of HPV-mediated cell viability by a high concentration of O-GlcNAc inhibitor was partially rescued by elevated c-MYC. Finally, knockdown of OGT or O-GlcNAc inhibition in HeLa cells or in TC-1 cells, a mouse cell line transformed by HPV16 E6/E7 and activated K-RAS, reduced c-MYC and suppressed tumorigenesis and metastasis. Thus, we have uncovered a mechanism for HPV oncoprotein-mediated transformation. These findings may eventually aid in the development of effective therapeutics for HPV-associated malignancies by targeting aberrant O-GlcNAc.
O-linked GlcNAcylation elevated by HPV E6 mediates viral oncogenesis
Zeng, Qinghua; Zhao, Rui-Xun; Chen, Jianfeng; Li, Yining; Li, Xiang-Dong; Liu, Xiao-Long; Zhang, Wei-Ming; Quan, Cheng-Shi; Wang, Yi-Shu; Zhai, Ying-Xian; Wang, Jian-Wei; Youssef, Mariam; Cui, Rutao; Liang, Jiyong; Genovese, Nicholas; Chow, Louise T.; Li, Yu-Lin; Xu, Zhi-Xiang
2016-01-01
High-risk human papillomaviruses (HPVs) are causative agents of anogenital cancers and a fraction of head and neck cancers. The mechanisms involved in the progression of HPV neoplasias to cancers remain largely unknown. Here, we report that O-linked GlcNAcylation (O-GlcNAc) and O-GlcNAc transferase (OGT) were markedly increased in HPV-caused cervical neoplasms relative to normal cervix, whereas O-GlcNAcase (OGA) levels were not altered. Transduction of HPV16 oncogene E6 or E6/E7 into mouse embryonic fibroblasts (MEFs) up-regulated OGT mRNA and protein, elevated the level of O-GlcNAc, and promoted cell proliferation while reducing cellular senescence. Conversely, in HPV-18–transformed HeLa cervical carcinoma cells, inhibition of O-GlcNAc with a low concentration of a chemical inhibitor impaired the transformed phenotypes in vitro. We showed that E6 elevated c-MYC via increased protein stability attributable to O-GlcNAcylation on Thr58. Reduction of HPV-mediated cell viability by a high concentration of O-GlcNAc inhibitor was partially rescued by elevated c-MYC. Finally, knockdown of OGT or O-GlcNAc inhibition in HeLa cells or in TC-1 cells, a mouse cell line transformed by HPV16 E6/E7 and activated K-RAS, reduced c-MYC and suppressed tumorigenesis and metastasis. Thus, we have uncovered a mechanism for HPV oncoprotein-mediated transformation. These findings may eventually aid in the development of effective therapeutics for HPV-associated malignancies by targeting aberrant O-GlcNAc. PMID:27482104
Elevated CO2 and/or ozone modify lignification in the wood of poplars (Populus tremula x alba)
Richet, Nicolas; Afif, Dany; Tozo, Koffi; Pollet, Brigitte; Maillard, Pascale; Huber, Françoise; Priault, Pierrick; Banvoy, Jacques; Gross, Patrick; Dizengremel, Pierre; Lapierre, Catherine; Perré, Patrick; Cabané, Mireille
2012-01-01
Trees will have to cope with increasing levels of CO2 and ozone in the atmosphere. The purpose of this work was to assess whether the lignification process could be altered in the wood of poplars under elevated CO2 and/or ozone. Young poplars were exposed either to charcoal-filtered air (control), to elevated CO2 (800 μl l−1), to ozone (200 nl l−1) or to a combination of elevated CO2 and ozone in controlled chambers. Lignification was analysed at different levels: biosynthesis pathway activities (enzyme and transcript), lignin content, and capacity to incorporate new assimilates by using 13C labelling. Elevated CO2 and ozone had opposite effects on many parameters (growth, biomass, cambial activity, wood cell wall thickness) except on lignin content which was increased by elevated CO2 and/or ozone. However, this increased lignification was due to different response mechanisms. Under elevated CO2, carbon supply to the stem and effective lignin synthesis were enhanced, leading to increased lignin content, although there was a reduction in the level of some enzyme and transcript involved in the lignin pathway. Ozone treatment induced a reduction in carbon supply and effective lignin synthesis as well as transcripts from all steps of the lignin pathway and some corresponding enzyme activities. However, lignin content was increased under ozone probably due to variations in other major components of the cell wall. Both mechanisms seemed to coexist under combined treatment and resulted in a high increase in lignin content. PMID:22553285
Elevated serum galectin-9 levels in patients with atopic dermatitis.
Nakajima, Rina; Miyagaki, Tomomitsu; Oka, Tomonori; Nakao, Momoko; Kawaguchi, Makiko; Suga, Hiraku; Morimura, Sohshi; Kai, Hiromichi; Asano, Yoshihide; Tada, Yayoi; Kadono, Takafumi; Sato, Shinichi; Sugaya, Makoto
2015-07-01
Galectin-9 is a member of the galectin family that has a wide spectrum of biological functions. Among them, galectin-9 has been known mainly as a potent chemoattractant for eosinophils. In addition, galectin-9 alters the T-cell balance by negatively regulating T-helper (Th)1 and Th17 cells, resulting in Th2 polarization. Atopic dermatitis (AD) is a skin allergic disease characterized by peripheral eosinophilia, mast cell activation and predominance of Th2 cells. To investigate possible roles of galectin-9 in AD, we measured serum galectin-9 levels in AD patients and investigated galectin-9 expression in lesional skin by immunohistochemistry. Serum galectin-9 levels in patients with AD were significantly higher than those in healthy controls and correlated with the Eczema Area and Severity Index. Serum galectin-9 levels were decreased after treatment, accompanied by improvement of skin lesions. Immunohistochemical study revealed that galectin-9 was expressed on epidermal keratinocytes and mast cells in lesional skin of AD. Our results suggest that elevated galectin-9 expression is associated with progression of AD and that galectin-9 could be a therapeutic target in AD. © 2015 Japanese Dermatological Association.
NF-KappaB2/p52 Activation and Androgen Receptor Signaling in Prostate Cancer
2011-08-01
biosynthetic enzymes including AKR1C3, CYP17A1, HSD3B2, and SRD5A1 were found to be elevated in CaP cells expressing NF-kappaB2/p52. Luciferase assays...RESULTS: Expression levels of androgen biosynthetic enzymes including AKR1C3, CYP17A1, HSD3B2, and SRD5A1 were found to be elevated in CaP cells
Mokri, Poroshista; Lamp, Nora; Linnebacher, Michael; Classen, Carl Friedrich; Erbersdobler, Andreas; Schneider, Björn
2017-01-01
Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in adults. It is known that amplification of the epidermal growth factor receptor gene (EGFR) occurs in approximately 40% of GBM, leading to enhanced activation of the EGFR signaling pathway and promoting tumor growth. Although GBM mutations are stably maintained in GBM in vitro models, rapid loss of EGFR gene amplification is a common observation during cell culture. To maintain EGFR amplification in vitro, heterotopic GBM xenografts with elevated EGFR copy number were cultured under varying serum conditions and EGF concentrations. EGFR copy numbers were assessed over several passages by quantitative PCR and chromogenic in situ hybridization. As expected, in control assays with 10% FCS, cells lost EGFR amplification with increasing passage numbers. However, cells cultured under serum free conditions stably maintained elevated copy numbers. Furthermore, EGFR protein expression positively correlated with genomic amplification levels. Although elevated EGFR copy numbers could be maintained over several passages in vitro, levels of EGFR amplification were variable and dependent on the EGF concentration in the medium. In vitro cultures of GBM cells with elevated EGFR copy number and corresponding EGFR protein expression should prove valuable preclinical tools to gain a better understanding of EGFR driven glioblastoma and assist in the development of new improved therapies. PMID:28934307
NASA Astrophysics Data System (ADS)
Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A.; Ghosh, Partha Pratim; Mitra, Prasenjit
2016-06-01
Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation.
Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A; Ghosh, Partha Pratim; Mitra, Prasenjit
2016-01-01
Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation. PMID:27282931
DeJarnett, Natasha; Yeager, Ray; Conklin, Daniel J; Lee, Jongmin; O'Toole, Timothy E; McCracken, James; Abplanalp, Wes; Srivastava, Sanjay; Riggs, Daniel W; Hamzeh, Ihab; Wagner, Stephen; Chugh, Atul; DeFilippis, Andrew; Ciszewski, Tiffany; Wyatt, Brad; Becher, Carrie; Higdon, Deirdre; Ramos, Kenneth S; Tollerud, David J; Myers, John A; Rai, Shesh N; Shah, Jasmit; Zafar, Nagma; Krishnasamy, Sathya S; Prabhu, Sumanth D; Bhatnagar, Aruni
2015-11-01
Previous studies have shown that residential proximity to a roadway is associated with increased cardiovascular disease risk. Yet, the nature of this association remains unclear, and its effect on individual cardiovascular disease risk factors has not been assessed. The objective of this study was to determine whether residential proximity to roadways influences systemic inflammation and the levels of circulating angiogenic cells. In a cross-sectional study, cardiovascular disease risk factors, blood levels of C-reactive protein, and 15 antigenically defined circulating angiogenic cell populations were measured in participants (n=316) with moderate-to-high cardiovascular disease risk. Attributes of roadways surrounding residential locations were assessed using geographic information systems. Associations between road proximity and cardiovascular indices were analyzed using generalized linear models. Close proximity (<50 m) to a major roadway was associated with lower income and higher rates of smoking but not C-reactive protein levels. After adjustment for potential confounders, the levels of circulating angiogenic cells in peripheral blood were significantly elevated in people living in close proximity to a major roadway (CD31(+)/AC133(+), AC133(+), CD34(+)/AC133(+), and CD34(+)/45(dim)/AC133(+) cells) and positively associated with road segment distance (CD31(+)/AC133(+), AC133(+), and CD34(+)/AC133(+) cells), traffic intensity (CD31(+)/AC133(+) and AC133(+) cells), and distance-weighted traffic intensity (CD31(+)/34(+)/45(+)/AC133(+) cells). Living close to a major roadway is associated with elevated levels of circulating cells positive for the early stem marker AC133(+). This may reflect an increased need for vascular repair. Levels of these cells in peripheral blood may be a sensitive index of cardiovascular injury because of residential proximity to roadways. © 2015 American Heart Association, Inc.
Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip
2016-01-01
Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064
Torres-Rasgado, Enrique; Porchia, Leonardo M.; Ruiz-Vivanco, Guadalupe; Gonzalez-Mejia, M. Elba; Báez-Duarte, Blanca G.; Pulido-Pérez, Patricia; Rivera, Alicia; Romero, Jose R.
2015-01-01
Abstract Background: Type 2 diabetes mellitus (T2DM) is characterized as a disease continuum that is marked by metabolic changes that are present for several years, sometimes well before frank diagnosis of T2DM. Genetic predisposition, ethnicity, geography, alterations in BMI, and lipid profile are considered important markers for the pathogenesis of T2DM through mechanisms that remain unresolved and controversial. The aim of this study was to investigate the relationship between triglycerides (TGs) and β-cell function, insulin resistance (IR), and insulin sensitivity (IS) in obese first-degree relatives of patients with T2DM (FDR-T2DM) among subjects from central Mexico with normal glucose tolerance (NGT). Methods: We studied 372 FDR-T2DM subjects (ages,18–65) and determined body mass index (BMI), fasting plasma glucose (FPG), oral glucose tolerance test (OGTT), insulin, and TGs levels. Subjects were categorized based on glycemic control [NGT, prediabetes (PT2DM), or T2DM]. NGT subjects were further categorized by BMI [normal weight (Ob−) or obese (Ob+)] and TGs levels (TG−, <150 mg/dL, or TG+, ≥150 mg/dL). β-cell function, IR, and IS were determined by the homeostasis model assessment of β-cell function (HOMA2-β), homeostasis model assessment of insulin resistance (HOMA2-IR), and Quantitative Insulin Sensitivity Check Index (QUICKI) indices, respectively. Results: The obese subjects with elevated TGs levels had 21%–60% increased β-cell function when compared to all groups (P<0.05). In addition, this group had insulin levels, IS, and IR similar to PT2DM. Furthermore, only in obese subjects did TGs correlate with β-cell function (ρ=0.502, P<0.001). Conclusion: We characterized FDR-T2DM subjects from central Mexico with NGT and revealed a class of obese subjects with elevated TGs and β-cell function, which may precede PT2DM. PMID:25423015
Chen, Jiaxi; Li, Shuang; Shi, Jianfeng; Zhang, Lili; Li, Jun; Chen, Shiyong; Wu, Chunlong; Shen, Bo
2016-03-01
Soluble progranulin (PGRN) is known to directly regulate regulatory T cells; however, whether PGRN levels are elevated in patients with rheumatoid arthritis and affect the regulatory subsets of B cells remain unknown. In this study, a total of 80 RA patients and 60 healthy controls were studied. Serum progranulin levels were determined using enzyme-linked immune-sorbent assay. A receiver operating characteristic (ROC) curve was used to evaluate the feasibility of serum PGRN as a biomarker for distinguishing patients with RA. CD19(+)CD5(+)GrB(+) B cells were analyzed by flow cytometry in peripheral blood mononuclear cells (PBMCs). Serum progranulin levels in RA patients (median, 59.4 ng/mL) and in RA patients DAS28 > 5.1 (median, 71.98 ng/mL) were much higher than those in normal controls (median, 46.3 ng/mL; P < 0.001). The area under the ROC curve for progranulin levels was 0.705 for RA versus normal controls and the area under the ROC curve for progranulin levels in RA patients DAS28 > 5.1 was 0.977 versus normal controls (P < 0.001). Interestingly, serum progranulin and DAS28, CRP, ESR were all positively correlated in RA patients (P < 0.001). The number of CD19(+)CD5(+)GrB(+) B cells was significantly higher in RA patients (P < 0.05); however, the level of Breg cells was not related to PGRN (P > 0.05). Our findings indicated that induction of PGRN expression may play a role in RA immune reaction and PGRN levels could be a useful biomarker in RA inflammatory response, but irrelated with Breg cell levels.
ELEVATED LEVELS OF INDUCIBLE HEAT SHOCK PROTEIN (HSP70-1) PROTECT MCF-7 CELLS FROM ARSENITE TOXICITY
Heat shock proteins (HSPs) belong to the highly conserved family of stress proteins and are induced following exposure to arsenic. Elevated HSPs protect against cellular damage from heat but it is unclear whether HSP induction alters the damaging effects of environmental chemical...
NASA Astrophysics Data System (ADS)
Fan, Xing-Xing; Yao, Xiao-Jun; Xu, Su Wei; Wong, Vincent Kam-Wai; He, Jian-Xing; Ding, Jian; Xue, Wei-Wei; Mujtaba, Tahira; Michelangeli, Francesco; Huang, Min; Huang, Jun; Xiao, Da-Kai; Jiang, Ze-Bo; Zhou, Yan-Ling; Kin-Ting Kam, Richard; Liu, Liang; Lai-Han Leung, Elaine
2015-11-01
Calcium is a second messenger which is required for regulation of many cellular processes. However, excessive elevation or prolonged activation of calcium signaling would lead to cell death. As such, selectively regulating calcium signaling could be an alternative approach for anti-cancer therapy. Recently, we have identified an effective analogue of resveratrol, (Z)3,4,5,4‧-trans-tetramethoxystilbene (TMS) which selectively elevated the intracellular calcium level in gefitinib-resistant (G-R) non-small-cell lung cancer (NSCLC) cells. TMS exhibited significant inhibitory effect on G-R NSCLC cells, but not other NSCLC cells and normal lung epithelial cells. The phosphorylation and activation of EGFR were inhibited by TMS in G-R cells. TMS induced caspase-independent apoptosis and autophagy by directly binding to SERCA and causing endoplasmic reticulum (ER) stress and AMPK activation. Proteomics analysis also further confirmed that mTOR pathway, which is the downstream of AMPK, was significantly suppressed by TMS. JNK, the cross-linker of ER stress and mTOR pathway was significantly activated by TMS. In addition, the inhibition of JNK activation can partially block the effect of TMS. Taken together, TMS showed promising anti-cancer activity by mediating calcium signaling pathway and inducing apoptosis as well as autophagy in G-R NSCLC cells, providing strategy in designing multi-targeting drug for treating G-R patients.
Bhatia, Vandanajay; Rastellini, Cristiana; Han, Song; Aronson, Judith F; Greeley, George H; Falzon, Miriam
2014-09-01
Pancreatitis is a necroinflammatory disease with acute and chronic manifestations. Accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic pancreatitis (CP). Pancreatic parathyroid hormone-related protein (PTHrP) levels are elevated in a mouse model of cerulein-induced AP. Here, we show elevated PTHrP levels in mouse models of pancreatitis induced by chronic cerulein administration and pancreatic duct ligation. Because acinar cells play a major role in the pathophysiology of pancreatitis, mice with acinar cell-specific targeted disruption of the Pthrp gene (PTHrP(Δacinar)) were generated to assess the role of acinar cell-secreted PTHrP in pancreatitis. These mice were generated using Cre-LoxP technology and the acinar cell-specific elastase promoter. PTHrP(Δacinar) exerted protective effects in cerulein and pancreatic duct ligation models, evident as decreased edema, histological damage, amylase secretion, pancreatic stellate cell (PSC) activation, and extracellular matrix deposition. Treating acinar cells in vitro with cerulein increased IL-6 expression and NF-κB activity; these effects were attenuated in PTHrP(Δacinar) cells, as were the cerulein- and carbachol-induced elevations in amylase secretion. The cerulein-induced upregulation of procollagen I expression was lost in PSCs from PTHrP(Δacinar) mice. PTHrP immunostaining was elevated in human CP sections. The cerulein-induced upregulation of IL-6 and ICAM-1 (human acinar cells) and procollagen I (human PSCs) was suppressed by pretreatment with the PTH1R antagonist, PTHrP (7-34). These findings establish PTHrP as a novel mediator of inflammation and fibrosis associated with CP. Acinar cell-secreted PTHrP modulates acinar cell function via its effects on proinflammatory cytokine release and functions via a paracrine pathway to activate PSCs. Copyright © 2014 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Feng-zhen; Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, PR China.; Yu, Chao
O-GlcNAcylation is a dynamic and reversible posttranslational modification of nuclear and cytoplasmic proteins. In recent years, the roles of O-GlcNAcylation in several human malignant tumors have been investigated, and O-GlcNAcylation was found to be linked to cellular features relevant to metastasis. In this study, we modeled four diverse ovarian cancer cells and investigated the effects of O-GlcNAcylation on ovarian cancer cell migration. We found that total O-GlcNAcylation level was elevated in HO-8910PM cells compared to OVCAR3 cells. Additionally, through altering the total O-GlcNAcylation level by OGT silencing or OGA inhibition, we found that the migration of OVCAR3 cells was dramaticallymore » enhanced by PUGNAc and Thiamet G treatment, and the migration ability of HO-8910PM cells was significantly inhibited by OGT silencing. Furthermore, we also found that the expression of E-cadherin, an O-GlcNAcylated protein in ovarian cancer cells, was reduced by OGA inhibition in OVCAR3 cells and elevated by OGT silencing in HO-8910PM cells. These results indicate that O-GlcNAcylation could enhance ovarian cancer cell migration and decrease the expression of E-cadherin. Our studies also suggest that O-GlcNAcylation might become another potential target for the therapy of ovarian cancer. -- Highlights: • We examine the migration potential of diverse ovarian cancer cells. • We examine the total O-GlcNAcylation level of diverse ovarian cancer cells. • Increasing O-GlcNAcylation level will enhance the migration of ovarian cancer cells. • Reducing O-GlcNAcylation level will inhibit the migration of ovarian cancer cells. • The mechanism explains O-GlcNAcylation enhance ovarian cancer cell migration.« less
Non-invasive imaging of oxygen extraction fraction in adults with sickle cell anaemia.
Jordan, Lori C; Gindville, Melissa C; Scott, Allison O; Juttukonda, Meher R; Strother, Megan K; Kassim, Adetola A; Chen, Sheau-Chiann; Lu, Hanzhang; Pruthi, Sumit; Shyr, Yu; Donahue, Manus J
2016-03-01
Sickle cell anaemia is a monogenetic disorder with a high incidence of stroke. While stroke screening procedures exist for children with sickle cell anaemia, no accepted screening procedures exist for assessing stroke risk in adults. The purpose of this study is to use novel magnetic resonance imaging methods to evaluate physiological relationships between oxygen extraction fraction, cerebral blood flow, and clinical markers of cerebrovascular impairment in adults with sickle cell anaemia. The specific goal is to determine to what extent elevated oxygen extraction fraction may be uniquely present in patients with higher levels of clinical impairment and therefore may represent a candidate biomarker of stroke risk. Neurological evaluation, structural imaging, and the non-invasive T2-relaxation-under-spin-tagging magnetic resonance imaging method were applied in sickle cell anaemia (n = 34) and healthy race-matched control (n = 11) volunteers without sickle cell trait to assess whole-brain oxygen extraction fraction, cerebral blood flow, degree of vasculopathy, severity of anaemia, and presence of prior infarct; findings were interpreted in the context of physiological models. Cerebral blood flow and oxygen extraction fraction were elevated (P < 0.05) in participants with sickle cell anaemia (n = 27) not receiving monthly blood transfusions (interquartile range cerebral blood flow = 46.2-56.8 ml/100 g/min; oxygen extraction fraction = 0.39-0.50) relative to controls (interquartile range cerebral blood flow = 40.8-46.3 ml/100 g/min; oxygen extraction fraction = 0.33-0.38). Oxygen extraction fraction (P < 0.0001) but not cerebral blood flow was increased in participants with higher levels of clinical impairment. These data provide support for T2-relaxation-under-spin-tagging being able to quickly and non-invasively detect elevated oxygen extraction fraction in individuals with sickle cell anaemia with higher levels of clinical impairment. Our results support the premise that magnetic resonance imaging-based assessment of elevated oxygen extraction fraction might be a viable screening tool for evaluating stroke risk in adults with sickle cell anaemia. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Non-invasive imaging of oxygen extraction fraction in adults with sickle cell anaemia
Gindville, Melissa C.; Scott, Allison O.; Juttukonda, Meher R.; Strother, Megan K.; Kassim, Adetola A.; Chen, Sheau-Chiann; Lu, Hanzhang; Pruthi, Sumit; Shyr, Yu; Donahue, Manus J.
2016-01-01
Sickle cell anaemia is a monogenetic disorder with a high incidence of stroke. While stroke screening procedures exist for children with sickle cell anaemia, no accepted screening procedures exist for assessing stroke risk in adults. The purpose of this study is to use novel magnetic resonance imaging methods to evaluate physiological relationships between oxygen extraction fraction, cerebral blood flow, and clinical markers of cerebrovascular impairment in adults with sickle cell anaemia. The specific goal is to determine to what extent elevated oxygen extraction fraction may be uniquely present in patients with higher levels of clinical impairment and therefore may represent a candidate biomarker of stroke risk. Neurological evaluation, structural imaging, and the non-invasive T2-relaxation-under-spin-tagging magnetic resonance imaging method were applied in sickle cell anaemia (n = 34) and healthy race-matched control (n = 11) volunteers without sickle cell trait to assess whole-brain oxygen extraction fraction, cerebral blood flow, degree of vasculopathy, severity of anaemia, and presence of prior infarct; findings were interpreted in the context of physiological models. Cerebral blood flow and oxygen extraction fraction were elevated (P < 0.05) in participants with sickle cell anaemia (n = 27) not receiving monthly blood transfusions (interquartile range cerebral blood flow = 46.2–56.8 ml/100 g/min; oxygen extraction fraction = 0.39–0.50) relative to controls (interquartile range cerebral blood flow = 40.8–46.3 ml/100 g/min; oxygen extraction fraction = 0.33–0.38). Oxygen extraction fraction (P < 0.0001) but not cerebral blood flow was increased in participants with higher levels of clinical impairment. These data provide support for T2-relaxation-under-spin-tagging being able to quickly and non-invasively detect elevated oxygen extraction fraction in individuals with sickle cell anaemia with higher levels of clinical impairment. Our results support the premise that magnetic resonance imaging-based assessment of elevated oxygen extraction fraction might be a viable screening tool for evaluating stroke risk in adults with sickle cell anaemia. PMID:26823369
Sundqvist, Martina; Christenson, Karin; Björnsdottir, Halla; Osla, Veronica; Karlsson, Anna; Dahlgren, Claes; Speert, David P.; Fasth, Anders; Brown, Kelly L.; Bylund, Johan
2017-01-01
Chronic granulomatous disease (CGD) is caused by mutations in genes that encode the NADPH-oxidase and result in a failure of phagocytic cells to produce reactive oxygen species (ROS) via this enzyme system. Patients with CGD are highly susceptible to infections and often suffer from inflammatory disorders; the latter occurs in the absence of infection and correlates with the spontaneous production of inflammatory cytokines. This clinical feature suggests that NADPH-oxidase-derived ROS are not required for, or may even suppress, inflammatory processes. Experimental evidence, however, implies that ROS are in fact required for inflammatory cytokine production. By using a myeloid cell line devoid of a functional NADPH-oxidase and primary CGD cells, we analyzed intracellular oxidants, signs of oxidative stress, and inflammatory cytokine production. Herein, we demonstrate that phagocytes lacking a functional NADPH-oxidase, namely primary CGD phagocytes and a gp91phox-deficient cell line, display elevated levels of ROS derived from mitochondria. Accordingly, these cells, despite lacking the major source of cellular ROS, display clear signs of oxidative stress, including an induced expression of antioxidants and altered oxidation of cell surface thiols. These observed changes in redox state were not due to abnormalities in mitochondrial mass or membrane integrity. Finally, we demonstrate that increased mitochondrial ROS enhanced phosphorylation of ERK1/2, and induced production of IL8, findings that correlate with previous observations of increased MAPK activation and inflammatory cytokine production in CGD cells. Our data show that elevated baseline levels of mitochondria-derived oxidants lead to the counter-intuitive observation that CGD phagocytes are under oxidative stress and have enhanced MAPK signaling, which may contribute to the elevated basal production of inflammatory cytokines and the sterile inflammatory manifestations in CGD. PMID:29375548
Effect of epileptic seizures on the cerebrospinal fluid--A systematic retrospective analysis.
Tumani, Hayrettin; Jobs, Catherine; Brettschneider, Johannes; Hoppner, Anselm C; Kerling, Frank; Fauser, Susanne
2015-08-01
Analyses of the cerebrospinal fluid (CSF) are obligatory when epileptic seizures manifest for the first time in order to exclude life-threatening causes or treatable diseases such as acute infections or autoimmune encephalitis. However, there are only few systematic investigations on the effect of seizures themselves on CSF parameters and the significance of these parameters in differential diagnosis. CSF samples of 309 patients with epileptic and 10 with psychogenic seizures were retrospectively analyzed. CSF samples were collected between 1999 and 2008. Cell counts, the albumin quotient, lactate and Tau-protein levels were determined. Findings were correlated with seizure types, seizure etiology (symptomatic, cryptogenic, occasional seizure), and seizure duration. Pathological findings were only observed in patients with epileptic but not with psychogenic seizures. The lactate concentration was elevated in 14%, the albumin quotient in 34%, and the Tau protein level in 36% of CSF samples. Cell counts were only slightly elevated in 6% of patients. Different seizure types influenced all parameters except for the cell count: In status epilepticus highest, in simple partial seizures lowest values were seen. Symptomatic partial and generalized epileptic seizures had significantly higher Tau-protein levels than cryptogenic partial seizures. In patients with repetitive and occasional epileptic seizures, higher Tau-protein levels were seen than in those with psychogenic seizures. Duration of epileptic seizures was positively correlated with the albumin quotient, lactate and Tau-protein levels. High variability of investigated CSF parameters within each subgroup rendered a clear separation between epileptic and psychogenic seizures impossible. Elevated cell counts are infrequently observed in patients with epileptic seizures and should therefore not uncritically be interpreted as a postictal phenomenon. However, blood-CSF barrier disruption, increased glucose metabolism and elevation of neuronal damage markers are observed in considerable percentages of patients and depend on many factors such as etiology, seizure type and duration. Copyright © 2015 Elsevier B.V. All rights reserved.
White, Stephen J; Hayes, Elaine M; Lehoux, Stéphanie; Jeremy, Jamie Y; Horrevoets, Anton JG; Newby, Andrew C
2011-01-01
Most acute coronary events occur in the upstream region of stenotic atherosclerotic plaques that experience laminar shear stress (LSS) elevated above normal physiological levels. Many studies have described the atheroprotective effect on endothelial behavior of normal physiological LSS (approximately 15 dynes/cm2) compared to static or oscillatory shear stress (OSS), but it is unknown whether the levels of elevated shear stress imposed by a stenotic plaque would preserve, enhance or reverse this effect. Therefore we used transcriptomics and related functional analyses to compare human endothelial cells exposed to laminar shear stress of 15 (LSS15-normal) or 75 dynes/cm2 (LSS75-elevated). LSS75 upregulated expression of 145 and downregulated expression of 158 genes more than twofold relative to LSS15. Modulation of the metallothioneins (MT1-G, -M, -X) and NADPH oxidase subunits (NOX2, NOX4, NOX5, and p67phox) accompanied suppression of reactive oxygen species production at LSS75. Shear induced changes in dual specificity phosphatases (DUSPs 1, 5, 8, and 16 increasing and DUSPs 6 and 23 decreasing) were observed as well as reduced ERK1/2 but increased p38 MAP kinase phosphorylation. Amongst vasoactive substances, endothelin-1 expression decreased whereas vasoactive intestinal peptide (VIP) and prostacyclin expression increased, despite which intracellular cAMP levels were reduced. Promoter analysis by rVISTA identified a significant over representation of ATF and Nrf2 transcription factor binding sites in genes upregulated by LSS75 compared to LSS15. In summary, LSS75 induced a specific change in behavior, modifying gene expression, reducing ROS levels, altering MAP kinase signaling and reducing cAMP levels, opening multiple avenues for future study. J. Cell. Physiol. 226: 2841–2848, 2011. © 2011 Wiley-Liss, Inc. PMID:21302282
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gough, Mallory, E-mail: m.gough1@lancaster.ac.uk; Blanthorn-Hazell, Sophee, E-mail: s.blanthorn-hazell@lancaster.ac.uk; Delury, Craig, E-mail: c.delury@lancaster.ac.uk
Highlights: • Copper levels are elevated in the tumour microenvironment. • APP mitigates copper-induced growth inhibition of DU145 prostate cancer (PCa) cells. • The APP intracellular domain is a prerequisite; soluble forms have no effect. • The E1 CuBD of APP is also a prerequisite. • APP copper binding potentially mitigates copper-induced PCa cell growth inhibition. - Abstract: Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enablemore » cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikonomov, Ognian C., E-mail: oikonomo@med.wayne.edu; Filios, Catherine, E-mail: cfilios@med.wayne.edu; Sbrissa, Diego, E-mail: dsbrissa@med.wayne.edu
2013-10-18
Highlights: •We assess PAS complex proteins and phosphoinositide levels in breast cancer cells. •Sac3 and ArPIKfyve are markedly elevated in triple-negative breast cancer cells. •Sac3 silencing inhibits proliferation in triple-negative breast cancer cell lines. •Phosphoinositide profiles are altered in breast cancer cells. •This is the first evidence linking high Sac3 with breast cancer cell proliferation. -- Abstract: The phosphoinositide 5-kinase PIKfyve and 5-phosphatase Sac3 are scaffolded by ArPIKfyve in the PIKfyve–ArPIKfyve–Sac3 (PAS) regulatory complex to trigger a unique loop of PtdIns3P–PtdIns(3,5)P{sub 2} synthesis and turnover. Whereas the metabolizing enzymes of the other 3-phosphoinositides have already been implicated in breast cancer,more » the role of the PAS proteins and the PtdIns3P–PtdIns(3,5)P{sub 2} conversion is unknown. To begin elucidating their roles, in this study we monitored the endogenous levels of the PAS complex proteins in cell lines derived from hormone-receptor positive (MCF7 and T47D) or triple-negative breast cancers (TNBC) (BT20, BT549 and MDA-MB-231) as well as in MCF10A cells derived from non-tumorigenic mastectomy. We report profound upregulation of Sac3 and ArPIKfyve in the triple negative vs. hormone-sensitive breast cancer or non-tumorigenic cells, with BT cell lines showing the highest levels. siRNA-mediated knockdown of Sac3, but not that of PIKfyve, significantly inhibited proliferation of BT20 and BT549 cells. In these cells, knockdown of ArPIKfyve had only a minor effect, consistent with a primary role for Sac3 in TNBC cell proliferation. Intriguingly, steady-state levels of PtdIns(3,5)P{sub 2} in BT20 and T47D cells were similar despite the 6-fold difference in Sac3 levels between these cell lines. However, steady-state levels of PtdIns3P and PtdIns5P, both regulated by the PAS complex, were significantly reduced in BT20 vs. T47D or MCF10A cell lines, consistent with elevated Sac3 affecting directly or indirectly the homeostasis of these lipids in TNBC. Together, our results uncover an unexpected role for Sac3 phosphatase in TNBC cell proliferation. Database analyses, discussed herein, reinforce the involvement of Sac3 in breast cancer pathogenesis.« less
Morgan, Kevin; Stavrou, Emmanouil; Leighton, Samuel P; Miller, Nicola; Sellar, Robin; Millar, Robert P
2011-06-15
Human metastatic prostate cancer cell growth can be inhibited by GnRH analogs but effects on virus-immortalized prostate cells have not been investigated. Virus-immortalized prostate cells were stably transfected with rat GnRH receptor cDNA and levels of GnRH binding were correlated with GnRH effects on signaling, cell cycle, growth, exosome production, and apoptosis. High levels of cell surface GnRH receptor occurred in transfected papillomavirus-immortalized WPE-1-NB26 epithelial cells but not in non-tumourigenic RWPE-1, myoepithelial WPMY-1 cells, or SV40-immortalized PNT1A. Endogenous cell surface GnRH receptor was undetectable in non-transfected cells or cancer cell lines LNCaP, PC3, and DU145. GnRH receptor levels correlated with induction of inositol phosphates, elevation of intracellular Ca(2+) , cytoskeletal actin reorganization, modulation of ERK activation and cell growth-inhibition with GnRH agonists. Hoechst 33342 DNA staining-cell sorting indicated accumulation of cells in G2 following agonist treatment. Release of exosomes from transfected WPE-1-NB26 was unaffected by agonists, unlike induction observed in HEK293([SCL60]) cells. Increased PARP cleavage and apoptotic body production were undetectable during growth-inhibition in WPE-1-NB26 cells, contrasting with HEK293([SCL60]) . EGF receptor activation inhibited GnRH-induced ERK activation in WPE-1-NB26 but growth-inhibition was not rescued by EGF or PKC inhibitor Ro320432. Growth of cells expressing low levels of GnRH receptor was not affected by agonists. Engineered high-level GnRH receptor activation inhibits growth of a subset of papillomavirus-immortalized prostate cells. Elucidating mechanisms leading to clone-specific differences in cell surface GnRH receptor levels is a valuable next step in developing strategies to exploit prostate cell anti-proliferation using GnRH agonists. Copyright © 2010 Wiley-Liss, Inc.
Keibler, Mark A.; Park, Donglim Esther; Molla, Vadim; Cheng, Jingwei; Stephanopoulos, Gregory
2016-01-01
Merkel cell polyomavirus (MCPyV) is an etiological agent of Merkel cell carcinoma (MCC), a highly aggressive skin cancer. The MCPyV small tumor antigen (ST) is required for maintenance of MCC and can transform normal cells. To gain insight into cellular perturbations induced by MCPyV ST, we performed transcriptome analysis of normal human fibroblasts with inducible expression of ST. MCPyV ST dynamically alters the cellular transcriptome with increased levels of glycolytic genes, including the monocarboxylate lactate transporter SLC16A1 (MCT1). Extracellular flux analysis revealed increased lactate export reflecting elevated aerobic glycolysis in ST expressing cells. Inhibition of MCT1 activity suppressed the growth of MCC cell lines and impaired MCPyV-dependent transformation of IMR90 cells. Both NF-κB and MYC have been shown to regulate MCT1 expression. While MYC was required for MCT1 induction, MCPyV-induced MCT1 levels decreased following knockdown of the NF-κB subunit RelA, supporting a synergistic activity between MCPyV and MYC in regulating MCT1 levels. Several MCC lines had high levels of MYCL and MYCN but not MYC. Increased levels of MYCL was more effective than MYC or MYCN in increasing extracellular acidification in MCC cells. Our results demonstrate the effects of MCPyV ST on the cellular transcriptome and reveal that transformation is dependent, at least in part, on elevated aerobic glycolysis. PMID:27880818
Hassan, Iftekhar; Khan, Azmat Ali; Aman, Shazia; Qamar, Wajhul; Ebaid, Hossam; Al-Tamimi, Jameel; Alhazza, Ibrahim M; Rady, Ahmed M
2018-01-26
The present study was designed to investigate if elevated copper level can be targeted to enhance the efficacy of a significant anticancer drug, imatinib (ITB). The antineoplastic activity of this drug was assessed in the HepG2, HEK-293, MCF-7 and MDA-MD-231 cells targeting elevated copper level as their common drug target. The cell lines were treated with the different doses of copper chloride (Cu II) and disulfiram (DSF) alone as well as in their combinations with the drug for 24 h in standard culture medium and conditions. The treated cells were subjected to various assays including MTT, PARP, p-53, caspase-7, caspase-3, LDH and single cell electrophoresis. The study shows that DSF and Cu (II) synergizes the anticancer activity of ITB to a significant extent in a dose-specific way as evidenced by the combinations treated groups. Furthermore, the same treatment strategy was employed in cancer-induced rats in which the combinations of ITB-DSF and ITB-Cu II showed enhanced antineoplastic activity as compared to ITB alone. However, DSF was more effective than Cu (II) as an adjuvant to the drug. Hence, restrained manipulation of copper level in tumor cells can orchestrate the redox and molecular dispositions inside the cells favoring the induction of apoptosis.
Colchicine therapy for hepatic murine schistosomal fibrosis: image analysis and serological study
BADAWY, AFKAR A; EL-BADRAWY, NAWAL M; HASSAN, MONA M; EBEID, FATMA A
1999-01-01
Colchicine in a dose of 200 μg kg body weight/day (5 days/week) was administered to groups of Schistosoma mansoni infected mice 12 weeks post infection, either alone or following previous praziquantel therapy at the 8th week of infection. Certain groups received colchicine for 6 weeks and others received it for 10 weeks. Colchicine alone did not significantly change the light microscopic appearance of schistosomal liver fibrosis, or hepatic collagen content estimated histomorphometrically, and did not reduce the elevated IL-2 serum level. Colchicine induced hepatic injury consisted of intense inflammatory reaction in granuloma and portal tracts, hepatocytic degeneration, and elevation of serum AST and ALT levels. Colchicine seemed to postpone granulomatous reaction healing and collagen deposition rather than inhibiting collagen formation or degrading it. Colchicine inhibited proliferation of hepatocytes of infected mice by expanding G2-M phases of cell cycle, thus reduced Ag NOR count and raised cell ploidy and cyclic AMP serum level. Subsidence of schistosomal infection by praziquantel prior to colchicine therapy greatly reduced inflammatory cellular reaction, significantly diminished hepatic collagen deposition and serum IL-2 level, minimized the elevated nuclear ploidy and cyclic AMP serum level that followed colchicine therapy when administered alone. PMID:10365084
Yamaguchi, Takayoshi; Iida, Ken-Ichiro; Shiota, Susumu; Nakayama, Hiroaki; Yoshida, Shin-Ichi
2015-12-01
FtsZ, a protein essential for prokaryotic cell division, forms a ring structure known as the Z-ring at the division site. FtsZ has a GTP binding site and is assembled into linear structures in a GTP-dependent manner in vitro. We assessed whether guanosine 5'-diphosphate 3'-diphosphate (ppGpp), a global regulator of gene expression in starved bacteria, affects cell division in Salmonella Paratyphi A. Elevation of intracellular ppGpp levels by using the relA expression vector induced repression of bacterial growth and incorrect FtsZ assembly. We found that FtsZ forms helical structures in the presence of ppGpp by using the GTP binding site; however, ppGpp levels required to form helical structures were at least 20-fold higher than the required GTP levels in vitro. Furthermore, once formed, helical structures did not change to the straight form even after GTP addition. Our data indicate that elevation of the ppGpp level leads to inhibition of bacterial growth and interferes with FtsZ assembly. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLr-/- Mice.
Pollock, Abigail H; Tedla, Nicodemus; Hancock, Sarah E; Cornely, Rhea; Mitchell, Todd W; Yang, Zhengmin; Kockx, Maaike; Parton, Robert G; Rossy, Jérémie; Gaus, Katharina
2016-05-15
Although it is recognized that lipids and membrane organization in T cells affect signaling and T cell activation, to what extent dietary lipids alter T cell responsiveness in the absence of obesity and inflammation is not known. In this study, we fed low-density lipoprotein receptor knockout mice a Western high-fat diet for 1 or 9 wk and examined T cell responses in vivo along with T cell lipid composition, membrane order, and activation ex vivo. Our data showed that high levels of circulating lipids for a prolonged period elevated CD4(+) and CD8(+) T cell proliferation and resulted in an increased proportion of CD4(+) central-memory T cells within the draining lymph nodes following induction of contact hypersensitivity. In addition, the 9-wk Western high-fat diet elevated the total phospholipid content and monounsaturated fatty acid level, but decreased saturated phosphatidylcholine and sphingomyelin within the T cells. The altered lipid composition in the circulation, and of T cells, was also reflected by enhanced membrane order at the activation site of ex vivo activated T cells that corresponded to increased IL-2 mRNA levels. In conclusion, dietary lipids can modulate T cell lipid composition and responses in lipoprotein receptor knockout mice even in the absence of excess weight gain and a proinflammatory environment. Copyright © 2016 by The American Association of Immunologists, Inc.
Plants with elevated levels of glucan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauly, Markus; Kraemer, Florian J.; Hake, Sarah
The present disclosure relates to mutations in licheninase genes encoding polypeptides with decreased licheninase activity, which when expressed in plants results in elevated levels of glucan in the plants. In particular, the disclosure relates to licheninase nucleic acids and polypeptides related to glucan accumulation in plants, plants with reduced expression of a licheninase nucleic acid, and methods related to the generation of plants with increased glucan content in the cell walls of leaf tissue.
The role of elevated serum procalcitonin in neuroendocrine neoplasms of digestive system.
Chen, Luohai; Zhang, Yu; Lin, Yuan; Deng, Langhui; Feng, Shiting; Chen, Minhu; Chen, Jie
2017-12-01
Elevated serum procalcitonin (PCT) was reported in patients with certain type of neuroendocrine neoplasms (NENs). The aim of this study was to assess the role of elevated serum PCT in NENs from digestive system. Serum PCT and serum CgA level were measured in 155 patients with NENs from digestive system. Elevated serum PCT was found in 63 patients (40.6%). Grade 3 disease was a significant factor associated with elevated serum PCT (OR, 9.24; 95%CI, 3.04-28.08; P<0.001). Serum PCT level was significantly decreased after treatment both in patients with stable disease (P=0.003) and patients with partial remission (P=0.001). In these patients, serum PCT level significantly increased again at the time of progression disease (P=0.001). Elevated serum PCT was a significant factor of worse survival (HR, 2.86; 95%CI, 1.36-6.03; P=0.006). Compared with patients with normal serum PCT and CgA level, patients with either PCT or CgA elevated and patients with both PCT and CgA elevated had progressively worse survival. Additionally, PCT expression in tumor cells was found in 24.0% of patients but did not correlate with other clinicopathological factors, including serum PCT. Serum PCT is elevated in part of patients with NENs of digestive system, especially in patients with grade 3 disease. Serum PCT level can help evaluate treatment response and its elevation indicates poor prognosis. Combination of serum PCT and CgA can improve outcome prediction. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
The space station tethered elevator system
NASA Technical Reports Server (NTRS)
Anderson, Loren A.
1989-01-01
The optimized conceptual engineering design of a space station tethered elevator is presented. The elevator is an unmanned mobile structure which operates on a ten kilometer tether spanning the distance between the Space Station and a tethered platform. Elevator capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The potential uses, parameters, and evolution of the spacecraft design are discussed. Engineering development of the tethered elevator is the result of work conducted in the following areas: structural configurations; robotics, drive mechanisms; and power generation and transmission systems. The structural configuration of the elevator is presented. The structure supports, houses, and protects all systems on board the elevator. The implementation of robotics on board the elevator is discussed. Elevator robotics allow for the deployment, retrieval, and manipulation of tethered objects. Robotic manipulators also aid in hooking the elevator on a tether. Critical to the operation of the tethered elevator is the design of its drive mechanisms, which are discussed. Two drivers, located internal to the elevator, propel the vehicle along a tether. These modular components consist of endless toothed belts, shunt-wound motors, regenerative power braking, and computer controlled linear actuators. The designs of self-sufficient power generation and transmission systems are reviewed. Thorough research indicates all components of the elevator will operate under power provided by fuel cells. The fuel cell systems will power the vehicle at seven kilowatts continuously and twelve kilowatts maximally. A set of secondary fuel cells provides redundancy in the unlikely event of a primary system failure. Power storage exists in the form of Nickel-Hydrogen batteries capable of powering the elevator under maximum loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabuchi, Yoshiaki; Kondo, Takashi; Suzuki, Yoshihisa
2005-04-15
Sertoli TTE3 cells, derived from transgenic mice bearing temperature-sensitive simian virus 40 large T (tsSV40LT)-antigen, proliferated continuously at a permissive temperature (33 deg C) whereas inactivation of the large T-antigen by a nonpermissive temperature (39 deg C) led to differentiation as judged by elevation of transferrin. To clarify the detailed mechanisms of differentiation, we investigated the time course of changes in gene expression using cDNA microarrays. Of the 865 genes analyzed, 14 genes showed increased levels of expression. Real-time quantitative PCR revealed that the mRNA levels of p21{sup waf1}, milk fat globule membrane protein E8, heat-responsive protein 12, and selenoproteinmore » P were markedly elevated. Moreover, the differentiated condition induced by the nonpermissive temperature significantly increased mRNA levels of these four genes in several cell lines from the transgenic mice bearing the oncogene. The present results regarding changes in gene expression will provide a basis for a further understanding of molecular mechanisms of differentiation in both Sertoli cells and cell lines transformed by tsSV40LT-antigen.« less
Banday, Viqar Showkat; Lejon, Kristina
2017-02-01
Although type 1 diabetes (T1D) is a T-cell-mediated disease in the effector stage, the mechanism behind the initial beta cell assault is less understood. Metabolomic differences, including elevated levels of glutamic acid, have been observed in patients with T1D before disease onset, as well as in pre-diabetic non-obese diabetic (NOD) mice. Increased levels of glutamic acid damage both neurons and beta cells, implying that this could contribute to the initial events of T1D pathogenesis. We investigated the underlying genetic factors and consequences of the increased levels of glutamic acid in NOD mice. Serum glutamic acid levels from a (NOD×B6)F 2 cohort (n = 182) were measured. By genome-wide and Idd region targeted microsatellite mapping, genetic association was detected for six regions including Idd2, Idd4 and Idd22. In silico analysis of potential enzymes and transporters located in and around the mapped regions that are involved in glutamic acid metabolism consisted of alanine aminotransferase, glutamic-oxaloacetic transaminase, aldehyde dehydrogenase 18 family, alutamyl-prolyl-tRNA synthetase, glutamic acid transporters GLAST and EAAC1. Increased EAAC1 protein expression was observed in lysates from livers of NOD mice compared with B6 mice. Functional consequence of the elevated glutamic acid level in NOD mice was tested by culturing NOD. Rag2 -/- Langerhans' islets with glutamic acid. Induction of apoptosis of the islets was detected upon glutamic acid challenge using TUNEL assay. Our results support the notion that a dysregulated metabolome could contribute to the initiation of T1D. We suggest that targeting of the increased glutamic acid in pre-diabetic patients could be used as a potential therapy. © 2016 John Wiley & Sons Ltd.
Kratzat, Susanne; Nikolova, Viktoriya; Miething, Cornelius; Hoellein, Alexander; Schoeffmann, Stephanie; Gorka, Oliver; Pietschmann, Elke; Illert, Anna-Lena; Ruland, Jürgen; Peschel, Christian; Nilsson, Jonas; Duyster, Justus; Keller, Ulrich
2012-01-01
The Cks1 component of the SCFSkp2 complex is necessary for p27Kip1 ubiquitylation and degradation. Cks1 expression is elevated in various B cell malignancies including Burkitt lymphoma and multiple myeloma. We have previously shown that loss of Cks1 results in elevated p27Kip1 levels and delayed tumor development in a mouse model of Myc-induced B cell lymphoma. Surprisingly, loss of Skp2 in the same mouse model also resulted in elevated p27Kip1 levels but exhibited no impact on tumor onset. This raises the possibility that Cks1 could have other oncogenic activities than suppressing p27Kip1. To challenge this notion we have targeted overexpression of Cks1 to B cells using a conditional retroviral bone marrow transduction-transplantation system. Despite potent ectopic overexpression, Cks1 was unable to promote B cell hyperproliferation or B cell malignancies, indicating that Cks1 is not oncogenic when overexpressed in B cells. Since Skp2 overexpression can drive T-cell tumorigenesis or other cancers we also widened the quest for oncogenic activity of Cks1 by ubiquitously expressing Cks1 in hematopoetic progenitors. At variance with c-Myc overexpression, which caused acute myeloid leukemia, Cks1 overexpression did not induce myeloproliferation or leukemia. Therefore, despite being associated with a poor prognosis in various malignancies, sole Cks1 expression is insufficient to induce lymphoma or a myeloproliferative disease in vivo. PMID:22624029
Rohmann, Kevin N.; Bass, Andrew H.
2011-01-01
SUMMARY Vertebrates displaying seasonal shifts in reproductive behavior provide the opportunity to investigate bidirectional plasticity in sensory function. The midshipman teleost fish exhibits steroid-dependent plasticity in frequency encoding by eighth nerve auditory afferents. In this study, evoked potentials were recorded in vivo from the saccule, the main auditory division of the inner ear of most teleosts, to test the hypothesis that males and females exhibit seasonal changes in hair cell physiology in relation to seasonal changes in plasma levels of steroids. Thresholds across the predominant frequency range of natural vocalizations were significantly less in both sexes in reproductive compared with non-reproductive conditions, with differences greatest at frequencies corresponding to call upper harmonics. A subset of non-reproductive males exhibiting an intermediate saccular phenotype had elevated testosterone levels, supporting the hypothesis that rising steroid levels induce non-reproductive to reproductive transitions in saccular physiology. We propose that elevated levels of steroids act via long-term (days to weeks) signaling pathways to upregulate ion channel expression generating higher resonant frequencies characteristic of non-mammalian auditory hair cells, thereby lowering acoustic thresholds. PMID:21562181
Considerable work indicates that elevations in Ca2+ levels and kinase activity are sensitive responses to polychlorinated biphenyls (PCBs), which are developmental neurotoxicants. In cortical cells in vitro the PCB mixture Aroclor 1254 (A1254) induces temporally and mechanistica...
cAMP enhances BMP2-signaling through PKA and MKP1-dependent mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghayor, Chafik; Ehrbar, Martin; Miguel, Blanca San
2009-04-03
Recent studies suggest that the elevation of intracellular cyclic adenosine monophosphate (cAMP) and the activation of the protein kinase A regulate BMP-induced osteogenesis. However, the precise mechanisms underlying the enhancing effect of cAMP on BMP2 signaling were not completely revealed. In this study we investigated the effect of elevated cAMP level and PKA activation on the BMP2-induced osteoblastic differentiation in pluripotent C2C12 cells. Alkaline phosphatase activity and its mRNA were consistently induced by BMP2 treatment. The pretreatment of C2C12 cells with Forskolin, a cAMP generating agent, dbcAMP, an analogue of cAMP, or IBMX (3-isobutyl 1-methyl xanthine), and a nonspecific inhibitormore » of phosphodiesterases elicited further activation of alkaline phosphatase. Furthermore, elevated intracellular cAMP level increased BMP2-induced MKP1. On the other hand, BMP2-induced Erk phosphorylation (p44/p42) and cell proliferation were suppressed in the presence of cAMP. Thus, cAMP might enhance BMP2-induced osteoblastic differentiation by a MKP1-Erk-dependent mechanism.« less
Yu, Zhanjiang; Yang, Xiaoda; Wang, Kui
2006-06-01
The aim of this work is to define the relationship between heat shock protein (HSP) and reactive oxygen species (ROS) in the cells exposed to different concentrations of metal ions, and to evaluate a new method for tracing the dynamic levels of cellular reactive oxygen species using a HSE-SEAP reporter gene. The expression of heat shock protein was measured using a secreted alkaline phosphatase (SEAP) reporter gene transformed into HeLa cell strain, the levels of superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were determined by NBT reduction assay and DCFH staining flow cytometry (FCM), respectively. The experimental results demonstrated that the expression of heat shock protein induced by metal ions was linearly related to the cellular superoxide anion level before cytotoxic effects were observed, but not related to the cellular hydrogen peroxide level. The experimental results suggested that metal ions might induce heat shock protein by elevating cellular superoxide anion level, and thus the expression of heat shock protein indicated by the HSE-SEAP reporter gene can be an effective model for monitoring the dynamic level of superoxide anion and early metal-induced oxidative stress/cytotoxicity.
Jones, Catherine; Levy, Yair; Tong, Alex W
2014-01-01
Polycythaemia vera (PV) is a clonal disorder of bone marrow stem cells characterised by erythrocytosis. Diagnosis of PV requires exclusion of secondary causes of polycythaemia. It has been held that an elevated erythropoietin (Epo) level strongly indicates secondary erythrocytosis and excludes PV diagnosis, to the extent that the reduced serum Epo level is currently listed as a minor criterion in the WHO classification scheme for PV. However, patients with PV who co-present with Budd-Chiari syndrome have been documented with elevated serum Epo levels. For these patients, identification of the Janus kinase 2 (JAK2) V617F point mutation along with the transient nature of the Epo elevation provides certainty of PV diagnosis, as illustrated by the proband. In this case report, the patient's positive response to cytoreductive therapy (hydroxyurea 500 mg daily) and phlebotomy (750 mL over three phlebotomies) further supports validity of PV diagnosis with elevated Epo. The patient remains on rivaroxaban (Xarelto) for treatment of her portal vein thrombosis. PMID:25452296
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tada, Hiroyuki; Nemoto, Eiji, E-mail: e-nemoto@umin.ac.jp; Kanaya, Sousuke
Dental pulp cells, which have been shown to share phenotypical features with osteoblasts, are capable of differentiating into odontoblast-like cells and generating a dentin-like mineral structure. Elevated extracellular Ca{sup 2+}Ca{sub o}{sup 2+} has been implicated in osteogenesis by stimulating the proliferation and differentiation of osteoblasts; however, the role of Ca{sub o}{sup 2+} signaling in odontogenesis remains unclear. We found that elevated Ca{sub o}{sup 2+} increases bone morphogenetic protein (BMP)-2 gene expression in human dental pulp cells. The increase was modulated not only at a transcriptional level but also at a post-transcriptional level, because treatment with Ca{sup 2+} increased the stabilitymore » of BMP-2 mRNA in the presence of actinomycin D, an inhibitor of transcription. A similar increase in BMP-2 mRNA level was observed in other human mesenchymal cells from oral tissue; periodontal ligament cells and gingival fibroblasts. However, the latter cells exhibited considerably lower expression of BMP-2 mRNA compared with dental pulp cells and periodontal ligament cells. The BMP-2 increase was markedly inhibited by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor, PD98059, and partially inhibited by the L-type Ca{sup 2+} channels inhibitor, nifedipine. However, pretreatment with nifedipine had no effect on ERK1/2 phosphorylation triggered by Ca{sup 2+}, suggesting that the Ca{sup 2+} influx from Ca{sup 2+} channels may operate independently of ERK signaling. Dental pulp cells do not express the transcript of Ca{sup 2+}-sensing receptors (CaSR) and only respond slightly to other cations such as Sr{sup 2+} and spermine, suggesting that dental pulp cells respond to Ca{sub o}{sup 2+} to increase BMP-2 mRNA expression in a manner different from CaSR and rather specific for Ca{sub o}{sup 2+} among cations.« less
Liu, Hong; Cao, Diyong; Liu, Hua; Liu, Xinghai; Mai, Wenli; Lan, Haitao; Huo, Wen; Zheng, Qian
2016-08-01
Our previous work found that Cordyceps sinensis (CS) improves the activity and secretory function of pancreatic islet beta cells. The objective was to observe a further possible role of CS in the protection of insulin-secreting cells. A rat model of type 2 diabetes mellitus was developed with streptozotocin (STZ) and a high-energy fat diet (HFD). CS was administered in the successful model of rats with type 2 diabetes. After 4 weeks, the biochemistry index of blood samples was measured, and pathologic observation was performed by immunohistochemistry. In the rats with type 2 diabetes induced by a HFD and STZ, the levels of fasting blood glucose and fasting insulin were elevated, and the insulin sensitivity index was decreased. Pathologic examination found an increased number of apoptotic cells, an elevated protein expression of pro-apoptotic C/EBP homologous protein (CHOP) and an increased c-Jun level by means of JNK phosphorylation, responsive to the endoplasmic reticulum stress of islet beta cells. With treatment by CS for 4 weeks, the elevated levels of both fasting blood glucose and fasting insulin in the rats with type 2 diabetes were significantly lower, and the decreased insulin sensitivity index was reversed. Compared to the control rats with type 2 diabetes, CS application significantly reduced the number of apoptotic cells and decreased protein expression of both CHOP and c-Jun. The herbal compound CS could protect pancreatic beta cells from the pro-apoptotic endoplasmic reticulum stress induced by HFD-STZ. This suggests an alternative approach to treating type 2 diabetes. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.
Okamoto, Haruka; Cavino, Katie; Na, Erqian; Krumm, Elizabeth; Kim, Steven; Stevis, Panayiotis E.; Harp, Joyce; Murphy, Andrew J.; Yancopoulos, George D.; Gromada, Jesper
2017-01-01
Genetic disruption or pharmacologic inhibition of glucagon signaling effectively lowers blood glucose but results in compensatory glucagon hypersecretion involving expansion of pancreatic α-cell mass. Ben-Zvi et al. recently reported that angiopoietin-like protein 4 (Angptl4) links glucagon receptor inhibition to hyperglucagonemia and α-cell proliferation [Ben-Zvi et al. (2015) Proc Natl Acad Sci USA 112:15498–15503]. Angptl4 is a secreted protein and inhibitor of lipoprotein lipase-mediated plasma triglyceride clearance. We report that Angptl4−/− mice treated with an anti-glucagon receptor monoclonal antibody undergo elevation of plasma glucagon levels and α-cell expansion similar to wild-type mice. Overexpression of Angptl4 in liver of mice caused a 8.6-fold elevation in plasma triglyceride levels, but did not alter plasma glucagon levels or α-cell mass. Furthermore, administration of glucagon receptor-blocking antibody to healthy individuals increased plasma glucagon and amino acid levels, but did not change circulating Angptl4 concentration. These data show that Angptl4 does not link glucagon receptor inhibition to compensatory hyperglucagonemia or expansion of α-cell mass, and that it cannot be given to induce such secretion and growth. The reduction of plasma triglyceride levels in Angptl4−/− mice and increase following Angptl4 overexpression suggest that changes in plasma triglyceride metabolism do not regulate α-cells in the pancreas. Our findings corroborate recent data showing that increased plasma amino acids and their transport into α-cells link glucagon receptor blockage to α-cell hyperplasia. PMID:28143927
Willars, G B; Nahorski, S R
1995-03-01
Measurement of the intracellular Ca2+ concentration ([Ca2+]i) in fura-2-loaded single cells of the human neuroblastoma line SH-SY5Y indicated coexpression of muscarinic and bradykinin receptors linked to activation of phosphoinositidase C (PIC). Both agonists elevated [Ca2+]i and inositol-1,4,5-trisphosphate [Ins(1,4,5)P3] levels in populations of adherent cells, although in cells used directly upon attainment of confluence the responses to carbachol were greater than those to bradykinin and displayed additional sustained components. This model system was used to examine heterologous interactions when a second PIC-linked agonist was added 100-300 sec after but in the continued presence of the first. Maximal (1 mM) carbachol concentrations abolished the elevation of [Ca2+]i produced by bradykinin but the muscarinic antagonist atropine (10 microM) restored the response, provided that extracellular Ca2+ was present throughout the experiment or was added before bradykinin. Carbachol also abolished bradykinin-mediated Ins(1,4,5)P3 elevation. In contrast, bradykinin did not influence [Ca2+]i or Ins(1,4,5)P3 responses to carbachol in the presence of extracellular Ca2+. In cells maintained at confluence for 2 weeks, the rapid peak elevations of [Ca2+]i and Ins(1,4,5)P3 levels induced by carbachol and bradykinin were approximately equivalent in magnitude. In these cells carbachol again abolished bradykinin-mediated elevation of [Ca2+]i but only attenuated, rather than abolished, the elevation of Ins(1,4,5)P3 levels. The [Ca2+]i and Ins(1,4,5)P3 responses to bradykinin were fully restored 100 sec after atropine only in the presence of extracellular Ca2+. Thus, depletion of an intracellular Ins(1,4,5)P3-sensitive Ca2+ store may underlie the ability of carbachol to produce not only heterologous desensitization of the [Ca2+]i elevation induced by bradykinin but also that of the Ins(1,4,5)P3 response. This suggests a feed-forward activation of PIC by Ca2+ released from Ins(1,4,5)P3-sensitive stores. Furthermore, studies in which Ins(1,4,5)P3-sensitive stores were depleted with thapsigargin and cells were challenged in the presence or absence of extracellular Ca2+ indicated that Ca2+, irrespective of its origin (intra- or extracellular), potentiated the Ins(1,4,5)P3 response to bradykinin alone. In cells maintained at confluence for 2 weeks, bradykinin was again unable to influence either [Ca2+]i or Ins(1,4,5)P3 responses to carbachol in the presence of Ca2+. This lack of heterologous desensitization may be due to the rapid, full, homologous desensitization of bradykinin receptors, compared with an incomplete homologous desensitization of muscarinic receptors.
Edvardsen, Kine; Bjånesøy, Trine; Hellesen, Alexander; Breivik, Lars; Bakke, Marit; Husebye, Eystein S; Bratland, Eirik
2015-10-01
Autoimmune Addison's disease (AAD) is a disorder caused by an immunological attack on the adrenal cortex. The interferon (IFN)-inducible chemokine CXCL10 is elevated in serum of AAD patients, suggesting a peripheral IFN signature. However, CXCL10 can also be induced in adrenocortical cells stimulated with IFNs, cytokines, or microbial components. We therefore investigated whether peripheral blood mononuclear cells (PBMCs) from AAD patients display an enhanced propensity to produce CXCL10 and the related chemokine CXCL9, after stimulation with type I or II IFNs or the IFN inducer poly (I:C). Although serum levels of CXCL10 and CXCL9 were significantly elevated in patients compared with controls, IFN stimulated patient PBMC produced significantly less CXCL10/CXCL9 than control PBMC. Low CXCL10 production was not significantly associated with medication, disease duration, or comorbidities, but the low production of poly (I:C)-induced CXCL10 among patients was associated with an AAD risk allele in the phosphatase nonreceptor type 22 (PTPN22) gene. PBMC levels of total STAT1 and -2, and IFN-induced phosphorylated STAT1 and -2, were not significantly different between patients and controls. We conclude that PBMC from patients with AAD are deficient in their response to IFNs, and that the adrenal cortex itself may be responsible for the increased serum levels of CXCL10.
