Sample records for cells express markers

  1. Ductal cancers of the pancreas frequently express markers of gastrointestinal epithelial cells.

    PubMed

    Sessa, F; Bonato, M; Frigerio, B; Capella, C; Solcia, E; Prat, M; Bara, J; Samloff, I M

    1990-06-01

    It has been found by immunohistochemical staining that antigens normally found in gastric and/or intestinal epithelial cells are expressed in most differentiated duct cell carcinomas of the pancreas. Among 88 such tumors, 93% and 92%, respectively, expressed M1 and cathepsin E, markers of gastric surface-foveolar epithelial cells, 51% expressed pepsinogen II, a marker of gastroduodenal mucopeptic cells, 48% expressed CAR-5, a marker of colorectal epithelial cells, and 35% expressed M3SI, a marker of small intestinal goblet cells. Most of the tumors also expressed normal pancreatic duct antigens; 97% expressed DU-PAN-2, and 59% expressed N-terminus gastrin-releasing peptide. In agreement with these findings, electron microscopy revealed malignant cells with fine structural features of gastric foveolar cells, gastric mucopeptic cells, intestinal goblet cells, intestinal columnar cells, pancreatic duct epithelial cells, and cells with features of more than one cell type. Normal pancreatic duct epithelium did not express any marker of gastrointestinal epithelial cells, whereas such benign lesions as mucinous cell hypertrophy and papillary hyperplasia commonly expressed gut-type antigens but rarely expressed pancreatic duct cell markers. By contrast, lesions characterized by atypical papillary hyperplasia commonly expressed both gastric and pancreatic duct cell markers. Metaplastic pyloric-type glands expressed pepsinogen II and, except for their expression of cathepsin E, were indistinguishable from normal pyloric glands. In marked contrast, the immunohistochemical and ultrastructural features of 14 ductuloacinar cell tumors were those of cells lining terminal ductules, centroacinar cells, and/or acinar cells; none expressed any gut-type antigen. The results indicate that gastrointestinal differentiation is common in both benign and malignant lesions of pancreatic duct epithelium and suggest that duct cell carcinomas are histogenetically related to gastric- and

  2. Differential marker expression by cultures rich in mesenchymal stem cells

    PubMed Central

    2013-01-01

    Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471

  3. Cells differentiated from mouse embryonic stem cells via embryoid bodies express renal marker molecules.

    PubMed

    Kramer, Jan; Steinhoff, Jürgen; Klinger, Matthias; Fricke, Lutz; Rohwedel, Jürgen

    2006-03-01

    Differentiation of mouse embryonic stem (ES) cells via embryoid bodies (EB) is established as a suitable model to study cellular processes of development in vitro. ES cells are known to be pluripotent because of their capability to differentiate into cell types of all three germ layers including germ cells. Here, we show that ES cells differentiate into renal cell types in vitro. We found that genes were expressed during EB cultivation, which have been previously described to be involved in renal development. Marker molecules characteristic for terminally differentiated renal cell types were found to be expressed predominantly during late stages of EB cultivation, while marker molecules involved in the initiation of nephrogenesis were already expressed during early steps of EB development. On the cellular level--using immunostaining--we detected cells expressing podocin, nephrin and wt-1, characteristic for differentiated podocytes and other cells, which expressed Tamm-Horsfall protein, a marker for distal tubule epithelial cells of kidney tissue. Furthermore, the proximal tubule marker molecules renal-specific oxido reductase, kidney androgen-related protein and 25-hydroxyvitamin D3alpha-hydroxylase were found to be expressed in EBs. In particular, we could demonstrate that cells expressing podocyte marker molecules assemble to distinct ring-like structures within the EBs. Because the differentiation efficiency into these cell types is still relatively low, application of fibroblast growth factor (FGF)-2 in combination with leukaemia inhibitory factor was tested for induction, but did not enhance ES cell-derived renal differentiation in vitro.

  4. Inflammation increases cells expressing ZSCAN4 and progenitor cell markers in the adult pancreas

    PubMed Central

    Azuma, Sakiko; Yokoyama, Yukihiro; Yamamoto, Akiko; Kyokane, Kazuhiro; Niida, Shumpei; Ishiguro, Hiroshi; Ko, Minoru S. H.

    2013-01-01

    We have recently identified the zinc finger and SCAN domain containing 4 (Zscan4), which is transiently expressed and regulates telomere elongation and genome stability in mouse embryonic stem (ES) cells. The aim of this study was to examine the expression of ZSCAN4 in the adult pancreas and elucidate the role of ZSCAN4 in tissue inflammation and subsequent regeneration. The expression of ZSCAN4 and other progenitor or differentiated cell markers in the human pancreas was immunohistochemically examined. Pancreas sections of alcoholic or autoimmune pancreatitis patients before and under maintenance corticosteroid treatment were used in this study. In the adult human pancreas a small number of ZSCAN4-positive (ZSCAN4+) cells are present among cells located in the islets of Langerhans, acini, ducts, and oval-shaped cells. These cells not only express differentiated cell markers for each compartment of the pancreas but also express other tissue stem/progenitor cell markers. Furthermore, the number of ZSCAN4+ cells dramatically increased in patients with chronic pancreatitis, especially in the pancreatic tissues of autoimmune pancreatitis actively regenerating under corticosteroid treatment. Interestingly, a number of ZSCAN4+ cells in the pancreas of autoimmune pancreatitis returned to the basal level after 1 yr of maintenance corticosteroid treatment. In conclusion, coexpression of progenitor cell markers and differentiated cell markers with ZSCAN4 in each compartment of the pancreas may indicate the presence of facultative progenitors for both exocrine and endocrine cells in the adult pancreas. PMID:23599043

  5. Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat.

    PubMed

    Petersen, B E; Goff, J P; Greenberger, J S; Michalopoulos, G K

    1998-02-01

    Hepatic oval cells (HOC) are a small subpopulation of cells found in the liver when hepatocyte proliferation is inhibited and followed by some type of hepatic injury. HOC can be induced to proliferate using a 2-acetylaminofluorene (2-AAF)/hepatic injury (i.e., CCl4, partial hepatectomy [PHx]) protocol. These cells are believed to be bipotential, i.e., able to differentiate into hepatocytes or bile ductular cells. In the past, isolation of highly enriched populations of these cells has been difficult. Thy-1 is a cell surface marker used in conjunction with CD34 and lineage-specific markers to identify hematopoietic stem cells. Thy-1 antigen is not normally expressed in adult liver, but is expressed in fetal liver, presumably on the hematopoietic cells. We report herein that HOC express high levels of Thy-1. Immunohistochemistry revealed that the cells expressing Thy-1 were indeed oval cells, because they also expressed alpha-fetoprotein (AFP), gamma-glutamyl transpeptidase (GGT), cytokeratin 19 (CK-19), OC.2, and OV-6, all known markers for oval cell identification. In addition, the Thy-1+ cells were negative for desmin, a marker specific for Ito cells. Using Thy-1 antibody as a new marker for the identification of oval cells, a highly enriched population was obtained. Using flow cytometric methods, we isolated a 95% to 97% pure Thy-1+ oval cell population. Our results indicate that cell sorting using Thy-1 could be an attractive tool for future studies, which would facilitate both in vivo and in vitro studies of HOC.

  6. Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line.

    PubMed

    Ketkaew, Yuwaporn; Osathanon, Thanaphum; Pavasant, Prasit; Sooampon, Sireerat

    2017-02-01

    Cancer stem cells contribute to tumor recurrence, and a hypoxic environment is critical for maintaining cancer stem cells. Apigenin is a natural product with anticancer activity. However, the effect of apigenin on cancer stem cells remains unclear. Our aim was to investigate the effect of apigenin on cancer stem cell marker expression in head and neck squamous cell carcinoma cells under hypoxia. We used three head and neck squamous cell carcinoma cell lines; HN-8, HN-30, and HSC-3. The mRNA expression of cancer stem cell markers was determined by semiquantitative RT-PCR and Real-time PCR. The cytotoxic effect of apigenin was determined by MTT colorimetric assay. Flow cytometry was used to reveal the number of cells expressing cancer stem cell surface markers. HN-30 cells, a cancer cell line from the pharynx, showed the greatest response to hypoxia by increasing their expression of CD44, CD105, NANOG, OCT-4, REX-1, and VEGF. Apigenin significantly decreased HN-30 cell viability in dose- and time-dependent manners. In addition, 40μM apigenin significantly down-regulated the mRNA expression of CD44, NANOG, and CD105. Consistent with these results, the hypoxia-induced increase in CD44 + cells, CD105 + cells, and STRO-1 + cells was significantly abolished by apigenin. Apigenin suppresses cancer stem cell marker expression and the number of cells expressing cell surface markers under hypoxia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [Expression of embryonic markers in pterygium derived mesenchymal cells].

    PubMed

    Pascual, G; Montes, M A; Pérez-Rico, C; Pérez-Kohler, B; Bellón, J M; Buján, J

    2010-12-01

    Destruction of the limbal epithelium barrier is the most important mechanism of pterygium formation (conjunctiva proliferation, encroaching onto the cornea). It is thought to arise from activated and proliferating limbal epithelial stem cells. The objective of this study is to evaluate the presence of undifferentiated mesenchymal cells (stem cells) in cultured cells extracted from human pterygium. Cells from 6 human pterygium were isolated by explantation and placed in cultures with amniomax medium. Once the monolayer was reached the cells were seeded onto 24 well microplates. The cells were studied in the second sub-culture. The immunohistochemical expression of different embryonic stem cell markers, OCT3/4 and CD9, was analysed. The differentiated phenotypes were characterised with the monoclonal antibodies anti-CD31, α-actin and vimentin. All the cell populations obtained from pterygium showed vimentin expression. Less than 1% of the cells were positive for CD31 and α-actin markers. The majority of the cell population was positive for OCT3/4 and CD9. The cell population obtained from pterygium expressed mesenchymal cell phenotype and embryonic markers, such us OCT3/4 and CD9. This undifferentiated population could be involved in the large recurrence rate of this type of tissue after surgery. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  8. Conservation of spermatogonial stem cell marker expression in undifferentiated felid spermatogonia.

    PubMed

    Vansandt, Lindsey M; Livesay, Janelle L; Dickson, Melissa Joy; Li, Lei; Pukazhenthi, Budhan S; Keefer, Carol L

    2016-09-01

    Spermatogonial stem cells (SSCs) are distinct in their ability to self-renew, transmit genetic information, and persist throughout the life of an individual. These characteristics make SSCs a useful tool for addressing diverse challenges such as efficient transgenic production in nonrodent, biomedical animal models, or preservation of the male genome for species in which survival of frozen-thawed sperm is low. A requisite first step to access this technology in felids is the establishment of molecular markers. This study was designed to evaluate, in the domestic cat (Felis catus), the expression both in situ and following enrichment in vitro of six genes (GFRA1, GPR125, ZBTB16, POU5F1, THY1, and UCHL1) that had been previously identified as SSC markers in other species. Antibodies for surface markers glial cell line-derived neurotrophic factor family receptor alpha 1, G protein-coupled receptor 125, and thymus cell antigen 1 could not be validated, whereas Western blot analysis of prepubertal, peripubertal, and adult cat testis confirmed protein expression for the intracellular markers ubiquitin carboxy-terminal hydrolase 1, zinc finger and BTB domain-containing protein 16, and POU domain, class 5, transcription factor 1. Colocalization of the markers by immunohistochemistry revealed that several cells within the subpopulation adjacent to the basement membrane of the seminiferous tubules and identified morphologically as spermatogonia, expressed all three intracellular markers. Studies performed on cheetah (Acinonyx jubatus) and Amur leopard (Panthera pardus orientalis) testis exhibited a conserved expression pattern in protein molecular weights, relative abundance, and localization of positive cells within the testis. The expression of the three intracellular SSC marker proteins in domestic and wild cat testes confirms conservation of these markers in felids. Enrichment of marker transcripts after differential plating was also observed. These markers will

  9. Progenitor Cells from Cartilage: Grade Specific Differences in Stem Cell Marker Expression

    PubMed Central

    Mazor, Marija; Cesaro, Annabelle; Ali, Mazen; Best, Thomas M.; Lespessaille, Eric; Toumi, Hechmi

    2017-01-01

    Recent research has confirmed the presence of Mesenchymal stem cell (MSC)-like progenitors (MPC) in both normal and osteoarthritic cartilage. However, there is only limited information concerning how MPC markers are expressed with osteoarthritis (OA) progression. The purpose of this study was to compare the prevalence of various MPC markers in different OA grades. Human osteoarthritic tibial plateaus were obtained from ten patients undergoing total knee replacement. Each sample had been classified into a mild or severe group according to OARSI scoring. Tissue was taken from each specimen and mRNA expression levels of CD105, CD166, Notch 1, Sox9, Acan and Col II A1 were measured at day 0 and day 14 (2 weeks in vitro). Furthermore, MSC markers: Nucleostemin, CD90, CD73, CD166, CD105 and Notch 1 were studied by immunofluorescence. mRNA levels of MSC markers did not differ between mild and severe OA at day 0. At day 14, protein analysis showed that proliferated cells from both sources expressed all 6 MSC markers. Only cells from the mild OA subjects resulted in a significant increase of mRNA CD105 and CD166 after in vitro expansion. Moreover, cells from the mild OA subjects showed significantly higher levels of CD105, Sox9 and Acan compared with those from severe OA specimens. Results confirmed the presence of MSC markers in mild and severe OA tissue at both mRNA and protein levels. We found significant differences between cells obtained from mild compared to severe OA specimens suggests that mild OA derived cells may have a greater MSC potential. PMID:28805694

  10. A small population of resident limb bud mesenchymal cells express few MSC-associated markers, but the expression of these markers is increased immediately after cell culture.

    PubMed

    Marín-Llera, Jessica Cristina; Chimal-Monroy, Jesús

    2018-05-01

    Skeletal progenitors are derived from resident limb bud mesenchymal cells of the vertebrate embryos. However, it remains poorly understood if they represent stem cells, progenitors, or multipotent mesenchymal stromal cells (MSC). Derived-MSC of different adult tissues under in vitro experimental conditions can differentiate into the same cellular lineages that are present in the limb. Here, comparing non-cultured versus cultured mesenchymal limb bud cells, we determined the expression of MSC-associated markers, the in vitro differentiation capacity and their gene expression profile. Results showed that in freshly isolated limb bud mesenchymal cells, the proportion of cells expressing Sca1, CD44, CD105, CD90, and CD73 is very low and a low expression of lineage-specific genes was observed. However, recently seeded limb bud mesenchymal cells acquired Sca1 and CD44 markers and the expression of the key differentiation genes Runx2 and Sox9, while Scx and Pparg genes decreased. Also, their chondrogenic differentiation capacity decreased through cellular passages while the osteogenic increased. Our findings suggest that the modification of the cell adhesion process through the in vitro method changed the limb mesenchymal cell immunophenotype leading to the expression and maintenance of common MSC-associated markers. These findings could have a significant impact on MSC study and isolation strategy because they could explain common variations observed in the MSC immunophenotype in different tissues. © 2018 International Federation for Cell Biology.

  11. Zonal hierarchy of differentiation markers and nestin expression during oval cell mediated rat liver regeneration.

    PubMed

    Koenig, Sarah; Probst, Irmelin; Becker, Heinz; Krause, Petra

    2006-12-01

    Oval cells constitute a heterogeneous population of proliferating progenitors found in rat livers following carcinogenic treatment (2-acetylaminofluorene and 70% hepatectomy). The aim of this study was to investigate the cellular pattern of various differentiation and cell type markers in this model of liver regeneration. Immunophenotypic characterisation revealed at least two subtypes emerging from the portal field. First, a population of oval cells formed duct-like structures and expressed bile duct (CD49f) as well as hepatocytic markers (alpha-foetoprotein, CD26). Second, a population of non-ductular oval cells was detected between and distally from the ductules expressing the neural marker nestin and the haematopoietic marker Thy1. Following oval cell isolation, a subset of the nestin-positive cells was shown to co-express hepatocytic and epithelial markers (albumin, CD26, pancytokeratin) and could be clearly distinguished from anti-desmin reactive hepatic stellate cells. The gene expression profiles (RT-PCR) of isolated oval cells and oval cell liver tissue were found to be similar to foetal liver (ED14). The present results suggest that the two oval cell populations are organised in a zonal hierarchy with a marker gradient from the inner (displaying hepatocytic and biliary markers) to the outer zone (showing hepatocytic and extrahepatic progenitor markers) of the proliferating progeny clusters.

  12. Nonstimulated human uncommitted mesenchymal stem cells express cell markers of mesenchymal and neural lineages.

    PubMed

    Minguell, José J; Fierro, Fernando A; Epuñan, María J; Erices, Alejandro A; Sierralta, Walter D

    2005-08-01

    Ex vivo cultures of human bone marrow-derived mesenchymal stem cells (MSCs) contain subsets of progenitors exhibiting dissimilar properties. One of these subsets comprises uncommitted progenitors displaying distinctive features, such as morphology, a quiescent condition, growth factor production, and restricted tissue biodistribution after transplantation. In this study, we assessed the competence of these cells to express, in the absence of differentiation stimuli, markers of mesoderm and ectodermic (neural) cell lineages. Fluorescence microscopy analysis showed a unique pattern of expression of osteogenic, chondrogenic, muscle, and neural markers. The depicted "molecular signature" of these early uncommitted progenitors, in the absence of differentiation stimuli, is consistent with their multipotentiality and plasticity as suggested by several in vitro and in vivo studies.

  13. Failure of hepatocyte marker-expressing hematopoietic progenitor cells to efficiently convert into hepatocytes in vitro.

    PubMed

    Lian, Gewei; Wang, Chengyan; Teng, Chunbo; Zhang, Cong; Du, Liying; Zhong, Qian; Miao, Chenglin; Ding, Mingxiao; Deng, Hongkui

    2006-03-01

    Whether bone marrow (BM) hematopoietic stem/progenitor cells can directly differentiate into nonhematopoietic cells remains controversial. The aim of this study is to further investigate the potentiality of BM hematopoietic progenitor cells to convert into hepatocytes in vitro. Different subsets of BM cells from C57/BL6 mice were isolated using markers of hematopoietic stem cells by magnetic cell sorting and by flow cytometry. These cells were induced to transdifferentiate to hepatocytes in vitro in the presence of various cytokines or of hepatocytes (or tissue) from damaged liver, which have been reported to stimulate the conversion. Hepatic gene markers in freshly isolated or cultured BM cells were determined by reverse transcriptase polymerase chain reaction and immunofluorescence. Freshly isolated hematopoietic progenitor cells (HPC) expressed a low level of messenger RNAs of hepatic cell-specific markers including albumin and alpha-fetoprotein (AFP), but did not significantly upregulate expression of these markers, even in the presence of cytokines or cocultured hepatocytes (or tissue). HPCs induced in vitro did not express the message of alpha-anti-trypsin-a mature hepatocyte marker. At protein level, the specific staining of AFP was not detected in the HPCs, either freshly isolated or in vitro induced. Albumin protein was detected in freshly isolated albumin mRNA-positive and -negative BM cell subpopulations. Albumin-stained BM cells disappeared after being induced for 5 days, but restained if mouse serum was supplemented in medium for a 24-hour extended culture, suggesting that albumin was absorbed by BM cells instead of de novo expression. HPCs expressed mRNAs of hepatic cell markers, but could not efficiently convert into hepatocytes in vitro under our experimental conditions. Our observation raises a cautionary note in determining whether in vitro transdifferentiation of BM cells to hepatocytes can actually take place.

  14. Granulysin-Expressing CD4+ T Cells as Candidate Immune Marker for Tuberculosis during Childhood and Adolescence

    PubMed Central

    Mueller, Henrik; Faé, Kellen C.; Magdorf, Klaus; Ganoza, Christian A.; Wahn, Ulrich; Guhlich, Ute; Feiterna-Sperling, Cornelia; Kaufmann, Stefan H. E.

    2011-01-01

    Background Granulysin produced by cytolytic T cells directly contributes to immune defense against tuberculosis (TB). We investigated granulysin as a candidate immune marker for childhood and adolescent TB. Methods Peripheral blood mononuclear cells (PBMC) from children and adolescents (1–17 years) with active TB, latent TB infection (LTBI), nontuberculous mycobacteria (NTM) infection and from uninfected controls were isolated and restimulated in a 7-day restimulation assay. Intracellular staining was then performed to analyze antigen-specific induction of activation markers and cytotoxic proteins, notably, granulysin in CD4+ CD45RO+ memory T cells. Results CD4+ CD45RO+ T cells co-expressing granulysin with specificity for Mycobacterium tuberculosis (Mtb) were present in high frequency in TB-experienced children and adolescents. Proliferating memory T cells (CFSElowCD4+CD45RO+) were identified as main source of granulysin and these cells expressed both central and effector memory phenotype. PBMC from study participants after TB drug therapy revealed that granulysin-expressing CD4+ T cells are long-lived, and express several activation and cytotoxicity markers with a proportion of cells being interferon-gamma-positive. In addition, granulysin-expressing T cell lines showed cytolytic activity against Mtb-infected target cells. Conclusions Our data suggest granulysin expression by CD4+ memory T cells as candidate immune marker for TB infection, notably, in childhood and adolescence. PMID:22216262

  15. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells.

    PubMed

    Yamagata, Kazuo; Izawa, Yuri; Onodera, Daiki; Tagami, Motoki

    2018-04-01

    Previous studies indicated that chlorogenic acid, a compound present in many fruits and vegetables, has anti-cancer activities. We report that chlorogenic acid regulates the expression of apoptosis-related genes and self-renewal-related stem cell markers in cancer cells. The lung cancer cell line A549 was cultured with or without chlorogenic acid. The presence of chlorogenic acid decreased cell proliferation as measured by MTT activity. Polymerase chain reaction (PCR) showed that treatment of cells with chlorogenic acid reduced the expression of BCL2 but increased that of both BAX and CASP3. Chlorogenic acid enhanced annexin V expression as measured using fluorescently labeled annexin V. Chlorogenic acid also induced p38 MAPK and JNK gene expression. Meanwhile, several agents, including SB203580 (p38 MAP kinase inhibitor), N-acetylcysteine (antioxidant inhibitor), dipyridamole (phosphodiesterase inhibitor), and apocynin (NADPH-oxidase inhibitor) blocked chlorogenic acid-induced BAX gene expression. Chlorogenic acid reduced gene expression levels of stem cell-associated markers NANOG, POU5F1, and SOX2. Together these results indicate that chlorogenic acid affects the expression of apoptosis-related genes that are part of oxidative stress and p38 MAP-dependent pathways, as well as genes encoding stem cell markers. In conclusion, chlorogenic acid may contribute to the polyphenolic anti-cancer effect associated with consumption of vegetables and fruits.

  16. Human embryonic stem cell-derived neural crest cells capable of expressing markers of osteochondral or meningeal-choroid plexus differentiation.

    PubMed

    Sternberg, Hal; Jiang, Jianjie; Sim, Pamela; Kidd, Jennifer; Janus, Jeffrey; Rinon, Ariel; Edgar, Ron; Shitrit, Alina; Larocca, David; Chapman, Karen B; Binette, Francois; West, Michael D

    2014-01-01

    The transcriptome and fate potential of three diverse human embryonic stem cell-derived clonal embryonic progenitor cell lines with markers of cephalic neural crest are compared when differentiated in the presence of combinations of TGFβ3, BMP4, SCF and HyStem-C matrices. The cell lines E69 and T42 were compared with MEL2, using gene expression microarrays, immunocytochemistry and ELISA. In the undifferentiated progenitor state, each line displayed unique markers of cranial neural crest including TFAP2A and CD24; however, none expressed distal HOX genes including HOXA2 or HOXB2, or the mesenchymal stem cell marker CD74. The lines also showed diverse responses when differentiated in the presence of exogenous BMP4, BMP4 and TGFβ3, SCF, and SCF and TGFβ3. The clones E69 and T42 showed a profound capacity for expression of endochondral ossification markers when differentiated in the presence of BMP4 and TGFβ3, choroid plexus markers in the presence of BMP4 alone, and leptomeningeal markers when differentiated in SCF without TGFβ3. The clones E69 and T42 may represent a scalable source of primitive cranial neural crest cells useful in the study of cranial embryology, and potentially cell-based therapy.

  17. Clinicopathologic implication of hepatic progenitor cell marker expression in hepatoblastoma.

    PubMed

    Yun, Woong Jae; Shin, Eun; Lee, Kyoungbun; Jung, Hae Yoen; Kim, Soo Hee; Park, Young-Nyun; Yu, Eunsil; Jang, Ja-June

    2013-09-01

    Hepatic progenitor cells (HPCs) are thought to play a role in hepatoblastoma, as hepatoblastomas are characterized by an immature histology and a wide variety of cell lineages. We aimed to investigate the extent of expression of HPCs marker and its clinical implication in hepatoblastoma. We collected 61 hepatoblastomas and 9 childhood hepatocellular carcinomas (HCCs) and performed immunohistochemistry for HPC markers, including cytokeratin 19 (CK19), octamer-binding transcription factor 3/4 (Oct-3/4), epithelial cell adhesion molecule (EpCAM), and delta-like 1 homolog (DLK1). Of the hepatoblastoma samples, 27/61 (44.3%), 21/61 (34.4%), 51/61 (83.6%) and 56/61 (91.8%) exhibited positivity for CK19, Oct-3/4, EpCAM and DLK-1, respectively. For HCCs, the rates of expression were 22.2% (CK19), 77.8% (EpCAM) and 77.8% (DLK-1). Oct-3/4 was not expressed in HCC cells. Hepatoblastomas with a poorly differentiated epithelial component had a higher incidence of CK19 and Oct-3/4 expression than those with a well differentiated epithelial component (p=0.005 and 0.037, respectively). Higher disease stage of hepatoblastoma was correlated with CK19 expression (p=0.043). Oct-3/4-positive hepatoblastomas were associated with short disease-free survival (p=0.035). Both hepatoblastomas and childhood HCCs, therefore, exhibit characteristics of HPCs, and the poor prognosis of patients with Oct-3/4-positive hepatoblastoma suggests that stem-like properties affect hepatoblastoma pathogenicity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Keratins 17 and 19 expression as prognostic markers in oral squamous cell carcinoma.

    PubMed

    Coelho, B A; Peterle, G T; Santos, M; Agostini, L P; Maia, L L; Stur, E; Silva, C V M; Mendes, S O; Almança, C C J; Freitas, F V; Borçoi, A R; Archanjo, A B; Mercante, A M C; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-11-25

    Five-year survival rates for oral squamous cell carcinoma (OSCC) are 30% and the mortality rate is 50%. Immunohistochemistry panels are used to evaluate proliferation, vascularization, apoptosis, HPV infection, and keratin expression, which are important markers of malignant progression. Keratins are a family of intermediate filaments predominantly expressed in epithelial cells and have an essential role in mechanical support and cytoskeleton formation, which is essential for the structural integrity and stability of the cell. In this study, we analyzed the expressions of keratins 17 and 19 (K17 and K19) by immunohistochemistry in tumoral and non-tumoral tissues from patients with OSCC. The results show that expression of these keratins is higher in tumor tissues compared to non-tumor tissues. Positive K17 expression correlates with lymph node metastasis and multivariate analysis confirmed this relationship, revealing a 6-fold increase in lymph node metastasis when K17 is expressed. We observed a correlation between K17 expression with disease-free survival and disease-specific death in patients who received surgery and radiotherapy. Multivariate analysis revealed that low expression of K17 was an independent marker for early disease relapse and disease-specific death in patients treated with surgery and radiotherapy, with an approximately 4-fold increased risk when compared to high K17 expression. Our results suggest a potential role for K17 and K19 expression profiles as tumor prognostic markers in OSCC patients.

  19. Expression of CD105 cancer stem cell marker in three subtypes of renal cell carcinoma.

    PubMed

    Saeednejad Zanjani, Leili; Madjd, Zahra; Abolhasani, Maryam; Shariftabrizi, Ahmad; Rasti, Arezoo; Asgari, Mojgan

    2018-01-01

    CD105 is recently described as a cancer stem cell (CSC) marker. The present study was aimed to investigate the expression and prognostic significance of the CSC marker CD105 in different histological subtypes of renal cell carcinoma (RCC). Expression of CD105 was evaluated using immunohistochemistry in RCC samples on tissue microarrays including clear cell RCCs (ccRCCs), papillary, and chromophobe RCCs. The association between CD105 expression and clinicopathological features as well as survival outcomes was determined. In ccRCC, increased tumoral cytoplasmic and endothelial expression of CD105 were significantly associated with advanced stage, renal vein invasion, and microvascular invasion (MVI). In addition, MVI was associated with a worse overall survival (OS). Moreover, in multivariate analysis tumor stage and nuclear grade were independent prognostic factors for OS both in case of tumoral cytoplasmic and endothelial CD105 expression. Additionally, CD105 expression was found to be a predictor of worse OS in univariate analysis. However, in papillary and chromophobe RCC, no significant association was found between CD105 expression and clinicopathological parameters or prognosis. We showed that CD105 expression was associated with more aggressive tumor behavior, more advanced disease, and worse prognosis in ccRCC but not in the other RCC subtypes.

  20. CXCR6 identifies a putative population of retained human lung T cells characterised by co-expression of activation markers.

    PubMed

    Morgan, Angela J; Guillen, Cristina; Symon, Fiona A; Birring, Surinder S; Campbell, James J; Wardlaw, Andrew J

    2008-01-01

    Expressions of activation markers have been described on the surface of T cells in the blood and the lung in both health and disease. We have studied the distribution of activation markers on human lung T cells and have found that only certain populations exist. Importantly, the presence or absence of some markers appears to predict those of others, in particular cells which express CD103 also express CD49a and CD69, whereas cells which do not express CD69 also do not express CD49a or CD103. In view of the paucity of activation marker expression in the peripheral blood, we have hypothesised that these CD69+, CD49a+, and CD103+ (triple positive) cells are retained in the lung, possess effector function (IFNgamma secretion) and express particular chemokine receptors which allow them to be maintained in this environment. We have found that the ability of the triple negative cells to secrete IFNgamma is significantly less than the triple positive cells, suggesting that the expression of activation markers can highlight a highly specialised effector cell. We have studied the expression of 14 chemokine receptors and have found that the most striking difference between the triple negative cells and the triple positive cells is the expression of CXCR6 with 12.8+/-9.8% of triple negative cells expressing CXCR6 compared to 89.5+/-5.5% of triple positive cells. We propose therefore that CXCR6 may play an important role in the retention of T cells within the lung.

  1. Expression and localization of epithelial stem cell and differentiation markers in equine skin, eye and hoof.

    PubMed

    Linardi, Renata L; Megee, Susan O; Mainardi, Sarah R; Senoo, Makoto; Galantino-Homer, Hannah L

    2015-08-01

    The limited characterization of equine skin, eye and hoof epithelial stem cell (ESC) and differentiation markers impedes the investigation of the physiology and pathophysiology of these tissues. To characterize ESC and differentiation marker expression in epithelial tissues of the equine eye, haired skin and hoof capsule. Indirect immunofluorescence microscopy and immunoblotting were used to detect expression and tissue localization of keratin (K) isoforms K3, K10, K14 and K124, the transcription factor p63 (a marker of ESCs) and phosphorylated p63 [pp63; a marker of ESC transition to transit-amplifying (TA) cell] in epithelial tissues of the foot (haired skin, hoof coronet and hoof lamellae) and the eye (limbus and cornea). Expression of K14 was restricted to the basal layer of epidermal lamellae and to basal and adjacent suprabasal layers of the haired skin, coronet and corneal limbus. Coronary and lamellar epidermis was negative for both K3 and K10, which were expressed in the cornea/limbus epithelium and haired skin epidermis, respectively. Variable expression of p63 with relatively low to high levels of phosphorylation was detected in individual basal and suprabasal cells of all epithelial tissues examined. To the best of the author's knowledge, this is the first report of the characterization of tissue-specific keratin marker expression and the localization of putative epithelial progenitor cell populations, including ESCs (high p63 expression with low pp63 levels) and TA cells (high expression of both p63 and pp63), in the horse. These results will aid further investigation of epidermal and corneal epithelial biology and regenerative therapies in horses. © 2015 ESVD and ACVD.

  2. Stem Cell-Associated Marker Expression in Canine Hair Follicles

    PubMed Central

    Gerhards, Nora M.; Sayar, Beyza S.; Origgi, Francesco C.; Galichet, Arnaud; Müller, Eliane J.; Welle, Monika M.; Wiener, Dominique J.

    2016-01-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. PMID:26739040

  3. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    PubMed

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. © 2016 The Histochemical Society.

  4. Cardiomyocyte marker expression in a human lymphocyte cell line using mouse cardiomyocyte extract.

    PubMed

    Vojdani, Zahra; Tavakolinejad, Sima; Talaei-Khozani, Tahereh; Esmaeilpour, Tahereh; Rasooli, Manuchehr

    2011-03-01

    Cell transplantation shows potential for the treatment of cardiac diseases. Embryonic stem cells, cord blood and mesenchymal stem cells have been suggested as sources for transplantation therapy. Because of some technical limitations with the use of stem cells, transdifferentiation of fully differentiated cells is a potentially useful alternative. We investigated whether human peripheral blood cells could transdifferentiate into cardiomyocyte. Transdifferentiation was induced in a human B lymphocyte cell line (Raji). Cardiomyocyte extract was prepared from adult mouse cardiomyocytes. The cells were treated with 5-aza-2-deoxycytidine and trichostatin A, permeabilized with streptolysin O, and exposed to the mouse cardiomyocyte extract. They were cultured for 10 days, 3 weeks and 4 weeks. Cardiomyocyte markers were detected with immunohistochemistry and flow cytometry. Immunocytochemistry revealed that some cells expressed myosin heavy chain, α-actinin and cardiac troponin T after 3 and 4 weeks. Flow cytometry confirmed these data. In cells exposed to trichostatin A and 5-aza-2-deoxycytidine and permeabilized in the presence of the cardiomyocyte extract, troponin T expression was seen in 3.53% of the cells and 3.11% of them expressed α-actinin. After exposure to the cardiomyocyte extract, some permeabilized cells adhered to the plate loosely; however, the morphology did not change significantly, and they continued to show a rounded shape after 4 weeks. Our treated lymphocytes expressed cardiomyocyte markers. Our results suggest that lymphocytes may be useful in future research as a source of cells for reprogramming procedures.

  5. Correlation of HIWI and HILI Expression with Cancer Stem Cell Markers in Colorectal Cancer.

    PubMed

    Litwin, Monika; Dubis, Joanna; Arczyńska, Katarzyna; Piotrowska, Aleksandra; Frydlewicz, Anna; Karczewski, Maciej; Dzięgiel, Piotr; Witkiewicz, Wojciech

    2015-06-01

    Cancer stem cells (CSCs) constitute a sub-population of tumor cells that possess stem cell properties, such as self-renewal and the ability of differentiation. The presence of CSCs is associated with metastatic potential, treatment resistance and poor patient prognosis. Recently, aberrant expression of P-element induced wimpy testis proteins-PIWI (HIWI and HILI) has been identified in various types of tumors. The aim of the study was to evaluate the clinical significance of the HIWI and HILI expression and its relationship with cancer stem cells markers in 72 patients with colorectal carcinoma (CRC). The expression level of HIWI and HILI and cancer stem cells markers in paired cancerous and non-cancerous tissues was measured by real-time reverse transcription-polymerase chain reaction (RT-PCR) assay. Immunohistochemistry was performed to confirm the observed changes on mRNA level and detect tissue localization of PIWI proteins. Significantly higher mRNA levels of HIWI and decreased HILI mRNA were measured in colorectal cancer tissues compared to corresponding non-cancerous samples. The changes in HIWI mRNA level in cancer tissues were correlated with OCT4 expression. Positive correlations between HILI level and SOX2 were also observed in cancerous tissues. Our results indicate a reciprocal regulation between HIWI, HILI and some CSCs markers in colorectal cancer. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors.

    PubMed

    Garcia-Lavandeira, Montserrat; Saez, Carmen; Diaz-Rodriguez, Esther; Perez-Romero, Sihara; Senra, Ana; Dieguez, Carlos; Japon, Miguel A; Alvarez, Clara V

    2012-01-01

    Adult stem cells maintain some markers expressed by embryonic stem cells and express other specific markers depending on the organ where they reside. Recently, stem/progenitor cells in the rodent and human pituitary have been characterized as expressing GFRA2/RET, PROP1, and stem cell markers such as SOX2 and OCT4 (GPS cells). Our objective was to detect other specific markers of the pituitary stem cells and to investigate whether craniopharyngiomas (CRF), a tumor potentially derived from Rathke's pouch remnants, express similar markers as normal pituitary stem cells. We conducted mRNA and Western blot studies in pituitary extracts, and immunohistochemistry and immunofluorescence on sections from normal rat and human pituitaries and 20 CRF (18 adamantinomatous and two papillary). Normal pituitary GPS stem cells localized in the marginal zone (MZ) express three key embryonic stem cell markers, SOX2, OCT4, and KLF4, in addition to SOX9 and PROP1 and β-catenin overexpression. They express the RET receptor and its GFRA2 coreceptor but also express the coreceptor GFRA3 that could be detected in the MZ of paraffin pituitary sections. CRF maintain the expression of SOX2, OCT4, KLF4, SOX9, and β-catenin. However, RET and GFRA3 expression was altered in CRF. In 25% (five of 20), both RET and GFRA3 were detected but not colocalized in the same cells. The other 75% (15 of 20) lose the expression of RET, GFRA3, or both proteins simultaneously. Human pituitary adult stem/progenitor cells (GPS) located in the MZ are characterized by expression of embryonic stem cell markers SOX2, OCT4, and KLF4 plus the specific pituitary embryonic factor PROP1 and the RET system. Redundancy in RET coreceptor expression (GFRA2 and GFRA3) suggest an important systematic function in their physiological behavior. CRF share the stem cell markers suggesting a common origin with GPS. However, the lack of expression of the RET/GFRA system could be related to the cell mislocation and deregulated

  7. Expression of the myeloid-associated marker CD33 is not an exclusive factor for leukemic plasmacytoid dendritic cells.

    PubMed

    Garnache-Ottou, Francine; Chaperot, Laurence; Biichle, Sabeha; Ferrand, Christophe; Remy-Martin, Jean-Paul; Deconinck, Eric; de Tailly, Patrick Darodes; Bulabois, Bénédicte; Poulet, Jacqueline; Kuhlein, Emilienne; Jacob, Marie-Christine; Salaun, Véronique; Arock, Michel; Drenou, Bernard; Schillinger, Françoise; Seilles, Estelle; Tiberghien, Pierre; Bensa, Jean-Claude; Plumas, Joel; Saas, Philippe

    2005-02-01

    A new entity of acute leukemia coexpressing CD4(+)CD56(+) markers without any other lineage-specific markers has been identified recently as arising from lymphoid-related plasmacytoid dendritic cells (pDCs). In our laboratory, cells from a patient with such CD4(+)CD56(+) lineage-negative leukemia were unexpectedly found to also express the myeloid marker CD33. To confirm the diagnosis of pDC leukemia despite the CD33 expression, we demonstrated that the leukemic cells indeed exhibited pDC phenotypic and functional properties. In 7 of 8 other patients with CD4(+)CD56(+) pDC malignancies, we were able to confirm that the tumor cells expressed CD33 although with variable expression levels. CD33 expression was shown by flow cytometry, reverse transcriptase-polymerase chain reaction, and immunoblot analysis. Furthermore, CD33 monoclonal antibody stimulation of purified CD4(+)CD56(+) leukemic cells led to cytokine secretion, thus confirming the presence of a functional CD33 on these leukemic cells. Moreover, we found that circulating pDCs in healthy individuals also weakly express CD33. Overall, our results demonstrate that the expression of CD33 on CD4(+)CD56(+) lineage-negative cells should not exclude the diagnosis of pDC leukemia and underline that pDC-specific markers should be used at diagnosis for CD4(+)CD56(+) malignancies.

  8. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells.

    PubMed

    Vincent, Per Henrik; Benedikz, Eirikur; Uhlén, Per; Hovatta, Outi; Sundström, Erik

    2017-06-15

    Nonpluripotent neural progenitor cells (NPCs) derived from the human fetal central nervous system were found to express a number of messenger RNA (mRNA) species associated with pluripotency, such as NANOG, REX1, and OCT4. The expression was restricted to small subpopulations of NPCs. In contrast to pluripotent stem cells, there was no coexpression of the pluripotency-associated genes studied. Although the expression of these genes rapidly declined during the in vitro differentiation of NPCs, we found no evidence that the discrete expression was associated with the markers of multipotent neural stem cells (CD133 + /CD24 lo ), the capacity of sphere formation, or high cell proliferation rates. The rate of cell death among NPCs expressing pluripotency-associated genes was also similar to that of other NPCs. Live cell imaging showed that NANOG- and REX1-expressing NPCs continuously changed morphology, as did the nonexpressing cells. Depletion experiments showed that after the complete removal of the subpopulations of NANOG- and REX1-expressing NPCs, the expression of these genes appeared in other NPCs within a few days. The percentage of NANOG- and REX1-expressing cells returned to that observed before depletion. Our results are best explained by a model in which there is stochastic transient expression of pluripotency-associated genes in proliferating NPCs.

  9. Expression of Epithelial Mesenchymal Transition and Cancer Stem Cell Markers in Circulating Tumor Cells.

    PubMed

    Werner, Stefan; Stenzl, Arnulf; Pantel, Klaus; Todenhöfer, Tilman

    2017-01-01

    The characterization of circulating tumor cells (CTC) has the potential not only to provide important insights into molecular alterations of advanced tumor disease but also to facilitate risk prediction. Epithelial mesenchymal transition (EMT) has been discovered as important process for the development of metastases and the dissemination of tumor cells into the blood stream. In different tumor types, CTC with a mesenchymal phenotype have been reported that have presumably underwent EMT. Moreover, CTC with stem-cell like characteristics have been postulated as important drivers of tumor progression. Different platforms have been introduced to allow CTC enrichment independent of expression of epithelial antigens, as these may be downregulated in EMT- or stem-cell-like CTC. Both for CTCs with EMT- or stem-cell features different markers have been proposed. However, there is still a lack of evidence on the association of these markers with functional features and characteristics for stem cells and cells undergoing EMT.

  10. Neighbor of Punc E 11: expression pattern of the new hepatic stem/progenitor cell marker during murine liver development.

    PubMed

    Schievenbusch, Stephanie; Sauer, Elisabeth; Curth, Harald-Morten; Schulte, Sigrid; Demir, Münevver; Toex, Ulrich; Goeser, Tobias; Nierhoff, Dirk

    2012-09-20

    We have previously identified Neighbor of Punc E 11 (Nope) as a specific cell surface marker of stem/progenitor cells in the murine fetal liver that is also expressed in hepatocellular carcinoma. Here, we focus on the differential expression pattern of Nope during murine fetal and postnatal liver development as well as in a normal and regenerating adult liver including oval cell activation. In the fetal liver, Nope shows a constantly high expression level and is a useful surface marker for the identification of Dlk, E-cadherin, and CD133-positive hepatoblasts by flow cytometry. Postnatally, Nope expression declines rapidly and remains barely detectable in the adult liver as shown by quantitative real-time reverse-transcriptase polymerase chain reaction and western blot analyses. Immunohistochemically, costainings for Nope- and epithelial-specific markers (E-cadherin), markers of early hepatoblasts (alpha-fetoprotein), and biliary marker proteins (CK19) demonstrate that Nope is initially expressed on bipotent hepatoblasts and persists thereafter on commited hepatocytic as well as cholangiocytic progenitor cells during late fetal liver development. Postnatally, Nope loses its circular expression pattern and is specifically directed to the sinusoidal membrane of early hepatocytes. While Nope is only weakly expressed on cholangiocytes in the normal adult liver, activated stem/progenitor (oval) cells clearly coexpress Nope together with the common markers A6, EpCAM, and CD24 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model. In conclusion, Nope should be most useful in future research to define the differentiation stage of hepatic-specified cells of various sources and is a promising candidate to identify and isolate hepatic stem cells from the adult liver.

  11. Radiation Dose-effects on Cell Cycle, Apoptosis, and Marker Expression of Ataxia Telangiectasia-Heterozygous Human Breast Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Cruz, A.; Bors, K.; Jansen, H.; Richmond, R.

    2003-01-01

    Ataxia-telangiectasia (A-T) is a radiation-sensitive genetic condition. AT-heterozygous human mammary epithelial cells (HMEC) were irradiated using a Cs137 source in order to compare cell cycle, apoptosis, and marker expression responses across 3 radiation doses. No differences in cell cycle and apoptosis were found with any of the radiation doses used (30, 60, and 90 rads) compared with the unirradiated control (0 rad). At the same doses, however, differences were found in marker expression, such as keratin 18 (kl8), keratin 14 (k14), insulin-like growth factor I receptor (IGF-IR), and connexin 43 (cx43). This may indicate that radiation sensitivity in the heterozygous state may be initiated through signal transduction responses.

  12. Co-Expression of Putative Cancer Stem Cell Markers CD44 and CD133 in Prostate Carcinomas.

    PubMed

    Kalantari, Elham; Asgari, Mojgan; Nikpanah, Seyedehmoozhan; Salarieh, Naghme; Asadi Lari, Mohammad Hossein; Madjd, Zahra

    2017-10-01

    Cancer stem cells (CSCs) are the main players of prostate tumorigenesis thus; characterization of CSCs can pave the way for understanding the early detection, drug resistance, metastasis and relapse. The current study was conducted to evaluate the expression level and clinical significance of the potential CSC markers CD44 and CD133 in a series of prostate tissues. One hundred and forty eight prostate tissues composed of prostate cancer (PCa), high-grade prostatic intraepithelial neoplasia (HGPIN), and benign prostate hyperplasia (BPH) were immunostained for the putative CSC markers CD44 and CD133. Subsequently, the correlation between the expression of these markers and the clinicopathological variables was examined. A higher level of CD44 expression was observed in 42% of PCa, 57% of HGPIN, and 42% BPH tissues. In the case of CD133 expression PCa, HGPIN, and BPH samples demonstrated high immunoreactivity in 46%, 43%, and 42% of cells, respectively. Statistical analysis showed an inverse significant correlation between CD44 expression with Gleason score of PCa (P = 0.02), while no significant correlation was observed between CD133 expression and clinicopathological parameters. A significant reciprocal correlation was observed between the expression of two putative CSC markers CD44 and CD133 in PCa specimens while not indicating clinical significance. Further clinical investigation is required to consider these markers as targets of new therapeutic strategies for PCa.

  13. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    PubMed

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland. © 2016 International Federation for Cell Biology.

  14. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker.

    PubMed

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R

    2006-12-19

    Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0-1.6% with whole marrow and 0.6-1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow

  15. Establishment of embryonic neuroepithelial cell lines exhibiting an epiplastic expression pattern of region specific markers.

    PubMed

    Nardelli, Jeannette; Catala, Martin; Charnay, Patrick

    2003-09-15

    Neuroepithelial b2T cells were derived from the hindbrain and the spinal cord of mouse transgenic embryos, which expressed SV40 T antigen under the control of a Hoxb2 enhancer. Strikingly, b2T cell lines of either origin exhibit a very similar gene expression pattern, including markers of the hindbrain and the spinal cord, such as Hox genes, but not of more anterior cephalic regions. In addition, the broad expression pattern of b2T cells, probably linked to culture conditions, appeared to be appropriately modulated when the cells were reimplanted at different longitudinal levels into chick host embryos, suggesting that these cells are responsive to exogenous signalling mechanisms. Further support for these allegations was obtained by culturing b2T cells in defined medium and by assessing the expression of Krox20, an odd-numbered rhombomere marker, which appeared to be modulated by a complex interplay between FGF, retinoic acid (RA), and noggin. With respect to these as yet unique properties, b2T cells constitute an original alternative tool to in vivo models for the analysis of molecular pathways involved in the patterning of the neural tube. Copyright 2003 Wiley-Liss, Inc.

  16. Stromal cell markers are differentially expressed in the synovial tissue of patients with early arthritis.

    PubMed

    Choi, Ivy Y; Karpus, Olga N; Turner, Jason D; Hardie, Debbie; Marshall, Jennifer L; de Hair, Maria J H; Maijer, Karen I; Tak, Paul P; Raza, Karim; Hamann, Jörg; Buckley, Christopher D; Gerlag, Danielle M; Filer, Andrew

    2017-01-01

    Previous studies have shown increased expression of stromal markers in synovial tissue (ST) of patients with established rheumatoid arthritis (RA). Here, ST expression of stromal markers in early arthritis in relationship to diagnosis and prognostic outcome was studied. ST from 56 patients included in two different early arthritis cohorts and 7 non-inflammatory controls was analysed using immunofluorescence to detect stromal markers CD55, CD248, fibroblast activation protein (FAP) and podoplanin. Diagnostic classification (gout, psoriatic arthritis, unclassified arthritis (UA), parvovirus associated arthritis, reactive arthritis and RA), disease outcome (resolving vs persistent) and clinical variables were determined at baseline and after follow-up, and related to the expression of stromal markers. We observed expression of all stromal markers in ST of early arthritis patients, independent of diagnosis or prognostic outcome. Synovial expression of FAP was significantly higher in patients developing early RA compared to other diagnostic groups and non-inflammatory controls. In RA FAP protein was expressed in both lining and sublining layers. Podoplanin expression was higher in all early inflammatory arthritis patients than controls, but did not differentiate diagnostic outcomes. Stromal marker expression was not associated with prognostic outcomes of disease persistence or resolution. There was no association with clinical or sonographic variables. Stromal cell markers CD55, CD248, FAP and podoplanin are expressed in ST in the earliest stage of arthritis. Baseline expression of FAP is higher in early synovitis patients who fulfil classification criteria for RA over time. These results suggest that significant fibroblast activation occurs in RA in the early window of disease.

  17. The expression of cancer stem cell markers in human colorectal carcinoma cells in a microenvironment dependent manner.

    PubMed

    Stankevicius, Vaidotas; Kunigenas, Linas; Stankunas, Edvinas; Kuodyte, Karolina; Strainiene, Egle; Cicenas, Jonas; Samalavicius, Narimantas E; Suziedelis, Kestutis

    2017-03-18

    Numerous lines of evidence support the hierarchical model of cancer development and tumor initiation. According to the theory, cancer stem cells play a crucial role in the formation of the tumor and should be targeted for more effective anticancer treatment. However, cancer stem cells quickly loose their characteristics when propagated as 2D cell culture, indicating that the 2D cell culture does not provide the appropriate settings to maintain an in vivo environment. In this study we have investigated the expression of self-renewal, cancer stem cell and epithelial to mesenchymal transition markers after the transfer of human colorectal carcinoma cell DLD1 and HT29 lines from 2D cell cultures to scaffold-attached laminin rich extracellular matrix and scaffold-free multicellular spheroid 3D culture models. Based on the up-regulated expression of multipotency, CSC and EMT markers, our data suggests that human colorectal carcinoma cells grown in 3D exhibit enhanced cancer stem cell characteristics. Therefore, in order to design more efficient targeted therapies, we suggest that 3D cell culture models should be employed in cancer stem cell research. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Genetic expression of adipose derived stem cell and smooth muscle cell markers to monitor differentiation potential following low intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2014-02-01

    Mesenchymal stem cells (MSCs) have the capacity to differentiate into a variety of cell types that could potentially be used in tissue engineering and regenerative medicine. Low intensity laser irradiation (LILI) has been shown to induce a significant increase in cell viability and proliferation. Growth factors such as retinoic acid (RA) and transforming growth factor β1 (TGF-β1) play important roles in the differentiation of cells. The aim of this study was to investigate whether LILI in combination with growth factors could induce the differentiation of adipose derived stem cells (ADSCs) cocultured with smooth muscle cells (SMCs). The study used primary and continuous ADSC cell lines and a SMC line (SKUT-1) as control. Cells were co-cultured directly at a ratio of 1:1 using established methods, with and without growth factors and then exposed to LILI at 5 J/cm2 using a 636 nm diode laser. The cellular morphology, viability and proliferation of the co-cultures were assessed over a period of one week. The study also monitored the expression of cell specific markers over the same period of time. Genetic expression of the markers for both adipose derived stem cells (β1 Integrin and Thymidine 1) and smooth muscle cells (Heavy Myosin Chain) was monitored using flow cytometry. Cell viability and proliferation increased significantly in the co-cultured groups that were exposed to laser alone, as well as in combination with growth factors. Furthermore, there was a significant decrease in the expression of stem cell markers in the ADSCs over time. The results indicate that LILI in combination with growth factors not only increases the viability and proliferation of co-cultured cells but also decreases the expression of ADSC stem cell markers. This could indicate the possible differentiation of ADSCs into SMCs.