Barbosa, Marina R; Sampaio, Igor H; Teodoro, Bruno G; Sousa, Thais A; Zoppi, Claudio C; Queiroz, André L; Passos, Madla A; Alberici, Luciane C; Teixeira, Felipe R; Manfiolli, Adriana O; Batista, Thiago M; Cappelli, Ana Paula Gameiro; Reis, Rosana I; Frasson, Danúbia; Kettelhut, Isis C; Parreiras-e-Silva, Lucas T; Costa-Neto, Claudio M; Carneiro, Everardo M; Curi, Rui; Silveira, Leonardo R
2013-10-01
The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.
Comparative Analysis of Liver Injury-Associated Cytokines in Acute Hepatitis A and B.
Shin, So Youn; Jeong, Sook-Hyang; Sung, Pil Soo; Lee, Jino; Kim, Hyung Joon; Lee, Hyun Woong; Shin, Eui-Cheol
2016-05-01
Acute hepatitis A (AHA) and acute hepatitis B (AHB) are caused by an acute infection of the hepatitis A virus and the hepatitis B virus, respectively. In both AHA and AHB, liver injury is known to be mediated by immune cells and cytokines. In this study, we measured serum levels of various cytokines and T-cell cytotoxic proteins in patients with AHA or AHB to identify liver injury-associated cytokines. Forty-six patients with AHA, 16 patients with AHB, and 14 healthy adults were enrolled in the study. Serum levels of 17 cytokines and T-cell cytotoxic proteins were measured by enzyme-linked immunosorbent assays or cytometric bead arrays and analyzed for correlation with serum alanine aminotransferase (ALT) levels. Interleukin (IL)-18, IL-8, CXCL9, and CXCL10 were significantly elevated in both AHA and AHB. IL-6, IL-22, granzyme B, and soluble Fas ligand (sFasL) were elevated in AHA but not in AHB. In both AHA and AHB, the serum level of CXCL10 significantly correlated with the peak ALT level. Additionally, the serum level of granzyme B in AHA and the serum level of sFasL in AHB correlated with the peak ALT level. We identified cytokines and T-cell cytotoxic proteins associated with liver injury in AHA and AHB. These findings deepen the existing understanding of immunological mechanisms responsible for liver injury in acute viral hepatitis.
Zhao, Jing; He, Qiuxia; Cheng, Yizhe; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying
2009-09-01
Previously, we found that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO) promoted apoptosis of human umbilical vascular endothelial cells (HUVECs) deprived of growth factors. In this study, we aimed to investigate the effect of DBO and its mechanism of action on angiogenesis and apoptosis of HUVECs in the presence of fibroblast growth factor-2 (FGF-2), which promotes angiogenesis and inhibits apoptosis in vivo and in vitro. DBO significantly inhibited capillary-like tube formation by promoting apoptosis of HUVECs in the presence of FGF-2 in vitro. Furthermore, DBO elevated the levels of reactive oxygen species (ROS) and nitric oxide (NO) and increased the activity of NADPH oxidase and inducible nitric oxide synthase (iNOS) in promoting apoptosis under this condition. Moreover, when NADPH oxidase was inhibited by its specific inhibitor, dibenziodolium chloride (DPI), DBO could not elevate ROS and NO levels in HUVECs. The data suggest that DBO is a new modulator of apoptosis in vitro, and it might function by increasing the activity of NADPH oxidase and iNOS, subsequently elevating the levels of ROS and NO in HUVECs. The findings of this study provide a new small molecule for investigating the FGF-2/NADPH oxidase/iNOS signaling pathway in apoptosis.
Lecourieux, David; Lamotte, Olivier; Bourque, Stéphane; Wendehenne, David; Mazars, Christian; Ranjeva, Raoul; Pugin, Alain
2005-12-01
We previously reported elevated cytosolic calcium levels in tobacco cells in response to elicitors [D. Lecourieux, C. Mazars, N. Pauly, R. Ranjeva, A. Pugin, Analysis and effects of cytosolic free calcium elevations in response to elicitors in Nicotiana plumbaginifolia cells, Plant Cell 14 (2002) 2627-2641]. These data suggested that in response to elicitors, Ca2+, as a second messenger, was involved in both systemic acquired resistance (RSA) and/or hypersensitive response (HR) depending on calcium signature. Here, we used transformed tobacco cells with apoaequorin expressed in the nucleus to monitor changes in free nuclear calcium concentrations ([Ca2+](nuc)) in response to elicitors. Two types of elicitors are compared: proteins leading to necrosis including four elicitins and harpin, and non-necrotic elicitors including flagellin (flg22) and two oligosaccharidic elicitors, namely the oligogalacturonides (OGs) and the beta-1,3-glucan laminarin. Our data indicate that the proteinaceous elicitors induced a pronounced and sustainable [Ca2+](nuc) elevation, relative to the small effects of oligosaccharidic elicitors. This [Ca2+](nuc) elevation, which seems insufficient to induce cell death, is unlikely to result directly from the diffusion of calcium from the cytosol. The [Ca2+](nuc) rise depends on free cytosolic calcium, IP3, and active oxygen species (AOS) but is independent of nitric oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, J.E. Jr.; Platoff, G.E.; Kubrock, C.A.
1982-01-01
Among 17 men who had received seemingly curative treatment for unilateral non-seminomatous germ cell tumors for the testis and who had consistently normal serum human chorionic gonadotropin (HCG) levels at a reference laboratory, 7 (41%) had at least one falsely positive commercial serum HCG determination. To investigate the cause of these falsely positive determinations the authors measured the cross reactivity of luteinizing hormone (LH) and follicle stimulating hormone (FSH) standards in the commercial HCG assay, and studied the relationships between commercial HCG levels and serum LH levels, serum FSH levels and gonadal status in men with and without normal gonadalmore » function. The falsely positive HCG determinations appeared to be due to elevated serum LH levels and cross reactivity of LH in the commercial HCG assay because: 1) there was substantial cross reactivity of the LH standards in the commercial assay, 2) the serum LH was elevated in four of six men with solitary testes, 3) there was a striking correlation between elevated serum LH levels and falsely elevated commercial HCG levels in ten men with solitary or absent testes, and 4) there were no falsely positive HCG determinations in 13 normal men but there were falsely positive HCG determinations in seven of ten anorchid men.« less
Serum pro-gastrin-releasing peptide (31-98) in benign prostatic hyperplasia and prostatic carcinoma.
Nagakawa, Osamu; Furuya, Yuzo; Fujiuchi, Yasuyoshi; Fuse, Hideki
2002-09-01
To clarify whether serum levels of pro-gastrin-releasing peptide (ProGRP) (31-98) could be a useful marker in patients with prostatic carcinoma. GRP is produced and secreted by prostatic neuroendocrine cells. Serum levels of ProGRP(31-98) were measured by enzyme-linked immunosorbent assay in 20 patients with benign prostatic hyperplasia and 107 patients with prostatic carcinoma. The mean serum levels of ProGRP(31-98) in patients with distant metastasis and hormone-resistant prostate cancer were significantly elevated compared with those in patients with organ-confined disease. Significantly elevated levels of ProGRP(31-98) were detected in 9 patients with prostatic carcinoma before any treatment. During hormone-resistant prostate cancer progression, ProGRP(31-98) levels were elevated in 9 patients (23%). Of the 9 patients with Stage D3 and elevated serum ProGRP, 4 had a normal serum prostate-specific antigen level. ProGRP may be a potential tumor marker for prostate cancer. Additional studies in large groups of patients are needed to define the clinical value of ProGRP.
Fredericks, William J.; Sepulveda, Jorge; Lal, Priti; Tomaszewski, John E.; Lin, Ming-Fong; McGarvey, Terry; Rauscher, Frank J; Malkowicz, S. Bruce
2013-01-01
Castrate-Resistant Prostate Cancer (CRPC) is characterized by persistent androgen receptor-driven tumor growth in the apparent absence of systemic androgens. Current evidence suggests that CRPC cells can produce their own androgens from endogenous sterol precursors that act in an intracrine manner to stimulate tumor growth. The mechanisms by which CRPC cells become steroidogenic during tumor progression are not well defined. Herein we describe a novel link between the elevated cholesterol phenotype of CRPC and the TERE1 tumor suppressor protein, a prenyltransferase that synthesizes vitamin K-2, which is a potent endogenous ligand for the SXR nuclear hormone receptor. We show that 50% of primary and metastatic prostate cancer specimens exhibit a loss of TERE1 expression and we establish a correlation between TERE1 expression and cholesterol in the LnCaP-C81 steroidogenic cell model of the CRPC. LnCaP-C81 cells also lack TERE1 protein, and show elevated cholesterol synthetic rates, higher steady state levels of cholesterol, and increased expression of enzymes in the de novo cholesterol biosynthetic pathways than the non-steroidogenic prostate cancer cells. C81 cells also show decreased expression of the SXR nuclear hormone receptor and a panel of directly regulated SXR target genes that govern cholesterol efflux and steroid catabolism. Thus, a combination of increased synthesis, along with decreased efflux and catabolism likely underlies the CRPC phenotype: SXR might coordinately regulate this phenotype. Moreover, TERE1 controls synthesis of vitamin K-2, which is a potent endogenous ligand for SXR activation, strongly suggesting a link between TERE1 levels, K-2 synthesis and SXR target gene regulation. We demonstrate that following ectopic TERE1 expression or induction of endogenous TERE1, the elevated cholesterol levels in C81 cells are reduced. Moreover, reconstitution of TERE1 expression in C81 cells reactivates SXR and switches on a suite of SXR target genes that coordinately promote both cholesterol efflux and androgen catabolism. Thus, loss of TERE1 during tumor progression reduces K-2 levels resulting in reduced transcription of SXR target genes. We propose that TERE1 controls the CPRC phenotype by regulating the endogenous levels of Vitamin K-2 and hence the transcriptional control of a suite of steroidogenic genes via the SXR receptor. These data implicate the TERE1 protein as a previously unrecognized link affecting cholesterol and androgen accumulation that could govern acquisition of the CRPC phenotype. PMID:23919967
Correlation of serum IgE levels and clinical manifestations in patients with actinic prurigo*
Cuevas-Gonzalez, Juan Carlos; Lievanos-Estrada, Zahide; Vega-Memije, Maria Elisa; Hojyo-Tomoka, Maria Teresa; Dominguez-Soto, Luciano
2016-01-01
BACKGROUND: Actinic prurigo is an idiopathic photodermatosis, the pathophysiology of which has been hypothesized to involve subtype IV type b (Th2) hypersensitive response, whereby IL4, IL5, and IL13 are secreted and mediate the production of B cells, IgE, and IgG4. OBJECTIVES: To examine the association of serum IgE levels and the clinical severity of injuries. METHODS: This case-control study comprised patients with a clinical and histopathological diagnosis of actinic prurigo, as well as clinically healthy subjects, from whom 3cc of peripheral blood was taken for immunoassay. Cases were classified by lesion severity as mild, moderate, and severe. Descriptive statistics were analyzed, and chi-square test was performed. RESULTS: We included 21 actinic prurigo patients and 21 subjects without disease; 11 patients with actinic prurigo had elevated serum IgE levels, and 10 had low serum levels. Six actinic prurigo (AP) patients with elevated serum levels of IgE had moderate injuries, 4 had severe injuries, and 1 had minor injuries. Eight out of 10 patients with normal IgE levels presented with minor injuries in the clinical evaluation. The 21 controls did not have increased serum IgE levels. CONCLUSIONS: Elevated IgE levels are associated with moderate to severe clinical lesions, suggesting that actinic prurigo entails a type IV subtype b hypersensitivity response in which Th2 cells predominate. PMID:26982774
Shi, Jun; Ge, Meili; Li, Xingxin; Shao, Yingqi; Yao, Jianfeng; Zheng, Yizhou
2014-01-01
Idiopathic aplastic anemia (AA) is an immune-mediated bone marrow failure syndrome. Immune abnormalities such as decreased lymphocyte counts, inverted CD4/CD8 T-cell ratio and increased IFN-γ-producing T cells have been found in AA. CD30, a surface protein belonging to the tumor necrosis factor receptor family and releasing from cell surface as a soluble form (sCD30) after activation, marks a subset of activated T cells secreting IFN-γ when exposed to allogeneic antigens. Our study found elevated BM plasma levels of sCD30 in patients with SAA, which were closely correlated with disease severity, including absolute lymphocyte count (ALC) and absolute netrophil count (ANC). We also noted that sCD30 levels were positively correlated with plasma IFN-γ levels and CD4/CD8 T-cell ratio in patients with SAA. In order to explain these phenomena, we stimulated T cells with alloantigen in vitro and found that CD30+ T cells were the major source of IFN-γ, and induced CD30+ T cells from patients with SAA produced significantly more IFN-γ than that from healthy individuals. In addition, increased proportion of CD8+ T cells in AA showed enhanced allogeneic response by the fact that they expressed more CD30 during allogeneic stimulation. sCD30 levels decreased in patients responded to immunosuppressive therapy. In conclusion, elevated BM plasma levels of sCD30 reflected the enhanced CD30+ T cell-mediated immune response in SAA. CD30 as a molecular marker that transiently expresses on IFN-γ-producing T cells, may participate in mediating bone marrow failure in AA, which also can facilitate our understanding of AA pathogenesis to identify new therapeutic targets. PMID:25383872
Bhat, Pratiksha V; Pandareesh; Khanum, Farhath; Tamatam, Anand
2016-01-01
Ochratoxin-A (OTA), is toxic secondary metabolite and is found to be a source of vast range of toxic effects like hepatotoxicity, nephrotoxicity. However, the information available currently regarding neurotoxic effects exerted by OTA is scanty. Hence, the present study was aimed to evaluate the neurotoxic effects of OTA and the possible mechanisms of toxicity as well as the role of cytotoxic oxidative stress on neuronal (Neuro-2a) cell line was evaluated in vitro. Results of the MTT and LDH assay showed that, OTA induced dose-dependent cell death in Neuro-2a cells and EC50 value was determined as 500 nM. OTA induced high levels of reactive oxygen species (ROS) and elevated levels of malondialdehyde, also loss of mitochondrial membrane potential was observed in a dose depended manner. Effects of OTA on ROS induced chromosomal DNA damage was assessed by Comet assay and plasmid DNA damage assay in which increase in DNA damage was observed in Neuro-2a cells by increasing the OTA concentration. Further western blotting analysis of OTA treated Neuro-2a cells indicated elevated expression levels of c-Jun, JNK3 and cleaved caspase-3 leading to apoptotic cell death. Other hand realtime-Q-PCR analysis clearly indicates the suppressed expression of neuronal biomarker genes including AChE, BDNF, TH and NOS2. Further N-acetylcysteine (NAC) pretreatment to Neuro-2a cells followed by OTA treatment clearly evidenced that, the significant reversal of toxic effects exerted by OTA on Neuro-2a cells. In the present study, results illustrate that ROS a principle event in oxidative stress was elevated by OTA toxicity in Neuro-2a cells. However, further in vivo, animal studies are in need to conclude the present study reports and the use of NAC as a remedy for OTA induced neuronal stress.
Tarjan, Gabor; Haines, G Kenneth; Vesper, Benjamin J; Xue, Jiaping; Altman, Michael B; Yarmolyuk, Yaroslav R; Khurram, Huma; Elseth, Kim M; Roeske, John C; Aydogan, Bulent; Radosevich, James A
2011-02-01
It is not understood why some head and neck squamous cell carcinomas, despite having identical morphology, demonstrate different tumor aggressiveness, including radioresistance. High levels of the free radical nitric oxide (NO) and increased expression of the NO-producing enzyme nitric oxide synthase (NOS) have been implicated in tumor progression. We previously adapted three human tongue cancer cell lines to high NO (HNO) levels by gradually exposing them to increasing concentrations of an NO donor; the HNO cells grew faster than their corresponding untreated ("parent") cells, despite being morphologically identical. Herein we initially characterize the HNO cells and compare the biological properties of the HNO and parent cells. HNO/parent cell line pairs were analyzed for cell cycle distribution, DNA damage, X-ray and ultraviolet radiation response, and expression of key cellular enzymes, including NOS, p53, glutathione S-transferase-pi (GST-pi), apurinic/apyrimidinic endonuclease-1 (APE1), and checkpoint kinases (Chk1, Chk2). While some of these properties were cell line-specific, the HNO cells typically exhibited properties associated with a more aggressive behavior profile than the parent cells (greater S-phase percentage, radioresistance, and elevated expression of GST-pi/APE1/Chk1/Chk2). To correlate these findings with conditions in primary tumors, we examined the NOS, GST-pi, and APE1 expression in human tongue squamous cell carcinomas. A majority of the clinical samples exhibited elevated expression levels of these enzymes. Together, the results herein suggest cancer cells exposed to HNO levels can develop resistance to free radicals by upregulating protective mechanisms, such as GST-pi and APE1. These upregulated defense mechanisms may contribute to their aggressive expression profile.
Kotake, Shigeru; Nanke, Yuki; Yago, Toru; Kawamoto, Manabu; Kobashigawa, Tsuyoshi; Yamanaka, Hisashi
2016-01-01
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by the destruction of articular cartilage and bone with elevated levels of proinflammatory cytokines. It has been reported that IL-17 and Th17 cells play important roles in the pathogenesis of RA. Recently, plasticity in helper T cells has been demonstrated; Th17 cells can convert to Th1 cells. It remains to be elucidated whether this conversion occurs in the early phase of RA. Here, we tried to identify Th17 cells, Th1 cells, and Th17 cell-derived Th1 cells (CD161(+)Th1 cells) in the peripheral blood of early-onset RA patients. We also evaluated the effect of methotrexate on the ratio of Th17 cells in early-onset RA patients. The ratio of Th17 cell-derived Th1 cells to CD161(+)Th17 cells was elevated in the peripheral blood of early-onset RA patients. In addition, MTX reduced the ratio of Th17 cells but not Th1 cells. These findings suggest that IL-17 and Th17 play important roles in the early phase of RA; thus, anti-IL-17 antibodies should be administered to patients with RA in the early phase.
Kotake, Shigeru; Nanke, Yuki; Yago, Toru; Kawamoto, Manabu; Kobashigawa, Tsuyoshi; Yamanaka, Hisashi
2016-01-01
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by the destruction of articular cartilage and bone with elevated levels of proinflammatory cytokines. It has been reported that IL-17 and Th17 cells play important roles in the pathogenesis of RA. Recently, plasticity in helper T cells has been demonstrated; Th17 cells can convert to Th1 cells. It remains to be elucidated whether this conversion occurs in the early phase of RA. Here, we tried to identify Th17 cells, Th1 cells, and Th17 cell-derived Th1 cells (CD161+Th1 cells) in the peripheral blood of early-onset RA patients. We also evaluated the effect of methotrexate on the ratio of Th17 cells in early-onset RA patients. The ratio of Th17 cell-derived Th1 cells to CD161+Th17 cells was elevated in the peripheral blood of early-onset RA patients. In addition, MTX reduced the ratio of Th17 cells but not Th1 cells. These findings suggest that IL-17 and Th17 play important roles in the early phase of RA; thus, anti-IL-17 antibodies should be administered to patients with RA in the early phase. PMID:27123445
Sanzgiri, R P; Araque, A; Haydon, P G
1999-11-05
Recent Ca(2+) imaging studies in cell culture and in situ have shown that Ca(2+) elevations in astrocytes stimulate glutamate release and increase neuronal Ca(2+) levels, and that this astrocyte-neuron signaling can be stimulated by prostaglandin E(2) (PGE(2)). We investigated the electrophysiological consequences of the PGE(2)-mediated astrocyte-neuron signaling using whole-cell recordings on cultured rat hippocampal cells. Focal application of PGE(2) to astrocytes evoked a Ca(2+) elevation in the stimulated cell by mobilizing internal Ca(2+) stores, which further propagated as a Ca(2+) wave to neighboring astrocytes. Whole-cell recordings from neurons revealed that PGE(2) evoked a slow inward current in neurons adjacent to astrocytes. This neuronal response required the presence of an astrocyte Ca(2+) wave and was mediated through both N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors. Taken together with previous studies, these data demonstrate that PGE(2)-evoked Ca(2+) elevations in astrocyte cause the release of glutamate which activates neuronal ionotropic receptors. Copyright 1999 John Wiley & Sons, Inc.
Chetsawang, Jirapa; Nudmamud-Thanoi, Sutisa; Phonchai, Ruchee; Abubakar, Zuroida; Govitrapong, Piyarat; Chetsawang, Banthit
2018-06-23
Methamphetamine (METH) is an addictive stimulant drug that has many negative consequences, including toxic effects to the brain. Recently, the induction of inflammatory processes has been identified as a potential contributing factor to induce neuronal cell degeneration. It has been demonstrated that the expression of inflammatory agents, such as cyclooxygenase 2 (COX-2), depends on the activation of calcineurin (CaN) and nuclear factor of activated T-cells (NFAT). Moreover, the excessive elevation in cytosolic Ca 2+ levels activates the cell death process, including calpain activation in neurons, which was diminished by the overexpression of the calpain inhibitor protein, calpastatin. However, it is unclear whether calpain mediates CaN-NFAT activation in the neurotoxic process. In the present study, we observed that the toxic high dose of METH-treated neuroblastoma SH-SY5Y cells significantly decreased cell viability but increased apoptotic cell death, the active cleaved form of calcineurin, the nuclear translocation of NFAT, and COX-2 levels. Nevertheless, these toxic effects were diminished in METH-treated calpastatin-overexpressing SH-SY5Y cells. These findings might emphasize the role of calpastatin against METH-induced toxicity by a mechanism related to calpain-dependent CaN-NFAT activation-induced COX-2 expression. Copyright © 2018. Published by Elsevier B.V.
Effect of uric acid on inflammatory COX-2 and ROS pathways in vascular smooth muscle cells.
Oğuz, Nurgül; Kırça, Mustafa; Çetin, Arzu; Yeşilkaya, Akın
2017-10-01
Hyperuricemia is thought to play a role in cardiovascular diseases (CVD), including hypertension, coronary artery disease and atherosclerosis. However, exactly how uric acid contributes to these pathologies is unknown. An underlying mechanism of inflammatory diseases, such as atherosclerosis, includes enhanced production of cyclooxygenase-2 (COX-2) and superoxide anion. Here, we aimed to examine the effect of uric acid on inflammatory COX-2 and superoxide anion production and to determine the role of losartan. Primarily cultured vascular smooth muscle cells (VSMCs) were time and dose-dependently induced by uric acid and COX-2 and superoxide anion levels were measured. COX-2 levels were determined by ELISA, and superoxide anion was measured by the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c method. Uric acid elevated COX-2 levels in a time-dependent manner. Angiotensin-II receptor blocker, losartan, diminished uric-acid-induced COX-2 elevation. Uric acid also increased superoxide anion level in VSMCs. Uric acid plays an important role in CVD pathogenesis by inducing inflammatory COX-2 and ROS pathways. This is the first study demonstrating losartan's ability to reduce uric-acid-induced COX-2 elevation.
Kim, So-Hee; Yadav, Dhananjay; Kim, Suk-Jeong; Kim, Jae-Ryong; Cho, Kyung-Hyun
2017-07-02
Elevated serum iron level is linked with an increased risk of diabetes and atherosclerosis. However, the pathological mechanism by which iron affects serum lipoprotein levels is unknown. To elucidate the mechanism, a high dose of ferrous ion was applied (final 60 µM, 120 µM) to human serum lipoproteins, macrophages, and human dermal fibroblast (HDF) cells. Iron-treated lipoproteins showed loss of antioxidant ability along with protein degradation and multimerization, especially co-treatment with fructose (final 10 mM). In the presence of fructose, HDF cells showed 3.5-fold more severe cellular senescence, as compared to the control, dependent on the dosage of fructose. In macrophages, phagocytosis of acetylated low-density lipoprotein (acLDL) was more accelerated by ferrous ion, occurring at a rate that was up to 1.8-fold higher, than acLDL alone. After 24 weeks supplementation with 0.05% and 0.1% ferrous ion in the diet (wt/wt), serum total cholesterol (TC) level was elevated 3.7- and 2.1-fold, respectively, under normal diet (ND). Serum triglyceride (TG) was elevated 1.4- and 1.7-fold, respectively, under ND upon 0.05% and 0.1% ferrous ion supplementation. Serum glucose level was elevated 2.4- and 1.2-fold under ND and high cholesterol diet (HCD), respectively. However, body weight was decreased by the Fe 2+ consumption. Iron consumption caused severe reduction of embryo laying and reproduction ability, especially in female zebrafish via impairment of follicular development. In conclusion, ferrous ion treatment caused more pro-atherogenic, and pro-senescence processes in human macrophages and dermal cells. High consumption of iron exacerbated hyperlipidemia and hyperglycemia as well as induced fatty liver changes and sterility along with reduction of female fertility.
Mundy-Bosse, Bethany L; Thornton, Lisa M; Yang, Hae-Chung; Andersen, Barbara L; Carson, William E
2011-01-01
Our group has shown in a randomized clinical trial that psychological intervention to reduce stress in patients with stages II and III breast cancer led to enhanced immune function, fewer recurrences and improved overall survival. We hypothesized that patients with high levels of stress would have alterations in myeloid-derived suppressor cells (MDSC) compared to patients with lower stress. PBMC from 16 patients with high stress (n = 8) or with low stress (n = 8) after surgery as measured by the Impact of Event Scale (IES) questionnaire were evaluated for the presence of MDSC. Patients with higher IES scores had significantly elevated salivary cortisol levels (P = 0.013; 13 μg/dl vs. 9.74 μg/dl). Levels of IL-1Rα were also significantly elevated in the higher IES group (45.09 pg/ml vs. 97.16 pg/ml; P = 0.010). IP 10, G-CSF, and IL-6 were all higher in the high stress group although not to a significant degree. Flow cytometric analysis for CD33+/HLA-DR-neg/CD15+/CD11b+ MDSC revealed increased MDSC in patients with lower IES scores (P = 0.009). CD11b+/CD15+ cells constituted 9.4% of the CD33+/HLA DR-neg cell population in patients with high IES, vs. 27.3% in patients with low IES scores. Additional analyzes of the number of stressful events that affected the patients in addition to their cancer diagnosis revealed that this type of stress measure correlated with elevated levels of MDSC (P = 0.064). These data indicate the existence of a complex relationship between stress and immune function in breast cancer patients. Copyright © 2011 Elsevier Inc. All rights reserved.
Mundy-Bosse, Bethany L.; Thornton, Lisa M.; Yang, Hae-Chung; Andersen, Barbara L.; Carson, William E.
2011-01-01
Our group has shown in a randomized clinical trial that psychological intervention to reduce stress in patients with stage II and III breast cancer led to enhanced immune function, fewer recurrences and improved overall survival. We hypothesized that patients with high levels of stress would have alterations in myeloid-derived suppressor cells (MDSC) compared to patients with lower stress. PBMC from 16 patients with high stress (n = 8) or with low stress (n = 8) after surgery as measured by the Impact of Event Scale (IES) questionnaire were evaluated for the presence of MDSC. Patients with higher IES scores had significantly elevated salivary cortisol levels (P = 0.013; 13 µg/dl vs. 9.74 µg/dl). Levels of IL-1Rα were also significantly elevated in the higher IES group (45.09 pg/mL vs. 97.16 pg/mL; P = 0.010). IP 10, G-CSF, and IL-6 were all higher in the high stress group although not to a significant degree. Flow cytometric analysis for CD33+/HLA-DR-neg/CD15+/CD11b+ MDSC revealed increased MDSC in patients with lower IES scores (P = 0.009). CD11b+/CD15+ cells constituted 9.4% of the CD33+/HLA DR-neg cell population in patients with high IES, versus 27.3% in patients with low IES scores. Additional analyses of the number of stressful events that affected the patients in addition to their cancer diagnosis revealed that this type of stress measure correlated with elevated levels of MDSC (P = .064). These data indicate the existence of a complex relationship between stress and immune function in breast cancer patients. PMID:21600570
Beutler, E; Forman, L; West, C; Gelbart, T
1988-03-15
The effect of the xanthone derivative 2-(2-hydroxyethoxy)-6-(1-H-tetrazole-5-yl)xanthen-9-one (BW A440C) on red cells was studied. When added to stored red cells at a concentration of 6 mM, greatly improved preservation of 2,3-diphosphoglycerate (2,3-DPG) was observed. There was no effect on internal pH of the erythrocyte. At a concentration 0.500 mM, many red cell enzyme activities were inhibited completely. At a 0.500 mM concentration, however, inhibition of pyruvate kinase and diphosphoglycerate phosphatase was most striking. Inhibition of either of these enzymes could result in elevation of 2,3-DPG levels. BW A440C in concentrations which elevated 2,3-DPG levels in humans caused a decrease in 2,3-DPG levels in rabbits and markedly impaired the viability of 21-day stored rabbit erythrocytes.
Ivanina, Anna V; Beniash, Elia; Etzkorn, Markus; Meyers, Tiffany B; Ringwood, Amy H; Sokolova, Inna M
2013-09-15
Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO2 ( [Formula: see text] ) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high [Formula: see text] (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between [Formula: see text] and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of [Formula: see text] (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants - cadmium (Cd) and copper (Cu). Elevated [Formula: see text] resulted in a decrease in intracellular pH (pHi) of the isolated mantle cells from 7.8 to 7.4. Elevated [Formula: see text] significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated [Formula: see text] levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd(2+) concentration remained the same, while intracellular levels of free Zn(2+) increased suggesting that Cd(2+) substitutes bound Zn(2+) in these cells. In contrast, Cu exposure did not affect intracellular Zn(2+) but led to a profound increase in the intracellular levels of labile Cu(2+) and Fe(2+). An increase in the extracellular concentrations of Cd and Cu led to the elevated production of reactive oxygen species under the normocapnic conditions (0.05 kPa [Formula: see text] ); surprisingly, this effect was mitigated in hypercapnia (1.52 and 3.01 kPa). Overall, our data reveal complex and metal-specific interactions between the cellular effects of trace metals and [Formula: see text] in clams and indicate that variations in environmental [Formula: see text] may modulate the biological effects of trace metals in marine organisms. Copyright © 2013 Elsevier B.V. All rights reserved.
Blood Transfusion Therapy in Patients with Heart Disease.
1982-04-07
Delivoria-Papadopoulos M, Miller WW. Red cell 2,3 diphosphoglycerate levels in subjects with chronic hypoxemia. N Engl J Med 1969;280:1165-66. I 60...solution will do this. Red cells with elevated 2,3 DPG levels do ensure optimum delivery of oxygen to tissue, especially during hypothermia, although...increased in congestive heart failure. More- over, certain drugs may reduce plasma volume and raise the hematocrit level , and splenomegaly will further reduce
Mechanical cell competition kills cells via induction of lethal p53 levels
Wagstaff, Laura; Goschorska, Maja; Kozyrska, Kasia; Duclos, Guillaume; Kucinski, Iwo; Chessel, Anatole; Hampton-O'Neil, Lea; Bradshaw, Charles R.; Allen, George E.; Rawlins, Emma L.; Silberzan, Pascal; Carazo Salas, Rafael E.; Piddini, Eugenia
2016-01-01
Cell competition is a quality control mechanism that eliminates unfit cells. How cells compete is poorly understood, but it is generally accepted that molecular exchange between cells signals elimination of unfit cells. Here we report an orthogonal mechanism of cell competition, whereby cells compete through mechanical insults. We show that MDCK cells silenced for the polarity gene scribble (scribKD) are hypersensitive to compaction, that interaction with wild-type cells causes their compaction and that crowding is sufficient for scribKD cell elimination. Importantly, we show that elevation of the tumour suppressor p53 is necessary and sufficient for crowding hypersensitivity. Compaction, via activation of Rho-associated kinase (ROCK) and the stress kinase p38, leads to further p53 elevation, causing cell death. Thus, in addition to molecules, cells use mechanical means to compete. Given the involvement of p53, compaction hypersensitivity may be widespread among damaged cells and offers an additional route to eliminate unfit cells. PMID:27109213
Bendre, Shweta; Hall, Conrad; Lin, Yu-Chih
2016-01-01
The dynamic regulation of microtubules (MTs) during mitosis is critical for accurate chromosome segregation and genome stability. Cancer cell lines with hyperstabilized kinetochore MTs have increased segregation errors and elevated chromosomal instability (CIN), but the genetic defects responsible remain largely unknown. The MT depolymerase MCAK (mitotic centromere-associated kinesin) can influence CIN through its impact on MT stability, but how its potent activity is controlled in cells remains unclear. In this study, we show that GTSE1, a protein found overexpressed in aneuploid cancer cell lines and tumors, regulates MT stability during mitosis by inhibiting MCAK MT depolymerase activity. Cells lacking GTSE1 have defects in chromosome alignment and spindle positioning as a result of MT instability caused by excess MCAK activity. Reducing GTSE1 levels in CIN cancer cell lines reduces chromosome missegregation defects, whereas artificially inducing GTSE1 levels in chromosomally stable cells elevates chromosome missegregation and CIN. Thus, GTSE1 inhibition of MCAK activity regulates the balance of MT stability that determines the fidelity of chromosome alignment, segregation, and chromosomal stability. PMID:27881713
Ihara, Eikichi; Derkach, Dmitry N; Hirano, Katsuya; Nishimura, Junji; Nawata, Hajime; Kanaide, Hideo
2001-01-01
To determine the mechanism of bradykinin-induced production of endothelium-derived contracting factors, we monitored the changes in cytosolic Ca2+ concentration ([Ca2+]i) in in situ endothelial cells in porcine aortic valvular strips and the changes in [Ca2+]i of smooth muscle cells and force in porcine interlobar renal arterial strips using front-surface fluorometry of fura-2. In the presence of Nω-nitro-l-arginine methyl ester, bradykinin caused an endothelium-dependent transient elevation of [Ca2+]i and contraction in smooth muscle in the interlobar renal artery. This contraction was completely inhibited by a prostaglandin H2/thromboxane A2 receptor antagonist. In the absence of extracellular Ca2+, bradykinin failed to induce contraction. However, replenishing extracellular Ca2+ to 0.75 mm and higher induced an instantaneous contraction. However, replenishing Ca2+per se did not induce any contraction in the absence of bradykinin. Pretreatment with either 10−5m 1-(β-(3-(4-methoxyphenyl)propoxy)-4-methoxyphenethyl)-1H-imidazole hydrochloride (SKF96365) or 0.2 mm Ni2+ abolished the contraction induced by bradykinin in the presence of extracellular Ca2+. Treatment with 10−5m indomethacin completely inhibited the contractile response induced by Ca2+ replenishment, regardless of the timing of its application, before or after the application of bradykinin. In endothelial cells in the valvular strips, bradykinin caused a transient [Ca2+]i elevation in the presence of 1.25 mm extracellular Ca2+, but [Ca2+]i returned to the resting level within 10 min. Neither 10−5m SKF96365 nor 0.2 mm Ni2+ had any effect on the peak [Ca2+]i elevation, but decreased [Ca2+]i in the declining phase. In the absence of extracellular Ca2+, bradykinin induced a transient [Ca2+]i elevation to a level similar to that seen in the presence of 1.25 mm extracellular Ca2+. However, [Ca2+]i then rapidly returned to the prestimulation level within 5 min. Subsequent Ca2+ replenishment to 0.75 mm and higher in the presence of bradykinin elevated [Ca2+]i to significantly higher levels than the resting level seen in the media containing 1.25 mm Ca2+. In conclusion, Ca2+ influx in the endothelial cells is essential for bradykinin to induce endothelium-dependent contraction in the porcine interlobar renal artery. PMID:11483701
Factors associated with elevated serum chromogranin A levels in patients with autoimmune gastritis.
Kalkan, Çağdaş; Karakaya, Fatih; Soykan, İrfan
2016-11-01
Chromogranin A is an important tool in the diagnosis of neuroendocrine tumors. Autoimmune gastritis is an autoimmune disorder marked by hypergastrinemia, which stimulates enterochromaffin-like cell proliferation. Chromogranin A is also elevated in autoimmune gastritis patients with a different level of increase in each patient. The goal of this study is to explore constituents that influence serum chromogranin A levels in autoimmune gastritis patients. One hundred and eighty-eight autoimmune gastritis patients and 20 patients with type I gastric carcinoid tumors were analyzed retrospectively and compared to 110 functional dyspepsia patients in terms of factors that might affect serum chromogranin A levels. The mean serum chromogranin A level was 171.17±67.3 ng/mL in autoimmune gastritis patients (n=62) without enterochromaffin-like cell hyperplasia, and 303.3±102.82 ng/mL in patients (n=126) with enterochromaffin-like cell hyperplasia (p<0.001). The presence of corpus atrophy (p=0.026, OR: 5.03, CI 95%: 1.21-20.88, β=1.61) and presence of enterochromaffin-like cell hyperplasia (p=0.017, OR: 6.59, CI 95%: 1.4-31.08, β=1.88) were found as risk factors associated with serum chromogranin A level. Factors influencing raised serum chromogranin A levels in autoimmune gastritis were the presence of ECL cell hyperplasia and serum gastrin levels. Serum chromogranin A levels maybe helpful in distinguishing autoimmune gastritis patients and gastric carcinoid type I from the control group, but not useful in the differentiation of individuals with autoimmune gastritis from patients with gastric carcinoids.
Li, Lingyun; Steinauer, Kirsten K; Dirks, Amie J; Husbeck, Bryan; Gibbs, Iris; Knox, Susan J
2003-12-01
Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.
Li, Yang; Li, Qi; Hong, Qiang; Lin, Yichun; Mao, Wang; Zhou, Shumin
2018-05-01
Programmed cell death (PCD) plays a positive role in the systemic response of plants to pathogen resistance. It has been confirmed that local tobacco mosaic virus (TMV) infecting tomato leaves can induce systemic PCD process in root-tip tissues. But up to now the underlying physiological mechanisms are poorly understood. This study focused on the detailed investigation of the physiological responses of root-tip cells during the initiation of systemic PCD. Physiological, biochemical examination and cytological observation showed that 1 day post-inoculation (dpi) of TMV inoculation there was an increase in calcium fluorescence intensity in root tip tissue cells. Then at 2 dpi, 4 dpi, 8 dpi and 15 dpi, the fluorescence intensity of calcium ion continued to increase. However, at 5 dpi, the reactive oxygen species (ROS) began to accumulate in the root-tip cells. And finally at 20 dpi, the obvious PCD reaction was detected. In addition, the experimental results also showed that the above process involved the elevation of two types of intracellular Ca 2+ , including cytoplasmic calcium ([Ca 2+ ] cyt ) and nuclear calcium ([Ca 2+ ] nuc ). The [Ca 2+ ] cyt , as a pilot signal could lead to the subsequent elevation of intracellular ROS concentration. Then, the high levels of ROS stimulated an increase of [Ca 2+ ] nuc and eventually caused PCD reactions in the root-tip tissues. In particular, the high level of nuclear calcium is an essential mediator in systemic PCD of plants. Copyright © 2018 Elsevier B.V. All rights reserved.
O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle.
Hanover, John A; Chen, Weiping; Bond, Michelle R
2018-06-01
Cancer cells exhibit unregulated growth, altered metabolism, enhanced metastatic potential and altered cell surface glycans. Fueled by oncometabolism and elevated uptake of glucose and glutamine, the hexosamine biosynthetic pathway (HBP) sustains glycosylation in the endomembrane system. In addition, the elevated pools of UDP-GlcNAc drives the O-GlcNAc modification of key targets in the cytoplasm, nucleus and mitochondrion. These targets include transcription factors, kinases, key cytoplasmic enzymes of intermediary metabolism, and electron transport chain complexes. O-GlcNAcylation can thereby alter epigenetics, transcription, signaling, proteostasis, and bioenergetics, key 'hallmarks of cancer'. In this review, we summarize accumulating evidence that many cancer hallmarks are linked to dysregulation of O-GlcNAc cycling on cancer-relevant targets. We argue that onconutrient and oncometabolite-fueled elevation increases HBP flux and triggers O-GlcNAcylation of key regulatory enzymes in glycolysis, Kreb's cycle, pentose-phosphate pathway, and the HBP itself. The resulting rerouting of glucose metabolites leads to elevated O-GlcNAcylation of oncogenes and tumor suppressors further escalating elevation in HBP flux creating a 'vicious cycle'. Downstream, elevated O-GlcNAcylation alters DNA repair and cellular stress pathways which influence oncogenesis. The elevated steady-state levels of O-GlcNAcylated targets found in many cancers may also provide these cells with a selective advantage for sustained growth, enhanced metastatic potential, and immune evasion in the tumor microenvironment.
Jiménez-Navarro, Manuel F; González, Francisco Jesús; Caballero-Borrego, Juan; Marchal, Juan Antonio; Rodríguez-Losada, Noela; Carrillo, Esmeralda; García-Pinilla, José Manuel; Hernández-García, José M; Pérez-González, Rita; Ramírez, Gemma; Aránega, Antonia; de Teresa Galván, Eduardo
2011-12-01
Multivessel coronary disease is still a postinfarction prognostic marker despite new forms of reperfusion, such as primary angioplasty. The aim of this study was to determine the time sequence of various sets of endothelial progenitor cells and angiogenic cytokines (vascular endothelial growth factor, hepatocyte growth factor) according to the degree of extension of the postinfarction coronary disease. We studied the release kinetics in 32 patients admitted for a first myocardial infarction with ST elevation, grouped according to whether they had single or multivessel disease, and 26 controls. The patients had a higher number of endothelial progenitor cells and angiogenic cytokines than the controls at all 3 measurements (admission, day 3, and day 7) of the following subsets: CD34, CD34+CD133+, CD34+KDR+, and CD34+CD133+KDR+CD45+(weak); this latter was higher on day 7. The levels of these cell subsets were all higher in the patients with single-vessel disease and at all 3 measurements. The vascular endothelial growth factor levels were raised during the first week and the hepatocyte growth factor showed an early peak on admission for infarction. No significant differences were seen in the cytokines according to coronary disease extension. Although the release kinetics of different subsets of endothelial progenitor cells in patients with a first acute myocardial infarction with ST elevation was similar in those with single vessel disease to those with multivessel disease, the number of circulating endothelial progenitor cells was greater in the patients with single vessel disease. The vascular endothelial growth factor levels were raised during the first postinfarction week and the hepatocyte growth factor were higher on admission. Copyright © 2011 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Boidot, Romain; Végran, Frédérique; Meulle, Aline; Le Breton, Aude; Dessy, Chantal; Sonveaux, Pierre; Lizard-Nacol, Sarab; Feron, Olivier
2012-02-15
The monocarboxylate transporter (MCT) family member MCT1 can transport lactate into and out of tumor cells. Whereas most oxidative cancer cells import lactate through MCT1 to fuel mitochondrial respiration, the role of MCT1 in glycolysis-derived lactate efflux remains less clear. In this study, we identified a direct link between p53 function and MCT1 expression. Under hypoxic conditions, p53 loss promoted MCT1 expression and lactate export produced by elevated glycolytic flux, both in vitro and in vivo. p53 interacted directly with the MCT1 gene promoter and altered MCT1 mRNA stabilization. In hypoxic p53(-/-) tumor cells, NF-κB further supported expression of MCT1 to elevate its levels. Following glucose deprivation, upregulated MCT1 in p53(-/-) cells promoted lactate import and favored cell proliferation by fuelling mitochondrial respiration. We also found that MCT1 expression was increased in human breast tumors harboring p53 mutations and coincident features of hypoxia, with higher MCT1 levels associated with poorer clinical outcomes. Together, our findings identify MCT1 as a target for p53 repression and they suggest that MCT1 elevation in p53-deficient tumors allows them to adapt to metabolic needs by facilitating lactate export or import depending on the glucose availability.
Marked Direct Hyperbilirubinemia due to Ceftriaxone in an Adult with Sickle Cell Disease
Khurram, Daniyeh; Shamban, Leonid; Kornas, Robert; Paul, Maryann
2015-01-01
Drugs are a significant cause of liver injury. Drug-induced liver injury (DILI) can cause acute hepatitis, cholestasis, or a mixed pattern. Ceftriaxone is a commonly used antibiotic and has been associated with reversible biliary sludge, pseudolithiasis, and cholestasis. A 32-year-old male with sickle cell disease was admitted to the hospital for acute sickle cell crisis. On the second day of hospitalization, he developed cough and rhonchi with chest X-ray revealing right middle lobe infiltrates. Ceftriaxone and azithromycin were initiated. Subsequently, he developed conjugated hyperbilirubinemia and mild transaminitis. His total bilirubin trended upwards from 3.3 mg/dL on admission to 17 mg/dL. It was predominantly conjugated bilirubin, with preadmission bilirubin levels of 3-4 mg/dL. His transaminases were mildly elevated as well compared to previous levels. Extensive workup for bilirubin elevation was unremarkable. Ceftriaxone was switched to levofloxacin and the hyperbilirubinemia improved. On ambulatory follow-up, his bilirubin remained below 4 mg/dL. Ceftriaxone may be associated with marked direct hyperbilirubinemia particularly in sickle cell patients with chronic liver chemistry abnormalities. In the case of elevated bilirubin with concomitant ceftriaxone use, elimination of the offending agent should be considered. PMID:26101675
Monitoring liver damage using hepatocyte-specific methylation markers in cell-free circulating DNA.
Lehmann-Werman, Roni; Magenheim, Judith; Moss, Joshua; Neiman, Daniel; Abraham, Ofri; Piyanzin, Sheina; Zemmour, Hai; Fox, Ilana; Dor, Talya; Grompe, Markus; Landesberg, Giora; Loza, Bao-Li; Shaked, Abraham; Olthoff, Kim; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval
2018-06-21
Liver damage is typically inferred from serum measurements of cytoplasmic liver enzymes. DNA molecules released from dying hepatocytes are an alternative biomarker, unexplored so far, potentially allowing for quantitative assessment of liver cell death. Here we describe a method for detecting acute hepatocyte death, based on quantification of circulating, cell-free DNA (cfDNA) fragments carrying hepatocyte-specific methylation patterns. We identified 3 genomic loci that are unmethylated specifically in hepatocytes, and used bisulfite conversion, PCR, and massively parallel sequencing to quantify the concentration of hepatocyte-derived DNA in mixed samples. Healthy donors had, on average, 30 hepatocyte genomes/ml plasma, reflective of basal cell turnover in the liver. We identified elevations of hepatocyte cfDNA in patients shortly after liver transplantation, during acute rejection of an established liver transplant, and also in healthy individuals after partial hepatectomy. Furthermore, patients with sepsis had high levels of hepatocyte cfDNA, which correlated with levels of liver enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Duchenne muscular dystrophy patients, in which elevated AST and ALT derive from damaged muscle rather than liver, did not have elevated hepatocyte cfDNA. We conclude that measurements of hepatocyte-derived cfDNA can provide specific and sensitive information on hepatocyte death, for monitoring human liver dynamics, disease, and toxicity.
NASA Astrophysics Data System (ADS)
Van De Water, P. K.
2016-12-01
The size, frequency, and morphology of leaf surface stomata is used to reconstruct past levels of atmospheric carbon dioxide over geologic time. This technique relies on measuring cell and cell-clusters to correlate with changes of known carbon dioxide levels in the atmosphere. Unfortunately, not all plants are suitable because the occurrence and placement of stomatal cell-complexes differ significantly between plant families. Monocot and dicot angiosperms exhibit different types of stomata and stomatal complexes that lack order and thus are unsuitable. But, in gymnosperms, the number and distribution of stomata and pavement cells is formalized and can be used to reconstruct past atmospheric carbon dioxide levels. However, characteristic of each plant species must still be considered. For example, conifers are useful but are divided into two-needle to five-needle pines, or have irregular surface morphology (Pseudotsuga sp. and Tsuga sp. needles). This study uses Pinus monophylla an undivided needle morphology, that being a cylinder has no interior surface cells. Pinus monophylla (single needle pinyon) needles were collected along Geiger Grade (Nevada State Highway 341, Reno) in 2005 and 2013 from 1500m to 2195m. Herbarium samples were also collected from 13 historic collections made between 1911 and 1994. The study determined changes with elevation and/or over time using in these populations. Using Pinus monophylla, insured needles represented a single surface with stomata, stomatal complex cells, and co-occurring pavement cell types. Results show decreased stomatal densities (stomata/area), stomatal index (stomata/stomata + epidermal cells) and stable stomata per row (stomata/row) . Epidermal cell density (Epidermal Cells /Area), and Pavement cell density (Pavement cell/area) track stomatal density similarly. Data comparison, using elevation in the 2005 and 2013 collections showed no-significant trends. Individual stomatal complexes show no differences in the size and shape over time or with elevation. Stomata morphology and the stomatal pores appear conservative. However some complex cells show a morphology suggesting they are not fully formed and functional. These characteristics appear often in the modern material suggesting some stomata never fully develop.
SGK is a primary glucocorticoid-induced gene in the human.
Náray-Fejes-Tóth, A; Fejes-Tóth, G; Volk, K A; Stokes, J B
2000-12-01
Serum- and glucocorticoid-induced kinase (sgk) is transcriptionally regulated by corticosteroids in several cell types. Recent findings suggest that sgk is an important gene in the early action of corticosteroids on epithelial sodium reabsorption. Surprisingly, the human sgk was reported not to be transcriptionally regulated by corticosteroids in a hepatoma cell line, and thus far no glucocorticoid response element has been identified in the human SGK gene. Since humans clearly respond to both aldosterone and glucocorticoids in cells where sgk action seems to be important, in this study we determined sgk mRNA levels following dexamethasone treatment for various duration in five human cell lines. These cell lines included epithelial cells (H441, T84 and HT29) and lymphoid/monocyte (U937 and THP-1) lines. Using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we found that sgk mRNA levels are markedly induced by glucocorticoids in all of the five cell lines studied. Time course analyses revealed that sgk mRNA levels are elevated as early as 30 min after addition of the glucocorticoid, and remain elevated for several hours. Northern analysis in H441 cells confirmed that sgk is an early induced gene. The induction of sgk by dexamethasone was unaffected by cycloheximide, indicating that it does not require de novo protein synthesis. These results indicate that the human sgk, just like its counterparts in other species, is a primary glucocorticoid-induced gene.
Etzion, Z; Tiffert, T; Bookchin, R M; Lew, V L
1993-11-01
Elevated [Ca2+]i in deoxygenated sickle cell anemia (SS) red cells (RBCs) could trigger a major dehydration pathway via the Ca(2+)-sensitive K+ channel. But apart from an increase in calcium permeability, the effects of deoxygenation on the Ca2+ metabolism of sickle cells have not been previously documented. With the application of 45Ca(2+)-tracer flux methods and the combined use of the ionophore A23187, Co2+ ions, and intracellular incorporation of the Ca2+ chelator benz-2, in density-fractionated SS RBCs, we show here for the first time that upon deoxygenation, the mean [Ca2+]i level of SS discocytes was significantly increased, two- to threefold, from a normal range of 9.4 to 11.4 nM in the oxygenated cells, to a range of 21.8 to 31.7 nM in the deoxygenated cells, closer to K+ channel activatory levels. Unlike normal RBCs, deoxygenated SS RBCs showed a two- to fourfold increase in pump-leak Ca2+ turnover. Deoxygenation of the SS RBCs reduced their Ca2+ pump Vmax, more so in reticulocyte- and discocyte-rich than in dense cell fractions, and decreased their cytoplasmic Ca2+ buffering. Analysis of these results suggests that both increased Ca2+ influx and reduced Ca2+ pump extrusion contribute to the [Ca2+]i elevation.
Haraguchi, Norihiro; Kikuchi, Norihiro; Morishima, Yuko; Matsuyama, Masashi; Sakurai, Hirofumi; Shibuya, Akira; Shibuya, Kazuko; Taniguchi, Masaru; Ishii, Yukio
2016-07-01
Invariant NKT (iNKT) cells play an important role in a variety of antimicrobial immune responses due to their ability to produce high levels of immune-modulating cytokines. Here, we investigated the role of iNKT cells in host defense against candidiasis using Jα18-deficient mice (Jα18(-/-) ), which lack iNKT cells. Jα18(-/-) mice were more resistant to the development of lethal candidiasis than wild-type (WT) mice. In contrast, treatment of WT mice with the iNKT cell activating ligand α-galactosylceramide markedly enhanced their mortality after infection with Candida albicans. Serum IL-10 levels were significantly elevated in WT mice in response to infection with C. albicans. Futhermore, IL-10 production increased after in vitro coculture of peritoneal macrophages with iNKT cells and C. albicans. The numbers of peritoneal macrophages, the production of IL-1β and IL-18, and caspase-1 activity were also significantly elevated in Jα18(-/-) mice after infection with C. albicans. The adoptive transfer of iNKT cells or exogenous administration of IL-10 into Jα18(-/-) reversed susceptibility to candidiasis to the level of WT mice. These results suggest that activation of iNKT cells increases the initial severity of C. albicans infection, most likely mediated by IL-10 induced modulation of macrophage antifungal activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Avellán, Nina-Li; Sorsa, Timo; Tervahartiala, Taina; Forster, Clemens; Kemppainen, Pentti
2008-02-01
Tooth pain can induce a neurogenic inflammatory reaction in gingiva in association with local elevations of matrix metalloproteinase (MMP)-8, which is considered the major tissue destructive protease in gingival crevice fluid (GCF). The pro-inflammatory neuropeptides released by sensory nerves coordinate the activities of the immuno-effector cells and may influence the secretion of MMP-8. With this background, we studied whether experimental tooth pain can trigger changes in GCF levels of the neuropeptide substance P (SP) and MMP-8. The GCF SP levels of stimulated and non-stimulated teeth were analyzed for SP using a competitive enzyme immunoassay (EIA). The GCF MMP-8 levels were determined by quantitative immunofluorometric assay (IFMA). Painful stimulation of the upper central incisor caused significant elevations in GCF SP and MMP-8 levels of the stimulated tooth. At the same time, the GCF SP and MMP-8 levels of non-stimulated control teeth were unchanged. These data indicate that experimental tooth pain can induce local elevations of SP and MMP-8 levels in GCF simultaneously. This supports the possibility of a local neurogenic spread of inflammatory reactions from intrapulpal to surrounding periodontal tissues.
Graf, L H; McRoberts, J A; Harrison, T M; Martin, D W
1976-07-01
Nine independently derived clones of mutagenized rat hepatoma cells selected for resistance to 6-mercaptopurine (6-MP) or 6-thioguanine (6-ThioG) have been isolated. Each has severely reduced catalytic activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) and seven of them possess significantly increased activities of phosphoribosylpyrophosphate (PRPP) synthetase. The degrees of elevations of PRPP synthetase activities do not correlate with the degrees of deficiencies of HPRT activities. The cells from one of these clones, 1020/12, posses 40% of the normal HPRT catalytic activity and overproduce purines. We have extensively examined the cells from this clone. Immunotration studies of 1020/12 cells indicate that there is a mutation in the structural gene for HPRT. Although they possess increased specific catalytic activities of the enzyme. PRPP synthetase, the catalytic parameters, heat stability, and isoelectric pH of PRPP synthetase from 1020/12 cells are indistinguishable from those of the enzyme from wild-type cells. The cause of purine overproduction by 1020/12 cells appears to be the elevated PRPP synthetase activity, rather than a PRPP "sparing" effect stemming from reduced HPRT activity. Support for this idea is provided by the observation that the complete loss of HPRT activity in a clone derived from 1020/12 cells does not further enhance the levels of PRPP synthetase or purine overproduction. We propose that the elevated levels of PRPP synthetase activity in these HPRT deficient cells result from a mutational event in the structural gene for HPRT, and that this causes the disruption of a previously undescribed regulatory function of this gene on the expression of the PRPP synthetase gene.
Apolipoprotein A-I interactions with insulin secretion and production.
Rye, Kerry-Anne; Barter, Philip J; Cochran, Blake J
2016-02-01
Human population studies have established that an elevated plasma high-density lipoprotein cholesterol (HDL-C) level is associated with a decreased risk of developing cardiovascular disease. In addition to having several potentially cardioprotective functions, HDLs and apolipoprotein (apo)A-I, the main HDL apolipoprotein, also have antidiabetic properties. Interventions that elevate plasma HDL-C and apoA-I levels improve glycemic control in people with type 2 diabetes mellitus by enhancing pancreatic β-cell function and increasing insulin sensitivity. This review is concerned with recent advances in understanding the mechanisms by which HDLs and apoA-I improve pancreatic β-cell function. HDLs and apoA-I increase insulin synthesis and secretion in pancreatic β cells. The underlying mechanism of this effect is similar to what has been reported for intestinally derived incretins, such as glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, which both increase β-cell insulin secretion under high glucose conditions. This involves the activation of a heterotrimeric G protein Gαs subunit on the β-cell surface that leads to induction of a transmembrane adenylyl cyclase, increased intracellular cyclic adenosine monophosphate and Ca levels, and activation of protein kinase A. Protein kinase A increases insulin synthesis by excluding FoxO1 from the β-cell nucleus and derepressing transcription of the insulin gene.
Nurhayati, Retno Wahyu; Ojima, Yoshihiro; Taya, Masahito
2015-04-01
Introduction of a polyploidy inducer is a promising strategy to achieve a high level of polyploidization during megakaryocytic (MK) differentiation. Here, we report that a multi-kinase inhibitor, BMS-777607, is a potent polyploidy inducer for elevating high ploidy cell formation in the MK-differentiated CHRF-288-11 (CHRF) cells. Our result showed that BMS-777607 strongly inhibited cell division without affecting cell viability when detected at day 1 after treatment. As a consequence, the high ploidy (≥8N) cells were accumulated in culture for 8 days, with an increase from 16.2 to 75.2 % of the total cell population. The elevated polyploidization was accompanied by the increased expression level of MK marker, CD41 (platelet glycoprotein IIb/IIIa, GPIIb/IIIa), suggesting that BMS-777607 promoted both polyploidization and commitment of MK-differentiated CHRF cells. Platelet-like fragments (PFs) were released by mature CHRF cells. Based on a flow cytometry assay, it was found that the PFs produced from BMS-777607-treated cells tended to have larger size and higher expression of GPIIb/IIIa, a receptor for platelet adhesion. Taken together, these results suggested that BMS-777607 promoted MK differentiation of CHRF cells and increased the functional property of platelet-like fragments.
Tao, Beibei; Wang, Rui; Sun, Chen; Zhu, Yichun
2017-01-01
Hypoxia-induced angiogenesis is a common phenomenon in many physiological and patho-physiological processes. However, the potential differential roles of three hydrogen sulfide producing systems cystathionine γ-lyase (CSE)/H 2 S, cystathionine β-synthase (CBS)/H 2 S, and 3-mercaptopyruvate sulfurtransferase (MPST)/H 2 S in hypoxia-induced angiogenesis are still unknown. We found that minor hypoxia (10% oxygen) significantly increased the migration of vascular endothelial cells while hypoxia (8% oxygen) significantly inhibited cell migration. The present study was performed using cells cultured in 10% oxygen. RNA interference was used to block the endogenous generation of hydrogen sulfide by CSE, CBS, or MPST in a vascular endothelial cell migration model in both normoxia and hypoxia. The results showed that CBS had a promoting effect on the migration of vascular endothelial cells cultured in both normoxic and hypoxic conditions. In contrast, CSE had an inhibitory effect on cell migration. MPST had a promoting effect on the migration of vascular endothelial cells cultured in hypoxia; however, it had no effect on the cells cultured in normoxia. Importantly, it was found that the hypoxia-induced increase in vascular endothelial cell migration was mediated by MPST, but not CSE or CBS. The western blot analyses showed that hypoxia significantly increased MPST protein levels, decreased CSE protein levels and did not change CBS levels, suggesting that these three hydrogen sulfide-producing systems respond differently to hypoxic conditions. Interestingly, MPST protein levels were elevated by hypoxia in a bi-phasic manner and MPST mRNA levels increased later than the first stage elevation of the protein levels, implying that the expression of MPST induced by hypoxia was also regulated at a post-transcriptional level. RNA pull-down assay showed that some candidate RNA binding proteins, such as nucleolin and Annexin A2, were dissociated from the 3'-UTR of MPST mRNA in hypoxia which implied their involvement in MPST mRNA regulation.
Haugen, Martin; Dammen, Rikard; Svejda, Bernhard; Gustafsson, Bjorn I; Pfragner, Roswitha; Modlin, Irvin; Kidd, Mark
2012-11-15
The chemomechanosensory function of the gut enterochromaffin (EC) cell enables it to respond to dietary agents and mechanical stretch. We hypothesized that the EC cell, which also sensed alterations in luminal or mucosal oxygen level, was physiologically sensitive to fluctuations in O(2). Given that low oxygen levels induce 5-HT production and secretion through a hypoxia inducible factor 1α (HIF-1α)-dependent pathway, we also hypothesized that increasing O(2) would reduce 5-HT production and secretion. Isolated normal EC cells as well as the well-characterized EC cell model KRJ-I were used to examine HIF signaling (luciferase-assays), hypoxia transcriptional response element (HRE)-mediated transcription (PCR), signaling pathways (Western blot), and 5-HT release (ELISA) during exposure to different oxygen levels. Normal EC cells and KRJ-I cells express HIF-1α, and transient transfection with Renilla luciferase under HRE control identified a hypoxia-mediated pathway in these cells. PCR confirmed activation of HIF-downstream targets, GLUT1, IGF2, and VEGF under reduced O(2) levels (0.5%). Reducing O(2) also elevated 5-HT secretion (2-3.2-fold) as well as protein levels of HIF-1α (1.7-3-fold). Increasing O(2) to 100% inhibited HRE-mediated signaling, transcription, reduced 5-HT secretion, and significantly lowered HIF-1α levels (∼75% of control). NF-κB signaling was also elevated during hypoxia (1.2-1.6-fold), but no significant changes were noted in PKA/cAMP. We concluded that gut EC cells are oxygen responsive, and alterations in O(2) levels differentially activate HIF-1α and tryptophan hydroxylase 1, as well as NF-κB signaling. This results in alterations in 5-HT production and secretion and identifies that the chemomechanosensory role of EC cells extends to oxygen sensing.
Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Sharma, Naveen; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won
2014-12-01
The effect of cholera toxin (CTX) or pertussis toxin (PTX) administered supraspinally on hippocampal neuronal cell death in CA3 region induced by kainic acid (KA) was examined in mice. After the pretreatment with either PTX or CTX intracerebroventricularly (i.c.v.), mice were administered i.c.v. with KA. The i.c.v. treatment with KA caused a neuronal cell death in CA3 region and PTX, but not CTX, attenuated the KA-induced neuronal cell death. In addition, i.c.v. treatment with KA caused an elevation of the blood glucose level. The i.c.v. PTX pretreatment alone caused a hypoglycemia and inhibited KA-induced hyperglycemic effect. However, i.c.v. pretreatment with CTX did not affect the basal blood glucose level and KA-induced hyperglycemic effect. Moreover, KA administered i.c.v. caused an elevation of corticosterone level and reduction of the blood insulin level. Whereas, i.c.v. pretreatment with PTX further enhanced KA-induced up-regulation of corticosterone level. Furthermore, i.c.v. administration of PTX alone increased the insulin level and KA-induced hypoinsulinemic effect was reversed. In addition, PTX pretreatment reduces the KA-induced seizure activity. Our results suggest that supraspinally administered PTX, exerts neuroprotective effect against KA-induced neuronal cells death in CA3 region and neuroprotective effect of PTX is mediated by the reduction of KA-induced blood glucose level. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Wang, Jiu-Qiang; Chen, Qian; Wang, Xianhua; Wang, Qiao-Chu; Wang, Yun; Cheng, He-Ping; Guo, Caixia; Sun, Qinmiao; Chen, Quan; Tang, Tie-Shan
2013-02-01
Huntington disease (HD) is an inherited, fatal neurodegenerative disorder characterized by the progressive loss of striatal medium spiny neurons. Indications of oxidative stress are apparent in brain tissues from both HD patients and HD mouse models; however, the origin of this oxidant stress remains a mystery. Here, we used a yeast artificial chromosome transgenic mouse model of HD (YAC128) to investigate the potential connections between dysregulation of cytosolic Ca(2+) signaling and mitochondrial oxidative damage in HD cells. We found that YAC128 mouse embryonic fibroblasts exhibit a strikingly higher level of mitochondrial matrix Ca(2+) loading and elevated superoxide generation compared with WT cells, indicating that both mitochondrial Ca(2+) signaling and superoxide generation are dysregulated in HD cells. The excessive mitochondrial oxidant stress is critically dependent on mitochondrial Ca(2+) loading in HD cells, because blocking mitochondrial Ca(2+) uptake abolished elevated superoxide generation. Similar results were obtained using neurons from HD model mice and fibroblast cells from HD patients. More importantly, mitochondrial Ca(2+) loading in HD cells caused a 2-fold higher level of mitochondrial genomic DNA (mtDNA) damage due to the excessive oxidant generation. This study provides strong evidence to support a new causal link between dysregulated mitochondrial Ca(2+) signaling, elevated mitochondrial oxidant stress, and mtDNA damage in HD. Our results also indicate that reducing mitochondrial Ca(2+) uptake could be a therapeutic strategy for HD.