  19. Endothelial marker-expressing stromal cells are critical for kidney formation.

    PubMed

    Mukherjee, Elina; Maringer, Katherine; Papke, Emily; Bushnell, Daniel; Schaefer, Caitlin; Kramann, Rafael; Ho, Jacqueline; Humphreys, Benjamin D; Bates, Carlton; Sims-Lucas, Sunder

    2017-09-01

    Kidneys are highly vascularized and contain many distinct vascular beds. However, the origins of renal endothelial cells and roles of the developing endothelia in the formation of the kidney are unclear. We have shown that the Foxd1-positive renal stroma gives rise to endothelial marker-expressing progenitors that are incorporated within a subset of peritubular capillaries; however, the significance of these cells is unclear. The purpose of this study was to determine whether deletion of Flk1 in the Foxd1 stroma was important for renal development. To that end, we conditionally deleted Flk1 (critical for endothelial cell development) in the renal stroma by breeding-floxed Flk1 mice ( Flk1 fl/fl ) with Foxd1cre mice to generate Foxd1cre; Flk1 fl/fl ( Flk1 ST-/- ) mice. We then performed FACsorting, histological, morphometric, and metabolic analyses of Flk1 ST-/- vs. control mice. We confirmed decreased expression of endothelial markers in the renal stroma of Flk1 ST-/- kidneys via flow sorting and immunostaining, and upon interrogation of embryonic and postnatal Flk1 ST-/- mice, we found they had dilated peritubular capillaries. Three-dimensional reconstructions showed reduced ureteric branching and fewer nephrons in developing Flk1 ST-/- kidneys vs. Juvenile Flk1 ST-/- kidneys displayed renal papillary hypoplasia and a paucity of collecting ducts. Twenty-four-hour urine collections revealed that postnatal Flk1 ST-/- mice had urinary-concentrating defects. Thus, while lineage-tracing revealed that the renal cortical stroma gave rise to a small subset of endothelial progenitors, these Flk1-expressing stromal cells are critical for patterning the peritubular capillaries. Also, loss of Flk1 in the renal stroma leads to nonautonomous-patterning defects in ureteric lineages. Copyright © 2017 the American Physiological Society.

  20. Cell-surface marker discovery for lung cancer

    PubMed Central

    Cohen, Allison S.; Khalil, Farah K.; Welsh, Eric A.; Schabath, Matthew B.; Enkemann, Steven A.; Davis, Andrea; Zhou, Jun-Min; Boulware, David C.; Kim, Jongphil; Haura, Eric B.; Morse, David L.

    2017-01-01

    Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients. PMID:29371917

  1. Cytoplasmic expression of CD133 stemness marker is associated with tumor aggressiveness in clear cell renal cell carcinoma.

    PubMed

    Saeednejad Zanjani, Leili; Madjd, Zahra; Abolhasani, Maryam; Andersson, Yvonne; Rasti, Arezoo; Shariftabrizi, Ahmad; Asgari, Mojgan

    2017-10-01

    Prominin-1 (CD133) is one of the most commonly used markers for cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. However, the clinical and prognostic significance of CSCs in renal cell carcinoma (RCC) remains unclear. The aim of this study was to investigate the expression patterns and prognostic significance of the cancer stem cell marker CD133 in different histological subtypes of RCC. CD133 expression was evaluated using immunohistochemistry in 193 well-defined renal tumor samples on tissue microarrays, including 136 (70.5%) clear cell renal cell carcinomas (CCRCCs), 26 (13.5%) papillary RCCs, and 31 (16.1%) chromophobe RCCs. The association between CD133 expression and clinicopathological features as well as the survival outcomes was determined. There was a statistically significant difference between CD133 expression among the different RCC subtypes. In CCRCC, higher cytoplasmic expression of CD133 was significantly associated with increase in grade, stage, microvascular invasion (MVI) and lymph node invasion (LNI), while no association was found with the membranous expression. Moreover, on multivariate analysis, TNM stage and nuclear grade were independent prognostic factors for overall survival (OS) in cytoplasmic expression. We showed that higher cytoplasmic CD133 expression was associated with more aggressive tumor behavior and more advanced disease in CCRCC but not in the other examined subtypes. Our results demonstrated that higher cytoplasmic CD133 expression is clinically significant in CCRCC and is associated with increased tumor aggressiveness and is useful for predicting cancer progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Meninges harbor cells expressing neural precursor markers during development and adulthood.

    PubMed

    Bifari, Francesco; Berton, Valeria; Pino, Annachiara; Kusalo, Marijana; Malpeli, Giorgio; Di Chio, Marzia; Bersan, Emanuela; Amato, Eliana; Scarpa, Aldo; Krampera, Mauro; Fumagalli, Guido; Decimo, Ilaria

    2015-01-01

    Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood.

  3. Meninges harbor cells expressing neural precursor markers during development and adulthood

    PubMed Central

    Bifari, Francesco; Berton, Valeria; Pino, Annachiara; Kusalo, Marijana; Malpeli, Giorgio; Di Chio, Marzia; Bersan, Emanuela; Amato, Eliana; Scarpa, Aldo; Krampera, Mauro; Fumagalli, Guido; Decimo, Ilaria

    2015-01-01

    Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood. PMID:26483637

  4. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker

    PubMed Central

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R

    2006-01-01

    Background Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Methods Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. Results The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0 – 1.6% with whole marrow and 0.6 – 1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any

  5. Stem cell marker prominin-1/AC133 is expressed in duct cells of the adult human pancreas.

    PubMed

    Lardon, Jessy; Corbeil, Denis; Huttner, Wieland B; Ling, Zhidong; Bouwens, Luc

    2008-01-01

    Many efforts are spent in identifying stem cells in adult pancreas because these could provide a source of beta cells for cell-based therapy of type 1 diabetes. Prominin-1, particularly its specific glycosylation-dependent AC133 epitope, is expressed on stem/progenitor cells of various human tissues and can be used to isolate them. We, therefore, examined its expression in adult human pancreas. To detect prominin-1 protein, monoclonal antibody CD133/1 (AC133 clone), which recognizes the AC133 epitope, and the alphahE2 antiserum, which is directed against the human prominin-1 polypeptide, were used. Prominin-1 RNA expression was analyzed by real-time polymerase chain reaction. We report that all duct-lining cells of the pancreas express prominin-1. Most notably, the cells that react with the alphahE2 antiserum also react with the AC133 antibody. After isolation and culture of human exocrine cells, we found a relative increase in prominin-1 expression both at protein and RNA expression level, which can be explained by an enrichment of cells with ductal phenotype in these cultures. Our data show that pancreatic duct cells express prominin-1 and surprisingly reveal that its particular AC133 epitope is not an exclusive stem and progenitor cell marker.

  6. FAS ligand expression in inflammatory infiltrate lymphoid cells as a prognostic marker in oral squamous cell carcinoma.

    PubMed

    Peterle, G T; Santos, M; Mendes, S O; Carvalho-Neto, P B; Maia, L L; Stur, E; Agostini, L P; Silva, C V M; Trivilin, L O; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-09-22

    Currently, the most important prognostic factor in oral squamous cell carcinoma (OSCC) is the presence of regional lymph node metastases, which correlates with a 50% reduction in life expectancy. We have previously observed that expression of hypoxia genes in the tumor inflammatory infiltrate is statistically related to prognosis in OSCC. FAS and FASL expression levels in OSCC have previously been related to patient survival. The present study analyzed the relationship between FASL expression in the inflammatory infiltrate lymphoid cells and clinical variables, tumor histology, and prognosis of OSCC. Strong FASL expression was significantly associated with lymph node metastases (P = 0.035) and disease-specific death (P = 0.014), but multivariate analysis did not confirm FASL expression as an independent death risk factor (OR = 2.78, 95%CI = 0.81-9.55). Disease-free and disease-specific survival were significantly correlated with FASL expression (P = 0.016 and P = 0.005, respectively). Multivariate analysis revealed that strong FASL expression is an independent marker for earlier disease relapse and disease-specific death, with approximately 2.5-fold increased risk compared with weak expression (HR = 2.24, 95%CI = 1.08-4.65 and HR = 2.49, 95%CI = 1.04-5.99, respectively). Our results suggest a potential role for this expression profile as a tumor prognostic marker in OSCC patients.

  7. Cell Adhesion Molecule and Lymphocyte Activation Marker Expression during Experimental Vaginal Candidiasis

    PubMed Central

    Wormley, Floyd L.; Chaiban, Joseph; Fidel, Paul L.

    2001-01-01

    Cell-mediated immunity by Th1-type CD4+ T cells is the predominant host defense mechanism against mucosal candidiasis. However, studies using an estrogen-dependent murine model of vaginal candidiasis have demonstrated little to no change in resident vaginal T cells during infection and no systemic T-cell infiltration despite the presence of Candida-specific systemic Th1-type responses in infected mice. The present study was designed to further investigate these observations by characterizing T-cell activation and cell adhesion molecule expression during primary and secondary C. albicans vaginal infections. While flow cytometry analysis of activation markers showed some evidence for activation of CD3+ draining lymph node and/or vaginal lymphocytes during both primary and secondary vaginal Candida infection, CD3+ cells expressing the homing receptors and integrins α4β7, αM290β7, and α4β1 in draining lymph nodes of mice with primary and secondary infections were reduced compared to results for uninfected mice. At the local level, few vaginal lymphocytes expressed integrins, with only minor changes observed during both primary and secondary infections. On the other hand, immunohistochemical analysis of vaginal cell adhesion molecule expression showed increases in mucosal addressin cell adhesion molecule 1 and vascular cell adhesion molecule 1 expression during both primary and secondary infections. Altogether, these data suggest that although the vaginal tissue is permissive to cellular infiltration during a vaginal Candida infection, the reduced numbers of systemic cells expressing the reciprocal cellular adhesion molecules may preempt cellular infiltration, thereby limiting Candida-specific T-cell responses against infection. PMID:11447188

  8. Clinical Use of Programmed Cell Death-1 and Its Ligand Expression as Discriminatory and Predictive Markers in Ovarian Cancer.

    PubMed

    Chatterjee, Jayanta; Dai, Wei; Aziz, Nor Haslinda Abd; Teo, Pei Yun; Wahba, John; Phelps, David L; Maine, Christian J; Whilding, Lynsey M; Dina, Roberto; Trevisan, Giorgia; Flower, Kirsty J; George, Andrew J T; Ghaem-Maghami, Sadaf

    2017-07-01

    Purpose: We aimed to establish whether programmed cell death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, in ovarian cancer tumor tissue and blood, could be used as biomarkers for discrimination of tumor histology and prognosis of ovarian cancer. Experimental Design: Immune cells were separated from blood, ascites, and tumor tissue obtained from women with suspected ovarian cancer and studied for the differential expression of possible immune biomarkers using flow cytometry. PD-L1 expression on tumor-associated inflammatory cells was assessed by immunohistochemistry and tissue microarray. Plasma soluble PD-L1 was measured using sandwich ELISA. The relationships among immune markers were explored using hierarchical cluster analyses. Results: Biomarkers from the discovery cohort that associated with PD-L1 + cells were found. PD-L1 + CD14 + cells and PD-L1 + CD11c + cells in the monocyte gate showed a distinct expression pattern when comparing benign tumors and epithelial ovarian cancers (EOCs)-confirmed in the validation cohort. Receiver operating characteristic curves showed PD-L1 + and PD-L1 + CD14 + cells in the monocyte gate performed better than the well-established tumor marker CA-125 alone. Plasma soluble PD-L1 was elevated in patients with EOC compared with healthy women and patients with benign ovarian tumors. Low total PD-1 + expression on lymphocytes was associated with improved survival. Conclusions: Differential expression of immunological markers relating to the PD-1/PD-L1 pathway in blood can be used as potential diagnostic and prognostic markers in EOC. These data have implications for the development and trial of anti-PD-1/PD-L1 therapy in ovarian cancer. Clin Cancer Res; 23(13); 3453-60. ©2016 AACR . ©2016 American Association for Cancer Research.

  9. Effects of space flight on surface marker expression

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, G.

    1999-01-01

    Space flight has been shown to affect expression of several cell surface markers. These markers play important roles in regulation of immune responses, including CD4 and CD8. The studies have involved flight of experimental animals and humans followed by analysis of tissue samples (blood in humans, rats and monkeys, spleen, thymus, lymph nodes and bone marrow in rodents). The degree and direction of the changes induced by space flight have been determined by the conditions of the flight. Also, there may be compartmentalization of the response of surface markers to space flight, with differences in the response of cells isolated from blood and local immune tissue. The same type of compartmentalization was also observed with cell adhesion molecules (integrins). In this case, the expression of integrins from lymph node cells differed from that of splenocytes isolated from rats immediately after space flight. Cell culture studies have indicated that there may be an inhibition in conversion of a precursor cell line to cells exhibiting mature macrophage characteristics after space flight, however, these experiments were limited as a result of technical difficulties. In general, it is clear that space flight results in alterations of cell surface markers. The biological significance of these changes remains to be established.

  10. Cell-surface markers for colon adenoma and adenocarcinoma

    PubMed Central

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S.; Wojtkowiak, Jonathan W.; Stark, Valerie E.; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L.

    2016-01-01

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC. PMID:26894861

  11. Cell-surface markers for colon adenoma and adenocarcinoma.

    PubMed

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S; Wojtkowiak, Jonathan W; Stark, Valerie E; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L

    2016-04-05

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC.

  12. Cytoskeletal proteins and stem cell markers gene expression in human bone marrow mesenchymal stromal cells after different periods of simulated microgravity

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovich, J. G.; Zhambalova, A. P.; Romanov, Yu. A.; Buravkova, L. B.

    2012-01-01

    Mesenchymal stem (stromal) cells (MSCs) are present in a variety of tissues during prenatal and postnatal human development. In adult organism, they are prevalent in bone marrow and supposed to be involved in space-flight induced osteopenia. We studied expression of various genes in human bone marrow MSCs after different terms of simulated microgravity (SMG) provided by Random Positioning Machine. Simulated microgravity induced transient changes in expression level of genes associated with actin cytoskeleton, especially after 48 h of SMG. However, after 120 h exposure in SMG partial restoration of gene expression levels (relative to the control) was found. Similar results were obtained with bmMSCs subjected to 24 h readaptation in static state after 24 h in SMG. Analysis of 84 genes related to identification, growth and differentiation of stem cells revealed that expression of nine genes was changed slightly after 48 h in SMG. More pronounced changes in gene expression of "stem cells markers" were observed after 120 h of simulated microgravity. Among 84 investigated genes, 30 were up-regulated and 24 were down-regulated. Finally, MSCs osteogenesis induced by long-term (10-20 days) simulation of microgravity was accompanied by down-regulation of gene expression of the main osteogenic differentiation markers ( ALPL, OMD) and master transcription osteogenic factor of MSCs ( Runx2). Thus, our study demonstrated that changes in expression level of some genes associated with actin cytoskeleton and stem cell markers are supposed to be one of the mechanisms, which contribute to precursor's cellular adaptation to the microgravity conditions. These results can clarify genomic mechanisms through which SMG reduces osteogenic differentiation of bmMSCs.

  13. Rapamycin inhibits BMP-7-induced osteogenic and lipogenic marker expressions in fetal rat calvarial cells.

    PubMed

    Yeh, Lee-Chuan C; Ma, Xiuye; Ford, Jeffery J; Adamo, Martin L; Lee, John C

    2013-08-01

    Bone morphogenetic proteins (BMPs) promote osteoblast differentiation and bone formation in vitro and in vivo. BMPs canonically signal through Smad transcription factors, but BMPs may activate signaling pathways traditionally stimulated by growth factor tyrosine kinase receptors. Of these, the mTOR pathway has received considerable attention because BMPs activate P70S6K, a downstream effector of mTOR, suggesting that BMP-induced osteogenesis is mediated by mTOR activation. However, contradictory effects of the mTOR inhibitor rapamycin (RAPA) on bone formation have been reported. Since bone formation is thought to be inversely related to lipid accumulation and mTOR is also important for lipid synthesis, we postulated that BMP-7 may stimulate lipogenic enzyme expression in a RAPA-sensitive mechanism. To test this hypothesis, we determined the effects of RAPA on BMP-7-stimulated expression of osteogenic and lipogenic markers in cultured fetal rat calvarial cells. Our study showed that BMP-7 promoted the expression of osteogenic and lipogenic markers. The effect of BMP-7 on osteogenic markers was greater in magnitude than on lipogenic markers and was temporally more sustained. RAPA inhibited basal and BMP-7-stimulated osteogenic and lipogenic marker expression and bone nodule mineralization. The acetyl CoA carboxylase inhibitor TOFA stimulated the expression of osteoblast differentiation markers, whereas palmitate suppressed their expression. We speculate that the BMP-7-stimulated adipogenesis is part of the normal anabolic response to BMPs, but that inappropriate activation of the lipid biosynthetic pathway by mTOR could have deleterious effects on bone formation and could explain paradoxical effects of RAPA to promote bone formation. Copyright © 2013 Wiley Periodicals, Inc.

  14. Network-based expression analyses and experimental validations revealed high co-expression between Yap1 and stem cell markers compared to differentiated cells.

    PubMed

    Dehghanian, Fariba; Hojati, Zohreh; Esmaeili, Fariba; Masoudi-Nejad, Ali

    2018-05-21

    The Hippo signaling pathway is identified as a potential regulatory pathway which plays critical roles in differentiation and stem cell self-renewal. Yap1 is a primary transcriptional effector of this pathway. The importance of Yap1 in embryonic stem cells (ESCs) and differentiation procedure remains a challenging question, since two different observations have been reported. To answer this question we used co-expression network and differential co-expression analyses followed by experimental validations. Our results indicate that Yap1 is highly co-expressed with stem cell markers in ESCs but not in differentiated cells (DCs). The significant Yap1 down-regulation and also translocation of Yap1 into the cytoplasm during P19 differentiation was also detected. Moreover, our results suggest the E2f7, Lin28a and Dppa4 genes as possible regulatory nuclear factors of Hippo pathway in stem cells. The present findings are actively consistent with studies that suggested Yap1 as an essential factor for stem cell self-renewal. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Evaluation of Accessory Lacrimal Gland in Muller's Muscle Conjunctival Resection Specimens for Precursor Cell Markers and Biological Markers of Dry Eye Disease.

    PubMed

    Ali, Marwan; Shah, Dhara; Pasha, Zeeshan; Jassim, Sarmad H; Jassim Jaboori, Assraa; Setabutr, Pete; Aakalu, Vinay K

    2017-04-01

    The accessory lacrimal glands (ALGs) are an understudied component of the tear functional unit, even though they are important in the development of dry eye syndrome (DES). To advance our understanding of aging changes, regenerative potential, and histologic correlates to human characteristics, we investigated human ALG tissue from surgical samples to determine the presence or absence of progenitor cell markers and lacrimal epithelial markers and to correlate marker expression to relevant patient characteristics. ALG tissues obtained from Muller's muscle conjunctival resection (MMCR) specimens were created using tissue microarrays (TMAs). Immunofluorescence staining of MMCR sections was performed using primary antibodies specific to cell protein markers. Cell marker localization in TMAs was then assessed by two blinded observers using a standardized scoring system. Patient characteristics including age, race, and status of ocular surface health were then compared against expression of stem cell markers. Human ALG expressed a number of epithelial markers, and in particular, histatin-1 was well correlated with the expression of epithelial markers and was present in most acini. In addition, we noted the presence of precursor cell markers nestin, ABCG2, and CD90 in ALG tissue. There was a decrease in precursor cell marker expression with increasing age. Finally, we noted that a negative association was present between histatin-1 expression and DES. Thus, we report for the first time that human ALG tissues contain precursor marker-positive cells and that this marker expression may decrease with increasing age. Moreover, histatin-1 expression may be decreased in DES. Future studies will be performed to use these cell markers to isolate and culture lacrimal epithelial cells from heterogeneous tissues, determine the relevance of histatin-1 expression to DES, and isolate candidate precursor cells from ALG tissue.

  16. Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248.

    PubMed

    Bagley, Rebecca G; Rouleau, Cecile; St Martin, Thia; Boutin, Paula; Weber, William; Ruzek, Melanie; Honma, Nakayuki; Nacht, Mariana; Shankara, Srinivas; Kataoka, Shiro; Ishida, Isao; Roberts, Bruce L; Teicher, Beverly A

    2008-08-01

    Angiogenesis occurs during normal physiologic processes as well as under pathologic conditions such as tumor growth. Serial analysis of gene expression profiling revealed genes [tumor endothelial markers (TEM)] that are overexpressed in tumor endothelial cells compared with normal adult endothelial cells. Because blood vessel development of malignant tumors under certain conditions may include endothelial precursor cells (EPC) recruited from bone marrow, we investigated TEM expression in EPC. The expression of TEM1 or endosialin (CD248) and other TEM has been discovered in a population of vascular endothelial growth factor receptor 2+/CD31+/CD45-/VE-cadherin+ EPC derived from human CD133+/CD34+ cells. EPC share some properties with fully differentiated endothelial cells from normal tissue, yet reverse transcription-PCR and flow cytometry reveal that EPC express higher levels of endosialin at the molecular and protein levels. The elevated expression of endosialin in EPC versus mature endothelial cells suggests that endosialin is involved in the earlier stages of tumor angiogenesis. Anti-endosialin antibodies inhibited EPC migration and tube formation in vitro. In vivo, immunohistochemistry indicated that human EPC continued to express endosialin protein in a Matrigel plug angiogenesis assay established in nude mice. Anti-endosialin antibodies delivered systemically at 25 mg/kg were also able to inhibit circulating murine EPC in nude mice bearing s.c. SKNAS tumors. EPC and bone marrow-derived cells have been shown previously to incorporate into malignant blood vessels in some instances, yet they remain controversial in the field. The data presented here on endothelial genes that are up-regulated in tumor vasculature and in EPC support the hypothesis that the angiogenesis process in cancer can involve EPC.

  17. Evaluation of Accessory Lacrimal Gland in Muller’s Muscle Conjunctival Resection Specimens for Precursor Cell Markers and Biological Markers of Dry Eye Disease

    PubMed Central

    Ali, Marwan; Shah, Dhara; Pasha, Zeeshan; Jassim, Sarmad H.; Jaboori, Assraa Jassim; Setabutr, Pete; Aakalu, Vinay K.

    2017-01-01

    Purpose The accessory lacrimal glands (ALG) are an understudied component of the tear functional unit, even though they are important in the development of dry eye syndrome (DES). To advance our understanding of aging changes, regenerative potential and histologic correlates to human characteristics, we investigated human ALG tissue from surgical samples to determine the presence or absence of progenitor cell markers and lacrimal epithelial markers and to correlate marker expression to relevant patient characteristics. Materials and Methods ALG tissues obtained from Muller’s Muscle Conjunctival Resection (MMCR) specimens were created using tissue microarrays (TMAs). Immunofluorescence staining of MMCR sections was performed using primary antibodies specific to cell protein markers. Cell marker localization in TMAs was then assessed by two blinded observers using a standardized scoring system. Patient characteristics including age, race, and status of ocular surface health were then compared against expression of stem cell markers. Results Human ALG expressed a number of epithelial markers, and in particular, histatin-1 was well correlated with the expression of epithelial markers and was present in most acini. In addition, we noted the presence of precursor cell markers nestin, ABCG2 and CD90 in ALG tissue. There was a decrease in precursor cell marker expression with increasing age. Finally, we noted that a negative association was present between histatin-1 expression and DES. Conclusions Thus, we report for the first time that human ALG tissues contain precursor marker positive cells and that this marker expression may decrease with increasing age. Moreover, histatin-1 expression may be decreased in DES. Future studies will be performed to use these cell markers to isolate and culture lacrimal epithelial cells from heterogeneous tissues, determine the relevance of histatin-1 expression to DES and isolate candidate precursor cells from ALG tissue. PMID:27612554

  18. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition.

    PubMed

    Kahounová, Zuzana; Kurfürstová, Daniela; Bouchal, Jan; Kharaishvili, Gvantsa; Navrátil, Jiří; Remšík, Ján; Šimečková, Šárka; Študent, Vladimír; Kozubík, Alois; Souček, Karel

    2017-04-06

    The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (Ep

  19. PAI-1, CAIX and VEGFA expressions as prognosis markers in oral squamous cell carcinoma.

    PubMed

    Peterle, Gabriela Tonini; Maia, Lucas Lima; Trivilin, Leonardo Oliveira; de Oliveira, Mayara Mota; Dos Santos, Joaquim Gasparini; Mendes, Suzanny Oliveira; Stur, Elaine; Agostini, Lidiane Pignaton; Rocha, Lília Alves; Moysés, Raquel Ajub; Cury, Patrícia Maluf; Nunes, Fábio Daumas; Louro, Iúri Drumond; Dos Santos, Marcelo; da Silva, Adriana Madeira Álvares

    2018-04-25

    In oral squamous cell carcinoma (OSCC), the HIF-1 complex promotes the expression of genes involved in specific mechanisms of cell survival under hypoxic conditions, such as plasminogen activator inhibitor-1 (PAI-1), carbonic anhydrase 9 (CAIX) and vascular endothelial growth factor A (VEGFA). The study aimed to investigate the presence and prognostic value of PAI-1, CAIX, and VEGFA in OSCC. Immunohistochemistry was used to analyze the expressions of these proteins in 52 tumoral tissue samples of patients with OSCC, surgically treated and followed by a minimum of 24 months after surgery. The correlations between proteins expressions and clinicopathological parameters and prognosis were analyzed. Positive PAI-1 membrane expression was significantly associated with local disease relapse (p=0.027). Multivariate analysis revealed that the positive PAI-1 membrane expression is an independent marker for local disease relapse, with approximately 14-fold increased risk when compared to negative expression (OR=14.49; CI=1.40-150.01, p=0.025). Strong PAI-1 cytoplasmic expression was significantly associated with the less differentiation grade (p=0.027). Strong CAIX membrane expression was significantly associated with local disease-free survival (p=0.038). Positive CAIX cytoplasmic expression was significantly associated with lymph node affected (p=0.025) and with disease-specific survival (p=0.022). Multivariate analysis revealed that the positive CAIX cytoplasmic expression is an independent risk factor for disease-related death, increasing their risk approximately 3-fold when compared to negative expression (HR=2.84; CI=1.02-7.87, p=0.045). Positive VEGFA cytoplasmic expression was significantly associated with less differentiation grade (p=0.035). Our results suggest a potential role for these expressions profiles as tumor prognostic markers in OSCC patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights

  20. Altered expression of epithelial mesenchymal transition and pluripotent associated markers by sex steroid hormones in human embryonic stem cells.

    PubMed

    Jeon, So-Ye; Hwang, Kyung-A; Kim, Cho-Won; Jeung, Eui-Bae; Choi, Kyung-Chul

    2017-07-01

    Embryonic stem (ES) cells are pluripotent stem cells derived from a developmental stage of pre‑implanted embryos. The present study investigated the effect of female sex steroid hormones on the characteristics of human ES cells by using a feeder‑free culture protocol. In a feeder‑free condition without sex hormones, human ES cells assumed the form of tightly packed cells that grow in a monolayer. The cells had clean and defined edges with no evidence of differentiation and expressed several markers specific for undifferentiated ES cells including POU class 5 homeobox 1 (POU5F1), sex determining region Y‑box 2 (SOX2) and NANOG homeobox (NANOG). It was then investigated if female sex steroid hormones including 17β‑estradiol (E2) and progesterone (P4) altered the protein expression of epithelial-mesenchymal transition (EMT) associated markers in addition to pluripotency markers including POU5F1, SOX2 and NANOG in human ES cells. The protein expression levels of N‑cadherin, Snail and Slug were increased while E‑cadherin expression was decreased by treatment of E2 or P4, and the expression levels of POU5F1, SOX2 and NANOG were decreased by the treatment of E2 or P4. When E2 and P4 were treated in combination with an estrogen receptor inhibitor (ICI 182,780) and progesterone receptor inhibitor (RU486) respectively, their effects on EMT and pluripotency of ES cells were restored to control levels. The results suggested that E2 and P4 may regulate EMT and pluripotency of human ES cells by mediating their receptors. The present study may aid in the understanding of the role of sex steroid hormones in the cellular biology of human ES cells.

  1. Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker.

    PubMed

    David, Robert; Groebner, Michael; Franz, Wolfgang-Michael

    2005-04-01

    Embryonic stem (ES) cells offer great potential in regenerative medicine and tissue engineering. Clinical applications are still hampered by the lack of protocols for gentle, high-yield isolation of specific cell types for transplantation expressing no immunogenic markers. We describe labeling of stably transfected ES cells expressing a human CD4 molecule lacking its intracellular domain (DeltaCD4) under control of the phosphoglycerate kinase promoter for magnetic cell sorting (MACS). To track the labeled ES cells, we fused DeltaCD4 to an intracellular enhanced green fluorescent protein domain (DeltaCD4EGFP). We showed functionality of the membrane-bound fluorescent fusion protein and its suitability for MACS leading to purities greater than 97%. Likewise, expression of DeltaCD4 yielded up to 98.5% positive cells independently of their differentiation state. Purities were not limited by the initial percentage of DeltaCD4(+) cells, ranging from 0.6%-16%. The viability of MACS-selected cells was demonstrated by reaggregation and de novo formation of embryoid bodies developing all three germ layers. Thus, expression of DeltaCD4 in differentiated ES cells may enable rapid, high-yield purification of a desired cell type for tissue engineering and transplantation studies.

  2. Comparative characterization of stem cell marker expression, metabolic activity and resistance to doxorubicin in adherent and spheroid cells derived from the canine prostate adenocarcinoma cell line CT1258.

    PubMed

    Liu, Wen; Moulay, Mohammed; Willenbrock, Saskia; Roolf, Catrin; Junghanss, Christian; Ngenazahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo

    2015-04-01

    Canine prostate cancer represents a spontaneous animal model for the human counterpart. Cells with stem cell-like character are considered to play a major role in therapeutic resistance and tumor relapse. Thus, the identification of markers allowing for recognition and characterization of these cells is essential. Expression of 12 stem cell marker genes in the canine prostate cancer cell line CT1258 and spheroid cells generated from these was analyzed by quantitative real-time PCR. In CT1258 and the generated spheroid cells, CD44 and CD133 expression was analyzed by flow cytometry, as well as proliferation and doxorubicin resistance. Integrin alpha-6 (ITGA6) expression and metabolic activity were significantly up-regulated in CT1258-derived spheroid cells, while doxorubicin resistance remained comparable. ITGA6 de-regulation and metabolic activity appear to be characteristic of the generated spheres, indicating potential intervention targets. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Identification of cancer stem cell markers in human malignant mesothelioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghani, Farhana Ishrat; Yamazaki, Hiroto; Iwata, Satoshi

    2011-01-14

    Research highlights: {yields} We performed serial transplantation of surgical samples and established new cell lines of malignant mesothelioma. {yields} SP cell and expressions of CD9/CD24/CD26 were often observed in mesothelioma cell lines. {yields} SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony. {yields} The marker-positive cells have clear tendency to generate larger tumors in mice. -- Abstract: Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors containmore » cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. In addition, CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.« less

  4. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    PubMed

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin

    2013-11-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  5. Co-expression of the Follicle Stimulating Hormone Receptor and Stem Cell Markers: A Novel Approach to Target Ovarian Cancer Stem Cells

    DTIC Science & Technology

    2012-09-01

    ovarian cancer stem cell markers to consider it as a new experimental target for novel nanotechnology approaches capable of destroying ovarian cancer stem...FSHR mRNA after several generations in an amount consistent with stem cell characteristics. Nude mouse experiments to confirm co-expression in vivoare

  6. Androgen deprivation and stem cell markers in prostate cancers

    PubMed Central

    Tang, Yao; Hamburger, Anne W; Wang, Linbo; Khan, Mohammad Afnan; Hussain, Arif

    2010-01-01

    In our previous studies using human LNCaP xenografts and TRAMP (transgenic adenocarcinoma of mouse prostate) mice, androgen deprivation therapy (ADT) resulted in a temporary cessation of prostate cancer (PCa) growth, but then tumors grew faster with more malignant behaviour. To understand whether cancer stem cells might play a role in PCa progression in these animal models, we investigated the expressions of stem cell-related markers in tumors at different time points after ADT. In both animal models, enhanced expressions of stem cell markers were observed in tumors of castrated mice, as compared to non-castrated controls. This increased cell population that expressed stem cell markers is designated as stem-like cells (SLC) in this article. We also observed that the SLC peaked at relatively early time points after ADT, before tumors resumed their growth. These results suggest that the SLC population may play a role in tumor re-growth and disease progression, and that targeting the SLC at their peak-expression time point may prevent tumor recurrence following ADT. PMID:20126580

  7. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer

    PubMed Central

    WANG, HAIYING; MOLINA, JULIAN; JIANG, JOHN; FERBER, MATTHEW; PRUTHI, SANDHYA; JATKOE, TIMOTHY; DERECHO, CARLO; RAJPUROHIT, YASHODA; ZHENG, JIAN; WANG, YIXIN

    2013-01-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  8. The Cell Surface Markers Expression in Postmenopausal Women and Relation to Obesity and Bone Status.

    PubMed

    Horváthová, Mira; Ilavská, Silvia; Štefíková, Kornélia; Szabová, Michaela; Krivošíková, Zora; Jahnová, Eva; Tulinská, Jana; Spustová, Viera; Gajdoš, Martin

    2017-07-11

    The age-related changes and hormonal deprivation in postmenopausal women are associated with the immune response alteration. The excessive fat accumulation, local and systemic inflammation may lead to dysregulation in immune function and relevant health problems, including obesity and osteoporosis. We analyzed the expression of cell surface markers in the venous blood specimens, stained with fluorophores-conjugated monoclonal antibodies and analysed by multicolour flow cytometry. The significant changes of cytotoxic, naive, and memory T-lymphocytes, plasmacytoid dendritic cells (DCs) were in postmenopausal women versus fertile women. Body mass index (BMI) affected markedly the cell surface expression of CD265/RANK. Osteoporosis is linked to reduced percentage of plasmacytoid DCs, and elevated natural Treg cells ( p < 0.05). The confounding factors such as women age, BMI, bone mineral density (BMD), waist size and tissue fat affect the expression of RANK on myeloid DCs and CD40L on T-lymphocytes that might be the immunophenotypic modulators after menopause.

  9. The Cell Surface Markers Expression in Postmenopausal Women and Relation to Obesity and Bone Status

    PubMed Central

    Horváthová, Mira; Ilavská, Silvia; Štefíková, Kornélia; Szabová, Michaela; Krivošíková, Zora; Jahnová, Eva; Tulinská, Jana; Spustová, Viera; Gajdoš, Martin

    2017-01-01

    The age-related changes and hormonal deprivation in postmenopausal women are associated with the immune response alteration. The excessive fat accumulation, local and systemic inflammation may lead to dysregulation in immune function and relevant health problems, including obesity and osteoporosis. We analyzed the expression of cell surface markers in the venous blood specimens, stained with fluorophores-conjugated monoclonal antibodies and analysed by multicolour flow cytometry. The significant changes of cytotoxic, naive, and memory T-lymphocytes, plasmacytoid dendritic cells (DCs) were in postmenopausal women versus fertile women. Body mass index (BMI) affected markedly the cell surface expression of CD265/RANK. Osteoporosis is linked to reduced percentage of plasmacytoid DCs, and elevated natural Treg cells (p < 0.05). The confounding factors such as women age, BMI, bone mineral density (BMD), waist size and tissue fat affect the expression of RANK on myeloid DCs and CD40L on T-lymphocytes that might be the immunophenotypic modulators after menopause. PMID:28696349

  10. Expression of CD markers' in immune thrombocytopenic purpura: prognostic approaches.

    PubMed

    Behzad, Masumeh Maleki; Asnafi, Ali Amin; Jaseb, Kaveh; Jalali Far, Mohammad Ali; Saki, Najmaldin

    2017-12-01

    Immune Thrombocytopenic Purpura (ITP) is a common autoimmune bleeding disorder characterized by a reduction in peripheral blood platelet counts. In this disease, autoantibodies (Auto-Abs) are produced against platelet GPIIb/GPIIIa by B cells, which require interaction with T cells. In this review, the importance of B and T lymphocytes in ITP prognosis has been studied. Relevant literature was identified by a PubMed search (1990-2016) of English-language papers using the terms B and T lymphocyte, platelet, CD markers and immune thrombocytopenic purpura. T and B lymphocytes are the main immune cells in the body. Defective function causes disrupted balance of different subgroups of lymphocytes, and abnormal expression of surface markers of these cells results in self-tolerance dysfunction, as well as induction of Auto-Abs against platelet glycoproteins (PG). Given the role of B and T cells in production of autoantibodies against PG, it can be stated that the detection of changes in CD markers' expression in these cells can be a good approach for assessing prognosis in ITP patients. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  11. Tumour endothelial marker-1 is expressed in canine Haemangiopericytomas.

    PubMed

    Fujii, Y; Tsuchiya, T; Morita, R; Kimura, M; Suzuki, K; Machida, N; Mitsumori, K; Shibutani, M

    2013-01-01

    The aim of this study was to characterize immunohistochemically 18 cases of canine haemangiopericytoma (CHP) using two new candidate markers for pericytes, tumour endothelial marker (TEM)-1 and new glue (NG)-2, as well as the conventional mesenchymal cellular markers, vimentin, α-smooth muscle actin (α-SMA), desmin and von Willebrand factor (vWF). Because pericytes may have the same origin as endothelial or smooth muscle cells or the same differentiation potential as myofibroblasts, 17 cases of leiomyosarcoma (LMS), 20 cases of haemangiosarcoma (HS) and three cases of myofibroblastic sarcoma (MFS) were also examined. Expression of TEM-1 by >10% of the neoplastic population was observed in 94.4% (17/18) of haemangiopericytomas, 23.5% (4/17) of LMSs, 30.0% (6/20) of HSs and 66.7% (2/3) of MFSs. NG-2 expression by >10% of the neoplastic population was observed in 16.7% (3/18) of haemangiopericytomas, 52.9% (9/17) of LMSs, 0% (0/20) of HSs and 33.3% (1/3) of MFSs. Vimentin was expressed by all of tumours. In haemangiopericytoma, the incidence of positive immunoreactivity in >10% of the neoplastic population was 5.6% (1/18) for both α-SMA and desmin and 0% (0/18) for vWF. Considering the phenotypic features of cells expressing TEM-1, CHPs are thought to originate from immature vascular mural cells sharing their phenotype with myofibroblasts. NG-2 expression may be a phenotype of smooth muscle cells rather than pericytes in dogs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Investigating Cell Surface Markers on Normal Hematopoietic Stem Cells in Three Different Niche Conditions

    PubMed Central

    Garg, Swati; Madkaikar, Manisha

    2013-01-01

    Hematopoietic stem cells are of therapeutic interest to the clinicians and researchers due to their promising assistance in management of malignant and inherited hematological conditions. Evaluation of cell surface markers using multiparametric flow cytometry is a well adapted qualitative measure of cells in question for many years. An artillery of these markers has been studied in hematological malignancies and related disorders. However, their role and differential expression on normal hematopoietic stem cells from clinically available sources is not always described carefully. In the present study, we attempted to evaluate expression of CD44, CD90, CD96 and CD123 in three clinically available sources of normal HSCs (Hematopoietic stem cells). Sources of HSCs in the present study involved umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow from idiopathic thrombocytopenic purpura (ITP) patients (IBM). CD44 is an important homing receptor while CD90 is involved in maintaining stem cell quiescent. CD96 is known to be leukemia specific marker and CD123 is involved in stem cell differentiation and survival. We observed a significant difference in expression CD44, CD90 and CD123 on normal HSCs derived from umbilical cord and ITP marrow. CD96 was highly expressed on HSCs obtained from ITP marrow. Investigating expression of these markers on normal HSCs in different niches will be helpful in correlating their function with niche condition and delineating their ‘abnormal’ expression from the normal. PMID:24386557

  13. Investigating cell surface markers on normal hematopoietic stem cells in three different niche conditions.

    PubMed

    Garg, Swati; Madkaikar, Manisha; Ghosh, Kanjaksha

    2013-11-01

    Hematopoietic stem cells are of therapeutic interest to the clinicians and researchers due to their promising assistance in management of malignant and inherited hematological conditions. Evaluation of cell surface markers using multiparametric flow cytometry is a well adapted qualitative measure of cells in question for many years. An artillery of these markers has been studied in hematological malignancies and related disorders. However, their role and differential expression on normal hematopoietic stem cells from clinically available sources is not always described carefully. In the present study, we attempted to evaluate expression of CD44, CD90, CD96 and CD123 in three clinically available sources of normal HSCs (Hematopoietic stem cells). Sources of HSCs in the present study involved umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow from idiopathic thrombocytopenic purpura (ITP) patients (IBM). CD44 is an important homing receptor while CD90 is involved in maintaining stem cell quiescent. CD96 is known to be leukemia specific marker and CD123 is involved in stem cell differentiation and survival. We observed a significant difference in expression CD44, CD90 and CD123 on normal HSCs derived from umbilical cord and ITP marrow. CD96 was highly expressed on HSCs obtained from ITP marrow. Investigating expression of these markers on normal HSCs in different niches will be helpful in correlating their function with niche condition and delineating their 'abnormal' expression from the normal.

  14. Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation.

    PubMed

    Singh, Karn P; Kaushik, Ramakant; Garg, Veena; Sharma, Ruchi; George, Aman; Singh, Manoj K; Manik, Radhey S; Palta, Prabhat; Singla, Suresh K; Chauhan, Manmohan S

    2012-12-01

    In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos.

  15. Tissue distribution of mesenchymal stem cell marker Stro-1.

    PubMed

    Lin, Guiting; Liu, Gang; Banie, Lia; Wang, Guifang; Ning, Hongxiu; Lue, Tom F; Lin, Ching-Shwun

    2011-10-01

    Stro-1 is the best-known mesenchymal stem cell marker. However, despite its bone marrow origin, its localization in bone marrow has never been demonstrated. By immunofluorescence staining, we show here that ∼ 0.74% of nucleated bone marrow cells expressed Stro-1. We also found that ∼ 8.7% of CD34-expressing cells expressed Stro-1, and more than 20% of Stro-1-expressing cells did not express CD34. In adipose tissue Stro-1 expression was identified in the endothelium of arterioles and capillaries. Stro-1 was also localized in the endothelium of some but not all adipose tissue veins. Endothelial expression of Stro-1 was also identified in blood vessels in penis and in leg muscles, but not in other tested tissues. In these other tissues, Stro-1 was scantly expressed near but not in blood vessels. These variable and endothelial expression patterns of Stro-1 point to a need to re-examine published data that relied on Stro-1 as a mesenchymal stem cell marker.

  16. Expression of surface markers on the human monocytic leukaemia cell line, THP-1, as indicators for the sensitizing potential of chemicals.

    PubMed

    An, Susun; Kim, Seoyoung; Huh, Yong; Lee, Tae Ryong; Kim, Han-Kon; Park, Kui-Lea; Eun, Hee Chul

    2009-04-01

    Evaluation of skin sensitization potential is an important part of the safety assessment of cosmetic ingredients and topical drugs. Recently, evaluation of changes in surface marker expression induced in dendritic cells (DC) or DC surrogate cell lines following exposure to chemicals represents one approach for in vitro test methods. The study aimed to test the change of expression patterns of surface markers on THP-1 cells by chemicals as a predictive in vitro method for contact sensitization. We investigated the expression of CD54, CD86, CD83, CD80, and CD40 after a 1-day exposure to sensitizers (1-chloro-2,4-dinitrobenzene; 2,4-dinitrofluorobenzene; benzocaine; 5-chloro-2-methyl-4-isothiazolin-3-one; hexyl cinnamic aldehyde; eugenol; nickel sulfate hexahydrate; potassium dichromate; cobalt sulfate; 2-mercaptobenzothiazole; and ammonium tetrachloroplatinate) and non-sensitizers (sodium lauryl sulfate, benzalkonium chloride, lactic acid, salicylic acid, isopropanol, and dimethyl sulphoxide). The test concentrations were 0.1x, 0.5x, and 1x of the 50% inhibitory concentration, and the relative fluorescence intensity was used as an expression indicator. By evaluating the expression patterns of CD54, CD86, and CD40, we could classify the chemicals as sensitizers or non-sensitizers, but CD80 and CD83 showed non-specific patterns of expression. These data suggest that the THP-1 cells are good model for screening contact sensitizers and CD40 could be a useful marker complementary to CD54 and CD86.

  17. The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin - Hyaluronic acid cardiac patches.

    PubMed

    Yang, Ming-Chia; Chi, Nai-Hsin; Chou, Nai-Kuan; Huang, Yi-You; Chung, Tze-Wen; Chang, Yu-Lin; Liu, Hwa-Chang; Shieh, Ming-Jium; Wang, Shoei-Shen

    2010-02-01

    Since MSCs contain an abundant of CD44 surface markers, it is of interesting to investigate whether CD44 on rat MSC (rMSCs) influenced cell growth, fibronectin expression and cardiomyogenic differentiation on new SF/HA cardiac patches. For this investigation, we examined the influences of rMSCs with or without a CD44-blockage treatment on the aforementioned issues after they were cultivated, and further induced by 5-aza on SF and SF/HA patches. The results showed that the relative growth rates of rMSCs cultured on cultural wells, SF/HA patches without or with a CD44-blockage treatment were 100%, 208.9+/-7.1 (%) or 48.4+/-6.0 (%) (n=3, for all), respectively, after five days of cultivations. Moreover, rMSCs cultivated on SF/HA patches highly promoted fibronectin expressions (e.g., 1.8x10(5)/cell, in fluorescent intensity) while cells with a CD44-blockage treatment markedly diminished the expressions (e.g., 1.1x10(4)/cell, in fluorescent intensity) on same patches. For investigating possible influences of CD44 surface markers of rMSCs on their cardiomyogenic differentiation, the expressions of specific cardiac genes of cells were examined by using real-time PCR analysis. The results indicated that 5-aza inducing rMSCs significantly promoted the expressions of Gata4, Nkx2.5, Tnnt2 and Actc1 genes (all, P<0.01 or better, n=3) on SF/HA patches compared with those expressions on SF patches and for cells with a CD44-blockage treatment on SF/HA patches. Furthermore, the intensity of the expressions of cardiotin and connexin 43 of 5-aza inducing rMSCs were markedly higher than those of cells with a CD44-blockage treatment after they were cultured on SF/HA patches. Through this study, we reported that CD44 surface markers of rMSCs highly influenced the proliferations, fibronectin expressions and cardiomyogenic differentiation of rMSCs cultivated on cardiac SF/HA patches.

  18. Dental pulp stem cells express tendon markers under mechanical loading and are a potential cell source for tissue engineering of tendon-like tissue.

    PubMed

    Chen, Yu-Ying; He, Sheng-Teng; Yan, Fu-Hua; Zhou, Peng-Fei; Luo, Kai; Zhang, Yan-Ding; Xiao, Yin; Lin, Min-Kui

    2016-12-16

    Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon-related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a potential stem cell source for tissue engineering of tendon-like tissue.

  19. The expression of the class 1 glucose transporter isoforms in human embryonic stem cells, and the potential use of GLUT2 as a marker for pancreatic progenitor enrichment.

    PubMed

    Segev, Hana; Fishman, Betina; Schulman, Rita; Itskovitz-Eldor, Joseph

    2012-07-01

    Even before the first appearance of the developing pancreas, glucose is the major substrate in the growing embryo. The transport of glucose across cell membranes is facilitated by a family of membranal glucose transporters (GLUT). We analyzed changes in expression of class 1 glucose transporters (GLUT1-4) during human embryonic stem cell (hESC) and human induced pluripotent stem cell (hiPSC) differentiation, from undifferentiated cells to 28-day-old embryoid bodies (EBs). We also examined the potential use of GLUT2 as a marker for differentiating pancreatic progenitor cells. Using quantitative real time polymerase chain reaction (qPCR), western blot, and immunofluorescence, we observed enhanced expression of GLUT1 and GLUT2 during differentiation, but only minor change in GLUT3 expression. GLUT4 expression was found to be very low both at the RNA and in the protein levels. Expression of the early pancreatic transcription factor, pancreatic duodenal homeobox gene 1 (PDX1), correlated with GLUT2 expression, suggesting the potential use of GLUT2 as a surface marker for tracking pancreatic precursor cells. After sorting EBs according to their membranal GLUT2 expression, GLUT2 and PDX1 expression were found elevated, as was expression of other endodermal markers such as PAX4, NGN3, CXCR4, and SOX17. This simple method may be used to differentiate embryonic stem cells and to isolate from them, using GLUT2 as a surface marker, an enriched pancreatic progenitor cell population in order to achieve insulin-producing cells. The sorted GLUT2 cells may potentially be used in the future as insulin-producing cells for beta cell therapies.

  20. Heterogeneity in Immune Marker Expression after Acquisition of Resistance to EGFR Kinase Inhibitors: Analysis of a Case with Small Cell Lung Cancer Transformation.

    PubMed

    Suda, Kenichi; Murakami, Isao; Yu, Hui; Kim, Jihye; Ellison, Kim; Rivard, Christopher J; Mitsudomi, Tetsuya; Hirsch, Fred R

    2017-06-01

    Expression of immune markers is of scientific interest because of their potential roles as predictive biomarkers for immunotherapy. Although the microenvironment of metastatic tumors and/or therapy-inducible histological transformation may affect the expression of these immune markers, there are few data regarding this context. A 76-year-old never-smoking female with EGFR-mutated lung adenocarcinoma (AC) acquired resistance to gefitinib. After her death, an autopsy revealed SCLC transformation and EGFR T790M secondary mutation (T790M) as mutually exclusive resistance mechanisms occurring differently in different metastases; two liver metastases (SCLC versus AC with T790M) and two lymph node metastases (SCLC versus AC with T790M) were analyzed to compare the expression status of immune markers by immunohistochemistry and by an immune oncology gene expression panel. Programmed death ligand 1 (PD-L1) protein was partially expressed in tumor cells with AC lesions (T790M) but not in tumor cells with SCLC transformation. The liver metastasis with SCLC transformation showed no stromal PD-L1 expression and scant tumor-infiltrating lymphocytes, whereas the other lesions demonstrated stromal PD-L1 staining and infiltration of CD8-positive T cells. Data generated using an immuno-oncology gene expression panel indicated a higher level of T-cell costimulatory molecules and lower expression of type I interferon-regulated genes in lesions with SCLC transformation. These data highlight the heterogeneity of expression of immune markers depending on the metastatic sites and histological transformation and indicate that the biopsy specimen from one lesion may not be representative of immune marker status for all lesions. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  1. [Cordyceps sinensis enhances lymphocyte proliferation and CD markers expression in simulated microgravity environment].

    PubMed

    Hao, Tong; Li, Jun-Jie; Du, Zhi-Yan; Duan, Cui-Mi; Wang, Yan-Meng; Wang, Chang-Yong; Song, Jing-Ping; Wang, Lin-Jie; Li, Ying-Hui; Wang, Yan

    2012-10-01

    This study was aimed to explore the effect of cordyceps sinensis enhancing lymphocyte proliferation and surface CD marker expression in simulated microgravity environment. The splenic lymphocytes were separated from mice and cultured in the rotary cell culture system simulated microgravity environment. The cells were treated with different concentration of cordyceps sinensis solution (0, 6.25, 12.5, 25 and 50 µg/ml) for 24, 48 and 72 h respectively, then the cells were harvested, and analyzed for cell proliferation and the expression of cell surface markers (CD4 and CD8). The results showed that under simulated microgravity environment, the lymphocyte proliferation was inhibited. When the concentration of cordyceps sinensis was 25 or 50 µg/ml, the lymphocyte proliferation, CD4 and CD8 expressions all increased, but 50 µg/ml cordyceps sinensis could inhibit the proliferation ability with the time prolonging. It is concluded that the suitable concentration of cordyceps sinensis displayed the ability to enhance the lymphocyte proliferation and CD marker expression in simulated microgravity environment. These results may be valuable for screening drugs which can be potentially against immunosuppression under simulated microgravity.

  2. Oxytocin Modulates Expression of Neuron and Glial Markers in the Rat Hippocampus.

    PubMed

    Havránek, T; Lešťanová, Z; Mravec, B; Štrbák, V; Bakoš, J; Bačová, Z

    2017-01-01

    Neuropeptides including oxytocin belong to the group of factors that may play a role in the control of neuronal cell survival, proliferation and differentiation. The aim of the present study was to investigate potential contribution of oxytocin to neuronal differentiation by measuring gene and protein expression of specific neuron and glial markers in the brain. Neonatal and adult oxytocin administration was used to reveal developmental and/or acute effects of oxytocin in Wistar rats. Gene and protein expression of neuron-specific enolase (NSE) in the hippocampus was increased in 21-day and 2-month old rats in response to neonatal oxytocin administration. Neonatal oxytocin treatment induced a significant increase of gene and protein expression of the marker of astrocytes - glial fibrillary acid protein (GFAP). Oxytocin treatment resulted in a decrease of oligodendrocyte marker mRNA - 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) - in 21-day and 2-month old rats, while no change of CD68 mRNA, marker of microglia, was observed. Central oxytocin administration in adult rats induced a significant increase of gene expression of NSE and CNPase. The present study provides the first data revealing the effect of oxytocin on the expression of neuron and glial markers in the brain. It may be suggested that the oxytocin system is involved in the regulation of development of neuronal precursor cells in the brain.

  3. Correlation of cancer stem cell markers and immune cell markers in resected non-small cell lung cancer.

    PubMed

    Huang, Zhaoqin; Yu, Haining; Zhang, Jianbo; Jing, Haiyan; Zhu, Wanqi; Li, Xiaolin; Kong, Lingling; Xing, Ligang; Yu, Jinming; Meng, Xiangjiao

    2017-01-01

    Background: Recent studies confirmed that immunotherapy showed prominent efficacy in non-small cell lung cancer (NSCLC). Cancer stem cells/cancer initiating cells are resistant to anticancer treatment. The purpose of the study was to analyze the correlation of cancer stem cells/cancer initiating cells and tumor-infiltrating immune cells in NSCLC. Methods: CD133, octamer 4 (OCT-4), CD8, CD56, human leukocyte antigen (HLA) class I and programmed death ligand-1 (PD-L1) were assessed in 172 resected NSCLC samples. The staining was analyzed and scored by the pathologist who was blinded to the clinical pathological data of the patients. Results: High CD8+ T cell infiltration was correlated significantly with squamous cell carcinoma histology (p=0.008). High PD-L1 expression (≥10%) was associated with high tumor status (p=0.043). Pearson's correlation test showed that CD56+ cells were negatively correlated with CD133 expression (r=-0.361, p<0.001) and weakly correlated with negative OCT-4 expression (r=-0.180, p=0.018). There was a strong positive correlation between CD8 and HLA class I (r=0.573, p<0.001). In the survival analysis, high CD8+ T cell infiltration is an independent predictor of improved disease-free survival and overall survival. Patients with low CD133 expression and high CD56 expression had a longer overall survival than those with high CD133 expression and/or low CD56 expression (p=0.013). Conclusion: There is a negative correlation between CD56+ cells and cancer stem cell markers. This correlation may confirm the possibility that natural killer cells can target CD133+ cancer stem cells/cancer initiating cells in non-small cell lung cancer.

  4. Reviewing and Updating the Major Molecular Markers for Stem Cells

    PubMed Central

    Calloni, Raquel; Cordero, Elvira Alicia Aparicio; Henriques, João Antonio Pêgas

    2013-01-01

    Stem cells (SC) are able to self-renew and to differentiate into many types of committed cells, making SCs interesting for cellular therapy. However, the pool of SCs in vivo and in vitro consists of a mix of cells at several stages of differentiation, making it difficult to obtain a homogeneous population of SCs for research. Therefore, it is important to isolate and characterize unambiguous molecular markers that can be applied to SCs. Here, we review classical and new candidate molecular markers that have been established to show a molecular profile for human embryonic stem cells (hESCs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). The commonly cited markers for embryonic ESCs are Nanog, Oct-4, Sox-2, Rex-1, Dnmt3b, Lin-28, Tdgf1, FoxD3, Tert, Utf-1, Gal, Cx43, Gdf3, Gtcm1, Terf1, Terf2, Lefty A, and Lefty B. MSCs are primarily identified by the expression of CD13, CD29, CD44, CD49e, CD54, CD71, CD73, CD90, CD105, CD106, CD166, and HLA-ABC and lack CD14, CD31, CD34, CD45, CD62E, CD62L, CD62P, and HLA-DR expression. HSCs are mainly isolated based on the expression of CD34, but the combination of this marker with CD133 and CD90, together with a lack of CD38 and other lineage markers, provides the most homogeneous pool of SCs. Here, we present new and alternative markers for SCs, along with microRNA profiles, for these cells. PMID:23336433

  5. VpreB gene expression in hematopoietic malignancies: a lineage- and stage-restricted marker for B-cell precursor leukemias.

    PubMed

    Bauer, S R; Kubagawa, H; Maclennan, I; Melchers, F

    1991-09-15

    We show here that analysis of VpreB gene transcription can be a specific way to identify acute leukemias of cells at very early stages of B-cell development. Northern blot analysis of RNAs from 63 leukemia samples showed that VpreB RNA was present in malignancies of precursor B cells, the expression being a feature of both common acute lymphoblastic leukemia (ALL) (CD10+) and null ALL (CD10-). It was absent from malignancies of mature B cells (surface Ig positive), from acute leukemias of the T-cell lineage and granulocyte-macrophage lineages, and from normal tonsil B and T lymphocytes. Chronic myeloid leukemia blast crises of the B-precursor-cell type expressed the VpreB gene while myeloid blast crises did not. VpreB RNA was also expressed in the neoplastic cells of one of three patients with acute undifferentiated leukemias. These data show that VpreB RNA expression is a marker of the malignant forms of precursor B cells, and that it appears at least as early as cytoplasmic CD22 and CD19 in tumors of the B-cell lineage.

  6. [Regulation of moxibustion for expression of gastric mucosa cell-related marker protein in rats with acute gastric ulcer].

    PubMed

    Yang, Zong-Bao; Wang, Chen-Guang; Gong, An; Xie, Yu-feng; Liu, Qiong; Yang, Qing

    2013-11-01

    To explore relevant material basis of moxibustion for recovering gastric mucosal lesion. METHODL Forty-five SD rats were randomly divided into a normal goup, a model group, an acupoint group and a control group, 15 rats in the model group and 10 rats in the rest three groups. Except the normal group, binding and cold stress method were used to establish gastric mucosa injury model. The suspended moxibustion was applied in the acupoint group and control group at acupoints of the stomach meridian ("Liangmen" (ST 21) and "Zusanli" (ST36) and control acupoints (Laterally 1cm next to the "Liangmen" (ST 21) and Zusanli" (ST36), once a day, consectutively for 12 days. After 12 days, morphology of gastric mucosal was observed under optical microscope; protein fingerprints of gastric mucosa cell in rats were detected by protein fingerprint technology, weak cation chip and weak anion chip. Also mass to charge ratio of differential proteins in groups were compared and analyzed. Compared with the model group, index of gastric mucosal lesion in the acupoint group was reduced and its morphology was obviously improved (P<0.05). Campared with control group, index and morphology of gastric mucosal lesion were significantly improved in the acupoint group (P<0.05). According to test of weak cation chip, there was four marker proteins that had expression differences, indicating moxibustion at acupoints of stomach meridian could inrease expression of three marker protein whose molecular weight was 1354Da, 5692Da and 8432Da (all P<0.05) while reduce expression of marker protein with molecular weight of 3287Da (_<0.05). According to test of weak anion chip, moxibustion at acupoints of stomach meridian could increase expression of three marker proteins whose molecular weight was 2412 Da, 3026Da and 6475 Da (allP<0.05). Moxibustion at acupoints of the stomach meridian could regulate differential expression of gastric mucosa cell-related marker protein in rats with acute gastric ulcer and

  7. Systematic evaluation of markers used for the identification of human induced pluripotent stem cells

    PubMed Central

    Bharathan, Sumitha Prameela; Manian, Kannan Vrindavan; Aalam, Syed Mohammed Musheer; Palani, Dhavapriya; Deshpande, Prashant Ajit; Pratheesh, Mankuzhy Damodaran; Srivastava, Alok

    2017-01-01

    ABSTRACT Low efficiency of somatic cell reprogramming and heterogeneity among human induced pluripotent stem cells (hiPSCs) demand extensive characterization of isolated clones before their use in downstream applications. By monitoring human fibroblasts undergoing reprogramming for their morphological changes and expression of fibroblast (CD13), pluripotency markers (SSEA-4 and TRA-1-60) and a retrovirally expressed red fluorescent protein (RV-RFP), we compared the efficiency of these features to identify bona fide hiPSC colonies. The co-expression kinetics of fibroblast and pluripotency markers in the cells being reprogrammed and the emerging colonies revealed the heterogeneity within SSEA-4+ and TRA-1-60+ cells, and the inadequacy of these commonly used pluripotency markers for the identification of bona fide hiPSC colonies. The characteristic morphological changes in the emerging hiPSC colonies derived from fibroblasts expressing RV-RFP showed a good correlation between hiPSC morphology acquisition and silencing of RV-RFP and facilitated the easy identification of hiPSCs. The kinetics of retroviral silencing and pluripotency marker expression in emerging colonies suggested that combining both these markers could demarcate the stages of reprogramming with better precision than with pluripotency markers alone. Our results clearly demonstrate that the pluripotency markers that are routinely analyzed for the characterization of established iPSC colonies are not suitable for the isolation of pluripotent cells in the early stages of reprogramming, and silencing of retrovirally expressed reporter genes helps in the identification of colonies that have attained a pluripotent state and the morphology of human embryonic stem cells (hESCs). PMID:28089995

  8. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    PubMed Central

    2012-01-01

    Background Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I). Methods Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. Results CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 103 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 105 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR). Conclusions We characterized a self-renewing subpopulation of CICs found among four well known human

  9. Markers of nonselective and specific NK cell activation.

    PubMed

    Fogel, Leslie A; Sun, Michel M; Geurs, Theresa L; Carayannopoulos, Leonidas N; French, Anthony R

    2013-06-15

    NK cell activation is controlled by the integration of signals from cytokine receptors and germline-encoded activation and inhibitory receptors. NK cells undergo two distinct phases of activation during murine CMV (MCMV) infection: a nonselective phase mediated by proinflammatory cytokines and a specific phase driven by signaling through Ly49H, an NK cell activation receptor that recognizes infected cells. We sought to delineate cell surface markers that could distinguish NK cells that had been activated nonselectively from those that had been specifically activated through NK cell receptors. We demonstrated that stem cell Ag 1 (Sca-1) is highly upregulated during viral infections (to an even greater extent than CD69) and serves as a novel marker of early, nonselective NK cell activation. Indeed, a greater proportion of Sca-1(+) NK cells produced IFN-γ compared with Sca-1(-) NK cells during MCMV infection. In contrast to the universal upregulation of Sca-1 (as well as KLRG1) on NK cells early during MCMV infection, differential expression of Sca-1, as well as CD27 and KLRG1, was observed on Ly49H(+) and Ly49H(-) NK cells late during MCMV infection. Persistently elevated levels of KLRG1 in the context of downregulation of Sca-1 and CD27 were observed on NK cells that expressed Ly49H. Furthermore, the differential expression patterns of these cell surface markers were dependent on Ly49H recognition of its ligand and did not occur solely as a result of cellular proliferation. These findings demonstrate that a combination of Sca-1, CD27, and KLRG1 can distinguish NK cells nonselectively activated by cytokines from those specifically stimulated through activation receptors.

  10. Receptor for advanced glycation end-products is a marker of type I lung alveolar cells.

    PubMed

    Shirasawa, Madoka; Fujiwara, Naoyuki; Hirabayashi, Susumu; Ohno, Hideki; Iida, Junko; Makita, Koshi; Hata, Yutaka

    2004-02-01

    Lung alveolar epithelial cells are comprised of type I (ATI) and type II (ATII) cells. ATI cells are polarized, although they have very flat morphology. The identification of marker proteins for apical and basolateral membranes of ATI cells is important to investigate into the differentiation of ATI cells. In this paper, we characterized receptor for advanced glycation end-products (RAGE) as a marker for ATI cells. RAGE was localized on basolateral membranes of ATI cells in the immunoelectron microscopy and its expression was enhanced in a parallel manner to the differentiation of ATI cells in vivo and in primary cultures of ATII cells. RAGE and T1 alpha, a well-known ATI marker protein, were targeted to basolateral and apical membranes, respectively, when expressed in polarized Madine Darby canine kidney cells. Moreover, RAGE was expressed in ATI cells after T1 alpha in vivo and in ex in vivo organ cultures. In conclusion, RAGE is a marker for basolateral membranes of well-differentiated ATI cells. ATI cells require some signal provided by the in vivo environment to express RAGE.

  11. Cell cycle S phase markers are expressed in cerebral neuron nuclei of cats infected by the Feline Panleukopenia Virus.

    PubMed

    Poncelet, Luc; Garigliany, Mutien; Ando, Kunie; Franssen, Mathieu; Desmecht, Daniel; Brion, Jean-Pierre

    2016-12-16

    The cell cycle-associated neuronal death hypothesis, which has been proposed as a common mechanism for most neurodegenerative diseases, is notably supported by evidencing cell cycle effectors in neurons. However, in naturally occurring nervous system diseases, these markers are not expressed in neuron nuclei but in cytoplasmic compartments. In other respects, the Feline Panleukopenia Virus (FPV) is able to complete its cycle in mature brain neurons in the feline species. As a parvovirus, the FPV is strictly dependent on its host cell reaching the cell cycle S phase to start its multiplication. In this retrospective study on the whole brain of 12 cats with naturally-occurring, FPV-associated cerebellar atrophy, VP2 capsid protein expression was detected by immunostaining not only in some brain neuronal nuclei but also in neuronal cytoplasm in 2 cats, suggesting that viral mRNA translation was still occurring. In these cats, double immunostainings demonstrated the expression of cell cycle S phase markers cyclin A, cdk2 and PCNA in neuronal nuclei. Parvoviruses are able to maintain their host cells in S phase by triggering the DNA damage response. S139 phospho H2A1, a key player in the cell cycle arrest, was detected in some neuronal nuclei, supporting that infected neurons were also blocked into the S phase. PCR studies did not support a co-infection with an adeno or herpes virus. ERK1/2 nuclear accumulation was observed in some neurons suggesting that the ERK signaling pathway might be involved as a mechanism driving these neurons far into the cell cycle.

  12. Expression of Glut-1 is a prognostic marker for oral squamous cell carcinoma patients.

    PubMed

    Eckert, A W; Lautner, M H W; Taubert, H; Schubert, J; Bilkenroth, U

    2008-12-01

    Oral squamous cell carcinoma (OSCC) is among the tenth most common human cancers worldwide with evidence of an increase in incidence rate and mortality. Despite advances in treatment modalities, the prognosis of this cancer is still very poor and has not changed over the past two decades. This study is based on samples collected from 42 patients with a primary OSCC. Immunohistochemical staining for Glut-1 was carried out and compared with the clinicopathological data. Thirty-two patients showed in their tumors a weak or undetectable Glut-1 expression, whereas in tumors of 10 patients a moderate to strong Glut-1 expression was detected. In multivariate Cox's regression hazard analysis, patients whose tumors had a moderate to strong Glut-1 expression possessed a 4.9-fold increased risk of tumor-related death compared to the other patients. Our results suggest that Glut-1 expression is an independent prognostic marker for routine assessment of OSCC.

  13. ErbB2 and bone sialoprotein as markers for metastatic osteosarcoma cells

    PubMed Central

    Valabrega, G; Fagioli, F; Corso, S; Madon, E; Brach del Prever, A; Biasin, E; Linari, A; Aglietta, M; Giordano, S

    2003-01-01

    Osteosarcoma is the most common malignant bone neoplasia occurring in young patients in the first two decades of life, and represents 20% of all primitive malignant bone tumours. At present, treatment of metastatic osteosarcoma is unsatisfactory. High-dose chemotherapy followed by CD34+ leukapheresis rescue may improve these poor results. Neoplastic cells contaminating the apheresis may, however, contribute to relapse. To identify markers suitable for detecting osteosarcoma cells in aphereses we analysed the expression of bone-specific genes (Bone Sialoprotein (BSP) and Osteocalcin) and oncogenes (Met and ErbB2) in 22 patients with metastatic osteosarcoma and six healthy stem cell donors. The expression of these genes in aphereses of patients affected by metastatic osteosarcoma was assessed by RT–PCR and Southern blot analysis. Met and Osteocalcin proved to be not useful markers since they are positive in aphereses of both patients with metastatic osteosarcoma and healthy stem cell donors. On the contrary, BSP was expressed at significant levels in 85% of patients. Moreover, 18% of patients showed a strong and significantly positive (seven to 16 times higher than healthy stem cell donors) ErbB2 expression. In all positive cases, neoplastic tissue also expressed ErbB2. Our data show that ErbB2 can be a useful marker for tumour contamination in aphereses of patients affected by ErbB2-expressing osteosarcomas and that analysis of Bone Sialoprotein expression can be an alternative useful marker. PMID:12569382

  14. Liver damage, proliferation, and progenitor cell markers in experimental necrotizing enterocolitis.

    PubMed

    Miyake, Hiromu; Li, Bo; Lee, Carol; Koike, Yuhki; Chen, Yong; Seo, Shogo; Pierro, Agostino

    2018-05-01

    Necrotizing enterocolitis (NEC) is a disease known to cause injury to multiple organs including the liver. Liver regeneration is essential for the recovery after NEC-induced liver injury. Our aim was to investigate hepatic proliferation and progenitor cell marker expression in experimental NEC. Following ethical approval (#32238), NEC was induced in mice by hypoxia, gavage feeding of hyperosmolar formula, and lipopolysaccharide. Breastfed pups were used as control. We analyzed serum ALT level, liver inflammatory cytokines, liver proliferation markers, and progenitor cell marker expression. Comparison was made between NEC and controls. Serum ALT level was higher in NEC (p<0.05). The mRNA expression of inflammatory cytokines in the liver was also higher in NEC (IL6: p<0.05, TNF-α: p<0.01). Conversely, mRNA expression of proliferation markers in the liver was lower in NEC (Ki67; p<0.01, PCNA: p<0.01). LGR5 expression was also significantly decreased in NEC as demonstrated by mRNA (p<0.05) and protein (p<0.01) levels. Inflammatory injury was present in the liver during experimental NEC. Proliferation and LGR5 expression were impaired in the NEC liver. Modulation of progenitor cell expressing LGR5 may result in stimulation of liver regeneration in NEC-induced liver injury and improved clinical outcome. Level IV. Copyright © 2018. Published by Elsevier Inc.

  15. Expression of Master Regulators of T-cell, Helper T-cell and Follicular Helper T-cell Differentiation in Angioimmunoblastic T-cell Lymphoma.

    PubMed

    Matsumoto, Yosuke; Nagoshi, Hisao; Yoshida, Mihoko; Kato, Seiichi; Kuroda, Junya; Shimura, Kazuho; Kaneko, Hiroto; Horiike, Shigeo; Nakamura, Shigeo; Taniwaki, Masafumi

    2017-11-01

    Objective It has been postulated that the normal counterpart of angioimmunoblastic T-cell lymphoma (AITL) is the follicular helper T-cell (TFH). Recent immunological studies have identified several transcription factors responsible for T-cell differentiation. The master regulators associated with T-cell, helper T-cell (Th), and TFH differentiation are reportedly BCL11B, Th-POK, and BCL6, respectively. We explored the postulated normal counterpart of AITL with respect to the expression of the master regulators of T-cell differentiation. Methods We performed an immunohistochemical analysis in 15 AITL patients to determine the expression of the master regulators and several surface markers associated with T-cell differentiation. Results BCL11B was detected in 10 patients (67%), and the surface marker of T-cells (CD3) was detected in all patients. Only 2 patients (13%) expressed the marker of naïve T-cells (CD45RA), but all patients expressed the marker of effector T-cells (CD45RO). Nine patients expressed Th-POK (60%), and 7 (47%) expressed a set of surface antigens of Th (CD4-positive and CD8-negative). In addition, BCL6 and the surface markers of TFH (CXCL13, PD-1, and SAP) were detected in 11 (73%), 8 (53%), 14 (93%), and all patients, respectively. Th-POK-positive/BCL6-negative patients showed a significantly shorter overall survival (OS) than the other patients (median OS: 33.0 months vs. 74.0 months, p=0.020; log-rank test). Conclusion Many of the AITL patients analyzed in this study expressed the master regulators of T-cell differentiation. The clarification of the diagnostic significance and pathophysiology based on the expression of these master regulators in AITL is expected in the future.

  16. Variable expression of podocyte-related markers in the glomeruloid bodies in Wilms tumor.

    PubMed

    Kanemoto, Katsuyoshi; Takahashi, Shori; Shu, Yujing; Usui, Joichi; Tomari, Shinsuke; Yan, Kunimasa; Hamazaki, Yutaka; Nagata, Michio

    2003-09-01

    Several podocyte-related markers are organized to express in glomerular differentiation. However, whether expression of them is virtually synchronized and a reliable indicator of the state of differentiation is unknown. The present study investigated, by immunohistochemistry, the divergent expression of several podocyte markers in the improperly differentiated glomeruloid bodies from four cases of Wilms tumors. The glomeruloid bodies were classified into immature (IGB) or mature forms (MGB) based on morphology and epithelial features. Podocytes in IGB expressed WT1, synaptopodin, podocalyxin, and nephrin, and their expression was stronger in MGB. In contrast, Pax2 was strong in IGB and diminished in MGB. p27 was first expressed in MGB. The expression pattern in each molecule mimics normal glomerulogenesis. Podocytes in MGB showed persistent expression of bcl-2 and cytokeratin with synaptopodin, podocalyxin, and nephrin by serial section, a finding unusual for normal glomerulogenesis. Moreover, parietal cells in MGB also occasionally expressed these podocyte markers. The ultrastructure revealed that podocytes in MGB showed tight junctions without foot process formations, which indicated incomplete differentiation. These results suggest that a set of podocyte differentiation markers are occasionally diversely expressed, and raise the possibility that expression of these markers is insufficient to determine the state of terminal differentiation in podocytes.

  17. The Pluripotent Stem-Cell Marker Alkaline Phosphatase is Highly Expressed in Refractory Glioblastoma with DNA Hypomethylation.

    PubMed

    Iwadate, Yasuo; Suganami, Akiko; Tamura, Yutaka; Matsutani, Tomoo; Hirono, Seiichiro; Shinozaki, Natsuki; Hiwasa, Takaki; Takiguchi, Masaki; Saeki, Naokatsu

    2017-02-01

    Hypomethylation of genomic DNA induces stem-cell properties in cancer cells and contributes to the treatment resistance of various malignancies. To examine the correlation between the methylation status of stem-cell-related genes and the treatment outcomes in patients with glioblastoma (GBM). The genome-wide DNA methylation status was determined using HumanMethylation450 BeadChips, and the methylation status was compared between a group of patients with good prognosis (survival > 4 yr) and a group with poor prognosis (survival < 1 yr). Immunohistochemistry for proteins translated from hypomethylated genes, including alkaline phosphatase (ALPL), CD133, and CD44, was performed in 70 GBMs and 60 oligodendroglial tumors. The genomic DNA in refractory GBM was more hypomethylated than in GBM from patients with relatively long survival (P = .0111). Stem-cell-related genes including ALPL, CD133, and CD44 were also significantly hypomethylated. A validation study using immunohistochemistry showed that DNA hypomethylation was strongly correlated with high protein expression of ALPL, CD133, and CD44. GBM patients with short survival showed high expression of these stem-cell markers. Multivariate analysis confirmed that co-expression of ALPL + CD133 or ALPL + CD44 was a strong predictor of short survival. Anaplastic oligodendroglial tumors without isocitrate dehydrogenase 1 mutation were significantly correlated with high ALPL expression and poor survival. Accumulation of stem-cell properties due to aberrant DNA hypomethylation is associated with the refractory nature of GBM. Copyright © 2017 by the Congress of Neurological Surgeons

  18. FACS-based isolation, propagation and characterization of mouse embryonic cardiomyocytes based on VCAM-1 surface marker expression.

    PubMed

    Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K; Jovinge, Stefan

    2013-01-01

    Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes.

  19. FACS-Based Isolation, Propagation and Characterization of Mouse Embryonic Cardiomyocytes Based on VCAM-1 Surface Marker Expression

    PubMed Central

    Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K.; Jovinge, Stefan

    2013-01-01

    Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes. PMID:24386094

  20. Expressed sequence tag analysis of adult human optic nerve for NEIBank: Identification of cell type and tissue markers

    PubMed Central

    Bernstein, Steven L; Guo, Yan; Peterson, Katherine; Wistow, Graeme

    2009-01-01

    Background The optic nerve is a pure white matter central nervous system (CNS) tract with an isolated blood supply, and is widely used in physiological studies of white matter response to various insults. We examined the gene expression profile of human optic nerve (ON) and, through the NEIBANK online resource, to provide a resource of sequenced verified cDNA clones. An un-normalized cDNA library was constructed from pooled human ON tissues and was used in expressed sequence tag (EST) analysis. Location of an abundant oligodendrocyte marker was examined by immunofluorescence. Quantitative real time polymerase chain reaction (qRT-PCR) and Western analysis were used to compare levels of expression for key calcium channel protein genes and protein product in primate and rodent ON. Results Our analyses revealed a profile similar in many respects to other white matter related tissues, but significantly different from previously available ON cDNA libraries. The previous libraries were found to include specific markers for other eye tissues, suggesting contamination. Immune/inflammatory markers were abundant in the new ON library. The oligodendrocyte marker QKI was abundant at the EST level. Immunofluorescence revealed that this protein is a useful oligodendrocyte cell-type marker in rodent and primate ONs. L-type calcium channel EST abundance was found to be particularly low. A qRT-PCR-based comparative mammalian species analysis reveals that L-type calcium channel expression levels are significantly lower in primate than in rodent ON, which may help account for the class-specific difference in responsiveness to calcium channel blocking agents. Several known eye disease genes are abundantly expressed in ON. Many genes associated with normal axonal function, mRNAs associated with axonal transport, inflammation and neuroprotection are observed. Conclusion We conclude that the new cDNA library is a faithful representation of human ON and EST data provide an initial overview

  1. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers.

    PubMed

    Palma, Marzia; Gentilcore, Giusy; Heimersson, Kia; Mozaffari, Fariba; Näsman-Glaser, Barbro; Young, Emma; Rosenquist, Richard; Hansson, Lotta; Österborg, Anders; Mellstedt, Håkan

    2017-03-01

    Chronic lymphocytic leukemia is characterized by impaired immune functions largely due to profound T-cell defects. T-cell functions also depend on co-signaling receptors, inhibitory or stimulatory, known as immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death-1 (PD-1). Here we analyzed the T-cell phenotype focusing on immune checkpoints and activation markers in chronic lymphocytic leukemia patients (n=80) with different clinical characteristics and compared them to healthy controls. In general, patients had higher absolute numbers of CD3 + cells and the CD8 + subset was particularly expanded in previously treated patients. Progressive patients had higher numbers of CD4 + and CD8 + cells expressing PD-1 compared to healthy controls, which was more pronounced in previously treated patients ( P =0.0003 and P =0.001, respectively). A significant increase in antigen-experienced T cells was observed in patients within both the CD4 + and CD8 + subsets, with a significantly higher PD-1 expression. Higher numbers of CD4 + and CD8 + cells with intracellular CTLA-4 were observed in patients, as well as high numbers of proliferating (Ki67 + ) and activated (CD69 + ) CD4 + and CD8 + cells, more pronounced in patients with active disease. The numbers of Th1, Th2, Th17 and regulatory T cells were substantially increased in patients compared to controls ( P <0.05), albeit decreasing to low levels in pre-treated patients. In conclusion, chronic lymphocytic leukemia T cells display increased expression of immune checkpoints, abnormal subset distribution, and a higher proportion of proliferating cells compared to healthy T cells. Disease activity and previous treatment shape the T-cell profile of chronic lymphocytic leukemia patients in different ways. Copyright© Ferrata Storti Foundation.

  2. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas.

    PubMed

    Van de Laar, Emily; Clifford, Monica; Hasenoeder, Stefan; Kim, Bo Ram; Wang, Dennis; Lee, Sharon; Paterson, Josh; Vu, Nancy M; Waddell, Thomas K; Keshavjee, Shaf; Tsao, Ming-Sound; Ailles, Laurie; Moghal, Nadeem

    2014-12-31

    The large airways of the lungs (trachea and bronchi) are lined with a pseudostratified mucociliary epithelium, which is maintained by stem cells/progenitors within the basal cell compartment. Alterations in basal cell behavior can contribute to large airway diseases including squamous cell carcinomas (SQCCs). Basal cells have traditionally been thought of as a uniform population defined by basolateral position, cuboidal cell shape, and expression of pan-basal cell lineage markers like KRT5 and TP63. While some evidence suggests that basal cells are not all functionally equivalent, few heterogeneously expressed markers have been identified to purify and study subpopulations. In addition, few signaling pathways have been identified that regulate their cell behavior. The goals of this work were to investigate tracheal basal cell diversity and to identify new signaling pathways that regulate basal cell behavior. We used flow cytometry (FACS) to profile cell surface marker expression at a single cell level in primary human tracheal basal cell cultures that maintain stem cell/progenitor activity. FACS results were validated with tissue staining, in silico comparisons with normal basal cell and lung cancer datasets, and an in vitro proliferation assay. We identified 105 surface markers, with 47 markers identifying potential subpopulations. These subpopulations generally fell into more (~ > 13%) or less abundant (~ < 6%) groups. Microarray gene expression profiling supported the heterogeneous expression of these markers in the total population, and immunostaining of large airway tissue suggested that some of these markers are relevant in vivo. 24 markers were enriched in lung SQCCs relative to adenocarcinomas, with four markers having prognostic significance in SQCCs. We also identified 33 signaling receptors, including the MST1R/RON growth factor receptor, whose ligand MST1/MSP was mitogenic for basal cells. This work provides the largest description to date of

  3. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas.

    PubMed

    Nielsen, Michael Friberg Bruun; Mortensen, Michael Bau; Detlefsen, Sönke

    2017-10-01

    Pancreatic stellate cells (PSCs) play a central role as source of fibrogenic cells in pancreatic cancer and chronic pancreatitis. In contrast to quiescent hepatic stellate cells (qHSCs), a specific marker for quiescent PSCs (qPSCs) that can be used in formalin-fixed and paraffin embedded (FFPE) normal human pancreatic tissue has not been identified. The aim of this study was to identify a marker enabling the identification of qPSCs in normal human FFPE pancreatic tissue. Immunohistochemical (IHC), double-IHC, immunofluorescence (IF) and double-IF analyses were carried out using a tissue microarray consisting of cores with normal human pancreatic tissue. Cores with normal human liver served as control. Antibodies directed against adipophilin, α-SMA, CD146, CRBP-1, cytoglobin, desmin, GFAP, nestin, S100A4 and vinculin were examined, with special emphasis on their expression in periacinar cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin immunohistochemistry was highly dependent on the preanalytical time interval (PATI) from removal of the tissue to formalin fixation. Cytoglobin, S100A4 and vinculin were expressed in periacinar fibroblasts (FBs). The other examined markers were negative in human qPSCs. Our data indicate that cytoglobin and adipophilin are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI

  4. Immunohistochemical Markers of Neural Progenitor Cells in the Early Embryonic Human Cerebral Cortex

    PubMed Central

    Vinci, L.; Ravarino, A.; Fanos, V.; Naccarato, A.G.; Senes, G.; Gerosa, C.; Bevilacqua, G.; Faa, G.; Ambu, R.

    2016-01-01

    The development of the human central nervous system represents a delicate moment of embryogenesis. The purpose of this study was to analyze the expression of multiple immunohistochemical markers in the stem/progenitor cells in the human cerebral cortex during the early phases of development. To this end, samples from cerebral cortex were obtained from 4 human embryos of 11 weeks of gestation. Each sample was formalin-fixed, paraffin embedded and immunostained with several markers including GFAP, WT1, Nestin, Vimentin, CD117, S100B, Sox2, PAX2, PAX5, Tβ4, Neurofilament, CD44, CD133, Synaptophysin and Cyclin D1. Our study shows the ability of the different immunohistochemical markers to evidence different zones of the developing human cerebral cortex, allowing the identification of the multiple stages of differentiation of neuronal and glial precursors. Three important markers of radial glial cells are evidenced in this early gestational age: Vimentin, Nestin and WT1. Sox2 was expressed by the stem/progenitor cells of the ventricular zone, whereas the postmitotic neurons of the cortical plate were immunostained by PAX2 and NSE. Future studies are needed to test other important stem/progenitor cells markers and to better analyze differences in the immunohistochemical expression of these markers during gestation. PMID:26972711

  5. Cancer stem cell markers in patterning differentiation and in prognosis of oral squamous cell carcinoma.

    PubMed

    Mohanta, Simple; Siddappa, Gangotri; Valiyaveedan, Sindhu Govindan; Dodda Thimmasandra Ramanjanappa, Ravindra; Das, Debashish; Pandian, Ramanan; Khora, Samanta Sekhar; Kuriakose, Moni Abraham; Suresh, Amritha

    2017-06-01

    Differentiation is a major histological parameter determining tumor aggressiveness and prognosis of the patient; cancer stem cells with their slow dividing and undifferentiated nature might be one of the factors determining the same. This study aims to correlate cancer stem cell markers (CD44 and CD147) with tumor differentiation and evaluate their subsequent effect on prognosis. Immunohistochemical analysis in treatment naïve oral cancer patients (n = 53) indicated that the expression of CD147 was associated with poorly differentiated squamous cell carcinoma and moderately differentiated squamous cell carcinoma (p < 0.01). Furthermore, co-expression analysis showed that 45% each of moderately differentiated squamous cell carcinoma and poorly differentiated squamous cell carcinoma patients were CD44 high /CD147 high as compared to only 10% of patients with well-differentiated squamous cell carcinoma. A three-way analysis indicated that differentiation correlated with recurrence and survival (p < 0.05) in only the patients with CD44 high /CD147 high cohort. Subsequently, relevance of these cancer stem cell markers in patterning the differentiation characteristics was evaluated in oral squamous cell carcinoma cell lines originating from different grades of oral cancer. Flowcytometry-based analysis indicated an increase in CD44 + /CD147 + cells in cell lines of poorly differentiated squamous cell carcinoma (94.35 ± 1.14%, p < 0.001) and moderately differentiated squamous cell carcinoma origin (93.49 ± 0.47%, p < 0.001) as compared to cell line of well-differentiated squamous cell carcinoma origin (23.12% ± 0.49%). Expression profiling indicated higher expression of cancer stem cell and epithelial-mesenchymal transition markers in SCC029B (poorly differentiated squamous cell carcinoma originated; p ≤ 0.001), which was further translated into increased spheroid formation, migration, and invasion (p < 0.001) as compared to cell line of well-differentiated squamous

  6. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality

    PubMed Central

    Bárcena, Paloma; Jara-Acevedo, María; Tabernero, María Dolores; López, Antonio; Sánchez, María Luz; García-Montero, Andrés C.; Muñoz-García, Noemí; Vidriales, María Belén; Paiva, Artur; Lecrevisse, Quentin; Lima, Margarida; Langerak, Anton W.; Böttcher, Sebastian; van Dongen, Jacques J.M.

    2015-01-01

    Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56low NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56low NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94hi/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality. PMID:26556869

  7. [Analysis of expression of cancer stem cell-related markers in orbital adenoid cystic carcinoma].

    PubMed

    Lin, Ting-ting; Zhu, Li-min; He, Yan-jin; Zhang, Hong

    2011-08-01

    To observe the expression and distribution of CD44, CD133, and ABCG2 in orbital adenoid cystic carcinoma (ACC) and investigate their correlations with pathological type and prognosis. Two steps method of immunohistochemical staining was employed in 33 cases of paraffin embedded surgical specimens of human orbital ACC, 5 cases of recurrence samples, 3 cases of an excised lacrimal gland caused by neither inflammation nor tumor diseases, and 6 cases of xenograft tumors in nude mice. A retrospective analysis was performed on the clinical material of these patients, which were collected from Jan. 1991 to Mar. 2009. The positive rate of CD44 was 54.5% (18/33), with 76.9% (10/13) in solid type and 40.0% (8/20) in adeno-tubiform type. There was no statistically significant difference between them (P = 0.072). In solid type the positive expression cells were often located at the marginal part of the cancer nest. In the adeno-tubiform type, positive cells were often located at the outer layer of the tubiform structure (myoepithelial cells). CD44 was also expressed in normal tissues. The positive rate of CD133 was 57.6% (19/33), with 76.9% (10/13) in solid type and 45.0% (9/20) in adeno-tubiform type. There was no significant difference between them (P = 0.087). CD133 antigen was expressed in either the cytoplasm or nucleus, or expressed in both the cytoplasm and nucleus. The positive rate of ABCG2 was 21.2% (7/33), with 30.77% (4/13) in solid type and 15.0% (3/20) in adeno-tubiform type. There was no significant difference between them (P = 0.393). Many positive cells surrounded the vessels in tumor tissues. There were no significant differences between different prognosis groups of these surface phenotypes. The correlative analysis results of three surface phenotypes showed that CD44(+) cells have positive correlation with CD133(+) cells (Spearman, r(s) = 0.416, P = 0.016). In six transplanted tumors of nude mice, the number of positive cases for CD44(+), CD133(+) and ABCG2

  8. Increased expression of CD44 is associated with more aggressive behavior in clear cell renal cell carcinoma.

    PubMed

    Zanjani, Leili Saeednejad; Madjd, Zahra; Abolhasani, Maryam; Rasti, Arezoo; Fodstad, Oystein; Andersson, Yvonne; Asgari, Mojgan

    2018-01-01

    Although CD44 has been suggested as a prognostic marker in renal cell carcinoma (RCC), the prognostic significance of this marker in three main subtypes of RCC is still unclear. Thus, the present study was conducted to evaluate the expression and prognostic significance of CD44 as a cancer stem cell marker in different histological subtypes of RCC. Methodology & results: CD44 expression was evaluated in 206 well-defined renal tumor samples using immunohistochemistry on tissue microarrays. Higher CD44 expression was associated with more aggressive behavior, tumor progression and worse prognosis in clear cell RCC (ccRCC) but not in papillary and chromophobe RCC subtypes. Cancer stem cell marker CD44 may be a promising target for cancer treatment only in ccRCC.

  9. Developmental Markers Expressed in Neocortical Layers Are Differentially Exhibited in Olfactory Cortex

    PubMed Central

    Brunjes, Peter C.; Osterberg, Stephen K.

    2015-01-01

    Neurons in the cerebral cortex stratify on the basis of their time of origin, axonal terminations and the molecular identities assigned during early development. Olfactory cortices share many feature with the neocortex, including clear lamination and similar cell types. The present study demonstrates that the markers differentially expressed in the projection neurons of the cerebral cortex are also found in olfactory areas. Three of the four regions examined (pars principalis of the anterior olfactory nucleus: AONpP, anterior and posterior piriform cortices: APC, PPC, and the olfactory tubercle) expressed transcription factors found in deep or superficial neurons in the developing neocortex, though large differences were found between areas. For example, while the AONpP, APC and PPC all broadly expressed the deep cortical marker CTIP2, NOR1 (NR4a3) levels were higher in AONpP and DAARP-32 was more prevalent in the APC and PPC. Similar findings were encountered for superficial cortical markers: all three regions broadly expressed CUX1, but CART was only observed in the APC and PPC. Furthermore, regional variations were observed even within single structures (e.g., NOR1 was found primarily in in the dorsal region of AONpP and CART expression was observed in a discrete band in the middle of layer 2 of both the APC and PPC). Experiments using the mitotic marker EDU verified that the olfactory cortices and neocortex share similar patterns of neuronal production: olfactory cells that express markers found in the deep neocortex are produced earlier than those that express superficial makers. Projection neurons were filled by retrograde tracers injected into the olfactory bulb to see if olfactory neurons with deep and superficial markers had different axonal targets. Unlike the cerebral cortex, no specificity was observed: neurons with each of the transcription factors examined were found to be labelled. Together the results indicate that olfactory cortices are complex

  10. Differential expression of conserved germ line markers and delayed segregation of male and female primordial germ cells in a hermaphrodite, the leech helobdella.

    PubMed

    Cho, Sung-Jin; Vallès, Yvonne; Weisblat, David A

    2014-02-01

    In sexually reproducing animals, primordial germ cells (PGCs) are often set aside early in embryogenesis, a strategy that minimizes the risk of genomic damage associated with replication and mitosis during the cell cycle. Here, we have used germ line markers (piwi, vasa, and nanos) and microinjected cell lineage tracers to show that PGC specification in the leech genus Helobdella follows a different scenario: in this hermaphrodite, the male and female PGCs segregate from somatic lineages only after more than 20 rounds of zygotic mitosis; the male and female PGCs share the same (mesodermal) cell lineage for 19 rounds of zygotic mitosis. Moreover, while all three markers are expressed in both male and female reproductive tissues of the adult, they are expressed differentially between the male and female PGCs of the developing embryo: piwi and vasa are expressed preferentially in female PGCs at a time when nanos is expressed preferentially in male PGCs. A priori, the delayed segregation of male and female PGCs from somatic tissues and from one another increases the probability of mutations affecting both male and female PGCs of a given individual. We speculate that this suite of features, combined with a capacity for self-fertilization, may contribute to the dramatically rearranged genome of Helobdella robusta relative to other animals.

  11. Differential Expression of Conserved Germ Line Markers and Delayed Segregation of Male and Female Primordial Germ Cells in a Hermaphrodite, the Leech Helobdella

    PubMed Central

    Cho, Sung-Jin; Vallès, Yvonne; Weisblat, David A.

    2014-01-01

    In sexually reproducing animals, primordial germ cells (PGCs) are often set aside early in embryogenesis, a strategy that minimizes the risk of genomic damage associated with replication and mitosis during the cell cycle. Here, we have used germ line markers (piwi, vasa, and nanos) and microinjected cell lineage tracers to show that PGC specification in the leech genus Helobdella follows a different scenario: in this hermaphrodite, the male and female PGCs segregate from somatic lineages only after more than 20 rounds of zygotic mitosis; the male and female PGCs share the same (mesodermal) cell lineage for 19 rounds of zygotic mitosis. Moreover, while all three markers are expressed in both male and female reproductive tissues of the adult, they are expressed differentially between the male and female PGCs of the developing embryo: piwi and vasa are expressed preferentially in female PGCs at a time when nanos is expressed preferentially in male PGCs. A priori, the delayed segregation of male and female PGCs from somatic tissues and from one another increases the probability of mutations affecting both male and female PGCs of a given individual. We speculate that this suite of features, combined with a capacity for self-fertilization, may contribute to the dramatically rearranged genome of Helobdella robusta relative to other animals. PMID:24217283

  12. Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells.

    PubMed

    Wu, H; Zhang, J; Shi, H

    2016-01-01

    Effect of the tumor suppression gene p16 on the biological characteristics of HeLa cervical carcinoma cells was explored. The expression of p16 protein was increased in HeLa tumor sphere cells, and no significant difference in tumor spheres from the first to the fourth passages. Compared with those of parental HeLa cells, the proportion of CD44+/CD24- and ABCG2+ cells increased significantly in tumor spheres. However after the cells were silenced by the p16-sh289 vector, expression of P16 protein and the cell number of CD44+/CD24- and ABCG2+ decreased. Moreover, HeLa cells with p16 gene silencing showed decreased abilities of sphere formation and matrigel invasion. More HeLa cells with p16 gene silence were needed for tumor formation in nude mice. Tumor size and weight in mouse model established with p16 gene silenced HeLa cells were less than those with HeLa parental cell model. The present results indicate that silencing of the p16 gene inhibits expression of cancer stem cell markers and tumorigenic ability of HeLa cells.

  13. p16 expression in follicular dendritic cell sarcoma: a potential mimicker of human papillomavirus-related oropharyngeal squamous cell carcinoma.

    PubMed

    Zhang, Lingxin; Yang, Chen; Lewis, James S; El-Mofty, Samir K; Chernock, Rebecca D

    2017-08-01

    Follicular dendritic cell sarcoma is a rare mesenchymal neoplasm that most commonly occurs in cervical lymph nodes. It has histologic and clinical overlap with the much more common p16-positive human papillomavirus (HPV)-related squamous cell carcinoma of the oropharynx, which characteristically has nonkeratinizing morphology and often presents as an isolated neck mass. Not surprisingly, follicular dendritic cell sarcomas are commonly misdiagnosed as squamous cell carcinoma. Immunohistochemistry is helpful in separating the 2 entities. Follicular dendritic cell sarcoma expresses dendritic markers such as CD21 and CD23 and is almost always cytokeratin negative. However, in many cases of HPV-related oropharyngeal carcinoma, only p16 immunohistochemistry as a prognostic and surrogate marker for HPV is performed. p16 expression in follicular dendritic cell sarcoma has not been characterized. Here, we investigate the expression of p16 in follicular dendritic cell sarcoma and correlate it with retinoblastoma protein expression. A pilot study of dendritic marker expression in HPV-related oropharyngeal squamous cell carcinoma was also performed. We found that 4 of 8 sarcomas expressed p16 with strong and diffuse staining in 2 cases. In 2 of the 4 cases, p16 expression corresponded to loss of retinoblastoma protein expression. Dendritic marker expression (CD21 and CD23) was not found in HPV-related oropharyngeal squamous cell carcinomas. As such, positive p16 immunohistochemistry cannot be used as supportive evidence for the diagnosis of squamous cell carcinoma as strong and diffuse p16 expression may also occur in follicular dendritic cell sarcoma. Cytokeratins and dendritic markers are critical in separating the two tumor types. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Characteristic Markers of the WNT Signaling Pathways Are Differentially Expressed in Osteoarthritic Cartilage

    PubMed Central

    Dehne, T.; Lindahl, A.; Brittberg, M.; Pruss, A.; Ringe, J.; Sittinger, M.; Karlsson, C.

    2012-01-01

    Objective: It is well known that expression of markers for WNT signaling is dysregulated in osteoarthritic (OA) bone. However, it is still not fully known if the expression of these markers also is affected in OA cartilage. The aim of this study was therefore to examine this issue. Methods: Human cartilage biopsies from OA and control donors were subjected to genome-wide oligonucleotide microarrays. Genes involved in WNT signaling were selected using the BioRetis database, KEGG pathway analysis was searched using DAVID software tools, and cluster analysis was performed using Genesis software. Results from the microarray analysis were verified using quantitative real-time PCR and immunohistochemistry. In order to study the impact of cytokines for the dysregulated WNT signaling, OA and control chondrocytes were stimulated with interleukin-1 and analyzed with real-time PCR for their expression of WNT-related genes. Results: Several WNT markers displayed a significantly altered expression in OA compared to normal cartilage. Interestingly, inhibitors of the canonical and planar cell polarity WNT signaling pathways displayed significantly increased expression in OA cartilage, while the Ca2+/WNT signaling pathway was activated. Both real-time PCR and immunohistochemistry verified the microarray results. Real-time PCR analysis demonstrated that interleukin-1 upregulated expression of important WNT markers. Conclusions: WNT signaling is significantly affected in OA cartilage. The result suggests that both the canonical and planar cell polarity WNT signaling pathways were partly inhibited while the Ca2+/WNT pathway was activated in OA cartilage. PMID:26069618

  15. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord‐specific markers during early human intervertebral disc development

    PubMed Central

    Rodrigues‐Pinto, Ricardo; Berry, Andrew; Piper‐Hanley, Karen; Hanley, Neil; Richardson, Stephen M.

    2016-01-01

    ABSTRACT In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte‐like cells. Although animal studies indicate that notochord‐derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5–18 weeks post‐conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E‐cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co‐expressed by sclerotomal cells. CD90, Tie2, and E‐cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord‐specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327–1340, 2016. PMID:26910849

  16. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development.

    PubMed

    Rodrigues-Pinto, Ricardo; Berry, Andrew; Piper-Hanley, Karen; Hanley, Neil; Richardson, Stephen M; Hoyland, Judith A

    2016-08-01

    In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte-like cells. Although animal studies indicate that notochord-derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5-18 weeks post-conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E-cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co-expressed by sclerotomal cells. CD90, Tie2, and E-cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord-specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327-1340, 2016. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc.

  17. Transcriptome analysis of cattle muscle identifies potential markers for skeletal muscle growth rate and major cell types.

    PubMed

    Guo, Bing; Greenwood, Paul L; Cafe, Linda M; Zhou, Guanghong; Zhang, Wangang; Dalrymple, Brian P

    2015-03-13

    This study aimed to identify markers for muscle growth rate and the different cellular contributors to cattle muscle and to link the muscle growth rate markers to specific cell types. The expression of two groups of genes in the longissimus muscle (LM) of 48 Brahman steers of similar age, significantly enriched for "cell cycle" and "ECM (extracellular matrix) organization" Gene Ontology (GO) terms was correlated with average daily gain/kg liveweight (ADG/kg) of the animals. However, expression of the same genes was only partly related to growth rate across a time course of postnatal LM development in two cattle genotypes, Piedmontese x Hereford (high muscling) and Wagyu x Hereford (high marbling). The deposition of intramuscular fat (IMF) altered the relationship between the expression of these genes and growth rate. K-means clustering across the development time course with a large set of genes (5,596) with similar expression profiles to the ECM genes was undertaken. The locations in the clusters of published markers of different cell types in muscle were identified and used to link clusters of genes to the cell type most likely to be expressing them. Overall correspondence between published cell type expression of markers and predicted major cell types of expression in cattle LM was high. However, some exceptions were identified: expression of SOX8 previously attributed to muscle satellite cells was correlated with angiogenesis. Analysis of the clusters and cell types suggested that the "cell cycle" and "ECM" signals were from the fibro/adipogenic lineage. Significant contributions to these signals from the muscle satellite cells, angiogenic cells and adipocytes themselves were not as strongly supported. Based on the clusters and cell type markers, sets of five genes predicted to be representative of fibro/adipogenic precursors (FAPs) and endothelial cells, and/or ECM remodelling and angiogenesis were identified. Gene sets and gene markers for the analysis of

  18. Distinctive pattern of expression of spermatogenic molecular markers in testes of azoospermic men with non-mosaic Klinefelter syndrome.

    PubMed

    Kleiman, Sandra E; Yogev, Leah; Lehavi, Ofer; Yavetz, Haim; Hauser, Ron

    2016-06-01

    Mature sperm cells can be found in testicular specimens extracted from azoospermic men with non-mosaic Klinefelter syndrome (KS). The present study evaluates the expression of various known molecular markers of spermatogenesis in a population of men with KS and assesses the ability of those markers to predict spermatogenesis. Two groups of men with non-obstructive azoospermia who underwent testicular sperm-retrieval procedures were included in the study: 31 had non-mosaic KS (KS group) and 91 had normal karyotype (NK group). Each group was subdivided into mixed atrophy (containing some mature sperm cells) or Sertoli cell only syndrome according to testicular histology and cytology observations. Semi-quantitative histological morphometric analysis (interstitial hyperplasia and hyalinization, tubules with cells and abnormal thickness of the basement membrane) and expression of spermatogenetic markers (DAZ, RBM, BOLL, and CDY1) were evaluated and compared among those subgroups. Clear differences in the histological morphometry and spermatogenetic marker expression were noted between the KS and NK groups. There was a significant difference in the expression of spermatogenetic markers between the subgroups of the NK group (as expected), while no difference could be discerned between the two subgroups in the KS group. We conclude that molecular spermatogenetic markers have a pattern of expression in men with KS that is distinctively different from that of men with NK, and that it precludes and limits their use for predicting spermatogenesis in the former. It is suggested that this difference might be due to the specific highly abnormal histological morphometric parameters in KS specimens.