HSP-enriched properties of extracellular vesicles involve survival of metastatic oral cancer cells.
Ono, Kisho; Eguchi, Takanori; Sogawa, Chiharu; Calderwood, Stuart K; Futagawa, Junya; Kasai, Tomonari; Seno, Masaharu; Okamoto, Kuniaki; Sasaki, Akira; Kozaki, Ken-Ichi
2018-05-16
Cancer cells often secrete extracellular vesicles (EVs) that carry heat shock proteins (HSPs) with roles in tumor progression. Oral squamous cell carcinoma (OSCC) belongs to head and neck cancers (HNC) whose lymph-node-metastases often lead to poor prognosis. We have examined the EV proteome of OSCC cells and found abundant secretion of HSP90-enriched EVs in lymph-node-metastatic OSCC cells. Double knockdown of HSP90α and HSP90β, using small interfering RNA significantly reduced the survival of the metastatic OSCC cells, although single knockdown of each HSP90 was ineffective. Elevated expression of these HSP90 family members was found to correlate with poor prognosis of HNC cases. Thus, elevated HSP90 levels in secreted vesicles are potential prognostic biomarkers and therapeutic targets in metastatic OSCC. © 2018 Wiley Periodicals, Inc.
Huang, S S; Kirchoff, B K; Liao, J P
2013-02-01
The effects of heat shock (HS) on the ultrastructure and calcium distribution of Lavandula pinnata secretory trichomes are examined using transmission electron microscopy and potassium antimonate precipitation. After 48-h HS at 40°C, plastids become distorted and lack stroma and osmiophilic deposits, the cristae of the mitochondria become indistinct, the endoplasmic reticulum acquires a chain-like appearance with ribosomes prominently attached to the lamellae, and the plasma and organelle membranes become distorted. Heat shock is associated with a decrease in calcium precipitates in the trichomes, while the number of precipitates increases in the mesophyll cells. Prolonged exposure to elevated calcium levels may be toxic to the mesophyll cells, while the lack of calcium in the glands cell may deprive them of the normal protective advantages of elevated calcium levels. The inequality in calcium distribution may result not only from uptake from the transpiration stream, but also from redistribution of calcium from the trichomes to the mesophyll cells.
Namazi, Mohammad Reza; Fallahzadeh, Mohammad Kazem; Shaghelani, Hassan; Kamali-Sarvestani, Eskandar
2010-02-01
There is ample evidence for involvement of macrophage migration inhibitory factor (MIF) in autoimmune and inflammatory diseases. The aim of this study was to determine whether MIF levels were raised in the sera of patients with pemphigus vulgaris (PV). Serum MIF levels were measured using ELISA method in 22 patients with active PV and 21 age- and sex-matched healthy controls and the results were compared with each other. The mean serum MIF levels was significantly higher in PV patients than in control subjects (11.99 +/- 1.63 pg/m vs. 1.83 +/- 0.22 pg/ml; P-value = 0.0001). Elevated MIF levels in the sera of PV patients could participate in disease induction by activation of T cells as well as induction of autoantibody production by B cells. Given that MIF counter-regulates the effects of steroids, MIF antagonists may prove to be very effective, novel steroid-sparing agents for this life-threatening conundrum.
Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronin, M.J.; Evans, W.S.; Rogol, A.D.
1986-08-01
Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplifiedmore » the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release.« less
Sukhotnik, Igor; Voskoboinik, Katya; Lurie, Michael; Bejar, Yakov; Coran, Arnold G; Mogilner, Jorge G
2009-10-01
The objective of this study was to examine the relationship between time of reperfusion and bax/bcl-2-dependent germ cell apoptosis after testicular ischemia-reperfusion injury in the rat. In ischemic testis, bax/bcl-2 ratio did not change significantly, and the elevation of germ cell apoptosis was not marked; in the contralateral testis, germ cell apoptosis increased after 6 hours of reperfusion, achieved statistical significance after 24 hours, and decreased after 72 hours of reperfusion and was initiated by decreased bcl-2 messenger RNA levels and elevated bax/bcl-2 ratio within the first 6 hours of reperfusion.
Wu, Yu-Chieh; Buckner, Benjamin R; Zhu, Meifang; Cavanagh, H Dwight; Robertson, Danielle M
2012-04-01
To determine the ratio of IGFBP3:IGF-1 in normal and diabetic human tears, and in telomerase-immortalized human corneal epithelial cells (hTCEpi) cultured under elevated glucose conditions and to correlate these changes with total and phosphorylated levels of IGF-1R. Tear samples were collected noninvasively from diabetic subjects and non-diabetic controls; corneal sensitivity was assessed using a Cochet-Bonnet Aesthesiometer. Conditioned media were collected following culture of hTCEpi cells in normal (5 mM) and elevated (25 mM) glucose conditions; mannitol was used as an osmotic control. IGFBP3, IGF-1, and phosphorylated IGF-1R levels were assessed by ELISA. IGFBP3 and IGF-1R mRNA were assessed by real-time polymerase chain reaction (PCR). Total and phosphorylated IGF-1R expression in whole cell lysates was assessed by western blot. There was a 2.8-fold increase in IGFBP3 in diabetic tears compared to non-diabetic controls (P=0.006); IGF-1 levels were not significantly altered. No difference in corneal sensitivity was detected between groups. The concentration of IGFBP3 in tears was independent of IGF-1. Consistent with human tear measurements in vivo, IGFBP3 secretion was increased 2.2 fold (P<0.001) following culture of hTCEpi cells under elevated glucose conditions in vitro. Treatment with glucose and the mannitol control reduced IGFBP3 mRNA (P<0.001). Total IGF-1R levels were unchanged. The increase in the IGFBP3:IGF-1 ratio detected in diabetic tears compared to normal controls blocked phosphorylation of the IGF-1R by IGF-1 (P<0.001) when tested in vitro. Taken together, these in vivo and confirmatory in vitro findings suggest that the observed increase in IGFBP3 found in human tears may attenuate IGF-1R signaling in the diabetic cornea. A long-term increase in IGFBP3 may contribute to epithelial compromise and the pathogenesis of ocular surface complications reported in diabetes. Copyright © 2012 Elsevier Inc. All rights reserved.
Wu, Yu-Chieh; Buckner, Benjamin R.; Zhu, Meifang; Cavanagh, H. Dwight; Robertson, Danielle M.
2012-01-01
Purpose To determine the ratio of IGFBP3:IGF-1 in normal and diabetic human tears, and in telomerase-immortalized human corneal epithelial cells (hTCEpi) cultured under elevated glucose conditions and to correlate these changes with total and phosphorylated levels of IGF-1R. Methods Tear samples were collected noninvasively from diabetic subjects and non-diabetic controls; corneal sensitivity was assessed using a Cochet-Bonnet Aesthesiometer. Conditioned media were collected following culture of hTCEpi cells in normal (5 mM) and elevated (25 mM) glucose conditions; mannitol was used as an osmotic control. IGFBP3, IGF-1, and phosphorylated IGF-1R levels were assessed by ELISA. IGFBP3 and IGF-1R mRNA were assessed by real time polymerase chain reaction (PCR). Total and phosphorylated IGF-1R expression in whole cell lysates was assessed by western blot. Results There was a 2.8-fold increase in IGFBP3 in diabetic tears compared to non-diabetic controls (P=0.006); IGF-1 levels were not significantly altered. No difference in corneal sensitivity was detected between groups. The concentration of IGFBP3 in tears was independent of IGF-1. Consistent with human tear measurements in vivo, IGFBP3 secretion was increased 2.2 fold (P<0.001) following culture of hTCEpi cells under elevated glucose conditions in vitro. Treatment with glucose and the mannitol control reduced IGFBP3 mRNA (P<0.001). Total IGF-1R levels were unchanged. The increase in the IGFBP3:IGF-1 ratio detected in diabetic tears compared to normal controls blocked phosphorylation of the IGF-1R by IGF-1 (P<0.001) when tested in vitro. Conclusions Taken together, these in vivo and confirmatory in vitro findings suggest that the observed increase in IGFBP3 found in human tears may attenuate IGF-1R signaling in the diabetic cornea. A long-term increase in IGFBP3 may contribute to epithelial compromise and the pathogenesis of ocular surface complications reported in diabetes. PMID:22482470
Del Toro, Francisco J; Rakhshandehroo, Farshad; Larruy, Beatriz; Aguilar, Emmanuel; Tenllado, Francisco; Canto, Tomás
2017-11-01
We have studied how simultaneously elevated temperature and CO 2 levels [climate change-related conditions (CCC) of 30°C, 970 parts-per-million (ppm) of CO 2 vs. standard conditions (SC) of 25°C, ~ 405ppm CO 2 ] affect physiochemical properties of Nicotiana benthamiana leaves, and also its infection by several positive-sense RNA viruses. In previous works we had studied effects of elevated temperature, CO 2 levels separately. Under CCC, leaves of healthy plants almost doubled their area relative to SC but contained less protein/unit-of-area, similarly to what we had found under conditions of elevated CO 2 alone. CCC also affected the sizes/numbers of different foliar cell types differently. Under CCC, infection outcomes in titers and symptoms were virus type-specific, broadly similar to those observed under elevated temperature alone. Under either condition, infections did not significantly alter the protein content of leaf discs. Therefore, effects of elevated temperature and CO 2 combined on properties of the pathosystems studied were overall cumulative. Copyright © 2017 Elsevier Inc. All rights reserved.
Comparative Analysis of Liver Injury-Associated Cytokines in Acute Hepatitis A and B
Shin, So Youn; Jeong, Sook-Hyang; Sung, Pil Soo; Lee, Jino; Kim, Hyung Joon; Lee, Hyun Woong
2016-01-01
Purpose Acute hepatitis A (AHA) and acute hepatitis B (AHB) are caused by an acute infection of the hepatitis A virus and the hepatitis B virus, respectively. In both AHA and AHB, liver injury is known to be mediated by immune cells and cytokines. In this study, we measured serum levels of various cytokines and T-cell cytotoxic proteins in patients with AHA or AHB to identify liver injury-associated cytokines. Materials and Methods Forty-six patients with AHA, 16 patients with AHB, and 14 healthy adults were enrolled in the study. Serum levels of 17 cytokines and T-cell cytotoxic proteins were measured by enzyme-linked immunosorbent assays or cytometric bead arrays and analyzed for correlation with serum alanine aminotransferase (ALT) levels. Results Interleukin (IL)-18, IL-8, CXCL9, and CXCL10 were significantly elevated in both AHA and AHB. IL-6, IL-22, granzyme B, and soluble Fas ligand (sFasL) were elevated in AHA but not in AHB. In both AHA and AHB, the serum level of CXCL10 significantly correlated with the peak ALT level. Additionally, the serum level of granzyme B in AHA and the serum level of sFasL in AHB correlated with the peak ALT level. Conclusion We identified cytokines and T-cell cytotoxic proteins associated with liver injury in AHA and AHB. These findings deepen the existing understanding of immunological mechanisms responsible for liver injury in acute viral hepatitis. PMID:26996565
Bjånesøy, Trine; Hellesen, Alexander; Breivik, Lars; Bakke, Marit; Husebye, Eystein S.; Bratland, Eirik
2015-01-01
Autoimmune Addison's disease (AAD) is a disorder caused by an immunological attack on the adrenal cortex. The interferon (IFN)-inducible chemokine CXCL10 is elevated in serum of AAD patients, suggesting a peripheral IFN signature. However, CXCL10 can also be induced in adrenocortical cells stimulated with IFNs, cytokines, or microbial components. We therefore investigated whether peripheral blood mononuclear cells (PBMCs) from AAD patients display an enhanced propensity to produce CXCL10 and the related chemokine CXCL9, after stimulation with type I or II IFNs or the IFN inducer poly (I:C). Although serum levels of CXCL10 and CXCL9 were significantly elevated in patients compared with controls, IFN stimulated patient PBMC produced significantly less CXCL10/CXCL9 than control PBMC. Low CXCL10 production was not significantly associated with medication, disease duration, or comorbidities, but the low production of poly (I:C)-induced CXCL10 among patients was associated with an AAD risk allele in the phosphatase nonreceptor type 22 (PTPN22) gene. PBMC levels of total STAT1 and -2, and IFN-induced phosphorylated STAT1 and -2, were not significantly different between patients and controls. We conclude that PBMC from patients with AAD are deficient in their response to IFNs, and that the adrenal cortex itself may be responsible for the increased serum levels of CXCL10. PMID:25978633
The effects of elevated endogenous GABA levels on movement-related network oscillations.
Muthukumaraswamy, S D; Myers, J F M; Wilson, S J; Nutt, D J; Lingford-Hughes, A; Singh, K D; Hamandi, K
2013-02-01
The EEG/MEG signal is generated primarily by the summation of the post-synaptic potentials of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons and cortical oscillations are thought to be dependent on the balance of excitation and inhibition between these cell types. To investigate the dependence of movement-related cortical oscillations on excitation-inhibition balance, we pharmacologically manipulated the GABA system using tiagabine, which blocks GABA Transporter 1(GAT-1), the GABA uptake transporter and increases endogenous GABA activity. In a blinded, placebo-controlled, crossover design, in 15 healthy participants we administered either 15mg of tiagabine or a placebo. We recorded whole-head magnetoencephalograms, while the participants performed a movement task, prior to, one hour post, three hour post and five hour post tiagabine ingestion. Using time-frequency analysis of beamformer source reconstructions, we quantified the baseline level of beta activity (15-30Hz), the post-movement beta rebound (PMBR), beta event-related desynchronisation (beta-ERD) and movement-related gamma synchronisation (MRGS) (60-90Hz). Our results demonstrated that tiagabine, and hence elevated endogenous GABA levels causes, an elevation of baseline beta power, enhanced beta-ERD and reduced PMBR, but no modulation of MRGS. Comparing our results to recent literature (Hall et al., 2011) we suggest that beta-ERD may be a GABAA receptor mediated process while PMBR may be GABAB receptor mediated. Copyright © 2012 Elsevier Inc. All rights reserved.
Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells.
Bhatt, Anant Narayan; Chauhan, Ankit; Khanna, Suchit; Rai, Yogesh; Singh, Saurabh; Soni, Ravi; Kalra, Namita; Dwarakanath, Bilikere S
2015-05-01
Cancer cells exhibit increased glycolysis for ATP production (the Warburg effect) and macromolecular biosynthesis; it is also linked with therapeutic resistance that is generally associated with compromised respiratory metabolism. Molecular mechanisms underlying radio-resistance linked to elevated glycolysis remain incompletely understood. We stimulated glycolysis using mitochondrial respiratory modifiers (MRMs viz. di-nitro phenol, DNP; Photosan-3, PS3; Methylene blue, MB) in established human cell lines (HEK293, BMG-1 and OCT-1). Glucose utilization and lactate production, levels of glucose transporters and glycolytic enzymes were investigated as indices of glycolysis. Clonogenic survival, DNA repair and cytogenetic damage were studied as parameters of radiation response. MRMs induced the glycolysis by enhancing the levels of two important regulators of glucose metabolism GLUT-1 and HK-II and resulted in 2 fold increase in glucose consumption and lactate production. This increase in glycolysis resulted in resistance against radiation-induced cell death (clonogenic survival) in different cell lines at an absorbed dose of 5 Gy. Inhibition of glucose uptake and glycolysis (using fasentin, 2-deoxy-D-glucose and 3-bromopyruvate) in DNP treated cells failed to increase the clonogenic survival of irradiated cells, suggesting that radio-resistance linked to inhibition of mitochondrial respiration is glycolysis dependent. Elevated glycolysis also facilitated rejoining of radiation-induced DNA strand breaks by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to a reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. These findings suggest that enhanced glycolysis generally observed in cancer cells may be responsible for the radio-resistance, partly by enhancing the repair of DNA damage.
Kayampilly, Pradeep P; Wanamaker, Brett L; Stewart, James A; Wagner, Carrie L; Menon, K M J
2010-10-01
Elevated levels of 5α-reduced androgens have been shown to be associated with hyperandrogenism and hyperinsulinemia, the leading causes of ovulatory dysfunction in women. 5α-Dihydrotestosterone reduces ovarian granulosa cell proliferation by inhibiting FSH-mediated mitogenic signaling pathways. The present study examined the effect of insulin on 5α-reductase, the enzyme that catalyses the conversion of androgens to their 5α-derivatives. Granulosa cells isolated from immature rat ovaries were cultured in serum-free, phenol red-free DMEM-F12 media and treated with different doses of insulin (0, 0.1, 1.0, and 10.0 μg/ml) for different time intervals up to 12 h. The expression of 5α-reductase type 1 mRNA, the predominant isoform found in granulosa cells, showed a significant (P<0.05) increase in response to the insulin treatment up to 12 h compared with control. The catalytic activity of 5α-reductase enzyme was also stimulated in a dose-depended manner (P<0.05). Inhibiting the Akt-dependent signaling pathway abolished the insulin-mediated increase in 5α-reductase mRNA expression, whereas inhibition of the ERK-dependent pathway had no effect. The dose-dependent increase in 5α-reductase mRNA expression as well as catalytic activity seen in response to insulin treatment was also demonstrated in the human granulosa cell line (KGN). In addition to increased mRNA expression, a dose-dependent increase in 5α-reductase protein expression in response to insulin was also seen in KGN cells, which corroborated well with that of mRNA expression. These results suggest that elevated levels of 5α-reduced androgens seen in hyperinsulinemic conditions might be explained on the basis of a stimulatory effect of insulin on 5α-reductase in granulosa cells. The elevated levels of these metabolites, in turn, might adversely affect growth and proliferation of granulosa cells, thereby impairing follicle growth and ovulation.
Characterization of Microparticles after Hepatic Ischemia-Reperfusion Injury
Freeman, Christopher M.; Quillin, Ralph C.; Wilson, Gregory C.; Nojima, Hiroyuki; Johnson, Bobby L.; Sutton, Jeffrey M.; Schuster, Rebecca M.; Blanchard, John; Edwards, Michael J.; Caldwell, Charles C.; Lentsch, Alex B.
2014-01-01
Background Hepatic ischemia-reperfusion (I/R) is a well-studied model of liver injury and has demonstrated a biphasic injury followed by recovery and regeneration. Microparticles (MPs) are a developing field of study and these small membrane bound vesicles have been shown to have effector function in other physiologic and pathologic states. This study was designed to quantify the levels of MPs from various cell origins–platelets, neutrophils, and endolethial cells–following hepatic ischemia-reperfusion injury. Methods A murine model was used with mice undergoing 90 minutes of partial hepatic ischemia followed by various times of reperfusion. Following reperfusion, plasma samples were taken and MPs of various cell origins were labeled and levels were measured using flow cytometry. Additionally, cell specific MPs were further assessed by Annexin V, which stains for the presence of phosphatidylserine, a cell surface marker linked to apoptosis. Statistical analysis was performed using one-way analysis of variance with subsequent Student-Newman-Keuls test with data presented as the mean and standard error of the mean. Results MPs from varying sources show an increase in circulating levels following hepatic I/R injury. However, the timing of the appearance of different MP subtypes differs for each cell type. Platelet and neutrophil-derived MP levels demonstrated an acute elevation following injury whereas endothelial-derived MP levels demonstrated a delayed elevation. Conclusion This is the first study to characterize circulating levels of cell-specific MPs after hepatic I/R injury and suggests that MPs derived from platelets and neutrophils serve as markers of inflammatory injury and may be active participants in this process. In contrast, MPs derived from endothelial cells increase after the injury response during the reparative phase and may be important in angiogenesis that occurs in the regenerating liver. PMID:24879335
Inhibiting NANOG Enhances Efficacy of BH3 Mimetics | Center for Cancer Research
BCL-2 family proteins regulate cell fate. Some members promote cell survival while others induce programmed cell death. A third group, the BH3-only members, modulates the activities of the rest of the family. Some cancers, including those of the colon and rectum, express elevated levels of pro-survival BCL-2 members, which may protect cancer cells from chemotherapy. BH3
Alt-Holland, Addy; Sowalsky, Adam; Szwec-Levin, Yonit; Shamis, Yulia; Hatch, Harold; Feig, Larry A.; Garlick, Jonathan A.
2011-01-01
Advanced stages of epithelial carcinogenesis involve the loss of intercellular adhesion, but it remains unclear how proteins that regulate alterations in cell-cell and cell-matrix adhesion are deregulated to promote the early stages of cancer development. To address this, a three-dimensional human tissue model that mimics the incipient stages of Squamous Cell Carcinoma (SCC) was used to study how E-cadherin suppression promotes tumor progression in Ras-expressing human keratinocytes. We found that E-cadherin suppression triggered elevated mRNA and protein expression levels of Focal Adhesion Kinase (FAK), and increased FAK and Src activities above the level seen in Ras-expressing E-cadherin-competent keratinocytes. sh-RNA-mediated depletion of FAK and Src restored E-cadherin expression levels by increasing its stability in the membrane, and blocked tumor cell invasion in tissues. Surface transplantation of these tissues to mice resulted in reversion of the tumor phenotype to low-grade tumor islands in contrast to control tissues that manifested an aggressive, high-grade SCC. These findings suggest that the tumor-promoting effect of E-cadherin suppression, a common event in SCC development, is exacerbated by enhanced E-cadherin degradation induced by elevated FAK and Src activities. Furthermore, they imply that targeting FAK or Src in human epithelial cells with neoplastic potential may inhibit the early stages of SCC. PMID:21716326
Larrieta-Carrasco, Elena; Flores, Yvonne N; Macías-Kauffer, Luis R; Ramírez-Palacios, Paula; Quiterio, Manuel; Ramírez-Salazar, Eric G; León-Mimila, Paola; Rivera-Paredez, Berenice; Cabrera-Álvarez, Guillermo; Canizales-Quinteros, Samuel; Zhang, Zuo-Feng; López-Pérez, Tania V; Salmerón, Jorge; Velázquez-Cruz, Rafael
2018-02-01
Non-alcoholic fatty liver disease (NAFLD) is the accumulation of extra fat in liver cells not caused by alcohol. Elevated transaminase levels are common indicators of liver disease, including NAFLD. Previously, we demonstrated that PNPLA3 (rs738409), LYPLAL1 (rs12137855), PPP1R3B (rs4240624), and GCKR (rs780094) are associated with elevated transaminase levels in overweight/obese Mexican adults. We investigated the association between 288 SNPs identified in genome-wide association studies and risk of elevated transaminase levels in an admixed Mexican-Mestizo sample of 178 cases of NAFLD and 454 healthy controls. The rs2896019, rs12483959, and rs3810622 SNPs in PNPLA3 and rs1227756 in COL13A1 were associated with elevated alanine aminotransferase (ALT, ≥40IU/L). A polygenic risk score (PRS) based on six SNPs in the ADIPOQ, COL13A1, PNPLA3, and SAMM50 genes was also associated with elevated ALT. Individuals carrying 9-12 risk alleles had 65.8% and 48.5% higher ALT and aspartate aminotransferase (AST) levels, respectively, than those with 1-4 risk alleles. The PRS showed the greatest risk of elevated ALT levels, with a higher level of significance than the individual variants. Our findings suggest a significant association between variants in COL13A1, ADIPOQ, SAMM50, and PNPLA3, and risk of NAFLD/elevated transaminase levels in Mexican adults with an admixed ancestry. This is the first study to examine high-density single nucleotide screening for genetic variations in a Mexican-Mestizo population. The extent of the effect of these variations on the development and progression of NAFLD in Latino populations requires further analysis. Copyright © 2018 Elsevier Inc. All rights reserved.
SET8 is involved in the regulation of hyperglycemic memory in human umbilical endothelial cells.
Chen, Xiangyuan; Wu, Qichao; Jiang, Hui; Wang, Jiaqiang; Zhao, Yanjun; Xu, Yajun; Zhu, Minmin
2018-05-14
Hyperglycemic memory occurs in diabetic cardiovascular complications, but the underlying mechanism remains to be elucidated. Although the depletion of SET8 leads to increased mitochondrial oxidative stress via increasing cellular reactive oxygen species (ROS) production, the role of SET8 in hyperglycemic memory-induced mitochondrial dysfunction is not well understood. Here, we investigated the role of SET8 in this setting. Our results showed that high glucose-induced vascular inflammation, ROS production and apoptosis remained at high levels even when glucose returned to normal level. Elevated glucose reduced SET8 expression, which also remained at low level after returning to normoglycemia. SET8 overexpression protected cells from elevated glucose and hyperglycemic memory-induced endothelial injury by blocking ROS accumulation, attenuating vascular inflammation, and restoring nitric oxide production. Thus, our results suggest that SET8 may be a key mediator in hyperglycemic memory.
Kapanadze, Bagrat; Morris, Erin; Smith, Edwin; Trojanowska, Maria
2010-01-01
Abstract Lack of an adequate experimental model has hindered the ability to fully understand scleroderma (SSc) pathogenesis. Current SSc research is based on the study of cultured fibroblasts from skin biopsies. In depth characterization of the SSc fibroblast phenotype is hindered by the limited lifespan and heterogeneity of these cells. The goal of this study was to isolate high collagen-producing fibroblasts from SSc biopsies and extend their lifespan with hTERT immortalization to enable characterization of their phenotype. Fibroblasts from two pairs of closely matched normal and SSc biopsies were infected with an hTERT lentivirus. Infected colonies were isolated, cultured into clonal cell lines and analysed with respect to profibrotic gene expression. The mRNA levels of nine profibrotic genes were measured by quantitative real-time PCR. Protein levels were assessed by Western blot. The hTERT SSc clones were heterogeneous with regards to expression of the profibrotic genes measured. A subset of the SSc clones showed elevated expression levels of collagen I, connective tissue growth factor and thrombospondin 1 mRNA, while expression of other genes was not significantly changed. Elevated expression of collagen I protein and mRNA was correlative with elevated expression of connective tissue growth factor. Several hTERT clones expressed high levels of pSmad1, Smad1 and TGF-βRI indicative of altered TGF-β signalling. A portion of SSc clones expressed several profibrotic genes. This study demonstrates that select characteristics of the SSc phenotype are expressed in a subset of activated fibroblasts in culture. The clonal SSc cell lines may present a new and useful model to investigate the mechanisms involved in SSc fibrosis. PMID:19432820
Kapanadze, Bagrat; Morris, Erin; Smith, Edwin; Trojanowska, Maria
2010-05-01
Lack of an adequate experimental model has hindered the ability to fully understand scleroderma (SSc) pathogenesis. Current SSc research is based on the study of cultured fibroblasts from skin biopsies. In depth characterization of the SSc fibroblast phenotype is hindered by the limited lifespan and heterogeneity of these cells. The goal of this study was to isolate high collagen-producing fibroblasts from SSc biopsies and extend their lifespan with hTERT immortalization to enable characterization of their phenotype. Fibroblasts from two pairs of closely matched normal and SSc biopsies were infected with an hTERT lentivirus. Infected colonies were isolated, cultured into clonal cell lines and analysed with respect to profibrotic gene expression. The mRNA levels of nine profibrotic genes were measured by quantitative real-time PCR. Protein levels were assessed by Western blot. The hTERT SSc clones were heterogeneous with regards to expression of the profibrotic genes measured. A subset of the SSc clones showed elevated expression levels of collagen I, connective tissue growth factor and thrombospondin 1 mRNA, while expression of other genes was not significantly changed. Elevated expression of collagen I protein and mRNA was correlative with elevated expression of connective tissue growth factor. Several hTERT clones expressed high levels of pSmad1, Smad1 and TGF-betaRI indicative of altered TGF-beta signalling. A portion of SSc clones expressed several profibrotic genes. This study demonstrates that select characteristics of the SSc phenotype are expressed in a subset of activated fibroblasts in culture. The clonal SSc cell lines may present a new and useful model to investigate the mechanisms involved in SSc fibrosis.
Kanter, Y; Bessman, S P; Bessman, A
1975-08-01
There have been differences of opinion among authors concening in the levels of red cell 2,3-diphosphoglycerate (2,3-DPG) and nucleotides in nonacidotic diabetic patients. Our data suggest that abnormal levels of 2, 3-DPG in diabetic patients are related to the presence of vascular complications and not to the duration of the disease per sec. 2,3-DPG levels are normal in diabetic patients with no evidence of vascular complications (group A). In ambulatory patients with vascular complications (group B), significantly higher levels of 2,3-DPG are found than in normal subjects and patients in group A. In hospitalized diabetic patients with active peripheral vascular complications (group C), levels of 2,3-DPG are likewise significantly increased over those of normal subjects and patients of group A. 2,3-DPG was found to be significantly elevated in patients of group C as compared with group B. 2,3-DPG levels in venous blood from infected legs as compared with those of the peripheral venous blood were not significantly different, thereby ruling out local factors. There were no differences in the blood lactate levels in any of the group studied. The elevation of the 2,3-DPG levels may be a reflection of attempted red blood cell compensation for tissue hypoxia in the diabetic with vascular disease.
Proteasome inhibitors alter levels of intracellular peptides in HEK293T and SH-SY5Y cells.
Dasgupta, Sayani; Castro, Leandro M; Dulman, Russell; Yang, Ciyu; Schmidt, Marion; Ferro, Emer S; Fricker, Lloyd D
2014-01-01
The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell.
Proteasome Inhibitors Alter Levels of Intracellular Peptides in HEK293T and SH-SY5Y Cells
Dasgupta, Sayani; Castro, Leandro M.; Dulman, Russell; Yang, Ciyu; Schmidt, Marion; Ferro, Emer S.; Fricker, Lloyd D.
2014-01-01
The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell. PMID:25079948
Lee, Chung Soo; Park, Se Young; Ko, Hyun Hee; Song, Jin Ho; Shin, Yong Kyoo; Han, Eun Sook
2005-01-01
Opening of the mitochondrial permeability transition pore has been recognized to be involved in cell death. The present study investigated the effect of trifluoperazine and W-7 on the MPP+-induced mitochondrial damage and cell death in undifferentiated PC12 cells. Calmodulin antagonists (trifluoperazine, W-7 and calmidazolium) at 0.5-1 microM significantly reduced the loss of cell viability in PC12 cells treated with 500 microM MPP+. Trifluoperazine and W-7 (0.5-1 microM) inhibited the nuclear damage, the loss of the mitochondrial transmembrane potential followed by cytochrome c release, and the elevation of intracellular Ca2+ levels due to MPP+ in PC12 cells and attenuated the formation of reactive oxygen species and the depletion of GSH. Calmodulin antagonists at 5-10 microM exhibited a cytotoxic effect on PC12 cells, and compounds at 10 microM did not attenuate cytotoxicity of MPP+. Calmodulin antagonists (0.5-1 microM) significantly reduced rotenone-induced mitochondrial damage and cell death, whereas they did not attenuate cell death and elevation of intracellular Ca2+ levels due to H2O2 or ionomycin. The results show that trifluoperazine and W-7 exhibit a differential inhibitory effect against cytotoxicity of MPP+ depending on concentration. Both compounds at the concentrations less than 5 microM may attenuate the MPP+-induced viability loss in PC12 cells by suppressing change in the mitochondrial membrane permeability and by lowering the intracellular Ca2+ levels.
Greenwood, Edward J. D.; Schmidt, Fabian; Kondova, Ivanela; Niphuis, Henk; Hodara, Vida L.; Clissold, Leah; McLay, Kirsten; Guerra, Bernadette; Redrobe, Sharon; Giavedoni, Luis D.; Lanford, Robert E.; Murthy, Krishna K.; Rouet, François; Heeney, Jonathan L.
2015-01-01
The virus-host relationship in simian immunodeficiency virus (SIV) infected chimpanzees is thought to be different from that found in other SIV infected African primates. However, studies of captive SIVcpz infected chimpanzees are limited. Previously, the natural SIVcpz infection of one chimpanzee, and the experimental infection of six chimpanzees was reported, with limited follow-up. Here, we present a long-term study of these seven animals, with a retrospective re-examination of the early stages of infection. The only clinical signs consistent with AIDS or AIDS associated disease was thrombocytopenia in two cases, associated with the development of anti-platelet antibodies. However, compared to uninfected and HIV-1 infected animals, SIVcpz infected animals had significantly lower levels of peripheral blood CD4+ T-cells. Despite this, levels of T-cell activation in chronic infection were not significantly elevated. In addition, while plasma levels of β2 microglobulin, neopterin and soluble TNF-related apoptosis inducing ligand (sTRAIL) were elevated in acute infection, these markers returned to near-normal levels in chronic infection, reminiscent of immune activation patterns in ‘natural host’ species. Furthermore, plasma soluble CD14 was not elevated in chronic infection. However, examination of the secondary lymphoid environment revealed persistent changes to the lymphoid structure, including follicular hyperplasia in SIVcpz infected animals. In addition, both SIV and HIV-1 infected chimpanzees showed increased levels of deposition of collagen and increased levels of Mx1 expression in the T-cell zones of the lymph node. The outcome of SIVcpz infection of captive chimpanzees therefore shares features of both non-pathogenic and pathogenic lentivirus infections. PMID:26360709
Greenwood, Edward J D; Schmidt, Fabian; Kondova, Ivanela; Niphuis, Henk; Hodara, Vida L; Clissold, Leah; McLay, Kirsten; Guerra, Bernadette; Redrobe, Sharon; Giavedoni, Luis D; Lanford, Robert E; Murthy, Krishna K; Rouet, François; Heeney, Jonathan L
2015-09-01
The virus-host relationship in simian immunodeficiency virus (SIV) infected chimpanzees is thought to be different from that found in other SIV infected African primates. However, studies of captive SIVcpz infected chimpanzees are limited. Previously, the natural SIVcpz infection of one chimpanzee, and the experimental infection of six chimpanzees was reported, with limited follow-up. Here, we present a long-term study of these seven animals, with a retrospective re-examination of the early stages of infection. The only clinical signs consistent with AIDS or AIDS associated disease was thrombocytopenia in two cases, associated with the development of anti-platelet antibodies. However, compared to uninfected and HIV-1 infected animals, SIVcpz infected animals had significantly lower levels of peripheral blood CD4+ T-cells. Despite this, levels of T-cell activation in chronic infection were not significantly elevated. In addition, while plasma levels of β2 microglobulin, neopterin and soluble TNF-related apoptosis inducing ligand (sTRAIL) were elevated in acute infection, these markers returned to near-normal levels in chronic infection, reminiscent of immune activation patterns in 'natural host' species. Furthermore, plasma soluble CD14 was not elevated in chronic infection. However, examination of the secondary lymphoid environment revealed persistent changes to the lymphoid structure, including follicular hyperplasia in SIVcpz infected animals. In addition, both SIV and HIV-1 infected chimpanzees showed increased levels of deposition of collagen and increased levels of Mx1 expression in the T-cell zones of the lymph node. The outcome of SIVcpz infection of captive chimpanzees therefore shares features of both non-pathogenic and pathogenic lentivirus infections.
Günthardt-Goerg, Madeleine Silvia; Vollenweider, Pierre
2015-01-01
Although enhanced carbon fixation by forest trees may contribute significantly to mitigating an increase in atmospheric carbon dioxide (CO2), capacities for this vary greatly among different tree species and locations. This study compared reactions in the foliage of a deciduous and a coniferous tree species (important central European trees, beech and spruce) to an elevated supply of CO2 and evaluated the importance of the soil type and increased nitrogen deposition on foliar nutrient concentrations and cellular stress reactions. During a period of 4 years, beech (represented by trees from four different regions) and spruce saplings (eight regions), planted together on either acidic or calcareous forest soil in the experimental model ecosystem chambers, were exposed to single and combined treatments consisting of elevated carbon dioxide (+CO2, 590 versus 374 μL L−1) and elevated wet nitrogen deposition (+ND, 50 versus 5 kg ha−1 a−1). Leaf size and foliage mass of spruce were increased by +CO2 on both soil types, but those of beech by +ND on the calcareous soil only. The magnitude of the effects varied among the tree origins in both species. Moreover, the concentration of secondary compounds (proanthocyanidins) and the leaf mass per area, as a consequence of cell wall thickening, were also increased and formed important carbon sinks within the foliage. Although the species elemental concentrations differed in their response to CO2 fertilization, the +CO2 treatment effect was weakened by an acceleration of cell senescence in both species, as shown by a decrease in photosynthetic pigment and nitrogen concentration, discolouration and stress symptoms at the cell level; the latter were stronger in beech than spruce. Hence, young trees belonging to a species with different ecological niches can show contrasting responses in their foliage size, but similar responses at the cell level, upon exposure to elevated levels of CO2. The soil type and its nutrient supply largely determined the fertilization gain, especially in the case of beech trees with a narrow ecological amplitude. PMID:26092041
Baio, Jonathan; Martinez, Aida F; Bailey, Leonard; Hasaniya, Nahidh; Pecaut, Michael J; Kearns-Jonker, Mary
2018-02-12
Spaceflight impacts cardiovascular function in astronauts; however, its impact on cardiac development and the stem cells that form the basis for cardiac repair is unknown. Accordingly, further research is needed to uncover the potential relevance of such changes to human health. Using simulated microgravity (SMG) generated by two-dimensional clinorotation and culture aboard the International Space Station (ISS), we assessed the effects of mechanical unloading on human neonatal cardiovascular progenitor cell (CPC) developmental properties and signaling. Following 6-7 days of SMG and 12 days of ISS culture, we analyzed changes in gene expression. Both environments induced the expression of genes that are typically associated with an earlier state of cardiovascular development. To understand the mechanism by which such changes occurred, we assessed the expression of mechanosensitive small RhoGTPases in SMG-cultured CPCs and observed decreased levels of RHOA and CDC42. Given the effect of these molecules on intracellular calcium levels, we evaluated changes in noncanonical Wnt/calcium signaling. After 6-7 days under SMG, CPCs exhibited elevated levels of WNT5A and PRKCA. Similarly, ISS-cultured CPCs exhibited elevated levels of calcium handling and signaling genes, which corresponded to protein kinase C alpha (PKCα), a calcium-dependent protein kinase, activation after 30 days. Akt was activated, whereas phosphorylated extracellular signal-regulated kinase levels were unchanged. To explore the effect of calcium induction in neonatal CPCs, we activated PKCα using hWnt5a treatment on Earth. Subsequently, early cardiovascular developmental marker levels were elevated. Transcripts induced by SMG and hWnt5a-treatment are expressed within the sinoatrial node, which may represent embryonic myocardium maintained in its primitive state. Calcium signaling is sensitive to mechanical unloading and directs CPC developmental properties. Further research both in space and on Earth may help refine the use of CPCs in stem cell-based therapies and highlight the molecular events of development.
1975-12-01
rise in Hb, Hct. and red cells, to compensate for the anoxic stress induced by higher carboxyhemoglobin levels (HbCO). Inhalation of CO2 in higher...expected to cause an equilibrium value of 8-50% carboxyhemoglobin (HbCO). Under these conditions, Schulte (1961) did not find any gross changes in...according to Stewart (1974). Carboxyhemoglobin levels of 1-5% cause an increased blood Cow to vital organs, which compensates for the loss of oxygen
Sippel, Trisha R; White, Jason; Nag, Kamalika; Tsvankin, Vadim; Klaassen, Marci; Kleinschmidt-DeMasters, B K; Waziri, Allen
2011-11-15
The source of glioblastoma (GBM)-associated immunosuppression remains multifactorial. We sought to clarify and therapeutically target myeloid cell-derived peripheral immunosuppression in patients with GBM. Direct ex vivo T-cell function, serum Arginase I (ArgI) levels, and circulating myeloid lineage populations were compared between patients with GBM and normal donors or patients with other intracranial tumors. Immunofunctional assays were conducted using bulk and sorted cell populations to explore the potential transfer of myeloid cell-mediated immunosuppression and to identify a potential mechanism for these effects. ArgI-mediated immunosuppression was therapeutically targeted in vitro through pharmacologic inhibition or arginine supplementation. We identified a significantly expanded population of circulating, degranulated neutrophils associated with elevated levels of serum ArgI and decreased T-cell CD3ζ expression within peripheral blood from patients with GBM. Sorted CD11b(+) cells from patients with GBM were found to markedly suppress normal donor T-cell function in coculture, and media harvested from mitogen-stimulated GBM peripheral blood mononuclear cell (PBMC) or GBM-associated mixed lymphoid reactions showed ArgI levels that were significantly higher than controls. Critically, T-cell suppression in both settings could be completely reversed through pharmacologic ArgI inhibition or with arginine supplementation. These data indicate that peripheral cellular immunosuppression in patients with GBM is associated with neutrophil degranulation and elevated levels of circulating ArgI, and that T-cell function can be restored in these individuals by targeting ArgI. These data identify a novel pathway of GBM-mediated suppression of cellular immunity and offer a potential therapeutic window for improving antitumor immunity in affected patients.
Zhang, Yun; Warnock, Garth L.; Ao, Ziliang; Park, Yoo Jin; Safikhan, Nooshin; Ghahary, Aziz
2018-01-01
Amyloid formation in the pancreatic islets due to aggregation of human islet amyloid polypeptide (hIAPP) contributes to reduced β-cell mass and function in type 2 diabetes (T2D) and islet transplantation. Protein kinase B (PKB) signaling plays a key role in the regulation of β-cell survival, function and proliferation. In this study, we used human and hIAPP-expressing transgenic mouse islets in culture as two ex vivo models of human islet amyloid formation to: 1. Investigate the effects of amyloid formation on PKB phosphorylation in primary islet β-cells; 2. Test if inhibition of amyloid formation and/or interleukin-1β (IL-1β) signaling in islets can restore the changes in β-cell phospho-PKB levels mediated by amyloid formation. Human and hIAPP-expressing mouse islets were cultured in elevated glucose with an amyloid inhibitor (Congo red) or embedded within collagen matrix to prevent amyloid formation. To block the IL-1β signaling, human islets were treated with an IL-1 receptor antagonist (anakinra) or a glucagon-like peptide-1 agonist (exenatide). β-cell phospho-PKB levels, proliferation, apoptosis, islet IL-1β levels and amyloid formation were assessed. Amyloid formation in both cultured human and hIAPP-expressing mouse islets reduced β-cell phospho-PKB levels and increased islet IL-1β levels, both of which were restored by prevention of amyloid formation either by the amyloid inhibitor or embedding islets in collagen matrix, resulting in improved β-cell survival. Furthermore, inhibition of IL-1β signaling by treatment with anakinra or exenatide increased β-cell phospho-PKB levels, enhanced proliferation and reduced apoptosis in amyloid forming human islets during 7-day culture. These data suggest that amyloid formation leads to reduced PKB phosphorylation in β-cells which is associated with elevated islet IL-1β levels. Inhibitors of amyloid or amyloid-induced IL-1β production may provide a new approach to restore phospho-PKB levels thereby enhance β-cell survival and proliferation in conditions associated with islet amyloid formation such as T2D and clinical islet transplantation. PMID:29474443
Ponsonby, Anne-Louise; Pezic, Angela; Cameron, Fergus J; Rodda, Christine; Ellis, Justine A; Kemp, Andrew S; Carlin, John; Dwyer, Terence
2012-01-01
To examine possible determinants of autoantibody levels at type 1 diabetes mellitus (T1DM) onset. We assessed levels of glutamic acid decarboxylase 65 islet cell antigen (GADA) and anti-insulin antibodies (IAA) in 247 incident T1DM cases presenting <15 years of age in Melbourne from 1st March 2008 to 30th June 2010. 58.9% (142/241) of cases were GADA seropositive and 42.3% (94/222) were IAA seropositive. Factors associated with elevated IAA antibodies included younger age and red hair phenotype. Factors associated with elevated GAD antibodies included lower birthweight and recent eczema. Intriguingly, low recent or past sun exposure was only associated with elevated GADA levels among children presenting at age <5 years, not older (difference in effect, p<0.05 for 4 of 5 associations). These findings show that environmental and phenotypic factors are associated with autoantibody levels at time of presentation for T1DM. We recommend such environmental and phenoytypic factors should be examined in further detail.
Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar
2016-05-01
Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia. Copyright © 2016. Published by Elsevier B.V.
Epidermal Dysfunction Leads to an Age-Associated Increase in Levels of Serum Inflammatory Cytokines.
Hu, Lizhi; Mauro, Theodora M; Dang, Erle; Man, George; Zhang, Jing; Lee, Dale; Wang, Gang; Feingold, Kenneth R; Elias, Peter M; Man, Mao-Qiang
2017-06-01
Even though elderly populations lack visible or other clinical signs of inflammation, their serum cytokine and C-reactive protein levels typically are elevated. However, the origin of age-associated systemic inflammation is unknown. Our previous studies showed that abnormalities in epidermal function provoke cutaneous inflammation, and because intrinsically aged skin displays compromised permeability barrier homeostasis and reduced stratum corneum hydration, we hypothesized here that epidermal dysfunction could contribute to the elevations in serum cytokines in the elderly. Our results show first that acute disruption of the epidermal permeability barrier in young mice leads not only to a rapid increase in cutaneous cytokine mRNA expression but also an increase in serum cytokine levels. Second, cytokine levels in both the skin and serum increase in otherwise normal, aged mice (>12 months). Third, expression of tumor necrosis factor-α and amyloid A mRNA levels increased in the epidermis, but not in the liver, in parallel with a significant elevation in serum levels of cytokines. Fourth, disruption of the permeability barrier induced similar elevations in epidermal and serum cytokine levels in normal and athymic mice, suggesting that T cells play a negligible role in the elevations in cutaneous and serum inflammatory cytokines induced by epidermal dysfunction. Fifth, correction of epidermal function significantly reduced cytokine levels not only in the skin but also in the serum of aged mice. Together, these results indicate that the sustained abnormalities in epidermal function in chronologically aged skin contribute to the elevated serum levels of inflammatory cytokines, potentially predisposing the elderly to the subsequent development or exacerbation of chronic inflammatory disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Cheng, Lesley; Smith, Danielle J; Anderson, Robin L; Nagley, Phillip
2011-01-01
Terminally differentiated neurones in the central nervous system need to be protected from stress. We ask here whether differentiation of progenitor cells to neurones is accompanied by up-regulation of Hsp72, with acquisition of enhanced thermotolerance. Human neuroblastoma SH-SY5Y cells were propagated in an undifferentiated form and subsequently differentiated into neurone-like cells. Thermotolerance tests were carried out by exposure of cells to various temperatures, monitoring nuclear morphology as index of cell death. Abundance of Hsp72 was measured in cell lysates by western immunoblotting. The differentiation of SH-SY5Y cells was accompanied by increased expression of Hsp72. Further, in both cell states, exposure to mild hyperthermic stress (43°C for 30 min) increased Hsp72 expression. After differentiation, SH-SY5Y cells were more resistant to hyperthermic stress compared to their undifferentiated state, correlating with levels of Hsp72. Stable exogenous expression of Hsp72 in SH-SY5Y cells (transfected line 5YHSP72.1, containing mildly elevated levels of Hsp72), led to enhanced resistance to hyperthermic stress. Hsp72 was found to be inducible in undifferentiated 5YHSP72.1 cells; such heat-treated cells displayed enhanced thermotolerance. Treatment of cells with KNK437, a suppressor of Hsp72 induction, resulted in acute thermosensitisation of all cell types tested here. Hsp72 has a major role in the enhanced hyperthermic resistance acquired during neuronal differentiation of SH-SY5Y cells. These findings model the requirement in intact organisms for highly differentiated neurones to be specially protected against thermal stress.
Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice.
Koike, Yoko; Hisada, Takeshi; Utsugi, Mitsuyoshi; Ishizuka, Tamotsu; Shimizu, Yasuo; Ono, Akihiro; Murata, Yukie; Hamuro, Junji; Mori, Masatomo; Dobashi, Kunio
2007-09-01
Glutathione is the major intracellular redox buffer. We have shown that glutathione redox status, which is the balance between intracellular reduced (GSH) and oxidized (GSSG) glutathione, in antigen-presenting cells (APC) regulates the helper T cell type 1 (Th1)/Th2 balance due to the production of IL-12. Bronchial asthma is a typical Th2 disease. Th2 cells and Th2 cytokines are characteristic of asthma and trigger off an inflammation. Accordingly, we studied the effects of the intracellular glutathione redox status on airway hyperresponsiveness (AHR) and allergen-induced airway inflammation in a mouse model of asthma. We used gamma-Glutamylcysteinylethyl ester (gamma-GCE), which is a membrane-permeating GSH precursor, to elevate the intracellular GSH level and GSH/GSSG ratio of mice. In vitro, gamma-GCE pretreatment of human monocytic THP-1 cells elevated the GSH/GSSG ratio and enhanced IL-12(p70) production induced by LPS. In the mouse asthma model, intraperitoneal injection of gamma-GCE elevated the GSH/GSSG ratio of lung tissue and reduced AHR. gamma-GCE reduced levels of IL-4, IL-5, IL-10, and the chemokines eotaxin and RANTES (regulated on activation, normal T cell expressed and secreted) in bronchoalveolar lavage fluid, whereas it enhanced the production of IL-12 and IFN-gamma. Histologically, gamma-GCE suppressed eosinophils infiltration. Interestingly, we also found that gamma-GCE directly inhibited chemokine-induced eosinophil chemotaxis without affecting eotaxin receptor chemokine receptor 3 (CCR3) expressions. Taken together, these findings suggest that changing glutathione redox balance, increase in GSH level, and the GSH/GSSG ratio by gamma-GCE, ameliorate bronchial asthma by altering the Th1/Th2 imbalance through IL-12 production from APC and suppressing chemokine production and eosinophil migration itself.
Nesheim, Nils; Ellem, Stuart; Dansranjavin, Temuujin; Hagenkötter, Christina; Berg, Elena; Schambeck, Rupert; Schuppe, Hans-Christian; Pilatz, Adrian; Risbridger, Gail; Weidner, Wolfgang
2018-01-01
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is associated with urinary tract symptoms and hormonal imbalances amongst others. The heterogeneous clinical presentation, unexplored molecular background and lack of prostate biopsies complicate therapy. Here, using liquid biopsies, we performed a comprehensive translational study on men diagnosed with CP/CPPS type III (n = 50; median age 39.8, range 23–65) and age-matched controls (n = 61; median age 36.8, range 20–69), considering biochemical parameters of blood and ejaculates, and epigenetic regulation of the estrogen receptor genes (ESR1 and ESR2) in leukocytes isolated from blood (systemic regulation) and in somatic cells isolated from ejaculates (local regulation). We found elevated 17β-estradiol (E2) levels in seminal plasma, but not in blood plasma, that was significantly associated with CP/CPPS and impaired urinary tract symptoms. In ejaculated somatic cells of CP/CPPS patients we found that ESR1 and ESR2 were both significantly higher methylated in CpG-promoters and expressionally down-regulated in comparison to controls. Mast cells are reported to contribute to CP/CPPS and are estrogen responsive. Consistent with this, we found that E2 –treatment of human mast cell lines (HMC-1 and LAD2) resulted in altered cytokine and chemokine expression. Interestingly, in HMC-1 cells, possessing epigenetically inactivated ESR1 and ESR2, E2 –treatment led to a reduced transcription of a number of inflammatory genes. Overall, these data suggest that elevated local E2 levels associate with an epigenetic down-regulation of the estrogen receptors and have a prominent role in CP/CPPS. Investigating E2 levels in semen could therefore serve as a promising biomarker to select patients for estrogen targeted therapy. PMID:29731970
Nesheim, Nils; Ellem, Stuart; Dansranjavin, Temuujin; Hagenkötter, Christina; Berg, Elena; Schambeck, Rupert; Schuppe, Hans-Christian; Pilatz, Adrian; Risbridger, Gail; Weidner, Wolfgang; Wagenlehner, Florian; Schagdarsurengin, Undraga
2018-04-13
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is associated with urinary tract symptoms and hormonal imbalances amongst others. The heterogeneous clinical presentation, unexplored molecular background and lack of prostate biopsies complicate therapy. Here, using liquid biopsies, we performed a comprehensive translational study on men diagnosed with CP/CPPS type III ( n = 50; median age 39.8, range 23-65) and age-matched controls ( n = 61; median age 36.8, range 20-69), considering biochemical parameters of blood and ejaculates, and epigenetic regulation of the estrogen receptor genes ( ESR1 and ESR2 ) in leukocytes isolated from blood (systemic regulation) and in somatic cells isolated from ejaculates (local regulation). We found elevated 17β-estradiol (E 2 ) levels in seminal plasma, but not in blood plasma, that was significantly associated with CP/CPPS and impaired urinary tract symptoms. In ejaculated somatic cells of CP/CPPS patients we found that ESR1 and ESR2 were both significantly higher methylated in CpG-promoters and expressionally down-regulated in comparison to controls. Mast cells are reported to contribute to CP/CPPS and are estrogen responsive. Consistent with this, we found that E 2 -treatment of human mast cell lines (HMC-1 and LAD2) resulted in altered cytokine and chemokine expression. Interestingly, in HMC-1 cells, possessing epigenetically inactivated ESR1 and ESR2, E 2 -treatment led to a reduced transcription of a number of inflammatory genes. Overall, these data suggest that elevated local E 2 levels associate with an epigenetic down-regulation of the estrogen receptors and have a prominent role in CP/CPPS. Investigating E 2 levels in semen could therefore serve as a promising biomarker to select patients for estrogen targeted therapy.
Calcium mobilization in HeLa cells induced by nitric oxide.
Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen
2014-01-01
Nitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells. The results show that NO elevates calcium in concentration-dependent manner in HeLa cells. And the elevation of calcium induced by NO is due to calcium influx and calcium release from intracellular calcium stores. Moreover, calcium release from intracellular stores is dominant. Furthermore, calcium release from mitochondria is one of the modulation pathways of NO. These findings would contribute to recognizing the significance of NO in cancer cell proliferation and metastasis. © Wiley Periodicals, Inc.
Balajthy, András; Somodi, Sándor; Pethő, Zoltán; Péter, Mária; Varga, Zoltán; Szabó, Gabriella P; Paragh, György; Vígh, László; Panyi, György; Hajdu, Péter
2016-08-01
In vitro manipulation of membrane sterol level affects the regulation of ion channels and consequently certain cellular functions; however, a comprehensive study that confirms the pathophysiological significance of these results is missing. The malfunction of 7-dehydrocholesterol (7DHC) reductase in Smith-Lemli-Opitz syndrome (SLOS) leads to the elevation of the 7-dehydrocholesterol level in the plasma membrane. T lymphocytes were isolated from SLOS patients to assess the effect of the in vivo altered membrane sterol composition on the operation of the voltage-gated Kv1.3 channel and the ion channel-dependent mitogenic responses. We found that the kinetic and equilibrium parameters of Kv1.3 activation changed in SLOS cells. Identical changes in Kv1.3 operation were observed when control/healthy T cells were loaded with 7DHC. Removal of the putative sterol binding sites on Kv1.3 resulted in a phenotype that was not influenced by the elevation in membrane sterol level. Functional assays exhibited impaired activation and proliferation rate of T cells probably partially due to the modified Kv1.3 operation. We concluded that the altered membrane sterol composition hindered the operation of Kv1.3 as well as the ion channel-controlled T cell functions.
Metabolic effects of physiological levels of caffeine in myotubes.
Schnuck, Jamie K; Gould, Lacey M; Parry, Hailey A; Johnson, Michele A; Gannon, Nicholas P; Sunderland, Kyle L; Vaughan, Roger A
2018-02-01
Caffeine has been shown to stimulate multiple major regulators of cell energetics including AMP-activated protein kinase (AMPK) and Ca 2+ /calmodulin-dependent protein kinase II (CaMKII). Additionally, caffeine induces peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial biogenesis. While caffeine enhances oxidative metabolism, experimental concentrations often exceed physiologically attainable concentrations through diet. This work measured the effects of low-level caffeine on cellular metabolism and gene expression in myotubes, as well as the dependence of caffeine's effects on the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARβ/δ). C2C12 myotubes were treated with various doses of caffeine for up to 24 h. Gene and protein expression were measured via qRT-PCR and Western blot, respectively. Cellular metabolism was determined via oxygen consumption and extracellular acidification rate. Caffeine significantly induced regulators of mitochondrial biogenesis and oxidative metabolism. Mitochondrial staining was suppressed in PPARβ/δ-inhibited cells which was rescued by concurrent caffeine treatment. Caffeine-treated cells also displayed elevated peak oxidative metabolism which was partially abolished following PPARβ/δ inhibition. Similar to past observations, glucose uptake and GLUT4 content were elevated in caffeine-treated cells, however, glycolytic metabolism was unaltered following caffeine treatment. Physiological levels of caffeine appear to enhance cell metabolism through mechanisms partially dependent on PPARβ/δ.
Elevated serum levels of soluble CD30 in patients with atopic dermatitis (AD).
Bengtsson, A; Holm, L; Bäck, O; Fransson, J; Scheynius, A
1997-09-01
The immunopathology of AD is still unclear, but evidence for an immune response polarized towards Th2 activity has been provided. The CD30 molecule belongs to the tumour necrosis factor (TNF) receptor family and is expressed on activated T cells with a sustained expression in Th2 cells. This molecule also exists in a soluble form (sCD30). Elevated serum levels of sCD30 have been found in patients with Hodgkin's disease, chronic hepatitis B infection and HIV infection. Studies were undertaken to compare the serum levels of sCD30 in patients with AD (n=49) and healthy non-atopic controls (n=94). The presence of sCD30 was analysed with ELISA. A significantly higher concentration of sCD30 was noted in AD patients, median sCD30 level 29 U/ml (range 1-708 U/ml), compared with healthy non-atopic controls (P<0.001), where the median level was 11 U/ml with a range of 1-1042 U/ml. No correlation was found between sCD30 levels and total serum IgE, or between the AD patients' SCORAD values and concentration of sCD30. sCD30 levels were also analysed in 20 AD patients, which during ketoconazole treatment had improved their clinical scores and reduced their serum IgE and eosinophil cationic protein levels. However, no significant decrease in sCD30 levels was noted after treatment. The results show that patients with AD have elevated levels of sCD30, but without correlation to total serum IgE or disease activity.
Kim, Gyuyoup; Shin, Ki-Hyuk; Pae, Eung-Kwon
2016-12-13
Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting β cell-like stem cells (i.e., SHED-β cells). We observed that ZIP8 expression increased as SHED differentiated into SHED-β cells, and that zinc supplementation at day 10 increased the levels of most pancreatic β cell markers-particularly Insulin and glucose transporter 2 (GLUT2). We confirmed that SHED-β cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-β cells. We conclude that SHED can be converted into insulin-secreting β cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-β cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-β cells increases.
Microbiota promotes systemic T-cell survival through suppression of an apoptotic factor
Petersen, Charisse; Novis, Camille L.; Kubinak, Jason L.; Bell, Rickesha; Stephens, W. Zac; Lane, Thomas E.; Fujinami, Robert S.; Bosque, Alberto; O’Connell, Ryan M.; Round, June L.
2017-01-01
Symbiotic microbes impact the severity of a variety of diseases through regulation of T-cell development. However, little is known regarding the molecular mechanisms by which this is accomplished. Here we report that a secreted factor, Erdr1, is regulated by the microbiota to control T-cell apoptosis. Erdr1 expression was identified by transcriptome analysis to be elevated in splenic T cells from germfree and antibiotic-treated mice. Suppression of Erdr1 depends on detection of circulating microbial products by Toll-like receptors on T cells, and this regulation is conserved in human T cells. Erdr1 was found to function as an autocrine factor to induce apoptosis through caspase 3. Consistent with elevated levels of Erdr1, germfree mice have increased splenic T-cell apoptosis. RNA sequencing of Erdr1-overexpressing cells identified the up-regulation of genes involved in Fas-mediated cell death, and Erdr1 fails to induce apoptosis in Fas-deficient cells. Importantly, forced changes in Erdr1 expression levels dictate the survival of auto-reactive T cells and the clinical outcome of neuro-inflammatory autoimmune disease. Cellular survival is a fundamental feature regulating appropriate immune responses. We have identified a mechanism whereby the host integrates signals from the microbiota to control T-cell apoptosis, making regulation of Erdr1 a potential therapeutic target for autoimmune disease. PMID:28487480
ADAM17 limits the expression of CSF1R on murine hematopoietic progenitors
Becker, Amy M.; Walcheck, Bruce; Bhattacharya, Deepta
2014-01-01
All-lymphoid progenitors (ALPs) yield few myeloid cells in vivo, but readily generate such cells in vitro. The basis for this difference remains unknown. We hypothesized that ALPs limit responsiveness to in vivo concentrations of myeloid-promoting cytokines by reducing expression of the corresponding receptors, potentially through post-transcriptional mechanisms. Consistent with such a mechanism, ALPs express higher levels of Csf1r transcripts than their upstream precursors, yet show limited cell surface protein expression of CSF1R. ALPs and other hematopoietic progenitors deficient in ADAM17, a metalloprotease that can cleave CSF1R, display elevated cell surface CSF1R expression. Adam17−/− ALPs, however, fail to yield myeloid cells upon transplantation into irradiated recipients. Moreover, Adam17−/− ALPs yield fewer macrophages in vitro than control ALPs at high concentrations of M-CSF. Mice with hematopoietic-specific deletion of Adam17 have grossly normal numbers of myeloid and lymphoid progenitors and mature cells in vivo. These data demonstrate that ADAM17 limits CSF1R protein expression on hematopoietic progenitors, but that compensatory mechanisms prevent elevated CSF1R levels from altering lymphoid progenitor potential. PMID:25308957
Puerarin protects against lead-induced cytotoxicity in cultured primary rat proximal tubular cells.
Liu, Gang; Li, Zifa; Wang, Jinqiu; Wang, Hong; Wang, Zhenyong; Wang, Lin
2014-10-01
Puerarin, a potent free radicals scavenger, has been demonstrated to have protective efficacy in oxidative damage induced by nephrotoxins. In the present study, the attenuating effect of puerarin (PU) on lead (Pb)-induced apoptosis and oxidative stress was investigated in cultured primary rat proximal tubular (rPT) cells. Results showed that exposure to 0.5 µM Pb induced a decrease in cell viability accompanied with obvious cellular morphological alterations and caused an increase in apoptotic rate and apoptotic morphological changes. Simultaneously, depletion of mitochondrial membrane potential (ΔΨ) and intracellular glutathione (GSH); elevation of caspase-3 activity, intracellular reactive oxygen species, and malondialdehyde levels; and inhibition of GSH peroxidase (GSH-Px) activity were revealed in the cells exposed to Pb alone. However, simultaneous supplementation with PU (50 and 100 µM) protected rPT cells from Pb-induced cytotoxicity through inhibiting apoptosis, attenuating lipid peroxidation, renewing mitochondrial function, and elevating the intracellular antioxidants (nonenzymatic and enzymic) levels. In conclusion, these findings suggested that PU, as a widely distributed dietary antioxidant, contributes potentially to inhibition of Pb-induced cytotoxicity in rPT cells. © The Author(s) 2014.
Granzyme B as a diagnostic marker of tuberculosis in patients with and without HIV coinfection.
Sarkar, Pronoti; Mitra, Soumik; Pant, Priyannk; Kotwal, Aarti; Kakati, Barnali; Masih, Victor; Sindhwani, Girish; Biswas, Debasis
2016-05-01
Immunodiagnostic tests for tuberculosis (TB) are based on the estimation of interferon γ (IFN-γ) or IFN-γ-secreting CD4(+) T cells following ex vivo stimulation with ESAT6 and CFP-10. Sensitivity of these tests is likely to be compromised in CD4(+) T-cell-depleted situations, like HIV-TB coinfection. CD4(+) and CD8(+) T cells, isolated from 3 groups, viz., HIV-negative patients with active TB, HIV-TB coinfected patients, and healthy household contacts (HHCs) were cocultivated with autologous dendritic cells, and the cytokine response to rESAT6 stimulation was compared between groups in supernatants. While CD4(+) T-cell stimulation yielded significantly elevated levels of IFN-γ and interleukin 4 in HIV-negative TB patients, compared to HHCs, the levels of both these cytokines were nondiscriminatory between HIV-positive TB patients and HHCs. However, CD8(+) T-cell stimulation yielded significantly elevated granzyme B titers in both groups of patients, irrespective of HIV coinfection status. Hence, contrary to IFN-γ, granzyme B might be a useful diagnostic marker for Mycobacterium tuberculosis infection particularly in HIV coinfected patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Chung, Joon-Yong; Bae, Young-An; Yun, Doo-Hee; Yang, Hyun-Jong; Kong, Yoon
2012-12-01
In fascioliasis, T-helper 2 (Th2) responses predominate, while little is known regarding early immune phenomenon. We herein analyzed early immunophenotype changes of BALB/c, C57BL/6, and C3H/He mice experimentally infected with 5 Fasciola hepatica metacercariae. A remarkable expansion of CD19(+) B cells was observed as early as week 1 post-infection while CD4(+)/CD8(+) T cells were down-regulated. Accumulation of Mac1(+) cells with time after infection correlated well with splenomegaly of all mice strains tested. The expression of tumor necrosis factor (TNF)-α mRNA in splenocytes significantly decreased while that of IL-4 up-regulated. IL-1β expression was down-modulated in BALB/c and C57BL/6 mice, but not in C3H/He. Serum levels of transforming growth factor (TGF)-β were considerably elevated in all mice during 3 weeks of infection period. These collective results suggest that experimental murine fascioliasis might derive immune suppression with elevated levels of TGF-β and IL-4 during the early stages of infection.
Oxidative stress induces transient O-GlcNAc elevation and tau dephosphorylation in SH-SY5Y cells.
Kátai, Emese; Pál, József; Poór, Viktor Soma; Purewal, Rupeena; Miseta, Attila; Nagy, Tamás
2016-12-01
O-linked β-N-acetlyglucosamine or O-GlcNAc modification is a dynamic post-translational modification occurring on the Ser/Thr residues of many intracellular proteins. The chronic imbalance between phosphorylation and O-GlcNAc on tau protein is considered as one of the main hallmarks of Alzheimer's disease. In recent years, many studies also showed that O-GlcNAc levels can elevate upon acute stress and suggested that this might facilitate cell survival. However, many consider chronic stress, including oxidative damage as a major risk factor in the development of the disease. In this study, using the neuronal cell line SH-SY5Y we investigated the dynamic nature of O-GlcNAc after treatment with 0.5 mM H 2 O 2 for 30 min. to induce oxidative stress. We found that overall O-GlcNAc quickly increased and reached peak level at around 2 hrs post-stress, then returned to baseline levels after about 24 hrs. Interestingly, we also found that tau protein phosphorylation at site S262 showed parallel, whereas at S199 and PHF1 sites showed inverse dynamic to O-Glycosylation. In conclusion, our results show that temporary elevation in O-GlcNAc modification after H 2 O 2 -induced oxidative stress is detectable in cells of neuronal origin. Furthermore, oxidative stress changes the dynamic balance between O-GlcNAc and phosphorylation on tau proteins. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Acetylcholinesterase-R increases germ cell apoptosis but enhances sperm motility
Mor, I; Sklan, EH; Podoly, E; Pick, M; Kirschner, M; Yogev, L; Bar-Sheshet Itach, S; Schreiber, L; Geyer, B; Mor, T; Grisaru, D; Soreq, H
2008-01-01
Abstract Changes in protein subdomains through alternative splicing often modify protein-protein interactions, altering biological processes. A relevant example is that of the stress-induced up-regulation of the acetylcholinesterase (AChE-R) splice variant, a common response in various tissues. In germ cells of male transgenic TgR mice, AChE-R excess associates with reduced sperm differentiation and sperm counts. To explore the mechanism(s) by which AChE-R up-regulation affects spermatogenesis, we identified AChE-R's protein partners through a yeast two-hybrid screen. In meiotic spermatocytes from TgR mice, we detected AChE-R interaction with the scaffold protein RACK1 and elevated apoptosis. This correlated with reduced scavenging by RACK1 of the pro-apoptotic TAp73, an outcome compatible with the increased apoptosis. In contrast, at later stages in sperm development, AChE-R's interaction with the glycolytic enzyme enolase-α elevates enolase activity. In transfected cells, enforced AChE-R excess increased glucose uptake and adenosine tri-phosphate (ATP) levels. Correspondingly, TgR sperm cells display elevated ATP levels, mitochondrial hyperactivity and increased motility. In human donors' sperm, we found direct association of sperm motility with AChE-R expression. Interchanging interactions with RACK1 and enolase-α may hence enable AChE-R to affect both sperm differentiation and function by participating in independent cellular pathways. PMID:18194455
Mehta, Kosha J; Farnaud, Sebastien; Patel, Vinood B
2017-10-01
In liver hepatocytes, the HFE gene regulates cellular and systemic iron homeostasis by modulating cellular iron-uptake and producing the iron-hormone hepcidin in response to systemic iron elevation. However, the mechanism of iron-sensing in hepatocytes remain enigmatic. Therefore, to study the effect of iron on HFE and hepcidin (HAMP) expressions under distinct extracellular and intracellular iron-loading, we examined the effect of holotransferrin treatment (1, 2, 5 and 8 g/L for 6 h) on intracellular iron levels, and mRNA expressions of HFE and HAMP in wild-type HepG2 and previously characterized iron-loaded recombinant-TfR1 HepG2 cells. Gene expression was analyzed by real-time PCR and intracellular iron was measured by ferrozine assay. Data showed that in the wild-type cells, where intracellular iron content remained unchanged, HFE expression remained unaltered at low holotransferrin treatments but was upregulated upon 5 g/L (p < 0.04) and 8 g/L (p = 0.05) treatments. HAMP expression showed alternating elevations and increased upon 1 g/L (p < 0.05) and 5 g/L (p < 0.05). However, in the recombinant cells that showed higher intracellular iron levels than wild-type cells, HFE and HAMP expressions were elevated only at low 1 g/L treatment (p < 0.03) and were repressed at 2 g/L treatment (p < 0.03). Under holotransferrin-untreated conditions, the iron-loaded recombinant cells showed higher expressions of HFE (p < 0.03) and HAMP (p = 0.05) than wild-type cells. HFE mRNA was independently elevated by extracellular and intracellular iron-excess. Thus, it may be involved in sensing both, extracellular and intracellular iron. Repression of HAMP expression under simultaneous intracellular and extracellular iron-loading resembles non-hereditary iron-excess pathologies.
Tampakakis, Emmanouil; Tabit, Corey E; Holbrook, Monika; Linder, Erika A; Berk, Brittany D; Frame, Alissa A; Bretón-Romero, Rosa; Fetterman, Jessica L; Gokce, Noyan; Vita, Joseph A; Hamburg, Naomi M
2016-01-11
Endoplasmic reticulum (ER) stress and the subsequent unfolded protein response may initially be protective, but when prolonged, have been implicated in atherogenesis in diabetic conditions. Triglycerides and free fatty acids (FFAs) are elevated in patients with diabetes and may contribute to ER stress. We sought to evaluate the effect of acute FFA elevation on ER stress in endothelial and circulating white cells. Twenty-one healthy subjects were treated with intralipid (20%; 45 mL/h) plus heparin (12 U/kg/h) infusion for 5 hours. Along with increased triglyceride and FFA levels, intralipid/heparin infusion reduced the calf reactive hyperemic response without a change in conduit artery flow-mediated dilation consistent with microvascular dysfunction. To investigate the short-term effects of elevated triglycerides and FFA, we measured markers of ER stress in peripheral blood mononuclear cells (PBMCs) and vascular endothelial cells (VECs). In VECs, activating transcription factor 6 (ATF6) and phospho-inositol requiring kinase 1 (pIRE1) proteins were elevated after infusion (both P<0.05). In PBMCs, ATF6 and spliced X-box-binding protein 1 (XBP-1) gene expression increased by 2.0- and 2.5-fold, respectively (both P<0.05), whereas CHOP and GADD34 decreased by ≈67% and 74%, respectively (both P<0.01). ATF6 and pIRE1 protein levels also increased (both P<0.05), and confocal microscopy revealed the nuclear localization of ATF6 after infusion, suggesting activation. Along with microvascular dysfunction, intralipid infusion induced an early protective ER stress response evidenced by activation of ATF6 and IRE1 in both leukocytes and endothelial cells. Our results suggest a potential link between metabolic disturbances and ER stress that may be relevant to vascular disease. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Svetlovska, Daniela; Miskovska, Viera; Cholujova, Dana; Gronesova, Paulina; Cingelova, Silvia; Chovanec, Michal; Sycova-Mila, Zuzana; Obertova, Jana; Palacka, Patrik; Rajec, Jan; Kalavska, Katarina; Usakova, Vanda; Luha, Jan; Ondrus, Dalibor; Spanik, Stanislav; Mardiak, Jozef; Mego, Michal
2017-06-01
Cytokines are the communicators of immune system and are involved in all immune responses. The aim of this study was to assess the correlation among plasma cytokines, patient and tumor characteristics, and clinical outcome in chemonaive testicular germ-cell tumor (TGCT) patients. This study included 92 metastatic chemotherapy-naive TGCT patients treated with platinum-based chemotherapy from July 2010 to March 2014. Plasma was isolated before first administration of chemotherapy, and the concentration of 51 plasma cytokines were analyzed using multiplex bead arrays. At a median follow-up of 33.2 months (range, 0.1-54.8 months), 10.9% of patients experienced disease progression, and 7.6% died. Several cytokines were associated with different baseline clinicopathologic features. Elevated plasma levels of interferon (IFN)-α2, interleukin (IL)-2Rα, IL-16, hepatocyte growth factor (HGF), and monocyte chemotactic protein (MCP)-3 were significantly associated with worse progression-free survival and overall survival (OS). Moreover, elevated levels of stem-cell growth factor (SCGF)-β were also associated with worse OS. Patients with elevated levels of all 6 cytokines experienced significantly worse outcomes compared to patients who had fewer than 6 cytokines elevated (hazard ratio = 12.06; 95% confidence interval, 7.39-19.49; P = .002 for progression-free survival, and hazard ratio = 39.65; 95% confidence interval, 25.03-62.18; P < .00001 for OS, respectively). Results were independent of International Germ Cell Cancer Collaborative Group criteria. We found a correlation among progression free-survival, OS, and circulating cytokines in TGCT. This suggests the existence an association between plasma cytokines and baseline clinicopathologic features in TGCT. Plasma cytokines could be used for identification of high-risk patients who are candidates for new therapeutic approaches. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanjundan, Meera; Cheng, Kwai Wa; Zhang, Fan
2008-07-18
High-resolution array comparative genomic hybridization of 235 serous epithelial ovarian cancers demonstrated a regional increase at 3q26.2 encompassing SnoN/SkiL, a coregulator of SMAD/TGF{beta} signaling. SnoN RNA transcripts were elevated in {approx}80% of advanced stage serous epithelial ovarian cancers. In both immortalized normal (TIOSE) and ovarian carcinoma cell lines (OVCA), SnoN RNA levels were increased by TGF{beta} stimulation and altered by LY294002 and JNK II inhibitor treatment suggesting that the PI3K and JNK signaling pathways may regulate TGF{beta}-induced increases in SnoN RNA. In TIOSE, SnoN protein levels were reduced 15min post TGF{beta}-stimulation, likely by proteosome-mediated degradation. In contrast, in OVCA, SnoNmore » levels were elevated 3h post-stimulation potentially as a result of inhibition of the proteosome. To elucidate the role of SnoN in ovarian tumorigenesis, we explored the effects of both increasing and decreasing SnoN levels. In both TIOSE and OVCA, SnoN siRNA decreased cell growth between 20 and 50% concurrent with increased p21 levels. In TIOSE, transient expression of SnoN repressed TGF{beta} induction of PAI-1 promoters with little effect on the p21 promoter or resultant cell growth. In contrast to the effects of transient expression, stable expression of SnoN in TIOSE led to growth arrest through induction of senescence. Collectively, these results implicate SnoN levels in multiple roles during ovarian carcinogenesis: promoting cellular proliferation in ovarian cancer cells and as a positive mediator of cell cycle arrest and senescence in non-transformed ovarian epithelial cells.« less
Li, Yu; Luo, Xin-Xin; Yan, Feng-Dong; Wei, Zhang-Bin; Tu, Jun
2017-05-01
To observe the anti-hyperglycemic effect of Puerariae Lobatae Radix in hepatocyte insulin resistance(IR) models, and investigate its preliminary molecular mechanism. IR-HepG2 cell model was stably established with 1×10-9 mol•L⁻¹ insulin plus 3.75×10-6 mol•L-1 dexamethasone treatment for 48 h according to optimized protocol in our research group. After IR-HepG2 cells were treated with different concentrations(5%,10% and 15%) of Puerariae Lobatae Radix-containing serum, cell viability was detected by CCK-8 assay; the glucose consumptions in IR-HepG2 cells were separately detected at different time points (12, 15, 18, 21, 24, 30, 36 h) by using glucose oxidase method; intracellular glycogen content was detected by anthrone method; and the protein expression levels of leptin receptor (Ob-R), insulin receptor substrate-2 (IRS2), glucose transporter 1(GLUT1) and GLUT2 were detected by Western blot assay. The results showed that Puerariae Lobatae Radix-containing serum (5%, 10% and 15%) had no significant effect on IR-HepG2 cell viability; 5% and 10% Puerariae Lobatae Radix-containing serum significantly increased glucose consumption of IR-HepG2 cells (P<0.01) at 18, 21 and 24 h; 15% Puerariae Lobatae Radix-containing serum elevated the glucose consumption of IR-HepG2 cells at 15 h (P<0.05), and significantly elevated the glucose consumption at 18, 21, 24 and 30 h (P<0.01) in a dose-dependent manner. The optimized time of anti-hyperglycemic effect was defined as 24 h, and further study showed that Puerariae Lobatae Radix-containing serum could increase intracellular glycogen content after 24 h treatment (P<0.01), and up-regulate IRS2, Ob-R, GLUT1 and GLUT2 protein expression levels. Our results indicated that Puerariae Lobatae Radix-containing serum could achieve the anti-hyperglycemic effect through important PI3K/PDK signaling pathway partially by up-regulating the expression levels of Ob-R and IRS2, GLUT1 and GLUT2 in IR-HepG2 cells, accelerating the glucose transport into hepatocytes and increasing hepatic glycogen synthesis to enhance the anti-hyperglycemic effect of IR-HepG2 cells. Copyright© by the Chinese Pharmaceutical Association.
Mastoparan-Induced Intracellular Ca2+ Fluxes May Regulate Cell-to-Cell Communication in Plants.
Tucker, E. B.; Boss, W. F.
1996-06-01
The relationship of Ca2+ and plasmodesmatal closure was examined in staminal hairs of Setcreasea purpurea by microinjecting cells with active mastoparan (Mas-7), inactive mastoparan (Mas-17), active inositol-1,4,5-trisphosphate (IP3), or inactive IP3. Calcium green dextran 10,000 was used to study cellular free Ca2+, and carboxyfluorescein was used to monitor plasmodesmatal closure. When Mas-7 was microinjected into the cytoplasm of cell 1 (the tip cell of a chain of cells), a rapid increase in calcium green dextran-10,000 fluorescence was observed in the cytoplasmic areas on both sides of the plasmodesmata connecting cells 1 and 2 during the same time that the diffusion of carboxyfluorescein through them was blocked. The inhibition of cell-to-cell diffusion was transient, and the closed plasmodesmata reopened within 30 s. The elevated Ca2+ level near plasmodesmata was also transient and returned to base level in about 1.5 min. The transient increase in Ca2+, once initiated in cell 1, repeated with an oscillatory period of 3 min. Elevated Ca2+ and oscillations of Ca2+ were also observed near interconnecting cell walls throughout the chain of cells, indicating that the signal had been transmitted. Previously, we reported that IP3 closed plasmodesmata; now we report that it stimulated Ca2+ and oscillations similar to Mas-7. The effect was specific for similar concentrations of Mas-7 over Mas-17 and active IP3 over inactive IP3. It is important that the Ca2+ channel blocker La3+ eliminated the responses from Mas-7 and IP3, indicating that an influx of Ca2+ was required. These results support the contention that plasmodesmata functioning is regulated via Ca2+ and that IP3 may be an intermediary between the stimulus and Ca2+ elevations.
Mastoparan-Induced Intracellular Ca2+ Fluxes May Regulate Cell-to-Cell Communication in Plants.
Tucker, E. B.; Boss, W. F.
1996-01-01
The relationship of Ca2+ and plasmodesmatal closure was examined in staminal hairs of Setcreasea purpurea by microinjecting cells with active mastoparan (Mas-7), inactive mastoparan (Mas-17), active inositol-1,4,5-trisphosphate (IP3), or inactive IP3. Calcium green dextran 10,000 was used to study cellular free Ca2+, and carboxyfluorescein was used to monitor plasmodesmatal closure. When Mas-7 was microinjected into the cytoplasm of cell 1 (the tip cell of a chain of cells), a rapid increase in calcium green dextran-10,000 fluorescence was observed in the cytoplasmic areas on both sides of the plasmodesmata connecting cells 1 and 2 during the same time that the diffusion of carboxyfluorescein through them was blocked. The inhibition of cell-to-cell diffusion was transient, and the closed plasmodesmata reopened within 30 s. The elevated Ca2+ level near plasmodesmata was also transient and returned to base level in about 1.5 min. The transient increase in Ca2+, once initiated in cell 1, repeated with an oscillatory period of 3 min. Elevated Ca2+ and oscillations of Ca2+ were also observed near interconnecting cell walls throughout the chain of cells, indicating that the signal had been transmitted. Previously, we reported that IP3 closed plasmodesmata; now we report that it stimulated Ca2+ and oscillations similar to Mas-7. The effect was specific for similar concentrations of Mas-7 over Mas-17 and active IP3 over inactive IP3. It is important that the Ca2+ channel blocker La3+ eliminated the responses from Mas-7 and IP3, indicating that an influx of Ca2+ was required. These results support the contention that plasmodesmata functioning is regulated via Ca2+ and that IP3 may be an intermediary between the stimulus and Ca2+ elevations. PMID:12226302
The plasma levels of soluble ST2 as a marker of gut mucosal damage in early HIV infection
Mehraj, Vikram; Jenabian, Mohammad-Ali; Ponte, Rosalie; Lebouché, Bertrand; Costiniuk, Cecilia; Thomas, Réjean; Baril, Jean-Guy; LeBlanc, Roger; Cox, Joseph; Tremblay, Cécile; Routy, Jean-Pierre
2016-01-01
Objective: Following tissue barrier breaches, interleukin-33 (IL-33) is released as an ‘alarmin’ to induce inflammation. Soluble suppression of tumorigenicity 2 (sST2), as an IL-33 decoy receptor, contributes to limit inflammation. We assessed the relationship between the IL-33/ST2 axis and markers of gut mucosal damage in patients with early (EHI) and chronic HIV infection (CHI) and elite controllers. Design: Analyses on patients with EHI and CHI were conducted to determine IL-33/sST2 changes over time. Methods: IL-33 and sST2 levels were measured in plasma. Correlations between sST2 levels and plasma viral load, CD4+ and CD8+ T-cell counts, expression of T-cell activation/exhaustion markers, gut mucosal damage, microbial translocation and inflammation markers, as well as kynurenine/tryptophan ratio were assessed. Results: Plasma sST2 levels were elevated in EHI compared with untreated CHI and uninfected controls, whereas IL-33 levels were comparable in all groups. In EHI, sST2 levels were positively correlated with the CD8+ T-cell count and the percentage of T cells expressing activation and exhaustion markers, but not with viral load or CD4+ T-cell count. Plasma sST2 levels also correlated with plasma levels of gut mucosal damage, microbial translocation and kynurenine/tryptophan ratio and for some markers of inflammation. Prospective analyses showed that early antiretroviral therapy had no impact on sST2 levels, whereas longer treatment duration initiated during CHI normalized sST2. Conclusion: As sST2 levels were elevated in EHI and were correlated with CD8+ T-cell count, immune activation, and microbial translocation, sST2 may serve as a marker of disease progression, gut damage and may directly contribute to HIV pathogenesis. PMID:27045377
Papasavvas, Emmanouil; Azzoni, Livio; Pistilli, Maxwell; Hancock, Aidan; Reynolds, Griffin; Gallo, Cecile; Ondercin, Joe; Kostman, Jay R; Mounzer, Karam; Shull, Jane; Montaner, Luis J
2008-06-19
We investigated the effect of short viremic episodes on soluble markers associated with endothelial stress and cardiovascular disease risk in chronically HIV-1-infected patients followed during continuous antiretroviral therapy, antiretroviral therapy interruption and antiretroviral therapy resumption. We assessed changes in plasma levels of von Willebrand factor, soluble vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 by enzyme-linked immunosorbent assay, as well as T-cell activation (CD8+/CD38+, CD8+/HLA-DR+ and CD3+/CD95+) by flow cytometry, in 36 chronically HIV-1-infected patients participating in a randomized study. Patients were divided into the following three groups: a, on continuous antiretroviral therapy; b, on a 6-week antiretroviral therapy interruption; or c, on antiretroviral therapy interruption extended to the achievement of viral set point. Although all measurements remained stable over a 40-week follow-up on antiretroviral therapy, plasma levels of soluble vascular cell adhesion molecule-1 (P < 0.0001) and soluble intercellular adhesion molecule-1 (P = 0.003) increased during treatment interruption in correlation with viral rebound and T-cell activation. No significant changes in von Willebrand factor were observed in any of the groups. After resuming antiretroviral therapy, soluble vascular cell adhesion molecule-1 levels remained elevated even after achievement of viral suppression to less than 50 copies/ml. The prompt rise in plasma soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-1 upon viral rebound suggests an acute increase in endothelial stress upon treatment interruption, which may persists after viral resuppression of virus. Thus, viral replication during short-term treatment interruption may increase the overall cardiovascular risk during and beyond treatment interruption.
Acharyya, Swarnali; Sharma, Sudarshana M.; Cheng, Alfred S.; Ladner, Katherine J.; He, Wei; Kline, William; Wang, Huating; Ostrowski, Michael C.; Huang, Tim H.; Guttridge, Denis C.
2010-01-01
Background Classical NF-κB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFα on skeletal muscle differentiation are mediated in part through sustained NF-κB activity. In dystrophic muscles, NF-κB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFα that is also under IKKβ and NF-κB control. Methodology/Principal Findings Based on these findings we speculated that in DMD, TNFα secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFα is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-κB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFα stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2. Conclusions/Significance We propose that in dystrophic muscles, elevated levels of TNFα and NF-κB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene. PMID:20814569
Overexpression of SKP2 promotes the radiation resistance of esophageal squamous cell carcinoma.
Wang, Xiao-Chun; Tian, Li-Li; Tian, Jing; Jiang, Xiao-Yan
2012-01-01
SKP2 is the substrate recognition subunit of the SCF(SKP2) ubiquitin ligase complex. It is implicated in ubiquitin-mediated degradation of the cyclin-dependent kinase (CDK) inhibitor p27(KIP1) and positively regulates the G(1)/S transition. Overexpression of SKP2 has been found in many kinds of tumors. In the present study, we found that SKP2 expression levels increased in esophageal squamous cell carcinoma tissues. Elevated expression of SKP2 correlated significantly with tumor stage and positive lymph node metastasis (P < 0.05). Moreover, a significantly negative correlation was found between SKP2 expression and the survival of patients who received radiotherapy (P < 0.05). At the molecular level, induced expression of SKP2 promoted the radioresistance of EC9706 cells. Knockdown of SKP2 expression sensitized cancer cells to radiation, and a wobble mutant of SKP2 that was resistant to SKP2 siRNA was able to rescue this effect. Increased or decreased expression levels of SKP2 had effects on Rad51 expression after irradiation. These results demonstrate for the first time that overexpression of SKP2 was correlated with the increased radioresistance of esophageal squamous cell carcinoma. Elevated expression of SKP2 promoted the radioresistance of cancer cells, and this effect was mediated at least in part by the Rad51 pathway.
Reduced Autophagy in 5-Fluorouracil Resistant Colon Cancer Cells
Yao, Cheng Wen; Kang, Kyoung Ah; Piao, Mei Jing; Ryu, Yea Seong; Fernando, Pattage Madushan Dilhara Jayatissa; Oh, Min Chang; Park, Jeong Eon; Shilnikova, Kristina; Na, Soo-Young; Jeong, Seung Uk; Boo, Sun-Jin; Hyun, Jin Won
2017-01-01
We investigated the role of autophagy in SNUC5/5-FUR, 5-fluorouracil (5-FU) resistant SNUC5 colon cancer cells. SNUC5/5-FUR cells exhibited low level of autophagy, as determined by light microscopy, confocal microscopy, and flow cytometry following acridine orange staining, and the decreased level of GFP-LC3 puncta. In addition, expression of critical autophagic proteins such as Atg5, Beclin-1 and LC3-II and autophagic flux was diminished in SNUC5/5-FUR cells. Whereas production of reactive oxygen species (ROS) was significantly elevated in SNUC5/5-FUR cells, treatment with the ROS inhibitor N-acetyl cysteine further reduced the level of autophagy. Taken together, these results indicate that decreased autophagy is linked to 5-FU resistance in SNUC5 colon cancer cells. PMID:27737524
AGEs/sRAGE, a novel risk factor in the pathogenesis of end-stage renal disease.
Prasad, Kailash; Dhar, Indu; Zhou, Qifeng; Elmoselhi, Hamdi; Shoker, Muhammad; Shoker, Ahmed
2016-12-01
Interaction of advanced glycation end products (AGEs) with its cell-bound receptor (RAGE) results in cell dysfunction through activation of nuclear factor kappa-B, increase in expression and release of inflammatory cytokines, and generation of oxygen radicals. Circulating soluble receptors, soluble receptor (sRAGE), endogenous secretory receptor (esRAGE) and cleaved receptor (cRGAE) act as decoy for RAGE ligands and thus have cytoprotective effects. Low levels of sRAGE and esRAGE have been proposed as biomarkers for many diseases. However sRAGE and esRAGE levels are elevated in diabetes and chronic renal diseases and still tissue injury occurs. It is possible that increases in levels of AGEs are greater than increases in the levels of soluble receptors in these two diseases. Some new parameters have to be used which could be an universal biomarkers for cell dysfunction. It is hypothesized that increases in serum levels of AGEs are greater than the increases in the soluble receptors, and that the levels of AGEs is correlated with soluble receptors and that the ratios of AGEs/sRAGE, AGEs/esRAGE and AGEs/cRAGE are elevated in patients with end-stage renal disease (ESRD) and would serve as an universal risk marker for ESRD. The study subject comprised of 88 patients with ESRD and 20 healthy controls. AGEs, sRAGE and esRAGE were measured using commercially available enzyme linked immune assay kits. cRAGE was calculated by subtracting esRAGE from sRAGE. The data show that the serum levels of AGEs, sRAGE, cRAGE are elevated and that the elevation of AGEs was greater than those of soluble receptors. The ratios of AGEs/sRAGE, AGEs/esRAGE and AGEs/cRAGE were elevated and the elevation was similar in AGEs/sRAGE and AGEs/cRAGE but greater than AGEs/esRAGE. The sensitivity, specificity, accuracy, and positive and negative predictive value of AGEs/sRAGE and AGEs/cRAGE were 86.36 and 84.88 %, 86.36 and 80.95 %, 0.98 and 0.905, 96.2 and 94.8 %, and 61.29 and 56.67 % respectively. There was a positive correlation of sRAGE with esRAGE and cRAGE, and AGEs with esRAGE; and negative correlation between sRAGE and AGEs/sRAGE, esRAGE and AGES/esRAGE, and cRAGE and AGES/cRAGE. In conclusion, AGEs/sRAGE, AGEs/cRAGE and AGEs/esRAGE may serve as universal risk biomarkers for ESRD and that AGEs/sRAGE and AGEs/cRAGE are better risk biomarkers than AGEs/esRAGE.
Decreased "ineffective erythropoiesis" preserves polycythemia in mice under long-term hypoxia.
Harada, Tomonori; Tsuboi, Isao; Hirabayashi, Yukio; Kosaku, Kazuhiro; Naito, Michiko; Hara, Hiroyuki; Inoue, Tohru; Aizawa, Shin
2015-05-01
Hypoxia induces innumerable changes in humans and other animals, including an increase in peripheral red blood cells (polycythemia) caused by the activation of erythropoiesis mediated by increased erythropoietin (EPO) production. However, the elevation of EPO is limited and levels return to normal ranges under normoxia within 5-7 days of exposure to hypoxia, whereas polycythemia continues for as long as hypoxia persists. We investigated erythropoiesis in bone marrow and spleens from mouse models of long-term normobaric hypoxia (10 % O2) to clarify the mechanism of prolonged polycythemia in chronic hypoxia. The numbers of erythroid colony-forming units (CFU-E) in the spleen remarkably increased along with elevated serum EPO levels indicating the activation of erythropoiesis during the first 7 days of hypoxia. After 14 days of hypoxia, the numbers of CFU-E returned to normoxic levels, whereas polycythemia persisted for >140 days. Flow cytometry revealed a prolonged increase in the numbers of TER119-positive cells (erythroid cells derived from pro-erythroblasts through mature erythrocyte stages), especially the TER119 (high) CD71 (high) population, in bone marrow. The numbers of annexin-V-positive cells among the TER119-positive cells particularly declined under chronic hypoxia, suggesting that the numbers of apoptotic cells decrease during erythroid cell maturation. Furthermore, RT-PCR analysis showed that the RNA expression of BMP-4 and stem cell factor that reduces apoptotic changes during erythroid cell proliferation and maturation was increased in bone marrow under hypoxia. These findings indicated that decreased apoptosis of erythroid cells during erythropoiesis contributes to polycythemia in mice during chronic exposure to long-term hypoxia.
Nath, Aritro; Li, Irene; Roberts, Lewis R.; Chan, Christina
2015-01-01
Hepatocellular carcinoma (HCC) is the second-leading cause of cancer-related death worldwide, and the factors influencing HCC progression are poorly understood. Here we reveal that HCC progression via induction of epithelial-mesenchymal transition (EMT) is closely associated with the expression of CD36/fatty acid translocase and elevated free fatty acid (FFA) levels. Although obesity is manifested as elevated FFA levels, the degree of EMT was not associated with the body mass index of the patients, highlighting the specific roles of CD36 and FFA uptake. Treatment of human liver cancer cell lines with FFAs exacerbated the EMT phenotype, whereas chemical inhibition of CD36 mitigated these effects. Furthermore, the Wnt and TGF-β signaling pathways were activated upon FFA treatment, potentially acting as upstream activators of the EMT program. These results provide the first direct evidence associating CD36 and elevated FFAs with HCC progression. PMID:26424075
Nath, Aritro; Li, Irene; Roberts, Lewis R; Chan, Christina
2015-10-01
Hepatocellular carcinoma (HCC) is the second-leading cause of cancer-related death worldwide, and the factors influencing HCC progression are poorly understood. Here we reveal that HCC progression via induction of epithelial-mesenchymal transition (EMT) is closely associated with the expression of CD36/fatty acid translocase and elevated free fatty acid (FFA) levels. Although obesity is manifested as elevated FFA levels, the degree of EMT was not associated with the body mass index of the patients, highlighting the specific roles of CD36 and FFA uptake. Treatment of human liver cancer cell lines with FFAs exacerbated the EMT phenotype, whereas chemical inhibition of CD36 mitigated these effects. Furthermore, the Wnt and TGF-β signaling pathways were activated upon FFA treatment, potentially acting as upstream activators of the EMT program. These results provide the first direct evidence associating CD36 and elevated FFAs with HCC progression.
Nguyen, Quynh Anh; Lee, Dae-Seok; Jung, Jakyun; Bae, Hyeun-Jong
2015-01-01
The hyperthermostable β-glucosidase BglB of Thermotoga maritima was modified by adding a short C-terminal tetrapeptide (AFVY, which transports phaseolin to the vacuole, to its C-terminal sequence). The modified β-glucosidase BglB was transformed into tobacco (Nicotiana tabacum L.) plants. We observed a range of significant phenotypic changes in the transgenic plants compared to the wild-type (WT) plants. The transgenic plants had faster stem growth, earlier flowering, enhanced root systems development, an increased biomass biosynthesis rate, and higher salt stress tolerance in young plants compared to WT. In addition, programed cell death was enhanced in mature plants. Furthermore, the C-terminal AFVY tetrapeptide efficiently sorted T. maritima BglB into the vacuole, which was maintained in an active form and could perform its glycoside hydrolysis function on hormone conjugates, leading to elevated hormone [abscisic acid (ABA), indole 3-acetic acid (IAA), and cytokinin] levels that likely contributed to the phenotypic changes in the transgenic plants. The elevation of cytokinin led to upregulation of the transcription factor WUSCHELL, a homeodomain factor that regulates the development, division, and reproduction of stem cells in the shoot apical meristems. Elevation of IAA led to enhanced root development, and the elevation of ABA contributed to enhanced tolerance to salt stress and programed cell death. These results suggest that overexpressing vacuole-targeted T. maritima BglB may have several advantages for molecular farming technology to improve multiple targets, including enhanced production of the β-glucosidase BglB, increased biomass, and shortened developmental stages, that could play pivotal roles in bioenergy and biofuel production.
Nguyen, Quynh Anh; Lee, Dae-Seok; Jung, Jakyun; Bae, Hyeun-Jong
2015-01-01
The hyperthermostable β-glucosidase BglB of Thermotoga maritima was modified by adding a short C-terminal tetrapeptide (AFVY, which transports phaseolin to the vacuole, to its C-terminal sequence). The modified β-glucosidase BglB was transformed into tobacco (Nicotiana tabacum L.) plants. We observed a range of significant phenotypic changes in the transgenic plants compared to the wild-type (WT) plants. The transgenic plants had faster stem growth, earlier flowering, enhanced root systems development, an increased biomass biosynthesis rate, and higher salt stress tolerance in young plants compared to WT. In addition, programed cell death was enhanced in mature plants. Furthermore, the C-terminal AFVY tetrapeptide efficiently sorted T. maritima BglB into the vacuole, which was maintained in an active form and could perform its glycoside hydrolysis function on hormone conjugates, leading to elevated hormone [abscisic acid (ABA), indole 3-acetic acid (IAA), and cytokinin] levels that likely contributed to the phenotypic changes in the transgenic plants. The elevation of cytokinin led to upregulation of the transcription factor WUSCHELL, a homeodomain factor that regulates the development, division, and reproduction of stem cells in the shoot apical meristems. Elevation of IAA led to enhanced root development, and the elevation of ABA contributed to enhanced tolerance to salt stress and programed cell death. These results suggest that overexpressing vacuole-targeted T. maritima BglB may have several advantages for molecular farming technology to improve multiple targets, including enhanced production of the β-glucosidase BglB, increased biomass, and shortened developmental stages, that could play pivotal roles in bioenergy and biofuel production. PMID:26618153
Simental-Mendía, Luis E; Castañeda-Chacón, Argelia; Rodriguez-Morán, Martha; Aradillas-García, Celia; Guerrero-Romero, Fernando
2015-05-01
To test the hypothesis that mildly elevated triglyceride levels are associated with the increase of homeostasis model assessment of insulin resistance (HOMA-IR) and β-cell function (HOMA-β) indices in healthy children and adolescents with normal weight, we conducted a cross-sectional population study. Based on fasting triglyceride levels, participants were allocated into groups with and without triglyceride levels ≥1.2 mmol/L. Normal weight was defined by body mass index between the 15th and 85th percentiles, for age and gender. Insulin resistance and insulin secretion were estimated using HOMA-IR and HOMA-β indices. A total of 1660 children and adolescents were enrolled, of them 327 (19.7%) with mildly elevated triglycerides. The multivariate linear regression analysis showed that mildly elevated triglyceride levels in children were associated with HOMA-IR (β = 0.214, p < 0.001), HOMA-β (β = 0.139, p = 0.001), systolic (β = 0.094, p = 0.01), and diastolic blood pressure (β = 0.102, p = 0.007), whereas in adolescents, HOMA-IR (β = 0.267, p < 0.001) and HOMA-β (β = 0.154, p < 0.001), but not systolic (β = 0.029, p = 0.38) and diastolic blood pressure (β = 0.015, p = 0.642), showed association with mildly elevated triglycerides. Mildly elevated triglyceride levels are associated with increased HOMA-IR and HOMA-β indices in healthy children and adolescents with normal weight.
[Elevated transaminases - what to do if everything was done?].
Lepper, P M; Dufour, J-F
2009-03-18
Transaminases, gamma-GT and alcalic phosphatase are classically termed as liver enzymes, however they can be found in almost every organ. Elevated levels of the transaminases ALAT (alanin-aminotransferase) and ASAT (aspartat-aminotransferase) are signs of disturbed permeability of the cells, in which these enzymes can be found. In contrast to ALAT, which is mainly liver-specific, the ASAT is found in other organs as well, e.g. heart and skeletal muscle. At a mild elevation of these enzymes a reevaluation is recommended, however if an elevation persists and is suspicious for a liver disease, a specific work up is necessary. In this manuscript, we discuss often overlooked problems and provide a diagnostic algorithm for the workup of elevated liver enzymes.
Mendoza, Rhone A; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur
2011-01-01
Understanding of the interactions between estradiol (E₂) and IGF-I is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating noninterfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions, and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human GH plus epidermal growth factor, but E₂ did not cause an increase in the number of the IGF-IR.low cells compared to controls. The proliferation rate of IGF-IR.low cells was only reduced in response to E₂ compared to controls, whereas their basal and hormone-stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E₂, without affecting control cells. Furthermore, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. In conclusion, suppressing IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK, which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate.
2006-04-01
aged and young adult mice made comparable levels of proinflammatory cytokines in response to CpG-ODN, although cells from aged mice secreted higher...sepsis, is significantly elevated in the elderly relative to young adults (37, 60). Defective innate immunity including diminished neutrophil and...young adult recipients (15). Exposure to inflammatory cy- tokines in vivo could restore the defective CD4-T-cell function in aged mice (20). Pn
2001-05-01
gallate ( EGCG ), which has been shown to inhibit the induction of NF-KB and growth of breast cancer cell lines in vitro. EGCG reduced NF-KB levels in the...demonstrated activation of NF-KB is induced upon over-expression of Her-2/neu. Thus, studies were initiated with green tea pholyphenol, epigallocatechin -3...NF639 cell line derived from an MMTV-Her-2/neu mouse tumor. NF639 clonal isolates resistant to EGCG appear to display elevated levels of NF-KB. Overall
Tan, Bingyao; MacLellan, Benjamin; Mason, Erik
2018-01-01
Acute elevation of intraocular pressure (IOP) to ischemic and non-ischemic levels can cause temporary or permanent changes in the retinal morphology, function and blood flow/blood perfusion. Previously, such changes in the retina were assessed separately with different methods in clinical studies and animal models. In this study, we used a combined OCT+ ERG system in combination with Doppler OCT and OCT angiography (OCTA) imaging protocols, in order to evaluate simultaneously and correlate changes in the retinal morphology, the retinal functional response to visual stimulation, and the retinal blood flow/blood perfusion, associated with IOP elevation to ischemic and non-ischemic levels in rats. Results from this study suggest that the inner retina responds faster to IOP elevation to levels greater than 30 mmHg with significant reduction of the total retinal blood flow (TRBF), decrease of the capillaries’ perfusion and reduction of the ON bipolar cells contribution to the ERG traces. Furthermore, this study showed that ischemic levels of IOP elevation cause an additional significant decrease in the ERG photoreceptor response in the posterior retina. Thirty minutes after IOP normalization, retinal morphology, blood flow and blood perfusion recovered to baseline values, while retinal function did not recover completely. PMID:29509807
Zhai, Linzhu; Zhao, Yuanyuan; Peng, Songguo; Zhu, Ke; Yu, Rongjian; Chen, Hailong; Lin, Tongyu; Lin, Lizhu
2016-12-01
There are limited data on serum total light chain (sTLC) in lymphoma and its relative role on the outcome of diffuse large B cell lymphoma (DLBCL) patients. Blood samples from 46 cases newly diagnosed with DLBCL were collected consecutively during chemotherapy to detect sTLC, IgG, IgA, and IgM levels. Clinical data and survival outcomes were analyzed according to the results of sTLC measurements. In summary, 22 patients (47.8 %) had abnormal k or λ light chain, respectively, and 6 patients (13.0 %) had both abnormal k and λ light chains before chemotherapy. Patients with elevated k light chain more frequently displayed multiple extra-nodal organ involvement (P = 0.01) and had an inferior overall survival (OS) (P = 0.041) and progression-free survival (PFS) (P = 0.044) compared to patients with normal level of k light chain. Furthermore, patients with elevated level of both k and λ also exhibited significant association with shorter OS (P = 0.002) and PFS (P = 0.009). Both elevated k alone and concurrent elevated k and λ had independent adverse effects on PFS (P = 0.031 and P = 0.019, respectively). sTLC level was reduced gradually by treatment in this study and reached the lowest point after the fourth cycle of chemotherapy, which was consistent with the disease behavior during chemotherapy. Considering the small sample size of this study, these results should be confirmed in a larger prospective study.
Hom, D G; Jiang, D; Hong, E J; Mo, J Q; Andersen, J K
1997-06-01
In vivo administration of either 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or methamphetamine (MA) produces damage to the dopaminergic nervous system which may be due in part to the generation of reactive oxygen species (ROS). The resistance of superoxide dismutase (SOD) over-expressing transgenic mice to the effects of both MPTP and MA suggests the involvement of superoxide in the resulting neurotoxicity of both compounds. Superoxide can be converted by SOD to hydrogen peroxide, which itself can cause cellular degeneration by reacting with free iron to produce highly reactive hydroxyl radicals resulting in damage to proteins, nucleic acids and membrane phospholipids. Hydrogen peroxide has also been reported to be produced via inhibition of NADH dehydrogenase by MPP + formed during oxidation of MPTP by MAO-B and by dopamine auto-oxidation following MA-induced dopamine release from synaptic vesicles within nerve terminals. To test whether hydrogen peroxide is an important factor in the toxicity of either of these two neurotoxins, we created clonal PC12 lines expressing elevated levels of the hydrogen peroxide-reducing enzyme glutathione peroxidase (GSHPx). Elevation of GSHPx levels in PC12 was found to diminish the rise in ROS levels and lipid peroxidation resulting from MA but not MPTP treatment. Elevated levels of GSHPx also appeared to prevent decreases in transport-mediated dopamine uptake produced via MA administration as well as to attenuate toxin-induced cell loss as measured by either MTT reduction or LDH release. Our data, therefore, suggest that hydrogen peroxide production likely contributes to MA toxicity in dopaminergic neurons.
Beghini, J; Linhares, I M; Giraldo, P C; Ledger, W J; Witkin, S S
2015-11-01
Do metabolites in vaginal samples vary between women with different vaginal disorders. Cross-sectional study. Campinas, Brazil. Seventy-seven women (39.9%) with no vaginal disorder, 52 women (26.9%) with vulvovaginal candidiasis (VVC), 43 women (22.3%) with bacterial vaginosis (BV), and 21 women (10.9%) with cytolytic vaginosis (CTV). Concentrations of D- and L-lactic acid, extracellular matrix metalloproteinase inducer (EMMPRIN), and matrix metalloproteinase-8 (MMP-8), and the influence of Candida albicans on EMMPRIN production by cultured vaginal epithelial cells, were determined by enzyme-linked immunosorbent assay (ELISA). Associations were determined by the Mann-Whitney U-test and by Spearman's rank correlation test. Metabolite levels and their correlation with diagnoses. Vaginal concentrations of D- and L-lactic acid were reduced from control levels in BV (P < 0.0001); L-lactic acid levels were elevated in CTV (P = 0.0116). EMMPRIN and MMP-8 concentrations were elevated in VVC (P < 0.0001). EMMPRIN and L-lactic acid concentrations (P ≤ 0.008), but not EMMPRIN and D-lactic acid, were correlated in all groups. EMMPRIN also increased in proportion with the ratio of L- to D-lactic acid in controls and in women with BV (P ≤ 0.009). Concentrations of EMMPRIN and MMP-8 were correlated in controls and women with VVC (P ≤ 0.0002). Candida albicans induced EMMPRIN release from vaginal epithelial cells. Vaginal secretions from women with BV are deficient in D- and L-lactic acid, women with VVC have elevated EMMPRIN and MMP-8 levels, and women with CTV have elevated L-lactic acid levels. These deviations may contribute to the clinical signs, symptoms, and sequelae that are characteristic of these disorders. © 2014 Royal College of Obstetricians and Gynaecologists.
White, Stephen J; Hayes, Elaine M; Lehoux, Stéphanie; Jeremy, Jamie Y; Horrevoets, Anton J G; Newby, Andrew C
2011-11-01
Most acute coronary events occur in the upstream region of stenotic atherosclerotic plaques that experience laminar shear stress (LSS) elevated above normal physiological levels. Many studies have described the atheroprotective effect on endothelial behavior of normal physiological LSS (approximately 15 dynes/cm(2)) compared to static or oscillatory shear stress (OSS), but it is unknown whether the levels of elevated shear stress imposed by a stenotic plaque would preserve, enhance or reverse this effect. Therefore we used transcriptomics and related functional analyses to compare human endothelial cells exposed to laminar shear stress of 15 (LSS15-normal) or 75 dynes/cm(2) (LSS75-elevated). LSS75 upregulated expression of 145 and downregulated expression of 158 genes more than twofold relative to LSS15. Modulation of the metallothioneins (MT1-G, -M, -X) and NADPH oxidase subunits (NOX2, NOX4, NOX5, and p67phox) accompanied suppression of reactive oxygen species production at LSS75. Shear induced changes in dual specificity phosphatases (DUSPs 1, 5, 8, and 16 increasing and DUSPs 6 and 23 decreasing) were observed as well as reduced ERK1/2 but increased p38 MAP kinase phosphorylation. Amongst vasoactive substances, endothelin-1 expression decreased whereas vasoactive intestinal peptide (VIP) and prostacyclin expression increased, despite which intracellular cAMP levels were reduced. Promoter analysis by rVISTA identified a significant over representation of ATF and Nrf2 transcription factor binding sites in genes upregulated by LSS75 compared to LSS15. In summary, LSS75 induced a specific change in behavior, modifying gene expression, reducing ROS levels, altering MAP kinase signaling and reducing cAMP levels, opening multiple avenues for future study. Copyright © 2011 Wiley-Liss, Inc.
Lema, Sean C; Nevitt, Gabrielle A
2004-09-01
Salmon have long been known to imprint and home to natal stream odors, yet the mechanisms driving olfactory imprinting remain obscure. The timing of imprinting is associated with elevations in plasma thyroid hormone levels, with possible effects on growth and proliferation of the peripheral olfactory system. Here, we begin to test this idea by determining whether experimentally elevated plasma levels of 3,5,3'-triiodothyronine (T(3)) influence cell proliferation as detected by the 5-bromo-2'-deoxyuridine (BrdU) cell birth-dating technique in the olfactory epithelium of juvenile coho salmon (Oncorhynchus kisutch). We also explore how natural fluctuations in thyroxine (T(4)) relate to proliferation in the epithelium during the parr-smolt transformation. In both studies, we found that BrdU labeled both single and clusters of mitotic cells. The total number of BrdU-labeled cells in the olfactory epithelium was significantly greater in fish with artificially elevated T(3) compared with placebo controls. This difference in proliferation was restricted to the basal region of the olfactory epithelium, where multipotent progenitor cells differentiate into olfactory receptor neurons. The distributions of mitotic cluster sizes differed significantly from a Poisson distribution for both T(3) and placebo treatments, suggesting that proliferation tends to be non-random. Over the course of the parr-smolt transformation, changes in the density of BrdU cells showed a positive relationship with natural fluctuations in plasma T(4). This relationship suggests that even small changes in thyroid activity can stimulate the proliferation of neural progenitor cells in the salmon epithelium. Taken together, our results establish a link between the thyroid hormone axis and measurable anatomical changes in the peripheral olfactory system.
Lam, Chung Fan; Yeung, Hoi Ting; Lam, Yuk Man; Ng, Ray Kit
2018-05-01
Reactive oxygen species (ROS) and altered cellular redox status are associated with many malignancies. Acute myeloid leukemia (AML) cells are maintained at immature state by differentiation blockade, which involves deregulation of transcription factors in myeloid differentiation. AML cells can be induced to differentiate by phorbol-12-myristate-13-acetate (PMA), which possesses pro-oxidative activity. However, the signaling events mediated by ROS in the activation of transcriptional program during AML differentiation has not been fully elucidated. Here, we investigated AML cell differentiation by treatment with PMA and ROS scavenger N-acetyl-l-cysteine (NAC). We observed elevation of intracellular ROS level in the PMA-treated AML cells, which correlated with differentiated cell morphology and increased CD11b + mature cell population. The effect of PMA can be abolished by NAC co-treatment, supporting the involvement of ROS in the process. Moreover, we demonstrated that short ROS elevation mediated cell cycle arrest, but failed to activate myeloid gene transcription; whereas prolonged ROS elevation activated JNK/c-JUN signaling pathway. Inhibition of JNK suppressed the expression of key myeloid transcriptional regulators c-JUN, SPI-1 and MAFB, and prevented AML cells from undergoing terminal differentiation. These findings provide new insights into the crucial role of JNK/c-Jun signaling pathway in the activation of transcriptional program during ROS-mediated AML differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evidence for Differential Glycosylation of Trophoblast Cell Types*
Chen, Qiushi; Pang, Poh-Choo; Cohen, Marie E.; Longtine, Mark S.; Schust, Danny J.; Haslam, Stuart M.; Blois, Sandra M.; Dell, Anne; Clark, Gary F.
2016-01-01
Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3–4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2–3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2–3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered. PMID:26929217
Evidence for Differential Glycosylation of Trophoblast Cell Types.
Chen, Qiushi; Pang, Poh-Choo; Cohen, Marie E; Longtine, Mark S; Schust, Danny J; Haslam, Stuart M; Blois, Sandra M; Dell, Anne; Clark, Gary F
2016-06-01
Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3-4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2-3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2-3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lai, Floriana; Fagernes, Cathrine E; Bernier, Nicholas J; Miller, Gabrielle M; Munday, Philip L; Jutfelt, Fredrik; Nilsson, Göran E
2017-08-01
The continuous increase of anthropogenic CO 2 in the atmosphere resulting in ocean acidification has been reported to affect brain function in some fishes. During adulthood, cell proliferation is fundamental for fish brain growth and for it to adapt in response to external stimuli, such as environmental changes. Here we report the first expression study of genes regulating neurogenesis and neuroplasticity in brains of three-spined stickleback ( Gasterosteus aculeatus ), cinnamon anemonefish ( Amphiprion melanopus ) and spiny damselfish ( Acanthochromis polyacanthus ) exposed to elevated CO 2 The mRNA expression levels of the neurogenic differentiation factor (NeuroD) and doublecortin (DCX) were upregulated in three-spined stickleback exposed to high-CO 2 compared with controls, while no changes were detected in the other species. The mRNA expression levels of the proliferating cell nuclear antigen (PCNA) and the brain-derived neurotrophic factor (BDNF) remained unaffected in the high-CO 2 exposed groups compared to the control in all three species. These results indicate a species-specific regulation of genes involved in neurogenesis in response to elevated ambient CO 2 levels. The higher expression of NeuroD and DCX mRNA transcripts in the brain of high-CO 2 -exposed three-spined stickleback, together with the lack of effects on mRNA levels in cinnamon anemonefish and spiny damselfish, indicate differences in coping mechanisms among fish in response to the predicted-future CO 2 level. © 2017 The Author(s).
Saad, Ahmed; Wang, Wei; Herrmann, Sandra M S; Glockner, James F; Mckusick, Michael A; Misra, Sanjay; Bjarnason, Haraldur; Lerman, Lilach O; Textor, Stephen C
2016-11-01
Atherosclerotic renal artery stenosis (ARAS) reduces renal blood flow (RBF), ultimately leading to kidney hypoxia and inflammation. Insulin-like growth factor binding protein-7 (IGFBP-7) and tissue inhibitor of metalloproteinases-2 (TIMP-2) are biomarkers of cell cycle arrest, often increased in ischemic conditions and predictive of acute kidney injury (AKI). This study sought to examine the relationships between renal vein levels of IGFBP-7, TIMP-2, reductions in RBF and postcontrast hypoxia as measured by blood oxygen level-dependent (BOLD) magnetic resonance imaging. Renal vein levels of IGFBP-7 and TIMP-2 were obtained in an ARAS cohort (n= 29) scheduled for renal artery stenting and essential hypertensive (EH) healthy controls (n = 32). Cortical and medullary RBFs were measured by multidetector computed tomography (CT) immediately before renal artery stenting and 3 months later. BOLD imaging was performed before and 3 months after stenting in all patients, and a subgroup (N = 12) underwent repeat BOLD imaging 24 h after CT/stenting to examine postcontrast/procedure levels of hypoxia. Preintervention IGFBP-7 and TIMP-2 levels were elevated in ARAS compared with EH (18.5 ± 2.0 versus 15.7 ± 1.5 and 97.4 ± 23.1 versus 62.7 ± 9.2 ng/mL, respectively; P< 0.0001); baseline IGFBP-7 correlated inversely with hypoxia developing 24 h after contrast injection (r = -0.73, P< 0.0001) and with prestent cortical blood flow (r = -0.59, P= 0.004). These data demonstrate elevated IGFBP-7 and TIMP-2 levels in ARAS as a function of the degree of reduced RBF. Elevated baseline IGFBP-7 levels were associated with protection against postimaging hypoxia, consistent with 'ischemic preconditioning'. Despite contrast injection and stenting, AKI in these high-risk ARAS subjects with elevated IGFBP-7/TIMP-2 was rare and did not affect long-term kidney function. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne
Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting thatmore » fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated palmitate/ CsA induced toxicity. ► Palmitate sensitizes cells to the toxicity induced by CsA at therapeutic exposure. ► Elevated free fatty acids may predispose the patients to CsA-induced toxicity.« less
Heat shock proteins (HSPs) are ubiquitous proteins that are induced following exposure to sub-lethal heat shock, are highly conserved during evolution and protect cells from damage through their function as molecular chaperones. Some cancers demonstrate elevated levels of Hsp70 ...
USDA-ARS?s Scientific Manuscript database
Variegated Epipremnum aureum ‘Marble Queen’ plant has white (VMW) and green (VMG) sectors within the same leaf. The white sector cells containing undifferentiated chloroplasts are viable, but the underlying mechanism for their survival is not clear. Because phytohormones are important for plant grow...
The divalent metal transporter-1 (DMT1) participates in the detoxification of metals that can damage lung epithelium. Elevated iron levels increase the expression of DMT1 in bronchial epithelial cells stimulating its uptake and storage in ferritin, thus making iron unavailable t...
Huang, Chunyu; Zhang, Hongzhan; Chen, Xian; Diao, Lianghui; Lian, Ruochun; Zhang, Xu; Hu, Lina; Zeng, Yong
2016-10-01
Dendritic cells (DCs) have been reported to play an important role in pregnancy. However, the role of DCs in recurrent pregnancy loss (RPL) has not been investigated well. Forty-three women affected by RPL and 16 fertile controls were recruited from June 2013 to December 2014. The peripheral blood DCs subsets, including myeloid DCs (mDCs) and plasmacytoid DCs (pDCs), the levels (%) of CD80(+) , CD86(+) , and CD200(+) DCs were analyzed using flow cytometry. The levels of total DCs, mDCs, and CD86(+) DCs were significantly higher (all P<.05); however, the level of CD200(+) DCs in the RPL group was significantly lower than that of the control group (P<.05). The logistical regression analyses showed that the elevated level of mDCs was significantly associated with RPL after adjustment for age (OR: 1.14, 95% CI, 1.01-1.29, P<.05). The elevated level of mDCs was significantly associated with RPL, which might lead to the intervention of targeted immunosuppression in women with RPL. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels.
Bruno, Anna Paola; De Simone, Francesca Isabella; Iorio, Vittoria; De Marco, Margot; Khalili, Kamel; Sariyer, Ilker Kudret; Capunzo, Mario; Nori, Stefania Lucia; Rosati, Alessandra
2014-01-01
BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.
Glial cell activation, recruitment, and survival of B-lineage cells following MCMV brain infection.
Lokensgard, James R; Mutnal, Manohar B; Prasad, Sujata; Sheng, Wen; Hu, Shuxian
2016-05-20
Chemokines produced by reactive glia drive migration of immune cells and previous studies from our laboratory have demonstrated that CD19(+) B cells infiltrate the brain. In this study, in vivo and in vitro experiments investigated the role of reactive glial cells in recruitment and survival of B-lineage cells in response to (murine cytomegalovirus) MCMV infection. Flow cytometric analysis was used to assess chemokine receptor expression on brain-infiltrating B cells. Real-time RT-PCR and ELISA were used to measure chemokine levels. Dual-immunohistochemical staining was used to co-localize chemokine production by reactive glia. Primary glial cell cultures and migration assays were used to examine chemokine-mediated recruitment. Astrocyte: B cell co-cultures were used to investigate survival and proliferation. The chemokine receptors CXCR3, CXCR5, CCR5, and CCR7 were detected on CD19(+) cells isolated from the brain during MCMV infection. In particular, CXCR3 was found to be elevated on an increasing number of cells over the time course of infection, and it was the primary chemokine receptor expressed at 60 days post infection Quite different expression kinetics were observed for CXCR5, CCR5, and CCR7, which were elevated on the highest number of cells early during infection and decreased by 14, 30, and 60 days post infection Correspondingly, elevated levels of CXCL9, CXCL10, and CXCL13, as well as CCL5, were found within the brains of infected animals, and only low levels of CCL3 and CCL19 were detected. Differential expression of CXCL9/CXCL10 and CXCL13 between microglia and astrocytes was apparent, and B cells moved towards supernatants from MCMV-infected microglia, but not astrocytes. Pretreatment with neutralizing Abs to CXCL9 and CXCL10 inhibited this migration. In contrast, neutralizing Abs to the ligand of CXCR5 (i.e., CXCL13) did not significantly block chemotaxis. Proliferation of brain-infiltrating B cells was detected at 7 days post infection and persisted through the latest time tested (60 days post infection). Finally, astrocytes produce BAFF (B cell activating factor of the TNF family) and promote proliferation of B cells via cell-to-cell contact. CXCR3 is the primary chemokine receptor on CD19(+) B cells persisting within the brain, and migration to microglial cell supernatants is mediated through this receptor. Correspondingly, microglial cells produce CXCL9 and CXCL10, but not CXCL13. Reactive astrocytes promote B cell proliferation.
Skinner, John P.; Tuomi, Pam A.; Mellish, Jo-Ann E.
2015-01-01
The Steller sea lion, Eumetopias jubatus, has experienced regionally divergent population trends over recent decades. One potential mechanism for this disparity is that local factors cause reduced health and, therefore, reduced survival of individuals. The use of blood parameters to assess sea lion health may help to identify whether malnutrition, disease and stress are important drivers of current trends, but such assessments require species-specific knowledge of how parameters respond to various health challenges. We used principal components analysis to identify which key blood parameters (principal analytes) best described changes in health for temporarily captive juvenile Steller sea lions in known conditions. Generalized additive mixed models were used to estimate the changes in principal analytes with food intake, time in captivity and acute trauma associated with hot-iron branding and transmitter implant surgery. Of the 17 blood parameters examined, physiological changes for juvenile sea lions were best described using the following six principal analytes: red blood cell counts, white blood cell counts, globulin, platelets, glucose and total bilirubin. The white blood cell counts and total bilirubin declined over time in captivity, whereas globulin increased. Elevated red blood cell counts, white blood cell counts and total bilirubin and reduced globulin values were associated with lower food intake. After branding, white blood cell counts were elevated for the first 30 days, while globulin and platelets were elevated for the first 15 days only. After implant surgery, red blood cell counts and globulin remained elevated for 30 days, while white blood cell counts remained elevated during the first 15 days only. Glucose was unassociated with the factors we studied. These results were used to provide expected ranges for principal analytes at different levels of food intake and in response to the physical challenges of branding and implant surgery. These results provide a more detailed reference for future evaluations of health-related assessments. PMID:27293693
Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.
Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie
2014-03-03
The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.
Rattray, A J; Shafer, B K; Garfinkel, D J
2000-01-01
RNA transcribed from the Saccharomyces cerevisiae retrotransposon Ty1 accumulates to a high level in mitotically growing haploid cells, yet transposition occurs at very low frequencies. The product of reverse transcription is a linear double-stranded DNA molecule that reenters the genome by either Ty1-integrase-mediated insertion or homologous recombination with one of the preexisting genomic Ty1 (or delta) elements. Here we examine the role of the cellular homologous recombination functions on Ty1 transposition. We find that transposition is elevated in cells mutated for genes in the RAD52 recombinational repair pathway, such as RAD50, RAD51, RAD52, RAD54, or RAD57, or in the DNA ligase I gene CDC9, but is not elevated in cells mutated in the DNA repair functions encoded by the RAD1, RAD2, or MSH2 genes. The increase in Ty1 transposition observed when genes in the RAD52 recombinational pathway are mutated is not associated with a significant increase in Ty1 RNA or proteins. However, unincorporated Ty1 cDNA levels are markedly elevated. These results suggest that members of the RAD52 recombinational repair pathway inhibit Ty1 post-translationally by influencing the fate of Ty1 cDNA. PMID:10655210
Differential Effects of AAV.BDNF and AAV.Ntf3 in the Deafened Adult Guinea Pig Ear
Budenz, Cameron L.; Wong, Hiu Tung; Swiderski, Donald L.; Shibata, Seiji B.; Pfingst, Bryan E.; Raphael, Yehoash
2015-01-01
Cochlear hair cell loss results in secondary regression of peripheral auditory fibers (PAFs) and loss of spiral ganglion neurons (SGNs). The performance of cochlear implants (CI) in rehabilitating hearing depends on survival of SGNs. Here we compare the effects of adeno-associated virus vectors with neurotrophin gene inserts, AAV.BDNF and AAV.Ntf3, on guinea pig ears deafened systemically (kanamycin and furosemide) or locally (neomycin). AAV.BDNF or AAV.Ntf3 was delivered to the guinea pig cochlea one week following deafening and ears were assessed morphologically 3 months later. At that time, neurotrophins levels were not significantly elevated in the cochlear fluids, even though in vitro and shorter term in vivo experiments demonstrate robust elevation of neurotrophins with these viral vectors. Nevertheless, animals receiving these vectors exhibited considerable re-growth of PAFs in the basilar membrane area. In systemically deafened animals there was a negative correlation between the presence of differentiated supporting cells and PAFs, suggesting that supporting cells influence the outcome of neurotrophin over-expression aimed at enhancing the cochlear neural substrate. Counts of SGN in Rosenthal's canal indicate that BDNF was more effective than NT-3 in preserving SGNs. The results demonstrate that a transient elevation in neurotrophin levels can sustain the cochlear neural substrate in the long term. PMID:25726967
SNJ-1945, a calpain inhibitor, protects SH-SY5Y cells against MPP+ and rotenone
Knaryan, Varduhi H.; Samantaray, Supriti; Sookyoung, Park; Azuma, Mitsuyoshi; Inoue, Jun; Banik, Naren L.