  19. Alveolar epithelial cells in idiopathic pulmonary fibrosis display upregulation of TRAIL, DR4 and DR5 expression with simultaneous preferential over-expression of pro-apoptotic marker p53.

    PubMed

    Akram, Khondoker M; Lomas, Nicola J; Forsyth, Nicholas R; Spiteri, Monica A

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, debilitating, and fatal lung disease of unknown aetiology with no current cure. The pathogenesis of IPF remains unclear but repeated alveolar epithelial cell (AEC) injuries and subsequent apoptosis are believed to be among the initiating/ongoing triggers. However, the precise mechanism of apoptotic induction is hitherto elusive. In this study, we investigated expression of a panel of pro-apoptotic and cell cycle regulatory proteins in 21 IPF and 19 control lung tissue samples. We reveal significant upregulation of the apoptosis-inducing ligand TRAIL and its cognate receptors DR4 and DR5 in AEC within active lesions of IPF lungs. This upregulation was accompanied by pro-apoptotic protein p53 overexpression. In contrast, myofibroblasts within the fibroblastic foci of IPF lungs exhibited high TRAIL, DR4 and DR5 expression but negligible p53 expression. Similarly, p53 expression was absent or negligible in IPF and control alveolar macrophages and lymphocytes. No significant differences in TRAIL expression were noted in these cell types between IPF and control lungs. However, DR4 and DR5 upregulation was detected in IPF alveolar macrophages and lymphocytes. The marker of cellular senescence p21(WAF1) was upregulated within affected AEC in IPF lungs. Cell cycle regulatory proteins Cyclin D1 and SOCS3 were significantly enhanced in AEC within the remodelled fibrotic areas of IPF lungs but expression was negligible in myofibroblasts. Taken together these findings suggest that, within the remodelled fibrotic areas of IPF, AEC can display markers associated with proliferation, senescence, and apoptotosis, where TRAIL could drive the apoptotic response. Clear understanding of disease processes and identification of therapeutic targets will direct us to develop effective therapies for IPF.

  20. Fatty acid synthase as a tumor marker: its extracellular expression in human breast cancer.

    PubMed

    Wang, Young Y; Kuhajda, Francis P; Li, Jinong; Finch, Teia T; Cheng, Paul; Koh, Clare; Li, Tianwei; Sokoll, Lori J; Chan, Daniel W

    2004-07-01

    Overexpression of fatty acid synthase (FAS EC 2.3.1.85) is associated with certain cancers and therefore is a putative tumor marker. The presence of FAS in patients with breast, prostate, colon, ovarian, and other cancers has been reported. The mechanism of FAS overexpression in malignancies remains unknown. Here, we show that FAS is released into the extracellular space in cancer cells. The extracellular FAS are present in various immunoreactive forms, and show different expression patterns in various cancer cells. In serum of breast cancer patients, the FAS is a small molecule similar to the form in breast cancer cell lysate but not conditioned medium of cultured cells. The extracellular expression of FAS in breast cancer cells is time dependent and may be hormone independent. These results indicate that the FAS are an ordered cellular response of a living cell and actively exclude excess intracellular FAS molecules from the cell. This phenomenon is up-regulated in breast and may be in other cancer cells as well. Significant elevation of FAS was detected in serum of breast cancer patients compared to healthy subjects. In comparison with CA27.29, no correlation between these two tumor markers was found. Thus, the extracellular FAS may serve as a potential diagnostic and prognostic marker.

  1. Monitoring α4β7 integrin expression on circulating CD4+ T cells as a surrogate marker for tracking intestinal CD4+ T cell loss in SIV infection

    PubMed Central

    Wang, Xiaolei; Xu, Huanbin; Gill, Amy F.; Pahar, Bapi; Kempf, Doty; Rasmussen, Terri; Lackner, Andrew A.; Veazey, Ronald S.

    2013-01-01

    Intestinal CD4+ T cells are rapidly and profoundly depleted in HIV-infected patients and SIV-infected macaques. However, monitoring intestinal cells in humans is difficult, and identifying surrogate markers in the blood, which correlate with loss or restoration of intestinal CD4+ T cells could be helpful in monitoring the success of therapeutic strategies and vaccine candidates. Recent studies indicate HIV utilizes the intestinal homing molecule α4β7 for attachment and signaling of CD4+ T cells, suggesting this molecule may play a central role in HIV pathogenesis. Here we compared β7HIGH integrin expression on CD4+ T cells in blood with loss of CD4+ T cells in the intestine of macaques throughout SIV infection. The loss of β7HIGH CD4+ T cells in blood closely paralleled the loss of intestinal CD4+ T cells, and proved to be a more reliable marker of intestinal CD4+ T cell loss than monitoring CCR5+ memory CD4+ T cells. These data are consistent with a recent hypothesis that α4β7 plays a role in the selective depletion of intestinal CD4+ T cells, and indicate that monitoring β7HIGH expression on CD4+ T cells in the blood may be a useful surrogate for estimating intestinal CD4+ T cell loss and restoration in HIV-infected patients. PMID:19710637

  2. Expression profiles of cancer stem cell markers: CD133, CD44, Musashi-1 and EpCAM in the cardiac mucosa-Barrett's esophagus-early esophageal adenocarcinoma-advanced esophageal adenocarcinoma sequence.

    PubMed

    Mokrowiecka, Anna; Veits, Lothar; Falkeis, Christina; Musial, Jacek; Kordek, Radzislaw; Lochowski, Mariusz; Kozak, Jozef; Wierzchniewska-Lawska, Agnieszka; Vieth, Michael; Malecka-Panas, Ewa

    2017-03-01

    Barrett's esophagus (BE), which develops as a result of gastroesophageal reflux disease, is a preneoplastic condition for esophageal adenocarcinoma (EAC). A new hypothesis suggests that cancer is a disease of stem cells, however, their expression and pathways in BE - EAC sequence are not fully elucidated yet. We used a panel of putative cancer stem cells markers to identify stem cells in consecutive steps of BE-related cancer progression. Immunohistochemistry was performed on formalin-fixed, paraffin-embedded blocks from 58 patients with normal cardiac mucosa (n=5), BE (n=14), early EAC (pT1) from mucosal resection (n=17) and advanced EAC (pT1-T4) from postoperative specimens (n=22). Expression of the CD133, CD44, Musashi-1 and EpCAM was analyzed using respective monoclonal antibodies. All markers showed a heterogeneous expression pattern, mainly at the base of the crypts of Barrett's epithelium and EAC, with positive stromal cells in metaplastic and dysplastic lesions. Immuno-expression of EpCAM, CD44 and CD133 in cardiac mucosa was significantly lower (mean immunoreactivity score (IRS)=1.2; 0.0; 0.4; respectively) compared to their expression in Barrett's metaplasia (mean IRS=4.3; 0.14; 0.7; respectively), in early adenocarcinoma (mean IRS=4.4; 0.29; 1.3; respectively) and in advanced adenocarcinoma (mean IRS=6.6; 0.7; 2.7; respectively) (p<0.05). On the contrary, Musashi-1 expression was higher in BE and early ADC compared to GM and advanced ADC (NS). Our results suggest that the stem cells could be present in premalignant lesions. EpCAM, CD44 and CD133 expression could be candidate markers for BE progression, whereas Musashi-1 may be a marker of the small intestinal features of Barrett's mucosa. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki Hyung; Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan; Kang, Yun-Jeong

    Highlights: • Germ cell marker DDX4 was significantly increased in ovarian cancer. • Ovarian cancer stem cell marker CD133 was significantly increased in ovarian cancer. • DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. • CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4. • Germ cell marker DDX4 has the potential of ovarian cancer stem cell marker. - Abstract: DDX4 (DEAD box polypeptide 4), characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), is an RNA helicase which is implicated in various cellular processes involving the alteration of RNA secondarymore » structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. DDX4 is known to be a germ cell-specific protein and is used as a sorting marker of germline stem cells for the production of oocytes. A recent report about DDX4 in ovarian cancer showed that DDX4 is overexpressed in epithelial ovarian cancer and disrupts a DNA damage-induced G2 checkpoint. We investigated the relationship between DDX4 and ovarian cancer stem cells by analyzing the expression patterns of DDX4 and the cancer stem cell marker CD133 in ovarian cancers via tissue microarray. Both DDX4 and CD133 were significantly increased in ovarian cancer compared to benign tumors, and showed similar patterns of expression. In addition, DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. Furthermore, almost all CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4, suggesting a strong possibility that DDX4 plays an important role in cancer stem cells, and/or can be used as an ovarian cancer stem cell marker.« less

  4. CD146 Expression Influences Periapical Cyst Mesenchymal Stem Cell Properties.

    PubMed

    Paduano, Francesco; Marrelli, Massimo; Palmieri, Francesca; Tatullo, Marco

    2016-10-01

    Recent studies have identified a new human dental derived progenitor cell population with multi-lineage differentiation potential referred to as human periapical cyst mesenchymal stem cells (hPCy-MSCs). In the present study, we compared two subpopulations of hPCy-MSCs characterised by the low or high expression of CD146 to establish whether this expression can regulate their stem cell properties. Using flow cytometry, we evaluated the stem cell marker profile of hPCy-MSCs during passaging. Furthermore, CD146 Low and CD146 High cells were sorted by magnetic beads and subsequently both cell populations were evaluated for differences in their proliferation, self-renewal, stem cell surface markers, stemness genes expression and osteogenic differentiation potential.We found that hPCy-MSCs possessed a stable expression of several mesenchymal stem cell surface markers, whereas CD146 expression declined during passaging.In addition, sorted CD146 Low cells proliferated significantly faster, displayed higher colony-forming unit-fibroblast capacity and showed higher expression of Klf4 when compared to the CD146 High subset. Significantly, the osteogenic potential of hPCy-MSCs was greater in the CD146 Low than in CD146 High population. These results demonstrate that CD146 is spontaneously downregulated with passaging at both mRNA and protein levels and that the high expression of CD146 reduces the proliferative, self-renewal and osteogenic differentiation potential of hPCy-MSCs. In conclusion, our study demonstrates that changes in the expression of CD146 can influence the stem cell properties of hPCy-MSCs.

  5. Differential expression of E-cadherin at the surface of rat beta-cells as a marker of functional heterogeneity.

    PubMed

    Bosco, Domenico; Rouiller, Dominique G; Halban, Philippe A

    2007-07-01

    The aim of this study was to assess whether the expression of E-cadherin at the surface of rat beta-cells is regulated by insulin secretagogues and correlates with insulin secretion. When cultured under standard conditions, virtually all beta-cells expressed E-cadherin observed by immunofluorescence, but heterogeneous staining was observed. Using fluorescence-activated cell sorting (FACS), two beta-cell sub-populations were sorted: one that was poorly labeled ('ECad-low') and another that was highly labeled ('ECad-high'). After 1-h stimulation with 16.7 mM glucose, insulin secretion (reverse hemolytic plaque assay) from individual ECad-high beta-cells was higher than that from ECad-low beta-cells. Ca2+-dependent beta-cell aggregation was increased at 16.7 mM glucose when compared with 2.8 mM glucose. E-cadherin at the surface of beta-cells was increased after 18 h at 11.1 and 22.2 mM glucose when compared with 2.8 mM glucose, with the greatest increase at 22.2 mM glucose + 0.5 mM isobutylmethylxanthine (IBMX). While no labeling was detected on freshly trypsinized cells, the proportion of stained cells increased in a time-dependent manner during culture for 1, 3, and 24 h. This recovery was faster when cells were incubated at 16.7 vs 2.8 mM glucose. Cycloheximide inhibited expression of E-cadherin at 2.8 mM glucose, but not at 16.7 mM, while depolymerization of actin by either cytochalasin B or latrunculin B increased surface E-cadherin at low glucose. In conclusion, these results show that expression of E-cadherin at the surface of islet beta-cells is controlled by secretagogues including glucose, correlates with insulin secretion, and can serve as a surface marker of beta-cell function.

  6. Markers for the identification of tendon-derived stem cells in vitro and tendon stem cells in situ - update and future development.

    PubMed

    Lui, Pauline Po Yee

    2015-06-02

    The efficacy of tendon-derived stem cells (TDSCs) for the promotion of tendon and tendon-bone junction repair has been reported in animal studies. Modulation of the tendon stem cell niche in vivo has also been reported to influence tendon structure. There is a need to have specific and reliable markers that can define TDSCs in vitro and tendon stem cells in situ for several reasons: to understand the basic biology of TDSCs and their subpopulations in vitro; to understand the identity, niches and functions of tendon/progenitor stem cells in vivo; to meet the governmental regulatory requirements for quality of TDSCs when translating the exciting preclinical findings into clinical trial/practice; and to develop new treatment strategies for mobilizing endogenous stem/progenitor cells in tendon. TDSCs were reported to express the common mesenchymal stem cell (MSC) markers and some embryonic stem cell (ESC) markers, and there were attempts to use these markers to label tendon stem cells in situ. Are these stem cell markers useful for the identification of TDSCs in vitro and tracking of tendon stem cells in situ? This review aims to discuss the values of the panel of MSC, ESC and tendon-related markers for the identification of TDSCs in vitro. Important factors influencing marker expression by TDSCs are discussed. The usefulness and limitations of the panel of MSC, ESC and tendon-related markers for tracking stem cells in tendon, especially tendon stem cells, in situ are then reviewed. Future research directions are proposed.

  7. Nuclear YB-1 expression as a negative prognostic marker in nonsmall cell lung cancer.

    PubMed

    Gessner, C; Woischwill, C; Schumacher, A; Liebers, U; Kuhn, H; Stiehl, P; Jürchott, K; Royer, H D; Witt, C; Wolff, G

    2004-01-01

    The human Y-box binding protein, YB-1, is a multifunctional protein that regulates gene expression. Nuclear expression of YB-1 has been associated with chemoresistance and poor prognosis of tumour patients. Representative samples from autopsied material of primary tumours from 77 patients with NSCLC were investigated by immunohistochemistry for subcellular distribution of YB-1 and p53, in order to evaluate the prognostic role of nuclear expression of YB-1. Cytoplasmic YB-1 expression was found in all tumour samples, whereas nuclear expression was only observed in 48%. There was no correlation with histological classification, clinical parameters or tumour size, stage and metastasis status. However, patients with positive nuclear YB-1 expression in tumours showed reduced survival times when compared with patients without nuclear expression. Including information about the histology and mutational status for p53 increased the prognostic value of nuclear YB-1. Patients with nuclear YB-1 expression and p53 mutations had the worst prognosis (median survival 3 months), while best outcome was found in patients with no nuclear YB-1 and wildtype p53 (median survival 15 months). This suggests that the combined analysis of both markers allows a better identification of subgroups with varying prognosis. Nuclear expression of Y-box binding protien seems to be an independent prognostic marker.

  8. [Stem cells: searching predisposition to cardiac commitment by surface markers expression].

    PubMed

    Lara-Martínez, Luis A; Gutiérrez-Villegas, Ingrid; Arenas-Luna, Victor M; Hernández-Gutierrez, Salomón

    2018-01-05

    It is well-known that cardiovascular diseases are the leading cause of death worldwide, and represent an important economic burden to health systems. In an attempt to solve this problem, stem cell therapy has emerged as a therapeutic option. Within the last 20 years, a great variety of stem cells have been used in different myocardial infarction models. Up until now, the use of cardiac stem cells (CSCs) has seemed to be the best option, but the inaccessibility and scarcity of these cells make their use unreliable. Additionally, there is a high risk as they have to be obtained directly from the heart of the patient. Unlike CSCs, adult stem cells originating from bone marrow or adipose tissue, among others, appear to be an attractive option due to their easier accessibility and abundance, but particularly due to the probable existence of cardiac progenitors among their different sub-populations. In this review an analysis is made of the surface markers present in CSCs compared with other adult stem cells. This suggested the pre-existence of cells sharing specific surface markers with CSCs, a predictable immunophenotype present in some cells, although in low proportions, and with a potential of cardiac differentiation that could be similar to CSCs, thus increasing their therapeutic value. This study highlights new perspectives regarding MSCs that would enable some of these sub-populations to be differentiated at cardiac tissue level. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  9. Expression of Rous sarcoma virus-derived retroviral vectors in the avian blastoderm: Potential as stable genetic markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, S.T.; Stoker, A.W.; Bissell, M.J.

    1991-12-01

    Retroviruses are valuable tools in studies of embryonic development, both as gene expression vectors and as cell lineage markers. In this study early chicken blastoderm cells are shown to be permissive for infection by Rous sarcoma virus and derivative replication-defective by Rous sarcoma virus and derivative replication-defective vectors, and, in contrast to previously published data, these cells will readily express viral genes. In cultured blastoderm cells, Rous sarcoma virus stably integrates and is transcribed efficiently, producing infectious virus particles. Using replication-defective vectors encoding the bacterial lacZ gene, the authors further show that blastoderms can be infected in culture and inmore » ovo. In ovo, lacZ expression is seen within 24 hours of virus inoculation, and by 96 hours stably expressing clones of cells are observed in diverse tissues throughout the embryo, including epidermis, somites, and heart, as well as in extraembryonic membranes. Given the rapid onset of vector expression and the broad range of permissive cell types, it should be feasible to use Rous sarcoma virus-derived retroviruses as early lineage markers and expression vectors beginning at the blastoderm stage of avian embryogenesis.« less

  10. Selective simulation of allelic expression: effectf antibodies to allotypic markers on lymphoid cells.

    PubMed

    Frensdorff, A; Jones, P P; Berwald-Netter, Y; Cebra, J J; Mage, R

    1971-01-29

    Peripheral blood leukocytes from rabbits which were heterozygous (b(5)/b(9)) for markers on their immunoglobulin light chains were maintained in vitro for up to 24 hours in the presence or absence of antibody to b9. After culture they were transferred into lethally irradiated b(4)/b(4)hosts. Recipients of cells exposed to antibodies to allotype markers showed a striking increase in concentration of circulating b9 molecules and number of b9 plasma cells in their spleens compared pared to control animals receiving untreated cells from the same donor. There was no appreciable difyerence between the two groups of recipients with respect to their content of b5 molecules and immunocytes.

  11. СD44+/CD24- markers of cancer stem cells in patients with breast cancer of different molecular subtypes.

    PubMed

    Chekhun, S V; Zadvorny, T V; Tymovska, Yu O; Anikusko, M F; Novak, O E; Polishchuk, L Z

    2015-03-01

    To determine frequency of tumors with immunohistochemical markers of cancer stem cells (CSC) CD44+/CD24- in patients with breast cancer (BC) of different molecular subtype and to evaluate their prognostic value. Surgical material of 132 patients with BC stage I-II, age from 23 to 75 years, mean age - 50.2 ± 3.1 years was studied. Clinical, immunohistochemical (expression CD44+/CD24-), morphological, statistical. BC is characterized by heterogeneity of molecular subtypes and expression of markers (CD44+/CD24-). Immunohistochemical study of expression of CSC markers in surgical material has detected their expression in 34 (25.4%) patients with BC of different molecular subtypes. The highest frequency of cells with expression of CSC marker was observed in patients with basal molecular subtype (44.8% patients). Most of BC patients with phenotype CD44+/CD24 had stage I of tumor process (34.3%). Statistical processing of data has showen that Yule colligation coefficient equaled 0.28 (р > 0.05) that argues poor correlation between stage of tumor process and number of tumors with positive expression of CSC markers. Statistical processing of data has showen high correlation between presence of cells with expression of CSC markers and metastases of BC in regional lymph nodes (Yule colligation coefficient equals 0.943; р < 0.5). Difference in overall survival of patients with BC of basal molecular subtype depending on expression of CSC CD44+/CD24- markers was detected. Survival of patients with basal BC was reliably higher at lack in tumors of cells with CSC markers CD44+/CD24- and, correspondingly, lower at presence of such cells (р < 0.05). In patients with BC of luminal (A and B), HER-2-positive subtypes, significant change in survival of patients depending on expression of CSC markers was not determined (р > 0.05). Significance of tumor cells with markers CD44+/CD24- within the limits of molecular subtype of BC may be additional criterion for advanced biological

  12. Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes.

    PubMed

    Ghaneialvar, Hori; Soltani, Leila; Rahmani, Hamid Reza; Lotfi, Abbas Sahebghadam; Soleimani, Masoud

    2018-01-01

    Mesenchymal stem cells are multipotent cells capable of replicating as undifferentiated cells, and have the potential of differentiating into mesenchymal tissue lineages such as osteocytes, adipocytes and chondrocytes. Such lineages can then be used in cell therapy. The aim of present study was to characterize bone marrow derived mesenchymal stem cells in four different species, including: sheep, goat, human and mouse. Human bone-marrow mesenchymal stem cells were purchased, those of sheep and goat were isolated from fetal bone marrow, and those of mouse were collected by washing bone cavity of femur and tibia with DMEM/F12. Using flow-cytometry, they were characterized by CD surface antigens. Furthermore, cells of third passage were examined for their osteogenic and adipogenic differentiation potential by oil red and alizarin red staining respectively. According to the results, CD markers studied in the four groups of mesenchymal stem cells showed a different expression. Goat and sheep expressed CD44 and CD166, and weakly expressed CD34, CD45, CD105 and CD90. Similarly, human and mouse mesenchymal cells expressed CD44, CD166, CD105 and CD90 whereas the expression of CD34 and CD45 was negative. In conclusion, although all mesenchymal stem cells display plastic adherence and tri-lineage differentiation, not all express the same panel of surface antigens described for human mesenchymal stem cells. Additional panel of CD markers are necessary to characterize regenerative potential and possible application of these stem cells in regenerative medicine and implantology.

  13. A Novel Strategy for Enrichment and Isolation of Osteoprogenitor Cells from Induced Pluripotent Stem Cells Based on Surface Marker Combination

    PubMed Central

    Ochiai-Shino, Hiromi; Kato, Hiroshi; Sawada, Takashi; Onodera, Shoko; Saito, Akiko; Takato, Tsuyoshi; Shibahara, Takahiko; Muramatsu, Takashi; Azuma, Toshifumi

    2014-01-01

    In this study, we developed a new method to stimulate osteogenic differentiation in tissue-nonspecific alkaline phosphatase (TNAP)-positive cells liberated from human induced pluripotent stem cells (hiPSCs)-derived embryoid bodies (EBs) with 14 days long TGF-β/IGF-1/FGF-2 treatment. TNAP is a marker protein of osteolineage cells. We analyzed and isolated TNAP-positive and E-cadherin-negative nonepithelial cells by fluorescence-activated cell sorting. Treating the cells with a combination of transforming growth factor (TGF)-β, insulin-like growth factor (IGF)-1, and fibroblast growth factor (FGF)-2 for 14 days greatly enhanced TNAP expression and maximized expression frequency up to 77.3%. The isolated cells expressed high levels of osterix, which is an exclusive osteogenic marker. Culturing these TNAP-positive cells in osteoblast differentiation medium (OBM) led to the expression of runt-related transcription factor 2, type I collagen, bone sialoprotein, and osteocalcin (OCN). These cells responded to treatment with activated vitamin D3 by upregulating OCN. Furthermore, in OBM they were capable of generating many mineralized nodules with strong expression of receptor activator of NF-kappaB ligand and sclerostin (SOST). Real-time RT-PCR showed a significant increase in the expression of osteocyte marker genes, including SOST, neuropeptide Y, and reelin. Scanning electron microscopy showed dendritic morphology. Examination of semi-thin toluidine blue-stained sections showed many interconnected dendrites. Thus, TNAP-positive cells cultured in OBM may eventually become terminally differentiated osteocyte-like cells. In conclusion, treating hiPSCs-derived cells with a combination of TGF-β, IGF-1, and FGF-2 generated TNAP-positive cells at high frequency. These TNAP-positive cells had a high osteogenic potential and could terminally differentiate into osteocyte-like cells. The method described here may reveal new pathways of osteogenesis and provide a novel tool for

  14. Gap Junction Protein Connexin 43 Serves as a Negative Marker for a Stem Cell-Containing Population of Human Limbal Epithelial Cells

    PubMed Central

    Chen, Zhuo; Evans, W. Howard; Pflugfelder, Stephen C.; Li, De-Quan

    2010-01-01

    This study evaluated whether the gap junction protein connexin (Cx) 43 could serve as a negative cell surface marker for human corneal epithelial stem cells. Cx43 expression was evaluated in corneo-limbal tissue and primary limbal epithelial cultures. Immunofluorescent staining and laser scanning confocal microscopy showed that Cx43 was strongly expressed in the corneal and limbal suprabasal epithelial cells, but the basal cells of the limbal epithelium were negative. Cx43 antibody stained mainly large cells but not small cells in primary limbal epithelial cultures. As determined by semiquantitative reverse transcription polymerase chain reaction (PCR) and real-time PCR, Cx43 mRNA was more abundant in the corneal than limbal epithelia, and it was expressed in higher levels in mature limbal epithelial cultures. Using GAP11, a rabbit polyclonal antibody against the Cx32 extracellular loop 2 (151–187), a sequence that is highly homologous in Cx43, the Cx43dim and Cx43bright cells were selected from primary limbal epithelial cultures by fluorescence-activated cell sorting and were evaluated for stem cell properties. These Cx43dim and Cx43bright cells were confirmed by their expression levels of Cx43 protein and mRNA. The Cx43dim cells were found to contain higher percentages of slow-cycling bromodeoxyuridine (BrdU)-label retaining cells and the cells that were positive for stem cell-associated markers p63, ABCG2, and integrin β1 and negative for differentiation markers K3 and involucrin. The Cx43dim cells possessed a greater proliferative potential than Cx43bright cells and nonfractionated cells as evaluated by BrdU incorporation, colony-forming efficiency, and growth capacity. Our findings suggest that human limbal basal cells do not express connexin 43, which could serve as a negative cell surface marker for the stem cell-containing population of human limbal epithelial cells. PMID:16424398

  15. Efficacy of T Regulatory Cells, Th17 Cells and the Associated Markers in Monitoring Tuberculosis Treatment Response

    PubMed Central

    Agrawal, Sonali; Parkash, Om; Palaniappan, Alangudi Natarajan; Bhatia, Ashok Kumar; Kumar, Santosh; Chauhan, Devendra Singh; Madhan Kumar, M.

    2018-01-01

    Treatment monitoring is an essential aspect for tuberculosis (TB) disease management. Sputum smear microscopy is the only available tool for monitoring, but it suffers from demerits. Therefore, we sought to evaluate markers and cellular subsets of T regulatory (Treg) cells and T helper (Th) 17 cells in pulmonary TB patients (PTB) for TB treatment monitoring. Peripheral blood mononuclear cells (PBMCs) were stimulated in vitro (with purified protein derivative (PPD)) overnight which was followed by a polychromatic flow cytometry approach to study Treg and Th17 markers and cellular subsets in PTB (n = 12) undergoing antituberculous treatment (ATT). The baseline levels of these markers and cellular subsets were evaluated in normal healthy subjects (NHS). We observed a significant decrease in the expression of CD25 (p<0.01) marker and percentage of T-cell subsets like CD4+CD25+ (p<0.001) and CD4+CD25+CD39+ (p<0.05) at the end of intensive phase (IP) as well as in the continuation phase (CP) of ATT. A decrease in CD25 marker expression and percentage of CD4+CD25+ T cell subset showed a positive correlation to sputum conversion both in high and low sputum positive PTB. In eight PTB with cavitary lesions, only CD4+CD25+FoxP3 Treg subset manifested a significant decrease at the end of CP. Thus, results of this study show that CD25 marker and CD4+CD25+ T cells can serve as better markers for monitoring TB treatment efficacy. The Treg subset CD4+CD25+FoxP3 may be useful for prediction of favorable response in PTB with extensive lung lesions. However, these findings have to be evaluated in a larger patient cohort. PMID:29472922

  16. The effects of cryopreservation on the expression of canine regulatory T-cell markers.

    PubMed

    Tarpataki, Noemi; Wawrzyniak, Marcin; Akdis, Cezmi A; Rückert, Beate; Meli, Marina L; Fischer, Nina M; Favrot, Claude; Rostaher, Ana

    2017-08-01

    Regulatory T (Treg) cells have been described as key regulators in various immunological processes and are of growing interest in veterinary allergy. Cryopreservation of immune cells is performed routinely in human basic science research and in clinical studies. As such, it allows batch testing of collected samples at a single time point, resulting in a significant reduction in sample variability. Data which describe the effects of cryopreservation on Treg cell frequency and functionality in the canine species are important to inform future research. The purpose of this study was to establish a robust freeze/thaw procedure and flow cytometric staining protocol for canine Treg cells, and to compare the frequencies of different canine Treg cell phenotypes before and after cryopreservation. Nine privately owned dogs. Peripheral blood mononuclear cells were isolated and Treg cells stained and analysed by flow cytometry, before and after three months of cryopreservation. The recovery percentages and the corresponding correlations (fresh versus cryopreserved) for CD4 + CD25 + , CD4 + FOXP3 + and CD4 + CD25 + FOXP3 + cell populations were calculated. A high recovery rate of 97.2 (r = 0.94, P < 0.0001), 93.9 (r = 0.77, P < 0.01) and 101.7% (r = 0.99, P < 0.0001) for CD4 + CD25 + , CD4 + FOXP3 + and CD4 + CD25 + FOXP3 + cell populations, respectively, was observed. This study demonstrates an optimized protocol for freezing, thawing and quantifying canine Treg cells. These results indicate that cryopreservation does not substantially affect the expression of surface and intracellular markers of canine Treg cells; however, additional studies will be necessary to assess whether functionality of the cells is also maintained. © 2017 ESVD and ACVD.

  17. Pancreatic cancer stem cell markers and exosomes - the incentive push

    PubMed Central

    Heiler, Sarah; Wang, Zhe; Zöller, Margot

    2016-01-01

    Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX. PMID:27468191

  18. Novel murine clonal cell lines either express slow or mixed (fast and slow) muscle markers following differentiation in vitro.

    PubMed

    Peltzer, J; Colman, L; Cebrian, J; Musa, H; Peckham, M; Keller, A

    2008-05-01

    We have investigated whether the phenotype of myogenic clones derived from satellite cells of different muscles from the transgenic immortomouse depended on muscle type origin. Clones derived from neonatal, or 6- to 12-week-old fast and slow muscles, were analyzed for myosin and enolase isoforms as phenotypic markers. All clones derived from slow-oxidative muscles differentiated into myotubes with a preferentially slow contractile phenotype, whereas some clones derived from rapid-glycolytic or neonatal muscles expressed both fast and slow myosin isoforms. Thus, muscle origin appears to bias myosin isoform expression in myotubes. The neonatal clone (WTt) was cultivated in various medium and substrate conditions, allowing us to determine optimized conditions for their differentiation. Matrigel allowed expressions of adult myosin isoforms, and an isozymic switch from embryonic alpha- toward muscle-specific beta-enolase, never previously observed in vitro. These cells will be a useful model for in vitro studies of muscle fiber maturation and plasticity.

  19. Gene expression distribution deconvolution in single-cell RNA sequencing.

    PubMed

    Wang, Jingshu; Huang, Mo; Torre, Eduardo; Dueck, Hannah; Shaffer, Sydney; Murray, John; Raj, Arjun; Li, Mingyao; Zhang, Nancy R

    2018-06-26

    Single-cell RNA sequencing (scRNA-seq) enables the quantification of each gene's expression distribution across cells, thus allowing the assessment of the dispersion, nonzero fraction, and other aspects of its distribution beyond the mean. These statistical characterizations of the gene expression distribution are critical for understanding expression variation and for selecting marker genes for population heterogeneity. However, scRNA-seq data are noisy, with each cell typically sequenced at low coverage, thus making it difficult to infer properties of the gene expression distribution from raw counts. Based on a reexamination of nine public datasets, we propose a simple technical noise model for scRNA-seq data with unique molecular identifiers (UMI). We develop deconvolution of single-cell expression distribution (DESCEND), a method that deconvolves the true cross-cell gene expression distribution from observed scRNA-seq counts, leading to improved estimates of properties of the distribution such as dispersion and nonzero fraction. DESCEND can adjust for cell-level covariates such as cell size, cell cycle, and batch effects. DESCEND's noise model and estimation accuracy are further evaluated through comparisons to RNA FISH data, through data splitting and simulations and through its effectiveness in removing known batch effects. We demonstrate how DESCEND can clarify and improve downstream analyses such as finding differentially expressed genes, identifying cell types, and selecting differentiation markers. Copyright © 2018 the Author(s). Published by PNAS.

  20. Influence of Bovine Serum Lipids and Fetal Bovine Serum on the Expression of Cell Surface Markers in Cultured Bovine Preadipocytes.

    PubMed

    Sandhu, Mansur A; Jurek, Sandra; Trappe, Susanne; Kolisek, Martin; Sponder, Gerhard; Aschenbach, Jörg R

    2017-01-01

    To establish the influence of fetal bovine serum (FBS) and bovine serum lipids (BSL) on cell differentiation marker expression, bovine adipose-derived stem cells from subcutaneous tissue were incubated for 14 days in 4 types of differentiation media containing 10% FBS and 10 µL/mL BSL (TRT-1), no FBS and 10 µL/mL of BSL (TRT-2), 10% FBS and no BSL (TRT-3), or no supplements (TRT-4). Cells were subjected to Nile red staining, immunocytochemistry (CD73, CD90, CD105, DLK1, FabP4), and quantitative real-time PCR (CD73, CD90, CD105, FabP4). The number of cells presenting FabP4 and the percentage of mature adipocytes with large lipid droplets were increased in TRT-2, accompanied by a robust increase in FabP4 mRNA abundance and a decrease in DLK1-positive cells. In preadipocytes, CD73 was present around the nucleus and translocated towards cell membranes during differentiation. Although the percentage of CD73-positive cells was not different among treatments, its mRNA abundance, immunocytochemical staining intensity, and translocation towards cell membranes were decreased when the medium contained no FBS (TRT-2 and TRT-4). All cells showed a diffuse distribution of CD90 and CD105 and remained positive for these markers irrespective of the treatment. However, the CD90 and CD105 mRNA abundance was decreased in TRT-2 and TRT-4; i.e., in media containing no FBS. The presence of FBS increased the absolute number of cell nuclei as assessed by DAPI fluorescence. Our results suggest that bovine subcutaneous preadipocytes display typical stem cell markers. The differentiation into mature adipocytes is promoted by BSL, whereas FBS endorses cell proliferation. © 2017 S. Karger AG, Basel.

  1. CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) express early apoptotic markers but avoid programmed cell death by up-regulation of antiapoptotic proteins

    PubMed Central

    Pfannes, Loretta; Chen, Gubin; Shah, Simant; Solomou, Elena E.; Barrett, John; Young, Neal S.

    2007-01-01

    CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) are distinguished from other MDS cells and from normal hematopoietic cells by their pronounced expression of apoptotic markers. Paradoxically, trisomy 8 clones can persist in patients with bone marrow failure and expand following immunosuppression. We previously demonstrated up-regulation of c-myc and CD1 by microarray analysis. Here, we confirmed these findings by real-time polymerase chain reaction (PCR), demonstrated up-regulation of survivin, c-myc, and CD1 protein expression, and documented comparable colony formation by annexin+ trisomy 8− CD34+ and annexin− CD34 cells. There were low levels of DNA degradation in annexin+ trisomy 8 CD34 cells, which were comparable with annexin− CD34 cells. Trisomy 8 cells were resistant to apoptosis induced by gamma irradiation. Knock-down of survivin by siRNA resulted in preferential loss of trisomy 8 cells. These results suggest that trisomy 8 cells undergo incomplete apoptosis and are nonetheless capable of colony formation and growth. PMID:17090657

  2. Bcl-2 and BLIMP-1 expression predict worse prognosis in gastric diffuse large B cell lymphoma (DLCBL) while other markers for nodal DLBCL are not useful.

    PubMed

    Martin-Arruti, Maialen; Vaquero, Manuel; Díaz de Otazu, Ramón; Zabalza, Iñaki; Ballesteros, Javier; Roncador, Giovanna; García-Orad, Africa

    2012-04-01

    Previous studies have identified clinicopathological and immunohistochemical differences among diffuse large B cell lymphomas (DLBCL) as a function of disease location. Nevertheless, there is a continuing tendency to generalize the prognostic value of various identified markers without taking into account tumour site. Accordingly, we analysed the prognostic value of several of the immunohistochemical markers that have been proposed for nodal DLBCL in a group of patients with gastric DLBCL. Using histochemical methods, CD10, Bcl-6, Gcet1, MUM-1, Bcl-2 and BLIMP-1 expression was investigated in 43 cases of gastric DBLCL. As in nodal DLBCLs, expression of BLIMP-1, and of Bcl-2 in non-germinal centre B cell-like (non-GCB) patients, was associated with a worse prognosis. However, unlike nodal DBLCL, there was no significant association of prognosis with expression of CD10, Bcl-6, Gcet1 or MUM-1, or with categorization according to Hans or Muris algorithms. Although most markers of prognosis in nodal DLBCL are not useful indicators for gastric DLBCL, Bcl-2 or BLIMP-1 expression does correlate with worse prognosis. These data support the notion that clinicopathological features in DLBCL vary according to the disease location. © 2012 Blackwell Publishing Ltd.

  3. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells.

    PubMed

    Dubois, Nicole C; Craft, April M; Sharma, Parveen; Elliott, David A; Stanley, Edouard G; Elefanty, Andrew G; Gramolini, Anthony; Keller, Gordon

    2011-10-23

    To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications.

  4. Association between expression of cumulus expansion markers and real-time proliferation of porcine follicular granulosa cells in a primary cell culture model.

    PubMed

    Ciesiółka, S; Budna, J; Bryja, A; Kranc, W; Chachuła, A; Dyszkiewicz-Konwińska, M; Piotrowska, H; Bukowska, D; Antosik, P; Bruska, M; Brüssow, K P; Nowicki, M; Zabel, M; Kempisty, B

    2016-01-01

    Folliculogenesis is a compound process that involves both ovarian follicle growth and oocyte development, which is tightly attached to the follicular wall. During this process, cells that form the follicle structure undergo substantial morphological and molecular modifications that finally lead to differentiation and specialization of ovarian follicular cells. The differentiation of ovarian cells encompasses formation of follicle, which is composed of theca (TCs), mural granulosa (GCs), and cumulus cells (CCs). It was previously hypothesized that GCs and CCs represent undifferentiated and highly specialized follicular cells, respectively, which may have similar primordial cell origins. In this study, we investigated the expression pattern of cumulus expansion markers such as COX2, HAS2, PTX3, and TSG6 in porcine GCs during short-term, in vitro culture. We hypothesized that these genes may display an important function in GCs in relation to cellular real-time proliferation. The expression pattern of COX2, HAS2, PTX3, and TSG6 was evaluated after using RT-qPCR in relation to confocal microscopy observations of protein expression and distribution during real-time proliferation of porcine follicular GCs. The COX2 and HAS2 mRNAs were highly expressed after 120 h of in vitro culture (IVC), whereas PTX3 and TSG6 mRNAs were increased during the first 24-48 h of IVC (P less than 0.001, P less than 0.01). Conversely, all of the encoded proteins were highly expressed after 144-168 h of IVC as compared to other culture periods (P less than 0.001, P less than 0.01). When analyzing the realtime proliferation of GCs in vitro, we observed a logarithmic increase of cell proliferation between 0 h and 120 h of IVC. However, after 120-168 h of IVC, the cells reached the lag phase of proliferation. Since it is well accepted that porcine GCs undergo luteinization shortly after 24-48 h of IVC, the expression pattern of investigated genes indicated that Cox2 and Has2 are independent from

  5. Nestin-expressing cells in the pancreatic islets of Langerhans.

    PubMed

    Hunziker, E; Stein, M

    2000-04-29

    The pancreatic islets of Langerhans produce several peptide hormones, predominantly the metabolically active hormones insulin and glucagon, which are critical for maintaining normal fuel homeostasis. Some evidence exists that pancreatic endocrine cells turn over at a slow rate and can regenerate in certain conditions. This could be due to the presence of pluripotent cells residing in the pancreas. Recently the intermediate filament protein nestin has been identified to be a marker for a multipotent stem cell in the central nervous system. Given the similarity between the pancreatic islets and neuronal cells, we hypothesized that stem cells expressing nestin might be present in the pancreas. Here we present evidence that a subset of cells in the pancreatic islets express the stem cell marker nestin. These cells might serve as precursors of differentiated pancreatic endocrine cells. Copyright 2000 Academic Press.

  6. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallon, Mario, E-mail: m.vallon@arcor.de; Rohde, Franziska; Janssen, Klaus-Peter

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile,more » an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.« less

  7. Characterization of hepatic markers in human Wharton's Jelly-derived mesenchymal stem cells.

    PubMed

    Buyl, Karolien; De Kock, Joery; Najar, Mehdi; Lagneaux, Laurence; Branson, Steven; Rogiers, Vera; Vanhaecke, Tamara

    2014-02-01

    Stem cell technology could offer a unique tool to develop human-based in vitro liver models that are applicable for testing of potential liver toxicity early during drug development. In this context, recent research has indicated that human Wharton's Jelly-derived mesenchymal stem cells (hWJs) represent an interesting stem cell population to develop human hepatocyte-like cells. Here, an in-depth analysis of the expression of liver-specific transcription factors and other key hepatic markers in hWJs is evaluated at both the mRNA and protein level. Our results reveal that transcription factors that are mandatory to acquire and maintain an adult hepatic phenotype (HNF4A and HNF1A), as well as adult hepatic markers (ALB, CX32, CYP1A1, CYP1A2, CYP2B6 and CYP3A4) are not expressed in hWJs with the exception of K18. On the contrary, transcription factors involved in liver development (GATA4, GATA6, SOX9 and SOX17) and liver progenitor markers (DKK1, DPP4, DSG2, CX43 and K19) were found to be highly expressed in hWJs. These findings provide additional indication that hWJs could be a promising stem cell source to generate hepatocyte-like cells necessary for the development of a functional human-based in vitro liver model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. NOS2 expression in glioma cell lines and glioma primary cell cultures: correlation with neurosphere generation and SOX-2 expression.

    PubMed

    Palumbo, Paola; Miconi, Gianfranca; Cinque, Benedetta; Lombardi, Francesca; La Torre, Cristina; Dehcordi, Soheila Raysi; Galzio, Renato; Cimini, Annamaria; Giordano, Antonio; Cifone, Maria Grazia

    2017-04-11

    Nitric oxide has been implicated in biology and progression of glioblastoma (GBM) being able to influence the cellular signal depending on the concentration and duration of cell exposure. NOS2 (inducible nitric oxide synthase) have been proposed as a component of molecular profile of several tumors, including glioma, one of the most aggressive primary brain tumor featuring local cancer stem cells responsible for enhanced resistance to therapies and for tumor recurrence. Here, we investigated the NOS2 mRNA expression by reverse transcription-PCR in human glioma primary cultures at several grade of malignancy and glioma stem cell (GSC) derived neurospheres. Glioma cell lines were used as positive controls both in terms of stemness marker expression that of capacity of generating neurospheres. NOS2 expression was detected at basal levels in cell lines and primary cultures and appeared significantly up-regulated in cultures kept in the specific medium for neurospheres. The immunofluorescence analysis of all cell cultures to evaluate the levels of SOX-2, a stemness marker aberrantly up-regulated in GBM, was also performed. The potential correlation between NOS2 expression and ability to generate neurospheres and between NOS2 and SOX-2 levels was also verified. The results show that the higher NOS2 expression is detected in all primary cultures able to arise neurosphere. A high and significant correlation between NOS2 expression and SOX-2 positive cells (%) in all cell cultures maintained in standard conditions has been observed. The results shed light on the potential relevance of NOS2 as a prognostic factor for glioma malignancy and recurrence.

  9. Aberrant expression of cancer stem cell markers (CD44, CD90, and CD133) contributes to disease progression and reduced survival in hepatoblastoma patients: 4-year survival data.

    PubMed

    Bahnassy, Abeer A; Fawzy, Mohamed; El-Wakil, Mohamed; Zekri, Abdel-Rahman N; Abdel-Sayed, Ahmed; Sheta, Marwa

    2015-03-01

    Hepatoblastoma (HB) is an embryonal tumor of the liver in children. Prognosis and response to treatment in HB are highly variable. Cancer stem cells (CSCs) constitute a population of cells, which contribute to the development and progression of many tumors. However, their role in HB is not well defined yet. We assessed the prognostic and predictive values of some CSC markers in HB patients. Protein and messenger RNA expressions of the CSC markers CD133, CD90, and CD44 were assessed in 43 HB patients and 20 normal hepatic tissues using immunohistochemistry and quantitative real-time polymerase chain reaction. The expression levels of these markers were correlated to standard prognostic factors, patients' response to treatment, overall survival (OS), and disease-free survival (DFS). CD44, CD90, and CD133 proteins were detected in 48.8%, 32.6%, and 48.8% compared with 46.5%, 41.7%, and 58.1% RNA, respectively (concordance, 77.8%-96%). None of the normal tissue samples was positive for any of the markers. Significant correlations were reported between α-fetoprotein and both CD44 and CD133 (P = 0.02) as well as between tumor types CD90 and CD133 (P = 0.009). Reduced OS correlated with CD44, CD90, and CD133 expressions (P < 0.001), advanced stage (P < 0.001), response to treatment (P < 0.001), and total excision of the tumor. Reduced DFS correlated with CD44 and CD133 expressions (P < 0.001) only. In conclusion, CD133, CD44, and CD90 could be used as prognostic and predictive markers in HB. High expression of these markers is significantly associated with poor response to treatment and reduced survival. Moreover, complete surgical resection and systemic chemotherapy are essential to achieve good response and prolonged survival, especially in early stage patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Increased Cdc7 expression is a marker of oral squamous cell carcinoma and overexpression of Cdc7 contributes to the resistance to DNA-damaging agents.

    PubMed

    Cheng, An Ning; Jiang, Shih Sheng; Fan, Chi-Chen; Lo, Yu-Kang; Kuo, Chan-Yen; Chen, Chung-Hsing; Liu, Ying-Lan; Lee, Chun-Chung; Chen, Wei-Shone; Huang, Tze-Sing; Wang, Tao-Yeuan; Lee, Alan Yueh-Luen

    2013-09-01

    Cdc7-Dbf4 kinase (Dbf4-dependent kinase, DDK) is an essential factor of DNA replication and DNA damage response (DDR), which is associated with tumorigenesis. However, Cdc7 expression has never been associated to the outcome of oral squamous cell carcinoma (OSCC) patients, and the mechanism underlying cancer cell survival mediated by Cdc7 remains unclear. The Cdc7 protein expression of 105 OSCC tumor and 30 benign tissues was examined by immunohistochemistry assay. Overall survival rates of 80 OSCC patients were measured using Kaplan-Meier estimates and the log-rank tests. Cdc7 overexpression by adenovirus system was used to scrutinize the underlying mechanism contributed to cancer cell survival upon DDR. In silico analysis showed that increased Cdc7 is a common feature of cancer. Cdc7 overexpression was found in 96 of 105 (91.4%) studied cases of OSCC patients. Patients with higher Cdc7 expression, either categorized into two groups: Cdc7 high expression (2+ to 3+) versus Cdc7 low expression (0 to 1+) [hazard ratios (HR)=2.6; 95% confidence interval (CI)=1.28-5.43; P=0.0087] or four groups (0 to 3+) [HR=1.71; 95% CI=1.20-2.44; P=0.0032], exhibited a poorer outcome. Multivariate analysis showed that Cdc7 is an independent marker for survival prediction. Overexpressed Cdc7 inhibits genotoxin-induced apoptosis to increase the survival of cancer cells. In summary, Cdc7 expression, which is universally upregulated in cancer, is an independent prognostic marker of OSCC. Cdc7 inhibits genotoxin-induced apoptosis and increases survival in cancer cells upon DDR, suggesting that high expression of Cdc7 enhances the resistance to chemotherapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Transgenic mice that accept Luciferase- or GFP-expressing syngeneic tumor cells at high efficiencies.

    PubMed

    Aoyama, Naoki; Miyoshi, Hiroyuki; Miyachi, Hitoshi; Sonoshita, Masahiro; Okabe, Masaru; Taketo, Makoto Mark

    2018-05-11

    Jellyfish green fluorescent protein (GFP) and firefly luciferase can serve as versatile tracking markers for identification and quantification of transplanted cancer cells in vivo. However, immune reactions against these markers can hamper the formation of syngraft tumors and metastasis that follows. Here, we report two transgenic (Tg) mouse lines that express nonfunctional mutant marker proteins, namely modified firefly luciferase (Luc2) or enhanced GFP (EGFP). These mice, named as Tg-mLuc2 and Tg-mEGFP, turned out to be immunologically tolerant to the respective tracking markers and thus efficiently accepted syngeneic cancer cells expressing the active forms of the markers. We then injected intrarectally the F 1 hybrid Tg mice (BALB/c × C57BL/6J) with Colon-26 (C26) colon cancer cells that originated from a BALB/c mouse. Even when C26 cells expressed active Luc2 or EGFP, they formed primary tumors in the Tg mice with only 10 4 cells per mouse compared with more than 10 6 cells required in the nontransgenic BALB/c hosts. Furthermore, we detected metastatic foci of C26 cells in the liver and lungs of the Tg mice by tracking the specific reporter activities. These results show the usefulness of the Tg mouse lines as recipients for transplantation experiments with the non-self tracking marker-expressing cells. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  12. Molecular cloning and characterization of markers and cytokines for equid myeloid cells.

    PubMed

    Steinbach, Falko; Stark, Robert; Ibrahim, Sherif; Gawad, Eman Abd-El; Ludwig, Hanns; Walter, Jakob; Commandeur, Ulrich; Mauel, Susanne

    2005-10-18

    The myeloid cell system comprises of monocytes, macrophages (MPhi), dendritic cells (DC), Kupffer cells, osteoclasts or microglia and is also known as the mononuclear phagocytic system (MPS). Essential cytokines to differentiate or activate these cells include GM-CSF or IL-4. Important markers for characterization include CD1, CD14, CD68, CD163 and CD206. All these markers, however, were not cloned or further characterized in equids by use of monoclonal antibodies earlier. To overcome this problem with the present study, two approaches were used. First, we cloned equine cytokines and markers, and second we analyzed cross-reactivity of human homologues or anti-human monoclonal antibodies. For cloning of equine cytokines and markers, we used degenerate primers delineated from other species, or equine-specific primers based on previous information in Genbank. Flow cytometry was used to determine the expression of markers on myeloid cells. Cross-reactivity could be shown for anti-human CD14, CD163 and mannose receptor (CD206) mAbs. Surface markers such as CD1 and CD68 that distinguish MPhi and DC were cloned and sequenced. According to blast homology, equine CD1a and CD1b could be identified and distinguished. With the resulting information, dendritic cells and macrophages of horses may be characterized.

  13. Comparative marker analysis after isolation and culture of testicular cells from the immature marmoset.

    PubMed

    Albert, Silvia; Wistuba, Joachim; Eildermann, Katja; Ehmcke, Jens; Schlatt, Stefan; Gromoll, Joerg; Kossack, Nina

    2012-01-01

    The marmoset monkey is a valuable model in reproductive medicine. While previous studies have evaluated germ cell dynamics in the postnatal marmoset, the features of testicular somatic cells remain largely unknown. Therefore, the aim of this study was to establish marmoset-specific markers for Sertoli and peritubular cells (PTCs) and to compare protocols for the enrichment and culture of testicular cell types. Immunohistochemistry of Sertoli and PTC-specific markers - anti-müllerian hormone (AMH), vimentin (VIM), α-smooth muscle actin (SMA) - was performed and corresponding RNA expression profiles were established by quantitative PCR analysis (SOX9,AMH, FSHR,VIM, and SMA). For these analyses, testicular tissue from newborn (n = 4), 8-week-old (n = 4) and adult (n = 3) marmoset monkeys was used. Protocols for the enrichment and culture of testicular cell fractions from the 8-week-old marmoset monkeys (n = 3) were evaluated and cells were analyzed using germ cell- and somatic cell-specific markers. The expression of AMH, VIM and SMA reflects the proportion and differentiation status of Sertoli and PTCs at the RNA and the protein levels. While applied protocols did not support the propagation of germ cells in vitro, our analyses revealed that PTCs maintain their proliferative potential and constitute the dominant cell type after short- and long-term culture. Expression of functionally meaningful testicular somatic markers is similar in the human and the marmoset monkey, indicating that this primate can indeed be used as model for human testicular development. The PTC culture system established in this study will facilitate the identification of factors influencing male sex differentiation and spermatogenesis. Copyright © 2012 S. Karger AG, Basel.