2014-01-01
Complex pathophysiology of Parkinson’s disease (PD) involves multiple CNS cell types. Degeneration in spinal cord neurons alongside brain has been shown to be involved in PD and evidenced in experimental parkinsonism. However, the mechanisms of these degenerative pathways are not well understood. In order to unravel these mechanisms SH-SY5Y neuroblastoma cells were differentiated into dopaminergic and cholinergic phenotypes respectively and used as cell culture model following exposure to two parkinsonian neurotoxicants MPP+ and rotenone. SNJ-1945, a cell-permeable calpain inhibitor was tested for its neuroprotective efficacy. MPP+ and rotenone dose-dependently elevated the levels of intracellular free Ca2+ and induced a concomitant rise in the levels of active calpain. SNJ-1945 pre-treatment significantly protected cell viability and preserved cellular morphology following MPP+ and rotenone exposure. The neurotoxicants elevated the levels of reactive oxygen species (ROS) more profoundly in SH-SY5Y cells differentiated into dopaminergic phenotype, and this effect could be attenuated with SNJ-1945 pre-treatment. In contrast, significant levels of inflammatory mediators (cyclooxygenase-2, Cox-2 and cleaved p10 fragment of caspase-1) were upregulated in the cholinergic phenotype, which could be dose-dependently attenuated by the calpain inhibitor. Overall, SNJ-1945 was efficacious against MPP+ or rotenone-induced ROS generation, inflammatory mediators, and proteolysis. A post-treatment regimen of SNJ-1945 was also examined in cells and partial protection was attained with calpain inhibitor administration 1–3 h after exposure to MPP+ or rotenone. Taken together these results indicate that calpain inhibition is a valid target for protection against parkinsonian neurotoxicants, and SNJ-1945 is an efficacious calpain inhibitor in this context. PMID:24341912
Xu, Ruijuan; Wang, Kai; Mileva, Izolda; Hannun, Yusuf A.; Obeid, Lina M.; Mao, Cungui
2016-01-01
Human cells respond to DNA damage by elevating sphingosine, a bioactive sphingolipid that induces programmed cell death (PCD) in response to various forms of stress, but its regulation and role in the DNA damage response remain obscure. Herein we demonstrate that DNA damage increases sphingosine levels in tumor cells by upregulating alkaline ceramidase 2 (ACER2) and that the upregulation of the ACER2/sphingosine pathway induces PCD in response to DNA damage by increasing the production of reactive oxygen species (ROS). Treatment with the DNA damaging agent doxorubicin increased both ACER2 expression and sphingosine levels in HCT116 cells in a dose-dependent manner. ACER2 overexpression increased sphingosine in HeLa cells whereas knocking down ACER2 inhibited the doxorubicin-induced increase in sphingosine in HCT116 cells, suggesting that DNA damage elevates sphingosine by upregulating ACER2. Knocking down ACER2 inhibited an increase in the apoptotic and necrotic cell population and the cleavage of poly ADP ribose polymerase (PARP) in HCT116 cells in response to doxorubicin as well as doxorubicin-induced release of lactate dehydrogenase (LDH) from these cells. Similar to treatment with doxorubicin, ACER2 overexpression induced an increase in the apoptotic and necrotic cell population and PARP cleavage in HeLa cells and LDH release from cells, suggesting that ACER2 upregulation mediates PCD in response to DNA damage through sphingosine. Mechanistic studies demonstrated that the upregulation of the ACER2/sphingosine pathway induces PCD by increasing ROS levels. Taken together, these results suggest that the ACER2/sphingosine pathway mediates PCD in response to DNA damage through ROS production. PMID:26943039
2001-07-01
and hepatocellular carcinoma patients have been shown to exhibit elevated somatic mutation frequencies with the GPA assay (Okada et al., 1997...T, Kyogoku A, Yoshimori M (1997) Evidence for increased somatic cell mutations in patients with hepatocellular carcinoma . Carcinogenesis 18: 445-449...significant increase in mutation at the GPA locus has been reported for a population of hepatocellular carcinoma patients (Okada et al., 1997
Ko, Mei-Lan; Peng, Pai-Huei; Hsu, Shens-Yao; Chen, Chau-Fong
2010-09-01
Investigate the effect of dietary vitamin E (Vit E) on the retinas of a rat model of induced glaucoma, in which surgically induced elevation of intraocular pressure (IOP) is associated with an increase in reactive oxygen species. Rats were fed a standard chow, Vit E-supplemented diet, or Vit E-deficient diet and subjected to surgically induced IOP elevation (or sham surgery) for five weeks. The retinal ganglion cells (RGCs) were subjected to retrograde fluorescent tracer labeling. The mean number of RGCs of rats on the standard chow, Vit E-supplemented diet, and Vit E-deficient diet were 79.6%, 78.6%, and 71.3% of controls, respectively. Lipid peroxidation of the retinas of rats given a Vit E-deficient diet were significantly higher after IOP elevation for three days (14.42 +/- 0.25 microM, P = 0.016) and five weeks (10.46 +/- 0.11 microM, p = 0.042), compared to rats given standard chow (11.37 +/- 0.31 microM; 8.95 +/- 0.16 microM). Compared with rats given standard chow, rats given a Vit E-deficient diet had significantly elevated concentrations of glutathione (p = 0.032), but no significant differences in the levels of total superoxide dismutase (SOD), Cu/Zn SOD, or catalase activities three days after IOP elevation. Rats fed a Vit E-deficient diet with surgically induced IOP elevation experience significantly more RGC death than rats fed a normal diet. This phenomenon may be related to the increased level of lipid peroxidation in Vit E-deficient rats.
Elevation of Plasma Cell-Free Hemoglobin in Pulmonary Arterial Hypertension
Janz, David R.; Austin, Eric D.; Bastarache, Julie A.; Wheeler, Lisa A.; Ware, Lorraine B.; Hemnes, Anna R.
2014-01-01
BACKGROUND: Cell-free hemoglobin (CFH) is a potent nitric oxide scavenger associated with poor outcomes in several diseases. Pulmonary arterial hypertension (PAH) is characterized by reduced nitric oxide availability. We hypothesized that CFH would be elevated in PAH and would associate with hemodynamics and clinical outcomes. METHODS: We measured CFH in 200 consecutively evaluated patients with PAH, 16 unaffected bone morphogenetic receptor protein type 2 (BMPR2) mutation carriers, 19 healthy subjects, and 29 patients with pulmonary venous hypertension (PVH). CFH values were tested for association with hemodynamics, time to hospitalization, and death. RESULTS: CFH was elevated in patients with PAH and BMPR2 carriers compared with healthy subjects and patients with PVH (P ≤ .01 all comparisons). There were no differences in CFH across PAH subtypes. CFH modestly correlated with mean pulmonary artery pressure (ρ = 0.16, P = .03) and pulmonary vascular resistance (ρ = 0.21, P = .01) and inversely with cardiac index (ρ = −0.18, P = .02) in patients with PAH. CFH was not associated with hemodynamic response to nitric oxide or death. Patients with the highest CFH levels had increased risk of PAH-related hospitalization when adjusted for age, sex, and PAH cause (hazard ratio, 1.69; 95% CI ,1.08-2.66; P = .02). CONCLUSIONS: CFH is elevated in patients with PAH and BMPR2 carriers compared with healthy subjects and patients with PVH. Elevated CFH levels are independently associated with an increased risk of hospitalization. Further study is required to understand the mechanism of CFH elevation and the potential pathologic contribution of CFH in PAH. PMID:24945582
Yi, Xi-Jun; Zhao, Yu-Hua; Qiao, Li-Xiang; Jin, Chun-Lei; Tian, Jing; Li, Qiu-Shi
2015-10-01
According to the cancer stem cell theory, the presence of a small sub‑population of cancer cells, termed cancer stem cells (CSCs), have a significant implication on cancer treatment and are responsible for tumor recurrence. Previous studies have reported that alterations in the Wnt/β‑catenin signaling are crucial in the maintenance of CSCs. In the present study, the characteristic features and activation of Wnt/β‑catenin signaling in CSCs from osteosarcoma, an aggressive human bone tumor, were investigated. In total, ~2.1% of the cancer stem‑like side population (SP) cells were identified in the osteosarcoma samples. The results of subsequent western blot and reverse transcription‑quantitative polymerase chain reaction analyses revealed that the protein levels of β‑catenin and cyclin D1 were markedly upregulated in the fluorescence‑activated cell sorted osteosarcoma SP cells. In addition, the elevated expression levels of stem cell proteins, including CD133, nestin Oct‑4, Sox‑2 and Nanog were significantly higher in the SP cells, which contributed to self‑renewal and enhanced the proliferation rate of the SP cells. Furthermore, the SP cells were found to be highly invasive and able to form tumors in vivo. Taken together, these data suggested that the identification of novel anticancer drugs, which suppress the Wnt/β‑catenin signaling and its downstream pathway may assist in eradicating osteosarcoma stem cells.
Takahashi, Naomi; Sugaya, Makoto; Suga, Hiraku; Oka, Tomonori; Kawaguchi, Makiko; Miyagaki, Tomomitsu; Fujita, Hideki; Inozume, Takashi; Sato, Shinichi
2017-08-01
Immune checkpoint therapy, which targets regulatory pathways in T cells to enhance antitumor immune responses, has led to important clinical advances. CD155 is expressed in various types of cancer, and this surface molecule on tumor cells functions either as a co-stimulatory molecule or a co-inhibitory molecule, depending on its receptor. CD226, a CD155 ligand, is mainly expressed on natural killer cells and CD8 + T cells, playing important roles in natural killer cell-mediated cytotoxicity. In this study, we investigated the expression and function of CD155 and CD226 in cutaneous T-cell lymphoma (CTCL). CD155 was strongly expressed on tumor cells and CD155 mRNA expression levels were increased in CTCL lesional skin. CD226 expression on natural killer cells and CD8 + cells in peripheral blood of CTCL patients was decreased. On the other hand, serum CD226 levels were significantly elevated in CTCL patients, strongly reflecting disease activity, suggesting that soluble CD226 in sera was generated by shedding of its membrane form. Recombinant CD226 itself showed cytotoxic activity against CD155-expressing CTCL cells in vitro. These data suggest that soluble CD226 elevated in sera of CTCL patients would be important for tumor immunity by interacting with CD155 on tumor cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Transcriptional regulation induced by cAMP elevation in mouse Schwann cells
Schmid, Daniela; Zeis, Thomas; Schaeren-Wiemers, Nicole
2014-01-01
In peripheral nerves, Schwann cell development is regulated by a variety of signals. Some of the aspects of Schwann cell differentiation can be reproduced in vitro in response to forskolin, an adenylyl cyclase activator elevating intracellular cAMP levels. Herein, the effect of forskolin treatment was investigated by a comprehensive genome-wide expression study on primary mouse Schwann cell cultures. Additional to myelin-related genes, many so far unconsidered genes were ascertained to be modulated by forskolin. One of the strongest differentially regulated gene transcripts was the transcription factor Olig1 (oligodendrocyte transcription factor 1), whose mRNA expression levels were reduced in treated Schwann cells. Olig1 protein was localized in myelinating and nonmyelinating Schwann cells within the sciatic nerve as well as in primary Schwann cells, proposing it as a novel transcription factor of the Schwann cell lineage. Data analysis further revealed that a number of differentially expressed genes in forskolin-treated Schwann cells were associated with the ECM (extracellular matrix), underlining its importance during Schwann cell differentiation in vitro. Comparison of samples derived from postnatal sciatic nerves and from both treated and untreated Schwann cell cultures showed considerable differences in gene expression between in vivo and in vitro, allowing us to separate Schwann cell autonomous from tissue-related changes. The whole data set of the cell culture microarray study is provided to offer an interactive search tool for genes of interest. PMID:24641305
Wakabayashi, Toru; Kawashima, Tatsuo; Matsuzawa, Yasuo
2014-01-01
The aim of this study was to evaluate the level of reactive oxygen metabolites (ROMs) after chemotherapy in patients with non-small cell lung cancer (NSCLC) and its association with response to treatment. Fifty-eight untreated NSCLC patients and twenty-three healthy subjects were selected for the study. Patients received two courses of platinum-based chemotherapy and were evaluated for oxidative stress and treatment response. As a marker of reactive oxygen species, ROMs levels were measured using the d-ROMs test. ROMs level (mean ± standard deviation) before chemotherapy in NSCLC patients (416 ± 135 U.CARR) was significantly elevated (p = 0.016) compared to normal healthy subjects (320 ± 59 U.CARR). Patients who responded to chemotherapy showed significantly decreased (p = 0.014) ROMs levels after chemotherapy, whereas patients who had stable disease or progressive disease showed no change in ROMs level (p = 0.387). NSCLC patients had significantly elevated ROMs levels before chemotherapy compared with normal healthy subjects. Chemotherapy may suppress ROMs production in responders but not in non-responders. ROMs level may be a predictor of clinical outcome in patients receiving chemotherapy for NSCLC.
A blessing and a curse: is high NK cell activity good for health and bad for reproduction?
Templer, Sophie; Sacks, Gavin
2016-09-01
Few topics in recent reproductive medicine have been the subject of as much controversy, media attention and passionate debate as natural killer (NK) cells and their role in reproductive failure. The question of whether elevated NK cell levels are a cause of infertility and pregnancy loss, and whether they provide a potential target for therapy to improve reproductive outcomes, lacks a definitive answer. It is clear, however, that a significant number of women with reproductive failure have abnormal NK cell parameters reflecting high immunological activity. Amongst all the debate, the wider implications of NK cell overactivity - and attempts to suppress it - have not yet been considered. The literature suggests that although elevated NK cell activity may not be conducive to reproduction, it could in fact be beneficial in other areas of health and disease such as cancer and infection. Further research is needed to determine whether this hypothesis holds true in women with NK cell-related reproductive failure.
Up-regulated expression of substance P in CD8+ T cells and NK1R on monocytes of atopic dermatitis.
Zhang, Zenan; Zheng, Wenjiao; Xie, Hua; Chai, Ruonan; Wang, Junling; Zhang, Huiyun; He, Shaoheng
2017-05-01
Large numbers of CD8 + T cells were observed in atopic dermatitis (AD) skin, and monocytes from AD patients showed increased prostaglandin E2 production. However, little is known about the expression of substance P (SP) and its receptor NK1R in blood leukocytes of patients with AD. To explore the expression of SP and NK1R in leukocytes of AD and the influence of allergens on SP and NK1R expression. The expression levels of SP and NK1R in patients with AD were examined by flow cytometry, ELISA and a mouse AD model. The plasma SP level was 4.9-fold higher in patients with AD than in HC subjects. Both the percentage of SP expression in the population and mean fluorescence intensity (MFI) of SP expression were elevated in CD8 + T cells in the blood of AD patients. However, both the CD14 + NK1R + population and MFI of NK1R expression on CD14 + cells were enhanced in the blood of AD patients. Allergens ASWE, HDME and PPE failed to up-regulate SP expression in CD8 + T cells. However, allergens ASWE and HDME both enhanced NK1R expression on CD14 + blood leukocytes regardless of AD or HC subjects. OVA-sensitized AD mice showed an elevated proportion and MFI of SP-expressing CD8 + T cells in the blood, which agrees with the SP expression situation in human AD blood. Injection of SP into mouse skin did not up-regulate NK1R expression on monocytes. An elevated plasma SP level, up-regulated expression of SP and NK1R indicate that the SP/NK1R complex is important in the development of AD. Therefore, SP and NK1R antagonist or blocker agents may help to treat patients with AD. Trial registration Registration number: ChiCTR-BOC-16010279; Registration date: Dec., 28, 2016; retrospectively registered.
Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto
2017-01-01
The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance. PMID:28685011
Hansen, Fernanda; Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto
2017-01-01
The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.
Kono, Momoko; Hasegawa, Jumpei; Ogawa, Hina; Yoshikawa, Kanae; Ishiwatari, Ayumi; Wakai, Sachiko; Tanabe, Kazunari; Shirakawa, Hiroki
2018-05-01
Tacrolimus is the most commonly used immunosuppressant. Because of its narrow therapeutic range, it is necessary to frequently monitor its concentration. We report the case of a 25-year-old man who underwent kidney transplantation whose tacrolimus concentrations, as measured by an affinity column-mediated immunoassay, were falsely elevated. As we reduced the dose of tacrolimus, the recipient developed T cell-mediated rejection. Using the same blood samples, an enzyme-multiplied immunoassay technique showed that the patient's levels of tacrolimus were extremely low. A further examination indicated that the false increase in the tacrolimus concentration was likely due to an unknown interfering substance. We administered methylprednisolone and antithymocyte-globulin. The patient's serum creatinine level decreased and remained stable after these treatments.
Sol, E-ri M; Hovsepyan, Meri; Bergsten, Peter
2009-01-01
Background Development of type 2 diabetes mellitus (T2DM) is characterized by aberrant insulin secretory patterns, where elevated insulin levels at non-stimulatory basal conditions and reduced hormonal levels at stimulatory conditions are major components. To delineate mechanisms responsible for these alterations we cultured INS-1E cells for 48 hours at 20 mM glucose in absence or presence of 0.5 mM palmitate, when stimulatory secretion of insulin was reduced or basal secretion was elevated, respectively. Results After culture, cells were protein profiled by SELDI-TOF-MS and 2D-PAGE. Differentially expressed proteins were discovered and identified by peptide mass fingerprinting. Complimentary protein profiles were obtained by the two approaches with SELDI-TOF-MS being more efficient in separating proteins in the low molecular range and 2D-PAGE in the high molecular range. Identified proteins included alpha glucosidase, calmodulin, gars, glucose-6-phosphate dehydrogenase, heterogenous nuclear ribonucleoprotein A3, lon peptidase, nicotineamide adenine dinucleotide hydrogen (NADH) dehydrogenase, phosphoglycerate kinase, proteasome p45, rab2, pyruvate kinase and t-complex protein. The observed glucose-induced differential protein expression pattern indicates enhanced glucose metabolism, defense against reactive oxygen species, enhanced protein translation, folding and degradation and decreased insulin granular formation and trafficking. Palmitate-induced changes could be related to altered exocytosis. Conclusion The identified altered proteins indicate mechanism important for altered β-cell function in T2DM. PMID:19607692
Immune consequences of the spontaneous pro-inflammatory status in depressed elderly patients.
Trzonkowski, Piotr; Myśliwska, Jolanta; Godlewska, Beata; Szmit, Ewa; Łukaszuk, Krzysztof; Wieckiewicz, Joanna; Brydak, Lidia; Machała, Magdalena; Landowski, Jerzy; Myśliwski, Andrzej
2004-03-01
The aim of the study was to describe the interrelationship between senescence, depression, and immunity. We assessed 10 elderly patients with depression and 10 age- and sex-matched controls: before, at one and at six month intervals after the anti-influenza vaccination. Levels of TNFalpha, IL6, ACTH, and cortisol, titres of anti-hemagglutinins and anti-neuraminidases, lymphocytes secreting IFNgamma, IL2, IL4, and IL10, cytotoxicity of NK and CD3+ CD8+ IFNgamma+ cells, anti-CMV antibodies, and CD28- CD57+ lymphocytes known to be associated with the CMV carrier status were evaluated. Higher levels of anti-CMV, higher percentage of the CD28- CD57+ cells, and elevated levels of TNFalpha, IL6, and cortisol concomitant with decreased levels of ACTH and insufficient production of IL10 (which increased the IFNgamma+ /IL10+ ratio) were found in the patients suffering from depression, in comparison to healthy controls. The subjects with depression revealed a low NK cytotoxicity, while a level of CD3+ CD8+ IFNgamma+ cells was comparable between the groups. Although the levels of anti-hemagglutinins and anti-neuraminidases were low in the depressed patients, they reached the protective titres. The majority of these differences disappeared when CMV titres were entered into the analyses as a covariate. The results suggest that the elderly depressed patients were characterised by increased exposure to CMV in the past, which could have resulted in a pro-inflammatory profile demonstrated as elevated levels of TNFalpha, IL6 and deficiency of suppressive IL10+ cells. These changes negatively affect humoral and innate response in the depressed patients.
Chiu, Lawrence C-M; Kong, Carrie K-L; Ooi, Vincent E-C
2005-10-01
Targeting the mitogen-activated protein kinases (MAPKs) has been suggested as a novel strategy to treat cancer. Chlorophyllin (CHL) is the sodium-copper salt of chlorophyll derivative and is a commonly used food dye for green coloration; CHL was found previously to retard growth of the human breast carcinoma MCF-7 cells. Extracellular signal-regulated kinases (ERKs) constitute a subfamily of MAPKs, participating in cell survival, proliferation and differentiation. We report here the first evidence that CHL deactivates ERKs to inhibit the breast cancer cell proliferation. The results from flow cytometry showed that 200 microg/ml CHL reduced the phosphorylated and activated ERK-positive cells in different cell cycle phases from the control of >96 to <38% at 24 h of incubation; the ERK deactivations occurred in both dose- and time-dependent manner, so that nearly all ERKs were de-activated by 400 microg/ml CHL at 72 h of treatment. Immunoblot studies, however, illustrated that the levels of total ERKs were not significantly affected by the CHL treatments, suggesting that the phytochemical retards the enzyme activation rather than its expression. Cyclin D1, but not its enzyme Cdk6, was also depleted after the CHL treatments; the depletions were associated with elevations of G0/G1 cells. Apoptosis occurred time-dependently with the ERK deactivations by 400 microg/ml CHL; the apoptotic cells elevated from 2.7-fold of the control level at 24 h, to 4.7-fold at 48 h and to 16.6-fold at 72 h of treatment. Bcl-2 was also depleted at 72 h when there was the most prominent elevation of the apoptotic cells, suggesting that it participates during the exacerbation rather than the initiation phases of the CHL-induced apoptosis. Results from this study support further research on CHL for preventing and treating those tumors with deregulated ERK activations.
Wang, Dong; Wang, Jian; Chen, Guojun
2013-12-01
To investigate the association of serum levels of decoy receptor 3(DcR3) protein and the clinicopathologic features of bladder transitional cell carcinoma. Enzyme-linked immunosorbent assay was used to examine the serum levels of DcR3 in patients with bladder transitional cell carcinoma for analysis of its association with the patients' age, gender, clinical stages and pathological classification. The patients with bladder transitional cell carcinoma showed a significantly elevated serum level of DcR3 (183.43 ∓78.45 pg/m1) compared with the normal level (116.65∓97.43 pg/m1, P<0.05). The serum level of DcR3 in the patients showed close correlations with the TNM stage and pathological classification of the tumor (P<0.05) but not with the patients' age or gender (P>0.05). In patients with bladder transitional cell carcinoma, a high serum level of DcR3 suggests a higher malignancy of the tumor.
Elevated plasma TGF-beta1 in renal diseases: cause or consequence?
Junker, U; Haufe, C C; Nuske, K; Rebstock, K; Steiner, T; Wunderlich, H; Junker, K; Reinhold, D
2000-07-01
We previously reported elevated levels of TGF-beta1 in patients with renal carcinoma. Certain aspects led us to ask whether they might be caused by chronic damage to the kidney(s). Here we report on an extended set of patients with various renal diseases, lung cancer, humoral immunodeficiency and controls. For latent TGF-beta1 in plasma, we find that the control, immunodeficiency, lung cancer and kidney transplant groups do not differ significantly (means, 7.0-8.8 ng/ml). Also, acute short-term renal stress (extracorporal lithotrypsy) does not lead to an increase of TGF-beta1. However, the pyelonephritis patients present with levels of 19.0 ng/ml, chronic extracorporal dialysis patients with 15.5 ng/ml, and renal cell carcinoma patients with 22.8 ng/ml. For active TGF-beta1 these findings are exactly recovered. For serum levels, only the renal carcinoma group presents with significantly elevated levels of TGF-beta1. Kidney transplantation seems to normalize TGF-beta1 levels, while in the kidney cancer patients surgery has an effect only in part of the group. We conclude that elevated plasma TGF-beta1 levels are common in at least two chronic renal disease conditions, and that it normalizes with restoration of renal function. It is tempting to speculate that chronic elevation of TGF-beta1 in these patients may be critically involved in these conditions predisposing to renal cancer. Copyright 2000 Academic Press.
Garczorz, Wojciech; Francuz, Tomasz; Gmiński, Jan; Likus, Wirginia; Siemianowicz, Krzysztof; Jurczak, Teresa; Strzałka-Mrozik, Barbara
2011-01-01
Endothelial dysfunction plays an important role in the development of atherosclerosis. Elastin-derived peptides (EDP), hyperglycemia, hypercholesterolemia and oxidized LDL have a proven proatherosclerotic potential. Nitric oxide generated by endothelial nitric oxide synthase (eNOS; EC 1.14.13.39) is an important vasorelaxant. Here we studied the influence of those proatherosclerotic factors on eNOS gene and protein expression in artery-derived endothelial cells. Human umbilical artery endothelial cells (HUAEC) were incubated with or without: glucose (270 mg/dl), LDL (200 mg/dl), oxidized LDL (oxLDL 25 mg/dl) or κ-elastin (0.5 and 2.5 µg/ml). Gene expression was assessed by real time RT-PCR, whilst the eNOS protein by ELISA. In cells incubated with 2.5 µg/ml of κ-elastin, a 31 % increase of eNOS mRNA expression was observed, but the protein level remained unchanged. OxLDL, LDL and glucose decreased the eNOS protein level by 74 %, 37 % and 29 %, respectively. OxLDL decreased eNOS mRNA by 42 %. LDL non-significantly decreased eNOS mRNA expression. An elevated glucose level did not affect the eNOS mRNA expression. Hyperglycemia and an elevated level of LDL, particularly oxLDL, decreased the level of eNOS protein in endothelial cells. As κ-elastin did not decrease the expression of eNOS gene in HUAEC, the proatherogenic properties of elastin-derived peptides are unlikely to be due to their influence on eNOS.
Iron-Chelating Therapy for Transfusional Iron Overload
Brittenham, Gary M.
2011-01-01
A 16-year-old boy with sickle cell anemia undergoes routine screening with transcranial Doppler ultrasonography to assess the risk of stroke. This examination shows an abnormally elevated blood-flow velocity in the middle cerebral artery. The hemoglobin level is 7.2 g per deciliter, the reticulocyte count is 12.5%, and the fetal hemoglobin level is 8.0%. Long-term treatment with red-cell transfusion is initiated to prevent stroke. A hematologist recommends prophylactic iron-chelating therapy. PMID:21226580
Wewer Albrechtsen, Nicolai J; Junker, Anders E; Christensen, Mette; Hædersdal, Sofie; Wibrand, Flemming; Lund, Allan M; Galsgaard, Katrine D; Holst, Jens J; Knop, Filip K; Vilsbøll, Tina
2018-01-01
Patients with type 2 diabetes (T2D) and patients with nonalcoholic fatty liver disease (NAFLD) frequently exhibit elevated plasma concentrations of glucagon (hyperglucagonemia). Hyperglucagonemia and α-cell hyperplasia may result from elevated levels of plasma amino acids when glucagon's action on hepatic amino acid metabolism is disrupted. We therefore measured plasma levels of glucagon and individual amino acids in patients with and without biopsy-verified NAFLD and with and without type T2D. Fasting levels of amino acids and glucagon in plasma were measured, using validated ELISAs and high-performance liquid chromatography, in obese, middle-aged individuals with I) normal glucose tolerance (NGT) and NAFLD, II) T2D and NAFLD, III) T2D without liver disease, and IV) NGT and no liver disease. Elevated levels of total amino acids were observed in participants with NAFLD and NGT compared with NGT controls (1,310 ± 235 µM vs. 937 ± 281 µM, P = 0.03) and in T2D and NAFLD compared with T2D without liver disease (1,354 ± 329 µM vs. 511 ± 235 µM, P < 0.0001). Particularly amino acids with known glucagonotropic effects (e.g., glutamine) were increased. Plasma levels of total amino acids correlated to plasma levels of glucagon also when adjusting for body mass index (BMI), glycated hemoglobin (Hb A1c ), and cholesterol levels (β = 0.013 ± 0.007, P = 0.024). Elevated plasma levels of total amino acids associate with hyperglucagonemia in NAFLD patients independently of glycemic control, BMI or cholesterol - supporting the potential importance of a "liver-α-cell axis" in which glucagon regulates hepatic amino acid metabolism. Fasting hyperglucagonemia as seen in T2D may therefore represent impaired hepatic glucagon action with increasing amino acids levels. NEW & NOTEWORTHY Hypersecretion of glucagon (hyperglucagonemia) has been suggested to be linked to type 2 diabetes. Here, we show that levels of amino acids correlate with levels of glucagon. Hyperglucagonemia may depend on hepatic steatosis rather than type 2 diabetes.
Ozan, E; Atac, G K; Evrin, T; Alisar, K; Sonmez, L O; Alhan, A
2017-02-01
The value of abdominal computed tomography in non-traumatic abdominal pain has been well established. On the other hand, to manage computed tomography, appropriateness has become more of an issue as a result of the concomitant increase in patient radiation exposure with increased computed tomography use. The purpose of this study was to investigate whether C-reactive protein, white blood cell count, and pain location may guide the selection of patients for computed tomography in non-traumatic acute abdomen. Patients presenting with acute abdomen to the emergency department over a 12-month period and who subsequently underwent computed tomography were retrospectively reviewed. Those with serum C-reactive protein and white blood cell count measured on admission or within 24 h of the computed tomography were selected. Computed tomography examinations were retrospectively reviewed, and final diagnoses were designated either positive or negative for pathology relating to presentation with acute abdomen. White blood cell counts, C-reactive protein levels, and pain locations were analyzed to determine whether they increased or decreased the likelihood of producing a diagnostic computed tomography. The likelihood ratio for computed tomography positivity with a C-reactive protein level above 5 mg/L was 1.71, while this increased to 7.71 in patients with combined elevated C-reactive protein level and white blood cell count and right lower quadrant pain. Combined elevated C-reactive protein level and white blood cell count in patients with right lower quadrant pain may represent a potential factor that could guide the decision to perform computed tomography in non-traumatic acute abdomen.
Batchuluun, Battsetseg; Al Rijjal, Dana; Prentice, Kacey J; Eversley, Judith A; Burdett, Elena; Mohan, Haneesha; Bhattacharjee, Alpana; Gunderson, Erica P; Liu, Ying; Wheeler, Michael B
2018-05-01
Specific circulating metabolites have emerged as important risk factors for the development of diabetes. The acylcarnitines (acylCs) are a family of metabolites known to be elevated in type 2 diabetes (T2D) and linked to peripheral insulin resistance. However, the effect of acylCs on pancreatic β-cell function is not well understood. Here, we profiled circulating acylCs in two diabetes cohorts: 1 ) women with gestational diabetes mellitus (GDM) and 2 ) women with recent GDM who later developed impaired glucose tolerance (IGT), new-onset T2D, or returned to normoglycemia within a 2-year follow-up period. We observed a specific elevation in serum medium-chain (M)-acylCs, particularly hexanoyl- and octanoylcarnitine, among women with GDM and individuals with T2D without alteration in long-chain acylCs. Mice treated with M-acylCs exhibited glucose intolerance, attributed to impaired insulin secretion. Murine and human islets exposed to elevated levels of M-acylCs developed defects in glucose-stimulated insulin secretion and this was directly linked to reduced mitochondrial respiratory capacity and subsequent ability to couple glucose metabolism to insulin secretion. In conclusion, our study reveals that an elevation in circulating M-acylCs is associated with GDM and early stages of T2D onset and that this elevation directly impairs β-cell function. © 2018 by the American Diabetes Association.
Tseng, Chien-Wei; Yang, Jyh-Chin; Chen, Chiung-Nien; Huang, Hsuan-Cheng; Chuang, Kai-Neng; Lin, Chen-Ching; Lai, Hong-Shiee; Lee, Po-Huang; Chang, King-Jen; Juan, Hsueh-Fen
2011-06-01
Gastric cancer is the second most common cause of cancer deaths worldwide and due to its poor prognosis, it is important that specific biomarkers are identified to enable its early detection. Through 2-D gel electrophoresis and MALDI-TOF-TOF-based proteomics approaches, we found that 14-3-3β, which was one of the proteins that were differentially expressed by 5-fluorouracil-treated gastric cancer SC-M1 cells, was upregulated in gastric cancer cells. 14-3-3β levels in tissues and serum were further validated in gastric cancer patients and controls. The results showed that 14-3-3β levels were elevated in tumor tissues (n=40) in comparison to normal tissues (n=40; p<0.01), and serum 14-3-3β levels in cancer patients (n=145) were also significantly higher than those in controls (n=63; p<0.0001). Elevated serum 14-3-3β levels highly correlated with the number of lymph node metastases, tumor size and a reduced survival rate. Moreover, overexpression of 14-3-3β enhanced the growth, invasiveness and migratory activities of tumor cells. Twenty-eight proteins involved in anti-apoptosis and tumor progression were also found to be differentially expressed in 14-3-3β-overexpressing gastric cancer cells. Overall, these results highlight the significance of 14-3-3β in gastric cancer cell progression and suggest that it has the potential to be used as a diagnostic and prognostic biomarker in gastric cancer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Corey, Deborah A; Kelley, Thomas J
2007-07-01
Niemann-Pick type C (NPC) disease is characterized at the cellular level by the intracellular accumulation of free cholesterol. We have previously identified a similar phenotype in cystic fibrosis (CF) cell models that results in the activation of the small GTPase RhoA. The hypothesis of this study was that NPC cells would also exhibit an increase in small GTPase activation. An examination of the active, GTP-bound form of GTPases revealed a basal increase in the content of the active-form Ras and RhoA small GTPases in NPC fibroblasts compared to wt controls. To assess whether this increase in GTP-bound Ras and RhoA manifests a functional outcome, the expression of the proliferation control proteins p21/waf1 and cyclin D were examined. Consistent with increased GTPase signaling, p21/waf1 expression is reduced and cyclin D expression is elevated in NPC fibroblasts. Interestingly, cell growth rate is not altered in NPC fibroblasts compared to wt cells. However, NPC sensitivity to statin treatment is reversed by addition of the isoprenoid geranylgeranyl pyrophosphate (GGPP), a modifier of RhoA. It is concluded that Ras and RhoA basal activation is elevated in NPC fibroblasts and has an impact on cell survival pathways.
Kunde, Dale A.; Taylor, Robyn L.; Pyecroft, Stephen B.; Sohal, Sukhwinder Singh; Snow, Elizabeth T.
2017-01-01
Devil Facial Tumour 1 (DFT1) is one of two transmissible neoplasms of Tasmanian devils (Sarcophilus harrisii) predominantly affecting their facial regions. DFT1’s cellular origin is that of Schwann cell lineage where lesions are evident macroscopically late in the disease. Conversely, the pre-clinical timeframe from cellular transmission to appearance of DFT1 remains uncertain demonstrating the importance of an effective pre-clinical biomarker. We show that ERBB3, a marker expressed normally by the developing neural crest and Schwann cells, is immunohistohemically expressed by DFT1, therefore the potential of ERBB3 as a biomarker was explored. Under the hypothesis that serum ERBB3 levels may increase as DFT1 invades local and distant tissues our pilot study determined serum ERBB3 levels in normal Tasmanian devils and Tasmanian devils with DFT1. Compared to the baseline serum ERBB3 levels in unaffected Tasmanian devils, Tasmanian devils with DFT1 showed significant elevation of serum ERBB3 levels. Interestingly Tasmanian devils with cutaneous lymphoma (CL) also showed elevation of serum ERBB3 levels when compared to the baseline serum levels of Tasmanian devils without DFT1. Thus, elevated serum ERBB3 levels in otherwise healthy looking devils could predict possible DFT1 or CL in captive or wild devil populations and would have implications on the management, welfare and survival of Tasmanian devils. ERBB3 is also a therapeutic target and therefore the potential exists to consider modes of administration that may eradicate DFT1 from the wild. PMID:28591206
Hrstka, Roman; Podhorec, Jan; Nenutil, Rudolf; Sommerova, Lucia; Obacz, Joanna; Durech, Michal; Faktor, Jakub; Bouchal, Pavel; Skoupilova, Hana; Vojtesek, Borivoj
2017-05-28
Tamoxifen treatment in breast cancer patients is associated with increased risk of endometrial malignancies. Significantly, higher AGR2 expression was found in endometrial cancers that developed in women previously treated with tamoxifen compared to those who had not been exposed to tamoxifen. An association of elevated AGR2 level with myometrial invasion occurrence and invasion depth was also found. In vitro analyses identified a stimulatory effect of AGR2 on cellular proliferation. Although adverse tamoxifen effects on endometrial cells remain elusive, our work identifies elevated AGR2 as a candidate tamoxifen-dependent mechanism of action responsible for increased incidence of endometrial cancer.
Chen, Jianzhong; Zhang, Bin; Chen, Qingguang; Qiu, Yan; Luo, Qian; Gen, Yanna; Meng, Jiali
2017-01-01
Objective We aimed to explore whether squamous cell carcinoma antigen (SCC), cytokeratin 19 fragment (Cyfra21-1), neuron-specific enolase (NSE), and carcinoembryonic antigen (CEA) are elevated in diabetic nephropathy (DN) and the association between urinary albumin-to-creatinine ratio (UACR) and tumor markers in diabetic patients. Methods Nondialysis patients with diabetes (n = 261) and 90 healthy controls were enrolled. DN was defined as an UACR ≥ 30 mg/g in the absence of a urinary tract infection or other renal abnormalities. Results Patients with DN had significantly higher serum SCC, Cyfra21-1, and CEA levels than those with normoalbuminuria and healthy controls. The rates of positive SCC, Cyfra21-1, and CEA significantly increased with increasing urinary albumin excretion (all P for trend < 0.001). In contrast, NSE was not affected by DN. SCC, Cyfra21-1, and CEA were significantly and positively correlated with UACR. In logistic regression, after multivariable adjustment, increased UACR was associated with increased odds ratio of elevated tumor marker levels (all P for trend < 0.05). Conclusions Serum levels of SCC, Cyfra21-1, and CEA are markedly increased with increasing urinary albumin excretion, which affects the specificity for diagnosis for lung cancer. Appropriate interpretation of tumor markers in diabetic patients is mandatory to avoid unnecessary and even hazardous biopsies. PMID:28744310
Stronks, Dirk L.; Dik, Willem A.; Schreurs, Marco W. J.
2017-01-01
The immune system has long been thought to be involved in the pathophysiology of complex regional pain syndrome (CRPS). However, not much is known about the role of the immune system and specifically T-cells in the onset and maintenance of this disease. In this study, we aimed to evaluate T-cell activity in CRPS by comparing blood soluble interleukin-2 receptor (sIL-2R) levels between CRPS patients and healthy controls. CRPS patients had statistically significant elevated levels of sIL-2R as compared to healthy controls (median sIL-2R levels: 4151 pg/ml (Q3 − Q1 = 5731 pg/ml − 3546 pg/ml) versus 1907 pg/ml (Q3 − Q1: 2206 pg/ml − 1374 pg/ml), p < 0.001, resp.). Furthermore, sIL-2R level seems to be a good discriminator between CRPS patients and healthy controls with a high sensitivity (90%) and specificity (89.5%). Our finding indicates increased T-cell activity in patients with CRPS. This finding is of considerable relevance as it could point towards a T-cell-mediated inflammatory process in this disease. This could pave the way for new anti-inflammatory therapies in the treatment of CRPS. Furthermore, sIL-2R could be a promising new marker for determining inflammatory disease activity in CRPS. PMID:28634419
NASA Astrophysics Data System (ADS)
Vinod, Ashwin; Lawrence, Angela; Banerjee, Arindam
2016-11-01
The effects of elevated freestream turbulence (FST) on the performance of a tidal turbine blade is studied using laboratory experiments. Of interest for the current investigation is elevated levels of FST in the range of 6-24% that is prevalent in deployment sites of tidal turbines. A constant chord, no twist blade section (SG6043) is tested at an operating Reynolds number of 1.5x105 and at angles of attack ranging from -90o to +90o. The parameter space encompasses the entire operational range of a tidal turbine that includes flow reversal. Multiple levels of controlled FST are achieved using an active grid type turbulence generator placed at the entrance to the water tunnel test section. The hydrodynamic loads experienced by the blade section are measured using a 3-axis load cell; a Stereo-PIV technique is used to analyze the flow field around the blade. The results indicate that elevated levels of FST cause a delay in flow separation when compared to the case of a laminar freestream. Furthermore, the lift to drag ratio of the blade is considerably altered depending on the level of FST and angle of attack tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazier, William; Baur, Gary
Sampling Period: August 4, 2015. The 1998 Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado, requires annual monitoring to assess the performance of the disposal cell. Monitoring wells 0731, 0732, and 0733 were sampled as specified in the plan. Sampling and analyses were conducted in accordance with Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The water level was measured at each sampled well. The water level in well 0733, located in the disposal cell, is lower than water levels in adjacent wells 0731 andmore » 0732, indicating a hydraulic gradient toward the disposal cell. Results from this sampling event were generally consistent with results from the past as shown in the attached concentration-versus-time graphs. There have been no large changes in contaminant concentration observed over the last several years with the following exception. The uranium concentration in well 0733 has been trending upward since 2003. High uranium concentrations are expected in this well because it is located in the disposal cell. The selenium concentrations observed in wells 0731 and 0732 are elevated when compared to the disposal cell 0733. Wells 0731 and 0732 are completed at the alluvium/Mancos contact; here, elevated selenium concentrations are expected due to contributions from the Mancos shale.« less
Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Kim, Sung-Su; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won
2014-05-20
Sulfonylureas are widely used oral drugs for the treatment of type II diabetes mellitus. In the present study, the effects of sulfonylureas administered supraspinally on kainic acid (KA)-induced hippocampal neuronal cell death and hyperglycemia were studied in ICR mice. Mice were pretreated intracerebroventricularly (i.c.v.) with 30μg of tolbutamide, glyburide or glipizide for 10min and then, mice were administered i.c.v. with KA (0.1μg). The neuronal cell death in the CA3 region in the hippocampus was assessed 24h after KA administration and the blood glucose level was measured 30, 60, and 120min after KA administration. We found that i.c.v. pretreatment with tolbutamide, glyburide or glipizide attenuated the KA-induced neuronal cell death in CA3 region of the hippocampus and hyperglycemia. In addition, KA administered i.c.v. caused an elevation of plasma corticosterone level and a reduction of the plasma insulin level. The i.c.v. pretreatment with tolbutamide, glyburide or glipizide attenuated KA-induced increase of plasma corticosterone level. Furthermore, i.c.v. pretreatment with tolbutamide, glyburide or glipizide causes an elevation of plasma insulin level. Glipizide, but not tolbutamide or glyburide, pretreated i.c.v. caused a reversal of KA-induced hypoinsulinemic effect. Our results suggest that supraspinally administered tolbutamide, glyburide and glipizide exert a protective effect against KA-induced neuronal cells death in CA3 region of the hippocampus. The neuroprotective effect of tolbutamide, glyburide and glipizide appears to be mediated by lowering the blood glucose level induced by KA. Copyright © 2014 Elsevier B.V. All rights reserved.
Gyllemark, Paula; Forsberg, Pia; Ernerudh, Jan; Henningsson, Anna J
2017-02-01
B cell immunity, including the chemokine CXCL13, has an established role in Lyme neuroborreliosis, and also, T helper (Th) 17 immunity, including IL-17A, has recently been implicated. We analysed a set of cytokines and chemokines associated with B cell and Th17 immunity in cerebrospinal fluid and serum from clinically well-characterized patients with definite Lyme neuroborreliosis (group 1, n = 49), defined by both cerebrospinal fluid pleocytosis and Borrelia-specific antibodies in cerebrospinal fluid and from two groups with possible Lyme neuroborreliosis, showing either pleocytosis (group 2, n = 14) or Borrelia-specific antibodies in cerebrospinal fluid (group 3, n = 14). A non-Lyme neuroborreliosis reference group consisted of 88 patients lacking pleocytosis and Borrelia-specific antibodies in serum and cerebrospinal fluid. Cerebrospinal fluid levels of B cell-associated markers (CXCL13, APRIL and BAFF) were significantly elevated in groups 1, 2 and 3 compared with the reference group, except for BAFF, which was not elevated in group 3. Regarding Th17-associated markers (IL-17A, CXCL1 and CCL20), CCL20 in cerebrospinal fluid was significantly elevated in groups 1, 2 and 3 compared with the reference group, while IL-17A and CXCL1 were elevated in group 1. Patients with time of recovery <3 months had lower cerebrospinal fluid levels of IL-17A, APRIL and BAFF compared to patients with recovery >3 months. By using a set of markers in addition to CXCL13 and IL-17A, we confirm that B cell- and Th17-associated immune responses are involved in Lyme neuroborreliosis pathogenesis with different patterns in subgroups. Furthermore, IL-17A, APRIL and BAFF may be associated with time to recovery after treatment.
Kayampilly, Pradeep P.; Wanamaker, Brett L.; Stewart, James A.; Wagner, Carrie L.; Menon, K. M. J.
2010-01-01
Elevated levels of 5α-reduced androgens have been shown to be associated with hyperandrogenism and hyperinsulinemia, the leading causes of ovulatory dysfunction in women. 5α-Dihydrotestosterone reduces ovarian granulosa cell proliferation by inhibiting FSH-mediated mitogenic signaling pathways. The present study examined the effect of insulin on 5α-reductase, the enzyme that catalyses the conversion of androgens to their 5α-derivatives. Granulosa cells isolated from immature rat ovaries were cultured in serum-free, phenol red-free DMEM-F12 media and treated with different doses of insulin (0, 0.1, 1.0, and 10.0 μg/ml) for different time intervals up to 12 h. The expression of 5α-reductase type 1 mRNA, the predominant isoform found in granulosa cells, showed a significant (P < 0.05) increase in response to the insulin treatment up to 12 h compared with control. The catalytic activity of 5α-reductase enzyme was also stimulated in a dose-depended manner (P < 0.05). Inhibiting the Akt-dependent signaling pathway abolished the insulin-mediated increase in 5α-reductase mRNA expression, whereas inhibition of the ERK-dependent pathway had no effect. The dose-dependent increase in 5α-reductase mRNA expression as well as catalytic activity seen in response to insulin treatment was also demonstrated in the human granulosa cell line (KGN). In addition to increased mRNA expression, a dose-dependent increase in 5α-reductase protein expression in response to insulin was also seen in KGN cells, which corroborated well with that of mRNA expression. These results suggest that elevated levels of 5α-reduced androgens seen in hyperinsulinemic conditions might be explained on the basis of a stimulatory effect of insulin on 5α-reductase in granulosa cells. The elevated levels of these metabolites, in turn, might adversely affect growth and proliferation of granulosa cells, thereby impairing follicle growth and ovulation. PMID:20810561
Treon, S P; Maimonis, P; Bua, D; Young, G; Raje, N; Mollick, J; Chauhan, D; Tai, Y T; Hideshima, T; Shima, Y; Hilgers, J; von Mensdorff-Pouilly, S; Belch, A R; Pilarski, L M; Anderson, K C
2000-11-01
Soluble MUC1 (sMUC1) levels are elevated in many MUC1(+) cancers. We and others have shown that MUC1 is expressed on multiple myeloma (MM) plasma cells and B cells. In this study, we measured sMUC1 levels in bone marrow (BM) plasma from 71 MM patients and 21 healthy donors (HDs), and in peripheral blood (PB) plasma from 42 MM patients and 13 HDs using an immunoassay that detects the CA27.29 epitope of MUC1. sMUC1 levels were found to be significantly greater (mean 31.76 U/mL, range 5.69 to 142.48 U/mL) in MM patient BM plasma versus HD BM plasma (mean 9.68 U/mL, range 0.65 to 39.83 U/mL) (P <. 001). Importantly, BM plasma sMUC1 levels were related to tumor burden because sMUC1 levels were significantly higher for MM patients with active disease (34.62 U/mL, range 5.69 to 142.48 U/mL) versus MM patients with minimal residual disease (16.16 U/mL, range 5.7 to 56.68 U/mL) (P =.0026). sMUC1 levels were also elevated in the PB plasma of MM patients (32.79 U/mL, range 4.15 to 148.84 U/mL) versus HDs (18.47 U/mL, range 8.84 to 42.49) (P =.0052). Lastly, circulating immunglobulin M (IgM) and IgG antibodies to MUC1 were measured in 114 MM patients and 31 HDs, because natural antibodies to MUC1 have been detected in patients with other MUC1-bearing malignancies. These studies demonstrated lower levels of circulating IgM (P <.001) and IgG (P =.078) antibodies to MUC1 in MM patients compared with HDs. Our data therefore show that in MM patients, sMUC1 levels are elevated and correlate with disease burden, whereas anti-MUC1 antibody levels are decreased.
Ferroptosis is Involved in Acetaminophen Induced Cell Death.
Lőrincz, Tamás; Jemnitz, Katalin; Kardon, Tamás; Mandl, József; Szarka, András
2015-09-01
The recently described form of programmed cell death, ferroptosis can be induced by agents causing GSH depletion or the inhibition of GPX4. Ferroptosis clearly shows distinct morphologic, biochemical and genetic features from apoptosis, necrosis and autophagy. Since NAPQI the highly reactive metabolite of the widely applied analgesic and antipyretic, acetaminophen induces a cell death which can be characterized by GSH depletion, GPX inhibition and caspase independency the involvement of ferroptosis in acetaminophen induced cell death has been investigated. The specific ferroptosis inhibitor ferrostatin-1 failed to elevate the viability of acetaminophen treated HepG2 cells. It should be noticed that these cells do not form NAPQI due to the lack of phase I enzyme expression therefore GSH depletion cannot be observed. However in the case of acetaminophen treated primary mouse hepatocytes the significant elevation of cell viability could be observed upon ferrostatin-1 treatment. Similar to ferrostatin-1 treatment, the addition of the RIP1 kinase inhibitor necrostatin-1 could also elevate the viability of acetaminophen treated primary hepatocytes. Ferrostatin-1 has no influence on the expression of CYP2E1 or on the cellular GSH level which suggest that the protective effect of ferrostatin-1 in APAP induced cell death is not based on the reduced metabolism of APAP to NAPQI or on altered NAPQI conjugation by cellular GSH. Our results suggest that beyond necroptosis and apoptosis a third programmed cell death, ferroptosis is also involved in acetaminophen induced cell death in primary hepatocytes.
Badr, Gamal; Sayed, Ayat; Abdel-Maksoud, Mostafa A.; Mohamed, Amany O.; El-Amir, Azza; Abdel-Ghaffar, Fathy A.; Al-Quraishy, Saleh; Mahmoud, Mohamed H.
2015-01-01
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by abnormal autoreactivity in B cells. Lymphocytes and their soluble mediators contribute to the disease pathogenesis. We recently demonstrated that infecting lupus mice with malaria confers protection against lupus nephritis by attenuating oxidative stress in both liver and kidney tissues. In the current study, we further investigated B cell autoreactivity in female BWF1 lupus mice after infection with either live or gamma-irradiated malaria, using ELISA, flow cytometry and Western blot analysis. The lupus mice exhibited a significant elevation in plasma levels of IL-4, IL-6, IL-7, IL-12, IL-17, IFN-α, IFN-γ, TGF-β, BAFF and APRIL and a marked elevation of IgG2a, IgG3 and ant-dsDNA autoantibodies compared with normal healthy mice. Infecting lupus mice with live but not gamma-irradiated malaria parasite partially and significantly restored the levels of the soluble mediators that contribute to the progression of lupus. Furthermore, the B cells of lupus mice exhibited an increased proliferative capacity; aberrant overexpression of the chemokine receptor CXCR4; and a marked elevation in responsiveness to their cognate ligand (CXCL12) via aberrant activation of the PI3K/AKT, NFκB and ERK signaling pathways. Interestingly, infecting lupus mice with live but not gamma-irradiated malaria parasite restored a normal proliferative capacity, surface expression of CXCR4 and B cell response to CXCL-12. Taken together, our data present interesting findings that clarify, for the first time, the molecular mechanisms of how infection of lupus mice with malaria parasite controls B cell autoreactivity and thus confers protection against lupus severity. PMID:25909640
Talior-Volodarsky, Ilana; Mahou, Redouan; Zhang, David; Sefton, Michael
2017-11-01
The IGF-1 signaling pathway and IGF-1-dependent macrophage/endothelial cell crosstalk was found to be critical features of the vascular regenerative effect displayed by implanted methacrylic acid -co-isodecyl acrylate (MAA-co-IDA; 40% MAA) coated disks in CD1 mice. Inhibition of IGF-1 signaling using AG1024 an IGF1-R tyrosine kinase inhibitor abrogated vessel formation 14 days after disk implantation in a subcutaneous pocket. Explanted tissue had increased arginase 1 expression and reduced iNOS expression consistent with the greater shift from "M1" ("pro-inflammatory") macrophages to "M2" ("pro-angiogenic") macrophages for MAA coated disks relative to control MM (methyl methacrylate-co-IDA) disks; the latter did not generate a vascular response and the polarization shift was muted with AG1024. In vitro, medium conditioned by macrophages (both human dTHP1 cells and mouse bone marrow derived macrophages) had elevated IGF-1 mRNA and protein levels, while the cells had reduced IGF1-R but elevated IGFBP-3 mRNA levels. These cells also had reduced iNOS and elevated Arg1 expression, consistent with the in vivo polarization results, including the inhibitory effects of AG1024. On the other hand, HUVEC exposed to dTHP1 conditioned medium migrated and proliferated faster suggesting that the primary target of the macrophage released IGF-1 was endothelial cells. Although further investigation is warranted, IGF-1 appears to be a key feature underpinning the observed vascularization. Why MAA based materials have this effect remains to be defined, however. Copyright © 2017 Elsevier Ltd. All rights reserved.
Badr, Gamal; Sayed, Ayat; Abdel-Maksoud, Mostafa A; Mohamed, Amany O; El-Amir, Azza; Abdel-Ghaffar, Fathy A; Al-Quraishy, Saleh; Mahmoud, Mohamed H
2015-01-01
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by abnormal autoreactivity in B cells. Lymphocytes and their soluble mediators contribute to the disease pathogenesis. We recently demonstrated that infecting lupus mice with malaria confers protection against lupus nephritis by attenuating oxidative stress in both liver and kidney tissues. In the current study, we further investigated B cell autoreactivity in female BWF1 lupus mice after infection with either live or gamma-irradiated malaria, using ELISA, flow cytometry and Western blot analysis. The lupus mice exhibited a significant elevation in plasma levels of IL-4, IL-6, IL-7, IL-12, IL-17, IFN-α, IFN-γ, TGF-β, BAFF and APRIL and a marked elevation of IgG2a, IgG3 and ant-dsDNA autoantibodies compared with normal healthy mice. Infecting lupus mice with live but not gamma-irradiated malaria parasite partially and significantly restored the levels of the soluble mediators that contribute to the progression of lupus. Furthermore, the B cells of lupus mice exhibited an increased proliferative capacity; aberrant overexpression of the chemokine receptor CXCR4; and a marked elevation in responsiveness to their cognate ligand (CXCL12) via aberrant activation of the PI3K/AKT, NFκB and ERK signaling pathways. Interestingly, infecting lupus mice with live but not gamma-irradiated malaria parasite restored a normal proliferative capacity, surface expression of CXCR4 and B cell response to CXCL-12. Taken together, our data present interesting findings that clarify, for the first time, the molecular mechanisms of how infection of lupus mice with malaria parasite controls B cell autoreactivity and thus confers protection against lupus severity.
Liu, Xuebin; Mameza, Marie G; Lee, Yun Sang; Eseonu, Chikezie I; Yu, Cheng-Rong; Kang Derwent, Jennifer J; Egwuagu, Charles E
2008-06-01
Suppressors of cytokine signaling (SOCS) are implicated in the etiology of diabetes, obesity, and metabolic syndrome. Here, we show that some SOCS members are induced, while others are constitutively expressed, in retina and examine whether persistent elevation of SOCS levels in retina by chronic inflammation or cellular stress predisposes to developing insulin resistance in retina, a condition implicated in diabetic retinopathy. SOCS-mediated insulin resistance and neuroprotection in retina were investigated in 1) an experimental uveitis model, 2) SOCS1 transgenic rats, 3) insulin-deficient diabetic rats, 4) retinal cells depleted of SOCS6 or overexpressing SOCS1/SOCS3, and 5) oxidative stress and light-induced retinal degeneration models. We show that constitutive expression of SOCS6 protein in retinal neurons may improve glucose metabolism, while elevated SOCS1/SOCS3 expression during uveitis induces insulin resistance in neuroretina. SOCS-mediated insulin resistance, as indicated by its inhibition of basally active phosphoinositide 3-kinase/AKT signaling in retina, is validated in retina-specific SOCS1 transgenic rats and retinal cells overexpressing SOCS1/SOCS3. We further show that the SOCS3 level is elevated in retina by oxidative stress, metabolic stress of insulin-deficient diabetes, or light-induced retinal damage and protects ganglion cells from apoptosis, suggesting that upregulation of SOCS3 may be a common physiologic response of neuroretinal cells to cellular stress. Our data suggest two-sided roles of SOCS proteins in retina. Whereas SOCS proteins may improve glucose metabolism, mitigate deleterious effects of inflammation, and promote neuroprotection, persistent SOCS3 expression caused by chronic inflammation or cellular stress can induce insulin resistance and inhibit neurotrophic factors, such as ciliary neurotrophic factor, leukemia inhibitory factor, and insulin, that are essential for retinal cell survival.
Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund
2017-05-31
Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.
Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function.
Moon, Hyo Youl; Becke, Andreas; Berron, David; Becker, Benjamin; Sah, Nirnath; Benoni, Galit; Janke, Emma; Lubejko, Susan T; Greig, Nigel H; Mattison, Julie A; Duzel, Emrah; van Praag, Henriette
2016-08-09
Peripheral processes that mediate beneficial effects of exercise on the brain remain sparsely explored. Here, we show that a muscle secretory factor, cathepsin B (CTSB) protein, is important for the cognitive and neurogenic benefits of running. Proteomic analysis revealed elevated levels of CTSB in conditioned medium derived from skeletal muscle cell cultures treated with AMP-kinase agonist AICAR. Consistently, running increased CTSB levels in mouse gastrocnemius muscle and plasma. Furthermore, recombinant CTSB application enhanced expression of brain-derived neurotrophic factor (BDNF) and doublecortin (DCX) in adult hippocampal progenitor cells through a mechanism dependent on the multifunctional protein P11. In vivo, in CTSB knockout (KO) mice, running did not enhance adult hippocampal neurogenesis and spatial memory function. Interestingly, in Rhesus monkeys and humans, treadmill exercise elevated CTSB in plasma. In humans, changes in CTSB levels correlated with fitness and hippocampus-dependent memory function. Our findings suggest CTSB as a mediator of effects of exercise on cognition. Published by Elsevier Inc.
Increased levels of markers of vascular inflammation in patients with coronary heart disease.
Schumacher, A; Seljeflot, I; Sommervoll, L; Christensen, B; Otterstad, J E; Arnesen, H
2002-01-01
Elevated levels of soluble cell adhesion molecules (sCAMs), inflammatory cytokines and C-reactive protein (CRP) have been associated with atherosclerotic disease states. The aim of the present study was to evaluate whether circulating levels of vascular cell adhesion molecule-1 (sVCAM-1), intercellular adhesion molecule-1 (sICAM-1), E- and P-selectin were significantly elevated in patients with coronary heart disease (CHD) compared with healthy controls, and to study possible associations between these sCAMs, tumour necrosis factor alpha (TNFalpha). interleukin-6 (IL-6), CRP and major CHD risk factors. The study included 193 patients in various stages of CHD and 193 matched controls. To evaluate any possible influence of acute phase reaction, reinvestigation was performed after 6 months. After adjustment for major CHD risk factors, sVCAM-1, sICAM-1, P-selectin, IL-6 and CRP remained significantly elevated in the CHD patients (p for all <0.001). In multivariate analysis sVCAM-1 was predicted by age (p=0.015), sICAM-1 by smoking (p<0.001) and total cholesterol (p=0.026), E-selectin by body mass index (BMI) (p=0.004) and P-selectin by male gender (p=0.015). TNFalpha significantly predicted sICAM-1 and E-selectin levels, while IL-6 predicted CRP but none of the sCAMs measured. This might indicate that TNFalpha, but not IL-6, plays a major role in the regulation of sCAM levels in vivo.
Chromatographic measurements of hemoglobin A2 in blood samples that contain sickle hemoglobin.
Shokrani, M; Terrell, F; Turner, E A; Aguinaga, M D
2000-04-01
In the sickle cell syndromes, Hb A2 measurements aid in the differential diagnosis of sickle cell anemia from sickle-beta-thalassemia. The purpose of this study is to assess the Hb A2 levels in samples containing sickle hemoglobin (Hb S) by the use of an automated high performance liquid chromatography system (HPLC-Variant beta-thalassemia Short Program). The blood samples analyzed were from individuals of African descent living in the state of Tennessee who had either sickle cell trait (Hb AS), sickle cell disease (Hb SS), or sickle cell-hemoglobin C disease (Hb SC). Interestingly, the Hb A2 levels determined by HPLC were found elevated in samples containing Hb S. The Hb A2 mean in Hb AS samples (n=146) is 4.09% (SD +/- 0.42, range 2.20 to 5.20%); in Hb SS samples (n=33) it is 3.90% (SD +/- 1.08, range 0.60 to 5.90%); and in Hb SC samples (n=27) it is 4.46% (SD +/- 0.70, range 2.30 to 5.91%). The Hb A2 mean by HPLC in normal individuals (Hb AA, n=70) is 2.57% (SD +/- 0.25, range 2.1 to 3.0%), and the Hb A2 range in beta-thalassemia carriers is 4 to 9%. Our results show that the Hb A2 levels in Hb S-containing samples partially overlap with those expected from beta-thalassemia carriers. The hemoglobinopathy laboratory should be aware of this apparent elevation in Hb A2 levels determined by HPLC in individuals carrying Hb S. Other factors, such as family history and clinical symptoms, should be taken into account before a diagnosis of sickle cell trait, sickle-beta-thalassemia, or sickle cell anemia is made.