  14. Liver-enriched transcription factors are critical for the expression of hepatocyte marker genes in mES-derived hepatocyte-lineage cells.

    PubMed

    Kheolamai, Pakpoom; Dickson, Alan J

    2009-04-23

    Induction of stem cell differentiation toward functional hepatocytes is hampered by lack of knowledge of the hepatocyte differentiation processes. The overall objective of this project is to characterize key stages in the hepatocyte differentiation process. We established a mouse embryonic stem (mES) cell culture system which exhibited changes in gene expression profiles similar to those observed in the development of endodermal and hepatocyte-lineage cells previously described in the normal mouse embryo. Transgenic mES cells were established that permitted isolation of enriched hepatocyte-lineage populations. This approach has isolated mES-derived hepatocyte-lineage cells that express several markers of mature hepatocytes including albumin, glucose-6-phosphatase, tyrosine aminotransferase, cytochrome P450-3a, phosphoenolpyruvate carboxykinase and tryptophan 2,3-dioxygenase. In addition, our results show that the up-regulation of the expression levels of hepatocyte nuclear factor-3alpha, -4alpha, -6, and CCAAT-enhancer binding protein-beta might be critical for passage into late-stage differentiation towards functional hepatocytes. These data present important steps for definition of regulatory phenomena that direct specific cell fate determination. The mES cell culture system generated in this study provides a model for studying transition between stages of the hepatocyte development and has significant potential value for studying the molecular basis of hepatocyte differentiation in vitro.

  15. Brain Region–Specific Alterations in the Gene Expression of Cytokines, Immune Cell Markers and Cholinergic System Components during Peripheral Endotoxin–Induced Inflammation

    PubMed Central

    Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A

    2014-01-01

    Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches. PMID:25299421

  16. Expression of red-shifted green fluorescent protein by Escherichia coli O157:H7 as a marker for the detection of cells on fresh produce.

    PubMed

    Takeuchi, K; Frank, J F

    2001-03-01

    Escherichia coli O157:H7 was transformed with a plasmid vector red-shifted green fluorescence protein (pEGFP) to express red-shifted green fluorescence protein (EGFP) from Aequorea victoria. The EGFP expression among total cells and nonviable cells was determined at the cellular level by microscopic observation of immunostained and membrane-impermeable, dye-stained cultures, respectively. E. coli O157:H7 retained pEGFP during frozen storage at -80 degrees C. The percentage of EGFP expression was improved by repeated subculturing, reaching 83.4 +/- 0.1%, although the fluorescence intensity varied among cells. A low percentage of EGFP-expressing cells was nonviable. The percentage of EGFP decreased when the culture plate was kept at 4 degrees C, suggesting that some cells lost pEGFP during refrigeration. The storage of the culture suspension in sterile deionized water at 4 degrees C for 24 h reduced the percentage of EGFP expression, indicating that some EGFP was denatured. The application of EGFP as a marker for E. coli O157:H7 on green leaf lettuce, cauliflower, and tomato was evaluated using confocal scanning laser microscopy. EGFP-transformed cells were readily visible under confocal scanning laser microscopy on all produce types. The numbers of E. coli O157:H7 cells detected with EGFP were equivalent to those detected with immunostaining for green leaf lettuce and cauliflower but less for tomato. E. coli O157:H7 attached preferentially to damaged tissues of green leaf lettuce and tomato over intact tissue surfaces and to flowerets of cauliflower than to stem surfaces. EGFP can serve as a marker to characterize E. coli O157:H7 attachment on green leaf lettuce and cauliflower but may not be suitable on tomato.

  17. Single cell gene expression profiling in Alzheimer's disease.

    PubMed

    Ginsberg, Stephen D; Che, Shaoli; Counts, Scott E; Mufson, Elliott J

    2006-07-01

    Development and implementation of microarray techniques to quantify expression levels of dozens to hundreds to thousands of transcripts simultaneously within select tissue samples from normal control subjects and neurodegenerative diseased brains has enabled scientists to create molecular fingerprints of vulnerable neuronal populations in Alzheimer's disease (AD) and related disorders. A goal is to sample gene expression from homogeneous cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and nonneuronal cells. The precise resolution afforded by single cell and population cell RNA analysis in combination with microarrays and real-time quantitative polymerase chain reaction (qPCR)-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease progression. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models of neurodegeneration as well as postmortem human brain tissues. Gene expression analysis in postmortem AD brain regions including the hippocampal formation and neocortex reveals selectively vulnerable cell types share putative pathogenetic alterations in common classes of transcripts, for example, markers of glutamatergic neurotransmission, synaptic-related markers, protein phosphatases and kinases, and neurotrophins/neurotrophin receptors. Expression profiles of vulnerable regions and neurons may reveal important clues toward the understanding of the molecular pathogenesis of various neurological diseases and aid in identifying rational targets toward pharmacotherapeutic interventions for progressive, late-onset neurodegenerative disorders such as mild cognitive impairment (MCI) and AD.

  18. Omega-3 Eicosapentaenoic Acid Decreases CD133 Colon Cancer Stem-Like Cell Marker Expression While Increasing Sensitivity to Chemotherapy

    PubMed Central

    De Carlo, Flavia; Witte, Theodore R.; Hardman, W. Elaine; Claudio, Pier Paolo

    2013-01-01

    Colorectal cancer is the third leading cause of cancer-related death in the western world. In vitro and in vivo experiments showed that omega-3 polyunsaturated fatty acids (n-3 PUFAs) can attenuate the proliferation of cancer cells, including colon cancer, and increase the efficacy of various anticancer drugs. However, these studies address the effects of n-3 PUFAs on the bulk of the tumor cells and not on the undifferentiated colon cancer stem-like cells (CSLCs) that are responsible for tumor formation and maintenance. CSLCs have also been linked to the acquisition of chemotherapy resistance and to tumor relapse. Colon CSLCs have been immunophenotyped using several antibodies against cellular markers including CD133, CD44, EpCAM, and ALDH. Anti-CD133 has been used to isolate a population of colon cancer cells that retains stem cells properties (CSLCs) from both established cell lines and primary cell cultures. We demonstrated that the n-3 PUFA, eicosapentaenoic acid (EPA), was actively incorporated into the membrane lipids of COLO 320 DM cells. 25 uM EPA decreased the cell number of the overall population of cancer cells, but not of the CD133 (+) CSLCs. Also, we observed that EPA induced down-regulation of CD133 expression and up-regulation of colonic epithelium differentiation markers, Cytokeratin 20 (CK20) and Mucin 2 (MUC2). Finally, we demonstrated that EPA increased the sensitivity of COLO 320 DM cells (total population) to both standard-of-care chemotherapies (5-Fluorouracil and oxaliplatin), whereas EPA increased the sensitivity of the CD133 (+) CSLCs to only 5-Fluorouracil. PMID:23874993

  19. Differential expression of CD44 and CD24 markers discriminates the epitheliod from the fibroblastoid subset in a sarcomatoid renal carcinoma cell line: evidence suggesting the existence of cancer stem cells in both subsets as studied with sorted cells.

    PubMed

    Hsieh, Chin-Hsuan; Hsiung, Shih-Chieh; Yeh, Chi-Tai; Yen, Chih-Feng; Chou, Yah-Huei Wu; Lei, Wei-Yi; Pang, See-Tong; Chuang, Cheng-Keng; Liao, Shuen-Kuei

    2017-02-28

    Epithelioid and fibroblastoid subsets coexist in the human sarcomatoid renal cell carcinoma (sRCC) cell line, RCC52, according to previous clonal studies. Herein, using monoclonal antibodies to CD44 and CD24 markers, we identified and isolated these two populations, and showed that CD44bright/CD24dim and CD44bright/CD24bright phenotypes correspond to epithelioid and fibroblastoid subsets, respectively. Both sorted subsets displayed different levels of tumorigenicity in xenotransplantation, indicating that each harbored its own cancer stem cells (CSCs). The CD44bright/CD24bright subset, associated with higher expression of MMP-7, -8 and TIMP-1 transcripts, showed greater migratory/invasive potential than the CD44bright/CD24dim subset, which was associated with higher expression of MMP-2, -9 and TIMP-2 transcripts. Both subsets differentially expressed stemness gene products c-Myc, Oct4A, Notch1, Notch2 and Notch3, and the RCC stem cell marker, CD105 in 4-5% of RCC52 cells. These results suggest the presence of CSCs in both sRCC subsets for the first time and should therefore be considered potential therapeutic targets for this aggressive malignancy.

  20. GFP as a marker for transient gene transfer and expression in Mycoplasma hyorhinis.

    PubMed

    Ishag, Hassan Z A; Liu, Maojun; Yang, Ruosong; Xiong, Qiyan; Feng, Zhixin; Shao, Guoqing

    2016-01-01

    Mycoplasma hyorhinis (M. hyorhinis) is an opportunistic pathogen of pigs and has been shown to transform cell cultures, which has increased the interest of researchers. The green florescence proteins (GFP) gene of Aquorea victoria, proved to be a vital marker to identify transformed cells in mixed populations. Use of GFP to observe gene transfer and expression in M. hyorhinis (strain HUB-1) has not been described. We have constructed a pMD18-O/MHRgfp plasmid containing the p97 gene promoter, origin of replication, tetracycline resistance marker and GFP gene controlled by the p97 gene promoter. The plasmid transformed into M. hyorhinis with a frequency of ~4 × 10(-3) cfu/µg plasmid DNA and could be detected by PCR amplification of the GFP gene from the total DNA of the transformant mycoplasmas. Analysis of a single clone grown on KM2-Agar containing tetracycline, showed a green fluorescence color. Conclusively, this report suggests the usefulness of GFP to monitor transient gene transfer and expression in M. hyorhinis, eventually minimizing screening procedures for gene transfer and expression.

  1. BMP4 Cooperates with Retinoic Acid to Induce the Expression of Differentiation Markers in Cultured Mouse Spermatogonia

    PubMed Central

    Feng, Yanmin; Feng, Xue; Wang, Xiuxia; Gan, Haiyun; Wang, Lixian; Lin, Xiwen

    2016-01-01

    Spermatogenesis is sustained by the proliferation and differentiation of spermatogonial stem cells (SSCs). However, the molecules controlling these processes remain largely unknown. Here, we developed a simplified high concentration serum-containing system for the culture of mouse SSCs. Analysis of SSCs markers and transplantation results revealed that the cultured spermatogonia retained stem cell characteristics after long-term in vitro propagation. Using this culture system, the expression and function of bone morphogenetic protein 4 (BMP4) were explored. Immunostaining showed that BMP4 was predominantly expressed in germ cells and that its level increased as spermatogenesis progresses. BMP4 receptors BMPR1A and BMPRII were present in spermatogonia, spermatocytes, and round spermatids. Moreover, despite the mRNAs of these two genes being present in mouse Sertoli cells, only BMPRII was detected by using Western blotting assays. While exogenous BMP4 by itself did not induce the expression of Stra8 and c-Kit, two marker genes of differentiating spermatogonia, a significant cooperative effect of BMP4 and retinoic acid (RA) was observed. Moreover, pretreatment of cultured spermatogonia with the BMP4 antagonist Noggin could inhibit RA-induced expression of these two marker genes. In conclusion, BMP4 may exert autocrine effects and act cooperatively with RA to induce the differentiation of spermatogonia in vivo. PMID:27795714

  2. Single-cell gene expression analysis reveals diversity among human spermatogonia.

    PubMed

    Neuhaus, N; Yoon, J; Terwort, N; Kliesch, S; Seggewiss, J; Huge, A; Voss, R; Schlatt, S; Grindberg, R V; Schöler, H R

    2017-02-10

    Is the molecular profile of human spermatogonia homogeneous or heterogeneous when analysed at the single-cell level? Heterogeneous expression profiles may be a key characteristic of human spermatogonia, supporting the existence of a heterogeneous stem cell population. Despite the fact that many studies have sought to identify specific markers for human spermatogonia, the molecular fingerprint of these cells remains hitherto unknown. Testicular tissues from patients with spermatogonial arrest (arrest, n = 1) and with qualitatively normal spermatogenesis (normal, n = 7) were selected from a pool of 179 consecutively obtained biopsies. Gene expression analyses of cell populations and single-cells (n = 105) were performed. Two OCT4-positive individual cells were selected for global transcriptional capture using shallow RNA-seq. Finally, expression of four candidate markers was assessed by immunohistochemistry. Histological analysis and blood hormone measurements for LH, FSH and testosterone were performed prior to testicular sample selection. Following enzymatic digestion of testicular tissues, differential plating and subsequent micromanipulation of individual cells was employed to enrich and isolate human spermatogonia, respectively. Endpoint analyses were qPCR analysis of cell populations and individual cells, shallow RNA-seq and immunohistochemical analyses. Unexpectedly, single-cell expression data from the arrest patient (20 cells) showed heterogeneous expression profiles. Also, from patients with normal spermatogenesis, heterogeneous expression patterns of undifferentiated (OCT4, UTF1 and MAGE A4) and differentiated marker genes (BOLL and PRM2) were obtained within each spermatogonia cluster (13 clusters with 85 cells). Shallow RNA-seq analysis of individual human spermatogonia was validated, and a spermatogonia-specific heterogeneous protein expression of selected candidate markers (DDX5, TSPY1, EEF1A1 and NGN3) was demonstrated. The heterogeneity of human

  3. In vitro culture of bovine embryos in murine ES cell conditioned media negatively affects expression of pluripotency-related markers OCT4, SOX2 and SSEA1.

    PubMed

    Oliveira, C S; de Souza, M M; Saraiva, N Z; Tetzner, T A D; Lima, M R; Lopes, F L; Garcia, J M

    2012-06-01

    Despite extensive efforts, establishment of bovine embryonic stem (ES) cell lines has not been successful. We hypothesized that culture conditions for in vitro-produced (IVP) embryos, the most used source of inner cell mass (ICM) to obtain ES cells, might affect their undifferentiated state. Therefore, the aim of this work was to improve pluripotency of IVP blastocysts to produce suitable ICM for further culturing. We tested KSR and foetal calf serum (FCS) supplements in SOF medium and ES cell conditioned medium (CM) on IVC (groups: KSR, KSR CM, FCS and FCS CM). Cleavage and blastocyst rates were similar between all groups. Also, embryonic quality, assessed by apoptosis rates (TUNEL assay), total cell number and ICM percentage did not differ between experimental groups. However, expression of pluripotency-related markers was affected. We detected down-regulation of OCT3/4, SOX2 and SSEA1 in ICM of FCS CM blastocysts (p < 0.05). SOX2 gene expression revealed lower levels (p < 0.05) on KSR CM blastocysts and a remarkable variation in SOX2 mRNA levels on FCS-supplemented blastocysts. In conclusion, pluripotency-related markers tend to decrease after supplementation with ES cell CM, suggesting different mechanisms regulating mouse and bovine pluripotency. KSR supplementation did not differ from FCS, but FCS replacement by KSR may produce blastocysts with stable SOX2 gene expression levels. © 2011 Blackwell Verlag GmbH.

  4. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice.

    PubMed

    Guo, Zhibao; Wang, Xijuan; Xiao, Jun; Wang, Yihui; Lu, Hong; Teng, Junfang; Wang, Wei

    2013-09-26

    Early postnatal GFAP-expressing cells are thought to be immature astrocytes. However, it is not clear if they possess multilineage capacity and if they can generate different lineages (astrocytes, neurons and oligodendrocytes) in the brain of adult mice. In order to identify the fate of astroglial cells in the postnatal brain, hGFAP-Cre-ER(T2) transgenic mice were crossed with the R26R Cre reporter mouse strains which exhibit constitutive expression of β-galactosidase (β-gal). Mice carrying the hGFAP-Cre-ER(T2)/R26R transgene were treated with Tamoxifen to induce Cre recombination in astroglial cells at postnatal (P) day 6 and Cre recombinase-expressing cells were identified by X-gal staining. Immunohistochemical staining was used to identify the type(s) of these reporter-tagged cells. Sixty days after recombination, X-gal-positive cells in different cerebral regions of the adult mice expressed the astroglial markers Blbp and GFAP, the neuronal marker NeuN, the oligodendrocyte precursor cell marker NG2 and the mature oligodendrocyte marker CC1. X-gal-positive cells in the cerebellum coexpressed the astroglial marker Blbp, but not the granule cell marker NeuN, Purkinje cell marker Calbindin or oligodendrocyte precursor cell marker NG2. Our genetic fate mapping data demonstrated that early postnatal GFAP-positive cells possessed multilineage potential and eventually differentiated into neurons, astrocytes, and oligodendrocyte precursor cells in the cerebrum and into astrocytes (including Bergmann glia) in the cerebellum of adult mice. © 2013 Elsevier B.V. All rights reserved.

  5. Characterization of protein marker expression, tumorigenicity, and doxorubicin chemoresistance in two new canine mammary tumor cell lines.

    PubMed

    Hsiao, Yen-Ling; Hsieh, Tai-Zu; Liou, Chian-Jiun; Cheng, Yeong-Hsiang; Lin, Chung-Tien; Chang, Chi-Yao; Lai, Yu-Shen

    2014-09-30

    Canine mammary tumors (CMTs) are the most common type of cancer found in female dogs. Establishment and evaluation of tumor cell lines can facilitate investigations of the biological mechanisms of cancer. Different cell models are used to investigate genetic, epigenetic, and cellular pathways, cancer progression, and cancer therapeutics. Establishment of new cell models will greatly facilitate research in this field. In the present study, we established and characterized two new CMT cell lines derived from a single CMT. We established two cell lines from a single malignant CMT specimen: DTK-E and DTK-SME. Morphologically, the DTK-E cells were large, flat, and epithelial-like, whereas DTK-SME cells were round and epithelial-like. Doubling times were 24 h for DTK-E and 18 h for DTK-SME. On western blots, both cell lines expressed cytokeratin AE1, vimentin, cytokeratin 7 (CK7), and heat shock protein 27 (HSP27). Moreover, investigation of chemoresistance revealed that DTK-SME was more resistant to doxorubicin-induced apoptosis than DTK-E was. After xenotransplantation, both DTK-E and DTK-SME tumors appeared within 14 days, but the average size of DTK-SME tumors was greater than that of DTK-E tumors after 56 days. We established two new cell lines from a single CMT, which exhibit significant diversity in cell morphology, protein marker expression, tumorigenicity, and chemoresistance. The results of this study revealed that the DTK-SME cell line was more resistant to doxorubicin-induced apoptosis and exhibited higher tumorigenicity in vivo than the DTK-E cell line. We anticipate that the two novel CMT cell lines established in this study will be useful for investigating the tumorigenesis of mammary carcinomas and for screening anticancer drugs.

  6. Markers for human brain pericytes and smooth muscle cells.

    PubMed

    Smyth, Leon C D; Rustenhoven, Justin; Scotter, Emma L; Schweder, Patrick; Faull, Richard L M; Park, Thomas I H; Dragunow, Mike

    2018-06-07

    Brain pericytes and vascular smooth muscle cells (vSMCs) are a critical component of the neurovascular unit and are important in regulating cerebral blood flow and blood-brain barrier integrity. Identification of subtypes of mural cells in tissue and in vitro is important to any study of their function, therefore we identified distinct mural cell morphologies in neurologically normal post-mortem human brain. Further, the distribution of mural cell markers platelet-derived growth factor receptor-β (PDGFRβ), α-smooth muscle actin (αSMA), CD13, neural/glial antigen-2 (NG2), CD146 and desmin was examined. We determined that PDGFRβ, NG2, CD13, and CD146 were expressed in capillary-associated pericytes. NG2, and CD13 were also present on vSMCs in large vessels, however abundant CD146 and desmin staining was also detected in vSMCs on large vessels, co-labelling with αSMA. To determine whether cultures recapitulated observations from tissue, primary human brain pericytes derived from neurologically normal autopsies were analysed for the presence of pericyte markers by immunocytochemistry, western blotting and qPCR. The proteins observed in brain pericytes in tissue (PDGFRβ, αSMA, desmin, CD146, CD13, and NG2) were present in vitro, validating a panel of proteins that can be used to label brain pericytes and vSMCs in tissue and in vitro. Finally, we showed that the proteins CD146 and desmin that are expressed on large vessels in situ, are also selective markers of a smooth muscle cell phenotype in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Expression of the pituitary stem/progenitor marker GFRα2 in human pituitary adenomas and normal pituitary

    PubMed Central

    Mathioudakis, Nestoras; Sundaresh, Ram; Larsen, Alexandra; Ruff, William; Schiller, Jennifer; Cázares, Hugo Guerrero; Burger, Peter; Salvatori, Roberto; Quiñones-Hinojosa, Alfredo

    2014-01-01

    Purpose Recent studies suggest that adult pituitary stem cells may play a role in pituitary tumorigenesis. We sought to explore whether the Glial cell-line derived neurotrophic factor receptor alpha 2 (GFRα2), a recently described pituitary stem/progenitor marker, might be differentially expressed in pituitary adenomas versus normal pituitary. Methods The expression of GFRα2 and other members of the GFR receptor family (GFRα1, α3, α4) were analyzed using RT-PCR, western blot, and immunohistochemistry in 39 pituitary adenomas, 14 normal pituitary glands obtained at autopsy, and cDNA from 3 normal pituitaries obtained commercially. Results GFRα2 mRNA was ~2.6 fold under-expressed in functioning adenomas (P <0.01) and ~3.5 fold over-expressed in non-functioning adenomas (NFAs) (P <0.05) compared to normal pituitary. Among NFAs, GFRα2 was significantly over-expressed (~5-fold) in the gonadotropinoma subtype only (P<0.05). GFRα2 protein expression appeared to be higher in most NFAs, although there was heterogeneity in protein expression in this group. GFRα2 protein expression appeared consistently lower in functioning adenomas by IHC and western blot. In normal pituitary, GFRα2 was localized in Rathke’s remnant, the putative pituitary stem cell niche, and in corticotropes. Conclusion Our results suggest that the pituitary stem cell marker GFRα2 is under-expressed in functioning adenomas and over-expressed in NFAs, specifically gonadotropinomas. Further studies are required to elucidate whether over-expression of GFRα2 in gonadotropinomas might play a role in pituitary tumorigenesis. PMID:24402129

  8. The use of lectins as markers for differentiated secretory cells in planarians.

    PubMed

    Zayas, Ricardo M; Cebrià, Francesc; Guo, Tingxia; Feng, Junjie; Newmark, Phillip A

    2010-11-01

    Freshwater planarians have reemerged as excellent models to investigate mechanisms underlying regeneration. The introduction of molecular tools has facilitated the study of planarians, but cell- and tissue-specific markers are still needed to examine differentiation of most cell types. Here we report the utility of fluorescent lectin-conjugates to label tissues in the planarian Schmidtea mediterranea. We show that 16 lectin-conjugates stain planarian cells or tissues; 13 primarily label the secretory cells, their cytoplasmic projections, and terminal pores. Thus, we examined regeneration of the secretory system using lectin markers and functionally characterized two genes expressed in the secretory cells: marginal adhesive gland-1 (mag-1) and Smed-reticulocalbin1 (Smed-rcn1). RNAi knockdown of these genes caused a dramatic reduction of secretory cell lectin staining, suggesting a role for mag-1 and Smed-rcn1 in secretory cell differentiation. Our results provide new insights into planarian secretory system regeneration and add new markers for labeling several planarian tissues. © 2010 Wiley-Liss, Inc.

  9. Prognostic value of CD44 expression in penile squamous cell carcinoma: a pilot study.

    PubMed

    Minardi, Daniele; Lucarini, Guendalina; Filosa, Alessandra; Zizzi, Antonio; Simonetti, Oriana; Offidani, Anna Maria; d'Anzeo, Gianluca; Di Primio, Roberto; Montironi, Rodolfo; Muzzonigro, Giovanni

    2012-10-01

    Several studies have reported on the prognostic value of molecular markers for metastasis risk and survival in penile squamous cell carcinoma (SCC) patients. The usefulness of CD44 expression as such a marker has been studied in different tumors, but not in penile SCC. Our aim was to determine whether CD44 expression may serve as a prognostic marker for lymph node metastasis and survival in penile SCC patients. CD44 immunoistochemical expression was investigated in tissue specimens from 39 patients with penile SCC. CD44 cell positivity, staining intensity and distribution were analyzed and correlated with tumor stage, grade, lymph node status and disease-specific survival. CD44 expression was detected in epithelial cells of both intratumoral and normal tissues with different intensities and staining distributions. In normal tissues CD44 protein was mainly detected in cell membranes, whereas in the tumor compartments it was found in both the cell membranes and the cytoplasm. The intensities and percentages of CD44 expressing cells did not correlate with tumor stage and/or grade. Seventy-three percent of the patients with lymph node metastasis showed high intensities of CD44 staining, as compared to 44% of the patients without lymph node metastasis (P = 0.03). Lymph node-positive patients showed both cytoplasmic and membranous CD44 expression. High CD44 expression was found to be significantly correlated with a decreased 5 year overall survival (P = 0.01). CD44 levels and patterns of expression can be considered as markers for penile SCC aggressiveness and, in addition, may serve as predictive markers for lymph node metastasis, also in patients with clinically negative lymph nodes. CD44 expression may provide prognostic information for penile SCC patients, next to classical clinical-pathological factors.

  10. Cell type specific gene expression analysis of prostate needle biopsies resolves tumor tissue heterogeneity

    PubMed Central

    Krönig, Malte; Walter, Max; Drendel, Vanessa; Werner, Martin; Jilg, Cordula A.; Richter, Andreas S.; Backofen, Rolf; McGarry, David; Follo, Marie; Schultze-Seemann, Wolfgang; Schüle, Roland

    2015-01-01

    A lack of cell surface markers for the specific identification, isolation and subsequent analysis of living prostate tumor cells hampers progress in the field. Specific characterization of tumor cells and their microenvironment in a multi-parameter molecular assay could significantly improve prognostic accuracy for the heterogeneous prostate tumor tissue. Novel functionalized gold-nano particles allow fluorescence-based detection of absolute mRNA expression levels in living cells by fluorescent activated flow cytometry (FACS). We use of this technique to separate prostate tumor and benign cells in human prostate needle biopsies based on the expression levels of the tumor marker alpha-methylacyl-CoA racemase (AMACR). We combined RNA and protein detection of living cells by FACS to gate for epithelial cell adhesion molecule (EPCAM) positive tumor and benign cells, EPCAM/CD45 double negative mesenchymal cells and CD45 positive infiltrating lymphocytes. EPCAM positive epithelial cells were further sub-gated into AMACR high and low expressing cells. Two hundred cells from each population and several biopsies from the same patient were analyzed using a multiplexed gene expression profile to generate a cell type resolved profile of the specimen. This technique provides the basis for the clinical evaluation of cell type resolved gene expression profiles as pre-therapeutic prognostic markers for prostate cancer. PMID:25514598

  11. EMODIN DOWNREGULATES CELL PROLIFERATION MARKERS DURING DMBA INDUCED ORAL CARCINOGENESIS IN GOLDEN SYRIAN HAMSTERS.

    PubMed

    Manimaran, Asokan; Buddhan, Rajamanickam; Manoharan, Shanmugam

    2017-01-01

    Cell-cycle disruption is the major characteristic features of neoplastic transformation and the status of cell-cycle regulators can thus be utilized to assess the prognostic significance in patients with cancer. The PCNA, cyclin D1, CDK4, CDK6 and survivin expression in the buccal mucosa was utilized to evaluate the Emodin efficacy on abnormal cell proliferation during 7,12-dimethylbenz(a)anthracene (DMBA) induced oral carcinogenesis in golden Syrian hamsters. Topical application of DMBA, three times a week for 14 weeks, on the hamsters' buccal pouches developed well differentiated squamous cell carcinoma. Cyclin D1 and PCNA over-expression and up-regulation of CDK4, CDK6 and survivin were noticed in the buccal mucosa of hamsters treated with DMBA alone. Emodin administration (50mg/kg b.w) orally to hamsters treated with DMBA down-regulated the expression of cell proliferation markers in the buccal mucosa. The anti-cell proliferative role of Emodin is owing to its modulating efficacy on cell-cycle markers towards the tumor suppression during DMBA induced oral carcinogenesis.

  12. [Cloning goat producing human lactoferrin with genetically modified donor cells selected by single or dual markers].

    PubMed

    An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong

    2012-12-01

    We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.

  13. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells.

    PubMed

    Brun, Juliane; Lutz, Katrin A; Neumayer, Katharina M H; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K; Hart, Melanie L

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  14. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production.

    PubMed

    Camilleri, Emily T; Gustafson, Michael P; Dudakovic, Amel; Riester, Scott M; Garces, Catalina Galeano; Paradise, Christopher R; Takai, Hideki; Karperien, Marcel; Cool, Simon; Sampen, Hee-Jeong Im; Larson, A Noelle; Qu, Wenchun; Smith, Jay; Dietz, Allan B; van Wijnen, Andre J

    2016-08-11

    Clinical translation of mesenchymal stromal cells (MSCs) necessitates basic characterization of the cell product since variability in biological source and processing of MSCs may impact therapeutic outcomes. Although expression of classical cell surface markers (e.g., CD90, CD73, CD105, and CD44) is used to define MSCs, identification of functionally relevant cell surface markers would provide more robust release criteria and options for quality control. In addition, cell surface expression may distinguish between MSCs from different sources, including bone marrow-derived MSCs and clinical-grade adipose-derived MSCs (AMSCs) grown in human platelet lysate (hPL). In this work we utilized quantitative PCR, flow cytometry, and RNA-sequencing to characterize AMSCs grown in hPL and validated non-classical markers in 15 clinical-grade donors. We characterized the surface marker transcriptome of AMSCs, validated the expression of classical markers, and identified nine non-classical markers (i.e., CD36, CD163, CD271, CD200, CD273, CD274, CD146, CD248, and CD140B) that may potentially discriminate AMSCs from other cell types. More importantly, these markers exhibit variability in cell surface expression among different cell isolates from a diverse cohort of donors, including freshly prepared, previously frozen, or proliferative state AMSCs and may be informative when manufacturing cells. Our study establishes that clinical-grade AMSCs expanded in hPL represent a homogeneous cell culture population according to classical markers,. Additionally, we validated new biomarkers for further AMSC characterization that may provide novel information guiding the development of new release criteria. Use of Autologous Bone Marrow Aspirate Concentrate in Painful Knee Osteoarthritis (BMAC): Clinicaltrials.gov NCT01931007 . Registered August 26, 2013. MSC for Occlusive Disease of the Kidney: Clinicaltrials.gov NCT01840540 . Registered April 23, 2013. Mesenchymal Stem Cell Therapy in Multiple

  15. Murine cell glycolipids customization by modular expression of glycosyltransferases.

    PubMed

    Cid, Emili; Yamamoto, Miyako; Buschbeck, Marcus; Yamamoto, Fumiichiro

    2013-01-01

    Functional analysis of glycolipids has been hampered by their complex nature and combinatorial expression in cells and tissues. We report an efficient and easy method to generate cells with specific glycolipids. In our proof of principle experiments we have demonstrated the customized expression of two relevant glycosphingolipids on murine fibroblasts, stage-specific embryonic antigen 3 (SSEA-3), a marker for stem cells, and Forssman glycolipid, a xenoantigen. Sets of genes encoding glycosyltansferases were transduced by viral infection followed by multi-color cell sorting based on coupled expression of fluorescent proteins.

  16. Isolation of pancreatic progenitor cells with the surface marker of hematopoietic stem cells.

    PubMed

    Ma, Fengxia; Chen, Fang; Chi, Ying; Yang, Shaoguang; Lu, Shihong; Han, Zhongchao

    2012-01-01

    To isolate pancreatic progenitor cells with the surface markers of hematopoietic stem cells, the expression of stem cell antigen (Sca-1) and c-Kit and the coexpression of them with pancreatic duodenal homeobox-1 (PDX-1), neurogenin 3 (Ngn3), and insulin were examined in murine embryonic pancreas. Then different pancreatic cell subpopulations were isolated by magnet-activated cell sorting. Isolated cells were cultured overnight in hanging drops. When cells formed spheres, they were laid on floating filters at the air/medium interface. With this new culture system, pancreatic progenitor cells were induced to differentiate to endocrine and exocrine cells. It was shown that c-Kit and Sca-1 were expressed differently in embryonic pancreas at 12.5, 15.5, and 17.5 days of gestation. The expression of c-Kit and Sca-1 was the highest at 15.5 days of gestation. c-Kit rather than Sca-1 coexpressed with PDX-1, Ngn3, and insulin. Cells differentiated from c-Kit-positive cells contained more insulin-producing cells and secreted more insulin in response to glucose stimulation than that from c-Kit-negative cells. These results suggested that c-Kit could be used to isolate pancreatic progenitor cells and our new culture system permitted pancreatic progenitor cells to differentiate to mature endocrine cells.

  17. Increased OGA Expression and Activity in Leukocytes from Patients with Diabetes: Correlation with Inflammation Markers.

    PubMed

    Pagesy, Patrick; Tachet, Caroline; Mostefa-Kara, Ali; Larger, Etienne; Issad, Tarik

    2018-06-11

    O-linked-β-N-Acetylglucosaminylation (O-GlcNAcylation), a reversible post-translational modification involved in diabetic complications, is regulated by only two enzymes, O-linked N-acetylglucosamine transferase (OGT) and β-N-Acetylglucosaminidase (OGA). Increased OGA expression has been described previously in blood cells from patients with diabetes and was interpreted as an adaptative response to hyperglycemia-induced O-GlcNAcylation. OGA expression was thus proposed to have potential utility as a diagnostic marker. The present work was undertaken to determine whether determination of OGA enzymatic activity in blood cells could constitute a more rapidly accessible marker than OGA expression level measurements.Blood samples were obtained from patients with type 2 diabetes from the Department of Diabetology of the Cochin Hospital and healthy volunteers from the French blood Agency. OGA enzymatic activity and OGA mRNA expression levels were evaluated in leucocytes from patients with type 2 diabetes and from healthy donors.OGA activity was higher in leucocytes from patients with diabetes compared to control individuals. Surprisingly, OGA activity was not correlated hyperglycaemia markers (blood glucose, fructosamine, HbA 1c ) but was positively correlated with the inflammatory marker C-reactive protein. OGA mRNA levels were also increased in leucocytes from patients with diabetes and were correlated with mRNA coding for two pro-inflammatory proteins, TNFα and TxNIP.Therefore, OGA activity in leucocytes might be a more easily accessible biomarker than OGA expression levels. However, changes in OGA activity observed in patients with type 2 diabetes may reflect the inflammatory rather than the glycaemic status of these patients. © Georg Thieme Verlag KG Stuttgart · New York.

  18. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor.

    PubMed

    Poon, S K; Peacock, L; Gibson, W; Gull, K; Kelly, S

    2012-02-01

    Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes.

  19. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor

    PubMed Central

    Poon, S. K.; Peacock, L.; Gibson, W.; Gull, K.; Kelly, S.

    2012-01-01

    Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes. PMID:22645659

  20. Expression of heparanase in basal cell carcinoma and squamous cell carcinoma.

    PubMed

    Pinhal, Maria Aparecida Silva; Almeida, Maria Carolina Leal; Costa, Alessandra Scorse; Theodoro, Thérèse Rachell; Serrano, Rodrigo Lorenzetti; Machado, Carlos D'Apparecida Santos

    2016-01-01

    Heparanase is an enzyme that cleaves heparan sulfate chains. Oligosaccharides generated by heparanase induce tumor progression. Basal cell carcinoma and squamous cell carcinoma comprise types of nonmelanoma skin cancer. Evaluate the glycosaminoglycans profile and expression of heparanase in two human cell lines established in culture, immortalized skin keratinocyte (HaCaT) and squamous cell carcinoma (A431) and also investigate the expression of heparanase in basal cell carcinoma, squamous cell carcinoma and eyelid skin of individuals not affected by the disease (control). Glycosaminoglycans were quantified by electrophoresis and indirect ELISA method. The heparanase expression was analyzed by quantitative RT-PCR (qRTPCR). The A431 strain showed significant increase in the sulfated glycosaminoglycans, increased heparanase expression and decreased hyaluronic acid, comparing to the HaCaT lineage. The mRNA expression of heparanase was significantly higher in Basal cell carcinoma and squamous cell carcinoma compared with control skin samples. It was also observed increased heparanase expression in squamous cell carcinoma compared to the Basal cell carcinoma. The glycosaminoglycans profile, as well as heparanase expression are different between HaCaT and A431 cell lines. The increased expression of heparanase in Basal cell carcinoma and squamous cell carcinoma suggests that this enzyme could be a marker for the diagnosis of such types of non-melanoma cancers, and may be useful as a target molecule for future alternative treatment.

  1. JMJD1A, H3K9me1, H3K9me2 and ADM expression as prognostic markers in oral and oropharyngeal squamous cell carcinoma.

    PubMed

    Maia, Lucas de Lima; Peterle, Gabriela Tonini; Dos Santos, Marcelo; Trivilin, Leonardo Oliveira; Mendes, Suzanny Oliveira; de Oliveira, Mayara Mota; Dos Santos, Joaquim Gasparini; Stur, Elaine; Agostini, Lidiane Pignaton; Couto, Cinthia Vidal Monteiro da Silva; Dalbó, Juliana; de Assis, Aricia Leone Evangelista Monteiro; Archanjo, Anderson Barros; Mercante, Ana Maria Da Cunha; Lopez, Rossana Veronica Mendoza; Nunes, Fábio Daumas; de Carvalho, Marcos Brasilino; Tajara, Eloiza Helena; Louro, Iúri Drumond; Álvares-da-Silva, Adriana Madeira

    2018-01-01

    Jumonji Domain-Containing 1A (JMJD1A) protein promotes demethylation of histones, especially at lysin-9 of di-methylated histone H3 (H3K9me2) or mono-methylated (H3K9me1). Increased levels of H3 histone methylation at lysin-9 (H3K9) is related to tumor suppressor gene silencing. JMJD1A gene target Adrenomeduline (ADM) has shown to promote cell growth and tumorigenesis. JMJD1A and ADM expression, as well as H3K9 methylation level have been related with development risk and prognosis of several tumor types. We aimed to evaluate JMJD1A, ADM, H3K9me1 and H3K9me2expression in paraffin-embedded tissue microarrays from 84 oral and oropharyngeal squamous cell carcinoma samples through immunohistochemistry analysis. Our results showed that nuclear JMJD1A expression was related to lymph node metastasis risk. In addition, JMJD1A cytoplasmic expression was an independent risk marker for advanced tumor stages. H3K9me1 cytoplasmic expression was associated with reduced disease-specific death risk. Furthermore, high H3K9me2 nuclear expression was associated with worse specific-disease and disease-free survival. Finally, high ADM cytoplasmic expression was an independent marker of lymph node metastasis risk. JMJD1A, H3K9me1/2 and ADM expression may be predictor markers of progression and prognosis in oral and oropharynx cancer patients, as well as putative therapeutic targets.

  2. JMJD1A, H3K9me1, H3K9me2 and ADM expression as prognostic markers in oral and oropharyngeal squamous cell carcinoma

    PubMed Central

    Peterle, Gabriela Tonini; dos Santos, Marcelo; Trivilin, Leonardo Oliveira; Mendes, Suzanny Oliveira; de Oliveira, Mayara Mota; dos Santos, Joaquim Gasparini; Stur, Elaine; Agostini, Lidiane Pignaton; Couto, Cinthia Vidal Monteiro da Silva; Dalbó, Juliana; de Assis, Aricia Leone Evangelista Monteiro; Archanjo, Anderson Barros; Mercante, Ana Maria Da Cunha; Lopez, Rossana Veronica Mendoza; Nunes, Fábio Daumas; de Carvalho, Marcos Brasilino; Tajara, Eloiza Helena; Louro, Iúri Drumond; Álvares-da-Silva, Adriana Madeira

    2018-01-01

    Aims Jumonji Domain-Containing 1A (JMJD1A) protein promotes demethylation of histones, especially at lysin-9 of di-methylated histone H3 (H3K9me2) or mono-methylated (H3K9me1). Increased levels of H3 histone methylation at lysin-9 (H3K9) is related to tumor suppressor gene silencing. JMJD1A gene target Adrenomeduline (ADM) has shown to promote cell growth and tumorigenesis. JMJD1A and ADM expression, as well as H3K9 methylation level have been related with development risk and prognosis of several tumor types. Methods and results We aimed to evaluate JMJD1A, ADM, H3K9me1 and H3K9me2expression in paraffin-embedded tissue microarrays from 84 oral and oropharyngeal squamous cell carcinoma samples through immunohistochemistry analysis. Our results showed that nuclear JMJD1A expression was related to lymph node metastasis risk. In addition, JMJD1A cytoplasmic expression was an independent risk marker for advanced tumor stages. H3K9me1 cytoplasmic expression was associated with reduced disease-specific death risk. Furthermore, high H3K9me2 nuclear expression was associated with worse specific-disease and disease-free survival. Finally, high ADM cytoplasmic expression was an independent marker of lymph node metastasis risk. Conclusion JMJD1A, H3K9me1/2 and ADM expression may be predictor markers of progression and prognosis in oral and oropharynx cancer patients, as well as putative therapeutic targets. PMID:29590186

  3. Proliferating cellular nuclear antigen expression as a marker of perivascular macrophages in simian immunodeficiency virus encephalitis.

    PubMed

    Williams, Kenneth; Schwartz, Annette; Corey, Sarah; Orandle, Marlene; Kennedy, William; Thompson, Brendon; Alvarez, Xavier; Brown, Charlie; Gartner, Suzanne; Lackner, Andrew

    2002-08-01

    Brain perivascular macrophages are a major target of simian immunodeficiency virus (SIV) infection in rhesus macaques and HIV infection in humans. Perivascular macrophages are distinct from parenchymal microglia in their location, morphology, expression of myeloid markers, and turnover in the CNS. In contrast to parenchymal microglia, perivascular macrophages are continuously repopulated by blood monocytes, which undergo maturation to macrophages on entering the central nervous system (CNS). We studied differences in monocyte/macrophages in vivo that might account for preferential infection of perivascular macrophages by SIV. In situ hybridization for SIV and proliferating cellular nuclear antigen (PCNA) immunohistochemistry demonstrated that SIV-infected and PCNA-positive cells were predominantly found in perivascular cuffs of viremic animals and in histopathological lesions that characterize SIV encephalitis (SIVE) in animals with AIDS. Multilabel techniques including double-label immunohistochemistry and combined in situ hybridization and immunofluorescence confocal microscopy revealed numerous infected perivascular macrophages that were PCNA-positive. Outside the CNS, SIV-infected, PCNA-expressing macrophage subpopulations were found in the small intestine and lung of animals with AIDS. While PCNA is used as a marker of cell proliferation it is also strongly expressed in non-dividing cells undergoing DNA synthesis and repair. Therefore, more specific markers for cell proliferation including Ki-67, topoisomerase IIalpha, and bromodeoxyuridine (BrdU) incorporation were used which indicated that PCNA-positive cells within SIVE lesions were not proliferating. These observations are consistent with perivascular macrophages as terminally differentiated, non-dividing cells and underscores biological differences that could potentially define mechanisms of preferential, productive infection of perivascular macrophages in the rhesus macaque model of neuroAIDS. These

  4. Sialyl-lactotetra, a novel cell surface marker of undifferentiated human pluripotent stem cells.

    PubMed

    Barone, Angela; Säljö, Karin; Benktander, John; Blomqvist, Maria; Månsson, Jan-Eric; Johansson, Bengt R; Mölne, Johan; Aspegren, Anders; Björquist, Petter; Breimer, Michael E; Teneberg, Susann

    2014-07-04

    Cell surface glycoconjugates are used as markers for undifferentiated pluripotent stem cells. Here, antibody binding and mass spectrometry characterization of acid glycosphingolipids isolated from a large number (1 × 10(9) cells) of human embryonic stem cell (hESC) lines allowed identification of several novel acid glycosphingolipids, like the gangliosides sialyl-lactotetraosylceramide and sialyl-globotetraosylceramide, and the sulfated glycosphingolipids sulfatide, sulf-lactosylceramide, and sulf-globopentaosylceramide. A high cell surface expression of sialyl-lactotetra on hESC and human induced pluripotent stem cells (hiPSC) was demonstrated by flow cytometry, immunohistochemistry, and electron microscopy, whereas sulfated glycosphingolipids were only found in intracellular compartments. Immunohistochemistry showed distinct cell surface anti-sialyl-lactotetra staining on all seven hESC lines and three hiPSC lines analyzed, whereas no staining of hESC-derived hepatocyte-like or cardiomyocyte-like cells was obtained. Upon differentiation of hiPSC into hepatocyte-like cells, the sialyl-lactotetra epitope was rapidly down-regulated and not detectable after 14 days. These findings identify sialyl-lactotetra as a promising marker of undifferentiated human pluripotent stem cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties

    PubMed Central

    Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik

    2010-01-01

    Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify

  6. EFEMP1 as a novel DNA methylation marker for prostate cancer: array-based DNA methylation and expression profiling.

    PubMed

    Kim, Yong-June; Yoon, Hyung-Yoon; Kim, Seon-Kyu; Kim, Young-Won; Kim, Eun-Jung; Kim, Isaac Yi; Kim, Wun-Jae

    2011-07-01

    Abnormal DNA methylation is associated with many human cancers. The aim of the present study was to identify novel methylation markers in prostate cancer (PCa) by microarray analysis and to test whether these markers could discriminate normal and PCa cells. Microarray-based DNA methylation and gene expression profiling was carried out using a panel of PCa cell lines and a control normal prostate cell line. The methylation status of candidate genes in prostate cell lines was confirmed by real-time reverse transcriptase-PCR, bisulfite sequencing analysis, and treatment with a demethylation agent. DNA methylation and gene expression analysis in 203 human prostate specimens, including 106 PCa and 97 benign prostate hyperplasia (BPH), were carried out. Further validation using microarray gene expression data from the Gene Expression Omnibus (GEO) was carried out. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was identified as a lead candidate methylation marker for PCa. The gene expression level of EFEMP1 was significantly higher in tissue samples from patients with BPH than in those with PCa (P < 0.001). The sensitivity and specificity of EFEMP1 methylation status in discriminating between PCa and BPH reached 95.3% (101 of 106) and 86.6% (84 of 97), respectively. From the GEO data set, we confirmed that the expression level of EFEMP1 was significantly different between PCa and BPH. Genome-wide characterization of DNA methylation profiles enabled the identification of EFEMP1 aberrant methylation patterns in PCa. EFEMP1 might be a useful indicator for the detection of PCa.

  7. Cryptochrome-1 expression: a new prognostic marker in B-cell chronic lymphocytic leukemia.

    PubMed

    Lewintre, Eloisa Jantus; Martín, Cristina Reinoso; Ballesteros, Carlos García; Montaner, David; Rivera, Rosa Farrás; Mayans, José Ramón; García-Conde, Javier

    2009-02-01

    Chronic lymphocytic leukemia is an adult-onset leukemia with a heterogeneous clinical behavior. When chronic lymphocytic leukemia cases were divided on the basis of IgV(H) mutational status, widely differing clinical courses were revealed. Since IgV(H) sequencing is difficult to perform in a routine diagnostic laboratory, finding a surrogate for IgV(H) mutational status seems an important priority. In the present study, we proposed the use of Cryptochrome-1 as a new prognostic marker in early-stage chronic lymphocytic leukemia. Seventy patients (Binet stage A, without treatment) were included in the study. We correlated Cryptochrome-1 mRNA with well established prognostic markers such as IgV(H) mutations, ZAP70, LPL or CD38 expression and chromosomal abnormalities. High Cryptochrome-1 expression correlated with IgV(H) unmutated samples. In addition, Cryptochrome-1 was a valuable predictor of disease progression in early-stage chronic lymphocytic leukemia, therefore it can be introduced in clinical practice with the advantage of a simplified method of quantification.

  8. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    PubMed

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  9. The effect of cellular isolation and cryopreservation on the expression of markers identifying subsets of regulatory T cells.

    PubMed

    Zhang, Weiying; Nilles, Tricia L; Johnson, Jacquett R; Margolick, Joseph B

    2016-04-01

    The role of CD4(+) regulatory T cells (Tregs) and their subsets during HIV infection is controversial. Cryopreserved peripheral blood mononuclear cells (PBMC) are an important source for assessing number and function of Tregs. However, it is unknown if PBMC isolation and cryopreservation affect the expression of CD120b and CD39, markers that identify specific subsets of Tregs. HIV-uninfected (HIV-) and -infected (HIV+) men were randomly selected from the Multicenter AIDS Cohort Study (MACS). Percentages of CD120b(+) and CD39(+) Tregs measured by flow cytometry in whole blood and in corresponding fresh and cryopreserved PBMC were compared. Percentages of CD120b(+) Tregs were significantly lower in a) fresh PBMC relative to whole blood, and b) freshly thawed frozen PBMC relative to fresh PBMC when the recovery of viable cryopreserved cells was low. When present, low expression of CD120b in frozen PBMC was reversible by 4h of in vitro culture. In contrast, expression of CD39 on Tregs was not affected by isolation and/or cryopreservation of PBMC, or by relative recovery of cryopreserved PBMC. These findings were unaffected by the HIV status of the donor. The data suggest that percentages of CD120b(+) Tregs and CD39(+) Tregs can be validly measured in either whole blood or PBMC (fresh and frozen) in HIV- and HIV+ men. However, for measurement of CD120b(+) Tregs one type of sample should be used consistently within a given study, and thawed frozen cells may require in vitro culture if recovery of viable cells is low. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Occludin as a functional marker of vascular endothelial cells on tube-forming activity.

    PubMed

    Kanayasu-Toyoda, Toshie; Ishii-Watabe, Akiko; Kikuchi, Yutaka; Kitagawa, Hiroko; Suzuki, Hiroko; Tamura, Hiroomi; Tada, Minoru; Suzuki, Takuo; Mizuguchi, Hiroyuki; Yamaguchi, Teruhide

    2018-02-01

    Cell therapy using endothelial progenitor cells (EPCs) is a promising strategy for the treatment of ischemic diseases. Two types of EPCs have been identified: early EPCs and late EPCs. Late EPCs are able to form tube structure by themselves, and have a high proliferative ability. The functional marker(s) of late EPCs, which relate to their therapeutic potential, have not been fully elucidated. Here we compared the gene expression profiles of several human cord blood derived late EPC lines which exhibit different tube formation activity, and we observed that the expression of occludin (OCLN) in these lines correlated with the tube formation ability, suggesting that OCLN is a candidate functional marker of late EPCs. When OCLN was knocked down by transfecting siRNA, the tube formation on Matrigel, the S phase + G 2 /M phase in the cell cycle, and the spheroid-based sprouting of late EPCs were markedly reduced, suggesting the critical role of OCLN in tube formation, sprouting, and proliferation. These results indicated that OCLN plays a novel role in neovascularization and angiogenesis. © 2017 Wiley Periodicals, Inc.

  11. Gas1 expression in parietal cells of Bowman's capsule in experimental diabetic nephropathy.

    PubMed

    Luna-Antonio, Brenda I; Rodriguez-Muñoz, Rafael; Namorado-Tonix, Carmen; Vergara, Paula; Segovia, Jose; Reyes, Jose L

    2017-07-01

    Gas1 (Growth Arrest-Specific 1) is a pleiotropic protein with novel functions including anti-proliferative and proapoptotic activities. In the kidney, the expression of Gas1 has been described in mesangial cells. In this study, we described that renal parietal cells of Bowman's capsule (BC) and the distal nephron cells also express Gas1. The role of Gas1 in the kidney is not yet known. There is a subpopulation of progenitor cells in Bowman's capsule with self-renewal properties which can eventually differentiate into podocytes as a possible mechanism of regeneration in the early stages of diabetic nephropathy. We analyzed the expression of Gas1 in the parietal cells of Bowman's capsule in murine experimental diabetes. We found that diabetes reduced the expression of Gas1 and increased the expression of progenitor markers like NCAM, CD24, and SIX1/2, and mesenchymal markers like PAX2 in the Bowman's capsule. We also analyzed the expression of WT1 (a podocyte-specific marker) on BC and observed an increase in the number of WT1 positive cells in diabetes. In contrast, nephrin, another podocyte-specific protein, decreases its expression in the first week of diabetes in the glomerular tuft, which is gradually restored during the second and third weeks of diabetes. These results suggest that in diabetes the decrease of Gas1 promotes the activation of parietal progenitor cells of Bowman's capsule that might differentiate into podocytes and compensate their loss observed in this pathology.

  12. Limited utility of tissue micro-arrays in detecting intra-tumoral heterogeneity in stem cell characteristics and tumor progression markers in breast cancer.

    PubMed

    Kündig, Pascale; Giesen, Charlotte; Jackson, Hartland; Bodenmiller, Bernd; Papassotirolopus, Bärbel; Freiberger, Sandra Nicole; Aquino, Catharine; Opitz, Lennart; Varga, Zsuzsanna

    2018-05-08

    Intra-tumoral heterogeneity has been recently addressed in different types of cancer, including breast cancer. A concept describing the origin of intra-tumoral heterogeneity is the cancer stem-cell hypothesis, proposing the existence of cancer stem cells that can self-renew limitlessly and therefore lead to tumor progression. Clonal evolution in accumulated single cell genomic alterations is a further possible explanation in carcinogenesis. In this study, we addressed the question whether intra-tumoral heterogeneity can be reliably detected in tissue-micro-arrays in breast cancer by comparing expression levels of conventional predictive/prognostic tumor markers, tumor progression markers and stem cell markers between central and peripheral tumor areas. We analyzed immunohistochemical expression and/or gene amplification status of conventional prognostic tumor markers (ER, PR, HER2, CK5/6), tumor progression markers (PTEN, PIK3CA, p53, Ki-67) and stem cell markers (mTOR, SOX2, SOX9, SOX10, SLUG, CD44, CD24, TWIST) in 372 tissue-micro-array samples from 72 breast cancer patients. Expression levels were compared between central and peripheral tumor tissue areas and were correlated to histopathological grading. 15 selected cases additionally underwent RNA sequencing for transcriptome analysis. No significant difference in any of the analyzed between central and peripheral tumor areas was seen with any of the analyzed methods/or results that showed difference. Except mTOR, PIK3CA and SOX9 (nuclear) protein expression, all markers correlated significantly (p < 0.05) with histopathological grading both in central and peripheral areas. Our results suggest that intra-tumoral heterogeneity of stem-cell and tumor-progression markers cannot be reliably addressed in tissue-micro-array samples in breast cancer. However, most markers correlated strongly with histopathological grading confirming prognostic information as expression profiles were independent on the site of the

  13. CD45RA, a specific marker for leukaemia stem cell sub-populations in acute myeloid leukaemia.

    PubMed

    Kersten, Bas; Valkering, Matthijs; Wouters, Rolf; van Amerongen, Rosa; Hanekamp, Diana; Kwidama, Zinia; Valk, Peter; Ossenkoppele, Gert; Zeijlemaker, Wendelien; Kaspers, Gertjan; Cloos, Jacqueline; Schuurhuis, Gerrit J

    2016-04-01

    Chemotherapy resistant leukaemic stem cells (LSC) are thought to be responsible for relapses after therapy in acute myeloid leukaemia (AML). Flow cytometry can discriminate CD34(+) CD38(-) LSC and normal haematopoietic stem cells (HSC) by using aberrant expression of markers and scatter properties. However, not all LSC can be identified using currently available markers, so new markers are needed. CD45RA is expressed on leukaemic cells in the majority of AML patients. We investigated the potency of CD45RA to specifically identify LSC and HSC and improve LSC quantification. Compared to our best other markers (CLL-1, also termed CLEC12A, CD33 and CD123), CD45RA was the most reliable marker. Patients with high percentages (>90%) of CD45RA on CD34(+) CD38(-) LSC have 1·69-fold higher scatter values compared to HSC (P < 0·001), indicating a more mature CD34(+) CD38(-) phenotype. Patients with low (<10%) or intermediate (10-90%) CD45RA expression on LSC showed no significant differences to HSC (1·12- and 1·15-fold higher, P = 0·31 and P = 0·44, respectively). CD45RA-positive LSC tended to represent more favourable cytogenetic/molecular markers. In conclusion, CD45RA contributes to more accurate LSC detection and is recommended for inclusion in stem cell tracking panels. CD45RA may contribute to define new LSC-specific therapies and to monitor effects of anti-LSC treatment. © 2016 John Wiley & Sons Ltd.

  14. Side population cells and Bcrp1 expression in lung.

    PubMed

    Summer, Ross; Kotton, Darrell N; Sun, Xi; Ma, Bei; Fitzsimmons, Kathleen; Fine, Alan

    2003-07-01

    Side population (SP) cells are a rare subset of cells found in various tissues that are highly enriched for stem cell activity. SP cells can be isolated by dual-wavelength flow cytometry because of their capacity to efflux Hoechst dye, a process mediated by the ATP-binding cassette transporter breast cancer resistance protein (Bcrp) 1. By performing flow cytometry of enzymedigested mouse lung stained with Hoechst dye, we found that SP cells comprise 0.03-0.07% of total lung cells and are evenly distributed in proximal and distal lung regions. By RT-PCR, we found that lung SP cells express hepatocyte nuclear factor-3beta, but not thyroid transcription factor-1. Surface marker analysis revealed lung SP cells to be stem cell antigen 1 positive, Bcrp1 positive, lineage marker negative, and heterogeneous at the CD45 locus. As expected, we did not detect lung SP cells in Bcrp1-deficient animals. We, therefore, employed nonisotopic in situ hybridization and immunostaining for Bcrp1 as a strategy to localize these cells in vivo. Expression was observed in distinct lung cell types: bronchial and vascular smooth muscle cells and round cells within the distal air space. We confirmed the expression of Bcrp1 in primary bronchial smooth muscle cell cultures (BSMC) and in lavaged distal airway cells, but neither possessed the capacity to efflux Hoechst dye. In BSMC, Bcrp1 was localized to an intracellular compartment, suggesting that the molecular site of Bcrp1 expression regulates SP phenotype.

  15. SALL4 EXPRESSION IN GERM CELL AND NON GERM-CELL TUMORS – A SYSTEMATIC IMMUNOHISTOCHEMICAL STUDY OF 3215 CASES

    PubMed Central

    Miettinen, Markku; Wang, Zengfeng; Mc. Cue, Peter A.; Sarlomo-Rikala, Maarit; Rys, Janusz; Biernat, Wojciech; Lasota, Jerzy; Lee, Yi-Shan

    2014-01-01

    SALL4 transcription factor is associated with embryonic cell pluripotency and has been shown as a useful immunohistochemical marker for germ cell tumors. However, information of SALL4 distribution in normal human tissues and non germ-cell tumors is limited. In this study we examined normal human tissues and 3215 tumors for SALL4 expression using a monoclonal antibody 6E3 and automated immunohistochemistry. In a 10th week embryo, SALL4 was expressed in ovocytes, intestine, kidney, and some hepatocytes. In adult tissues, it was only detected in germ cells. SALL4 was consistently expressed in all germ cell tumors except some trophoblastic tumors and mature components of teratomas, where it was selectively expressed in intestinal-like and some squamous epithelia. In non germ-cell carcinomas, SALL4 was detected in 20% of cases or more of serous carcinoma of ovary, urothelial high-grade carcinoma, and gastric adenocarcinoma (especially the intestinal type). SALL4 was only rarely (≤5%) expressed in mammary, colorectal, prostatic, and squamous cell carcinomas. Many SALL4 positive carcinomas showed poorly differentiated patterns and some showed positivity in most tumor cells mimicking the expression in germ cell tumors. SALL4 was commonly expressed in rhabdoid tumors of kidney and extrarenal sites, and in Wilms tumor. Expression of SALL4 was rare in other mesenchymal and neuroendocrine tumors but was occasionally detected in melanoma, desmoplastic small round cell tumor, epithelioid sarcoma, and rhabdomyosarcoma. All hematopoietic tumors were negative. SALL4 is an excellent marker of non-teratomatous germ cell tumors, but it is also expressed in other tumors, sometimes extensively. Such expression may reflect stem-cell like differentiation and must be considered when using SALL4 as a marker for germ cell tumors. Observed lack of other pluripotency factors, OCT4 and NANOG, in SALL4-positive non-germ cell tumors can also be diagnostically helpful. PMID:24525512

  16. CD44 Is a Negative Cell Surface Marker for Pluripotent Stem Cell Identification during Human Fibroblast Reprogramming

    PubMed Central

    Vaz, Candida; Tanavde, Vivek; Lakshmipathy, Uma

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are promising tools for disease research and cell therapy. One of the critical steps in establishing iPSC lines is the early identification of fully reprogrammed colonies among unreprogrammed fibroblasts and partially reprogrammed intermediates. Currently, colony morphology and pluripotent stem cell surface markers are used to identify iPSC colonies. Through additional clonal characterization, we show that these tools fail to distinguish partially reprogrammed intermediates from fully reprogrammed iPSCs. Thus, they can lead to the selection of suboptimal clones for expansion. A subsequent global transcriptome analysis revealed that the cell adhesion protein CD44 is a marker that differentiates between partially and fully reprogrammed cells. Immunohistochemistry and flow cytometry confirmed that CD44 is highly expressed in the human parental fibroblasts used for the reprogramming experiments. It is gradually lost throughout the reprogramming process and is absent in fully established iPSCs. When used in conjunction with pluripotent cell markers, CD44 staining results in the clear identification of fully reprogrammed cells. This combination of positive and negative surface markers allows for easier and more accurate iPSC detection and selection, thus reducing the effort spent on suboptimal iPSC clones. PMID:24416407

  17. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells.

    PubMed

    Orellana, Renan; Kato, Sumie; Erices, Rafaela; Bravo, María Loreto; Gonzalez, Pamela; Oliva, Bárbara; Cubillos, Sofía; Valdivia, Andrés; Ibañez, Carolina; Brañes, Jorge; Barriga, María Isabel; Bravo, Erasmo; Alonso, Catalina; Bustamente, Eva; Castellon, Enrique; Hidalgo, Patricia; Trigo, Cesar; Panes, Olga; Pereira, Jaime; Mezzano, Diego; Cuello, Mauricio A; Owen, Gareth I

    2015-04-15

    An increase in circulating platelets, or thrombocytosis, is recognized as an independent risk factor of bad prognosis and metastasis in patients with ovarian cancer; however the complex role of platelets in tumor progression has not been fully elucidated. Platelet activation has been associated with an epithelial to mesenchymal transition (EMT), while Tissue Factor (TF) protein expression by cancer cells has been shown to correlate with hypercoagulable state and metastasis. The aim of this work was to determine the effect of platelet-cancer cell interaction on TF and "Metastasis Initiating Cell (MIC)" marker levels and migration in ovarian cancer cell lines and cancer cells isolated from the ascetic fluid of ovarian cancer patients. With informed patient consent, ascitic fluid isolated ovarian cancer cells, cell lines and ovarian cancer spheres were co-cultivated with human platelets. TF, EMT and stem cell marker levels were determined by Western blotting, flow cytometry and RT-PCR. Cancer cell migration was determined by Boyden chambers and the scratch assay. The co-culture of patient-derived ovarian cancer cells with platelets causes: 1) a phenotypic change in cancer cells, 2) chemoattraction and cancer cell migration, 3) induced MIC markers (EMT/stemness), 3) increased sphere formation and 4) increased TF protein levels and activity. We present the first evidence that platelets act as chemoattractants to cancer cells. Furthermore, platelets promote the formation of ovarian cancer spheres that express MIC markers and the metastatic protein TF. Our results suggest that platelet-cancer cell interaction plays a role in the formation of metastatic foci.

  18. Amniotic Fluid Cells Show Higher Pluripotency-Related Gene Expression Than Allantoic Fluid Cells.

    PubMed

    Kehl, Debora; Generali, Melanie; Görtz, Sabrina; Geering, Diego; Slamecka, Jaroslav; Hoerstrup, Simon P; Bleul, Ulrich; Weber, Benedikt

    2017-10-01

    Amniotic fluid represents an abundant source of multipotent stem cells, referred as broadly multipotent given their differentiation potential and expression of pluripotency-related genes. However, the origin of this broadly multipotent cellular fraction is not fully understood. Several sources have been proposed so far, including embryonic and extraembryonic tissues. In this regard, the ovine developmental model uniquely allows for direct comparison of fetal fluid-derived cells from two separate fetal fluid cavities, the allantois and the amnion, over the entire duration of gestation. As allantoic fluid mainly collects fetal urine, cells originating from the efferent urinary tract can directly be compared with cells deriving from the extraembryonic amniotic tissues and the fetus. This study shows isolation of cells from the amniotic [ovine amniotic fluid cells (oAFCs)] and allantoic fluid [ovine allantoic fluid cells (oALCs)] in a strictly paired fashion with oAFCs and oALCs derived from the same fetus. Both cell types showed cellular phenotypes comparable to standard mesenchymal stem cells (MSCs), with trilineage differentiation potential, and expression of common ovine MSC markers. However, the expression of MSC markers per single cell was higher in oAFCs as measured by flow cytometry. oAFCs exhibited higher proliferative capacities and showed significantly higher expression of pluripotency-related genes OCT4, STAT3, NANOG, and REX1 by quantitative real-time polymerase chain reaction compared with paired oALCs. No significant decrease of pluripotency-related gene expression was noted over gestation, implying that cells with high differentiation potential may be isolated at the end of pregnancy. In conclusion, this study suggests that cells with highest stem cell characteristics may originate from the fetus itself or the amniotic fetal adnexa rather than from the efferent urinary tract or the allantoic fetal adnexa.

  19. Gene Expression Profiling Reveals Novel Candidate Markers of Ovarian Carcinoma Intraperitoneal Metastasis.

    PubMed

    Elsnerova, Katerina; Bartakova, Alena; Tihlarik, Josef; Bouda, Jiri; Rob, Lukas; Skapa, Petr; Hruda, Martin; Gut, Ivan; Mohelnikova-Duchonova, Beatrice; Soucek, Pavel; Vaclavikova, Radka

    2017-01-01

    Epithelial ovarian cancer (EOC) has the highest mortality among gynecological carcinomas. The lack of specific markers for prognostic determination of EOC progression hinders the search for novel effective therapies. The aim of the present study was (i) to explore differences in expressions of ATP-binding cassette (ABC) and solute carrier (SLC) transporter genes, genes associated with drug metabolism and cell cycle regulation between control ovarian tissues (n = 14), primary EOCs (n = 44) and intraperitoneal metastases (n = 29); (ii) to investigate associations of gene expression levels with prognosis of patients with intraperitoneal metastases. In all tissue samples, transcript levels of the above target genes were assessed using quantitative real-time PCR. Gene expression levels were compared between particular tissue types and evaluated with regard to progression-free survival (PFS) and drug-resistance status of patients with metastases. Gene expression of ABCA7 significantly increased and that of ESR2 decreased in the order control ovarian tissues - primary EOCs - metastases. High expressions of ABCA2 / 8 / 9 / 10 , ABCB1 , ABCC9 , ABCG2 , ATP7A , SLC16A14 , and SOD3 genes were significantly associated with longer progression-free survival of patients. In intraperitoneal metastases, expression of all of these genes highly correlated and indicated prognostic profile. Transporters from the ABCA family, ABCG2, and ESR2 are involved mainly in lipid metabolism, membrane transport, and cell proliferation. These processes are thus probably the most important for EOC progression. Based on these results, we have proposed novel markers of ovarian carcinoma progression and metastatic spread which might be potentially useful as therapeutic targets. Their significance should be further explored on a larger independent set of patients.

  20. ABCG2 Is a Selectable Marker for Enhanced Multilineage Differentiation Potential in Periodontal Ligament Stem Cells

    PubMed Central

    Szepesi, Áron; Matula, Zsolt; Szigeti, Anna; Várady, György; Szabó, Gyula; Uher, Ferenc; Sarkadi, Balázs

    2015-01-01

    Periodontal ligament stem cells (PDLSCs) provide an important source for tissue regeneration and may become especially useful in the formation of osteogenic seeds. PDLSCs can be cultured, expanded, and differentiated in vitro; thus, they may be applied in the long-term treatment of the defects in the dental regions. Here we studied numerous potential markers allowing the selection of human PDLSCs with a maximum differentiation potential. We followed the expression of the ATP-binding cassette subfamily G member 2 (ABCG2) membrane transporter protein and isolated ABCG2-expressing cells by using a monoclonal antibody, recognizing the transporter at the cell surface in intact cells. The expression of the ABCG2 protein, corresponding to the so-called side-population phenotype in various tissue-derived stem cells, was found to be a useful marker for the selection of PDLSCs with enhanced osteogenic, chondrogenic, and adipogenic differentiation. These findings may have important applications in achieving efficient dental tissue regeneration by using stem cells from extracted teeth. PMID:25101689

  1. Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP.

    PubMed

    Elkord, Eyad; Abd Al Samid, May; Chaudhary, Belal

    2015-08-21

    Regulatory T cells (Tregs) are key players of immune regulation/dysregulation both in physiological and pathophysiological settings. Despite significant advances in understanding Treg function, there is still a pressing need to define reliable and specific markers that can distinguish different Treg subpopulations. Herein we show for the first time that markers of activated Tregs [latency associated peptide (LAP) and glycoprotein A repetitions predominant (GARP, or LRRC32)] are expressed on CD4+FoxP3- T cells expressing Helios (FoxP3-Helios+) in the steady state. Following TCR activation, GARP/LAP are up-regulated on CD4+Helios+ T cells regardless of FoxP3 expression (FoxP3+/-Helios+). We show that CD4+GARP+/-LAP+ Tregs make IL-10 immunosuppressive cytokine but not IFN-γ effector cytokine. Further characterization of FoxP3/Helios subpopulations showed that FoxP3+Helios+ Tregs proliferate in vitro significantly less than FoxP3+Helios- Tregs upon TCR stimulation. Unlike FoxP3+Helios- Tregs, FoxP3+Helios+ Tregs secrete IL-10 but not IFN-γ or IL-2, confirming they are bona fide Tregs with immunosuppressive characteristics. Taken together, Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP, and FoxP3+Helios+ Tregs have more suppressive characteristics, compared with FoxP3+Helios- Tregs. Our work implies that therapeutic modalities for treating autoimmune and inflammatory diseases, allergies and graft rejection should be designed to induce and/or expand FoxP3+Helios+ Tregs, while therapies against cancers or infectious diseases should avoid such expansion/induction.

  2. Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP

    PubMed Central

    Elkord, Eyad; Abd Al Samid, May; Chaudhary, Belal

    2015-01-01

    Regulatory T cells (Tregs) are key players of immune regulation/dysregulation both in physiological and pathophysiological settings. Despite significant advances in understanding Treg function, there is still a pressing need to define reliable and specific markers that can distinguish different Treg subpopulations. Herein we show for the first time that markers of activated Tregs [latency associated peptide (LAP) and glycoprotein A repetitions predominant (GARP, or LRRC32)] are expressed on CD4+FoxP3− T cells expressing Helios (FoxP3−Helios+) in the steady state. Following TCR activation, GARP/LAP are up-regulated on CD4+Helios+ T cells regardless of FoxP3 expression (FoxP3+/−Helios+). We show that CD4+GARP+/−LAP+ Tregs make IL-10 immunosuppressive cytokine but not IFN-γ effector cytokine. Further characterization of FoxP3/Helios subpopulations showed that FoxP3+Helios+ Tregs proliferate in vitro significantly less than FoxP3+Helios− Tregs upon TCR stimulation. Unlike FoxP3+Helios− Tregs, FoxP3+Helios+ Tregs secrete IL-10 but not IFN-γ or IL-2, confirming they are bona fide Tregs with immunosuppressive characteristics. Taken together, Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP, and FoxP3+Helios+ Tregs have more suppressive characteristics, compared with FoxP3+Helios− Tregs. Our work implies that therapeutic modalities for treating autoimmune and inflammatory diseases, allergies and graft rejection should be designed to induce and/or expand FoxP3+Helios+ Tregs, while therapies against cancers or infectious diseases should avoid such expansion/induction. PMID:26343373

  3. Identification of a novel putative pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas.

    PubMed

    May, Randal; Sureban, Sripathi M; Lightfoot, Stan A; Hoskins, Aimee B; Brackett, Daniel J; Postier, Russell G; Ramanujam, Rama; Rao, Chinthalapally V; Wyche, James H; Anant, Shrikant; Houchen, Courtney W

    2010-08-01

    Stem cells are critical in maintaining adult homeostasis and have been proposed to be the origin of many solid tumors, including pancreatic cancer. Here we demonstrate the expression patterns of the putative intestinal stem cell marker DCAMKL-1 in the pancreas of uninjured C57BL/6 mice compared with other pancreatic stem/progenitor cell markers. We then determined the viability of isolated pancreatic stem/progenitor cells in isotransplantation assays following DCAMKL-1 antibody-based cell sorting. Sorted cells were grown in suspension culture and injected into the flanks of athymic nude mice. Here we report that DCAMKL-1 is expressed in the main pancreatic duct epithelia and islets, but not within acinar cells. Coexpression was observed with somatostatin, NGN3, and nestin, but not glucagon or insulin. Isolated DCAMKL-1+ cells formed spheroids in suspension culture and induced nodule formation in isotransplantation assays. Analysis of nodules demonstrated markers of early pancreatic development (PDX-1), glandular epithelium (cytokeratin-14 and Ep-CAM), and isletlike structures (somatostatin and secretin). These data taken together suggest that DCAMKL-1 is a novel putative stem/progenitor marker, can be used to isolate normal pancreatic stem/progenitors, and potentially regenerates pancreatic tissues. This may represent a novel tool for regenerative medicine and a target for anti-stem cell-based therapeutics in pancreatic cancer.

  4. Identification of a novel putative pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas

    PubMed Central

    May, Randal; Sureban, Sripathi M.; Lightfoot, Stan A.; Hoskins, Aimee B.; Brackett, Daniel J.; Postier, Russell G.; Ramanujam, Rama; Rao, Chinthalapally V.; Wyche, James H.; Anant, Shrikant

    2010-01-01

    Stem cells are critical in maintaining adult homeostasis and have been proposed to be the origin of many solid tumors, including pancreatic cancer. Here we demonstrate the expression patterns of the putative intestinal stem cell marker DCAMKL-1 in the pancreas of uninjured C57BL/6 mice compared with other pancreatic stem/progenitor cell markers. We then determined the viability of isolated pancreatic stem/progenitor cells in isotransplantation assays following DCAMKL-1 antibody-based cell sorting. Sorted cells were grown in suspension culture and injected into the flanks of athymic nude mice. Here we report that DCAMKL-1 is expressed in the main pancreatic duct epithelia and islets, but not within acinar cells. Coexpression was observed with somatostatin, NGN3, and nestin, but not glucagon or insulin. Isolated DCAMKL-1+ cells formed spheroids in suspension culture and induced nodule formation in isotransplantation assays. Analysis of nodules demonstrated markers of early pancreatic development (PDX-1), glandular epithelium (cytokeratin-14 and Ep-CAM), and isletlike structures (somatostatin and secretin). These data taken together suggest that DCAMKL-1 is a novel putative stem/progenitor marker, can be used to isolate normal pancreatic stem/progenitors, and potentially regenerates pancreatic tissues. This may represent a novel tool for regenerative medicine and a target for anti-stem cell-based therapeutics in pancreatic cancer. PMID:20522640

  5. Effects of Different Cell-Detaching Methods on the Viability and Cell Surface Antigen Expression of Synovial Mesenchymal Stem Cells.

    PubMed

    Tsuji, Kunikazu; Ojima, Miyoko; Otabe, Koji; Horie, Masafumi; Koga, Hideyuki; Sekiya, Ichiro; Muneta, Takeshi

    2017-06-09

    Flow cytometric analysis of cell surface antigens is a powerful tool for the isolation and characterization of stem cells residing in adult tissues. In contrast to the collection of hematopoietic stem cells, the process of enzymatic digestion is usually necessary to prepare mesenchymal stem cells (MSCs) suspensions, which can influence the expression of cell surface markers. In this study, we examined the effects of various cell-detaching reagents and digestion times on the expression of stem cell-related surface antigens and MSC functions. Human MSCs were detached from dishes using four different reagents: trypsin, TrypLE, collagenase, and a nonenzymatic cell dissociation reagent (C5789; Sigma-Aldrich). Following dissociation reagent incubations ranging from 5 to 120 min, cell surface markers were analyzed by flow cytometry. Trypsin and TrypLE quickly dissociated the cells within 5 min, while collagenase and C5789 required 60 min to obtain maximum cell yields. C5789 significantly decreased cell viability at 120 min. Trypsin treatment significantly reduced CD44+, CD55+, CD73+, CD105+, CD140a+, CD140b+, and CD201+ cell numbers within 30 min. Collagenase treatment reduced CD140a expression by 30 min. In contrast, TrypLE treatment did not affect the expression of any cell surface antigens tested by 30 min. Despite the significant loss of surface antigen expression after 60 min of treatment with trypsin, adverse effects of enzymatic digestion on multipotency of MSCs were limited. Overall, our data indicated that TrypLE is advantageous over other cell dissociation reagents tested for the rapid preparation of viable MSC suspensions.

  6. Specific glycogen synthase kinase-3 inhibition reduces neuroendocrine markers and suppresses neuroblastoma cell growth.

    PubMed

    Carter, Yvette M; Kunnimalaiyaan, Selvi; Chen, Herbert; Gamblin, T Clark; Kunnimalaiyaan, Muthusamy

    2014-05-01

    Neuroblastoma is a common neuroendocrine (NE) tumor that presents in early childhood, with a high incidence of malignancy and recurrence. The glycogen synthase kinase-3 (GSK-3) pathway is a potential therapeutic target, as this pathway has been shown to be crucial in the management of other NE tumors. However, it is not known which isoform is necessary for growth inhibition. In this study, we investigated the effect of the GSK-3 inhibitor AR-A014418 on the different GSK-3 isoforms in neuroblastoma. NGP and SH-5Y-SY cells were treated with 0-20 μM of AR-A014418 and cell viability was measured by MTT assay. Expression levels of NE markers CgA and ASCL1, GSK-3 isoforms, and apoptotic markers were analyzed by western blot. Neuroblastoma cells treated with AR-A014418 had a significant reduction in growth at all doses and time points (P<0.001). A reduction in growth was noted in cell lines on day 6, with 10 μM (NGP-53% vs. 0% and SH-5Y-SY-38% vs. 0%, P<0.001) treatment compared to control, corresponding with a noticeable reduction in tumor marker ASCL1 and CgA expression. Treatment of neuroblastoma cell lines with AR-A014418 reduced the level of GSK-3α phosphorylation at Tyr279 compared to GSK-3β phosphorylation at Tyr216, and attenuated growth via the maintenance of apoptosis. This study supports further investigation to elucidate the mechanism(s) by which GSK-3α inhibition downregulates the expression of NE tumor markers and growth of neuroblastoma.

  7. Misleading and reliable markers to differentiate between primate testis-derived multipotent stromal cells and spermatogonia in culture

    PubMed Central

    Eildermann, K.; Gromoll, J.; Behr, R.

    2012-01-01

    BACKGROUND Several studies have reported the generation of spermatogonia-derived pluripotent stem cells from human testes. The initial aim of the present study was the derivation of equivalent stem cells from an established and experimentally accessible non-human primate model, the common marmoset monkey (Callithrix jacchus). However, an essential prerequisite in the absence of transgenic reporters in primates and man is the availability of validated endogenous markers for the identification of specific cell types in vitro. METHODS AND RESULTS We cultured marmoset testicular cells in a similar way to that described for human testis-derived pluripotent cells and set out to characterize these cultures under different conditions and in differentiation assays applying established marker panels. Importantly, the cells emerged as testicular multipotent stromal cells (TMSCs) instead of (pluripotent) germ cell-derived cells. TMSCs expressed many markers such as GFR-α, GPR125, THY-1 (CD90), ITGA6, SSEA4 and TRA-1-81, which were considered as spermatogonia specific and were previously used for the enrichment or characterization of spermatogonia. Proliferation of TMSCs was highly dependent on basic fibroblast growth factor, a growth factor routinely present in germ cell culture media. As reliable markers for the distinction between spermatogonia and TMSCs, we established VASA, in combination with the spermatogonia-expressed factors, MAGEA4, PLZF and SALL4. CONCLUSIONS Marmoset monkey TMSCs and spermatogonia exhibit an overlap of markers, which may cause erroneous interpretations of experiments with testis-derived stem cells in vitro. We provide a marker panel for the unequivocal identification of spermatogonia providing a better basis for future studies on primate, including human, testis-derived stem cells. PMID:22442249

  8. Expression of germline markers in three species of amphioxus supports a preformation mechanism of germ cell development in cephalochordates

    PubMed Central

    2013-01-01

    Background In a previous study, we showed that the cephalochordate amphioxus Branchiostoma floridae has localized maternal transcripts of conserved germ cell markers Vasa and Nanos in its early embryos. These results provided strong evidence to support a preformation mechanism for primordial germ cell (PGC) development in B. floridae. Results In this study, we further characterize the expression of B. floridae homologs of Piwi and Tudor, which play important roles in germline development in diverse metazoan animals. We show that maternal mRNA of one of the identified Piwi-like homologs, Bf-Piwil1, also colocalizes with Vasa in the vegetal germ plasm and has zygotic expression in both the putative PGCs and the tail bud, suggesting it may function in both germline and somatic stem cells. More interestingly, one Tudor family gene, Bf-Tdrd7, is only expressed maternally and colocalizes with Vasa in germ plasm, suggesting that it may function exclusively in germ cell specification. To evaluate the conservation of the preformation mechanism among amphioxus species, we further analyze Vasa, Nanos, Piwil1, and Tdrd7 expression in two Asian amphioxus species, B. belcheri and B. japonicum. Their maternal transcripts all localize in similar patterns to those seen in B. floridae. In addition, we labeled putative PGCs with Vasa antibody to trace their dynamic distribution in developing larvae. Conclusions We identify additional germ plasm components in amphioxus and demonstrate the molecular distinction between the putative germline stem cells and somatic stem cells. Moreover, our results suggest that preformation may be a conserved mechanism for PGC specification among Branchiostoma species. Our Vasa antibody staining results suggest that after the late neurula stage, amphioxus PGCs probably proliferate with the tail bud cells during posterior elongation and are deposited near the forming myomere boundaries. Subsequently, these PGCs would concentrate at the ventral tip of the

  9. Liver-specific gene expression in cultured human hematopoietic stem cells.

    PubMed

    Fiegel, Henning C; Lioznov, Michael V; Cortes-Dericks, Lourdes; Lange, Claudia; Kluth, Dietrich; Fehse, Boris; Zander, Axel R

    2003-01-01

    Hematopoietic and hepatic stem cells share characteristic markers such as CD34, c-kit, and Thy1. Based on the recent observations that hepatocytes may originate from bone marrow, we investigated the potential of CD34(+) bone marrow cells to differentiate into hepatocytic cells in vitro. CD34(+) and CD34(-) human bone marrow cells were separated by magnetic cell sorting. Cells were cultured on a collagen matrix in a defined medium containing hepatocyte growth factor. Cell count and size were measured by flow cytometry, and reverse transcription polymerase chain reaction was carried out for the liver-specific markers CK-19 and albumin. During cell culture, CD34(+) cells showed an increasing cell number and proliferative activity as assessed by Ki-67 staining. Under the specified culture conditions, CD34(+) cells expressed albumin RNA and CK-19 RNA after 28 days, whereas CD34(-) cells did not show liver-specific gene expression. The results indicate that CD34(+) adult human bone marrow stem cells can differentiate into hepatocytic cells in vitro.

  10. Nestin is expressed in HMB-45 negative melanoma cells in dermal parts of nodular melanoma.

    PubMed

    Kanoh, Maho; Amoh, Yasuyuki; Tanabe, Kenichi; Maejima, Hideki; Takasu, Hiroshi; Katsuoka, Kensei

    2010-06-01

    Nestin, a marker of neural stem cells, is expressed in the stem cells of the mouse hair follicle. The nestin-expressing hair follicle stem cells can differentiate into neurons, glia, keratocytes, smooth muscle cells and melanocytes in vitro. These pluripotent nestin-expressing stem cells are keratin 15 (K15)-negative, suggesting that they are in a relatively undifferentiated state. Recent studies suggest that the epithelial stem cells are important in tumorigenesis, and nestin expression is thought to be important in tumorigenesis. In the present study, we examined the expression of the hair follicle and neural stem cell marker nestin, as well as S-100 and HMB-45, in melanoma. Nestin immunoreactivity was observed in the HMB-45-negative melanoma cells in all five cases of amelanotic nodular melanomas. Moreover, nestin immunoreactivity was observed in the dermal parts in seven of 10 cases of melanotic nodular melanomas. Especially, nestin immunoreactivity was observed in the HMB-45-negative melanoma cells in the dermal parts of all 10 cases of HMB-45-negative amelanotic and melanotic nodular melanomas. On the other hand, nestin expression was negative in 10 of 12 cases of superficial spreading melanoma. These results suggest that nestin is an important marker of HMB-45-negative melanoma cells in the dermal parts of patients with nodular melanoma.

  11. Nemo-like kinase (NLK) expression in osteoblastic cells and suppression of osteoblastic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nifuji, Akira, E-mail: nifuji-a@tsurumi-u.ac.jp; Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama; Ideno, Hisashi

    2010-04-15

    Mitogen-activated protein kinases (MAPKs) regulate proliferation and differentiation in osteoblasts. The vertebral homologue of nemo, nemo-like kinase (NLK), is an atypical MAPK that targets several signaling components, including the T-cell factor/lymphoid enhancer factor (TCF/Lef1) transcription factor. Recent studies have shown that NLK forms a complex with the histone H3-K9 methyltransferase SETDB1 and suppresses peroxisome proliferator-activated receptor (PPAR)-gamma:: action in the mesenchymal cell line ST2. Here we investigated whether NLK regulates osteoblastic differentiation. We showed that NLK mRNA is expressed in vivo in osteoblasts at embryonic day 18.5 (E18.5) mouse calvariae. By using retrovirus vectors, we performed forced expression of NLKmore » in primary calvarial osteoblasts (pOB cells) and the mesenchymal cell line ST2. Wild-type NLK (NLK-WT) suppressed alkaline phosphatase activity and expression of bone marker genes such as alkaline phosphatase, type I procollagen, runx2, osterix, steopontin and osteocalcin in these cells. NLK-WT also decreased type I collagen protein expression in pOB and ST2 cells. Furthermore, mineralized nodule formation was reduced in pOB cells overexpressing NLK-WT. In contrast, kinase-negative form of NLK (NLK-KN) did not suppress or partially suppress ALP activity and bone marker gene expression in pOB and ST2 cells. NLK-KN did not suppress nodule formation in pOB cells. In addition to forced expression, suppression of endogenous NLK expression by siRNA increased bone marker gene expression in pOB and ST2 cells. Finally, transcriptional activity analysis of gene promoters revealed that NLK-WT suppressed Wnt1 activation of TOP flash promoter and Runx2 activation of the osteocalcin promoter. Taken together, these results suggest that NLK negatively regulates osteoblastic differentiation.« less

  12. UTF1, a Putative Marker for Spermatogonial Stem Cells in Stallions

    PubMed Central

    Jung, Heejun; Roser, Janet F.; Yoon, Minjung

    2014-01-01

    Spermatogonial stem cells (SSCs) continuously undergo self-renewal and differentiation to sustain spermatogenesis throughout adulthood in males. In stallions, SSCs may be used for the production of progeny from geldings after cryopreservation and therapy for infertile and subfertile stallions. Undifferentiated cell transcription factor 1 (UTF1) is a putative marker for undifferentiated spermatogonia in humans and rats. The main purposes of this study are to determine the following: 1) changes in the expression pattern of UTF1 at various reproductive stages of stallions, 2) subpopulations of spermatogonia that express UTF1. Testicular samples were collected and categorized based on the age of the horses as follows: pre-pubertal (<1 yr), pubertal (1–1.5 yr), post-pubertal (2–3 yr), and adult (4–8 yr). Western blot analysis was utilized to determine the cross-activity of the UTF1 antibody to horse testes tissues. Immunohistochemistry was conducted to investigate the UTF1 expression pattern in germ cells at different reproductive stages. Whole mount staining was applied to determine the subpopulation of UTF1-positive spermatogonia. Immunohistological analysis showed that most germ cells in the pre-pubertal and pubertal stages were immunolabeled with UTF1, whereas only a few germ cells in the basal compartment of the seminiferous tubule cross-sections of post-pubertal and adult tissues were UTF1-positive. No staining was observed in the Sertoli or Leydig cells at any reproductive stages. Whole mount staining showed that As, Apr, and chains of 4, 8, 16 Aal spermatogonia were immunolabeled with UTF1 in the post-pubertal stallion tubule. Isolated single germ cells were also immunolabeled with UTF1. In conclusion, UTF1 is expressed in undifferentiated spermatogonia, and its antibody can be used as a putative marker for SSCs in stallions. PMID:25272017

  13. Expression of Vascular Notch Ligand Delta-Like 4 and Inflammatory Markers in Breast Cancer

    PubMed Central

    Jubb, Adrian M.; Soilleux, Elizabeth J.; Turley, Helen; Steers, Graham; Parker, Andrew; Low, Irene; Blades, Jennifer; Li, Ji-Liang; Allen, Paul; Leek, Russell; Noguera-Troise, Irene; Gatter, Kevin C.; Thurston, Gavin; Harris, Adrian L.

    2010-01-01

    Delta-like ligand 4 (Dll4) is a Notch ligand that is predominantly expressed in the endothelium. Evidence from xenografts suggests that inhibiting Dll4 may overcome resistance to antivascular endothelial growth factor therapy. The aims of this study were to characterize the expression of Dll4 in breast cancer and assess whether it is associated with inflammatory markers and prognosis. We examined 296 breast adenocarcinomas and 38 ductal carcinoma in situ tissues that were represented in tissue microarrays. Additional whole sections representing 10 breast adenocarcinomas, 10 normal breast tissues, and 16 angiosarcomas were included. Immunohistochemistry was then performed by using validated antibodies against Dll4, CD68, CD14, Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN), CD123, neutrophil elastase, CD31, and carbonic anhydrase 9. Dll4 was selectively expressed by intratumoral endothelial cells in 73% to 100% of breast adenocarcinomas, 18% of in situ ductal carcinomas, and all lactating breast cases, but not normal nonlactating breast. High intensity of endothelial Dll4 expression was a statistically significant adverse prognostic factor in univariate (P = 0.002 and P = 0.01) and multivariate analyses (P = 0.03 and P = 0.04) of overall survival and relapse-free survival, respectively. Among the inflammatory markers, only CD68 and DC-SIGN were significant prognostic factors in univariate (but not multivariate) analyses of overall survival (P = 0.01 and 0.002, respectively). In summary, Dll4 was expressed by endothelium associated with breast cancer cells. In these retrospective subset analyses, endothelial Dll4 expression was a statistically significant multivariate prognostic factor. PMID:20167860

  14. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis.

    PubMed

    Contreras, Osvaldo; Rebolledo, Daniela L; Oyarzún, Juan Esteban; Olguín, Hugo C; Brandan, Enrique

    2016-06-01

    Fibrosis occurs in skeletal muscle under various pathophysiological conditions such as Duchenne muscular dystrophy (DMD), a devastating disease characterized by fiber degeneration that results in progressive loss of muscle mass, weakness and increased extracellular matrix (ECM) accumulation. Fibrosis is also observed after skeletal muscle denervation and repeated cycles of damage followed by regeneration. The ECM is synthesized largely by fibroblasts in the muscle connective tissue under normal conditions. Myofibroblasts, cells that express α-smooth muscle actin (α-SMA), play a role in many tissues affected by fibrosis. In skeletal muscle, fibro/adipogenic progenitors (FAPs) that express cell-surface platelet-derived growth factor receptor-α (PDGFR-α) and the transcription factor Tcf4 seem to be responsible for connective tissue synthesis and are good candidates for the origin of myofibroblasts. We show that cells positive for Tcf4 and PDGFR-α are expressed in skeletal muscle under normal conditions and are increased in various skeletal muscles of mdx mice, a murine model for DMD, wild type muscle after sciatic denervation and muscle subjected to chronic damage. These cells co-label with the myofibroblast marker α-SMA in dystrophic muscle but not in normal tissue. The Tcf4-positive cells lie near macrophages mainly concentrated in dystrophic necrotic-regenerating foci. The close proximity of Tcf4-positive cells to inflammatory cells and their previously described role in muscle regeneration might reflect an active interaction between these cell types and growth factors, possibly resulting in a muscular regenerative or fibrotic condition.

  15. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    PubMed Central

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  16. Morphology, cell viability, karyotype, expression of surface markers and plasticity of three human primary cell line cultures before and after the cryostorage in LN2 and GN2.

    PubMed

    Del Pino, Alberto; Ligero, Gertrudis; López, María B; Navarro, Héctor; Carrillo, Jose A; Pantoll, Siobhan C; Díaz de la Guardia, Rafael

    2015-02-01

    Primary cell line cultures from human skin biopsies, adipose tissue and tumor tissue are valuable samples for research and therapy. In this regard, their derivation, culture, storage, transport and thawing are important steps to be studied. Towards this end, we wanted to establish the derivation, and identify the culture characteristics and the loss of viability of three human primary cell line cultures (human adult dermal fibroblasts (hADFs), human adult mesenchymal stem cells (hMSCs), and primary culture of tumor cells from lung adenocarcinoma (PCTCLA)). Compared to fresh hADFs, hMSCs and PCTCLA, thawed cells stored in a cryogenic Dewar tanks with liquid nitrogen (LN2), displayed 98.20% ± 0.99, 95.40% ± 1.41 and 93.31% ± 3.83 of cell viability, respectively. Thawed cells stored in a Dry Vapor Shipper container with gas phase (GN2), for 20 days, in addition displayed 4.61% ± 2.78, 3.70% ± 4.09 and 9.13% ± 3.51 of average loss of cells viability, respectively, showing strong correlation between the loss of viability in hADFs and the number of post-freezing days in the Dry Vapor Shipper. No significant changes in morphological characteristics or in the expression of surface markers (being hADFs, hMSCs and PCTCLA characterized by positive markers CD73+; CD90+; CD105+; and negative markers CD14-; CD20-; CD34-; and CD45-; n=2) were found. Chromosome abnormalities in the karyotype were not found. In addition, under the right conditions hMSCs were differentiated into adipogenic, osteogenic and chondrogenic lineages in vitro. In this paper, we have shown the characteristics of three human primary cell line cultures when they are stored in LN2 and GN2. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Smart markers for watershed-based cell segmentation.

    PubMed

    Koyuncu, Can Fahrettin; Arslan, Salim; Durmaz, Irem; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2012-01-01

    Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems, the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand, similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use of domain-specific knowledge to obtain successful segmentations even by human subjects. The approaches that can incorporate this knowledge into their segmentation algorithms have potential to greatly improve segmentation results. In this work, we propose a new approach for the effective segmentation of live cells from phase contrast microscopy. This approach introduces a new set of "smart markers" for a marker-controlled watershed algorithm, for which the identification of its markers is critical. The proposed approach relies on using domain-specific knowledge, in the form of visual characteristics of the cells, to define the markers. We evaluate our approach on a total of 1,954 cells. The experimental results demonstrate that this approach, which uses the proposed definition of smart markers, is quite effective in identifying better markers compared to its counterparts. This will, in turn, be effective in improving the segmentation performance of a marker-controlled watershed algorithm.

  18. CD25 is expressed by canine cutaneous mast cell tumors but not by cutaneous connective tissue mast cells.

    PubMed

    Meyer, A; Gruber, A D; Klopfleisch, R

    2012-11-01

    Canine cutaneous mast cell tumors (MCT) of different histological grades have distinct biological behaviors. However, little is known about underlying molecular mechanisms that lead to tumor development and increasing malignancy with higher tumor grade. Recent studies have identified the interleukin-2 receptor (IL-2R) subunits CD25 and CD2 as markers that distinguish nonneoplastic from neoplastic mast cells in human systemic mastocytosis. In this study, their potential as a marker for canine MCT and their possible impact on MCT carcinogenesis were evaluated. mRNA expression levels of both genes were compared between grade 1 (n = 12) and grade 3 (n = 8) MCT, and protein expression levels of CD25 were compared in 90 MCT of different tumor grades. mRNA expression levels of both CD25 and CD2 were upregulated in grade 3 MCT. In contrast, CD25 protein was expressed by fewer tumor cells and at decreased levels in grade 3 tumors, while most grade 1 MCT had strong CD25 protein expression. Moreover, CD25 was not expressed by nonneoplastic, resting cutaneous mast cells, while few presumably activated mast cells in tissue samples from dogs with allergic dermatitis had weak CD25 expression. Taken together, these findings suggest that CD25 may play a critical role in early MCT development and may be a stimulatory factor in grade 1 MCT, while grade 3 MCT seem to be less dependent on CD25. Because of the low number of CD25-positive tumor cells in high-grade tumors, the usefulness of CD25 as a tumor marker is, however, questionable.

  19. FoxP3 Expression in Macrophages, Cancer, and B Cells-Is It Real?

    PubMed

    Vadasz, Zahava; Toubi, Elias

    2017-06-01

    During the last decade, B regulatory cells are appreciated to have a central role in preventing autoimmunity and maintaining self-tolerance. They are characterized by expressing different phenotypic markers and the production of either IL-10 or TGF-β or both. The recent recognition of Fas ligand expressing B regulatory cells as "killer" cells established their role in maintaining viral persistence by preventing effective antiviral immune responses. The forkhead lineage-transcription factor (FoxP3) was considered for many years to be a highly specific intracellular regulatory marker of CD4+CD25+ T regulatory cells. The possibility of FoxP3 being expressed in B regulatory cells was suggested in many studies. Though controversial, FoxP3 expression was also reported in macrophages and cancer cells. Aiming to avoid artifact staining, many researchers required the usage of FoxP3 messenger RNA (mRNA) and PCR in order to prove a true expression of FoxP3 in these different cells. In addition, most studies' report on that FoxP3 expression in all abovementioned cells is related to their status of activation since naïve (non-activated cells) were found poorly FoxP3 expressing. In this review, we present the existing data on FoxP3 expression in non-T-regulatory cells, but we suggest that further studies are needed to better establish this concept.

  20. High expression of arachidonate 15-lipoxygenase and proinflammatory markers in human ischemic heart tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnusson, Lisa U.; Lundqvist, Annika; Asp, Julia

    Highlights: Black-Right-Pointing-Pointer We found a 17-fold upregulation of ALOX15 in the ischemic heart. Black-Right-Pointing-Pointer Incubation of human muscle cells in hypoxia showed a 22-fold upregulation of ALOX15. Black-Right-Pointing-Pointer We observed increased levels of proinflammatory markers in ischemic heart tissue. Black-Right-Pointing-Pointer Suggesting a link between ischemia and inflammation in ischemic heart biopsies. -- Abstract: A common feature of the ischemic heart and atherosclerotic plaques is the presence of hypoxia (insufficient levels of oxygen in the tissue). Hypoxia has pronounced effects on almost every aspect of cell physiology, and the nuclear transcription factor hypoxia inducible factor-1{alpha} (HIF-1{alpha}) regulates adaptive responses to lowmore » concentrations of oxygen in mammalian cells. In our recent work, we observed that hypoxia increases the proinflammatory enzyme arachidonate 15-lipoxygenase (ALOX15B) in human carotid plaques. ALOX15 has recently been shown to be present in the human myocardium, but the effect of ischemia on its expression has not been investigated. Here we test the hypothesis that ischemia of the heart leads to increased expression of ALOX15, and found an almost 2-fold increase in HIF-1{alpha} mRNA expression and a 17-fold upregulation of ALOX15 mRNA expression in the ischemic heart biopsies from patients undergoing coronary bypass surgery compared with non ischemic heart tissue. To investigate the effect of low oxygen concentration on ALOX15 we incubated human vascular muscle cells in hypoxia and showed that expression of ALOX15 increased 22-fold compared with cells incubated in normoxic conditions. We also observed increased mRNA levels of proinflammatory markers in ischemic heart tissue compared with non-ischemic controls. In summary, we demonstrate increased ALOX15 in human ischemic heart biopsies. Furthermore we demonstrate that hypoxia increases ALOX15 in human muscle cells. Our results yield

  1. BM88 is an early marker of proliferating precursor cells that will differentiate into the neuronal lineage.

    PubMed

    Koutmani, Yassemi; Hurel, Catherine; Patsavoudi, Evangelia; Hack, Michael; Gotz, Magdalena; Thomaidou, Dimitra; Matsas, Rebecca

    2004-11-01

    Progression of progenitor cells towards neuronal differentiation is tightly linked with cell cycle control and the switch from proliferative to neuron-generating divisions. We have previously shown that the neuronal protein BM88 drives neuroblastoma cells towards exit from the cell cycle and differentiation into a neuronal phenotype in vitro. Here, we explored the role of BM88 during neuronal birth, cell cycle exit and the initiation of differentiation in vivo. By double- and triple-labelling with the S-phase marker BrdU or the late G2 and M-phase marker cyclin B1, antibodies to BM88 and markers of the neuronal or glial cell lineages, we demonstrate that in the rodent forebrain, BM88 is expressed in multipotential progenitor cells before terminal mitosis and in their neuronal progeny during the neurogenic interval, as well as in the adult. Further, we defined at E16 a cohort of proliferative progenitors that exit S phase in synchrony, and by following their fate for 24 h we show that BM88 is associated with the dynamics of neuron-generating divisions. Expression of BM88 was also evident in cycling cortical radial glial cells, which constitute the main neurogenic population in the cerebral cortex. In agreement, BM88 expression was markedly reduced and restricted to a smaller percentage of cells in the cerebral cortex of the Small eye mutant mice, which lack functional Pax6 and exhibit severe neurogenesis defects. Our data show an interesting correlation between BM88 expression and the progression of progenitor cells towards neuronal differentiation during the neurogenic interval.