Hyperuricemia Causes Pancreatic β-Cell Death and Dysfunction through NF-κB Signaling Pathway
Jia, Lu; Xing, Jing; Ding, Ying; Shen, Yachen; Shi, Xuhui; Ren, Wei; Wan, Meng; Guo, Jianjin; Zheng, Shujing; Liu, Yun; Liang, Xiubin; Su, Dongming
2013-01-01
Accumulating clinical evidence suggests that hyperuricemia is associated with an increased risk of type 2 diabetes. However, it is still unclear whether elevated levels of uric acid can cause direct injury of pancreatic β-cells. In this study, we examined the effects of uric acid on β-cell viability and function. Uric acid solution or normal saline was administered intraperitoneally to mice daily for 4 weeks. Uric acid-treated mice exhibited significantly impaired glucose tolerance and lower insulin levels in response to glucose challenge than did control mice. However, there were no significant differences in insulin sensitivity between the two groups. In comparison to the islets in control mice, the islets in the uric acid–treated mice were markedly smaller in size and contained less insulin. Treatment of β-cells in vitro with uric acid activated the NF-κB signaling pathway through IκBα phosphorylation, resulting in upregulated inducible nitric oxide synthase (iNOS) expression and excessive nitric oxide (NO) production. Uric acid treatment also increased apoptosis and downregulated Bcl-2 expression in Min6 cells. In addition, a reduction in insulin secretion under glucose challenge was observed in the uric acid–treated mouse islets. These deleterious effects of uric acid on pancreatic β-cells were attenuated by benzbromarone, an inhibitor of uric acid transporters, NOS inhibitor L-NMMA, and Bay 11–7082, an NF-κB inhibitor. Further investigation indicated that uric acid suppressed levels of MafA protein through enhancing its degradation. Collectively, our data suggested that an elevated level of uric acid causes β-cell injury via the NF-κB-iNOS-NO signaling axis. PMID:24205181
Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity
Massaad, Michel J.; Zhou, Jia; Tsuchimoto, Daisuke; Chou, Janet; Jabara, Haifa; Janssen, Erin; Glauzy, Salomé; Olson, Brennan G.; Morbach, Henner; Ohsumi, Toshiro K.; Schmitz, Klaus; Kane, Jennifer; Torisu, Kumiko; Chouery, Eliane; Megarbane, Andre; Kang, Peter B.; Al-Idrissi, Eman; Aldhekri, Hasan; Meffre, Eric; Mizui, Masayuki; Manis, John P.; Al-Herz, Waleed; Wallace, Susan S.; Geha, Raif S.
2016-01-01
Alterations in the apoptosis of immune cells have been associated with autoimmunity. Here, we have identified a homozygous missense mutation in the gene encoding the base excision repair enzyme Nei endonuclease VIII-like 3 (NEIL3) that abolished enzymatic activity in 3 siblings from a consanguineous family. The NEIL3 mutation was associated with fatal recurrent infections, severe autoimmunity, hypogammaglobulinemia, and impaired B cell function in these individuals. The same homozygous NEIL3 mutation was also identified in an asymptomatic individual who exhibited elevated levels of serum autoantibodies and defective peripheral B cell tolerance, but normal B cell function. Further analysis of the patients revealed an absence of LPS-responsive beige-like anchor (LRBA) protein expression, a known cause of immunodeficiency. We next examined the contribution of NEIL3 to the maintenance of self-tolerance in Neil3–/– mice. Although Neil3–/– mice displayed normal B cell function, they exhibited elevated serum levels of autoantibodies and developed nephritis following treatment with poly(I:C) to mimic microbial stimulation. In Neil3–/– mice, splenic T and B cells as well as germinal center B cells from Peyer’s patches showed marked increases in apoptosis and cell death, indicating the potential release of self-antigens that favor autoimmunity. These findings demonstrate that deficiency in NEIL3 is associated with increased lymphocyte apoptosis, autoantibodies, and predisposition to autoimmunity. PMID:27760045
Luo, Yan; Chen, Zi; Liu, Lei; Zhou, Hongyu; Chen, Wenxing; Shen, Tao; Han, Xiuzhen; Chen, Long; Huang, Shile
2011-01-01
Cadmium (Cd), a toxic environmental contaminant, induces oxidative stress, leading to neurodegenerative disorders. Recently we have demonstrated that Cd induces neuronal apoptosis in part by activation of the mitogen-activated protein kineses (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains elusive. Here we show that Cd elevated intracellular calcium ion ([Ca2+]i) level in PC12, SH-SY5Y cells and primary murine neurons. BAPTA/AM, an intracellular Ca2+ chelator, abolished Cd-induced [Ca2+]i elevation, and blocked Cd activation of MAKPs including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38, and mTOR-mediated signaling pathways, as well as cell death. Pretreatment with the extracellular Ca2+ chelator EGTA also prevented Cd-induced [Ca2+]i elevation, MAPK/mTOR activation, as well as cell death, suggesting that Cd-induced extracellular Ca2+ influx plays a critical role in contributing to neuronal apoptosis. In addition, calmodulin (CaM) antagonist trifluoperazine (TFP) or silencing CaM attenuated the effects of Cd on MAPK/mTOR activation and cell death. Furthermore, Cd-induced [Ca2+]i elevation or CaM activation resulted in induction of reactive oxygen species (ROS). Pretreatment with BAPTA/AM, EGTA or TFP attenuated Cd-induced ROS and cleavage of caspase-3 in the neuronal cells. Our findings indicate that Cd elevates [Ca2+]i, which induces ROS and activates MAPK and mTOR pathways, leading to neuronal apoptosis. The results suggest that regulation of Cd-disrupted [Ca2+]i homeostasis may be a new strategy for prevention of Cd-induced neurodegenerative diseases. PMID:21544200
miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuefeng; Zhu, Xiaolan; Xu, Wenlin
2013-02-15
Highlights: ► miR-330 was inversely correlated with Cdc42 in colorectal cancer cells. ► Elevated miR-330 suppressed cell proliferation in vivo and in vitro. ► Elevated miR-330 mimicked the effect of Cdc42 knockdown. ► Restoration of Cdc42 could partially attenuate the effects of miR-330. -- Abstract: MicroRNAs are small non-coding RNA molecules that play important roles in the multistep process of colorectal carcinoma (CRC) development. However, the miRNA–mRNA regulatory network is far from being fully understood. The objective of this study was to investigate the expression and the biological roles of miR-330 in colorectal cancer cells. Cdc42, one of the bestmore » characterized members of the Rho GTPase family, was found to be up-regulated in several types of human tumors including CRC and has been implicated in cancer initiation and progression. In the present study, we identified miR-330, as a potential regulator of Cdc42, was found to be inversely correlated with Cdc42 expression in colorectal cancer cell lines. Ectopic expression of miR-330 down-regulated Cdc42 expression at both protein and mRNA level, mimicked the effect of Cdc42 knockdown in inhibiting proliferation, inducing G1 cell cycle arrest and apoptosis of the colorectal cancer cells, whereas restoration of Cdc42 could partially attenuate the effects of miR-330. In addition, elevated expression of miR-330 could suppress the immediate downstream effectors of Cdc42 and inhibit the growth of colorectal cancer cells in vivo. To sum up, our results establish a role of miR-330 in negatively regulating Cdc42 expression and colorectal cancer cell proliferation. They suggest that manipulating the expression level of Cdc42 by miR-330 has the potential to influence colorectal cancer progression.« less
Sandmaier, B M; Oparin, D V; Holmberg, L A; Reddish, M A; MacLean, G D; Longenecker, B M
1999-01-01
Seven ovarian and 33 breast high-risk stage II/III and stage IV cancer patients received high-dose chemotherapy followed by stem cell rescue. Thirty to 151 days after stem cell transplantation, the patients received their first immunotherapy treatment with Theratope STn-KLH cancer vaccine. Most patients developed increasing IgG anti-STn titers to a sustained peak after the fourth or fifth immunizations. Only one patient had elevated CA27.29 (MUC1 mucin) serum levels at trial entry. Five of the seven patients with preimmunotherapy elevated serum CA125 levels demonstrated decreasing CA125 levels during immunotherapy, consistent with an antitumor response. Evidence of STn antigen-specific T-cell proliferation was obtained from 17 of the 27 evaluable patients who received at least three immunotherapy treatments. Eleven of the 26 patients tested had evidence of an anti-STn TH1 antigen-specific T-cell response as determined by interferon-gamma, but not interleukin (IL)-4, production. After immunization, lytic activity of peripheral blood lymphocytes (PBLs) tested against a lymphokine activated killer (LAK)-sensitive cell line, a natural killer (NK)-sensitive cell line, and an STn-expressing cancer cell line (OVCAR) increased significantly. In vitro IL-2 treatment of the PBLs after vaccination greatly enhanced killing of the STn+ cancer cell line. Evidence of the development of OVCAR specific killing activity, over and above that seen due to LAK or NK killing, is presented. These studies provide the strongest evidence in humans of the development of an antitumor T-cell response after immunization with a cancer-associated carbohydrate antigen.
Wang, Huashe; Jiang, Zhipeng; Chen, Honglei; Wu, Xiaobin; Xiang, Jun; Peng, Junsheng
2017-02-04
BACKGROUND Gastric cancer is one of the most common malignancies, and has a high mortality rate. miR-495 acts as a suppressor in some cancers and HMGA2 (high mobility group AT-hook 2) is a facilitator for cell growth and epithelial-mesenchymal transition (EMT), but little is known about their effect in gastric cancer. This study aimed to investigate the role and mechanism of miR-495 in gastric cancer. MATERIAL AND METHODS miR-495 levels were quantitatively analyzed in gastric cancer tissue and GES-1, SGC-7901, BGC-823, and HGC-27 cell lines by qRT-PCR. Levels of miR-495 and HMGA2 were altered by cell transfection, after which cell migration and invasion were examined by Transwell and E-cadherin (CDH1); vimentin (VIM), and alpha smooth muscle actin (ACTA2) were detected by qRT-PCR and Western blotting. The interaction between miR-495 and HMGA2 was verified by dual-luciferase reporter assay. RESULTS miR-495 was significantly downregulated in cancer tissue and cell lines (p<0.05). Its overexpression inhibited cell migration and invasion, elevated CDH1, and inhibited VIM and ACTA2 levels in BGC-823 and HGC-27 cells. miR-495 directly inhibited HMGA2, which was upregulated in gastric cancer tissue, and promoted cell migration and invasion, inhibited CDH1, and elevated VIM and ACTA2. CONCLUSIONS miR-495 acts as a tumor suppressor in gastric cancer by inhibiting cell migration and invasion, which may be associated with its direct inhibition on HMGA2. These results suggest a promising therapeutic strategy for gastric cancer treatment.
Huff, Ryan D.; Hsu, Alan C-Y.; Nichol, Kristy S.; Jones, Bernadette; Knight, Darryl A.; Wark, Peter A. B.; Hansbro, Philip M.
2017-01-01
Introduction The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Materials and methods Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. Results HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Conclusions Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines. PMID:28863172
Jandial, Rahul; Neman, Josh; Lim, Punnajit P; Tamae, Daniel; Kowolik, Claudia M; Wuenschell, Gerald E; Shuck, Sarah C; Ciminera, Alexandra K; De Jesus, Luis R; Ouyang, Ching; Chen, Mike Y; Termini, John
2018-01-30
Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1) to detoxify the toxic glycolytic byproduct methylglyoxal (MG) and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs). Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM), the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA) approaches. Inhibition of GLO1 with S -( p -bromobenzyl) glutathione dicyclopentyl ester ( p- BrBzGSH(Cp)₂) increased levels of the DNA-AGE N ²-1-(carboxyethyl)-2'-deoxyguanosine (CEdG), a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE); and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p -BrBzGSH(Cp)₂ exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.
Jandial, Rahul; Neman, Josh; Tamae, Daniel; Kowolik, Claudia M.; Wuenschell, Gerald E.; Ciminera, Alexandra K.; De Jesus, Luis R.; Ouyang, Ching; Chen, Mike Y.
2018-01-01
Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1) to detoxify the toxic glycolytic byproduct methylglyoxal (MG) and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs). Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM), the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA) approaches. Inhibition of GLO1 with S-(p-bromobenzyl) glutathione dicyclopentyl ester (p-BrBzGSH(Cp)2) increased levels of the DNA-AGE N2-1-(carboxyethyl)-2′-deoxyguanosine (CEdG), a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE); and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p-BrBzGSH(Cp)2 exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors. PMID:29385725
Chu, F; Hu, Y; Zhou, Y; Guo, M; Lu, J; Zheng, W; Xu, H; Zhao, J; Xu, L
2018-02-01
Recent evidence has shown that microRNA-126 (miR-126) has been involved in the development and function of immune cells, which contributed to the pathogenesis of related clinical diseases. However, the potential role of miR-126 in the development and function of CD4 + T cells remains largely unknown. Here we first found that the activation and proliferation, as well as the expression of interferon (IFN)-γ, of CD4 + T cells from miR-126 knock-down (KD) mice using the miRNA-sponge technique were enhanced significantly in vitro, compared with those in CD4 + T cells from wild-type (WT) mice. To monitor further the possible effect of miR-126 deficiency on the function of CD4 + T cells in vivo, we used dextran sulphate sodium (DSS)-induced murine model of acute autoimmune colitis and found that miR-126 deficiency could elevate the pathology of colitis. Importantly, the proportion of CD4 + T cells in splenocytes increased significantly in miR-126KD mice. Moreover, the expression levels of CD69 and CD44 on CD4 + T cells increased significantly and the expression level of CD62L decreased significantly. Of note, adoptive cell transfer assay showed that the pathology of colitis was more serious in carboxyfluorescein succinimidyl ester (CFSE)-labelled miR-126KD CD4 + T cell-transferred group, compared with that in the CFSE-labelled WT CD4 + T cells transferred group. Consistently, the expression levels of CD69 and CD44 on CFSE + cells increased significantly. Furthermore, both the proliferation and IFN-γ secretion of CFSE + cells also increased significantly in the CFSE-labelled miR-126KD CD4 + T cell-transferred group. Mechanistic evidence showed that the expression of insulin receptor substrate 1 (IRS-1), as a functional target of miR-126, was elevated in CD4 + T cells from miR-126KD mice, accompanied by altered transduction of the extracellular regulated kinase, protein B (AKT) and nuclear factor kappa B (NF-κB) pathway. Our data revealed a novel role in which miR-126 was an intrinsic regulator in the function of CD4 + T cells, which provided preliminary basis for exploring further the role of miR-126 in the development, function of CD4 + T cells and related clinical diseases. © 2017 British Society for Immunology.
Chen, Fengsheng; Luo, Xi; Zhang, Jinbiao; Lu, Yang; Luo, Rongcheng
2010-09-01
Serum concentrations of tissue polypeptide-specific antigen (TPS) and Cytokeratin-19-Fragments (CYFRA 21-1) before operation or chemotherapy have been proved to be a useful prognostic tool for patients with NSCLC, but the related data for advanced NSCLC patients treated with gefitinib are limited. We retrospectively reviewed 122 advanced NSCLC patients treated with gefitinib between April 2002 and August 2007. Multiple clinical factors including pretreatment serum levels of TPS and CYFRA 21-1, age, gender, performance status (PS), smoking history, stage, histology, the number of prior chemotherapy and the patients' clinical outcomes were analyzed. Patients without elevated serum TPS levels had a more RR (36.8%) than those with elevated serum TPS levels (18.5%) (P = 0.023), nevertheless, a similar result was not seen in patients with normal CYFRA 21-1 levels. For patients with normal vs. high TPS levels, the median survival times (MSTs) were 15.9 vs. 7.3 months (P = 0.001). For patients with normal vs. high CYFRA 21-1, the MSTs were 15.4 vs. 7.5 months (P = 0.003). Moreover, for patients with both elevated, vs. one elevated and both normal TPS and CYFRA 21-1 levels, the MSTs were 5.4 vs. 11.4 months (P = 0.001), and 16.5 months (P < 0.001), respectively. In multivariate analysis, TPS (P = 0.001) and CYFRA 21-1 (P = 0.005) alone or combination (P < 0.001) remained significant correlation to survival. In NSCLC patients with gefitinib therapy, pretreatment serum levels of TPS and CYFRA 21-1 alone or combined might be independent prognostic factors, and the pretreatment serum TPS level may predict the tumor response.
McGrady, Nolan R; Minton, Alena Z; Stankowska, Dorota L; He, Shaoqing; Jefferies, Hayden B; Krishnamoorthy, Raghu R
2017-03-01
Primary open angle glaucoma is a heterogeneous group of optic neuropathies that results in optic nerve degeneration and a loss of retinal ganglion cells (RGCs) ultimately causing blindness if allowed to progress. Elevation of intraocular pressure (IOP) is the most attributable risk factor for developing glaucoma and lowering of IOP is currently the only available therapy. However, despite lowering IOP, neurodegenerative effects persist in some patients. Hence, it would be beneficial to develop approaches to promote neuroprotection of RGCs in addition to IOP lowering therapies. The endothelin system is a key target for intervention against glaucomatous neurodegeneration. The endothelin family of peptides and receptors, particularly endothelin-1 (ET-1) and endothelin B (ET B ) receptor, has been shown to have neurodegenerative roles in glaucoma. The purpose of this study was to examine changes in endothelin A (ET A ) receptor protein expression in the retinas of adult male Brown Norway rats following IOP elevation by the Morrison's model of ocular hypertension and the impact of ET A receptor overexpression on RGC viability in vitro. IOP elevation was carried out in one eye of Brown Norway rats by injection of hypertonic saline through episcleral veins. After 2 weeks of IOP elevation, immunohistochemical analysis of retinal sections from rat eyes showed an increasing trend in immunostaining for ET A receptors in multiple retinal layers including the inner plexiform layer, ganglion cell layer and outer plexiform layer. Following 4 weeks of IOP elevation, a significant increase in immunostaining for ET A receptor expression was found in the retina, primarily in the inner plexiform layer and ganglion cells. A modest increase in staining for ET A receptors was also found in the outer plexiform layer in the retina of rats with IOP elevation. Cell culture studies showed that overexpression of ET A receptors in 661W cells as well as primary RGCs decreases cell viability, compared to empty vector transfected cells. Adeno-associated virus mediated overexpression of the ET A receptor produced an increase in the ET B receptor in primary RGCs. Elevated IOP results in an appreciable change in ET A receptor expression in the retina. Overexpression of the ET A receptor results in an overall decrease in cell viability, accompanied by an increase in ET B receptor levels, suggesting the involvement of both ET A and ET B receptors in mediating cell death. These findings raise possibilities for the development of ET A /ET B dual receptor antagonists as neuroprotective treatments for glaucomatous neuropathy.
Yang, Zhikuan; Ge, Jian; Yin, Wei; Shen, Huangxuan; Liu, Haiquan; Guo, Yan
2004-12-01
To investigate the expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with Vitamin B1 and (or) elevated pressure. The retinal neuron of postnatal SD rats were cultured in vivo, the elevated pressure was produced after 7 days, and the total RNA was extracted after another 2 days, expression of p53, MDM2 and Ref1 gene were analyzed with RT-PCR. The expression level of p53 and MDM2 gene were increased in elevated pressure group, normal with Ref1 gene expression. But the expression of p53 and MDM2 gene were decreased significantly in elevated pressure group treated with vitamine B1 compare to the elevated group. Apoptosis seem to be a mechanism of cell death in retinal neurons of SD rats with elevated pressure.Vitamine B1 have protect effects against elevated pressure.
Dabili, Sheyda; Fallah, Soudabeh; Aein, Mojdeh; Vatannejad, Akram; Panahi, Ghodratollah; Fadaei, Reza; Moradi, Nariman; Shojaii, Asie
2018-02-20
In this study, the effect of doxorubicin, flavonoid extract of white Morus alba leaf (MFE) and a combination of doxorubicin and flavonoid extract on Bax and Bcl2 levels and caspase 3 activity of cancer A-172 GBM cell line was investigated. Bax/Bcl2 levels of treated A-172 GBM cell line with flavonoid extract of white mulberry leaf were estimated by ELISA methods. Caspase 3 activity of treated A-172 GBM cells was determined by calorimetric assay. The flow cytometry assessment was used to estimate the apoptosis percent of treated A-172 GBM cells. Treatment of A-172 GBM cells with MFE, doxorubicin and a combination of MFE and doxorubicin caused a significant decrease in Bcl2 level and an increase in Bax level. The apoptosis percent of treated cells were also elevated significantly. Present results suggest that concomitant use of herbal medicine and chemotherapy may be an effective alternative method for the treatment of cancers.
Recino, Asha; Barkan, Kerry; Wong, F Susan; Ladds, Graham; Cooke, Anne; Wallberg, Maja
2017-08-31
Metabolism is of central importance for T cell survival and differentiation. It is well known that T cells cannot function in the absence of glucose, but it is less clear how they respond to excessive levels of glucose. In the present study, we investigated how increasing levels of glucose affect T-cell-mediated immune responses. We examined the effects of increased levels of glucose on CD8 + T-cell behaviour in vitro by assessing activation and cytokine production, as well as oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and intracellular signalling. In addition, we assessed in vivo proliferation, cytokine production and cytolytic activity of cells in chemically induced diabetic C57BL/6 mice. Elevated levels of glucose in in vitro cultures had modest effects on proliferation and cytokine production, while in vivo hyperglycaemia had no effect on CD8 + T-cell proliferation, interferon γ (IFNγ) production or cytolytic killing. © 2017 The Author(s).
Osteopontin plays a pivotal role in increasing severity of respiratory syncytial virus infection
Sampayo-Escobar, Viviana; Green, Ryan; Cheung, Michael B.; Bedi, Raminder; Mohapatra, Subhra
2018-01-01
The molecular mechanisms underlying susceptibility to severe respiratory syncytial virus (RSV) infection remain poorly understood. Herein, we report on the role of osteopontin (OPN) in regulation of RSV infection in human epithelial cells and how interleukin-1 beta (IL-1β), a cytokine secreted soon after RSV infection, when persistently expressed can induce OPN expression leading to increased viral infection. We first compared OPN expression in two human epithelial cell lines: HEK-293 and HEp-2. In contrast to HEp-2, HEK-293 expresses low levels of pro-caspase-1 resulting in decreased IL-1β expression in response to RSV infection. We found a correlation between low IL-1β levels and a delay in induction of OPN expression in RSV-infected HEK-293 cells compared to HEp-2. This phenomenon could partially explain the high susceptibility of HEp-2 cells to RSV infection versus the moderate susceptibility of HEK-293 cells. Also, HEK-293 cells expressing low levels of pro-caspase-1 exhibit decreased IL-1β expression and delayed OPN expression in response to RSV infection. HEK-293 cells incubated with human rIL-1β showed a dose-dependent increase in OPN expression upon RSV infection. Also, incubation with rOPN increased RSV viral load. Moreover, HEp-2 cells or mice infected with a mucogenic RSV strain RSV-L19F showed elevated levels of OPN in contrast to mice infected with the laboratory RSV strain rA2. This correlated with elevated levels of OPN following infection with RSV-L19F compared to rA2. Together, these results demonstrate that increased OPN expression is regulated in part by IL-1β, and the interplay between IL-1β and OPN signaling may play a pivotal role in the spread of RSV infection. PMID:29677209
Yun, H-M; Oh, J H; Shim, J-H; Ban, J O; Park, K-R; Kim, J-H; Lee, D H; Kang, J-W; Park, Y H; Yu, D; Kim, Y; Han, S B; Yoon, D-Y; Hong, J T
2013-05-23
Cytokine and activation of lymphocytes are critical for tumor growth. We investigated whether interleukin (IL)-32β overexpression changes other cytokine levels and activates cytotoxic lymphocyte, and thus modify tumor growth. Herein, IL-32β inhibited B16 melanoma growth in IL-32β-overexpressing transgenic mice (IL-32β mice), and downregulated the expressions of anti-apoptotic proteins (bcl-2, IAP, and XIAP) and cell growth regulatory proteins (Ki-67 antigen (Ki-67) and proliferating cell nuclear antigen (PCNA)), but upregulated the expressions of pro-apoptotic proteins (bax, cleaved caspase-3, and cleaved caspase-9). IL-32β also inhibited colon and prostate tumor growth in athymic nude mice inoculated with IL-32β-transfected SW620 colon or PC3 prostate cancer cells. The forced expression of IL-32β also inhibited cell growth in cultured colon and prostate cancer cells, and these inhibitory effects were abolished by IL-32 small interfering RNA (siRNA). IL-10 levels were elevated, but IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels were reduced in the tumor tissues and spleens of IL-32β mice, and athymic nude mice. The number of cytotoxic T (CD8(+)) and natural killer (NK) cells in tumor tissues, spleen, and blood was significantly elevated in IL-32β mice and athymic nude mice inoculated with IL-32β-transfected cancer cells. Constituted activated NF-κB and STAT3 levels were reduced in the tumor tissues of IL-32β mice and athymic nude mice, as well as in IL-32β-transfected cultured cancer cells. These findings suggest that IL-32β inhibits tumor growth by increasing cytotoxic lymphocyte numbers, and by inactivating the NF-κB and STAT3 pathways through changing of cytokine levels in tumor tissues.
Huard, Sylvain; Morettin, Alan; Fullerton, Morgan D.; Côté, Jocelyn
2017-01-01
Eukaryotic cells form stress granules under a variety of stresses, however the signaling pathways regulating their formation remain largely unknown. We have determined that the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 is required for stress granule formation upon glucose deprivation but not heat stress. Further, the Tip60 complex, the human homolog of the NuA4 complex, is required for stress granule formation in cancer cell lines. Surprisingly, the impact of NuA4 on glucose-deprived stress granule formation is partially mediated through regulation of acetyl-CoA levels, which are elevated in NuA4 mutants. While elevated acetyl-CoA levels suppress the formation of glucose-deprived stress granules, decreased acetyl-CoA levels enhance stress granule formation upon glucose deprivation. Further our work suggests that NuA4 regulates acetyl-CoA levels through the Acetyl-CoA carboxylase Acc1. Altogether this work establishes both NuA4 and the metabolite acetyl-CoA as critical signaling pathways regulating the formation of glucose-deprived stress granules. PMID:28231279
Serum C-reactive protein and white blood cell count in morbidly obese surgical patients.
Chen, Sheng-Bin; Lee, Yi-Chih; Ser, Kong-Han; Chen, Jung-Chien; Chen, Shu Chung; Hsieh, Hsing-Fang; Lee, Wei-Jei
2009-04-01
Obesity has been widely recognized as a chronic inflammatory condition and associated with elevated inflammatory indicators including C-reactive protein (CRP) and white blood cell count (WBC). Recent studies have shown elevated CRP or WBC is a significant risk factor for cardiac events and stroke but the clinical significance of CRP and WBC has not been clearly studied in morbidly obese patients. This study is aimed at the clinical significance of WBC and CRP in morbidly obese patients and the change after bariatric surgery. The study was a prospectively controlled clinical study. From December 1, 2001 to January 31, 2006, of 640 (442 females and 198 males) consecutive morbid obese patients enrolled in a surgically supervised weight loss program with at least 1 year's follow-up were examined. Of the patients, 476 (74.4%) had elevated CRP and 100 (15.6%) had elevated WBC at preoperative study. CRP and WBC were significantly related and both increased with increasing body mass index (BMI). CRP is also increased with increasing waist, glucose level, hemoglobin, albumin, Ca, insulin, C-peptide, and metabolic syndrome while WBC is increased with metabolic syndrome but decreased with increasing age. Multivariate analysis confirmed fasting glucose level and hemoglobin are independent predictors of the elevation of CRP while age is the only independent predictor for elevated WBC. Both WBC and CRP levels decreased rapidly after obesity surgery. These improvements resulted in a 69.8% reduction of CRP and 26.4% reduction of WBC 1 year after surgery. Although individuals who underwent laparoscopic gastric bypass lost significantly more weight (36.8 +/- 11.7 kg vs. 17.3 +/- 10.8 kg; p = 0.000) and achieved a lower BMI (27.8 +/- 4.6 vs. 35.0 +/- 5.5; p = 0.000) than individuals who underwent laparoscopic gastric banding, there was no difference in the resolution of elevated CRP 1 year after surgery (95.9% vs. 84.5%; p = 0.169) and WBC (99.4% vs. 98.3%; p = 0.323). Both baseline WBC and CRP are elevated in morbid obese patients but CRP has a better clinical significance. Significant weight reduction 1 year after surgery markedly reduced CRP and WBC with a resolution rate of 93.9% and 98.2% separately. Obesity surgery performed by laparoscopic surgery is recommended for obese patients with elevated CRP or WBC.
Liu, Guang; Badeau, Robert M; Tanimura, Akihiko; Talamo, Barbara R
2006-03-01
Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.
Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Kaori; Taketomi, Takaharu, E-mail: taketomi@dent.kyushu-u.ac.jp; Yoshizaki, Keigo
2011-01-28
Research highlights: {yields} Sprouty2-deficient mice exhibit cleft palate as a result of failure of palatal shelf elevation. {yields} We examined palate cell proliferation in Sprouty2-deficient mice. {yields} Palate mesenchymal cell proliferation was increased in Sprouty2 KO mice. {yields} Sprouty2 plays roles in murine palatogenesis by regulating cell proliferation. -- Abstract: Cleft palate is one of the most common craniofacial deformities. The fibroblast growth factor (FGF) plays a central role in reciprocal interactions between adjacent tissues during palatal development, and the FGF signaling pathway has been shown to be inhibited by members of the Sprouty protein family. In this study, wemore » report the incidence of cleft palate, possibly caused by failure of palatal shelf elevation, in Sprouty2-deficient (KO) mice. Sprouty2-deficient palates fused completely in palatal organ culture. However, palate mesenchymal cell proliferation estimated by Ki-67 staining was increased in Sprouty2 KO mice compared with WT mice. Sprouty2-null palates expressed higher levels of FGF target genes, such as Msx1, Etv5, and Ptx1 than WT controls. Furthermore, proliferation and the extracellular signal-regulated kinase (Erk) activation in response to FGF was enhanced in palate mesenchymal cells transfected with Sprouty2 small interfering RNA. These results suggest that Sprouty2 regulates palate mesenchymal cell proliferation via FGF signaling and is involved in palatal shelf elevation.« less
1993-09-21
negative feedback on GH secretion. The GH/IGF- I hormonal axis is further strengthened by clinical presentations of acromegaly and Laron dwarfism... Acromegaly patients afflicted with high levels of GH have elevated levels of IGF-I (Clemmons et al., 1980) . The opposite is true for Laron dwarfs who...Kjellberg, R.N.; Van Wyk, J.J. Estradiol Treatment of Acromegaly . Reduction of Immunoreactive Somatomedin-C and Improvement of Metabolic Status
Modeling Red Blood Cell and Iron Dynamics in Patients with Chronic Kidney Disease
2012-02-10
level in the body. Most patients with CKD have elevated levels of inflammation due to CKD and the presence of other medical issues (e.g., diabetes ...Blood, 37 (1971), 725–732. [11] Chung-Che Chang, Yayan Chen, Kapil Modi , Omar Awar, Clarence P. Alfrey, and Lawrence Rice, Changes of red blood cell...National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2008. [43] M. M. Udden, T. B. Driscoll, M
Red cell distribution width is associated with hemoglobin A1C elevation, but not glucose elevation.
Bao, Xue; Wan, Min; Gu, Yeqing; Song, Yanqi; Zhang, Qing; Liu, Li; Meng, Ge; Wu, Hongmei; Xia, Yang; Shi, HongBin; Su, Qian; Fang, Liyun; Yang, Huijun; Yu, Fei; Sun, Shaomei; Wang, Xing; Zhou, Ming; Jia, Qiyu; Song, Kun; Wang, Guolin; Yu, Ming; Niu, Kaijun
2017-10-01
To investigate the association between red cell distribution width (RDW) and elevation of glucose/glycated hemoglobin (HbA1c). An analysis was conducted using data from a prospective cohort study of adults. People without prediabetes or diabetes (n=7,795) were followed for a mean of 2.90years (range: 1-7years, 95% confidence interval: 2.86-2.94years). Glucose elevation is defined as fasting glucose levels exceeding 5.6mmol/l, or 2-hour glucose values in the oral glucose tolerance test exceeding 7.8mmol/l. HbA1c elevation is defined as a HbA1c value exceeding a normal limit of 39mmol/mol (5.7%). Adjusted Cox proportional hazards regression models were used to assess the association between RDW quartiles and elevation of HbA1c/glucose. The multiple-adjusted hazard ratios (95% confidence interval) of HbA1c elevation for increased quartiles of RDW were 1.00 (reference), 1.08 (0.89, 1.30), 1.28 (1.07, 1.54), and 1.54 (1.29, 1.85) (P for trend<0.0001). However, no significant association was observed between RDW and blood glucose (fasting and postprandial). Elevated RDW is independently related to future HbA1c elevation, but not to glucose elevation. This suggests that RDW may associate with HbA1c through a non-glycemic way, which should be taken into consideration when using HbA1c as a diagnostic criterion of prediabetes or diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.
Tarbashevich, Katsiaryna; Reichman-Fried, Michal; Grimaldi, Cecilia; Raz, Erez
2015-04-20
Directional cell migration requires cell polarization with respect to the distribution of the guidance cue. Cell polarization often includes asymmetric distribution of response components as well as elements of the motility machinery. Importantly, the function and regulation of most of these molecules are known to be pH dependent. Intracellular pH gradients were shown to occur in certain cells migrating in vitro, but the functional relevance of such gradients for cell migration and for the response to directional cues, particularly in the intact organism, is currently unknown. In this study, we find that primordial germ cells migrating in the context of the developing embryo respond to the graded distribution of the chemokine Cxcl12 by establishing elevated intracellular pH at the cell front. We provide insight into the mechanisms by which a polar pH distribution contributes to efficient cell migration. Specifically, we show that Carbonic Anhydrase 15b, an enzyme controlling the pH in many cell types, including metastatic cancer cells, is expressed in migrating germ cells and is crucial for establishing and maintaining an asymmetric pH distribution within them. Reducing the level of the protein and thereby erasing the pH elevation at the cell front resulted in abnormal cell migration and impaired arrival at the target. The basis for the disrupted migration is found in the stringent requirement for pH conditions in the cell for regulating contractility, for the polarization of Rac1 activity, and hence for the formation of actin-rich structures at the leading edge of the migrating cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Luzina, Irina G; Lockatell, Virginia; Hyun, Sang W; Kopach, Pavel; Kang, Phillip H; Noor, Zahid; Liu, Anguo; Lillehoj, Erik P; Lee, Chunsik; Miranda-Ribera, Alba; Todd, Nevins W; Goldblum, Simeon E; Atamas, Sergei P
2016-05-15
Idiopathic pulmonary fibrosis (IPF) poses challenges to understanding its underlying cellular and molecular mechanisms and the development of better therapies. Previous studies suggest a pathophysiological role for neuraminidase 1 (NEU1), an enzyme that removes terminal sialic acid from glycoproteins. We observed increased NEU1 expression in epithelial and endothelial cells, as well as fibroblasts, in the lungs of patients with IPF compared with healthy control lungs. Recombinant adenovirus-mediated gene delivery of NEU1 to cultured primary human cells elicited profound changes in cellular phenotypes. Small airway epithelial cell migration was impaired in wounding assays, whereas, in pulmonary microvascular endothelial cells, NEU1 overexpression strongly impacted global gene expression, increased T cell adhesion to endothelial monolayers, and disrupted endothelial capillary-like tube formation. NEU1 overexpression in fibroblasts provoked increased levels of collagen types I and III, substantial changes in global gene expression, and accelerated degradation of matrix metalloproteinase-14. Intratracheal instillation of NEU1 encoding, but not control adenovirus, induced lymphocyte accumulation in bronchoalveolar lavage samples and lung tissues and elevations of pulmonary transforming growth factor-β and collagen. The lymphocytes were predominantly T cells, with CD8(+) cells exceeding CD4(+) cells by nearly twofold. These combined data indicate that elevated NEU1 expression alters functional activities of distinct lung cell types in vitro and recapitulates lymphocytic infiltration and collagen accumulation in vivo, consistent with mechanisms implicated in lung fibrosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, Sarah C.; Edrissi, Hamidreza; Burger, Dylan
Highlights: • Microparticles are elevated in the plasma in a rodent model of chronic cerebral ischemia. • These microparticles initiate apoptosis in cultured cells. • Microparticles contain caspase 3 and they activate receptors for TNF-α and TRAIL. - Abstract: Circulating microparticles (MPs) are involved in many physiological processes and numbers are increased in a variety of cardiovascular disorders. The present aims were to characterize levels of MPs in a rodent model of chronic cerebral hypoperfusion (CCH) and to determine their signaling properties. MPs were isolated from the plasma of rats exposed to CCH and quantified by flow cytometry. When MPsmore » were added to cultured endothelial cells or normal rat kidney cells they induced cell death in a time and dose dependent manner. Analysis of pellets by electron microscopy indicates that cell death signals are carried by particles in the range of 400 nm in diameter or less. Cell death involved the activation of caspase 3 and was not a consequence of oxidative stress. Inhibition of the Fas/FasL signaling pathway also did not improve cell survival. MPs were found to contain caspase 3 and treating the MPs with a caspase 3 inhibitor significantly reduced cell death. A TNF-α receptor blocker and a TRAIL neutralizing antibody also significantly reduced cell death. Levels of circulating MPs are elevated in a rodent model of chronic cerebral ischemia. MPs with a diameter of 400 nm or less activate the TNF-α and TRAIL signaling pathways and may deliver caspase 3 to cultured cells.« less
Yamashita, Nobuko; Yashiro, Masato; Ogawa, Hirohito; Namba, Hikaru; Nosaka, Nobuyuki; Fujii, Yousuke; Morishima, Tsuneo; Tsukahara, Hirokazu; Yamada, Masao
2017-08-05
Our previous analysis of gene expression profiles in the peripheral blood from patients with influenza A (H1N1) pdm09 pneumonia revealed elevated transcription levels of the vanin-1 (vascular non-inflammatory molecule 1, VNN1) gene, which encodes an epithelial ectoenzyme with pantetheinase activity involved in recycling coenzyme A. Here, to elucidate the role of VNN1 in influenza A virus (IAV) H1N1 infection, we investigated the change of VNN1 expression in the context of IAV infection and the effects of its related substances, i.e., its direct substrate pantetheine and its two metabolites pantothenic acid and cysteamine on the replication of IAV in the human alveolar epithelial carcinoma cell line A549. The messenger RNA expression of VNN1 in A549 cells was significantly increased (by 4.9-fold) after IAV infection under an elevated concentration of pantetheine. Moreover, VNN1 mRNA levels were elevated by > 100-fold in response to pro-inflammatory cytokines, especially TNF-α and IL-1β. Pantetheine significantly reduced the IAV replication and IAV Matrix 1 (M1) mRNA levels when it was administered prior to and during infection. In addition, cysteamine treatment during IAV infection significantly reduced the viral replication and IAV M1 mRNA levels, whereas pantothenic acid did not. These findings suggest that the metabolic pathway catalyzed by VNN1 pantetheinase plays a suppressive role in IAV infection in the respiratory tract, especially in severe conditions under hypercytokinemia. Copyright © 2017 Elsevier Inc. All rights reserved.
2011-01-01
Background Gonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed. Methods GnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125I-ligand binding and stimulation of 3H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting. Results GnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation. Conclusions Breast cancers exhibit a range of GnRH-R immunostaining, with higher levels of expression found in triple-negative and grade 3 cancers. However, functional cell surface receptors are rare in cultured cells. Intense GnRH-R signaling in transfected breast cancer cells did not markedly inhibit growth, in contrast to transfected HEK 293 cells indicating the importance of intracellular context. GnRH-R signaling could not counteract IGF-I receptor-tyrosine kinase addiction in MCF-7 cells. These results suggest that combinatorial strategies with growth factor inhibitors will be needed to enhance GnRH anti-proliferative effects in breast cancer PMID:22051164
miR-451 regulates dendritic cell cytokine responses to influenza infection1
Rosenberger, Carrie M.; Podyminogin, Rebecca L.; Navarro, Garnet; Zhao, Guo-Wei; Askovich, Peter S.; Weiss, Mitchell J.; Aderem, Alan
2012-01-01
MicroRNAs are important post-transcriptional regulators in immune cells, but how viral infection regulates microRNA expression to shape dendritic cell responses has not been well characterized. We identified 20 miRNAs that were differentially expressed in primary murine dendritic cells in response to the double-stranded RNA agonist poly(I:C), a subset of which were modestly regulated by influenza infection. miR-451 was unique because it was induced more strongly in primary splenic and lung dendritic cells by live viral infection than by purified agonists of pattern recognition receptors. We determined that miR-451 regulates a subset of pro-inflammatory cytokine responses. Three types of primary dendritic cells treated with anti-sense RNA antagomirs directed against miR-451 secreted elevated levels of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α, and these results were confirmed using miR-451null cells. miR-451 negatively regulates YWHAZ/14-3-3ζ protein levels in various cell types, and we measured a similar inhibition of YWHAZ levels in dendritic cells. It is known that YWHAZ can control the activity of two negative regulators of cytokine production: FOXO3, which is an inhibitory transcription factor, and ZFP36/Tristetraprolin, which binds to AU-rich elements within 3′-UTRs to destabilize cytokine mRNAs. Inhibition of miR-451 expression correlated with increased YWHAZ protein expression and decreased ZFP36 expression, providing a possible mechanism for the elevated secretion of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α. miR-451 levels are themselves increased by IL-6 and type I interferon, potentially forming a regulatory loop. These data suggest that viral infection specifically induces a miRNA that directs a negative regulatory cascade to tune dendritic cell cytokine production. PMID:23169590
Nemec, Matthew J; Kim, Hyemee; Marciante, Alexandria B; Barnes, Ryan C; Hendrick, Erik D; Bisson, William H; Talcott, Stephen T; Mertens-Talcott, Susanne U
2017-03-01
The objective of this study was to assess the underlying mechanisms of mango polyphenol decreased cell proliferation and tumor volume in ductal carcinoma in situ breast cancer. We hypothesized that mango polyphenols suppress signaling along the AKT/mTOR axis while up-regulating AMPK. To test this hypothesis, mango polyphenols (0.8 mg gallic acid equivalents per day) and pyrogallol (0.2 mg/day) were administered for 4 weeks to mice xenografted with MCF10DCIS.com cells subcutaneously (n=10 per group). Tumor volumes were significantly decreased, both mango and pyrogallol groups displayed greater than 50% decreased volume compared to control. There was a significant reduction of phosphorylated protein levels of IR, IRS1, IGF-1R, and mTOR by mango; while pyrogallol significantly reduced the phosphorylation levels of IR, IRS1, IGF-1R, p70S6K, and ERK. The protein levels of Sestrin2, which is involved in AMPK-signaling, were significantly elevated in both groups. Also, mango significantly elevated AMPK phosphorylation and pyrogallol significantly elevated LKB1 protein levels. In an in vitro model, mango and pyrogallol increased reactive oxygen species (ROS) generation and arrested cells in S phase. In silico modeling indicates that pyrogallol has the potential to bind directly to the allosteric binding site of AMPK, inducing activation. When AMPK expression was down-regulated using siRNA in vitro, pyrogallol reversed the reduced expression of AMPK. This indicates that pyrogallol not only activates AMPK, but also increases constitutive protein expression. These results suggest that mango polyphenols and their major microbial metabolite, pyrogallol, inhibit proliferation of breast cancer cells through ROS-dependent up-regulation of AMPK and down-regulation of the AKT/mTOR pathway. Copyright © 2016 Elsevier Inc. All rights reserved.
Moralejo, Daniel; Yanay, Ofer; Kernan, Kelly; Bailey, Adam; Lernmark, Ake; Osborne, William
2011-04-01
Obesity and type 2 diabetes (T2D) are two prevalent chronic diseases that have become a major public health concern in industrialized countries. T2D is characterized by hyperglycemia and islet beta cell dysfunction. Glucagon-like peptide 1 (GLP-1) promotes β cell proliferation and neogenesis and has a potent insulinotropic effect. Leptin receptor deficient male rats are obese and diabetic and provide a model of T2D. We hypothesized that their treatment by sustained expression of GLP-1 using encapsulated cells may prevent or delay diabetes onset. Vascular smooth muscle cells (VSMC) retrovirally transduced to secrete GLP-1 were seeded into TheraCyte(TM) encapsulation devices, implanted subcutaneously and rats were monitored for diabetes. Rats that received cell implants showed mean plasma GLP-1 level of 119.3 ± 10.2pM that was significantly elevated over control values of 32.4 ± 2.9pM (P<0.001). GLP-1 treated rats had mean insulin levels of 45.9 ± 2.3ng/ml that were significantly increased over control levels of 7.3±1.5ng/ml (P<0.001). In rats treated before diabetes onset elevations in blood glucose were delayed and rats treated after onset became normoglycemic and showed improved glucose tolerance tests. Untreated diabetic rats possess abnormal islet structures characterized by enlarged islets with α-cell infiltration and multifocal vacuolization. GLP-1 treatment induced normalization of islet structures including a mantle of α-cells and increased islet mass. These data suggest that encapsulated transduced cells may offer a potential long term treatment of patients. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Moralejo, Daniel; Yanay, Ofer; Kernan, Kelly; Bailey, Adam; Lernmark, Ake; Osborne, William
2011-01-01
Obesity and type 2 diabetes (T2D) are two prevalent chronic diseases that have become a major public health concern in industrialized countries. T2D is characterized by hyperglycemia and islet beta cell dysfunction. Glucagon-like peptide 1 (GLP-1) promotes β cell proliferation and neogenesis and has a potent insulinotropic effect. Leptin receptor deficient male rats are obese and diabetic and provide a model of T2D. We hypothesized that their treatment by sustained expression of GLP-1 using encapsulated cells may prevent or delay diabetes onset. Vascular smooth muscle cells (VSMC) retrovirally transduced to secrete GLP-1 were seeded into TheraCyteTM encapsulation devices, implanted subcutaneously and rats monitored for diabetes. Rats that received cell implants showed mean plasma GLP-1 level of 119.3±10.2 pM that was significantly elevated over control values of 32.4±2.9 pM (P<0.001). GLP-1 treated rats had mean insulin levels of 45.9±2.3 ng/ml that were significantly increased over control levels of 7.3±1.5 ng/ml (P<0.001). In rats treated before diabetes onset elevations in blood glucose were delayed and rats treated after onset became normoglycemic and showed improved glucose tolerance tests. Untreated diabetic rats possess abnormal islet structures characterized by enlarged islets with β-cell infiltration and multifocal vacuolization. GLP-1 treatment induced normalization of islet structures including a mantle of β-cells and increased islet mass. These data suggest encapsulated transduced cells may offer a potential long term treatment of patients. PMID:21216666
Hu, Xuechun; Ge, Xie; Liang, Wei; Shao, Yong; Jing, Jun; Wang, Cencen; Zeng, Rong; Yao, Bing
2018-05-25
Obesity is believed to negatively affect male semen quality and is accompanied by dysregulation of free fatty acid (FFA) metabolism in plasma. However, the implication of dysregulated FFA on semen quality and the involvement of Sertoli cells remain unclear. In the present study, we report obesity decreased Sertoli cell viability through dysregulated FFAs. We observed an increased rate of apoptosis in Sertoli cells, accompanied with elevated FFA levels, in the testes of obese mice that were provided a high-fat diet (HFD). Moreover, the levels of reactive oxygen species were elevated. Furthermore, we demonstrated by in vitro assays that saturated palmitic acid (PA), which is the most common saturated FFA in plasma, led to decreased cell viability of TM4 Sertoli cells in a time- and dose-dependent manner. A similar finding was noted in primary mouse Sertoli cells. In contrast to saturated FFA, omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) protected Sertoli cells from PA-induced lipotoxicity at the physiologically relevant levels. These results indicated that the lipotoxicity of saturated fatty acids might be the cause of obesity-induced Sertoli cell apoptosis, which leads to decreased semen quality. In addition, ω-3 PUFAs could be classified as protective FFAs. FFA: free fatty acid; HFD: high-fat diet; SD: standard diet; PA: palmitic acid; PUFA: polyunsaturated fatty acid; AI: apoptotic index; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; ROS: reactive oxygen species; HE: Hematoxylin and eosin; WT1: Wilm Tumor 1; NAFLD: non- alcoholic fatty liver disease; DCFH-DA: 2', 7' dichlorofluorescin diacetate; 36B4: acidic ribosomal phosphoprotein P0; SD: standard deviation; EPA: eicosapentaenoic acid; PI: propidium iodide; DHA: docosahexenoic acid.
P53 alters the cytotoxicity and genotoxicity for oxidized graphene in human B-lymphoblastoid cells
NASA Astrophysics Data System (ADS)
Petibone, Dayton Matthew
Widespread use of oxidized graphene nanomaterials in industry, medicine, and consumer products raises concern about potential adverse impacts on human health. The p53 tumor suppressor protein is crucial to maintaining cellular and genetic stability to prevent carcinogenesis. Here, we show that oxygen functionalized graphene (f-G) absorption and p53 functional status correlate with cytotoxicity and genotoxicity in human B-lymphoblastoid cells. Trends in f-G absorption by were dose-dependent. Cells with functional p53 exposed to f-G arrested in G0/G1 phase of the cell cycle, suppressed f-G induced reactive oxygen species (ROS), and had elevated apoptosis. While compared to p53 competent cells, the p53 deficient cells exposed to f-G accumulated in S-phase of the cell cycle, had elevated ROS levels, and evaded apoptosis. The f-G genotoxicity was evident as increased loss-of-heterozygosity mutants independent of p53 status, and structural chromosome damage in p53 deficient cells. These findings have broad implications for the safety and efficacy of oxidized graphene nanomaterials in industrial, consumer products and biomedical applications.
Zheng, Jin; Ding, Xiaoming; Tian, Xiaohui; Jin, Zhankui; Pan, Xiaoming; Yan, Hang; Feng, Xinshun; Hou, Jun; Xiang, Heli; Ren, Li; Tian, Puxun; Xue, Wujun
2012-09-01
Acute rejection (AR) is a strong risk factor for chronic rejection in renal transplant recipients. Accurate and timely diagnosis of AR episodes is very important for disease control and prognosis. Therefore, objectively evaluated the immune status of patients is essential in the field of post-transplantation treatment. This longitudinal study investigated the usefulness of five biomarkers, human leukocyte antigen (HLA)-G5 and sCD30 level in sera, intracellular adenosine triphosphate (iATP) release level of CD4(+) T cells, and granzyme B/perforin expression in peripheral blood mononuclear cells (PBMCs) and biopsies, to detect AR and the resolution of biomarkers in a total of 84 cases of renal transplantation. The data demonstrated that recipients with clinical or biopsy proven rejection significantly increased iATP release level of CD4(+) T cells, and elevated sCD30 but lowered HLA-G5 level in sera compared with individuals with stable graft function. Expression levels of granzyme B and perforin were also elevated in PBMCs and graft biopsies of AR patients. Taken together, we identified that upregulation of sCD30, iATP, granzyme B, perforin, and downregulation of HLA-G5 could provide valuable diagnostic standards to identify those recipients in the risk of AR. And iATP may be a better biomarker than others for predicting the graft rejection episode.
Aypek, Hande; Bay, Veysel; Meşe, Gülistan
2016-02-02
Gap junctions facilitate exchange of small molecules between adjacent cells, serving a crucial function for the maintenance of cellular homeostasis. Mutations in connexins, the basic unit of gap junctions, are associated with several human hereditary disorders. For example, mutations in connexin26 (Cx26) cause both non-syndromic deafness and syndromic deafness associated with skin abnormalities such as keratitis-ichthyosis-deafness (KID) syndrome. These mutations can alter the formation and function of gap junction channels through different mechanisms, and in turn interfere with various cellular processes leading to distinct disorders. The KID associated Cx26 mutations were mostly shown to result in elevated hemichannel activities. However, the effects of these aberrant hemichannels on cellular processes are recently being deciphered. Here, we assessed the effect of two Cx26 mutations associated with KID syndrome, Cx26I30N and D50Y, on protein biosynthesis and channel function in N2A and HeLa cells. Immunostaining experiments showed that Cx26I30N and D50Y failed to form gap junction plaques at cell-cell contact sites. Further, these mutations resulted in the retention of Cx26 protein in the Golgi apparatus. Examination of hemichannel function by fluorescent dye uptake assays revealed that cells with Cx26I30N and D50Y mutations had increased dye uptake compared to Cx26WT (wild-type) containing cells, indicating abnormal hemichannel activities. Cells with mutant proteins had elevated intracellular calcium levels compared to Cx26WT transfected cells, which were abolished by a hemichannel blocker, carbenoxolone (CBX), as measured by Fluo-3 AM loading and flow cytometry. Here, we demonstrated that Cx26I30N and D50Y mutations resulted in the formation of aberrant hemichannels that might result in elevated intracellular calcium levels, a process which may contribute to the hyperproliferative epidermal phenotypes of KID syndrome.
Zhang, Wei-Yang; Schwartz, Eric; Wang, Yingjie; Attrep, Jeanne; Li, Zhi; Reaven, Peter
2006-03-01
Monocyte proinflammatory activity has been demonstrated in obesity, insulin resistance, and type 2 diabetes, metabolic conditions that are frequently associated with elevated levels of nonesterified fatty acids (NEFA). We therefore tested the hypothesis that NEFA may induce monocyte inflammation. Monocytes exposed to NEFA for 2 days demonstrated a dose-related increase in intracellular reactive oxygen species (ROS) formation and adhesion to endothelial cells. All of these effects were inhibited by the coaddition of antioxidants such as glutathione or butylated hydroxytoluene, by inhibition of ROS generation by NADPH oxidase inhibitors, and by inhibition of protein kinase C, a recognized stimulator of NAPDH oxidase. Monocytes exposed to NEFA also demonstrated a significant increase in CD11b message expression. Stimulation of monocyte adhesion to endothelial cells by NEFA was inhibited by addition of neutralizing antibodies to either CD11b or CD18. Finally, surface expression of CD11b increased significantly on monocytes as measured by flow cytometry, after their incubation with NEFA. These studies indicate that elevated concentrations of NEFA may enhance integrin facilitated monocyte adhesion to endothelial cells and these effects appear mediated, in part, through activation of NADPH oxidase and oxidative stress.
A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.
Valeyev, Najl V; Hundhausen, Christian; Umezawa, Yoshinori; Kotov, Nikolay V; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O
2010-12-02
Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.
Mechanism of the melanogenesis stimulation activity of (-)-cubebin in murine B16 melanoma cells.
Hirata, Noriko; Naruto, Shunsuke; Ohguchi, Kenji; Akao, Yukihiro; Nozawa, Yoshinori; Iinuma, Munekazu; Matsuda, Hideaki
2007-07-15
(-)-Cubebin showed a melanogenesis stimulation activity in a concentration-dependent manner in murine B16 melanoma cells without any significant effects on cell proliferation. Tyrosinase activity was increased at 24-72 h after addition of cubebin to B16 cells, and then intracellular melanin amount was increased at 48-96 h after the treatment. The expression levels of tyrosinase were time-dependently enhanced after the treatment with cubebin. At the same time, the expression levels of tyrosinase mRNA were also increased after addition of cubebin. Furthermore Western blot analysis revealed that cubebin elevated the level of phosphorylation of p38 mitogen-activated protein kinase (MAPK). SB203580, a selective inhibitor of p38 MAPK, completely blocked cubebin-induced expression of tyrosinase mRNA in B16 cells. These results suggested that cubebin increased melanogenesis in B16 cells through the enhancement of tyrosinase expression mediated by activation of p38 MAPK.
The Plasticity of Th17 Cells in the Pathogenesis of Rheumatoid Arthritis.
Kotake, Shigeru; Yago, Toru; Kobashigawa, Tsuyoshi; Nanke, Yuki
2017-07-10
Helper T (Th) cells play an important role in the pathogenesis of autoimmune diseases, including rheumatoid arthritis (RA). It has been revealed that Th17 cells can shift to Th1 cells (i.e., "nonclassic Th1 cells"), which are reported to be more pathogenic than Th17 cells per se . Thus, the association of Th cells in the pathogenesis of autoimmune disease has become more complicated. We recently reported using peripheral blood from untreated and early-onset RA patients that the ratio of CD161+Th1 cells (i.e., Th17-derived Th1 cells to CD161+Th17 cells) is elevated and that levels of interferon-γ (IFNγ)+Th17 cells are inversely correlated with levels of anti-CCP antibodies. Here, we review the plasticity of Th17 cells in the pathogenesis of RA, suggesting possible implications for novel therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacWilliam, L.D.; Bhakthan, N.M.G.
1976-01-01
Serum levels of lactate dehydrogenase, creatine kinase, and glutamate oxaloacetate transaminase show initial elevations within 12 hr of exposure to 2,000 rads of ..gamma..-radiation to the thoracic region of rats. Significant decreases in heart muscle homogenate levels of these enzymes parallel initial elevations in the serum and may suggest that enhanced leakage of enzymes is a consequence of radiation injury to heart muscle. Insignificant alterations in mitochondrial glutamate oxaloacetate transaminase levels after exposure indicate that in vivo injury to the mitochondria from therapeutic levels of ..gamma..-radiation is questionable. The results support the contention that ionizing radiation instigates alterations in themore » dynamic permeability of membranes, allowing leakage of biologically active material out of the injured cell.« less
Gorman, Jennifer L.; Liu, Sammy T. K.; Slopack, Dara; Shariati, Khashayar; Hasanee, Adam; Olenich, Sara; Olfert, I. Mark; Haas, Tara L.
2014-01-01
Skeletal muscle overload induces the expression of angiogenic factors such as vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2, leading to new capillary growth. We found that the overload-induced increase in angiogenesis, as well as increases in VEGF, MMP-2 and MT1-MMP transcripts were abrogated in muscle VEGF KO mice, highlighting the critical role of myocyte-derived VEGF in controlling this process. The upstream mediators that contribute to overload-induced expression of VEGF have yet to be ascertained. We found that muscle overload increased angiotensinogen expression, a precursor of angiotensin (Ang) II, and that Ang II signaling played an important role in basal VEGF production in C2C12 cells. Furthermore, matrix-bound VEGF released from myoblasts induced the activation of endothelial cells, as evidenced by elevated endothelial cell phospho-p38 levels. We also found that exogenous Ang II elevates VEGF expression, as well as MMP-2 transcript levels in C2C12 myotubes. Interestingly, these responses also were observed in skeletal muscle endothelial cells in response to Ang II treatment, indicating that these cells also can respond directly to the stimulus. The involvement of Ang II in muscle overload-induced angiogenesis was assessed. We found that blockade of AT1R-dependent Ang II signaling using losartan did not attenuate capillary growth. Surprisingly, increased levels of VEGF protein were detected in overloaded muscle from losartan-treated rats. Similarly, we observed elevated VEGF production in cultured endothelial cells treated with losartan alone or in combination with Ang II. These studies conclusively establish the requirement for muscle derived VEGF in overload-induced angiogenesis and highlight a role for Ang II in basal VEGF production in skeletal muscle. However, while Ang II signaling is activated following overload and plays a role in muscle VEGF production, inhibition of this pathway is not sufficient to halt overload-induced angiogenesis, indicating that AT1-independent signals maintain VEGF production in losartan-treated muscle. PMID:24416421
2014-01-01
Background Community acquired pneumonia (CAP) is a major cause of morbidity and mortality. We recently demonstrated that among young patients (<60 years old) with CAP, elevated red blood cell distribution width (RDW) level on admission was associated with significant higher rates of mortality and severe morbidity. We aimed to investigate the prognostic predictive value of RDW among CAP patients in general population of internal wards. Methods The cohort included patients of 18 years old or older who were diagnosed with CAP (defined as pneumonia identified 48 hours or less from hospitalization) between January 1, 2005 and December 31, 2010. Patients were retrospectively analyzed for risk factors for a primary endpoint of 90-day mortality. Secondary endpoint was defined as complicated hospitalization (defined as at least one of the following: In- hospital mortality, length of stay of at least 10 days or ICU admission). Binary logistic regression analysis was used for the calculation of the odds ratios (OR) and p values in univariate and multivariate analysis to identify association between patient characteristic, 90-day mortality and complicated hospitalization. Results The cohort included 3815 patients. In univariate analysis, patients with co-morbid conditions tended to have a complicated course of CAP. In multivariate regression analysis, variables associated with an increased risk of 90-day mortality included age > 70 years, high Charlson comorbidity index (>2), Hb < 10 mg/dl, Na <130 meq/l, blood urea nitrogen (BUN) >30 mg/dl, systolic blood pressure < 90 mmHg and elevated RDW >15%. Variables associated with complicated hospitalization included high Charlson comorbidity index, BUN > 30 mg/dl, hemoglobin < 10 g/dl, heart rate >124 bpm, systolic blood pressure < 90 mmHg and elevated RDW. Mortality rate and complicated hospitalization were significantly higher among patients with increased RDW regardless of the white blood cell count or hemoglobin levels. Conclusions Elevated RDW levels on admission are associated with significant higher rates of mortality and severe morbidity in adult patients with CAP. RDW as a prognostic marker was unrelated with hemoglobin levels, WBC count, age or Charlson score. PMID:24597687
Chen, Yu; Zhou, Jun; Xie, Na; Huang, Chao; Zhang, Jun-qi; Hu, Zhuang-li; Ni, Lan; Jin, You; Wang, Fang; Chen, Jian-guo; Long, Li-hong
2012-01-01
Aim: To identify the mechanisms underlying the elevation of intracellular Ca2+ level ([Ca2+]i) induced by lowering extracellular glucose in rat hypothalamic arcuate nucleus NPY neurons. Methods: Primary cultures of hypothalamic arcuate nucleus (ARC) neurons were prepared from Sprague-Dawley rats. NPY neurons were identified with immunocytochemical method. [Ca2+]i was measured using fura-2 AM. Ca2+ current was recorded using whole-cell patch clamp recording. AMPK and GSK3β levels were measured using Western blot assay. Results: Lowering glucose level in the medium (from 10 to 1 mmol/L) induced a transient elevation of [Ca2+]i in ARC neurons, but not in hippocampal and cortical neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons depended on extracellular Ca2+, and was blocked by P/Q-type Ca2+channel blocker ω-agatoxin TK (100 nmol/L), but not by L-type Ca2+ channel blocker nifedipine (10 μmol/L) or N-type Ca2+channel blocker ω-conotoxin GVIA (300 nmol/L). Lowering glucose level increased the peak amplitude of high voltage-activated Ca2+ current in ARC neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons was blocked by the AMPK inhibitor compound C (20 μmol/L), and enhanced by the GSK3β inhibitor LiCl (10 mmol/L). Moreover, lowering glucose level induced the phosphorylation of AMPK and GSK3β, which was inhibited by compound C (20 μmol/L). Conclusion: Lowering glucose level enhances the activity of P/Q type Ca2+channels and elevates [Ca2+]i level in hypothalamic arcuate nucleus neurons via inhibition of GSK3β. PMID:22504905
2013-01-01
Background Resistance to radiation treatment remains a major clinical problem for patients with brain cancer. Medulloblastoma is the most common malignant brain tumor of childhood, and occurs in the cerebellum. Though radiation treatment has been critical in increasing survival rates in recent decades, the presence of resistant cells in a substantial number of medulloblastoma patients leads to relapse and death. Methods Using the established medulloblastoma cell lines UW228 and Daoy, we developed a novel model system to enrich for and study radiation tolerant cells early after radiation exposure. Using fluorescence-activated cell sorting, dead cells and cells that had initiated apoptosis were removed, allowing surviving cells to be investigated before extensive proliferation took place. Results Isolated surviving cells were tumorigenic in vivo and displayed elevated levels of ABCG2, an ABC transporter linked to stem cell behavior and drug resistance. Further investigation showed another family member, ABCA1, was also elevated in surviving cells in these lines, as well as in early passage cultures from pediatric medulloblastoma patients. We discovered that the multi-ABC transporter inhibitors verapamil and reserpine sensitized cells from particular patients to radiation, suggesting that ABC transporters have a functional role in cellular radiation protection. Additionally, verapamil had an intrinsic anti-proliferative effect, with transient exposure in vitro slowing subsequent in vivo tumor formation. When expression of key ABC transporter genes was assessed in medulloblastoma tissue from 34 patients, levels were frequently elevated compared with normal cerebellum. Analysis of microarray data from independent cohorts (n = 428 patients) showed expression of a number of ABC transporters to be strongly correlated with certain medulloblastoma subtypes, which in turn are associated with clinical outcome. Conclusions ABC transporter inhibitors are already being trialed clinically, with the aim of decreasing chemotherapy resistance. Our findings suggest that the inhibition of ABC transporters could also increase the efficacy of radiation treatment for medulloblastoma patients. Additionally, the finding that certain family members are associated with particular molecular subtypes (most notably high ABCA8 and ABCB4 expression in Sonic Hedgehog pathway driven tumors), along with cell membrane location, suggests ABC transporters are worthy of consideration for the diagnostic classification of medulloblastoma. PMID:24219920
Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jialin; Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001; Zhang, Yao
Sidt2 is a newly discovered lysosomal membrane protein that is closely related to glucose metabolism. In the present study, we found that Sidt2 is also closely related to lipid metabolism. Gradual increases in serum triglyceride (TG) and free fatty acid, as well as elevated aspartate transaminase and alanine transaminase levels were observed in Sidt2{sup −/−} mice fed a normal diet from the age of 3 months, suggesting the presence of lipid metabolism disorders and impaired liver function in these mice. In the liver slices of 6-month-old Sidt2{sup −/−} mice, there were obvious fat degeneration and inflammatory changes. Almost all ofmore » the liver cells demonstrated different levels of lipid droplet accumulation and cell swelling, and some of the cells demonstrated balloon-like changes. Infiltration of inflammatory cells was observed in the portal area and hepatic lobule. Electron microscopy showed that macrophages tended to be attached to the endothelial cells, and a large number of lipid droplets were present in the liver cells. Oil red O staining showed that there were significantly increased number of deep straining particles in the liver cells of Sidt2{sup −/−} mice, and the TG content in liver tissue was also significantly increased. Detection of key genes and proteins related to fat synthesis showed that mRNA and protein levels of the SREBP1c in the liver of Sidt2{sup −/−} mice were significantly elevated, and the downstream genes acetyl-CoA carboxylase, fatty acid synthase, and mitochondrial glycerol 3-phosphate acyltransferase were significantly upregulated. In addition, there was severe endoplasmic reticulum stress (ERS) in the liver of Sidt2{sup −/−} mice, which had significantly increased levels of markers specific for unfolded protein response activation, Grp78 and CHOP, as well as significant elevation of downstream p-PERK, p-eIF2a, p-IRE1a, along with ER damage. These results suggest that Sidt2{sup −/−} mice had spontaneous nonalcoholic fatty liver disease (NAFLD) accompanied by ERS. In summary, as a lysosomal membrane protein, Sidt2 plays an important role in the pathogenesis of NAFLD, and ERS may mediate the occurrence and development of this disease in Sdit2 deficiency mice.« less
1989-01-01
The relationship between receptor-mediated increases in the intracellular free calcium concentration [( Ca]i) and the stimulation of ion fluxes involved in fluid secretion was examined in the rat parotid acinar cell. Agonist-induced increases in [Ca]i caused the rapid net loss of up to 50-60% of the total content of intracellular chloride (Cli) and potassium (Ki), which is consistent with the activation of calcium-sensitive chloride and potassium channels. These ion movements were accompanied by a 25% reduction in the intracellular volume. The relative magnitudes of the losses of Ki and the net potassium fluxes promoted by carbachol (a muscarinic agonist), phenylephrine (an alpha-adrenergic agonist), and substance P were very similar to their characteristic effects on elevating [Ca]i. Carbachol stimulated the loss of Ki through multiple efflux pathways, including the large-conductance Ca-activated K channel. Carbachol and substance P increased the levels of intracellular sodium (Nai) to more than 2.5 times the normal level by stimulating the net uptake of sodium through multiple pathways; Na-K-2Cl cotransport accounted for greater than 50% of the influx, and approximately 20% was via Na-H exchange, which led to a net alkalinization of the cells. Ionomycin stimulated similar fluxes through these two pathways, but also promoted sodium influx through an additional pathway which was nearly equivalent in magnitude to the combined uptake through the other two pathways. The carbachol- induced increase in Nai and decrease in Ki stimulated the activity of the sodium pump, measured by the ouabain-sensitive rate of oxygen consumption, to nearly maximal levels. In the absence of extracellular calcium or in cells loaded with the calcium chelator BAPTA (bis[o- aminophenoxy]ethane-N,N,N',N'-tetraacetic acid) the magnitudes of agonist- or ionomycin-stimulated ion fluxes were greatly reduced. The parotid cells displayed a marked desensitization to substance P; within 10 min the elevation of [Ca]i and alterations in Ki, Nai, and cell volume spontaneously returned to near baseline levels. In addition to quantitating the activation of various ion flux pathways in the rat parotid acinar cell, these results demonstrate that the activation of ion transport systems responsible for fluid secretion in this tissue is closely linked to the elevation of [Ca]i. PMID:2467962
Kariya, Chirag; Leitner, Heather; Min, Elysia; van Heeckeren, Christiaan; van Heeckeren, Anna; Day, Brian J.