  2. Enhanced Expression of Fibroblast Growth Factor Receptor 3 IIIc Promotes Human Esophageal Carcinoma Cell Proliferation

    PubMed Central

    Ueno, Nobuhiro; Shimizu, Akio; Kanai, Michiyuki; Iwaya, Yugo; Ueda, Shugo; Nakayama, Jun; Seo, Misuzu Kurokawa

    2015-01-01

    Deregulated expression of fibroblast growth factor receptors (FGFRs) and their ligands plays critical roles in tumorigenesis. The gene expression of an alternatively spliced isoforms of FGFR3, FGFR3IIIc, was analyzed by RT-PCR in samples from patients with esophageal carcinoma (EC), including esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). The incidence of FGFR3IIIc was higher in EC [12/16 (75%); p=0.073] than in non-cancerous mucosa (NCM) [6/16 (38%)]. Indeed, an immunohistochemical analysis of early-stage ESCC showed that carcinoma cells expressing FGFR3IIIc stained positively with SCC-112, a tumor marker, and Ki67, a cell proliferation marker, suggesting that the expression of FGFR3IIIc promotes cell proliferation. We used EC-GI-10 cells endogenously expressing FGFR3IIIc as a model of ESCC to provide mechanistic insight into the role of FGFR3IIIc in ESCC. The knockdown of endogenous FGFR3 using siRNA treatment significantly abrogated cell proliferation and the overexpression of FGFR3IIIc in cells with enhanced cell proliferation. EC-GI-10 cells and ESCC from patients with EC showed endogenous expression of FGF2, a specific ligand for FGFR3IIIc, suggesting that the upregulated expression of FGFR3IIIc may create autocrine FGF signaling in ESCC. Taken together, FGFR3IIIc may have the potential to be an early-stage tumor marker and a molecular target for ESCC therapy. PMID:26487184

  3. Diagnostic markers for germ cell neoplasms: from placental-like alkaline phosphatase to micro-RNAs.

    PubMed

    Rajpert-De Meyts, Ewa; Nielsen, John E; Skakkebaek, Niels E; Almstrup, Kristian

    2015-01-01

    This concise review summarises tissue and serum markers useful for differential diagnosis of germ cell tumours (GCT), with focus on the most common testicular GCT (TGCT). GCT are characterised by phenotypic heterogeneity due to largely retained embryonic pluripotency and aberrant somatic differentiation. TGCT that occur in young men are divided into two main types, seminoma and nonseminoma, both derived from a pre-invasive germ cell neoplasia in situ (GCNIS), which originates from transformed foetal gonocytes. In severely dysgenetic gonads, a GCNIS-resembling lesion is called gonadoblastoma. GCT occur rarely in young children (infantile GCT) in whom the pathogenesis is different (no GCNIS/gonadoblastoma stage) but the histopathological features are similar to the adult GCT. The rare spermatocytic tumour of older men is derived from post-pubertal spermatogonia that clonally expand due to gain-of function mutations in survival-promoting genes (e.g. FGFR3, HRAS), thus this tumour has a different expression profile than GCNIS-derived TGCT. Clinically most informative immunohistochemical markers for GCT, except teratoma, are genes expressed in primordial germ cells/gonocytes and embryonic pluripotency-related factors, such as placental-like alkaline phosphatase (PLAP), OCT4 (POU5F1), NANOG, AP-2γ (TFAP2C) and LIN28, which are not expressed in normal adult germ cells. Some of these markers can also be used for immunocytochemistry to detect GCNIS or incipient tumours in semen samples. Gene expression in GCT is regulated in part by DNA and histone modifications, and the epigenetic profile of these tumours is characterised by genome-wide demethylation, except nonseminomas. In addition, a recently discovered mechanism of post-genomic gene expression regulation involves small non-coding RNAs, predominantly micro-RNA (miR). Testicular GCT display micro-RNA profiles similar to embryonic stem cells. Targeted miRNA-based blood tests for miR-371-3 and miR-367 clusters are

  4. Evaluation of mRNA expression levels and electrophysiological function of neuron-like cells derived from canine bone marrow stromal cells.

    PubMed

    Nakano, Rei; Edamura, Kazuya; Sugiya, Hiroshi; Narita, Takanori; Okabayashi, Ken; Moritomo, Tadaaki; Teshima, Kenji; Asano, Kazushi; Nakayama, Tomohiro

    2013-10-01

    To investigate the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into functional, mature neurons. Bone marrow from 6 adult dogs. BMSCs were isolated from bone marrow and chemically induced to develop into neurons. The morphology of the BMSCs during neuronal induction was monitored, and immunocytochemical analyses for neuron markers were performed after the induction. Real-time PCR methods were used to evaluate the mRNA expression levels of markers for neural stem or progenitor cells, neurons, and ion channels, and western blotting was used to assess the expression of neuronal proteins before and after neuronal induction. The electrophysiological properties of the neuron-like cells induced from canine BMSCs were evaluated with fluorescent dye to monitor Ca(2)+ influx. Canine BMSCs developed a neuron-like morphology after neuronal induction. Immunocytochemical analysis revealed that these neuron-like cells were positive for neuron markers. After induction, the cells' mRNA expression levels of almost all neuron and ion channel markers increased, and the protein expression levels of nestin and neurofilament-L increased significantly. However, the neuron-like cells derived from canine BMSCs did not have the Ca(2)+ influx characteristic of spiking neurons. Although canine BMSCs had neuron-like morphological and biochemical properties after induction, they did not develop the electrophysiological characteristics of neurons. Thus, these results have suggested that canine BMSCs could have the capacity to differentiate into a neuronal lineage, but the differentiation protocol used may have been insufficient to induce development into functional neurons.

  5. Epithelial–mesenchymal transition markers expressed in circulating tumor cells in hepatocellular carcinoma patients with different stages of disease

    PubMed Central

    Li, Y-M; Xu, S-C; Li, J; Han, K-Q; Pi, H-F; Zheng, L; Zuo, G-H; Huang, X-B; Li, H-Y; Zhao, H-Z; Yu, Z-P; Zhou, Z; Liang, P

    2013-01-01

    The presence of circulating tumor cells (CTCs) in peripheral blood is associated with metastasis and prognosis in hepatocellular carcinoma (HCC) patients. The epithelial–mesenchymal transition (EMT) has a pivotal role in tumor invasion and dissemination. To identify more sensitive biomarkers for evaluating metastasis and prognosis, we investigated the expression of EMT markers, including vimentin, twist, ZEB1, ZEB2, snail, slug and E-cadherin in CTCs, primary HCC tumors and adjacent non-tumoral liver tissues. After isolating viable CTCs from the peripheral blood of HCC patients using asialoglycoprotein receptors (ASGPRs), the CTCs were identified with immunofluorescence staining. CTCs were detected in the peripheral blood obtained from 46 of 60 (76.7%) HCC patients. Triple-immunofluorescence staining showed that twist and vimentin expression could be detected in CTCs obtained from 39 (84.8%) and 37 (80.4%) of the 46 patients, respectively. The expression of both twist and vimentin in CTCs was significantly correlated with portal vein tumor thrombus. Coexpression of twist and vimentin in CTCs could be detected in 32 (69.6%) of the 46 patients and was highly correlated with portal vein tumor thrombus, TNM classification and tumor size. Quantitative fluorescence western blot analysis revealed that the expression levels of E-cadherin, vimentin and twist in HCC tumors were significantly associated with the positivity of isolated CTCs (P=0.013, P=0.012, P=0.009, respectively). However, there was no significant difference in ZEB1, ZEB2, snail and slug expression levels in CTCs, primary HCC tumors and adjacent non-tumoral liver tissues across samples with regard to the clinicopathological parameters. Our results demonstrate that the EMT has a role in promoting the blood-borne dissemination of primary HCC cells, and the twist and vimentin expression levels in CTCs could serve as promising biomarkers for evaluating metastasis and prognosis in HCC patients. PMID:24091674

  6. FAP-1 and NF-κB expressions in oral squamous cell carcinoma as potential markers for chemo-radio sensitivity and prognosis.

    PubMed

    Nariai, Y; Mishima, K; Yoshimura, Y; Sekine, J

    2011-04-01

    This study was designed to investigate the feasibility of using Fas-associated phosphatase-1 (FAP-1), nuclear factor kappa B (NF-κB) and p53 as markers for chemo-radio sensitivity in oral squamous cell carcinoma (OSCC). FAP-1 plays a role as an anti-apoptotic factor through Fas-dependent apoptosis after chemo-radiotherapy. NF-κB and p53 might be involved in modulation of FAP-1 expression. FAP-1, NF-κB and p53 expression were immunohistochemically examined using biopsy specimens in 50 OSCC patients treated with chemotherapy and/or radiotherapy. FAP-1 was expressed in 52%, NF-κB in 52% and p53 in 46% of patients. There was no significant difference in FAP-1, p53 or NF-κB expression according to the clinicopathological features. No correlation was found among FAP-1, p53 or NF-κB expression. FAP-1-positive cases showed a poorer survival rate than FAP-1-negative cases (P = 0.0409) and NF-κB-positive cases showed a poorer survival rate than NF-κB-negative cases (P = 0.0018). Multivariate analysis showed that FAP-1 expression, NF-κB expression, clinical stage and age were significant independent variables for survival (clinical stage: P = 0.0016; age: P = 0.0016; NF-κB: P = 0.0314; FAP-1: P = 0.0366). These results suggest that FAP-1 and NF-κB might play a role as chemo-radioresistant factor during chemo-radiotherapy, and FAP-1 and NF-κB expression in OSCC would be feasible markers for chemo-radio sensitivity and prognosis. Copyright © 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART

    PubMed Central

    Fromentin, Rémi; Bakeman, Wendy; Lawani, Mariam B.; Khoury, Gabriela; Hartogensis, Wendy; DaFonseca, Sandrina; Killian, Marisela; Epling, Lorrie; Hoh, Rebecca; Sinclair, Elizabeth; Hecht, Frederick M.; Bacchetti, Peter; Deeks, Steven G.; Lewin, Sharon R.; Sékaly, Rafick-Pierre; Chomont, Nicolas

    2016-01-01

    HIV persists in a small pool of latently infected cells despite antiretroviral therapy (ART). Identifying cellular markers expressed at the surface of these cells may lead to novel therapeutic strategies to reduce the size of the HIV reservoir. We hypothesized that CD4+ T cells expressing immune checkpoint molecules would be enriched in HIV-infected cells in individuals receiving suppressive ART. Expression levels of 7 immune checkpoint molecules (PD-1, CTLA-4, LAG-3, TIGIT, TIM-3, CD160 and 2B4) as well as 4 markers of HIV persistence (integrated and total HIV DNA, 2-LTR circles and cell-associated unspliced HIV RNA) were measured in PBMCs from 48 virally suppressed individuals. Using negative binomial regression models, we identified PD-1, TIGIT and LAG-3 as immune checkpoint molecules positively associated with the frequency of CD4+ T cells harboring integrated HIV DNA. The frequency of CD4+ T cells co-expressing PD-1, TIGIT and LAG-3 independently predicted the frequency of cells harboring integrated HIV DNA. Quantification of HIV genomes in highly purified cell subsets from blood further revealed that expressions of PD-1, TIGIT and LAG-3 were associated with HIV-infected cells in distinct memory CD4+ T cell subsets. CD4+ T cells co-expressing the three markers were highly enriched for integrated viral genomes (median of 8.2 fold compared to total CD4+ T cells). Importantly, most cells carrying inducible HIV genomes expressed at least one of these markers (median contribution of cells expressing LAG-3, PD-1 or TIGIT to the inducible reservoir = 76%). Our data provide evidence that CD4+ T cells expressing PD-1, TIGIT and LAG-3 alone or in combination are enriched for persistent HIV during ART and suggest that immune checkpoint blockers directed against these receptors may represent valuable tools to target latently infected cells in virally suppressed individuals. PMID:27415008

  8. Association of Glioblastoma Multiforme Stem Cell Characteristics, Differentiation, and Microglia Marker Genes with Patient Survival

    PubMed Central

    Balz, Ellen; Herzog, Susann; Plantera, Laura; Vogelgesang, Silke; Seifert, Carolin; Bialke, Angela; Venugopal, Chitra; Singh, Sheila K.; Hoffmann, Wolfgang; Schroeder, Henry W. S.

    2018-01-01

    Patients with glioblastoma multiforme (GBM) are at high risk to develop a relapse despite multimodal therapy. Assumedly, glioma stem cells (GSCs) are responsible for treatment resistance of GBM. Identification of specific GSC markers may help to develop targeted therapies. Here, we performed expression analyses of stem cell (ABCG2, CD44, CD95, CD133, ELF4, Nanog, and Nestin) as well as differentiation and microglia markers (GFAP, Iba1, and Sparc) in GBM compared to nonmalignant brain. Furthermore, the role of these proteins for patient survival and their expression in LN18 stem-like neurospheres was analyzed. At mRNA level, ABCG2 and CD95 were reduced, GFAP was unchanged; all other investigated markers were increased in GBM. At protein level, CD44, ELF4, Nanog, Nestin, and Sparc were elevated in GBM, but only CD133 and Nestin were strongly associated with survival time. In addition, ABCG2 and GFAP expression was decreased in LN18 neurospheres whereas CD44, CD95, CD133, ELF4, Nanog, Nestin, and Sparc were upregulated. Altogether only CD133 and Nestin were associated with survival rates. This raises concerns regarding the suitability of the other target structures as prognostic markers, but makes both CD133 and Nestin candidates for GBM therapy. Nevertheless, a search for more specific marker proteins is urgently needed. PMID:29535786

  9. Differential expression pattern of protein markers for predicting chemosensitivity of dexamethasone-based chemotherapy of B cell acute lymphoblastic leukemia.

    PubMed

    Dehghan-Nayeri, Nasrin; Eshghi, Peyman; Pour, Kourosh Goudarzi; Rezaei-Tavirani, Mostafa; Omrani, Mir Davood; Gharehbaghian, Ahmad

    2017-07-01

    Dexamethasone is considered as a direct chemotherapeutic agent in the treatment of pediatric acute lymphoblastic leukemia (ALL). Beside the advantages of the drug, some problems arising from the dose-related side effects are challenging issues during the treatment. Accordingly, the classification of patients to dexamethasone sensitive and resistance groups can help to select optimizing the therapeutic dose with the lowest adverse effects particularly in sensitive cases. For this purpose, we investigated inhibited proliferation and induced cytotoxicity in NALM-6 cells, as sensitive cells, after dexamethasone treatment. In addition, comparative protein expression analysis using the 2DE-MALDI-TOF MS technique was performed to identify the specific altered proteins. In addition, we evaluated mRNA expression levels of the identified proteins in bone-marrow samples from pediatric ALL patients using the real-time q-PCR method. Eventually, proteomic analysis revealed a combination of biomarkers, including capping proteins (CAPZA1 and CAPZB), chloride channel (CLIC1), purine nucleoside phosphorylase (PNP), and proteasome activator (PSME1), in response to the dexamethasone treatment. In addition, our results indicated low expression of identified proteins at both the mRNA and protein expression levels after drug treatment. Moreover, quantitative real-time PCR data analysis indicated that independent of the molecular subtypes of the leukemia, CAPZA1, CAPZB, CLIC1, and PNP expression levels were lower in ALL samples than normal samples, although PSME1 expression level was higher in ALL samples than normal samples. Furthermore, the expression level of all proteins (except PSME1) was different between high-risk and standard-risk patients that suggesting the prognostic value of them. In conclusion, our study suggests a panel of biomarkers comprising CAPZA1, CAPZB, CLIC1, PNP, and PSME1 as early diagnosis and treatment evaluation markers that may differentiate cancer cells which

  10. Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers.

    PubMed

    Dorrell, Craig; Grompe, Maria T; Pan, Fong Cheng; Zhong, Yongping; Canaday, Pamela S; Shultz, Leonard D; Greiner, Dale L; Wright, Chris V; Streeter, Philip R; Grompe, Markus

    2011-06-06

    Tools permitting the isolation of live pancreatic cell subsets for culture and/or molecular analysis are limited. To address this, we developed a collection of monoclonal antibodies with selective surface labeling of endocrine and exocrine pancreatic cell types. Cell type labeling specificity and cell surface reactivity were validated on mouse pancreatic sections and by gene expression analysis of cells isolated using FACS. Five antibodies which marked populations of particular interest were used to isolate and study viable populations of purified pancreatic ducts, acinar cells, and subsets of acinar cells from whole pancreatic tissue or of alpha or beta cells from isolated mouse islets. Gene expression analysis showed the presence of known endocrine markers in alpha and beta cell populations and revealed that TTR and DPPIV are primarily expressed in alpha cells whereas DGKB and GPM6A have a beta cell specific expression profile. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Relationship of CD86 surface marker expression and cytotoxicity on dendritic cells exposed to chemical allergen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulette, Ben C.; Ryan, Cindy A.; Gildea, Lucy A.

    2005-12-01

    Human peripheral blood-derived dendritic cells (DC) respond to a variety of chemical allergens by up-regulating expression of the co-stimulatory molecule CD86. It has been postulated that this measure might provide the basis for an in vitro alternative approach for the identification of skin sensitizing chemicals. We recently reported that DC, exposed in culture to the highest non-cytotoxic concentrations of various chemical allergens, displayed marginal up-regulation of membrane CD86 expression; the interpretation being that such changes were insufficiently sensitive for the purposes of hazard identification. For the work presented here, immature DC were derived from human monocytes and treated with themore » chemical allergens 2,4-dinitrobenzenesulfonic acid (DNBS), nickel sulfate (NiSO{sub 4}), p-phenylenediamine (PPD), Bandrowski's base (BB), hydroquinone (HQ) and propyl gallate (PG) for 48 h at concentrations which induced both no to slight to moderate cytotoxicity. For comparison, DC were treated with the irritants sodium dodecyl sulfate (SDS), benzoic acid (BA), and benzalkonium chloride (BZC) at concentrations resulting in comparable levels of cytotoxicity. CD86 expression, as measured by flow cytometry, was consistently up-regulated (ranging from 162 to 386% control) on DC treated with concentrations of chemical allergens that induced approximately 10-15% cytotoxicity. The irritants BA and BZC did not induce up-regulation of CD86 expression when tested at concentrations that induced similar levels of cytotoxicity. SDS, however, up-regulated CD86 expression to 125-138% of control in 2/4 preparations when tested at concentrations which induced similar toxicity. Our results confirm that chemical allergens up-regulate CD86 expression on blood-derived DC and illustrate further that up-regulation of CD86 surface marker expression is more robust when DC are treated with concentrations of chemical allergen that induce slight to moderate cytotoxicity.« less

  12. Cell-cell contact regulates gene expression in CDK4-transformed mouse podocytes.

    PubMed

    Sakairi, Toru; Abe, Yoshifusa; Jat, Parmijit S; Kopp, Jeffrey B

    2010-10-01

    We transformed mouse podocytes by ectopic expression of cyclin-dependent kinase 4 (CDK4). Compared with podocytes transformed with a thermo-sensitive SV40 large T antigen mutant tsA58U19 (tsT podocytes), podocytes transformed with CDK4 (CDK4 podocytes) exhibited significantly higher expression of nephrin mRNA. Synaptopodin mRNA expression was significantly lower in CDK4 podocytes and in tsT podocytes under growth-permissive conditions (33°C) compared with tsT podocytes under growth-restricted conditions (37°C), which suggests a role for cell cycle arrest in synaptopodin mRNA expression. Confluent CDK4 podocytes showed significantly higher mRNA expression levels for nephrin, synaptopodin, Wilms tumor 1, podocalyxin, and P-cadherin compared with subconfluent cultures. We carried out experiments to clarify roles of various factors in the confluent podocyte cultures; our findings indicate that cell-cell contact promotes expression of five podocyte marker genes studied, that cellular quiescence increases synaptopodin and podocalyxin mRNA expression, and that soluble factors play a role in nephrin mRNA expression. Our findings suggest that CDK4 podocytes are useful tools to study podocyte biology. Furthermore, the role of cell-cell contact in podocyte gene expression may have relevance for podocyte function in vivo.

  13. Expression of neuronal markers in the endometrium of women with and those without endometriosis.

    PubMed

    Newman, T A; Bailey, J L; Stocker, L J; Woo, Y L; Macklon, N S; Cheong, Y C

    2013-09-01

    How do the expression patterns of neuronal markers differ in the endometrium of women with and without endometriosis? The neuronal markers, PGP9.5, NGFp75 and VR1, are expressed in the endometrium at levels that do not differ between women with and without endometriosis. Aberrant neuronal growth within the uterus may contribute to abnormal fertility and uterine dysfunction. However, controversy still exists as to whether aberrant innervation in the endometrium is associated with gynaecological pathology such as endometriosis. This may reflect the use of subjective methods such as histology to assess the innervation of the endometrium. We, therefore, employed a quantitative method, western blotting, to study markers of endometrial innervation in the presence and absence of endometriosis. This study included 45 women undergoing laparoscopic examination for the diagnosis of endometriosis. Endometrial samples were analysed by western blot for the expression of neuronal and neurotrophic markers, PGP9.5, VR1 and NGFp75. Endometrial pipelle biopsies were obtained from patients with (n = 20, study group) and without (n = 25, control group) endometriosis. Tissue was analysed by immunohistochemistry and western blot analysis for the expression of pan-neuronal marker, PGP9.5, sensory nociceptive marker, TPVR1, and low-affinity neurotrophic growth factor receptor, NGFRp75. PGP9.5, NGFp75 and VR1 were expressed in the endometrium of women, independent of the presence of endometriosis. Furthermore, the expression level of PGP9.5, VR1 and NGFp75 did not alter between the two cohorts of women. Studies of this nature are subject to the heterogeneous nature of patient population and tissue samples despite attempts to standardize these parameters. Hence, further studies using similar methodology will be required to confirm our results. Our results highlight that sensory neuronal markers are present in women with and without endometriosis. Future work will assess what the targets of

  14. MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells.

    PubMed

    Ponnusamy, Moorthy P; Seshacharyulu, Parthasarathy; Vaz, Arokiapriyanka; Dey, Parama; Batra, Surinder K

    2011-04-26

    Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through HER2. In future, this study would be

  15. MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells

    PubMed Central

    2011-01-01

    Background Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. Methods MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. Results MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. Conclusion These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through

  16. Immunohistochemical analyses of cell cycle progression and gene expression of biliary epithelial cells during liver regeneration after partial hepatectomy of the mouse.

    PubMed

    Fukuda, Tatsuya; Fukuchi, Tomokazu; Yagi, Shinomi; Shiojiri, Nobuyoshi

    2016-05-20

    The liver has a remarkable regeneration capacity, and, after surgical removal of its mass, the remaining tissue undergoes rapid regeneration through compensatory growth of its constituent cells. Although hepatocytes synchronously proliferate under the control of various signaling molecules from neighboring cells, there have been few detailed analyses on how biliary cells regenerate for their cell population after liver resection. The present study was undertaken to clarify how biliary cells regenerate after partial hepatectomy of mice through extensive analyses of their cell cycle progression and gene expression using immunohistochemical and RT-PCR techniques. When expression of PCNA, Ki67 antigen, topoisomerase IIα and phosphorylated histone H3, which are cell cycle markers, was immunohistochemically examined during liver regeneration, hepatocytes had a peak of the S phase and M phase at 48-72 h after resection. By contrast, biliary epithelial cells had much lower proliferative activity than that of hepatocytes, and their peak of the S phase was delayed. Mitotic figures were rarely detectable in biliary cells. RT-PCR analyses of gene expression of biliary markers such as Spp1 (osteopontin), Epcam and Hnf1b demonstrated that they were upregulated during liver regeneration. Periportal hepatocytes expressed some of biliary markers, including Spp1 mRNA and protein. Some periportal hepatocytes had downregulated expression of HNF4α and HNF1α. Gene expression of Notch signaling molecules responsible for cell fate decision of hepatoblasts to biliary cells during development was upregulated during liver regeneration. Notch signaling may be involved in biliary regeneration.

  17. Circulating cancer stem cell markers in breast carcinomas: a systematic review protocol.

    PubMed

    Mansoori, Maryam; Madjd, Zahra; Janani, Leila; Rasti, Arezoo

    2017-12-19

    Breast cancer is one of the most common types of cancer in women worldwide. Recent studies have provided strong support for the cancer stem cell (CSC) hypothesis, which suggests that many cancers, including breast cancer, are driven by a subpopulation of cells that display stem cell-like properties. The hypothesis that a subpopulation of circulating tumor cells (CTCs) possesses many CSC-like hallmarks is reinforced by the expression of related molecular markers between these two cell populations. The aim of this study is to systematically review primary studies and identify circulating CSC markers in breast cancer patients. Relevant observational studies evaluating the expression of circulating breast cancer stem cell markers through October 31, 2016, will be searched in PubMed, SCOPUS, Embase, ISI Web of Science, and Google Scholar with no restriction on language. Full copies of articles identified by the search and considered to meet the inclusion criteria will be obtained for data extraction and synthesis. Two quality assessment tools will be used for evaluating observational studies like case control, which are the Hoy et al. suggested tool and Newcastle-Ottawa Scale (NOS), respectively. Publication bias will be assessed by funnel plots or Egger's test (i.e., plots of study results against precision), and data synthesis will be performed using Stata software (Stata Corp V.12, TX, USA).This systematic review will be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Detecting cancer stem cells in blood will help clinicians to monitor cancer patients by obtaining as many samples as needed with a non-invasive method and in any stages; it is not possible to repeat sampling on working on tissue samples. By identifying cancer stem cells early in blood, it will be possible to distinguish metastasis in early stages. CRD42016043810.

  18. Liver Cell-Derived Microparticles Activate Hedgehog Signaling and Alter Gene Expression in Hepatic Endothelial Cells

    PubMed Central

    Witek, Rafal P.; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S.; Cheong, Yeiwon; Fearing, Caitlin M.; Agboola, Kolade M.; Chen, Wei; Diehl, Anna Mae

    2013-01-01

    Background & Aims Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). Methods MF-HSCs and cholangiocytes were exposed to platelet-derived growth factor (PDGF) to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy (TEM) and immunoblots, and applied to Hh-reporter containing cells. Microparticles were also obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, a Hh signaling inhibitor. Effects on SEC gene expression were evaluated by QRT-PCR and immunoblotting. Finally, Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Results PDGF-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically active Hh ligands. BDL also increased release of Hh-containing exosome-enriched microparticles into plasma and bile. TEM and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Conclusions Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy. PMID:19013163

  19. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    PubMed

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  20. Changes in markers associated with dendritic cells driving the differentiation of either TH2 cells or regulatory T cells correlate with clinical benefit during allergen immunotherapy.

    PubMed

    Gueguen, Claire; Bouley, Julien; Moussu, Hélène; Luce, Sonia; Duchateau, Magalie; Chamot-Rooke, Julia; Pallardy, Marc; Lombardi, Vincent; Nony, Emmanuel; Baron-Bodo, Véronique; Mascarell, Laurent; Moingeon, Philippe

    2016-02-01

    Regulatory dendritic cell (DC) markers, such as C1Q, are upregulated in PBMCs of patients with grass pollen allergy exhibiting clinical benefit during allergen immunotherapy (AIT). We sought to define markers differentially expressed in human monocyte-derived DCs differentiated toward a proallergic (DCs driving the differentiation of TH2 cells [DC2s]) phenotype and investigate whether changes in such markers in the blood correlate with AIT efficacy. Transcriptomes and proteomes of monocyte-derived DCs polarized toward DCs driving the differentiation of TH1 cells (DC1s), DC2s, or DCs driving the differentiation of regulatory T cells (DCreg cells) profiles were compared by using genome-wide cDNA microarrays and label-free quantitative proteomics, respectively. Markers differentially regulated in DC2s and DCreg cells were assessed by means of quantitative PCR in PBMCs from 80 patients with grass pollen allergy before and after 2 or 4 months of sublingual AIT in parallel with rhinoconjunctivitis symptom scores. We identified 20 and 26 new genes/proteins overexpressed in DC2s and DCreg cells, respectively. At an individual patient level, DC2-associated markers, such as CD141, GATA3, OX40 ligand, and receptor-interacting serine/threonine-protein kinase 4 (RIPK4), were downregulated after a 4-month sublingual AIT course concomitantly with an upregulation of DCreg cell-associated markers, including complement C1q subcomponent subunit A (C1QA), FcγRIIIA, ferritin light chain (FTL), and solute carrier organic anion transporter family member 2B1 (SLCO2B1), in the blood of clinical responders as opposed to nonresponders. Changes in such markers were better correlated with clinical benefit than alterations of allergen-specific CD4(+) T-cell or IgG responses. A combination of 5 markers predominantly expressed by blood DCs (ie, C1Q and CD141) or shared with lymphoid cells (ie, FcγRIIIA, GATA3, and RIPK4) reflecting changes in the balance of regulatory/proallergic responses

  1. Expression of pleiotrophin in small cell lung cancer.

    PubMed

    Wang, H Q; Wang, J

    2015-01-01

    Pleiotrophin (PTN) is a kind of heparin binding growth factor closely related to tumor progression. This study aimed to discuss the significance of the expression of PTN in benign and malignant lung cancer tissues, especially small cell lung cancer. Lung cancer samples were collected for study and lung tissue samples with benign lesions were taken as controls. The expression of PTN was detected using tissue chip combined with the immunohistochemical method, and the differences of small cell lung cancer with non-small cell lung cancer and benign lesion tissue were compared. It was found that PTN expression was mainly located in the cytoplasm and membrane of cells; PTN expression in the lung cancer group was higher than that in the control group (p < 0.01), and PTN expression in the small cell cancer group was higher than that in the squamous carcinoma group and glandular cancer group (p < 0.05). In addition, PTN expression quantity in patients with lung cancer were in close correlation with TNM staging, pathological type and tumor differentiation degree (p < 0.05). PTN was found to express abnormally high in lung cancer, especially small cell lung cancer tissue. PTN is most likely to be a new tumor marker for diagnosis and prognosis of lung cancer.

  2. Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression

    PubMed Central

    Banasr, Mounira; Lepack, Ashley; Fee, Corey; Duric, Vanja; Maldonado-Aviles, Jaime; DiLeone, Ralph; Sibille, Etienne; Duman, Ronald S.; Sanacora, Gerard

    2017-01-01

    Evidence continues to build suggesting that the GABAergic neurotransmitter system is altered in brains of patients with major depressive disorder. However, there is little information available related to the extent of these changes or the potential mechanisms associated with these alterations. As stress is a well-established precipitant to depressive episodes, we sought to explore the impact of chronic stress on GABAergic interneurons. Using western blot analyses and quantitative real-time PCR (qPCR) we assessed the effects of five-weeks of chronic unpredictable stress (CUS) exposure on the expression of GABA-synthesizing enzymes (GAD65 and GAD67), calcium-binding proteins (calbindin (CB), parvalbumin (PV) and calretinin (CR)), and neuropeptides co-expressed in GABAergic neurons (somatostatin (SST), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and cholecystokinin (CCK)) in the prefrontal cortex (PFC) and hippocampus (HPC) of rats. We also investigated the effects of corticosterone (CORT) and dexamethasone (DEX) exposure on these markers in vitro in primary cortical and hippocampal cultures. We found that CUS induced significant reductions of GAD67 protein levels in both the PFC and HPC of CUS-exposed rats, but did not detect changes in GAD65 protein expression. Similar protein expression changes were found in vitro in cortical neurons. In addition, our results provide clear evidence of reduced markers of interneuron population(s), namely SST and NPY, in the PFC, suggesting these cell types may be selectively vulnerable to chronic stress. Together, this work highlights that chronic stress induces regional and cell type-selective effects on GABAergic interneurons in rats. These findings provide additional supporting evidence that stress-induced GABA neuron dysfunction and cell vulnerability play critical roles in the pathophysiology of stress-related illnesses, including major depressive disorder. PMID:28835932

  3. Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf.

    PubMed

    Magella, Bliss; Adam, Mike; Potter, Andrew S; Venkatasubramanian, Meenakshi; Chetal, Kashish; Hay, Stuart B; Salomonis, Nathan; Potter, S Steven

    2018-02-01

    The developing kidney provides a useful model for study of the principles of organogenesis. In this report we use three independent platforms, Drop-Seq, Chromium 10x Genomics and Fluidigm C1, to carry out single cell RNA-Seq (scRNA-Seq) analysis of the E14.5 mouse kidney. Using the software AltAnalyze, in conjunction with the unsupervised approach ICGS, we were unable to identify and confirm the presence of 16 distinct cell populations during this stage of active nephrogenesis. Using a novel integrative supervised computational strategy, we were able to successfully harmonize and compare the cell profiles across all three technological platforms. Analysis of possible cross compartment receptor/ligand interactions identified the nephrogenic zone stroma as a source of GDNF. This was unexpected because the cap mesenchyme nephron progenitors had been thought to be the sole source of GDNF, which is a key driver of branching morphogenesis of the collecting duct system. The expression of Gdnf by stromal cells was validated in several ways, including Gdnf in situ hybridization combined with immunohistochemistry for SIX2, and marker of nephron progenitors, and MEIS1, a marker of stromal cells. Finally, the single cell gene expression profiles generated in this study confirmed and extended previous work showing the presence of multilineage priming during kidney development. Nephron progenitors showed stochastic expression of genes associated with multiple potential differentiation lineages. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The potential predictive value of circulating immune cell ratio and tumor marker in atezolizumab treated advanced non-small cell lung cancer patients.

    PubMed

    Zhuo, Minglei; Chen, Hanxiao; Zhang, Tianzhuo; Yang, Xue; Zhong, Jia; Wang, Yuyan; An, Tongtong; Wu, Meina; Wang, Ziping; Huang, Jing; Zhao, Jun

    2018-05-04

    The PD-L1 antibody atezolizumab has shown promising efficacy in patients with advanced non-small cell lung cancer. But the predictive marker of clinical benefit has not been identified. This study aimed to search for potential predictive factors in circulating blood of patients receiving atezolizumab. Ten patients diagnosed with advanced non-small cell lung cancer were enrolled in this open-label observing study. Circulating immune cells and plasma tumor markers were examined in peripheral blood from these patients before and after atezolizumab treatment respectively. Relation between changes in circulating factors and anti-tumor efficacy were analyzed. Blood routine test showed that atezolizumab therapy induced slightly elevation of white blood cells count generally. The lymphocyte ratio was increased slightly in disease controlled patients but decreased prominently in disease progressed patients in response to atezolizumab therapy. Flow cytometric analysis revealed changes in percentage of various immune cell types, including CD4+ T cell, CD8+ T cell, myeloid-derived suppressor cell, regulatory T cell and PD-1 expressing T cell after atezolizumab. Levels of plasma tumor marker CEA, CA125 and CA199 were also altered after anti-PD-L1 therapy. In comparison with baseline, the disease progressed patients showed sharp increase in tumor marker levels, while those disease controlled patients were seen with decreased regulatory T cell and myeloid-derived suppressor cell ratios. The circulating immune cell ratios and plasma tumor marker levels were related with clinical efficacy of atezolizumab therapy. These factors could be potential predictive marker for anti-PD-L1 therapy in advanced non-small cell lung cancer.

  5. MUC4, a novel immunohistochemical marker identified by gene expression profiling, differentiates pleural sarcomatoid mesothelioma from lung sarcomatoid carcinoma.

    PubMed

    Amatya, Vishwa Jeet; Kushitani, Kei; Mawas, Amany Sayed; Miyata, Yoshihiro; Okada, Morihito; Kishimoto, Takumi; Inai, Kouki; Takeshima, Yukio

    2017-05-01

    Sarcomatoid mesothelioma, a histological subtype of malignant pleural mesothelioma, is a very aggressive tumor with a poor prognosis. Histological diagnosis of sarcomatoid mesothelioma largely depends on the histomorphological feature of spindled tumor cells with immunohistochemical reactivity to cytokeratins. Diagnosis also requires clinico-radiological and/or macroscopic evidence of an extrapulmonary location to differentiate it from lung sarcomatoid carcinoma. Although there are promising immunohistochemical antibody panels to differentiate mesothelioma from lung carcinoma, a consensus on the immunohistochemical markers that distinguish sarcomatoid mesothelioma from lung sarcomatoid carcinoma has not been reached and requires further study. We performed whole gene expression analysis of formalin-fixed paraffin-embedded tissue from sarcomatoid mesothelioma and lung sarcomatoid carcinoma and observed significant differences in the expression of MUC4 and other genes between sarcomatoid mesothelioma and lung sarcomatoid carcinoma. Immunohistochemistry demonstrated that MUC4 was expressed in the spindled tumor cells of lung sarcomatoid carcinoma (21/29, 72%) but was not expressed in any sarcomatoid mesothelioma (0/31, 0%). To differentiate sarcomatoid mesothelioma from lung sarcomatoid carcinoma, negative MUC4 expression showed 100% sensitivity and 72% specificity and accuracy rate of 87%, which is higher than immunohistochemical markers such as calretinin, D2-40 and Claudin-4. Therefore, we recommend to include MUC4 as a novel and useful negative immunohistochemical marker for differentiating sarcomatoid mesothelioma from lung sarcomatoid carcinoma.

  6. DSG2 Is a Functional Cell Surface Marker for Identification and Isolation of Human Pluripotent Stem Cells.

    PubMed

    Park, Jongjin; Son, Yeonsung; Lee, Na Geum; Lee, Kyungmin; Lee, Dong Gwang; Song, Jinhoi; Lee, Jaemin; Kim, Seokho; Cho, Min Ji; Jang, Ju-Hong; Lee, Jangwook; Park, Jong-Gil; Kim, Yeon-Gu; Kim, Jang-Seong; Lee, Jungwoon; Cho, Yee Sook; Park, Young-Jun; Han, Baek Soo; Bae, Kwang-Hee; Han, Seungmin; Kang, Byunghoon; Haam, Seungjoo; Lee, Sang-Hyun; Lee, Sang Chul; Min, Jeong-Ki

    2018-06-08

    Pluripotent stem cells (PSCs) represent the most promising clinical source for regenerative medicine. However, given the cellular heterogeneity within cultivation and safety concerns, the development of specific and efficient tools to isolate a pure population and eliminate all residual undifferentiated PSCs from differentiated derivatives is a prerequisite for clinical applications. In this study, we raised a monoclonal antibody and identified its target antigen as desmoglein-2 (DSG2). DSG2 co-localized with human PSC (hPSC)-specific cell surface markers, and its expression was rapidly downregulated upon differentiation. The depletion of DSG2 markedly decreased hPSC proliferation and pluripotency marker expression. In addition, DSG2-negative population in hPSCs exhibited a notable suppression in embryonic body and teratoma formation. The actions of DSG2 in regulating the self-renewal and pluripotency of hPSCs were predominantly exerted through the regulation of β-catenin/Slug-mediated epithelial-to-mesenchymal transition. Our results demonstrate that DSG2 is a valuable PSC surface marker that is essential for the maintenance of PSC self-renewal. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Elevated S100A9 expression in tumor stroma functions as an early recurrence marker for early-stage oral cancer patients through increased tumor cell invasion, angiogenesis, macrophage recruitment and interleukin-6 production

    PubMed Central

    Fang, Wei-Yu; Chen, Yi-Wen; Hsiao, Jenn-Ren; Liu, Chiang-Shin; Kuo, Yi-Zih; Wang, Yi-Ching; Chang, Kung-Chao; Tsai, Sen-Tien; Chang, Mei-Zhu; Lin, Siao-Han; Wu, Li-Wha

    2015-01-01

    S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis. PMID:26315114

  8. Elevated S100A9 expression in tumor stroma functions as an early recurrence marker for early-stage oral cancer patients through increased tumor cell invasion, angiogenesis, macrophage recruitment and interleukin-6 production.

    PubMed

    Fang, Wei-Yu; Chen, Yi-Wen; Hsiao, Jenn-Ren; Liu, Chiang-Shin; Kuo, Yi-Zih; Wang, Yi-Ching; Chang, Kung-Chao; Tsai, Sen-Tien; Chang, Mei-Zhu; Lin, Siao-Han; Wu, Li-Wha

    2015-09-29

    S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis.

  9. CPM Is a Useful Cell Surface Marker to Isolate Expandable Bi-Potential Liver Progenitor Cells Derived from Human iPS Cells.

    PubMed

    Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y; Tanaka, Minoru; Miyajima, Atsushi

    2015-10-13

    To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM(+) cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM(+) cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM(+) cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. CPM Is a Useful Cell Surface Marker to Isolate Expandable Bi-Potential Liver Progenitor Cells Derived from Human iPS Cells

    PubMed Central

    Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y.; Tanaka, Minoru; Miyajima, Atsushi

    2015-01-01

    Summary To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM+ cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM+ cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM+ cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. PMID:26365514

  11. Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line.

    PubMed

    Le, Bach Q; Vasilevich, Aliaksei; Vermeulen, Steven; Hulshof, Frits; Stamatialis, Dimitrios F; van Blitterswijk, Clemens A; de Boer, Jan

    2017-05-01

    Chemical and mechanical cues are well-established influencers of in vitro chondrogenic differentiation of ATDC5 cells. Here, we investigate the role of topographical cues in this differentiation process, a study not been explored before. Previously, using a library of surface micro-topographies we found some distinct patterns that induced alkaline phosphatase (ALP) production in human mesenchymal stromal cells. ALP is also a marker for hypertrophy, the end stage of chondrogenic differentiation preceding bone formation. Thus, we hypothesized that these patterns could influence end-stage chondrogenic differentiation of ATDC5 cells. In this study, we randomly selected seven topographies among the ALP influencing hits. Cells grown on these surfaces displayed varying nuclear shape and actin filament structure. When stimulated with insulin-transferrin-selenium (ITS) medium, nodule formation occurred and in some cases showed alignment to the topographical patterns. Gene expression analysis of cells growing on topographical surfaces in the presence of ITS medium revealed a downregulation of early markers and upregulation of late markers of chondrogenic differentiation compared to cells grown on a flat surface. In conclusion, we demonstrated that surface topography in addition to other cues can promote hypertrophic differentiation suitable for bone tissue engineering.

  12. Cells in 3D-reconstitutued eccrine sweat gland cell spheroids differentiate into gross cystic disease fluid protein 15-expressing dark secretory cells and carbonic anhydrase II-expressing clear secretory cells.

    PubMed

    Li, Haihong; Chen, Liyun; Zhang, Mingjun; Zhang, Bingna

    2017-07-01

    Secretory coils of eccrine sweat glands are composed of myoepithelial cells, dark secretory cells and clear secretory cells. The two types of cells play important roles in sweat secretion. In our previous study, we demonstrated that the 3D-reconstituted eccrine sweat gland cell spheroids differentiate into secretory coil-like structures. However, whether the secretory coil-like structures further differentiate into dark secretory cells and clear secretory cells were is still unknown. In this study, we detected the differentiation of clear and dark secretory cells in the 3D-reconstituted eccrine sweat gland cell spheroids using the dark secretory cell-specific marker, GCDFP-15, and clear secretory cell-specific marker, CAII by immunofluorescence staining. Results showed that there were both GCDFP-15- and CAII-expressing cells in 12-week-old 3D spheroids, similar to native eccrine sweat glands, indicating that the spheroids possess a cellular structure capable of sweat secretion. We conclude that the 12-week 3D spheroids may have secretory capability. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. A Unique Procedure to Identify Cell Surface Markers Through a Spherical Self-Organizing Map Applied to DNA Microarray Analysis.

    PubMed

    Sugii, Yuh; Kasai, Tomonari; Ikeda, Masashi; Vaidyanath, Arun; Kumon, Kazuki; Mizutani, Akifumi; Seno, Akimasa; Tokutaka, Heizo; Kudoh, Takayuki; Seno, Masaharu

    2016-01-01

    To identify cell-specific markers, we designed a DNA microarray platform with oligonucleotide probes for human membrane-anchored proteins. Human glioma cell lines were analyzed using microarray and compared with normal and fetal brain tissues. For the microarray analysis, we employed a spherical self-organizing map, which is a clustering method suitable for the conversion of multidimensional data into two-dimensional data and displays the relationship on a spherical surface. Based on the gene expression profile, the cell surface characteristics were successfully mirrored onto the spherical surface, thereby distinguishing normal brain tissue from the disease model based on the strength of gene expression. The clustered glioma-specific genes were further analyzed by polymerase chain reaction procedure and immunocytochemical staining of glioma cells. Our platform and the following procedure were successfully demonstrated to categorize the genes coding for cell surface proteins that are specific to glioma cells. Our assessment demonstrates that a spherical self-organizing map is a valuable tool for distinguishing cell surface markers and can be employed in marker discovery studies for the treatment of cancer.

  14. TBX1 Represses Vegfr2 Gene Expression and Enhances the Cardiac Fate of VEGFR2+ Cells

    PubMed Central

    Lania, Gabriella; Ferrentino, Rosa; Baldini, Antonio

    2015-01-01

    The T-box transcription factor TBX1 has critical roles in maintaining proliferation and inhibiting differentiation of cardiac progenitor cells of the second heart field (SHF). Haploinsufficiency of the gene that encodes it is a cause of congenital heart disease. Here, we developed an embryonic stem (ES) cell-based model in which Tbx1 expression can be modulated by tetracycline. Using this model, we found that TBX1 down regulates the expression of VEGFR2, and we confirmed this finding in vivo during embryonic development. In addition, we found a Vegfr2 domain of expression, not previously described, in the posterior SHF and this expression is extended by loss of Tbx1. VEGFR2 has been previously described as a marker of a subpopulation of cardiac progenitors. Clonal analysis of ES-derived VEGFR2+ cells indicated that 12.5% of clones expressed three markers of cardiac lineage (cardiomyocyte, smooth muscle and endothelium). However, a pulse of Tbx1 expression was sufficient to increase the percentage to 20.8%. In addition, the percentage of clones expressing markers of multiple cardiac lineages increased from 41.6% to 79.1% after Tbx1 pulse. These results suggest that TBX1 plays a role in maintaining a progenitor state in VEGFR2+ cells. PMID:26382615

  15. Production of stable GFP-expressing neural cells from P19 embryonal carcinoma stem cells.

    PubMed

    Shirzad, Hedayatollah; Esmaeili, Fariba; Bakhshalizadeh, Shabnam; Ebrahimie, Marzieh; Ebrahimie, Esmaeil

    2017-04-01

    Murine P19 embryonal carcinoma (EC) cells are convenient to differentiate into all germ layer derivatives. One of the advantages of P19 cells is that the exogenous DNA can be easily inserted into them. Here, at the first part of this study, we generated stable GFP-expressing P19 cells (P19-GFP + ). FACS and western-blot analysis confirmed stable expression of GFP in the cells. We previously demonstrated the efficient induction of neuronal differentiation from mouse ES and EC cells by application of a neuroprotective drug, selegiline In the second part of this study selegiline was used to induce differentiation of P19-GFP + into stable GFP-expressing neuron-like cells. Cresyl violet staining confirmed neuronal morphology of the differentiated cells. Furthermore, real-time PCR and immunoflourescence approved the expression of neuron specific markers. P19-GFP + cells were able to survive, migrate and integrated into host tissues when transplanted to developing chick embryo CNS. The obtained live GFP-expressing cells can be used as an abundant source of developmentally pluripotent material for transplantation studies, investigating the cellular and molecular aspects of early differentiation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cold-perfusion decellularization of whole-organ porcine pancreas supports human fetal pancreatic cell attachment and expression of endocrine and exocrine markers

    PubMed Central

    Elebring, Erik; Kuna, Vijay K; Kvarnström, Niclas; Sumitran-Holgersson, Suchitra

    2017-01-01

    Despite progress in the field of decellularization and recellularization, the outcome for pancreas has not been adequate. This might be due to the challenging dual nature of pancreas with both endocrine and exocrine tissues. We aimed to develop a novel and efficient cold-perfusion method for decellularization of porcine pancreas and recellularize acellular scaffolds with human fetal pancreatic stem cells. Decellularization of whole porcine pancreas at 4°C with sodium deoxycholate, Triton X-100 and DNase efficiently removed cellular material, while preserving the extracellular matrix structure. Furthermore, recellularization of acellular pieces with human fetal pancreatic stem cells for 14 days showed attached and proliferating cells. Both endocrine (C-peptide and PDX1) and exocrine (glucagon and α-amylase) markers were expressed in recellularized tissues. Thus, cold-perfusion can successfully decellularize porcine pancreas, which when recellularized with human fetal pancreatic stem cells shows relevant endocrine and exocrine phenotypes. Decellularized pancreas is a promising biomaterial and might translate to clinical relevance for treatment of diabetes. PMID:29118967

  17. The Stem Cell Marker Lgr5 Defines a Subset of Postmitotic Neurons in the Olfactory Bulb.

    PubMed

    Yu, Yiqun; Moberly, Andrew H; Bhattarai, Janardhan P; Duan, Chen; Zheng, Qian; Li, Fangqi; Huang, Hugh; Olson, William; Luo, Wenqin; Wen, Tieqiao; Yu, Hongmeng; Ma, Minghong

    2017-09-27

    Lgr5, leucine-rich repeat-containing G-protein coupled receptor 5, is a bona fide biomarker for stem cells in multiple tissues. Lgr5 is also expressed in the brain, but the identities and properties of these Lgr5 + cells are still elusive. Using an Lgr5-EGFP reporter mouse line, we found that, from early development to adulthood, Lgr5 is highly expressed in the olfactory bulb (OB), an area with ongoing neurogenesis. Immunostaining with stem cell, glial, and neuronal markers reveals that Lgr5 does not label stem cells in the OB but instead labels a heterogeneous population of neurons with preference in certain subtypes. Patch-clamp recordings in OB slices reveal that Lgr5-EGFP + cells fire action potentials and display spontaneous excitatory postsynaptic events, indicating that these neurons are integrated into OB circuits. Interestingly, R-spondin 3, a potential ligand of Lgr5, is also expressed in the adult OB. Collectively, our data indicate that Lgr5-expressing cells in the OB are fully differentiated neurons and imply distinct roles of Lgr5 and its ligand in postmitotic cells. SIGNIFICANCE STATEMENT Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) is a bona fide stem cell marker in many body organs. Here we report that Lgr5 is also highly expressed in the olfactory bulb (OB), the first relay station in the brain for processing odor information and one of the few neural structures that undergo continuous neurogenesis. Surprisingly, Lgr5 is not expressed in the OB stem cells, but instead in a few subtypes of terminally differentiated neurons, which are incorporated into the OB circuit. This study reveals that Lgr5 + cells in the brain represent a nonstem cell lineage, implying distinct roles of Lgr5 in postmitotic neurons. Copyright © 2017 the authors 0270-6474/17/379403-12$15.00/0.

  18. Established breast cancer stem cell markers do not correlate with in vivo tumorigenicity of tumor-initiating cells

    PubMed Central

    LEHMANN, CHRISTIAN; JOBS, GABRIELE; THOMAS, MARKUS; BURTSCHER, HELMUT; KUBBIES, MANFRED

    2012-01-01

    The tumor-initiating capacity of primary human breast cancer cells is maintained in vitro by culturing these cells as spheres/aggregates. Inoculation of small cell numbers derived from these non-adherent cultures leads to rapid xenograft tumor formation in mice. Accordingly, injection of more differentiated monolayer cells derived from spheres results in significantly decelerated tumor growth. For our study, two breast cancer cell lines were generated from primary tumors and cultured as mammospheres or as their adherent counterparts. We examined the in vivo tumorigenicity of these cells by injecting serial dilutions into immunodeficient mice. Inoculation of 106 cells per mouse led to rapid tumor formation, irrespective of cell line or culture conditions. However, after injection of only 103 cells, solely sphere cells were highly tumorigenic. In vitro, we investigated differentiation markers, established breast CSC markers and conducted mRNA profiling. Cytokeratin 5 and 18 were increased in both monolayer cell types, indicating a more differentiated phenotype. All cell lines were CD24−/CD44+ and did not express CD133, CD326 or E-cadherin. ALDH1 activity was not detectable in any cell line. A verapamil-sensitive Hoechst side population was present in sphere cells, but there was no correlation with tumorigenicity in vivo. mRNA profiling did not reveal upregulation of relevant transcription factors. In vitro cell cycle kinetics and in vivo tumor doubling times displayed no difference between sphere and monolayer cultures. Our data indicate that intrinsic genetic and functional markers investigated are not indicative of the in vivo tumori-genicity of putative breast tumor-initiating cells. PMID:23042145

  19. A dual-color marker system for in vivo visualization of cell cycle progression in Arabidopsis.

    PubMed

    Yin, Ke; Ueda, Minako; Takagi, Hitomi; Kajihara, Takehiro; Sugamata Aki, Shiori; Nobusawa, Takashi; Umeda-Hara, Chikage; Umeda, Masaaki

    2014-11-01

    Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M-specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S-phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy-terminal region is responsible for proteasome-mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S-specific promoter of a histone 3.1-type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M-specific CYCB1-GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time-lapse imaging of cell cycle progression. The resultant dual-color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  20. Spatial reconstruction of single-cell gene expression data.

    PubMed

    Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv

    2015-05-01

    Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

  1. CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line.

    PubMed

    Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis

    2016-01-01

    Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133(+), CD133(-) and spheroid cells. Significant differences of the two experimental groups were compared using student's t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133(+) cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Although CD133(+) derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells.

  2. CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line

    PubMed Central

    Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis

    2016-01-01

    Objective Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. Materials and Methods In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133+, CD133- and spheroid cells. Significant differences of the two experimental groups were compared using student’s t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Results Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133+ cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Conclusion Although CD133+ derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells. PMID:27054115

  3. Isolation of hair follicle bulge stem cells from YFP-expressing reporter mice.

    PubMed

    Nakrieko, Kerry-Ann; Irvine, Timothy S; Dagnino, Lina

    2013-01-01

    In this article we provide a method to isolate hair follicle stem cells that have undergone targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26-yellow fluorescent protein (YFP) reporter background, which results in YFP expression in the targeted stem cell population. These cells are isolated and purified by fluorescence-activated cell sorting, using epidermal stem cell-specific markers in conjunction with YFP fluorescence. The purified cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as viability and capacity for directional migration.