2014-01-01
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is the only known apical glutathione (GSH) transporter in the lung. The purpose of these studies was to determine whether oral GSH or glutathione disulfide (GSSG) treatment could increase lung epithelial lining fluid (ELF) GSH levels and whether CFTR plays a role in this process. The pharmacokinetic profile of an oral bolus dose of GSH (300 mg/kg) was determined in mice. Plasma, ELF, bronchoalveolar lavage (BAL) cells, and lung tissue were analyzed for GSH content. There was a rapid elevation in the GSH levels that peaked at 30 min in the plasma and 60 min in the lung, ELF, and BAL cells after oral GSH dosing. Oral GSH treatment produced a selective increase in the reduced and active form of GSH in all lung compartments examined. Oral GSSG treatment (300 mg/kg) resulted in a smaller increase of GSH levels. To evaluate the role of CFTR in this process, Cftr knockout (KO) mice and gut-corrected Cftr KO-transgenic (Tg) mice were given an oral bolus dose of GSH (300 mg/kg) and compared with wild-type mice for changes in GSH levels in plasma, lung, ELF, and BAL cells. There was a twofold increase in plasma, a twofold increase in lung, a fivefold increase in ELF, and a threefold increase in BAL cell GSH levels at 60 min in wild-type mice; however, GSH levels only increased by 40% in the plasma, 60% in the lung, 50% in the ELF, and twofold in the BAL cells within the gut-corrected Cftr KO-Tg mice. No change in GSH levels was observed in the uncorrected Cftr KO mice. These studies suggest that CFTR plays an important role in GSH uptake from the diet and transport processes in the lung. PMID:17369290
Itagaki, Hiroko; Shimizu, Kazuhiko; Morikawa, Shunichi; Ogawa, Kenji; Ezaki, Taichi
2013-01-01
Non-alcoholic fatty liver disease (NAFLD), including non-alcoholic steatohepatitis (NASH), appears to be increasingly common worldwide. Its histopathology and the effects of nutrition on liver function have not been fully determined. To elucidate the cellular mechanisms of NAFLD induced by a methionine-choline-deficient (MCD) diet in mice. Particular focus was placed on the role of phagocytic cells. Male C57BL/6 mice were fed an MCD diet for 30 weeks. A recovery model was also established wherein a normal control diet was provided for 2 weeks after a period of 8, 16, or 30 weeks. Mice fed the MCD diet for ≥ 2 weeks exhibited severe steatohepatitis with elevated serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Steatohepatitis was accompanied by the infiltration of CD68-positive macrophages (Kupffer cells). The severity of steatohepatitis increased in the first 16 weeks but was seen to lessen by week 30. Fibrosis began to develop at 10 weeks and continued thereafter. Steatohepatitis and elevated serum hepatic enzyme concentrations returned to normal levels after switching the diet back to the control within the first 16 weeks, but fibrosis and CD68-positive macrophages remained. The histopathological changes and irreversible fibrosis seen in this model were caused by prolonged feeding of an MCD diet. These results were accompanied by changes in the activity of CD68-positive cells with temporary elevation of CCL-2, MMP-13, and MMP-9 levels, all of which may trigger early steatohepatitis and late fibrosis through phagocytosis-associated MMP induction.
Hepatocyte growth factor: a regulator of extracellular matrix genes in mouse mesangial cells.
Laping, N J; Olson, B A; Ho, T; Ziyadeh, F N; Albrightson, C R
2000-04-01
The potential role of hepatocyte growth factor (HGF) in regulating extracellular matrix in mouse mesangial cells (MMC) was evaluated. Functional HGF receptors were deed in MMC by HGF-induced extracellular acidification, a response that was inhibited by the HGF inhibitor HGF/NK2, a splice variant expressing the N-terminal domain through the second kringle domain HGF also increased fibronectin and collagen alpha1 (IV) mRNA levels in these cells; the increases were associated with a concentration-dependent increase in transcriptional activity of the collagen alpha1 (IV) gene. HGF also stimulated fibronectin and collagen alpha1 (IV) mRNA levels in primary rabbit proximal tubule epithelial cells To evaluate the potential consequences of chronic elevation of HGF on renal fuction, HGF was administered continuously for 18 days to normal and diabetic C57BLKS/J lepr(db) mice. In the diabetic mice, HGF reduced creatinine clearance and increased microalbuminuria, indicating that chronic exposure to HGF impairs renal function. Thus, chronically elevated HGF may contribute to the progression of chronic renal disease in diabetes by decreasing the glomerular filtration rate and possibly promoting the accumulation of extracellular matrix.
Allard, Jenna B; Poynter, Matthew E; Marr, Kieren A; Cohn, Lauren; Rincon, Mercedes; Whittaker, Laurie A
2006-10-15
Cystic fibrosis (CF) lung disease is characterized by persistent airway inflammation and airway infection that ultimately leads to respiratory failure. Aspergillus sp. are present in the airways of 20-40% of CF patients and are of unclear clinical significance. In this study, we demonstrate that CF transmembrane conductance regulator (CFTR)-deficient (CFTR knockout, Cftr(tm1Unc-)TgN(fatty acid-binding protein)CFTR) and mutant (DeltaF508) mice develop profound lung inflammation in response to Aspergillus fumigatus hyphal Ag exposure. CFTR-deficient mice also develop an enhanced Th2 inflammatory response to A. fumigatus, characterized by elevated IL-4 in the lung and IgE and IgG1 in serum. In contrast, CFTR deficiency does not promote a Th1 immune response. Furthermore, we demonstrate that CD4+ T cells from naive CFTR-deficient mice produce higher levels of IL-4 in response to TCR ligation than wild-type CD4+ T cells. The Th2 bias of CD4+ T cells in the absence of functional CFTR correlates with elevated nuclear levels of NFAT. Thus, CFTR is important to maintain the Th1/Th2 balance in CD4+ T cells.
He, Qing; Bouley, Richard; Liu, Zun; Wein, Marc N; Zhu, Yan; Spatz, Jordan M; Wang, Chia-Yu; Divieti Pajevic, Paola; Plagge, Antonius; Babitt, Jodie L; Bastepe, Murat
2017-11-07
Alterations in the activity/levels of the extralarge G protein α-subunit (XLαs) are implicated in various human disorders, such as perinatal growth retardation. Encoded by GNAS , XLαs is partly identical to the α-subunit of the stimulatory G protein (Gsα), but the cellular actions of XLαs remain poorly defined. Following an initial proteomic screen, we identified sorting nexin-9 (SNX9) and dynamins, key components of clathrin-mediated endocytosis, as binding partners of XLαs. Overexpression of XLαs in HEK293 cells inhibited internalization of transferrin, a process that depends on clathrin-mediated endocytosis, while its ablation by CRISPR/Cas9 in an osteocyte-like cell line (Ocy454) enhanced it. Similarly, primary cardiomyocytes derived from XLαs knockout (XLKO) pups showed enhanced transferrin internalization. Early postnatal XLKO mice showed a significantly higher degree of cardiac iron uptake than wild-type littermates following iron dextran injection. In XLKO neonates, iron and ferritin levels were elevated in heart and skeletal muscle, where XLαs is normally expressed abundantly. XLKO heart and skeletal muscle, as well as XLKO Ocy454 cells, showed elevated SNX9 protein levels, and siRNA-mediated knockdown of SNX9 in XLKO Ocy454 cells prevented enhanced transferrin internalization. In transfected cells, XLαs also inhibited internalization of the parathyroid hormone and type 2 vasopressin receptors. Internalization of transferrin and these G protein-coupled receptors was also inhibited in cells expressing an XLαs mutant missing the Gα portion, but not Gsα or an N-terminally truncated XLαs mutant unable to interact with SNX9 or dynamin. Thus, XLαs restricts clathrin-mediated endocytosis and plays a critical role in iron/transferrin uptake in vivo. Published under the PNAS license.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KoraMagazi, Arouna; Wang, Dandan; Yousef, Bashir
Rhein is an active component of rhubarb; a traditional Chinese medicine reported to induce apoptosis and cause liver toxicity. However, rhein's apoptotic-inducing effects, as well as its molecular mechanisms of action on hepatic cells need to be further explored. In the present study, rhein was found to trigger apoptosis in primary human hepatic HL-7702 cells as showed by annexin V/PI double staining assay and nuclear morphological changes demonstrated by Hoechst 33258 staining. Moreover, it was observed that the mechanism implicated in rhein-induced apoptosis was caspase-dependent, presumably via ER-stress associated pathways, as illustrated by up-regulation of glucose-regulated protein 78 (GRP 78), PKR-likemore » ER kinase (PERK), C-Jun N-terminal kinase (JNK) and CCAAT/enhancer-binding protein homologous protein (CHOP). Meanwhile, caspase-4 as a hallmark of ER-stress, was also showed to be activated following by caspase-3 activation. Furthermore, rhein also promoted intracellular elevation of calcium that contributed in apoptosis induction. Interestingly, pre-treatment with calpain inhibitor I reduced the effects of rhein on apoptosis induction and JNK activation. These data suggested that rhein-induced apoptosis through ER-stress and elevated intracellular calcium level in HL-7702 cells. - Highlights: • Rhein triggers apoptotic cell death on primary human hepatic HL-7702 cells. • Rhein leads to caspase-4 activation in HL-7702 cells. • Rhein induces endoplasmic reticulum stress pathways in HL-7702 cells. • Rhein causes elevation of intracellular calcium concentrations in HL-7702 cells.« less
The Plasticity of Th17 Cells in the Pathogenesis of Rheumatoid Arthritis
Kotake, Shigeru; Kobashigawa, Tsuyoshi; Nanke, Yuki
2017-01-01
Helper T (Th) cells play an important role in the pathogenesis of autoimmune diseases, including rheumatoid arthritis (RA). It has been revealed that Th17 cells can shift to Th1 cells (i.e., “nonclassic Th1 cells”), which are reported to be more pathogenic than Th17 cells per se. Thus, the association of Th cells in the pathogenesis of autoimmune disease has become more complicated. We recently reported using peripheral blood from untreated and early-onset RA patients that the ratio of CD161+Th1 cells (i.e., Th17-derived Th1 cells to CD161+Th17 cells) is elevated and that levels of interferon-γ (IFNγ)+Th17 cells are inversely correlated with levels of anti-CCP antibodies. Here, we review the plasticity of Th17 cells in the pathogenesis of RA, suggesting possible implications for novel therapies. PMID:28698517
CD10 is a marker for cycling cells with propensity to apoptosis in childhood ALL
Cutrona, G; Tasso, P; Dono, M; Roncella, S; Ulivi, M; Carpaneto, E M; Fontana, V; Comis, M; Morabito, F; Spinelli, M; Frascella, E; Boffa, L C; Basso, G; Pistoia, V; Ferrarini, M
2002-01-01
CD10 constitutes a favourable prognostic marker for childhood acute lymphoblastic leukaemia. Since correlations between CD10, cell cycle and apoptotic abilities were demonstrated in various cell types, we investigated whether differences existed in the cycling/apoptotic abilities of CD10-positive and CD10-negative B acute lymphoblastic leukaemia cells. Twenty-eight cases of childhood acute lymphoblastic leukaemia (mean age of 6.8 years) were subdivided into two groups according to high (17 cases, 93.2±4.5%, MRFI 211±82 CD10-positive cells) or low (11 cases, 11.5±6.2%, MRFI 10±7 CD10-negative cells) expression of CD10. CD10-positive acute lymphoblastic leukaemia cells were cycling cells with elevated c-myc levels and propensity to apoptosis, whereas CD10-negative acute lymphoblastic leukaemia cells had lower cycling capacities and c-myc levels, and were resistant to apoptosis in vitro. A close correlation between all these properties was demonstrated by the observations that the few CD10-positive cells found in the CD10-negative acute lymphoblastic leukaemia group displayed elevated c-myc and cycling capacities and were apoptosis prone. Moreover, exposure of CD10-positive acute lymphoblastic leukaemia B cells to a peptide nucleic acid anti-gene specific for the second exon of c-myc caused inhibition of c-myc expression and reduced cell cycling and apoptotic abilities as well as decreased CD10 expression. British Journal of Cancer (2002) 86, 1776–1785. doi:10.1038/sj.bjc.6600329 www.bjcancer.com © 2002 Cancer Research UK PMID:12087466
Repeated whiskey binges promote liver injury in rats fed a choline-deficient diet.
Nieto, Natalia; Rojkind, Marcos
2007-02-01
Alcoholic liver disease is associated with nutritional deficiency and it may aggravate within the context of fatty liver. We investigated the relationship between alcohol intake (whiskey binge drinking) and a choline-deficient diet (CD) and assessed whether stellate cells could contribute to liver injury in this model. Rats fed the CD diet plus whiskey showed increased liver damage compared to rats fed the CD diet, as demonstrated by H&E staining, elevated transaminases, steatosis, TNF-alpha levels, enhanced CYP2E1 activity, impaired antioxidant defense, elevated lipid peroxidation, and protein carbonyls. The combined treatment triggered an apoptotic response as determined by elevated Bax, caspase-3 activity, cytochrome-c release, and decreased Bcl-2 and Bcl-XL. Stellate cells were activated as increased expression of alpha-Sma was observed over that by the CD diet alone. The combined treatment shifted extracellular matrix remodeling towards a pro-fibrogenic response due to up-regulation of collagen I, TIMP1, and Hsp47 proteins, along with down-regulation of MMP13, MMP2, and MMP9 expression, proteases which degrade collagen I. These events were accompanied by increased phosphorylation of p38, a kinase that elevates collagen I. Repeated alcohol binges in the context of mild steatosis may promote activation of stellate cells and contribute to liver injury.
Fonti, Patrick; von Arx, Georg; Carrer, Marco
2017-01-01
Background and Aims During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. Methods Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. Key Results Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August–September temperature at high elevation. Conclusions Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our understanding of climate control of tree growth and functioning under different environmental conditions. PMID:28130220
2014-01-01
Background The aim of this study was to evaluate the level of reactive oxygen metabolites (ROMs) after chemotherapy in patients with non-small cell lung cancer (NSCLC) and its association with response to treatment. Methods Fifty-eight untreated NSCLC patients and twenty-three healthy subjects were selected for the study. Patients received two courses of platinum-based chemotherapy and were evaluated for oxidative stress and treatment response. As a marker of reactive oxygen species, ROMs levels were measured using the d-ROMs test. Results ROMs level (mean ± standard deviation) before chemotherapy in NSCLC patients (416 ± 135 U.CARR) was significantly elevated (p = 0.016) compared to normal healthy subjects (320 ± 59 U.CARR). Patients who responded to chemotherapy showed significantly decreased (p = 0.014) ROMs levels after chemotherapy, whereas patients who had stable disease or progressive disease showed no change in ROMs level (p = 0.387). Conclusions NSCLC patients had significantly elevated ROMs levels before chemotherapy compared with normal healthy subjects. Chemotherapy may suppress ROMs production in responders but not in non-responders. ROMs level may be a predictor of clinical outcome in patients receiving chemotherapy for NSCLC. PMID:25180083
Bazyka, D A; Kubashko, A V; Ilyenko, I M; Belyaev, O A; Pleskach, O J
2015-12-01
to investigate the Cyclin D1+ cells levels changes, associated CCND1 and PNKP genes in peripheral blood mononuclear cells in clean up workers of Chornobyl accident with different state of immune system in depends on the dose irradiation. Relative level of Cyclin D1+cells in peripheral blood mononuclears of 39 clean up workers, men, irradiated in dose range (0,01-2,00) Gy have been analyzed. Immunological status of examinee' subjects was determined by CD3/19, CD4/8, CD3/HLA DR, СD3/16/56 testing using flow cytometry method and Ig A,M,G testing by immunoenzymatic assay in blood. CCND1 та PNKP gene expression, which associated with Cyclin D1 metabolism, was conducted using PCR real time method. The obtained results were compared in relation to data from 18 healthy men, who had no contact with ionizing radiation over then nature background. Аnalyzed data of the nuclear controller of cell cycle - Cyclin D1 protein expression changes and related CCND1 та PNKP genes in peripheral blood mononuclear cells in clean up workers Chornobyl accident with different status of immune system in remote period after exposure is represented. It is shown, that in examinees' subjects exposed in dose > 0,1 Gy percentage of Суclin D1+ cells is elevated against normal range and correlates with dose of radiation (rs = 0,417, p = 0,048). Normal range deflation of relative amount of Cyclin D1+cells connects with changes in cellular and humoral immunity. Decline of relative amount of Cyclin D1+ cells below the control level following CD3+ lymphocytes decrease and CD3 16+56+ elevation in clean up workers exposed in dose < 0,35 Gy. Increase of relative amount of Cyclin D1+ cells above the control range associates with CD3+ fall together with tendency of CD3+16+56+ lymphocytes fall that attends the IgG elevation in examinees' subjects with dose > 0,35 Gy. Percentage of Cyclin D1+ cells correlates with CD3 16+56+ (rs = 0,872, p = 0,049), CD8+ and IgG (rs = 0,683, p = 0,042; rs = 0,809, p = 0,014), CD4+ (rs = 0,602, p = 0,029), CD19+ and IgM (rs = 0,604, p = 0,017; rs = 0,538, p = 0,038) under condition of increased level CD4+, CD19+, Іreg. and IgG accordantly. Reviled decrease the CCND1 and PNKP gene expression in clean up workers exposed in dose > 0,1 Gy following appearance of correlation between (relative quantification) RQ PNKP and irradiation dose (rs = 0,638, p = 0,035) and also with RQ PNKP and percentage of Cyclin D1+ cells (rs = 0,792, p = 0,034).Concusions. Reveled changes in expression of Cyclin D1+ cells and regulation of related genes may point on possi ble radiation associated firm molecular disturbances occurred during elimination of consequences of Chornobyl accident, that could be a potential basis for cell and humoral communicative links breach in immune system result ing in elevation of stochastic effects like oncopathology in clean up workers of Chornobyl accident in remote peri od after exposure. D. A. Bazyka, A. V. Kubashko, I. M. Ilyenko, O. A. Belyaev, O. J. Pleskach.
Trivedi, Palak J; Tickle, Joseph; Vesterhus, Mette Nåmdal; Eddowes, Peter J; Bruns, Tony; Vainio, Jani; Parker, Richard; Smith, David; Liaskou, Evaggelia; Thorbjørnsen, Liv Wenche; Hirschfield, Gideon M; Auvinen, Kaisa; Hubscher, Stefan G; Salmi, Marko; Adams, David H; Weston, Chris J
2018-06-01
Primary sclerosing cholangitis (PSC) is the classical hepatobiliary manifestation of IBD. This clinical association is linked pathologically to the recruitment of mucosal T cells to the liver, via vascular adhesion protein (VAP)-1-dependent enzyme activity. Our aim was to examine the expression, function and enzymatic activation of the ectoenzyme VAP-1 in patients with PSC. We examined VAP-1 expression in patients with PSC, correlated levels with clinical characteristics and determined the functional consequences of enzyme activation by specific enzyme substrates on hepatic endothelium. The intrahepatic enzyme activity of VAP-1 was elevated in PSC versus immune-mediated disease controls and non-diseased liver (p<0.001). The adhesion of gut-tropic α4β7 + lymphocytes to hepatic endothelial cells in vitro under flow was attenuated by 50% following administration of the VAP-1 inhibitor semicarbazide (p<0.01). Of a number of natural VAP-1 substrates tested, cysteamine-which can be secreted by inflamed colonic epithelium and gut bacteria-was the most efficient (yielded the highest enzymatic rate) and efficacious in its ability to induce expression of functional mucosal addressin cell adhesion molecule-1 on hepatic endothelium. In a prospectively evaluated patient cohort with PSC, elevated serum soluble (s)VAP-1 levels predicted poorer transplant-free survival for patients, independently (HR: 3.85, p=0.003) and additively (HR: 2.02, p=0.012) of the presence of liver cirrhosis. VAP-1 expression is increased in PSC, facilitates adhesion of gut-tropic lymphocytes to liver endothelium in a substrate-dependent manner, and elevated levels of its circulating form predict clinical outcome in patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Relaxin augments the inflammatory IL6 response in the choriodecidua
JS, Horton; SY, Yamamoto; GD, Bryant-Greenwood
2012-01-01
Intrauterine infection frequently leads to preterm birth (PTB), with the pathophysiology involving activation of the innate immune system and its associated inflammatory response. The choriodecidua produces relaxin (RLN) and elevated levels are associated with preterm premature rupture of the fetal membranes. However, it is not increased in bacterially-mediated PTB, but may act as an endogenous sterile inflammatory mediator. Elevated systemic RLN levels from the corpus luteum are also associated with PTB, but the mechanism is unknown. In clinical obstetrics, intrauterine inflammation or infection can coexist with elevated RLN. Therefore, in this study, we further characterized the effects of RLN alone or together with an inflammatory mediator on the production of IL1B, CSF2 (GM-CSF), IL6, IL8 and TNF, from chorionic cytotrophoblasts (CyT), decidual fibroblasts (DF) and stromal cells (DSC), using interleukin-1 beta (IL1B) to mimic sterile inflammation or lipopolysaccharide (LPS) for bacterial infection. Endogenous differences between the cells showed that the CyT expressed more and the RXFP1, its receptor RXFP1 splice variant D. CyT also showed the most robust cAMP response to RLN with increased IL6 secreted after 4 h, preceded by increased transcription at 1 h, likely due to activation of RXFP1 and cAMP. When all cell types were treated with IL1B and RLN, RLN augmented secretion of IL6 and IL8 from CyT and DF, but not DSC. Similarly, RLN augmented LPS-induced IL6 secretion from CyT and DF. Despite the structural similarity between TLR4 and RXFP1, blocking TLR4 in CyT had no effect on RLN-induced IL6 secretion, suggesting specific activation of RXFP1. Thus, we have shown that in the presence of a low level of intrauterine inflammation/infection, elevated RLN could act on the CyT and DF to augment the inflammatory response, contributing to the pathophysiology of PTB. PMID:22386961
Yang, Bei
2012-01-01
Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication. PMID:22031934
Tang, Jiahong; Zha, Jie; Guo, Xutao; Shi, Pengcheng; Xu, Bing
2017-09-01
Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of non-Hodgkin's lymphomas, with limited treatment options in refractory and relapsed patients. Growing evidence supports the notion that CD8 + T cell immunity could be utilized to eliminate B cell lymphomas. CXCR5 + CD8 + T cell is a novel cell subtype and share CXCR5 expression with CD19 + tumor cells. In this study, we investigated the frequency and function of existing CXCR5 + CD8 + T cells in DLBCL patients. We found that DLBCL patients as a group demonstrated significantly higher level of CXCR5 + CD8 + T cells than healthy individuals, with huge variability in each patient. Using anti-CD3/CD28-stimulated CD8 + T cells as effector (E) cells and autologous CD19 + tumor cells as target (T) cells, at high E:T ratio, no difference between the intensities of CXCR5 + CD8 + T cell- and CXCR5 - CD8 + T cell-mediated cytotoxicity were observed. However, at intermediate and low E:T ratios, the CXCR5 + CD8 + T cells presented stronger cytotoxicity than CXCR5 - CD8 + T cells. The expressions of granzyme A, granzyme B, and perforin were significantly higher in CXCR5 + CD8 + T cells than in CXCR5 - CD8 + T cells, with no significant difference in the level of degranulation. Tumor cells in DLBCL were known to secrete high level of interleukin 10 (IL-10). We therefore blocked the IL-10/IL-10R pathway, and found that the expressions of granzyme A, granzyme B, and perforin by CXCR5 + CD8 + T cells were significantly elevated. Together, these results suggest that CXCR5 + CD8 + T cells are potential candidates of CD8 + T cell-based immunotherapies, could mediate elimination of autologous tumor cells in DLBCL patients, but are also susceptible to IL-10-mediated suppression. Copyright © 2017. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
High levels of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) are associated with inflammation, atherosclerosis, and coronary heart disease events. In addition, Lp-PLA(2) has been linked to classical markers of endothelial activation, including soluble vascular cell adhesion molecule-1 (sVCAM...
C-reactive protein levels: a prognostic marker for patients with head and neck cancer?
2010-01-01
Background Recent advances in understanding complex tumor interactions have led to the discovery of an association between inflammation and cancer, in particular for colon and lung cancer, but only a very few have dealt with oral cancer. Therefore, the aim of the current study was to investigate the significance of preoperative C-reactive protein (CRP) levels as a parameter for development of lymph node metastases or recurrence. Materials and methods In 278 patients with oral cancer, preoperative CRP levels were compared with development of recurrence and metastasis. Results In 27 patients from the normal CRP group, and in 21 patients from the elevated CRP group, local recurrence was observed. Concerning lymph node metastases, 37 patients were in the normal group and 9 patients in the elevated CRP group. No significant correlation could be found between elevated CRP levels and metastasis (p = 0.468) or recurrence (p = 0.137). Conclusion Our findings do not appear to support a correlation between preoperative CRP levels and development of recurrence or metastases. In further studies, CRP levels in precancerous lesions and in Human Papilloma Virus (HPV) positive patients with oral squamous cell carcinoma (SCC) should be studied. PMID:20673375
C-reactive protein levels: a prognostic marker for patients with head and neck cancer?
Kruse, Astrid L; Luebbers, Heinz T; Grätz, Klaus W
2010-08-02
Recent advances in understanding complex tumor interactions have led to the discovery of an association between inflammation and cancer, in particular for colon and lung cancer, but only a very few have dealt with oral cancer. Therefore, the aim of the current study was to investigate the significance of preoperative C-reactive protein (CRP) levels as a parameter for development of lymph node metastases or recurrence. In 278 patients with oral cancer, preoperative CRP levels were compared with development of recurrence and metastasis. In 27 patients from the normal CRP group, and in 21 patients from the elevated CRP group, local recurrence was observed. Concerning lymph node metastases, 37 patients were in the normal group and 9 patients in the elevated CRP group. No significant correlation could be found between elevated CRP levels and metastasis (p = 0.468) or recurrence (p = 0.137). Our findings do not appear to support a correlation between preoperative CRP levels and development of recurrence or metastases. In further studies, CRP levels in precancerous lesions and in Human Papilloma Virus (HPV) positive patients with oral squamous cell carcinoma (SCC) should be studied.
The effect of the rate of hydrostatic pressure depressurization on cells in culture.
Tworkoski, Ellen; Glucksberg, Matthew R; Johnson, Mark
2018-01-01
Changes in hydrostatic pressure, at levels as low as 10 mm Hg, have been reported in some studies to alter cell function in vitro; however, other studies have found no detectable changes using similar methodologies. We here investigate the hypothesis that the rate of depressurization, rather than elevated hydrostatic pressure itself, may be responsible for these reported changes. Hydrostatic pressure (100 mm Hg above atmospheric pressure) was applied to bovine aortic endothelial cells (BAECs) and PC12 neuronal cells using pressurized gas for periods ranging from 3 hours to 9 days, and then the system was either slowly (~30 minutes) or rapidly (~5 seconds) depressurized. Cell viability, apoptosis, proliferation, and F-actin distribution were then assayed. Our results did not show significant differences between rapidly and slowly depressurized cells that would explain differences previously reported in the literature. Moreover, we found no detectable effect of elevated hydrostatic pressure (with slow depressurization) on any measured variables. Our results do not confirm the findings of other groups that modest increases in hydrostatic pressure affect cell function, but we are not able to explain their findings.
The effect of the rate of hydrostatic pressure depressurization on cells in culture
Tworkoski, Ellen; Glucksberg, Matthew R.
2018-01-01
Changes in hydrostatic pressure, at levels as low as 10 mm Hg, have been reported in some studies to alter cell function in vitro; however, other studies have found no detectable changes using similar methodologies. We here investigate the hypothesis that the rate of depressurization, rather than elevated hydrostatic pressure itself, may be responsible for these reported changes. Hydrostatic pressure (100 mm Hg above atmospheric pressure) was applied to bovine aortic endothelial cells (BAECs) and PC12 neuronal cells using pressurized gas for periods ranging from 3 hours to 9 days, and then the system was either slowly (~30 minutes) or rapidly (~5 seconds) depressurized. Cell viability, apoptosis, proliferation, and F-actin distribution were then assayed. Our results did not show significant differences between rapidly and slowly depressurized cells that would explain differences previously reported in the literature. Moreover, we found no detectable effect of elevated hydrostatic pressure (with slow depressurization) on any measured variables. Our results do not confirm the findings of other groups that modest increases in hydrostatic pressure affect cell function, but we are not able to explain their findings. PMID:29315329
Immunoadsorption to remove ß2 adrenergic receptor antibodies in Chronic Fatigue Syndrome CFS/ME.
Scheibenbogen, Carmen; Loebel, Madlen; Freitag, Helma; Krueger, Anne; Bauer, Sandra; Antelmann, Michaela; Doehner, Wolfram; Scherbakov, Nadja; Heidecke, Harald; Reinke, Petra; Volk, Hans-Dieter; Grabowski, Patricia
2018-01-01
Infection-triggered disease onset, chronic immune activation and autonomic dysregulation in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) point to an autoimmune disease directed against neurotransmitter receptors. We had observed elevated autoantibodies against ß2 adrenergic receptors, and muscarinic 3 and 4 acetylcholine receptors in a subset of patients. Immunoadsorption (IA) was shown to be effective in removing autoantibodies and improve outcome in various autoimmune diseases. 10 patients with post-infectious CFS/ME and elevated ß2 autoantibodies were treated with IA with an IgG-binding column for 5 days. We assessed severity of symptoms as outcome parameter by disease specific scores. Antibodies were determined by ELISA and B cell phenotype by flow cytometry. IgG levels dropped to median 0.73 g/l (normal 7-16 g/l) after the 4th cycle of IA, while IgA and IgM levels remained unchanged. Similarly, elevated ß2 IgG antibodies rapidly decreased during IA in 9 of 10 patients. Also 6 months later ß2 autoantibodies were significantly lower compared to pretreatment. Frequency of memory B cells significantly decreased and frequency of plasma cells increased after the 4th IA cycle. A rapid improvement of symptoms was reported by 7 patients during the IA. 3 of these patients had long lasting moderate to marked improvement for 6-12+ months, 2 patients had short improvement only and 2 patients improved for several months following initial worsening. IA can remove autoantibodies against ß2 adrenergic receptor and lead to clinical improvement. B cell phenotyping provides evidence for an effect of IA on memory B cell development. Data from our pilot trial warrants further studies in CFS/ME.
Yuan, Xuejun; Zhou, Yonggang; Casanova, Emilio; Chai, Minqiang; Kiss, Eva; Gröne, Hermann-Josef; Schütz, Günter; Grummt, Ingrid
2005-07-01
Growth-dependent regulation of rRNA synthesis is mediated by TIF-IA, a basal transcription initiation factor for RNA polymerase I. We inactivated the murine TIF-IA gene by homologous recombination in mice and embryonic fibroblasts (MEFs). TIF-IA-/- embryos die before or at embryonic day 9.5 (E9.5), displaying retardation of growth and development. In MEFs, Cre-mediated depletion of TIF-IA leads to disruption of nucleoli, cell cycle arrest, upregulation of p53, and induction of apoptosis. Elevated levels of p53 after TIF-IA depletion are due to increased binding of ribosomal proteins, such as L11, to MDM2 and decreased interaction of MDM2 with p53 and p19(ARF). RNAi-induced loss of p53 overcomes proliferation arrest and apoptosis in response to TIF-IA ablation. The striking correlation between perturbation of nucleolar function, elevated levels of p53, and induction of cell suicide supports the view that the nucleolus is a stress sensor that regulates p53 activity.
Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collart, F.R.; Chubb, C.B.; Mirkin, B.L.
1992-07-10
IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results aremore » consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.« less
Significant elevation of the levels of B-cell activating factor (BAFF) in patients with sarcoidosis.
Ando, Masaru; Goto, Akihiko; Takeno, Yukiko; Yamasue, Mari; Komiya, Kosaku; Umeki, Kenji; Nureki, Shin-Ichi; Miyazaki, Eishi; Kadota, Jun-Ichi
2018-06-23
B-cell activating factor (BAFF) plays an important role in the survival and differentiation of B-cells and production of antibodies. Recent studies show that the serum BAFF levels are elevated in patients with sarcoidosis; however, they have not studied the relationship of the finding with the clinical features of the disease. The purpose of the present study is to analyze the BAFF and to elucidate the relationship between BAFF levels and the disease activity or severity of sarcoidosis. Eighty-eight patients with sarcoidosis and 21 healthy volunteers were enrolled in the present study. The BAFF levels were measured by an enzyme-linked immunosorbent assay. To assess the disease severity, we examined the number of affected organs, Schadding stages, respiratory function impairment (RFI), and the scoring system developed by Wasfi et al. The serum BAFF levels in sarcoidosis patients were significantly higher than those in healthy volunteers (median 1553.0 vs 984.6 pg/ml, p < 0.001). There were positive correlations between the serum BAFF level and disease activity markers. In addition, there were positive correlations between the BAFF levels and the disease severity score in both the serum (R = 0.367, p < 0.001) and bronchoalveolar lavage fluid (BALF) (R = 0.376, p < 0.001). This study demonstrated that the BAFF levels in both the serum and BALF were positively correlated with the disease activity markers and disease severity. BAFF may be useful as an indicator of both the disease activity and severity.
Mendoza, Rhone A.; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur
2011-01-01
Understanding of the interactions between estradiol (E2) and insulin-like growth factor-I (IGF-I) is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating non-interfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human growth hormone plus epidermal growth factor, but E2 did not cause increase in the number of the IGF-IR.low cells compared to controls. Proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Further, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. Summary, suppressing the IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate. PMID:20974640
Metuzumab enhanced chemosensitivity and apoptosis in non-small cell lung carcinoma
Feng, Fei; Wang, Bin; Sun, Xiuxuan; Zhu, Yumeng; Tang, Hao; Nan, Gang; Wang, Lijuan; Wu, Bo; Huhe, Muren; Liu, Shuangshuang; Diao, Tengyue; Hou, Rong; Zhang, Yang; Zhang, Zheng
2017-01-01
ABSTRACT Targeted therapeutics is used as an alternative treatment of non-small cell lung cancer (NSCLC); however, treatment effect is far from being satisfactory, and therefore identification of new targets is needed. We have previously shown that metuzumab inhibit tumor growth in vivo. The present study was performed to investigate the anti-tumor efficacy of metuzumab combined with gemcitabine and cisplatin (GP), paclitaxel and cisplatin (TP) or navelbine and cisplatin (NP) regimens in multiple NSCLC cell lines. Our results demonstrate that, in comparison to single agent metuzumab or GP treated cells, metuzumab combined with GP display inhibitory effects on tumor growth. Furthermore, we found that metuzumab elevated the sensitivity of cell lines to gemcitabine, which was identified by MTT assay. Flow cytometric analysis showed that metuzumab combined with gemcitabine (GEM) treatment led to an obvious G1 arrest and an elevated apoptosis in A549, NCI-H460 and NCI-H520 cells. Western blot analysis also demonstrated a significantly reduced level of cyclin D1, Bcl-2, and an obviously increase level of Bax and full-length caspase-3 in A549, NCI-H460 and NCI-H520 cells treated with metuzumab/gemcitabine combination in comparison with single agent treated cells. In addition, metuzumab/gemcitabine treated A549, NCI-H460 and NCI-H520 cells also demonstrated a significantly increase in deoxycytidine kinase (dCK) protein level compared with single agent metuzumab or gemcitabine treated cells. Xenograft models also demonstrated that this metuzumab/gemcitabine combination led to upregulation of dCK. Taken together, the mechanisms of metuzumab combined with GP repress tumor growth were that the combined treatment significantly inhibited the tumor cell proliferation, apoptosis and cell cycle in vitro and in vivo and at least partially by induction of dCK expression. Our results suggested that metuzumab could significantly enhance chemosensitivity of human NSCLC cells to gemcitabine. Metuzumab/gemcitabine combination treatment may be a potentially useful therapeutic regimen for NSCLC patients. PMID:28055291
Type XVIII collagen degradation products in acute lung injury
Perkins, Gavin D; Nathani, Nazim; Richter, Alex G; Park, Daniel; Shyamsundar, Murali; Heljasvaara, Ritva; Pihlajaniemi, Taina; Manji, Mav; Tunnicliffe, W; McAuley, Danny; Gao, Fang; Thickett, David R
2009-01-01
Introduction In acute lung injury, repair of the damaged alveolar-capillary barrier is an essential part of recovery. Endostatin is a 20 to 28 kDa proteolytic fragment of the basement membrane collagen XVIII, which has been shown to inhibit angiogenesis via action on endothelial cells. We hypothesised that endostatin may have a role in inhibiting lung repair in patients with lung injury. The aims of the study were to determine if endostatin is elevated in the plasma/bronchoalveolar lavage fluid of patients with acute lung injury and ascertain whether the levels reflect the severity of injury and alveolar inflammation, and to assess if endostatin changes occur early after the injurious lung stimuli of one lung ventilation and lipopolysaccharide (LPS) challenge. Methods Endostatin was measured by ELISA and western blotting. Results Endostatin is elevated within the plasma and bronchoalveolar lavage fluid of patients with acute lung injury. Lavage endostatin reflected the degree of alveolar neutrophilia and the extent of the loss of protein selectivity of the alveolar-capillary barrier. Plasma levels of endostatin correlated with the severity of physiological derangement. Western blotting confirmed elevated type XVIII collagen precursor levels in the plasma and lavage and multiple endostatin-like fragments in the lavage of patients. One lung ventilation and LPS challenge rapidly induce increases in lung endostatin levels. Conclusions Endostatin may adversely affect both alveolar barrier endothelial and epithelial cells, so its presence within both the circulation and the lung may have a pathophysiological role in acute lung injury that warrants further evaluation. PMID:19358707
Genetic analysis of mouse embryonic stem cells bearing Msh3 and Msh2 single and compound mutations.
Abuin, A; Zhang, H; Bradley, A
2000-01-01
We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells.
Genetic Analysis of Mouse Embryonic Stem Cells Bearing Msh3 and Msh2 Single and Compound Mutations
Abuin, Alejandro; Zhang, HeJu; Bradley, Allan
2000-01-01
We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells. PMID:10594017
Gaspar, J M; Castilho, Á; Baptista, F I; Liberal, J; Ambrósio, A F
2010-12-29
A few studies have reported the existence of depletion of synaptic vesicles, and changes in neurotransmitter release and in the content of exocytotic proteins in the hippocampus of diabetic rats. Recently, we found that diabetes alters the levels of synaptic proteins in hippocampal nerve terminals. Hyperglycemia is considered the main trigger of diabetic complications, although other factors, such as low insulin levels, also contribute to diabetes-induced changes. Thus, the aim of this work was to evaluate whether long-term elevated glucose per se, which mimics prolonged hyperglycemia, induces significant changes in the content and localization of synaptic proteins involved in exocytosis in hippocampal neurons. Hippocampal cell cultures were cultured for 14 days and were exposed to high glucose (50 mM) or mannitol (osmotic control; 25 mM plus 25 mM glucose), for 7 days. Cell viability and nuclear morphology were evaluated by MTT and Hoechst assays, respectively. The protein levels of vesicle-associated membrane protein-2 (VAMP-2), synaptosomal-associated protein-25 (SNAP-25), syntaxin-1, synapsin-1, synaptophysin, synaptotagmin-1, rabphilin 3a, and also of vesicular glutamate and GABA transporters (VGluT-1 and VGAT), were evaluated by immunoblotting, and its localization was analyzed by immunocytochemistry. The majority of the proteins were not affected. However, elevated glucose decreased the content of SNAP-25 and increased the content of synaptotagmin-1 and VGluT-1. Moreover, there was an accumulation of syntaxin-1, synaptotagmin-1 and VGluT-1 in the cell body of some hippocampal neurons exposed to high glucose. No changes were detected in mannitol-treated cells. In conclusion, elevated glucose per se did not induce significant changes in the content of the majority of the synaptic proteins studied in hippocampal cultures, with the exception of SNAP-25, synaptotagmin-1 and VGluT-1. However, there was an accumulation of some proteins in cell bodies of hippocampal neurons exposed to elevated glucose, suggesting that the trafficking of these proteins to the synapse may be compromised. Moreover, these results also suggest that other factors, in addition to hyperglycemia, certainly contribute to alterations detected in synaptic proteins in diabetic animals. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Relationship between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis.
Melaragno, JE; Mehrotra, B; Coleman, AW
1993-01-01
Relative quantities of DNA in individual nuclei of stem and leaf epidermal cells of Arabidopsis were measured microspectrofluorometrically using epidermal peels. The relative ploidy level in each nucleus was assessed by comparison to root tip mitotic nuclei. A clear pattern of regular endopolyploidy is evident in epidermal cells. Guard cell nuclei contain levels of DNA comparable to dividing root cells, the 2C level (i.e., one unreplicated copy of the nuclear DNA). Leaf trichome nuclei had elevated ploidy levels of 4C, 8C, 16C, 32C, and 64C, and their cytology suggested that the polyploidy represents a form of polyteny. The nuclei of epidermal pavement cells were 2C, 4C, and 8C in stem epidermis, and 2C, 4C, 8C, and 16C in leaf epidermis. Morphometry of epidermal pavement cells revealed a direct proportionality between nuclear DNA level and cell size. A consideration of the development process suggests that the cells of highest ploidy level are developmentally oldest; consequently, the developmental pattern of epidermal tissues can be read from the ploidy pattern of the cells. This observation is relevant to theories of stomate spacing and offers opportunities for genetic analysis of the endopolyploidy/polyteny phenomenon. PMID:12271050
Ciesielski, Grzegorz L; Nadalutti, Cristina A; Oliveira, Marcos T; Griffith, Jack D; Kaguni, Laurie S
2018-01-01
Abstract Pathological conditions impairing functions of mitochondria often lead to compensatory upregulation of the mitochondrial DNA (mtDNA) replisome machinery, and the replicative DNA helicase appears to be a key factor in regulating mtDNA copy number. Moreover, mtDNA helicase mutations have been associated with structural rearrangements of the mitochondrial genome. To evaluate the effects of elevated levels of the mtDNA helicase on the integrity and replication of the mitochondrial genome, we overexpressed the helicase in Drosophila melanogaster Schneider cells and analyzed the mtDNA by two-dimensional neutral agarose gel electrophoresis and electron microscopy. We found that elevation of mtDNA helicase levels increases the quantity of replication intermediates and alleviates pausing at the replication slow zones. Though we did not observe a concomitant alteration in mtDNA copy number, we observed deletions specific to the segment of repeated elements in the immediate vicinity of the origin of replication, and an accumulation of species characteristic of replication fork stalling. We also found elevated levels of RNA that are retained in the replication intermediates. Together, our results suggest that upregulation of mtDNA helicase promotes the process of mtDNA replication but also results in genome destabilization. PMID:29432582
Innami, Satoshi; Ishida, Hiroshi; Nakamura, Kahoru; Kondo, Mika; Tabata, Kimiko; Koguchi, Takashi; Shimizu, Jun; Furusho, Tadasu
2005-01-01
The study was performed to explore the suppressive effect of Jew's mellow leaves (JML) on postprandial blood glucose levels in rats and humans. A soluble dietary fiber (SDF) was extracted from the freeze-dried JML powder. An elevation of the postprandial blood glucose level in rats given 1% or 2% JML-SDF solution orally together with 20% glucose solution was significantly suppressed as compared with that observed in the control rats given only glucose solution. When seven healthy young male adults ingested 225 mL of JML mixed juice containing 15 g of freeze-dried powder with 75 g of glucose in the fasting state in the morning, the elevation of the postprandial blood glucose level was significantly suppressed as compared with the control subjects. The diffusion rate of glucose and the permeation rate of glucose in the cultured Caco-2 cells were both significantly reduced by the addition of appropriate amounts of JML-SDF when compared to the controls. These results indicate that the effective substance in JML for suppressing blood glucose elevation is a kind of mucilaginous SDF. The mechanism by which this suppression occurs may be largely attributable to the delayed absorption of glucose from the intestinal membrane in the upper digestive tract by viscous SDF.
Wnt transmembrane signaling and long-term spatial memory
Tabatadze, Nino; Tomas, Caroline; McGonigal, Rhona; Lin, Brian; Schook, Andrew; Routtenberg, Aryeh
2011-01-01
Transmembrane signaling mechanisms are critical for regulating the plasticity of neuronal connections underlying the establishment of long-lasting memory (e.g., Linden and Routtenberg, 1989, Brain Res Rev. 14: 279–296; Sossin, 1996, Trends Neurosci 19: 215–218; Mayr and Montminy, 2001, Nat Rev Mol Cell Biol. 2: 599–609; Chen et al., 2011, Nature 469: 491–497). One signaling mechanism that has received surprisingly little attention in this regard is the well-known Wnt transmembrane signaling pathway even though this pathway in the adult plays a significant role, for example, in postsynaptic dendritic spine morphogenesis and presynaptic terminal neurotransmitter release (Inestrosa and Arenas, 2010, Nature Rev Neurosci 11: 77–86). The present report now provides the first evidence of Wnt signaling in spatial information storage processes. Importantly, this Wnt participation is specific and selective. Thus, spatial, but not cued, learning in a water maze selectively elevates the levels in hippocampus of Wnt 7 and Wnt 5a, but not the Wnt 3 isoform, indicating behavioral selectivity and isoform specificity. Wnt 7 elevation is subfield-specific: granule cells show an increase with no detectable change in CA3 neurons. Wnt 7 elevation is temporally specific: increased Wnt signaling is not observed during training, but is seen 7 days and, unexpectedly, 30 days later. If the Wnt elevation after learning is activity-dependent, then it may be possible to model this effect in primary hippocampal neurons in culture. Here we evaluate the consequence of potassium or glutamate depolarization on Wnt signaling. This represents, to our knowledge, the first demonstration of an activation-dependent elevation of Wnt levels. Additionally, the novel finding emerged of an increased number of Wnt-stained puncta in neuritis suggestive of trafficking from the cell body to neuronal processes, probably dendrites. It is proposed that Wnt signaling pathways, both canonical and non-canonical, regulate long-term information storage in a behavioral-, cellular- and isoform-specific manner. PMID:22180023
Su, Le; Han, Lei; Ge, Fei; Zhang, Shang Li; Zhang, Yun; Zhao, Bao Xiang; Zhao, Jing; Miao, Jun Ying
2012-10-15
Manufactured nanoparticles are currently used for many fields. However, their potential toxicity provides a growing concern for human health. In our previous study, we prepared novel magnetic nanoparticles (MNPs), which could effectively remove heavy metal ions and cationic dyes from aqueous solution. To understand its biocompatibility, we investigated the effect of the nanoparticles on the function of vascular endothelial cells. The results showed that the nanoparticles were taken up by human umbilical vein endothelial cells (HUVECs) and could inhibit cell proliferation at 400 μg/ml. An increase in nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity were induced, which companied with the decrease in caveolin-1 level. The endothelium in the aortic root was damaged and the NO level in serum was elevated after treated mice with 20mg/kg nanoparticles for 3 days, but it was integrated after treated with 5mg/kg nanoparticles. Meanwhile, an increase in eNOS activity and decrease in caveolin-1 level were induced in the endothelium. The data suggested that the low concentration of nanoparticles could not affect the function and viability of VECs. The high concentration of nanoparticles could inhibit VEC proliferation through elevation of the eNOS activity and NO production and thus present toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.
Haddy, T B
1982-01-01
Erythropoietin responsible for the hormonal regulation of red blood cell production. Its formation is largely controlled by the kidneys. A number of assay methods for erythropoietin are available. Asymptomatic patients with sickle cell disease have elevated erythropoietin levels, as expected with chronic hemolysis. When complicated by chronic renal failure, erythropoietin levels do not rise appropriately. Chronic infection has not been studied, but the erythropoietin response in acute infection does not seem to conform to a pattern. Aplastic crises are characterized by very high levels of erythropoietin, suggesting bone marrow suppression, but events that trigger the crises remain obscure. In vaso-occlusive crises, there is also some suggestion of mild and transient lack of bone marrow response. Patients with sickle cell disease, with their chronic high erythropoietin anemia and susceptibility to altered states, are uniquely suited for investigating the physiology of erythropoietin, especially under the constraints of present assay methods.
Akinlade, K S; Atere, A D; Rahamon, S K; Olaniyi, J A
2013-12-20
It is well known that individuals with SCA undergo constant physiological stress even, in steady state. However, there is little information on the relationship between the severity of sickle cell anaemia (SCA) and serum levels of biomarkers of stress. This study therefore determined the serum levels of copeptin, cortisol and CRP in adults with SCA in different severity groups. Sixty adults with sickle cell anaemia in steady state (27.1±6.3 years) and in vaso-occlusive crisis (24.9±4.9 years) were recruited into this cross-sectional study. Degree of severity (mild, moderate or severe) was determined using a scoring system incorporating annual number of blood transfusions, crisis and presence of anaemia, vaso-occlusive pain and organ complications. Standard methods were used for the determination of packed cell volume (PCV), total white blood cell count (WBC), blood pressure measurements and anthropometric indices. Serum levels of copeptin, cortisol and CRP were determined using ELISA with the ratios calculated accordingly. Data obtained were statistically analyzed using the Student's t-test, Mann Whitney U and Chi-square test as appropriate. P<0.05 was considered significant. The mean systolic blood pressure (SBP) and copeptin level were significantly higher in subjects with moderate SCA compared with those with mild SCA. Similarly SBP, pulse, WBC, copeptin and cortisol were significantly higher while body weight was significantly lower in subjects with severe SCA compared with subjects with mild SCA. However, WBC and cortisol-to-copeptin ratio were significantly higher in subjects with severe SCA compared with subjects with moderate SCA. There was progressive rise in serum levels of CRP from mild SCA through severe SCA but the differences were not statistically significant. Also, proportions of subjects with elevated SBP and WBC were higher than the proportion of subjects with lower SBP and WBC in the severe SCA group. Serum levels of cortisol, copeptin, and their ratio could differentiate severe SCA from mild or moderate SCA. Also, elevated systolic blood pressure and total white blood cell count are associated with severe sickle cell anaemia.
Ferreira, Maria Carolina; de Oliveira, Rômulo Tadeu Dias; da Silva, Rosiane Maria; Blotta, Maria Heloisa Souza Lima; Mamoni, Ronei Luciano
2010-10-01
Patients with paracoccidioidomycosis (PCM) exhibit a suppression of the cellular immune response characterized by negative delayed-type hypersensitivity (DTH) to Paracoccidioides brasiliensis antigens, the apoptosis of lymphocytes, and high levels of expression of cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4), interleukin-10 (IL-10), and transforming growth factor β (TGF-β). The aim of this study was to investigate whether and how regulatory T cells (Treg cells) are involved in this immunosuppression by analyzing the number, phenotype, and activity of these cells in patients with active disease (AD group) and patients who had received treatment (TD group). Our results showed that the AD patients had more Treg cells than the TD patients or controls (C group) and also had elevated levels of expression of regulatory markers (glucocorticoid-induced tumor necrosis factor [TNF] receptor-related protein [GITR], CTLA-4, CD95L, LAP-1, and CD38). An analysis of regulatory activity showed that Treg cells from the AD group had greater activity than did cells from the other groups and that cell-cell contact is mandatory for this activity in the C group but was only partially involved in the regulatory activity of cells from AD patients. The addition of anti-IL-10 and anti-TGF-β neutralizing antibodies to the cultures showed that the production of cytokines may be another mechanism used by Treg cells. In conclusion, the elevated numbers of these cells with an increased regulatory phenotype and strong suppressive activity suggest a potential role for them in the immunosuppression characteristic of paracoccidioidomycosis. In addition, our results indicate that while Treg cells act by cell-cell contact, cytokine production also plays an important role.
Adult Sickle Cell Anaemia Patients in Bone Pain Crisis have Elevated Pro-Inflammatory Cytokines
Alagbe, Adekunle Emmanuel; Aworanti, Oladapo Wale
2018-01-01
Background and Objectives Inflammatory markers that influence bone pain crisis (BPC) and other complications of sickle cell anaemia (SCA) are numerous and play various roles. This study determined the plasma levels of tumour necrosis factor (TNF) - α, interleukin - 8 (IL-8), and endothelin - 1 (ET-1) in adult SCA patients during BPC and in steady state. In addition, the plasma levels of these cytokines were correlated with the severity of BPC of the patients. Methods and Materials Sixty adult SCA patients (30 during BPC and 30 during steady state) and 30 haemoglobin A controls were enrolled for this cross-sectional study. The severity of BPC was assessed clinically, and questionnaires were filled. Plasma levels of TNF- α, IL-8 and ET-1 were quantified by ELISA, and haematological parameters were determined using a 5-part auto-analyzer. Plasma levels were correlated with the severity of bone pain crisis. Results were considered statistically significant if p<0.05. Results Plasma TNF-α, IL-8, and ET-1 were significantly elevated in the BPC group than in the steady state group and the controls. Plasma TNF-α, IL-8 and ET-1 were markedly higher in the severe BPC groups than the steady state and control groups, There was a positive correlation between TNF-α and ET-1 in the bone pain crisis group. Conclusion Elevated levels of plasma TNF-α, IL-8, and ET-1 further establish the chronic inflammatory state in SCA and equally affirm their significant contribution, not only to pathogenesis but also to the severity of pain in SCA. PMID:29531654
Veeramani, S; Yuan, T-C; Lin, F-F; Lin, M-F
2009-01-01
p66Shc is shown to negatively regulate the life span in mice through reactive oxygen species (ROS) production. Recent reports, however, revealed that p66Shc protein level is significantly elevated in several human cancer tissues and growth-stimulated carcinoma cells, suggesting a mitogenic and carcinogenic role for p66Shc. In this communication, we demonstrate for the first time that p66Shc mediates androgenic growth signals in androgen-sensitive human prostate cancer cells through mitochondrial ROS production. Growth stimulation of prostate cancer cells with 5α-dihydrotestosterone (DHT) is accompanied by increased p66Shc level and ROS production, which is abolished by antioxidant treatments. However, antioxidant treatments do not affect the transcriptional activity of androgen receptor (AR) as observed by its inability to block DHT-induced prostate-specific antigen expression, an AR-dependent correlate of prostate cancer progression. Elevated expression of p66Shc by cDNA transfection increases the basal cell proliferation and, thus, reduces additional DHT-induced cell proliferation. Furthermore, DHT increases the translocation of p66Shc into mitochondria and its interaction with cytochrome c. Conversely, both redox-negative p66Shc mutant (W134F), which is deficient in cytochrome c interaction, and p66Shc small interfering RNA decrease DHT-induced cell proliferation. These results collectively reveal a novel role for p66Shc–ROS pathway in androgen-induced prostate cancer cell proliferation and, thus, may play a role in early prostate carcinogenesis. PMID:18504439
Evidence against Resveratrol as a viable therapy for the rescue of defective ΔF508 CFTR
Jai, Ying; Shah, Kalpit; Bridges, Robert J.; Bradbury, Neil A.
2015-01-01
BACKGROUND Resveratrol, a natural phenolic compound, has been reported to rescue mutant ΔF508 CFTR in expression systems and primary epithelial cells. Although this implies a therapeutic benefit to patients with CF, investigations were performed using resveratrol concentrations greatly in excess of those achievable in plasma. We evaluated the efficacy of resveratrol as a CFTR corrector in relevant primary airway cells, using physiologically achievable resveratrol concentrations. METHODS Cells expressing wt or ΔF508 CFTR were exposed to chronic or acute resveratrol. CFTR mRNA and protein expression were monitored. The effects of resveratrol on primary ΔF508 human airway cells were evaluated by equivalent current analysis using modified Ussing chambers. RESULTS Consistent with previously published data in heterologous expression systems, high doses of resveratrol increased CFTR expression; however physiologically relevant concentrations were without effect. In contrast to heterologous expression systems, resveratrol was unable to increase mutant CFTR channel activity in primary airway cells. Elevated amiloride-sensitive currents, indicative of sodium transport and characteristically elevated in CF airway cells, were also unaffected by resveratrol CONCLUSIONS High concentrations of resveratrol can increase CFTR mRNA and protein in some cell types. In addition, acute resveratrol exposure can stimulate CFTR mediated chloride secretion, probably by increasing cellular cAMP levels. Resveratrol at physiologically achievable levels yielded no benefit in primary ΔF508 airway cells, either in terms of amiloride-sensitive currents of CFTR currents. PMID:26342647
Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding
Danilov, Sergei M.; Lünsdorf, Heinrich; Akinbi, Henry T.; Nesterovitch, Andrew B.; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V.; Piegeler, Tobias; Golukhova, Elena Z.; Schwartz, David E.; Dull, Randal O.; Minshall, Richard D.; Kost, Olga A.; Garcia, Joe G. N.
2016-01-01
Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients. PMID:27734897
Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding.
Danilov, Sergei M; Lünsdorf, Heinrich; Akinbi, Henry T; Nesterovitch, Andrew B; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V; Piegeler, Tobias; Golukhova, Elena Z; Schwartz, David E; Dull, Randal O; Minshall, Richard D; Kost, Olga A; Garcia, Joe G N
2016-10-13
Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients.
Vadlapatla, Ramya; Vadlapudi, Aswani Dutt; Ponnaluri, VK Chaithanya; Pal, Dhananjay; Mukherji, Mridul; Mitra, Ashim K.
2013-01-01
A decrease in tissue oxygen levels (aka hypoxia) mediates a number of vascular retinal diseases. Despite introduction of novel therapeutics, treatment of retinal disorders remains challenging, possibly due to complex nature of hypoxia signaling. To date, the differential effect of hypoxia on expression of efflux and influx transporters in retinal cells has not been studied. Therefore, the objective of this study was to delineate molecular and functional expression of membrane transporters in human retinal pigment epithelial (RPE) cells cultured under normoxic and hypoxic conditions. Quantitative real time polymerase chain reaction (qPCR), ELISA and immunoblot analysis were performed to examine the RNA and protein expression levels of transporters. Further, functional activity was evaluated by performing the uptake of various substrates in both normoxic and hypoxic conditions. qPCR analysis showed elevated expression of efflux transporters (P-glycoprotein, multidrug resistant protein 2, breast cancer resistant protein) and influx transporters (folate receptor-α, cationic and neutral amino acid transporter, sodium dependent multivitamin transporter) in a time dependent manner. Immunoblot analysis further confirmed elevated expression of breast cancer resistant protein and sodium dependent multivitamin transporter. A decrease in the uptake of efflux transporter substrates (digoxin, lopinavir and abacavir) and enhanced uptake of influx transporter substrates (arginine, folic acid and biotin) in hypoxia relative to normoxia further confirmed elevated expression of transporters, respectively. This study demonstrates for the first time that hypoxic conditions may alter expression of efflux and influx transporters in RPE cells. These findings suggest that hypoxia may further alter disposition of ophthalmic drugs. PMID:23827654
Kang, Seung-Ji; Jin, Hye-Mi; Won, Eun Jeong; Cho, Young-Nan; Jung, Hyun-Ju; Kwon, Yong-Soo; Kee, Hae Jin; Ju, Jae Kyun; Kim, Jung-Chul; Kim, Uh Jin; Jang, Hee-Chang; Jung, Sook-In; Kee, Seung-Jung; Park, Yong-Wook
2016-07-01
Mucosal-associated invariant T (MAIT) cells contribute to protection against certain microorganism infections. However, little is known about the role of MAIT cells in Orientia tsutsugamushi infection. Hence, the aims of this study were to examine the level and function of MAIT cells in patients with scrub typhus and to evaluate the clinical relevance of MAIT cell levels. Thirty-eight patients with scrub typhus and 53 health control subjects were enrolled in the study. The patients were further divided into subgroups according to disease severity. MAIT cell level and function in the peripheral blood were measured by flow cytometry. Circulating MAIT cell levels were found to be significantly reduced in scrub typhus patients. MAIT cell deficiency reflects a variety of clinical conditions. In particular, MAT cell levels reflect disease severity. MAIT cells in scrub typhus patients displayed impaired tumor necrosis factor (TNF)-α production, which was restored during the remission phase. In addition, the impaired production of TNF-α by MAIT cells was associated with elevated CD69 expression. This study shows that circulating MAIT cells are activated, numerically deficient, and functionally impaired in TNF-α production in patients with scrub typhus. These abnormalities possibly contribute to immune system dysregulation in scrub typhus infection.
Low Oxygen Tension Enhances Hepatitis C Virus Replication
Kalliampakou, K. I.; Kotta-Loizou, I.; Befani, C.; Liakos, P.; Simos, G.; Mentis, A. F.; Kalliaropoulos, A.; Doumba, P. P.; Smirlis, D.; Foka, P.; Bauhofer, O.; Poenisch, M.; Windisch, M. P.; Lee, M. E.; Koskinas, J.; Bartenschlager, R.
2013-01-01
Low oxygen tension exerts a significant effect on the replication of several DNA and RNA viruses in cultured cells. In vitro propagation of hepatitis C virus (HCV) has thus far been studied under atmospheric oxygen levels despite the fact that the liver tissue microenvironment is hypoxic. In this study, we investigated the efficiency of HCV production in actively dividing or differentiating human hepatoma cells cultured under low or atmospheric oxygen tensions. By using both HCV replicons and infection-based assays, low oxygen was found to enhance HCV RNA replication whereas virus entry and RNA translation were not affected. Hypoxia signaling pathway-focused DNA microarray and real-time quantitative reverse transcription-PCR (qRT-PCR) analyses revealed an upregulation of genes related to hypoxic stress, glycolytic metabolism, cell growth, and proliferation when cells were kept under low (3% [vol/vol]) oxygen tension, likely reflecting cell adaptation to anaerobic conditions. Interestingly, hypoxia-mediated enhancement of HCV replication correlated directly with the increase in anaerobic glycolysis and creatine kinase B (CKB) activity that leads to elevated ATP production. Surprisingly, activation of hypoxia-inducible factor alpha (HIF-α) was not involved in the elevation of HCV replication. Instead, a number of oncogenes known to be associated with glycolysis were upregulated and evidence that these oncogenes contribute to hypoxia-mediated enhancement of HCV replication was obtained. Finally, in liver biopsy specimens of HCV-infected patients, the levels of hypoxia and anaerobic metabolism markers correlated with HCV RNA levels. These results provide new insights into the impact of oxygen tension on the intricate HCV-host cell interaction. PMID:23269812
Sun, C C; Wu, J; Wong, T T; Wang, L F; Chuan, M T
2000-12-01
Bullous pemphigoid (BP) is an inflammatory subepidermal blistering disease associated with autoantibodies that recognize hemidesmosomal proteins. In addition to autoantibodies, the cell-mediated immune reaction is considered to play an important part in blister formation. Objectives To investigate some T-cell activation markers and inflammatory cytokines in the blister fluid and sera of patients with BP. We measured soluble CD4 (sCD4) and soluble CD8 (sCD8), which have been, respectively, associated with CD4 and CD8 T-cell activation. Enzyme-linked immunosorbent assays were also used to quantify the production of the leucocyte chemoattractant interleukin (IL) -8 and of the cytokines IL-1alpha, IL-1beta, IL-6, IL-10 and tumour necrosis factor-alpha in the blister fluid and sera of 11 patients with BP. The mean +/- SD level of sCD4 in patients' blisters (42.4 +/- 25.0 units mL-1) was significantly elevated (P < 0.005) compared with that in their sera (11.2 +/- 8.9) and that in the suction blisters of 10 healthy people (11.4 +/- 5.4; P < 0.005). Mean +/- SD IL-8 concentrations in BP blisters (4683.6 +/- 3878.1 pg mL-1) were much higher than those in their sera (17.1 +/- 18.9; P < 0.001), and were very significantly elevated (P < 0.005) in comparison with those in suction blisters of healthy persons (512 +/- 292). sCD4 levels in BP blisters were inversely related to IL-10 levels (P = 0. 03, r2 = 0.85), IL-8 levels were positively related to sCD8 levels (P = 0.01, r2 = 0.54), and IL-1beta levels were positively related to sCD8 concentrations (P < 0.005, r2 = 0.65). The correlations suggest that there is a delicately orchestrated network of cytokines and cell-mediated immunity operating in BP blisters.
The Fate of the Red Cells: Insights from Two Models of Severe Malarial Anemia
2011-03-07
approximately 1%. The reticulocyte levels in these animals elevated to approximately 35% 2 days after the anemic crisis and then returned to basal...cells are destroyed for every parasitized red cell22. A prospective study in a Karen community on the western border of Thailand showed that in anemia...activation in severe Plasmodium falciparum malaria. Clin.Immunol.Immunopathol. 1997;85:166-171. 136. Facer CA, Bray RS, Brown J. Direct Coombs
Harrison, F E; Dawes, S M; Meredith, M E; Babaev, V R; Li, L; May, J M
2010-09-01
The sodium-dependent vitamin C transporter (SVCT2) is responsible for the transport of vitamin C into cells in multiple organs, from either the blood or the cerebrospinal fluid. Mice null for SVCT2 (SVCT2(-/-)) do not survive past birth but the cause of death has not yet been ascertained. After mating of SVCT2(+/-) males and SVCT2(+/-) females, fewer SVCT2(-/-) and SVCT2(+/-) progeny were observed than would be expected according to Mendelian ratios. Vitamin C levels in SVCT2(-/-), SVCT2(+/-), and SVCT2(+/+) were genotype-dependent. SVCT2(-/-) fetuses had significantly lower vitamin C levels than littermates in placenta, cortex, and lung, but not in liver (the site of vitamin C synthesis). Low vitamin C levels in placenta and cortex were associated with elevations in several markers of oxidative stress: malondialdehyde, isoketals, F(2)-isoprostanes, and F(4)-neuroprostanes. Oxidative stress was not elevated in fetal SVCT2(-/-) lung tissue despite low vitamin C levels. In addition to the expected severe hemorrhage in cortex, we also found hemorrhage in the brain stem, which was accompanied by cell loss. We found evidence of increased apoptosis in SVCT2(-/-) mice and disruption of the basement membrane in fetal brain. Together these data show that SVCT2 is critical for maintaining vitamin C levels in fetal and placental tissues and that the lack of SVCT2, and the resulting low vitamin C levels, results in fetal death and, in SVCT2(-/-) mice that survive the gestation period, in oxidative stress and cell death. Copyright 2010 Elsevier Inc. All rights reserved.
Nagano, Nobuo
2006-03-01
Circulating levels of calcium ion (Ca2+) are maintained within a narrow physiological range mainly by the action of parathyroid hormone (PTH) secreted from parathyroid gland (PTG) cells. PTG cells can sense small fluctuations in plasma Ca2+ levels by virtue of a cell surface Ca2+ receptor (CaR) that belongs to the superfamily of G protein-coupled receptors (GPCR). Compounds that activate the CaR and inhibit PTH secretion are termed 'calcimimetics' because they mimic or potentiate the effects of extracellular Ca2+ on PTG cell function. Preclinical studies with NPS R-568, a first generation calcimimetic compound that acts as a positive allosteric modulator of the CaR, have demonstrated that oral administration decreases serum levels of PTH and calcium, with a leftward shift in the set-point for calcium-regulated PTH secretion in normal rats. NPS R-568 also suppresses the elevation of serum PTH levels and PTG hyperplasia and can improve bone mineral density (BMD) and strength in rats with chronic renal insufficiency (CRI). Clinical trials with cinacalcet hydrochloride (cinacalcet), a compound with an improved metabolic profile, have shown that long-term treatment continues to suppress the elevation of serum levels of calcium and PTH in patients with primary hyperparathyroidism (1HPT). Furthermore, clinical trials in patients with uncontrolled secondary hyperparathyroidism (2HPT) have demonstrated that cinacalcet not only lowers serum PTH levels, but also the serum phosphorus and calcium x phosphorus product; these are a hallmark of an increased risk of cardiovascular disease and mortality in dialysis patients with end-stage renal disease. Indeed, cinacalcet has already been approved for marketing in several countries. Calcimimetic compounds like cinacalcet have great potential as an innovative medical approach to manage 1HPT and 2HPT.
Pan, Min-Hsiung; Chen, Wei-Jen; Lin-Shiau, Shoei-Yn; Ho, Chi-Tang; Lin, Jen-Kun
2002-10-01
Tangeretin (5,6,7,8,4'-pentamethoxyflavone) is concentrated in the peel of citrus fruits. DNA flow cytometric analysis indicated that tangeretin blocked cell cycle progression at G1 phase in colorectal carcinoma COLO 205 cells. Over a 24 h exposure to tangeretin, the degree of phosphorylation of Rb was decreased after 12 h and G1 arrest developed. The protein expression of cyclins A, D1, and E reduced slightly under the same conditions. Immunocomplex kinase experiments showed that tangeretin inhibited the activities of cyclin-dependent kinases 2 (Cdk2) and 4 (Cdk4) in a dose-dependent manner in the cell-free system. As the cells were exposed to tangeretin (50 microM) over 48 h a gradual loss of both Cdk2 and 4 kinase activities occurred. Tangeretin also increased the content of the Cdk inhibitor p21 protein and this effect correlated with the elevation in p53 levels. In addition, tangeretin also increased the level of the Cdk inhibitor p27 protein within 18 h. These results suggest that tangeretin either exerts its growth-inhibitory effects through modulation of the activities of several key G1 regulatory proteins, such as Cdk2 and Cdk4, or mediates the increase of Cdk inhibitors p21 and p27.
Lv, Xianhui; Yu, Zhenzhen; Xie, Chunfeng; Dai, Xiuliang; Li, Qing; Miao, Dengshun; Jin, Jianliang
2017-01-22
The regeneration of injured tubular cell occurs primarily from intrinsic renal stem/progenitor cells (RSCs) labeled with CD24 and CD133 after acute tubular necrosis (ATN). Bmi-1 plays a crucial role in regulating self-renewal, differentiation and aging of multiple adult stem cells and progenitor cells. Bmi-1 was rapidly elevated in the induction of adult kidney regeneration by renal injury. To determine whether Bmi-1 maintained mobilization of RSCs in the protection from ATN, glycerol-rhabdomyolysis-induced ATN were performed in wild type (WT) and Bmi-1-deficient (Bmi-1 -/- ) mice. Their ATN phenotypes were analyzed; CD24 and CD133 double positive (CD24 + CD133 + ) cells were measured; and the levels of serum urea nitrogen (SUN) and serum creatinine (SCr) were detected. We found that CD24 + CD133 + RSCs were mobilized in WT ATN mice with the increased expression of Bmi-1; Bmi-1 deficiency led to increased tubular cast formation and necrosis, elevated levels of SUN and SCr, decreased tubular proliferation, and immobilized ratio of RSCs in ATN. These findings indicated that Bmi-1 played a critical role in the protection from ATN by maintaining mobilization of RSCs and would be a novel therapeutic target for preventing the progression of ATN. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Xianhui; Yu, Zhenzhen; Xie, Chunfeng
The regeneration of injured tubular cell occurs primarily from intrinsic renal stem/progenitor cells (RSCs) labeled with CD24 and CD133 after acute tubular necrosis (ATN). Bmi-1 plays a crucial role in regulating self-renewal, differentiation and aging of multiple adult stem cells and progenitor cells. Bmi-1 was rapidly elevated in the induction of adult kidney regeneration by renal injury. To determine whether Bmi-1 maintained mobilization of RSCs in the protection from ATN, glycerol-rhabdomyolysis-induced ATN were performed in wild type (WT) and Bmi-1-deficient (Bmi-1{sup −/−}) mice. Their ATN phenotypes were analyzed; CD24 and CD133 double positive (CD24{sup +}CD133{sup +}) cells were measured; andmore » the levels of serum urea nitrogen (SUN) and serum creatinine (SCr) were detected. We found that CD24{sup +}CD133{sup +} RSCs were mobilized in WT ATN mice with the increased expression of Bmi-1; Bmi-1 deficiency led to increased tubular cast formation and necrosis, elevated levels of SUN and SCr, decreased tubular proliferation, and immobilized ratio of RSCs in ATN. These findings indicated that Bmi-1 played a critical role in the protection from ATN by maintaining mobilization of RSCs and would be a novel therapeutic target for preventing the progression of ATN.« less
Clinical role for a superantigen in Yersinia pseudotuberculosis infection.
Abe, J; Onimaru, M; Matsumoto, S; Noma, S; Baba, K; Ito, Y; Kohsaka, T; Takeda, T
1997-01-01
Yersinia pseudotuberculosis is an enteric pathogen that causes a variety of clinical symptoms in the human. Recently, we reported the production of a superantigen (Y. pseudotuberculosis-derived mitogen, YPM) by this organism and characterized the gene structure of ypm. To further study the potential pathogenic role of YPM in Y. pseudotuberculosis infection, we assayed IgG anti-YPM antibodies and T cell antigen receptor-Vbeta expression of the T cells in peripheral blood and in mesenteric lymph node in patients acutely infected with Y. pseudotuberculosis. 20 out of 33 patients (61%) had an elevated antibody titer compared with healthy controls (P = 0.0001). Patients with systemic symptoms such as lymphadenopathy, transient renal dysfunction, and arthritis had significantly higher titers of anti-YPM than patients with gastrointestinal tract symptoms alone. T cells bearing the Vbeta3 gene segment were significantly increased (P = 0.009) among acute phase patients compared with healthy children. During the convalescence phase of the illness, there was a reduction in the abnormal level of Vbeta3 T cells. Moreover, in the mesenteric lymph node, an elevated level of Vbeta3 T cells compared with peripheral blood and a sequence diversity in the junctional region of the T cell antigen receptor beta-chain containing Vbeta3 element was observed in one patient. Together, these findings suggest that YPM was produced in vivo and played an important role in the pathogenesis of Y. pseudotuberculosis infection. PMID:9109426
Elevated Chitin Content Reduces the Susceptibility of Candida Species to Caspofungin
Walker, Louise A.; Gow, Neil A. R.
2013-01-01
The echinocandin antifungal drugs inhibit synthesis of the major fungal cell wall polysaccharide β(1,3)-glucan. Echinocandins have good efficacy against Candida albicans but reduced activity against other Candida species, in particular Candida parapsilosis and Candida guilliermondii. Treatment of Candida albicans with a sub-MIC level of caspofungin has been reported to cause a compensatory increase in chitin content and to select for sporadic echinocandin-resistant FKS1 point mutants that also have elevated cell wall chitin. Here we show that elevated chitin in response to caspofungin is a common response in various Candida species. Activation of chitin synthesis was observed in isolates of C. albicans, Candida tropicalis, C. parapsilosis, and C. guilliermondii and in some isolates of Candida krusei in response to caspofungin treatment. However, Candida glabrata isolates demonstrated no exposure-induced change in chitin content. Furthermore, isolates of C. albicans, C. krusei, C. parapsilosis, and C. guilliermondii which were stimulated to have higher chitin levels via activation of the calcineurin and protein kinase C (PKC) signaling pathways had reduced susceptibility to caspofungin. Isolates containing point mutations in the FKS1 gene generally had higher chitin levels and did not demonstrate a further compensatory increase in chitin content in response to caspofungin treatment. These results highlight the potential of increased chitin synthesis as a potential mechanism of tolerance to caspofungin for the major pathogenic Candida species. PMID:23089748
Regulation and dysregulation of immunoglobulin E: a molecular and clinical perspective
2010-01-01
Background Altered levels of Immunoglobulin E (IgE) represent a dysregulation of IgE synthesis and may be seen in a variety of immunological disorders. The object of this review is to summarize the historical and molecular aspects of IgE synthesis and the disorders associated with dysregulation of IgE production. Methods Articles published in Medline/PubMed were searched with the keyword Immunoglobulin E and specific terms such as class switch recombination, deficiency and/or specific disease conditions (atopy, neoplasia, renal disease, myeloma, etc.). The selected papers included reviews, case reports, retrospective reviews and molecular mechanisms. Studies involving both sexes and all ages were included in the analysis. Results Both very low and elevated levels of IgE may be seen in clinical practice. Major advancements have been made in our understanding of the molecular basis of IgE class switching including roles for T cells, cytokines and T regulatory (or Treg) cells in this process. Dysregulation of this process may result in either elevated IgE levels or IgE deficiency. Conclusion Evaluation of a patient with elevated IgE must involve a detailed differential diagnosis and consideration of various immunological and non-immunological disorders. The use of appropriate tests will allow the correct diagnosis to be made. This can often assist in the development of tailored treatments. PMID:20178634
NASA Astrophysics Data System (ADS)
Picard, Frédéric; Wanatabe, Mitsuhiro; Schoonjans, Kristina; Lydon, John; O'Malley, Bert W.; Auwerx, Johan
2002-11-01
Gestational diabetes coincides with elevated circulating progesterone levels. We show that progesterone accelerates the progression of diabetes in female db/db mice. In contrast, RU486, an antagonist of the progesterone receptor (PR), reduces blood glucose levels in both female WT and db/db mice. Furthermore, female, but not male, PR-/- mice had lower fasting glycemia than PR+/+ mice and showed higher insulin levels on glucose injection. Pancreatic islets from female PR-/- mice were larger and secreted more insulin consequent to an increase in -cell mass due to an increase in -cell proliferation. These findings demonstrate an important role of progesterone signaling in insulin release and pancreatic function and suggest that it affects the susceptibility to diabetes.
Wang, Cheng; Liu, Fang; Patterson, Tucker A; Paule, Merle G; Slikker, William
2017-05-01
Ketamine, a noncompetitive NMDA receptor antagonist, is used as a general anesthetic and recent data suggest that general anesthetics can cause neuronal damage when exposure occurs during early brain development. To elucidate the underlying mechanisms associated with ketamine-induced neurotoxicity, stem cell-derived models, such as rodent neural stem cells harvested from rat fetuses and/or neural stem cells derived from human induced pluripotent stem cells (iPSC) can be utilized. Prolonged exposure of rodent neural stem cells to clinically-relevant concentrations of ketamine resulted in elevated NMDA receptor levels as indicated by NR1subunit over-expression in neurons. This was associated with enhanced damage in neurons. In contrast, the viability and proliferation rate of undifferentiated neural stem cells were not significantly affected after ketamine exposure. Calcium imaging data indicated that 50μM NMDA did not cause a significant influx of calcium in typical undifferentiated neural stem cells; however, it did produce an immediate elevation of intracellular free Ca 2+ [Ca 2+ ] i in differentiated neurons derived from the same neural stem cells. This paper reviews the literature on this subject and previous findings suggest that prolonged exposure of developing neurons to ketamine produces an increase in NMDA receptor expression (compensatory up-regulation) which allows for a higher/toxic influx of calcium into neurons once ketamine is removed from the system, leading to neuronal cell death likely due to elevated reactive oxygen species generation. The absence of functional NMDA receptors in cultured neural stem cells likely explains why clinically-relevant concentrations of ketamine did not affect undifferentiated neural stem cell viability. Published by Elsevier B.V.
Adermark, Louise; Clarke, Rhona B C; Olsson, Torsten; Hansson, Elisabeth; Söderpalm, Bo; Ericson, Mia
2011-01-01
Elevated dopamine levels are believed to contribute to the rewarding sensation of ethanol (EtOH), and previous research has shown that strychnine-sensitive glycine receptors in the nucleus accumbens (nAc) are involved in regulating dopamine release and in mediating the reinforcing effects of EtOH. Furthermore, the osmoregulator taurine, which is released from astrocytes treated with EtOH, can act as an endogenous ligand for the glycine receptor, and increase extracellular dopamine levels. The aim of this study was to address if EtOH-induced swelling of astrocytes could contribute to elevated dopamine levels by increasing the extracellular concentration of taurine. Cell swelling was estimated by optical sectioning of fluorescently labeled astrocytes in primary cultures from rat, and showed that EtOH (25-150 mM) increased astrocyte cell volumes in a concentration- and ion-dependent manner. The EtOH-induced cell swelling was inhibited in cultures treated with the Na(+) /K(+) /2Cl⁻ cotransporter blocker furosemide (1 mM), Na(+) /K(+) -ATPase inhibitor ouabain (0.1 mM), potassium channel inhibitor BaCl₂ (50 µM) and in cultures containing low extracellular sodium concentration (3 mM). In vivo microdialysis performed in the nAc of awake and freely moving rats showed that local treatment with EtOH enhanced the concentrations of dopamine and taurine in the microdialysate, while glycine and β-alanine levels were not significantly modulated. EtOH-induced dopamine release was antagonized by local treatment with the glycine receptor antagonist strychnine (20 µM) or furosemide (100 µM or 1 mM). Furosemide also prevented EtOH-induced taurine release in the nAc. In conclusion, our data suggest that extracellular concentrations of dopamine and taurine are interconnected and that swelling of astrocytes contributes to the acute rewarding sensation of EtOH. © 2010 The Authors, Addiction Biology © 2010 Society for the Study of Addiction.
Jäger, R; List, B; Knabbe, C; Souttou, B; Raulais, D; Zeiler, T; Wellstein, A; Aigner, A; Neubauer, A; Zugmaier, G
2002-01-01
Pleiotrophin is a heparin-binding growth factor involved in the differentiation and proliferation of neuronal tissue during embryogenesis, and also secreted by melanoma and breast carcinoma cells. Pleiotrophin exhibits mitogenic and angiogenic properties and has been shown to influence the vascular supply, expansion and metastasis of tumour cells. Our aim was to study the serum and plasma concentrations of pleiotrophin and the classical angiogenic growth factor vascular endothelial growth factor. Using a specific ELISA-test we studied patients with small cell lung cancer (n=63), and patients with non-small cell lung cancer (n=22) in comparison to healthy control subjects (n=41). In most of the lung cancer patients (81%), we found serum levels of pleiotrophin above those of control subjects (P<0.001). Of the 63 small cell lung cancer patients in the study pleiotrophin serum levels were elevated in 55 cases (87%) and in 14 cases (63%) of the 22 non-small cell lung cancer patients. Pleiotrophin mean serum concentrations were 10.8-fold higher in the tumour patient group as compared to the control group (P<0.001). Furthermore, pleiotrophin serum levels correlated positively with the stage of disease and inversely with the response to therapy. Plasma vascular endothelial growth factor concentrations were elevated in only in 28.6% of small cell lung cancer and 45.5% of non-small cell lung cancer patients by an average of 2.3-fold. Quite strikingly, there was no apparent correlation between the plasma vascular endothelial growth factor concentration and the stage of disease. Our study suggests that pleiotrophin may be an early indicator of lung cancer and might be of use in monitoring the efficacy of therapy, which needs to be confirmed by larger studies. British Journal of Cancer (2002) 86, 858–863. DOI: 10.1038/sj/bjc/6600202 www.bjcancer.com © 2002 Cancer Research UK PMID:11953815
Niu, Yaofang; Ahammed, Golam Jalal; Tang, Caixian; Guo, Longbiao; Yu, Jingquan
2016-01-01
The unprecedented rise in atmospheric CO2 concentration and injudicious fertilization or heterogeneous distribution of Mg in the soil warrant further research to understand the synergistic and holistic mechanisms involved in the plant growth regulation. This study investigated the influence of elevated CO2 (800 μL L−1) on physiological and transcriptomic profiles in Arabidopsis cultured in hydroponic media treated with 1 μM (low), 1000 μM (normal) and 10000 μM (high) Mg2+. Following 7-d treatment, elevated CO2 increased the shoot growth and chlorophyll content under both low and normal Mg supply, whereas root growth was improved exclusively under normal Mg nutrition. Notably, the effect of elevated CO2 on mineral homeostasis in both shoots and roots was less than that of Mg supply. Irrespective of CO2 treatment, high Mg increased number of young leaf but decreased root growth and absorption of P, K, Ca, Fe and Mn whereas low Mg increased the concentration of P, K, Ca and Fe in leaves. Transcriptomics results showed that elevated CO2 decreased the expression of genes related to cell redox homeostasis, cadmium response, and lipid localization, but enhanced signal transduction, protein phosphorylation, NBS-LRR disease resistance proteins and subsequently programmed cell death in low-Mg shoots. By comparison, elevated CO2 enhanced the response of lipid localization (mainly LTP transfer protein/protease inhibitor), endomembrane system, heme binding and cell wall modification in high-Mg roots. Some of these transcriptomic results are substantially in accordance with our physiological and/or biochemical analysis. The present findings broaden our current understanding on the interactive effect of elevated CO2 and Mg levels in the Arabidopsis, which may help to design the novel metabolic engineering strategies to cope with Mg deficiency/excess in crops under elevated CO2. PMID:26881808
Elevation of c-MYC Disrupts HLA Class II-mediated Immune Recognition of Human B-cell Tumors1
God, Jason M.; Cameron, Christine; Figueroa, Janette; Amria, Shereen; Hossain, Azim; Kempkes, Bettina; Bornkamm, Georg W.; Stuart, Robert K.; Blum, Janice S.; Haque, Azizul
2014-01-01
Elevated levels of the transcription factor c-myc are strongly associated with various cancers, and in particular B-cell lymphomas. While many of c-MYC’s functions have been elucidated, its effect on the presentation of antigen (Ag) through the HLA class II pathway has not previously been reported. This is an issue of considerable importance, given the low immunogenicity of many c-MYC-positive tumors. We report here that increased c-MYC expression has a negative effect on the ability of B-cell lymphomas to functionally present Ags/peptides to CD4+ T cells. This defect was associated with alterations in the expression of distinct co-factors as well as interactions of antigenic peptides with class II molecules required for the presentation of class II-peptide complexes and T cell engagement. Using early passage Burkitt’s lymphoma (BL) tumors and transformed cells, we show that compared to B-lymphoblasts, BL cells express decreased levels of the class II editor HLA-DM, lysosomal thiol-reductase GILT, and a 47kDa enolase-like protein. Functional Ag presentation was partially restored in BL cells treated with a c-MYC inhibitor, demonstrating the impact of this oncogene on Ag recognition. This restoration of HLA class II-mediated Ag presentation in early passage BL tumors/cells was linked to enhanced HLA-DM expression and a concurrent decrease in HLA-DO in BL cells. Taken together, these results reveal c-MYC exerts suppressive effects at several critical checkpoints in Ag presentation which contribute to the immunoevasive properties of BL tumors. PMID:25595783
Schmalzigaug, Robert; Ye, Qunrui; Berchtold, Martin W
2001-01-01
Calmodulin (CaM) is the main intracellular Ca2+ sensor protein responsible for mediating Ca2+ triggered processes. Chicken DT40 lymphoma B cells express CaM from the two genes, CaMI and CaMII. Here we report the phenotypes of DT40 cells with the CaMII gene knocked out. The disruption of the CaMII gene causes the intracellular CaM level to decrease by 60%. CaMII−/− cells grow more slowly and die more frequently as compared to wild type (wt) cells but do not exhibit significant differences in their cell cycle profile. Both phenotypes are more pronounced at reduced serum concentrations. Upon stimulation of the B-cell receptor (BCR), the resting Ca2+ levels remain elevated after the initial transient in CaMII−/− cells. Despite higher Ca2+ resting levels, the CaMII−/− cells are partially protected from BCR induced apoptosis indicating that CaM plays a dual role in apoptotic processes. PMID:11454062
Mausner-Fainberg, Karin; Kolb, Hadar; Penn, Moran; Regev, Keren; Vaknin-Dembinsky, Adi; Gadoth, Avi; Kestenbaum, Meir; Karni, Arnon
2016-03-15
Bone morphogenic proteins (BMPs) signaling blockade induce neurogenesis and oligodendrogenesis. Differential screening-selected gene aberrative in neuroblastoma (DAN) is a glycoprotein that antagonizes BMPs. We found that DAN levels were higher in CSF compared to serum in all participants. CSF-DAN levels were elevated in RR-and progresssive MS patients compared to controls. Moreover, serum-DAN levels were reduced in those patients, but elevated in IFN-β1a treated patients. The main source of DAN is apparently CNS- resident cells. The enhanced levels of CSF-DAN in MS patients suggest a tendency to induce neurogenesis/oligodendrogenesis in the patients CNS. Our results suggest an unreported mode of action of IFN-β1a. Copyright © 2016 Elsevier B.V. All rights reserved.
Cell line specific modulation of connexin43 expression after exposure to ionizing radiation.
Banaz-Yaşar, Ferya; Tischka, Rabea; Iliakis, George; Winterhager, Elke; Gellhaus, Alexandra
2005-01-01
Gap junctional intercellular communication plays a significant role in mediating radiation-induced bystander effects. However, the level of Cx43 itself is influenced by ionizing radiation, which could modify the bystander effect. Here we have investigated several cell lines for the modulation of Cx43 expression 24 h after irradiation with 5 Gy X-rays. The mouse endothelial cell line bEnd3 revealed a significantly elevated level of Cx43 already 15 min after exposure to X-rays, whereas human hybrid endothelial cells (EA.hy926) exhibited a transient downregulation of Cx43 mRNA. No obvious changes in the communication properties of the different cell lines could be observed after irradiation. The communication-deficient malignant human trophoblast cell line Jeg3 stably transfected with Cx43 did not reveal any induction of endogenous nor alteration in the exogenous Cx43 transcript level upon exposure to 5 Gy. Taken together, our data show a cell line specific modulation of Cx43 expression after exposure to X-rays.
Sustained apnea induces endothelial activation.
Eichhorn, Lars; Dolscheid-Pommerich, Ramona; Erdfelder, Felix; Ayub, Muhammad Ajmal; Schmitz, Theresa; Werner, Nikos; Jansen, Felix
2017-09-01
Apnea diving has gained worldwide popularity, even though the pathophysiological consequences of this challenging sport on the human body are poorly investigated and understood. This study aims to assess the influence of sustained apnea in healthy volunteers on circulating microparticles (MPs) and microRNAs (miRs), which are established biomarkers reflecting vascular function. Short intermittent hypoxia due to voluntary breath-holding affects circulating levels of endothelial cell-derived MPs (EMPs) and endothelial cell-derived miRs. Under dry laboratory conditions, 10 trained apneic divers performed maximal breath-hold. Venous blood samples were taken, once before and at 4 defined points in time after apnea. Samples were analyzed for circulating EMPs and endothelial miRs. Average apnea time was 329 seconds (±103), and SpO 2 at the end of apnea was 79% (±12). Apnea was associated with a time-dependent increase of circulating endothelial cell-derived EMPs and endothelial miRs. Levels of circulating EMPs in the bloodstream reached a peak 4 hours after the apnea period and returned to baseline levels after 24 hours. Circulating miR-126 levels were elevated at all time points after a single voluntary maximal apnea, whereas miR-26 levels were elevated significantly only after 30 minutes and 4 hours. Also miR-21 and miR-92 levels increased, but did not reach the level of significance. Even a single maximal breath-hold induces acute endothelial activation and should be performed with great caution by subjects with preexisting vascular diseases. Voluntary apnea might be used as a model to simulate changes in endothelial function caused by hypoxia in humans. © 2017 Wiley Periodicals, Inc.
Moclobemide up-regulates proliferation of hippocampal progenitor cells in chronically stressed mice.
Li, Yun-feng; Zhang, You-zhi; Liu, Yan-qin; Wang, Heng-lin; Yuan, Li; Luo, Zhi-pu
2004-11-01
To explore the action mechanism of antidepressants. The PC12 cell proliferation was detected by flow cytometry. The proliferation of hippocampal progenitor cells and level of brain-derived neurotrophic factor (BDNF) were measured by immunohistochemistry. Treatment with N-methylaspartate (NMDA) 600 micromol/L for 3 d significantly decreased the percentage of S-phase in PC12 cells, while in the presence of classical antidepressant, moclobemide (MOC) 2 and 10 micromol/L, the percentage in S-phase increased. Furthermore, the proliferation of progenitor cells in hippocampal dentate gyrus (subgranular zone), as well as the level of BDNF in hippocampus significantly decreased in chronically stressed mice, while chronic administration with MOC 40 mg/kg (ip) up-regulated the progenitor cell proliferation and BDNF level in the same time course. Up-regulation of the proliferation of hippocampal progenitor cells is one of the action mechanisms for MOC, which may be closely related to the elevation of BDNF level at the same time. These results also extend evidence for our hypothesis that up-regulation of the hippocampal neurogenesis is one of the common mechanisms for antidepressants.
Kwon, Yong-Soo; Cho, Young-Nan; Kim, Moon-Ju; Jin, Hye-Mi; Jung, Hyun-Ju; Kang, Jeong-Hwa; Park, Ki-Jeong; Kim, Tae-Jong; Kee, Hae Jin; Kim, Nacksung; Kee, Seung-Jung; Park, Yong-Wook
2015-05-01
Mucosal-associated invariant T (MAIT) cells contribute to protection against certain microorganism infections. The aims of this study were to examine the levels of MAIT cells in pulmonary tuberculosis (TB) and nontuberculous mycobacteria (NTM) lung disease patients, to evaluate the clinical relevance of MAIT cell levels, and to investigate the functions of MAIT cells. Patients with pulmonary TB (n = 35), NTM (n = 29), and healthy controls (n = 75) were enrolled in the study. MAIT cell levels and functions were measured by flow cytometry. Circluating MAIT cell levels were found to be reduced in TB and NTM patients. MAIT cell deficiency reflects a variety of clinical conditions. In particular, MAIT cell numbers were significantly correlated with sputum AFB positivity, extent of disease, hemoglobin levels, lymphocyte counts, CRP and ESR levels. MAIT cells in TB patients failed to produce interferon-γ irrespective of the mode of stimulation, whereas NTM patients displayed a defect in MR1-dependent signaling pathway. Notably, an elevated expression of programmed death-1 was also associated with MAIT cell deficiency in TB. This study shows that MAIT cells are numerically and functionally deficient in TB and NTM patients and these deficiencies could contribute to immune system dysreguation in mycobacterial infection. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gestl, Erin E., E-mail: egestl@wcupa.edu; Anne Boettger, S., E-mail: aboettger@wcupa.edu
2012-06-29
Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated withmore » p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53 gene expression levels compared to cell lines without p53 sequestration. Our data reveal the characteristic cytoplasmic sequestration of p53 by the heat shock protein mortalin in human colorectal adenocarcinoma cell lines, as is the case for other cancers, such as glioblastomas and hepatocellular carcinomas.« less
Guan, Jing-Zhi; Guan, Wei-Ping; Maeda, Toyoki; Makino, Naoki
2012-01-01
Oxidative stress (OS) may be involved in the neurodegenerative process in Alzheimer's disease (AD). Telomeres, the repeated sequences that cap chromosome ends, undergo shortening with each cell division, are sensitive to OS, and serve as markers of a cell's replicative history. Telomere length shortening has been reported to relate to OS with aging process and aging-associated diseases, but the telomeric changes were not always identical, especially in change of telomere length distribution and subtelomeric methylation. The involvement of an OS-associated telomere change in the pathogenesis of AD has been discussed for decades, and the telomere length and telomerase activity were analyzed. However, other telomeric factors, such as the telomere distribution and subtelomeric methylation status, have not yet been analyzed. The subtelomeric methylation status as well as the telomere length were studied in AD with an antioxidant vitamin in terms of OS. We measured urinary 8-iso-PGF2α, a lipid-peroxidation product as an OS marker, and methylated and non-methylated telomere lengths in the peripheral blood mononuclear cells by Southern blotting in AD patients before and after vitamin E treatment. The level of urinary 8-iso-PGF2α was found to have increased in AD. Middle-ranged telomeres (4.4-9.4 kb) increased and the shortest telomeres (<4.4 kb) decreased in AD patients. Telomeres were more methylated in both long telomeres and in short telomeres in AD compared with the control. The oral administration of the antioxidant vitamin E in 400 mg/day for 6 months in AD patients partly reversed AD-associated alterations in OS marker levels. AD patients showed an elevated OS marker level, and vitamin E lowered the OS level. In comparison with controls, AD patients showed shorter telomere lengths. Cells with short and long telomeres bore relatively hypermethylated subtelomeres in AD patients. Aging-associated accumulation of cells bearing short telomeres was not observed in AD. These results imply that long telomeres with hypomethylation tend to shorten faster, and cells bearing short telomeres with hypomethylation tend to more easily enter into a senescent state under elevated OS stress in AD. However, no significant effect on the altered telomeric profiles in AD patients could be detected after a 6-month administration of vitamin E. Copyright © 2011 S. Karger AG, Basel.
Robinson, E; Keystone, E C; Schall, T J; Gillett, N; Fish, E N
1995-01-01
Earlier studies from this laboratory provided evidence for restricted cytokine expression in the T cell population in RA tissues. Specifically, IL-2, IL-4, IL-6 and interferon-gamma (IFN-gamma) gene expression levels were low. The selective chemoattractant and activation effects of chemokines on leucocytes identify them as potentially ideal candidates in mediating selective inflammatory processes in RA. Accordingly, we undertook studies to examine constitutive chemokine gene expression in RA tissues. RANTES, monocyte chemotactic protein-1 (MCP-1) and MIP-1 beta gene expression was examined in both the T and non-T cell populations in RA peripheral blood (PB), synovial fluid (SF) and synovial tissues (ST). Our results identified elevated levels of both RANTES and MIP-1 beta gene expression in circulating RA PB and SF T cells. By contrast, MCP-1 expression was virtually absent in RA PB, yet elevated MCP-1 mRNA levels were detected primarily in the non-T cell populations of the SF and ST samples. Histological examination of affected rheumatoid joints revealed extensive RANTES and MIP-1 beta expression in sites of lymphocyte infiltration and cell proliferation, namely the synovial lining and sublining layers. Fractionation or RA ST patient samples revealed that RANTES expression was restricted to the T cells, whereas MIP-1 beta expression was detected in both T and non-T fractions. These data suggest that MCP-1, MIP-1 beta and RANTES may have a central role in the trafficking of reactive molecules involved in immunoregulation and in the inflammatory processes in RA. Images Fig. 4 PMID:7545093
Effect of parasitic infection on dopamine biosynthesis in dopaminergic cells
Martin, H.L.; Alsaady, I.; Howell, G.; Prandovszky, E.; Peers, C.; Robinson, P.; McConkey, G.A.
2015-01-01
Infection by the neurotropic agent Toxoplasma gondii alters rodent behavior and can result in neuropsychiatric symptoms in humans. Little is understood regarding the effects of infection on host neural processes but alterations to dopaminergic neurotransmission are implicated. We have previously reported elevated levels of dopamine (DA) in infected dopaminergic cells however the involvement of the host enzymes and fate of the produced DA were not defined. In order to clarify the effects of infection on host DA biosynthetic enzymes and DA packaging we examined enzyme levels and activity and DA accumulation and release in T. gondii-infected neurosecretory cells. Although the levels of the host tyrosine hydroxylase (TH) and DOPA decarboxylase and AADC (DDC) did not change significantly in infected cultures, DDC was found within the parasitophorous vacuole (PV), the vacuolar compartment where the parasites reside, as well as in the host cytosol in infected dopaminergic cells. Strikingly, DDC was found within the intracellular parasite cysts in infected brain tissue. This finding could provide some explanation for observations of DA within tissue cysts in infected brain as a parasite-encoded enzyme with TH activity was also localized within tissue cysts. In contrast, cellular DA packaging appeared unchanged in single-cell microamperometry experiments and only a fraction of the increased DA was accessible to high potassium-induced release. This study provides some understanding of how this parasite produces elevated DA within dopaminergic cells without the toxic ramifications of free cytosolic DA. The mechanism for synthesis and packaging of DA by T. gondii-infected dopaminergic cells may have important implications for the effects of chronic T. gondii infection on humans and animals. PMID:26297895
Martin Jensen, M; Jia, Wanjian; Schults, Austin J; Ye, Xiangyang; Prestwich, Glenn D; Oottamasathien, Siam
2018-05-18
Interstitial cystitis (IC), also known as painful bladder syndrome (PBS), is a debilitating chronic condition that afflicts over 3 million women above the age of 18 in the U.S., and most patients fail to respond to current treatment options. Mast cells have previously been implicated as both a diagnostic and prognostic marker in IC/PBS. Patients with IC/PBS have been shown to have elevated levels of IL-33, a cytokine released in response to tissue insult, in their urine. We hypothesize that mast cell-mediated inflammation induced from IL-33 may play an important role in initiating pain and inflammation in IC/PBS. A human cathelicidin, LL-37, which is found at elevated levels in IC/PBS patients, was used to induce an IC/PBS-like state of inflammation and bladder pain in mast cell deficient C-kit (-/-) and wild type C57Bl/6 (WT) mice. Inflammation was quantified using myeloperoxidase (MPO) expression in bladder tissues measured via ELISA. Response rate to suprapubic stimulation from von Frey filaments was used to assess the relative pain and discomfort. Both types of mice increased IL-33 expression in response to LL-37 exposure. However, mast cell deficient mice demonstrated significantly lower levels of inflammation (p < 0.001) and reduced pain response (p < 0.001) compared to WT mice. These findings implicate an IL-33-mast cell dependent axis with a potential etiology of pain and inflammation in IC/PBS. Future therapeutics aimed at targeting the IL-33 - mast cell axis could potentially serve as useful targets for treating IC/PBS. Copyright © 2018. Published by Elsevier Ltd.
Maiello, M; Boeri, D; Podesta, F; Cagliero, E; Vichi, M; Odetti, P; Adezati, L; Lorenzi, M
1992-08-01
In diabetic patients, elevated plasma levels of t-PA and PAI-1 accompany impaired fibrinolysis. To identify mechanisms for these abnormalities, we examined whether vascular endothelial cells exposed to high glucose upregulate t-PA and PAI-1 production and whether ambient PA activity is decreased concomitantly. In 17 cultures of human umbilical vein endothelial cells grown to confluency in 30 mM glucose, the t-PA antigen released to the medium in 24 h was (median) 52 ng/10(6) cells (range 10-384) and the PAI-1 antigen was 872 ng/10(6) cells (range 217-2074)--both greater (P less than 0.02) than the amounts released by paired control cultures grown in 5 mM glucose--29 ng/10(6) cells (range 7.5-216) and 461 ng/10(6) cells (range 230-3215), respectively. In the presence of high glucose, the steady-state levels of t-PA and PAI-1 mRNAs were increased correspondingly (median 142 and 183% of control, respectively, P less than 0.05); high glucose per se and hypertonicity contributed to the upregulation in additive fashion. The PA activity of conditioned medium from cultures exposed to high glucose was 0.4 IU/ml (range 0.2-0.6), which was significantly lower (P less than 0.02) than the PA activity of control medium (0.5 IU/ml, range 0.2-0.9). No difference was observed when comparing the PA activities of acidified conditioned media, expected to be depleted of inhibitors. Thus, high glucose coordinately upregulates endothelial t-PA and PAI-1 expression through effects exerted at the pretranslational level and enhanced by even mild degrees of hypertonicity.(ABSTRACT TRUNCATED AT 250 WORDS)
Osthole promotes anti-tumor immune responses in tumor-bearing mice with hepatocellular carcinoma.
Zhang, Lurong; Jiang, Guorong; Yao, Fei; Liang, Guoqiang; Wang, Fei; Xu, Heng; Wu, Yan; Yu, Xiao; Liu, Haiyan
2015-06-01
Osthole, a natural coumarin derivative, has been shown to have anti-tumor and anti-inflammatory activity. However, the effect of osthole on anti-tumor immune responses in tumor-bearing mice has not yet been reported. In the present study, osthole treatment did not affect the weight and the coefficient of thymus and spleen in tumor-bearing mice with hepatocellular carcinoma (HCC). However, osthole administration significantly elevated the proportion and number of the splenic CD8(+) T cells, the proportion of CD4(+) T and CD8(+) T cells in tumor tissues, and the levels of IL-2 and TNF-α in the serum of HCC tumor-bearing mice. Our results suggested that osthole could promote the activation of the tumor-infiltrating CD4(+) T and CD8(+) T cells, and elevate the proportion of CD4(+) and CD8(+) effector T cells. Osthole treatment also significantly decreased the proportion of CD4(+)CD25(+)Foxp3(+) regulatory T cells in the spleen. Taken together, osthole could enhance the T cell mediated anti-tumor immune responses in the tumor-bearing mice with HCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Dov, Nadav; Korenstein, Rafi, E-mail: korens@post.tau.ac.il
Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction ofmore » inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.« less
In vivo comparison of biomimetic approaches for tissue regeneration of the scarred vocal fold.
Thibeault, Susan L; Klemuk, Sarah A; Smith, Marshall E; Leugers, Cecilia; Prestwich, Glenn
2009-07-01
The objective of this study was to determine if three different biomimetic approaches could facilitate tissue regeneration and improve viscoelastic properties in the scarred vocal fold lamina propria extracellular matrix (ECM). Twenty rabbit vocal folds were biopsied bilaterally; 2 months postinjury rabbits were unilaterally treated with (i) autologous fibroblasts, (ii) a semisynthetic ECM (sECM), or (iii) autologous fibroblasts encapsulated in sECM. Saline was injected as a control into the contralateral fold. Animals were sacrificed 2 months after treatment. Outcomes measured were procollagen, collagen, and fibronectin levels in the lamina propria, and tissue viscosity and elasticity across three frequency decades. All treatment groups demonstrated accelerated proliferation of the ECM. Vocal fold lamina propria treated with autologous fibroblasts were found to have significantly improved viscosity (p = 0.0077) and elasticity (p = 0.0081) compared to saline. This treatment group had significantly elevated fibronectin levels. sECM and autologous fibroblasts/sECM groups had significantly elevated levels of procollagen, collagen, and fibronectin, indicating abundant matrix production as compared to saline with viscoelastic measures that did not differ statistically from controls. The use of autologous fibroblasts led to better restoration of the vocal fold lamina propria biomechanical properties. Optimization of cell-scaffold interactions and subsequent cell behavior is necessary for utilization of scaffold and scaffold-cell approaches.
Grover, Ajay; Taylor, Jennifer; Troudt, JoLynn; Keyser, Andrew; Arnett, Kimberly; Izzo, Linda; Rholl, Drew; Izzo, Angelo
2009-11-01
The guinea pig model of tuberculosis is used extensively in assessing novel vaccines, since Mycobacterium bovis BCG vaccination effectively prolongs survival after low-dose aerosol infection with virulent M. tuberculosis. To better understand how BCG extends time to death after pulmonary infection with M. tuberculosis, we examined cytokine responses postvaccination and recruitment of activated T cells and cytokine response postinfection. At 10 weeks postvaccination, splenic gamma interferon (IFN-gamma) mRNA was significantly elevated compared to the levels at 5 weeks in ex vivo stimulation assays. At 15, 40, 60, and 120 days postinfection, T-cell activation (CD4+ CD62Llow and CD8+ CD62Llow) and mRNA expression of IFN-gamma, tumor necrosis factor alpha (TNF-alpha), interleukin-1 (IL-1), IL-10, IL-12, and eomesodermin were assessed. Our data show that at day 40, BCG-vaccinated guinea pigs had significantly increased levels of IFN-gamma mRNA expression but decreased TNF-alpha mRNA expression in their lungs compared to the levels in nonvaccinated animals. At day 120, a time when nonvaccinated guinea pigs succumbed to infection, low levels of IFN-gamma mRNA were observed even though there were increasing levels of IL-1, IL-12, and IL-10, and the numbers of activated T cells did not differ from those in BCG-vaccinated animals. BCG vaccination conferred the advantage of recruiting greater numbers of CD4+ CD62Llow T cells at day 40, although the numbers of CD8+ CD62Llow T cells were not elevated compared to the numbers in nonvaccinated animals. Our data suggest that day 40 postinfection may be a pivotal time point in determining vaccine efficacy and prolonged survival and that BCG promotes the capacity of T cells in the lungs to respond to infection.
Okada, Y; Tsuzuki, Y; Sato, H; Narimatsu, K; Hokari, R; Kurihara, C; Watanabe, C; Tomita, K; Komoto, S; Kawaguchi, A; Nagao, S; Miura, S
2013-12-01
Numerous reports have shown that a diet containing large amounts of trans fatty acids (TFAs) is a major risk factor for metabolic disorders. Although recent studies have shown that TFAs promote intestinal inflammation, the underlying mechanisms are unknown. In this study, we examined the effects of dietary fat containing TFAs on dextran sodium sulphate (DSS)-induced colitis. C57 BL/6 mice were fed a diet containing 1·3% TFAs (mainly C16:1, C18:1, C18:2, C20:1, C20:2 and C22:1), and then colitis was induced with 1·5% DSS. Colonic damage was assessed, and the mRNA levels of proinflammatory cytokines and major regulators of T cell differentiation were measured. The TFA diet reduced survival and exacerbated histological damage in mice administered DSS compared with those fed a TFA-free diet. The TFA diet significantly elevated interleukin (IL)-6, IL-12p40, IL-23p19 and retinoic acid-related orphan receptor (ROR)γt mRNA levels in the colons of DSS-treated animals. Moreover, IL-17A mRNA levels were elevated significantly by the TFA diet, with or without DSS treatment. We also examined the expression of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and peritoneal macrophages. These cells were exposed to TFAs (linoelaidic acid or elaidic acid) with or without LPS and the mRNA levels of various cytokines were measured. IL-23p19 mRNA levels were increased significantly by TFAs in the absence of LPS. Cytokine expression was also higher in LPS-stimulated cells exposed to TFAs than in unexposed LPS-stimulated cells. Collectively, our results suggest that TFAs exacerbate colonic inflammation by promoting Th17 polarization and by up-regulating the expression of proinflammatory cytokines in the inflamed colonic mucosa. © 2013 British Society for Immunology.
Xu, Huan; Fu, Shi; Chen, Qi; Gu, Meng; Zhou, Juan; Liu, Chong; Chen, Yanbo; Wang, Zhong
2017-05-09
To measure the level of oxytocin in serum and prostate cancer (PCa) tissue and study its effect on the proliferation of PCa cells. Oxytocin level in serum was significantly increased in PCa patients compared with the no-carcinoma individuals. Additionally, the levels of oxytocin and its receptor were also elevated in the PCa tissue. However, no significant difference existed among the PCa of various Gleason grades. Western blot analysis confirmed the previous results and revealed an increased expression level of APPL1. The level of oxytocin in serum was measured by ELISA analysis. The expression of oxytocin and its receptor in prostate was analyzed by immunohistochemistry. The proliferation and apoptosis of PCa cells were assessed by the Cell Counting Kit 8 (CCK8) assay, cell cycle analysis and caspase3 activity analysis, respectively. Western blot analysis was used for the detection of PCNA, Caspase3 and APPL1 protein levels. Serum and prostatic oxytocin levels are increased in the PCa subjects. Serum oxytocin level may be a biomarker for PCa in the future. Oxytocin increases PCa growth and APPL1 expression.
Tabariès, Sébastien; Dupuy, Fanny; Dong, Zhifeng; Monast, Anie; Annis, Matthew G.; Spicer, Jonathan; Ferri, Lorenzo E.; Omeroglu, Atilla; Basik, Mark; Amir, Eitan; Clemons, Mark
2012-01-01
We previously identified claudin-2 as a functional mediator of breast cancer liver metastasis. We now confirm that claudin-2 levels are elevated in liver metastases, but not in skin metastases, compared to levels in their matched primary tumors in patients with breast cancer. Moreover, claudin-2 is specifically expressed in liver-metastatic breast cancer cells compared to populations derived from bone or lung metastases. The increased liver tropism exhibited by claudin-2-expressing breast cancer cells requires claudin-2-mediated interactions between breast cancer cells and primary hepatocytes. Furthermore, the reduction of the claudin-2 expression level, either in cancer cells or in primary hepatocytes, diminishes these heterotypic cell-cell interactions. Finally, we demonstrate that the first claudin-2 extracellular loop is essential for mediating tumor cell-hepatocyte interactions and the ability of breast cancer cells to form liver metastases in vivo. Thus, during breast cancer liver metastasis, claudin-2 shifts from acting within tight-junctional complexes to functioning as an adhesion molecule between breast cancer cells and hepatocytes. PMID:22645303
Iron dysregulation combined with aging prevents sepsis-induced apoptosis.
Javadi, Pardis; Buchman, Timothy G; Stromberg, Paul E; Turnbull, Isaiah R; Vyas, Dinesh; Hotchkiss, Richard S; Karl, Irene E; Coopersmith, Craig M
2005-09-01
Sepsis, iron loading, and aging cause independent increases in gut epithelial and splenic apoptosis. It is unknown how their combination will affect apoptosis and systemic cytokine levels. Hfe-/- mice (a murine homologue of hemochromatosis) abnormally accumulate iron in their tissues. Aged (24-26 months) or mature (16-18 months) Hfe-/- mice and wild type (WT) littermates were subjected to cecal ligation and puncture (CLP) or sham laparotomy. Intestine, spleen, and blood were harvested 24 h later and assessed for apoptosis and cytokine levels. Gut epithelial and splenic apoptosis were low in both aged septic and sham Hfe-/- mice, regardless of the amount of iron in their diet. Mature septic WT mice had increased apoptosis compared to age-matched sham WT mice. Mature septic Hfe-/- mice had similar levels of intestinal cell death to age-matched septic WT mice but higher levels of splenic apoptosis. Apoptosis was significantly lower in septic aged Hfe-/- mice than septic mature Hfe-/- animals. Interleukin-6 was elevated in septic aged Hfe-/- mice compared to sham mice. Although sepsis, chronic iron dysregulation, and aging each increase gut and splenic apoptosis, their combination yields cell death levels similar to sham animals despite the fact that aged Hfe-/- mice are able to mount an inflammatory response following CLP and mature Hfe-/- mice have elevated sepsis-induced apoptosis. Combining sepsis with two risk factors that ordinarily increase cell death and increase mortality in CLP yields an apoptotic response that could not have been predicted based upon each element in isolation.
The role of myoglobin degradation in nephrotoxicity after rhabdomyolysis.
Zorova, Ljubava D; Pevzner, Irina B; Chupyrkina, Anastasia A; Zorov, Savva D; Silachev, Denis N; Plotnikov, Egor Y; Zorov, Dmitry B
2016-08-25
The fate of myoglobin in renal cells was explored in an animal model of rhabdomyolysis known as the pathology highly related to oxidative stress resulting in impairment of renal functioning. The working hypothesis was that the proper degradation of myoglobin in rhabdomyolytic kidney can activate the reparative processes in the tissue. We found that incubation of myoglobin with kidney cells causes its accumulation in the cytoplasm. In rhabdomyolytic rats, the level of heme and free iron in cytoplasm and mitochondria of kidney cells is remarkably increased while inhibition of proteolysis results in further elevation of myoglobin content in the renal tissue. Heme oxygenase and ferritin levels were found to be increased in the kidney tissue at rhabdomyolysis and simulating conditions performed by i/v injection of myoglobin. In addition, the level of peroxidized lipids was high in rhabdomyolytic kidney and became even higher after inhibition of proteolysis by aprotinin. Elevated levels of carbonylated proteins were also observed after rhabdomyolysis, however, if prior to induction of rhabdomyolysis the injection of myoglobin was done, the level of carbonylated proteins dropped versus unprimed kidney tissue thus affording protection to the kidney against oxidative stress. Injection of myoglobin to the rat results in impairment of renal functioning and inhibition of myoglobin degradation in the rhabdomyolytic animal aggravates acute renal failure, demonstrating that degradation of myoglobin is somehow beneficial although it may result in undesired release of free iron which can participate in toxic redox cycling. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Epigenetic regulation of NFE2 overexpression in myeloproliferative neoplasms.
Peeken, Jan C; Jutzi, Jonas S; Wehrle, Julius; Koellerer, Christoph; Staehle, Hans F; Becker, Heiko; Schoenwandt, Elias; Seeger, Thalia S; Schanne, Daniel H; Gothwal, Monika; Ott, Christopher J; Gründer, Albert; Pahl, Heike L
2018-05-03
The transcription factor "nuclear factor erythroid 2" (NFE2) is overexpressed in the majority of patients with myeloproliferative neoplasms (MPNs). In murine models, elevated NFE2 levels cause an MPN phenotype with spontaneous leukemic transformation. However, both the molecular mechanisms leading to NFE2 overexpression and its downstream targets remain incompletely understood. Here, we show that the histone demethylase JMJD1C constitutes a novel NFE2 target gene. JMJD1C levels are significantly elevated in polycythemia vera (PV) and primary myelofibrosis patients; concomitantly, global H3K9me1 and H3K9me2 levels are significantly decreased. JMJD1C binding to the NFE2 promoter is increased in PV patients, decreasing both H3K9me2 levels and binding of the repressive heterochromatin protein-1α (HP1α). Hence, JMJD1C and NFE2 participate in a novel autoregulatory loop. Depleting JMJD1C expression significantly reduced cytokine-independent growth of an MPN cell line. Independently, NFE2 is regulated through the epigenetic JAK2 pathway by phosphorylation of H3Y41. This likewise inhibits HP1α binding. Treatment with decitabine lowered H3Y41ph and augmented H3K9me2 levels at the NFE2 locus in HEL cells, thereby increasing HP1α binding, which normalized NFE2 expression selectively in JAK2 V617F -positive cell lines. © 2018 by The American Society of Hematology.
Mucosal-Associated Invariant T Cell Deficiency in Chronic Obstructive Pulmonary Disease.
Kwon, Yong Soo; Jin, Hye-Mi; Cho, Young-Nan; Kim, Moon-Ju; Kang, Jeong-Hwa; Jung, Hyun-Ju; Park, Ki-Jeong; Kee, Hae Jin; Kee, Seung-Jung; Park, Yong-Wook
2016-01-01
Mucosal-associated invariant T (MAIT) cells have been reported to play an important role in mucosal immunity. However, little is known about the roles of MAIT cells in chronic obstructive pulmonary disease (COPD). The aims of this study were to examine the levels of circulating MAIT cells and their subsets in COPD patients and to investigate the potential relationship between clinical parameters and MAIT cell levels. Forty-five COPD patients and 57 healthy control subjects were enrolled in the study. Circulating MAIT cells and their subset levels in the peripheral blood were measured by flow cytometry. Disease grades were classified according to the GOLD criteria for the assessment of severity of COPD. Circulating MAIT cell levels were found to be significantly reduced in COPD patients. In particular, this MAIT cell deficiency was more prominent in CD8+ and double-negative T cell subsets. Interestingly, elevated serum C-reactive protein level and reduced FEV1/FVC ratio were associated with MAIT cell deficiency in COPD patients. Furthermore, the circulating MAIT levels were found to be significantly lower in patients with moderate to severe COPD than in patients with mild COPD. Our data shows that MAIT cells are numerically deficient in the peripheral blood of patients with COPD. In addition, this MAIT cell deficiency was found to reflect inflammatory activity and disease severity. These findings provide important information for monitoring the changes in MAIT cell levels and for predicting the prognosis during the disease course.
Miyauchi, Yumi; Sakai, Satoshi; Maeda, Seiji; Shimojo, Nobutake; Watanabe, Shigeyuki; Honma, Satoshi; Kuga, Keisuke; Aonuma, Kazutaka; Miyauchi, Takashi
2012-10-15
Big endothelins (pro-endothelin; inactive-precursor) are converted to biologically active endothelins (ETs). Mammals and humans produce three ET family members: ET-1, ET-2 and ET-3, from three different genes. Although ET-1 is produced by vascular endothelial cells, these cells do not produce ET-3, which is produced by neuronal cells and organs such as the thyroid, salivary gland and the kidney. In patients with end-stage renal disease, abnormal vascular endothelial cell function and elevated plasma ET-1 and big ET-1 levels have been reported. It is unknown whether big ET-2 and big ET-3 plasma levels are altered in these patients. The purpose of the present study was to determine whether endogenous ET-1, ET-2, and ET-3 systems including big ETs are altered in patients with end-stage renal disease. We measured plasma levels of ET-1, ET-3 and big ET-1, big ET-2, and big ET-3 in patients on chronic hemodialysis (n=23) and age-matched healthy subjects (n=17). In patients on hemodialysis, plasma levels (measured just before hemodialysis) of both ET-1 and ET-3 and big ET-1, big ET-2, and big ET-3 were markedly elevated, and the increase was higher for big ETs (Big ET-1, 4-fold; big ET-2, 6-fold; big ET-3: 5-fold) than for ETs (ET-1, 1.7-fold; ET-3, 2-fold). In hemodialysis patients, plasma levels of the inactive precursors big ET-1, big ET-2, and big ET-3 levels are markedly increased, yet there is only a moderate increase in plasma levels of the active products, ET-1 and ET-3. This suggests that the activity of endothelin converting enzyme contributing to circulating levels of ET-1 and ET-3 may be decreased in patients on chronic hemodialysis. Copyright © 2012 Elsevier Inc. All rights reserved.
Overexpression of peptide deformylase in breast, colon, and lung cancers.
Randhawa, Harsharan; Chikara, Shireen; Gehring, Drew; Yildirim, Tuba; Menon, Jyotsana; Reindl, Katie M
2013-07-01
Human mitochondrial peptide deformylase (PDF) has been proposed as a novel cancer therapeutic target. However, very little is known about its expression and regulation in human tissues. The purpose of this study was to characterize the expression pattern of PDF in cancerous tissues and to identify mechanisms that regulate its expression. The mRNA expression levels of PDF and methionine aminopeptidase 1D (MAP1D), an enzyme involved in a related pathway with PDF, were determined using tissue panels containing cDNA from patients with various types of cancer (breast, colon, kidney, liver, lung, ovarian, prostate, or thyroid) and human cell lines. Protein levels of PDF were also determined in 2 colon cancer patients via western blotting. Colon cancer cells were treated with inhibitors of ERK, Akt, and mTOR signaling pathways and the resulting effects on PDF and MAP1D mRNA levels were determined by qPCR for colon and lung cancer cell lines. Finally, the effects of a PDF inhibitor, actinonin, on the proliferation of breast, colon, and prostate cell lines were determined using the CyQUANT assay. PDF and MAP1D mRNA levels were elevated in cancer cell lines compared to non-cancer lines. PDF mRNA levels were significantly increased in breast, colon, and lung cancer samples while MAP1D mRNA levels were increased in just colon cancers. The expression of PDF and MAP1D varied with stage in these cancers. Further, PDF protein expression was elevated in colon cancer tissue samples. Inhibition of the MEK/ERK, but not PI3K or mTOR, pathway reduced the expression of PDF and MAP1D in both colon and lung cancer cell lines. Further, inhibition of PDF with actinonin resulted in greater reduction of breast, colon, and prostate cancer cell proliferation than non-cancer cell lines. This is the first report showing that PDF is over-expressed in breast, colon, and lung cancers, and the first evidence that the MEK/ERK pathway plays a role in regulating the expression of PDF and MAP1D. The over-expression of PDF in several cancers and the inhibition of cancer cell growth by a PDF inhibitor suggest this enzyme may act as an oncogene to promote cancer cell proliferation.