  4. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.

    PubMed

    Lee, Sangyeop; Chon, Hyangah; Lee, Jiyoung; Ko, Juhui; Chung, Bong Hyun; Lim, Dong Woo; Choo, Jaebum

    2014-01-15

    We report a surface-enhanced Raman scattering (SERS)-based cellular imaging technique to detect and quantify breast cancer phenotypic markers expressed on cell surfaces. This technique involves the synthesis of SERS nano tags consisting of silica-encapsulated hollow gold nanospheres (SEHGNs) conjugated with specific antibodies. Hollow gold nanospheres (HGNs) enhance SERS signal intensity of individual particles by localizing surface electromagnetic fields through pinholes in the hollow particle structures. This capacity to enhance imaging at the level of single molecules permits the use of HGNs to detect specific biological markers expressed in living cancer cells. In addition, silica encapsulation greatly enhances the stability of nanoparticles. Here we applied a SERS-based imaging technique using SEHGNs in the multiplex imaging of three breast cancer cell phenotypes. Expression of epidermal growth factor (EGF), ErbB2, and insulin-like growth factor-1 (IGF-1) receptors were assessed in the MDA-MB-468, KPL4 and SK-BR-3 human breast cancer cell lines. SERS imaging technology described here can be used to test the phenotype of a cancer cell and quantify proteins expressed on the cell surface simultaneously. Based on results, this technique may enable an earlier diagnosis of breast cancer than is currently possible and offer guidance in treatment. © 2013 Elsevier B.V. All rights reserved.

  5. Transplanted Dental Pulp Stem Cells Migrate to Injured Area and Express Neural Markers in a Rat Model of Cerebral Ischemia.

    PubMed

    Zhang, Xuemei; Zhou, Yinglian; Li, Hulun; Wang, Rui; Yang, Dan; Li, Bing; Cao, Xiaofang; Fu, Jin

    2018-01-01

    Ischemic stroke is a major cause of disability and mortality worldwide, while effective restorative treatments are limited at present. Stem cell transplantation holds therapeutic potential for ischemic vascular diseases and may provide an opportunity for neural regeneration. Dental pulp stem cells (DPSCs) origin from neural crest and have neuro-ectodermal features including proliferation and multilineage differentiation potentials. The rat model of middle cerebral artery occlusion (MCAO) was used to evaluate whether intravenous administration of DPSCs can reduce infarct size and to estimate the migration and trans-differentiation into neuron-like cells in focal cerebral ischemia models. Brain tissues were collected at 4 weeks following cell transplantation and analyzed with immunofluorescence, immunohistochemistry and real-time polymerase chain reaction (RT-PCR) methods. Intravenously administration of rat-derived DPSCs were found to migrate into the boundary of ischemic areas and expressed neural specific markers, reducing infarct volume and cerebral edema. These results suggest that DPSCs treatment may serve as a potential therapy for clinical stroke patients in the future. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Expression of GFP under the control of the RNA helicase VASA permits fluorescence-activated cell sorting isolation of human primordial germ cells.

    PubMed

    Tilgner, Katarzyna; Atkinson, Stuart P; Yung, Sun; Golebiewska, Anna; Stojkovic, Miodrag; Moreno, Ruben; Lako, Majlinda; Armstrong, Lyle

    2010-01-01

    The isolation of significant numbers of human primordial germ cells at several developmental stages is important for investigations of the mechanisms by which they are able to undergo epigenetic reprogramming. Only small numbers of these cells can be obtained from embryos of appropriate developmental stages, so the differentiation of human embryonic stem cells is essential to obtain sufficient numbers of primordial germ cells to permit epigenetic examination. Despite progress in the enrichment of human primordial germ cells using fluorescence-activated cell sorting (FACS), there is still no definitive marker of the germ cell phenotype. Expression of the widely conserved RNA helicase VASA is restricted to germline cells, but in contrast to species such as Mus musculus in which reporter constructs expressing green fluorescent protein (GFP) under the control of a Vasa promoter have been developed, such reporter systems are lacking in human in vitro models. We report here the generation and characterization of human embryonic stem cell lines stably carrying a VASA-pEGFP-1 reporter construct that expresses GFP in a population of differentiating human embryonic stem cells that show expression of characteristic markers of primordial germ cells. This population shows a different pattern of chromatin modifications to those obtained by FACS enrichment of Stage Specific Antigen one expressing cells in our previous publication.

  7. Immunohistochemical and Image Analysis-Based Study Shows That Several Immune Checkpoints are Co-expressed in Non-Small Cell Lung Carcinoma Tumors.

    PubMed

    Parra, Edwin Roger; Villalobos, Pamela; Zhang, Jiexin; Behrens, Carmen; Mino, Barbara; Swisher, Stephen; Sepesi, Boris; Weissferdt, Annika; Kalhor, Neda; Heymach, John Victor; Moran, Cesar; Zhang, Jianjun; Lee, Jack; Rodriguez-Canales, Jaime; Gibbons, Don; Wistuba, Ignacio I

    2018-06-01

    The understanding of immune checkpoint molecules' co-expression in non-small cell lung carcinoma (NCLC) is important to potentially design combinatorial immunotherapy approaches. We studied 225 formalin-fixed, paraffin-embedded tumor tissues from stage I-III NCLCs - 142 adenocarcinomas (ADCs) and 83 squamous cell carcinomas (SCCs) - placed in tissue microarrays. Nine immune checkpoint markers were evaluated; four (programmed death ligand 1 [PD-L1], B7-H3, B7-H4, and indoleamine 2,3-dioxygenase 1 [IDO-1]) expressed predominantly in malignant cells (MCs) and five (inducible T cell costimulator, V-set immunoregulatory receptor, T-cell immunoglobulin mucin family member 3, lymphocyte activating 3, and OX40) expressed mostly in stromal tumor-associated inflammatory cells (TAICs). All markers were examined using a quantitative image analysis and correlated with clinicopathologic features, TAICs, and molecular characteristics. Using above the median value as positive expression in MCs and high density of TAICs expressing those markers, we identified higher expression of immune checkpoints in SCC than ADC. Common simultaneous expression by MCs was PD-L1 + B7-H3 + IDO-1 in ADC and PD-L1 + B7-H3, or B7-H3 + B7-H4, in SCC. TAICs expressing checkpoint were significantly higher in current smokers than in never smokers. Almost all the immune checkpoint markers showed positive correlation with TAICs expressing inflammatory cell markers. KRAS-mutant ADC specimens showed higher expression of PD-L1 in MCs and of B7-H3, T-cell immunoglobulin mucin family member 3, and IDO-1 in TAICs than wild type. Kaplan-Meier survival curves showed worse prognosis in ADC patients with higher B7-H4 expression by MCs. We found frequent immunohistochemical co-expression of immune checkpoints in surgically resected NCLC tumors and correlated with tumor histology, smoking history, tumor size, and the density of inflammatory cells and tumor mutational status. Copyright © 2018 International

  8. [Elevated expression of B7-H6 in U87 cells-derived glioma stem like cells is associated with biological characteristics].

    PubMed

    Chen, Hanqing; Shi, Zhengpeng; Gao, Bing; Fu, Fengqing; Zhang, Xueguang

    2016-09-01

    Objective To investigate the expression and biological significance of costimulatory molecule B7-H6, a member of B7 family, in glioma stem like cells (GSLCs). Methods In virtue of the ability of forming neurospheres in vitro , GSLCs were isolated from U87 cells by cell sub-cloning. Real-time quantitative PCR and flow cytometry were performed to detect the expressions of stem cell related markers (c-myc, Sox2, CD133, nestin, and CXCR4), as well as the expressions of B7 family molecules. The different doses of adriamycin, carboplatin, cisplatin, were used to treat GSLCs for testing their chemotherapy-resistance. After the expression of B7-H6 in GSLCs was knockdown by siRNA, CCK-8 method was used to detect cell proliferation. Results GSLCs were successfully isolated from U87 cells, which formed neurospheres in vitro . The expressions of multiple stem cell markers were up-regulated and the GSLCs showed enhanced chemo therapy-resistance. B7 family members, B7-H1, B7-H3, B7-H4 and B7-H6 were expressed in GSLCs. Compared with primary U87 cells, GSLCs presented with a remarkably increased expression of B7-H6 on cell membrane. When B7-H6 was silenced by siRNA, cell proliferation was inhibited along with the decrease of c-myc expression. Conclusion The expression of B7-H6 is up-regulated in U87-derived GSLCs, which is associated with the biological characteristics of GSLCs.

  9. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells

    PubMed Central

    Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.

    2013-01-01

    Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486

  10. Breast Stem Cell Markers and Tumor Stem Cells in BRCA1, BRCA2 and Non-BRCA 1/2 Women

    DTIC Science & Technology

    2006-08-01

    gene mutation often exhibit a basal phenotype that may reflect their origin in the breast stem cell . We therefore hypothesized that the breast stem ...expression of putative stem cell markers and investigated means to derive short-term in vitro cultures. Our preliminary findings indicate that it is... cell pool is aberrant in breast tissue of BRCA1 (or BRCA2)carriers versus noncarriers and that it becomes progressively and distinctively expanded in

  11. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blazek, Ed R.; Foutch, Jennifer L.; Maki, Guitta

    2007-01-01

    Purpose: Primary medulloblastoma and glioblastoma multiforme tumor cells that express the surface marker CD133 are believed to be enriched for brain tumor stem cells because of their unique ability to initiate or reconstitute tumors in immunodeficient mice. This study sought to characterize the radiobiological properties and marker expression changes of CD133+ vs. CD133- cells of an established medulloblastoma cell line. Methods and Materials: Daoy and D283 Med cell lines were stained with fluorescently labeled anti-CD133 antibody and sorted into CD133+ and CD133- populations. The effect of oxygen (2% vs. 20%) on CD133 expression was measured. Both populations were analyzed formore » marker stability, cell cycle distribution, and radiosensitivity. Results: CD133+ Daoy cells restored nearly native CD133+ and CD133- populations within 18 days, whereas CD133- cells remained overwhelmingly CD133-. Culturing Daoy cells in 2% oxygen rather than the standard 20% oxygen increased their CD133 expression 1.6-fold. CD133+ Daoy cells were radioresistant via the {beta}-parameter of the linear-quadratic model relative to CD133- Daoy cells, although their {alpha}-parameters and cell cycle distributions were identical. Conclusions: Restoration of the original CD133+ and CD133- populations from CD133+ Daoy cells in serum is further evidence that CD133+ cells are functionally distinct from CD133- cells. The radioresistance of CD133+ compared with CD133- Daoy cells is consistent with better repair of sublethal damage. Enlargement of the CD133+ sector is a new feature of the hypoxic response.« less

  12. Label-free detection of surface markers on stem cells by oblique-incidence reflectivity difference microscopy

    PubMed Central

    Lo, Kai-Yin; Sun, Yung-Shin; Landry, James P.; Zhu, Xiangdong; Deng, Wenbin

    2012-01-01

    Conventional fluorescent microscopy is routinely used to detect cell surface markers through fluorophore-conjugated antibodies. However, fluorophore-conjugation of antibodies alters binding properties such as strength and specificity of the antibody in ways often uncharacterized. The binding between antibody and antigen might not be in the native situation after such conjugation. Here, we present an oblique-incidence reflectivity difference (OI-RD) microscope as an effective method for label-free, real-time detection of cell surface markers and apply such a technique to analysis of Stage-Specific Embryonic Antigen 1 (SSEA1) on stem cells. Mouse stem cells express SSEA1 on their surfaces and the level of SSEA1 decreases when the cells start to differentiate. In this study, we immobilized mouse stem cells and non-stem cells (control) on a glass surface as a microarray and reacted the cell microarray with unlabeled SSEA1 antibodies. By monitoring the reaction with an OI-RD microscope in real time, we confirmed that the SSEA1 antibodies only bind to the surface of the stem cells while not to the surface of non-stem cells. From the binding curves, we determined the equilibrium dissociation constant (Kd) of the antibody with the SSEA1 markers on the stem cell surface. The results concluded that OI-RD microscope can be used to detect binding affinities between cell surface markers and unlabeled antibodies bound to the cells. The information could be another indicator to determine the cell stages. PMID:21781038

  13. Characterization of a Unique Cell Population Marked by Transgene Expression in the Adult Cochlea of Nestin-CreERT2/tdTomato-Reporter Mice

    PubMed Central

    Chow, Cynthia L.; Guo, Weixiang; Trivedi, Parul; Zhao, Xinyu; Gubbels, Samuel P.

    2015-01-01

    Hair cells in the adult mammalian cochlea cannot spontaneously regenerate after damage resulting in the permanency of hearing loss. Stem cells have been found to be present in the cochlea of young rodents; however, there has been little evidence for their existence into adulthood. We used nestin-CreERT2/tdTomato-reporter mice to trace the lineage of putative nestin-expressing cells and their progeny in the cochleae of adult mice. Nestin, an intermediate filament found in neural progenitor cells during early development and adulthood, is regarded as a multi-potent and neural stem cell marker. Other investigators have reported its presence in postnatal and young adult rodents; however, there are discrepancies amongst these reports. Using lineage tracing, we documented a robust population of tdTomato-expressing cells and evaluated these cells at a series of adult time points. Upon activation of the nestin promoter, tdTomato was observed just below and medial to the inner hair cell layer. All cells co-localized with the stem cell and cochlear-supporting-cell marker Sox2 as well as the supporting cell and Schwann cell marker Sox10; however, they did not co-localize with the Schwann cell marker Krox20, spiral ganglion marker NF200, or GFAP-expressing supporting cell marker. The cellular identity of this unique population of tdTomato-expressing cells in the adult cochlea of nestin-CreERT2/tdTomato mice remains unclear however these cells may represent a type of supporting cell on the neural aspect of the inner hair cell layer. PMID:25611038

  14. EMMPRIN (CD147) is induced by C/EBPβ and is differentially expressed in ALK+ and ALK- anaplastic large-cell lymphoma.

    PubMed

    Schmidt, Janine; Bonzheim, Irina; Steinhilber, Julia; Montes-Mojarro, Ivonne A; Ortiz-Hidalgo, Carlos; Klapper, Wolfram; Fend, Falko; Quintanilla-Martínez, Leticia

    2017-09-01

    Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is characterized by expression of oncogenic ALK fusion proteins due to the translocation t(2;5)(p23;q35) or variants. Although genotypically a T-cell lymphoma, ALK+ ALCL cells frequently show loss of T-cell-specific surface antigens and expression of monocytic markers. C/EBPβ, a transcription factor constitutively overexpressed in ALK+ ALCL cells, has been shown to play an important role in the activation and differentiation of macrophages and is furthermore capable of transdifferentiating B-cell and T-cell progenitors to macrophages in vitro. To analyze the role of C/EBPβ for the unusual phenotype of ALK+ ALCL cells, C/EBPβ was knocked down by RNA interference in two ALK+ ALCL cell lines, and surface antigen expression profiles of these cell lines were generated using a Human Cell Surface Marker Screening Panel (BD Biosciences). Interesting candidate antigens were further analyzed by immunohistochemistry in primary ALCL ALK+ and ALK- cases. Antigen expression profiling revealed marked changes in the expression of the activation markers CD25, CD30, CD98, CD147, and CD227 after C/EBPβ knockdown. Immunohistochemical analysis confirmed a strong, membranous CD147 (EMMPRIN) expression in ALK+ ALCL cases. In contrast, ALK- ALCL cases showed a weaker CD147 expression. CD274 or PD-L1, an immune inhibitory receptor ligand, was downregulated after C/EBPβ knockdown. PD-L1 also showed stronger expression in ALK+ ALCL compared with ALK- ALCL, suggesting an additional role of C/EBPβ in ALK+ ALCL in generating an immunosuppressive environment. Finally, no expression changes of T-cell or monocytic markers were detected. In conclusion, surface antigen expression profiling demonstrates that C/EBPβ plays a critical role in the activation state of ALK+ ALCL cells and reveals CD147 and PD-L1 as important downstream targets. The multiple roles of CD147 in migration, adhesion, and invasion, as well as

  15. Spatial reconstruction of single-cell gene expression

    PubMed Central

    Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv

    2015-01-01

    Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923

  16. Lipopolysaccharide inhibits the self-renewal of spermatogonial stem cells in vitro via downregulation of GDNF expression in Sertoli cells.

    PubMed

    Zhang, Xiaoli; Shi, Kun; Li, Yi; Zhang, Haiyu; Hao, Jing

    2014-06-01

    Lipopolysaccharide (LPS) can reduce sperm count and sperm quality. The molecular mechanisms underlying this process are not fully understood. In this report, we investigated the effects of LPS-treated Sertoli cells on self-renewal and differentiation of spermatogoinial stem cells (SSCs). Sertoli cell cultures were established and incubated with LPS (10μg/ml) for 1, 2 or 3 days, respectively. The culture media were collected and used as conditioned media (CM) to culture SSCs. The expression of glial cell-derived neurotrophic factor (GDNF), stem cell factor (SCF) and bone morphogenetic protein 4 (BMP4) in Sertoli cells treated with LPS was analyzed by RT-PCR and Western blotting. The results showed that the expression of SSC differentiation markers, c-kit and Sohlh2, was increased, while the expression of SSC self-renewal markers, plzf, oct4, and PCNA, was repressed when cultured in CM from LPS-treated Sertoli cells. GDNF levels in Sertoli cells and CM reduced dramatically after LPS treatments, while SCF and BMP4 levels did not show any significant changes. Moreover, correlated with the GDNF levels in CM, GDNF target genes, Bcl6b and Etv5, were reduced markedly in SSCs. Our results suggest that LPS inhibits the expression of GDNF in Sertoli cells, and might prevent the SSC self-renewal via down-regulation of GDNF target genes. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish.

    PubMed

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Acidic conditions induce the suppression of CD86 and CD54 expression in THP-1 cells.

    PubMed

    Mitachi, Takafumi; Mezaki, Minori; Yamashita, Kunihiko; Itagaki, Hiroshi

    2018-01-01

    To evaluate the sensitization potential of chemicals in cosmetics, using non-animal methods, a number of in vitro safety tests have been designed. Current assays are based on the expression of cell surface markers, such as CD86 and CD54, which are associated with the activation of dendritic cells, in skin sensitization tests. However, these markers are influenced by culture conditions through activating danger signals. In this study, we investigated the relationship between extracellular pH and the expression of the skin sensitization test human cell line activation test (h-CLAT) markers CD86 and CD54. We measured expression levels after THP-1 cells were exposed to representative contact allergens, i.e., 2,4-dinitrochlorobenzene and imidazolidinyl urea, under acidic conditions. These conditions were set by exposure to hydrochloric acid, lactic acid, and citric acid. An acidic extracellular pH (6-7) suppressed the augmentation of CD86 and CD54 levels by the sensitizer. Additionally, when the CD86/CD54 expression levels were suppressed, a reduction in the intracellular pH was confirmed. Furthermore, we observed that Na + /H + exchanger 1 (NHE-1), a protein that contributes to the regulation of extracellular/intracellular pH, is involved in CD86 and CD54 expression. These findings suggest that the extracellular/intracellular pH has substantial effects on in vitro skin sensitization markers and should be considered in evaluations of the safety of mixtures and commercial products in the future.

  19. Enhanced endothelial cell senescence by lithium-induced matrix metalloproteinase-1 expression.

    PubMed

    Struewing, Ian T; Durham, Samuel N; Barnett, Corey D; Mao, Catherine D

    2009-06-26

    Endothelial cell (EC) senescence and dysfunction occurring after chronic injury and inflammation are highly associated with the development and progression of cardiovascular diseases. However, the factors involved in the establishment of EC senescence remain poorly understood. We have previously shown that lithium, an inhibitor of glycogen synthase kinase (GSK)-3beta and activator of the Wnt/beta-catenin signaling pathway, induces an EC senescent-like phenotype. Herein, we show that lithium induces a rapid and pronounced up-regulation of the matrix metalloproteinase (MMP)-1, an inflammation and senescent cell marker, at the mRNA and protein levels, whereas the induction of two other senescent cell markers is either weak (interleukin-8) or delayed (plasminogen activator inhibitor-1). Lithium effect on MMP-1 expression is also specific among other MMPs and not mediated by GSK3beta inhibition. Lithium affects MMP-1 expression mainly at the transcriptional level but neither the AP1/Ets regulatory sites nor the redox sensitive (-1607/2G) site in MMP-1 promoter are involved in lithium-dependent MMP-1 regulation. However, down-regulation of p53, a target of lithium in EC, dampens both basal and lithium-induced MMP-1 expression, which further links MMP-1 up-regulation with the establishment of cell senescence. Although increased MMP-1 levels are usually associated with angiogenesis in enabled proliferative EC, the exogenous addition of activated MMP-1 on lithium- arrested EC increases the number of EC positive for the senescent-associated-beta-galactosidase marker. Conversely, down-regulation of MMP-1 expression by small interfering RNAs blunts the lithium-dependent increase in senescent-associated-beta-galactosidase positive cells. Altogether our data indicate that lithium-induced MMP-1 may participate in the reinforcement of EC senescence and reveal a novel mechanism for lithium-induced tissue remodeling.

  20. Altered Expression of Retinal Molecular Markers in the Canine RPE65 Model of Leber Congenital Amaurosis

    PubMed Central

    Hernández, Maria; Pearce-Kelling, Susan E.; Rodriguez, F. David; Aguirre, Gustavo D.; Vecino, Elena

    2010-01-01

    Purpose. Leber congenital amaurosis (LCA) is a group of childhood-onset retinal diseases characterized by severe visual impairment or blindness. One form is caused by mutations in the RPE65 gene, which encodes the retinal pigment epithelium (RPE) isomerase. In this study, the retinal structure and expression of molecular markers for different retinal cell types were characterized, and differences between control and RPE65 mutant dogs during the temporal evolution of the disease were analyzed. Methods. Retinas from normal and mutant dogs of different ages were examined by immunofluorescence with a panel of 16 different antibodies. Results. Cones and rods were preserved in the mutant retinas, and the number of cones was normal. However, there was altered expression of cone arrestin and delocalization of rod opsin. The ON bipolar cells showed sprouting of the dendritic arbors toward the outer nuclear layer (ONL) and retraction of their axons in the inner nuclear layer (INL). A decreased expression of GABA, and an increased expression of intermediate filament glial markers was also found in the mutant retinas. These changes were more evident in the adult than the young mutant retinas. Conclusions. The structure of the retina is well preserved in the mutant retina, but several molecular changes take place in photoreceptors and in bipolar and amacrine cells. Some of these changes are structural, whereas others reflect a change in localization of the examined proteins. This study provides new information that can be applied to the interpretation of outcomes of retinal gene therapy in animal models and humans. PMID:20671290

  1. Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration.

    PubMed

    Suresh, Shruthy; Raghu, Dinesh; Karunagaran, Devarajan

    2013-01-01

    Oral cancer is one of the most commonly occurring cancers worldwide, decreasing the patient's survival rate due to tumor recurrence and metastasis. Menadione (Vitamin K3) is known to exhibit cytotoxicity in various cancer cells but the present study focused on its effects on viability, apoptosis, epithelial to mesenchymal transition (EMT), anchorage independent growth and migration of oral cancer cells. The results show that menadione is more cytotoxic to SAS (oral squamous carcinoma) cells but not to non-tumorigenic HEK293 and HaCaT cells. Menadione treatment increased the expression of pro-apoptotic proteins, Bax and p53, with a concurrent decrease in anti-apoptotic proteins, Bcl-2 and p65. Menadione induced the expression of E-cadherin but reduced the expression of EMT markers, vimentin and fibronectin. Menadione also inhibited anchorage independent growth and migration in SAS cells. These findings reveal and confirm that menadione is a potential candidate in oral cancer therapy as it exhibits cytotoxic, antineoplastic and antimigratory effects besides effectively blocking EMT in oral cancer cells.

  2. Identification of immunohistochemical markers for distinguishing lung adenocarcinoma from squamous cell carcinoma

    PubMed Central

    Zhan, Cheng; Yan, Li; Wang, Lin; Sun, Yang; Wang, Xingxing; Lin, Zongwu; Zhang, Yongxing; Wang, Qun

    2015-01-01

    Background Immunohistochemical staining has been widely used in distinguishing lung adenocarcinoma (LUAD) from lung squamous cell carcinoma (LUSC), which is of vital importance for the diagnosis and treatment of lung cancer. Due to the lack of a comprehensive analysis of different lung cancer subtypes, there may still be undiscovered markers with higher diagnostic accuracy. Methods Herein first, we systematically analyzed high-throughput data obtained from The Cancer Genome Atlas (TCGA) database. Combining differently expressed gene screening and receiver operating characteristic (ROC) curve analysis, we attempted to identify the genes which might be suitable as immunohistochemical markers in distinguishing LUAD from LUSC. Then we detected the expression of six of these genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) in lung cancer sections using immunohistochemical staining. Results A number of genes were identified as candidate immunohistochemical markers with high sensitivity and specificity in distinguishing LUAD from LUSC. Then the staining results confirmed the potentials of the six genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) in distinguishing LUAD from LUSC, and their sensitivity and specificity were not less than many commonly used markers. Conclusions The results revealed that the six genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) might be suitable markers in distinguishing LUAD from LUSC, and also validated the feasibility of our methods for identification of candidate markers from high-throughput data. PMID:26380766

  3. Progenitor potential of nkx6.1-expressing cells throughout zebrafish life and during beta cell regeneration.

    PubMed

    Ghaye, Aurélie P; Bergemann, David; Tarifeño-Saldivia, Estefania; Flasse, Lydie C; Von Berg, Virginie; Peers, Bernard; Voz, Marianne L; Manfroid, Isabelle

    2015-09-02

    In contrast to mammals, the zebrafish has the remarkable capacity to regenerate its pancreatic beta cells very efficiently. Understanding the mechanisms of regeneration in the zebrafish and the differences with mammals will be fundamental to discovering molecules able to stimulate the regeneration process in mammals. To identify the pancreatic cells able to give rise to new beta cells in the zebrafish, we generated new transgenic lines allowing the tracing of multipotent pancreatic progenitors and endocrine precursors. Using novel bacterial artificial chromosome transgenic nkx6.1 and ascl1b reporter lines, we established that nkx6.1-positive cells give rise to all the pancreatic cell types and ascl1b-positive cells give rise to all the endocrine cell types in the zebrafish embryo. These two genes are initially co-expressed in the pancreatic primordium and their domains segregate, not as a result of mutual repression, but through the opposite effects of Notch signaling, maintaining nkx6.1 expression while repressing ascl1b in progenitors. In the adult zebrafish, nkx6.1 expression persists exclusively in the ductal tree at the tip of which its expression coincides with Notch active signaling in centroacinar/terminal end duct cells. Tracing these cells reveals that they are able to differentiate into other ductal cells and into insulin-expressing cells in normal (non-diabetic) animals. This capacity of ductal cells to generate endocrine cells is supported by the detection of ascl1b in the nkx6.1:GFP ductal cell transcriptome. This transcriptome also reveals, besides actors of the Notch and Wnt pathways, several novel markers such as id2a. Finally, we show that beta cell ablation in the adult zebrafish triggers proliferation of ductal cells and their differentiation into insulin-expressing cells. We have shown that, in the zebrafish embryo, nkx6.1+ cells are bona fide multipotent pancreatic progenitors, while ascl1b+ cells represent committed endocrine precursors. In

  4. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells

    PubMed Central

    Peters, Derek T.; Henderson, Christopher A.; Warren, Curtis R.; Friesen, Max; Xia, Fang; Becker, Caroline E.; Musunuru, Kiran; Cowan, Chad A.

    2016-01-01

    ABSTRACT Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. PMID:27143754

  5. Effects of fish and krill oil on gene expression in peripheral blood mononuclear cells and circulating markers of inflammation: a randomised controlled trial.

    PubMed

    Rundblad, Amanda; Holven, Kirsten B; Bruheim, Inge; Myhrstad, Mari C; Ulven, Stine M

    2018-01-01

    Marine n -3 (omega-3) fatty acids alter gene expression by regulating the activity of transcription factors. Krill oil is a source of marine n -3 fatty acids that has been shown to modulate gene expression in animal studies; however, the effect in humans is not known. Hence, we aimed to compare the effect of intake of krill oil, lean and fatty fish with a similar content of n -3 fatty acids, and high-oleic sunflower oil (HOSO) with added astaxanthin on the expression of genes involved in glucose and lipid metabolism and inflammation in peripheral blood mononuclear cells (PBMC) as well as circulating inflammatory markers. In an 8-week trial, healthy men and women aged 18-70 years with fasting TAG of 1·3-4·0 mmol/l were randomised to receive krill oil capsules ( n 12), HOSO capsules ( n 12) or lean and fatty fish ( n 12). The weekly intakes of marine n -3 fatty acids from the interventions were 4654, 0 and 4103 mg, respectively. The mRNA expression of four genes, PPAR γ coactivator 1A ( PPARGC1A ), steaoryl-CoA desaturase ( SCD ), ATP binding cassette A1 ( ABCA1 ) and cluster of differentiation 40 ( CD40 ), were differently altered by the interventions. Furthermore, within-group analyses revealed that krill oil down-regulated the mRNA expression of thirteen genes, including genes involved in glucose and cholesterol metabolism and β-oxidation. Fish altered the mRNA expression of four genes and HOSO down-regulated sixteen genes, including several inflammation-related genes. There were no differences between the groups in circulating inflammatory markers after the intervention. In conclusion, the intake of krill oil and HOSO with added astaxanthin alter the PBMC mRNA expression of more genes than the intake of fish.

  6. Wnt Responsive Lgr5-Expressing Stem Cells Are Hair Cell Progenitors in the Cochlea

    PubMed Central

    Shi, Fuxin; Kempfle, Judith; Edge, Albert S. B.

    2012-01-01

    Auditory hair cells are surrounded on their basolateral aspects by supporting cells, and these two cell types together constitute the sensory epithelium of the organ of Corti, which is the hearing apparatus of the ear. We show here that Lgr5, a marker for adult stem cells, was expressed in a subset of supporting cells in the newborn and adult murine cochlea. Lgr5-expressing supporting cells, sorted by flow cytometry and cultured in a single cell suspension, as compared to unsorted cells, displayed an enhanced capacity for self-renewing neurosphere formation in response to Wnt and were converted to hair cells at a higher (>10-fold) rate. The greater differentiation of hair cell in the neurosphere assay showed that Lgr5-positive cells had the capacity to act as cochlear progenitor cells, and lineage tracing confirmed that Lgr5-expressing cells accounted for the cells that formed neurospheres and differentiated to hair cells. The responsiveness to Wnt of cells with a capacity for division and sensory cell formation suggests a potential route to new hair cell generation in the adult cochlea. PMID:22787049

  7. Smad2/3 Linker Phosphorylation Is a Possible Marker of Pancreatic Stem/Progenitor Cells in the Regenerative Phase of Acute Pancreatitis.

    PubMed

    Sakao, Masayuki; Sakaguchi, Yutaku; Suzuki, Ryo; Takahashi, Yu; Kishimoto, Masanobu; Fukui, Toshiro; Uchida, Kazushige; Nishio, Akiyoshi; Matsuzaki, Koichi; Okazaki, Kazuichi

    The aims of this study are to characterize cell proliferation and differentiation during regeneration after pancreatitis and pancreatic buds during development to evaluate the role of Smad2/3, phosphorylated at the specific linker threonine residues (pSmad2/3L-Thr) in positive cells. Male C57BL/6 mice received hourly intraperitoneal injections of cerulein and were analyzed after induced pancreatitis. Pancreatitis-affected tissue sections and pancreatic buds were immunostained for pSmad2/3L-Thr, with other markers thought to be stem/progenitor markers of the pancreas. pSmad2/3L-Thr immunostaining-positive cells increased as the pancreatitis progressed. The expression of pSmad2/3L-Thr was seen in acinar cells and ductlike tubular complexes. These results suggest that pSmad2/3L-Thr is expressed during acinar-ductal metaplasia. Immunohistochemical colocalization of pSmad2/3L-Thr with Ki67 was never observed. pSmad2/3L-Thr-positive cells may remain in an undifferentiated state. During the pancreatic development process, pSmad2/3L-Thr was expressed as other markers. pSmad2/3L-Thr develops in duct structure of the undifferentiated cell population in the last part of viviparity that acinar structure is formed clearly. pSmad2/3L-Thr expression occurs during acinar-ductal metaplasia after pancreatitis and may represent the contribution of stem cells and/or progenitor cells to the differentiation of the pancreas.

  8. Bone Marrow Cells Expressing Clara Cell Secretory Protein Increase Epithelial Repair After Ablation of Pulmonary Clara Cells

    PubMed Central

    Bustos, Martha L; Mura, Marco; Marcus, Paula; Hwang, David; Ludkovski, Olga; Wong, Amy P; Waddell, Thomas K

    2013-01-01

    We have previously reported a subpopulation of bone marrow cells (BMC) that express Clara cell secretory protein (CCSP), generally felt to be specific to lung Clara cells. Ablation of lung Clara cells has been reported using a transgenic mouse that expresses thymidine kinase under control of the CCSP promoter. Treatment with ganciclovir results in permanent elimination of CCSP+ cells, failure of airway regeneration, and death. To determine if transtracheal delivery of wild-type bone marrow CCSP+ cells is beneficial after ablation of lung CCSP+ cells, transgenic mice were treated with ganciclovir followed by transtracheal administration of CCSP+ or CCSP− BMC. Compared with mice administered CCSP− cells, mice treated with CCSP+ cells had more donor cells lining the airway epithelium, where they expressed epithelial markers including CCSP. Although donor CCSP+ cells did not substantially repopulate the airway, their administration resulted in increased host ciliated cells, better preservation of airway epithelium, reduction of inflammatory cells, and an increase in animal survival time. Administration of CCSP+ BMC is beneficial after permanent ablation of lung Clara cells by increasing bronchial epithelial repair. Therefore, CCSP+ BMC could be important for treatment of lung diseases where airways re-epithelialization is compromised. PMID:23609017

  9. Proliferation marker pKi-67 affects the cell cycle in a self-regulated manner.

    PubMed

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Duchrow, Michael

    2002-01-01

    The proliferation marker pKi-67 is commonly used in research and pathology to detect proliferating cells. In a previous work, we found the protein to be associated with regulators of the cell cycle, controlling S-phase progression, as well as entry into and exit from mitosis. Here we investigate whether pKi-67 has a regulative effect on the cell cycle itself. For that purpose we cloned four fragments of pKi-67, together representing nearly the whole protein, and an N-terminal pKi-67 antisense oligonucleotide into a tetracycline inducible gene expression system. The sense fragments were C-terminally modified by addition of either a nuclear localization sequence (NLS) or a STOP codon to address the impact of their intracellular distribution. FACS based cell cycle analysis revealed that expression of nearly all pKi-67 domains and the antisense oligonucleotide led to a decreased amount of cells in S-phase and an increased number of cells in G(2)/M- and G(1)-phase. Subsequent analysis of the endogenous pKi-67 mRNA and protein levels revealed that the constructs with the most significant impact on the cell cycle were able to silence pKi-67 transcription as well. We conclude from the data that pKi-67 influences progression of S-phase and mitosis in a self-regulated manner and, therefore, effects the cell cycle checkpoints within both phases. Furthermore, we found pKi-67 mediates an anti-apoptotic effect on the cell and we verified that this marker, although it is a potential ribosomal catalyst, is not expressed in differentiated tissues with a high transcriptional activity. Copyright 2002 Wiley-Liss, Inc.

  10. mRNA Expression Profiling of Laser Microbeam Microdissected Cells from Slender Embryonic Structures

    PubMed Central

    Scheidl, Stefan J.; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per

    2002-01-01

    Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-β1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions. PMID:11891179

  11. mRNA expression profiling of laser microbeam microdissected cells from slender embryonic structures.

    PubMed

    Scheidl, Stefan J; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per

    2002-03-01

    Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-beta1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions.

  12. The species origin of the cellular microenvironment influences markers of beta cell fate and function in EndoC-βH1 cells.

    PubMed

    Jeffery, N; Richardson, S; Beall, C; Harries, L W

    2017-12-15

    Interaction between islet cell subtypes and the extracellular matrix influences beta-cell function in mammals. The tissue architecture of rodent islets is very different to that of human islets; cell-to-cell communication and interaction with the extracellular matrix may vary between species. In this work, we have compared the responses of the human EndoC-βH1 cell line to non-human and human-derived growth matrices in terms of growth morphology, gene expression and glucose-stimulated insulin secretion (GSIS). EndoC-βH1 cells demonstrated a greater tendency to form cell clusters when cultured in a human microenvironment and exhibited reduced alpha cell markers at the mRNA level; mean expression difference - 0.23 and - 0.51; p = 0.009 and 0.002 for the Aristaless-related homeobox (ARX) and Glucagon (GCG) genes respectively. No differences were noted in the protein expression of mature beta cell markers such as Pdx1 and NeuroD1 were noted in EndoC-βH1 cells grown in a human microenvironment but cells were however more sensitive to glucose (4.3-fold increase in insulin secretion following glucose challenge compared with a 1.9-fold increase in cells grown in a non-human microenvironment; p = 0.0003). Our data suggests that the tissue origin of the cellular microenvironment has effects on the function of EndoC-βH1 cells in vitro, and the use of a more human-like culture microenvironment may bring benefits in terms of increased physiological relevance. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells

    PubMed Central

    Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design. PMID:27812180

  14. Higher Expression of miR-182 in Cytology Specimens of High-Grade Urothelial Cell Carcinoma: A Potential Diagnostic Marker.

    PubMed

    Wei, Shuanzeng; Bing, Zhanyong; Yao, Yuan; Master, Stephen R; Gupta, Prabodh

    2015-01-01

    MicroRNAs (miRs) are short noncoding RNA molecules that posttranscriptionally modulate protein expression. There are distinct miR alterations characterizing urothelial cell carcinoma (UCC) of the urinary bladder. In this study, we investigate the possibility of using miR as a noninvasive marker in the screening of UCC. The total RNA was extracted from 75 cytology specimens including bladder or renal washings and voided urines. Cases comprise UCC (21 high grade and 6 low grade), 25 normal controls and 23 cases with a history of UCC but negative at the time of testing (negative with a positive history). The expressions of miR-96, miR-182, miR-183, miR-200c, miR-21, miR-141 and miR-30b were determined using quantitative TaqMan real-time PCR. This study shows that the level of miR-182 is higher in cytology specimens from high-grade UCC patients as compared to normal controls. Measuring miR-182 may provide a potential alternative or adjunct approach for screening high-grade UCC. © 2015 S. Karger AG, Basel.

  15. NKX2-1 expression as a prognostic marker in early-stage non-small-cell lung cancer.

    PubMed

    Moisés, Jorge; Navarro, Alfons; Santasusagna, Sandra; Viñolas, Nuria; Molins, Laureano; Ramirez, José; Osorio, Jeisson; Saco, Adela; Castellano, Joan Josep; Muñoz, Carmen; Morales, Sara; Monzó, Mariano; Marrades, Ramón María

    2017-12-13

    NKX2-1, a key molecule in lung development, is highly expressed in non-small cell lung cancer (NSCLC), particularly in lung adenocarcinoma (ADK), where it is a diagnostic marker. Studies of the prognostic role of NKX2-1 in NSCLC have reported contradictory findings. Two microRNAs (miRNAs) have been associated with NKX2-1: miR-365, which targets NKX2-1; and miR-33a, which is downstream of NKX2-1. We have examined the effect of NKX2-1, miR-365 and miR-33a on survival in a cohort of early-stage NSCLC patients and in sub-groups of patients classified according to the mutational status of TP53, KRAS, and EGFR. mRNA and miRNA expression was determined using TaqMan assays in 110 early-stage NSCLC patients. TP53, KRAS, and EGFR mutations were assessed by Sanger sequencing. NKX2-1 expression was upregulated in never-smokers (P = 0.017), ADK (P < 0.0001) and patients with wild-type TP53 (P = 0.001). A negative correlation between NKX2-1 and miR-365 expression was found (ρ = -0.287; P = 0.003) but there was no correlation between NKX2-1 and miR-33a expression. Overall survival (OS) was longer in patients with high expression of NKX2-1 than in those with low expression (80.8 vs 61.2 months (P = 0.035), while a trend towards longer OS was observed in patients with low miR-365 levels (P = 0.07). The impact of NKX2-1 on OS and DFS was higher in patients with neither TP53 nor KRAS mutations. Higher expression of NKX2-1 was related to higher OS (77.6 vs 54 months; P = 0.017) and DFS (74.6 vs 57.7 months; P = 0.006) compared to low expression. The association between NKX2-1 and OS and DFS was strengthened when the analysis was limited to patients with stage I disease (P = 0.005 and P=0.003 respectively). NKX2-1 expression impacts prognosis in early-stage NSCLC patients, particularly in those with neither TP53 nor KRAS mutations.

  16. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells

    PubMed Central

    Bao, Bin; Wang, Zhiwei; Ali, Shadan; Kong, Dejuan; Banerjee, Sanjeev; Ahmad, Aamir; Li, Yiwei; Azmi, Asfar S.; Miele, Lucio; Sarkar, Fazlul H.

    2011-01-01

    FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of Epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein. PMID:21503965

  17. Global analysis of glycoproteins identifies markers of endotoxin tolerant monocytes and GPR84 as a modulator of TNFα expression.

    PubMed

    Müller, Mario M; Lehmann, Roland; Klassert, Tilman E; Reifenstein, Stella; Conrad, Theresia; Moore, Christoph; Kuhn, Anna; Behnert, Andrea; Guthke, Reinhard; Driesch, Dominik; Slevogt, Hortense

    2017-04-12

    Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.

  18. A blackberry (Rubus L.) expressed sequence tag library for the development of simple sequence repeat markers

    PubMed Central

    Lewers, Kim S; Saski, Chris A; Cuthbertson, Brandon J; Henry, David C; Staton, Meg E; Main, Dorrie S; Dhanaraj, Anik L; Rowland, Lisa J; Tomkins, Jeff P

    2008-01-01

    Background The recent development of novel repeat-fruiting types of blackberry (Rubus L.) cultivars, combined with a long history of morphological marker-assisted selection for thornlessness by blackberry breeders, has given rise to increased interest in using molecular markers to facilitate blackberry breeding. Yet no genetic maps, molecular markers, or even sequences exist specifically for cultivated blackberry. The purpose of this study is to begin development of these tools by generating and annotating the first blackberry expressed sequence tag (EST) library, designing primers from the ESTs to amplify regions containing simple sequence repeats (SSR), and testing the usefulness of a subset of the EST-SSRs with two blackberry cultivars. Results A cDNA library of 18,432 clones was generated from expanding leaf tissue of the cultivar Merton Thornless, a progenitor of many thornless commercial cultivars. Among the most abundantly expressed of the 3,000 genes annotated were those involved with energy, cell structure, and defense. From individual sequences containing SSRs, 673 primer pairs were designed. Of a randomly chosen set of 33 primer pairs tested with two blackberry cultivars, 10 detected an average of 1.9 polymorphic PCR products. Conclusion This rate predicts that this library may yield as many as 940 SSR primer pairs detecting 1,786 polymorphisms. This may be sufficient to generate a genetic map that can be used to associate molecular markers with phenotypic traits, making possible molecular marker-assisted breeding to compliment existing morphological marker-assisted breeding in blackberry. PMID:18570660

  19. Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis.

    PubMed

    Gössl, Mario; Mödder, Ulrike I; Atkinson, Elizabeth J; Lerman, Amir; Khosla, Sundeep

    2008-10-14

    This study was designed to test whether patients with coronary atherosclerosis have increases in circulating endothelial progenitor cells (EPCs) expressing an osteogenic phenotype. Increasing evidence indicates a link between bone and the vasculature, and bone marrow and circulating osteogenic cells have been identified by staining for the osteoblastic marker, osteocalcin (OCN). Endothelial progenitor cells contribute to vascular repair, but repair of vascular injury may result in calcification. Using cell surface markers (CD34, CD133, kinase insert domain receptor [KDR]) to identify EPCs, we examined whether patients with coronary atherosclerosis had increases in the percentage of EPCs expressing OCN. We studied 72 patients undergoing invasive coronary assessment: control patients (normal coronary arteries and no endothelial dysfunction, n = 21) versus 2 groups with coronary atherosclerosis-early coronary atherosclerosis (normal coronary arteries but with endothelial dysfunction, n = 22) and late coronary atherosclerosis (severe, multivessel coronary artery disease, n = 29). Peripheral blood mononuclear cells were analyzed using flow cytometry. Compared with control patients, patients with early or late coronary atherosclerosis had significant increases (approximately 2-fold) in the percentage of CD34+/KDR+ and CD34+/CD133+/KDR+ cells costaining for OCN. Even larger increases were noted in the early and late coronary atherosclerosis patients in the percentage of CD34+/CD133-/KDR+ cells costaining for OCN (5- and 2-fold, p < 0.001 and 0.05, respectively). A higher percentage of EPCs express OCN in patients with coronary atherosclerosis compared with subjects with normal endothelial function and no structural coronary artery disease. These findings have potential implications for the mechanisms of vascular calcification and for the development of novel markers for coronary atherosclerosis.

  20. Cell expression patterns of CD147 in N-diethylnitrosamine/phenobarbital-induced mouse hepatocellular carcinoma.

    PubMed

    Lu, Meng; Wu, Jiao; He, Feng; Wang, Xi-Long; Li, Can; Chen, Zhi-Nan; Bian, Huijie

    2015-02-01

    Overexpression of CD147/basigin in hepatic cells promotes the progression of hepatocellular carcinoma (HCC). Whether CD147 also expressed in liver non-parenchymal cells and associated with HCC development was unknown. The aim of the study was to explore time-dependent cell expression patterns of CD147 in a widely accepted N-diethylnitrosamine/phenobarbital (DEN/PB)-induced HCC mouse model. Liver samples collected at month 1-12 of post-DEN/PB administration were assessed the localization of CD147 in hepatocytes, endothelial cells, hepatic stellate cells, and macrophages. Immunohistochemistry analysis showed that CD147 was upregulated in liver tumors during month 1-8 of DEN/PB induction. Expression of CD147 was positively correlated with cytokeratin 18, a hepatocyte marker (r = 0.7857, P = 0.0279), CD31 (r = 0.9048, P = 0.0046), an endothelial cell marker, and CD68, a macrophage marker (r = 0.7619, P = 0.0368). A significant correlation was also observed between CD147 and alpha-smooth muscle actin (r = 0.8857, P = 0.0333) at DEN/PB initiation and early stage of tumor formation. Immunofluorescence and fluorescence in situ hybridization showed that CD147 co-expressed with cytokeratin 18, CD31, alpha-smooth muscle actin, and CD68. Moreover, there existed positive correlations between CD147 and microvessel density (r = 0.7857, P = 0.0279), CD147 and Ki-67 (r = 0.9341, P = 0.0022) in the development of DEN/PB-induced HCC. In conclusion, our results demonstrated that CD147 was upregulated in the liver parenchymal and mesenchymal cells and involved in angiogenesis and tumor cell proliferation in the development of DEN/PB-induced HCC.

  1. XIAP over-expression is an independent poor prognostic marker in Middle Eastern breast cancer and can be targeted to induce efficient apoptosis.

    PubMed

    Hussain, Azhar R; Siraj, Abdul Khalid; Ahmed, Maqbool; Bu, Rong; Pratheeshkumar, Poyil; Alrashed, Alanood M; Qadri, Zeeshan; Ajarim, Dahish; Al-Dayel, Fouad; Beg, Shaham; Al-Kuraya, Khawla S

    2017-09-11

    Breast cancer is the most common cancer in females and is ranked second in cancer-related deaths all over the world in women. Despite improvement in diagnosis, the survival rate of this disease has still not improved. X-linked Inhibitor of Apoptosis (XIAP) has been shown to be over-expressed in various cancers leading to poor overall survival. However, the role of XIAP in breast cancer from Middle Eastern region has not been fully explored. We examined the expression of XIAP in more than 1000 Middle Eastern breast cancer cases by immunohistochemistry. Apoptosis was measured by flow cytometry. Protein expression was determined by western blotting. Finally, in vivo studies were performed on nude mice following xenografting and treatment with inhibitors. XIAP was found to be over-expressed in 29.5% of cases and directly associated with clinical parameters such as tumor size, extra nodal extension, triple negative breast cancer and poorly differentiated breast cancer subtype. In addition, XIAP over-expression was also significantly associated with PI3-kinase pathway protein; p-AKT, proliferative marker; Ki-67 and anti-apoptotic marker; PARP. XIAP over-expression in our cohort of breast cancer was an independent poor prognostic marker in multivariate analysis. Next, we investigated inhibition of XIAP using a specific inhibitor; embelin and found that embelin treatment led to inhibition of cell viability and induction of apoptosis in breast cancer cells. Finally, breast cancer cells treated with combination of embelin and PI3-kinase inhibitor; LY294002 synergistically induced apoptosis and caused tumor growth regression in vivo. These data suggest that XIAP may be playing an important role in the pathogenesis of breast cancer and can be therapeutically targeted either alone or in combination with PI3-kinase inhibition to induce efficient apoptosis in breast cancer cells.

  2. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    PubMed

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  3. Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia.

    PubMed

    Patschan, D; Michurina, T; Shi, H K; Dolff, S; Brodsky, S V; Vasilieva, T; Cohen-Gould, L; Winaver, J; Chander, P N; Enikolopov, G; Goligorsky, M S

    2007-04-01

    Nestin, a marker of multi-lineage stem and progenitor cells, is a member of intermediate filament family, which is expressed in neuroepithelial stem cells, several embryonic cell types, including mesonephric mesenchyme, endothelial cells of developing blood vessels, and in the adult kidney. We used Nestin-green fluorescent protein (GFP) transgenic mice to characterize its expression in normal and post-ischemic kidneys. Nestin-GFP-expressing cells were detected in large clusters within the papilla, along the vasa rectae, and, less prominently, in the glomeruli and juxta-glomerular arterioles. In mice subjected to 30 min bilateral renal ischemia, glomerular, endothelial, and perivascular cells showed increased Nestin expression. In the post-ischemic period, there was an increase in fluorescence intensity with no significant changes in the total number of Nestin-GFP-expressing cells. Time-lapse fluorescence microscopy performed before and after ischemia ruled out the possibility of engraftment by the circulating Nestin-expressing cells, at least within the first 3 h post-ischemia. Incubation of non-perfused kidney sections resulted in a medullary-to-cortical migration of Nestin-GFP-positive cells with the rate of expansion of their front averaging 40 microm/30 min during the first 3 h and was detectable already after 30 min of incubation. Explant matrigel cultures of the kidney and aorta exhibited sprouting angiogenesis with cells co-expressing Nestin and endothelial marker, Tie-2. In conclusion, several lines of circumstantial evidence identify a sub-population of Nestin-expressing cells with the mural cells, which are recruited in the post-ischemic period to migrate from the medulla toward the renal cortex. These migrating Nestin-positive cells may be involved in the process of post-ischemic tissue regeneration.

  4. Cell markers in the recognition of acute myeloblastic leukaemia subtypes.

    PubMed

    Andoljsek, Dusan; Preloznik Zupan, Irena; Zontar, Darja; Cernelc, Peter; Mlakar, Uros; Modic, Mojca; Pretnar, Joze; Zver, Samo

    2002-01-01

    The diagnosis of acute myeloblastic leukaemia (AML) is based on cell morphology, cytogenetic and molecular changes, cell markers and clinical data. Our aim was to establish whether morphology and cell markers are comparable in the evaluation of AML. Bone marrow smears were analysed, and flow cytometry and monoclonal antibodies were used to determine cell type and maturity. Morphology and cell markers correlated differently in different AML subtypes.

  5. Isolation and gene expression analysis of single potential human spermatogonial stem cells.

    PubMed

    von Kopylow, K; Schulze, W; Salzbrunn, A; Spiess, A-N

    2016-04-01

    It is possible to isolate pure populations of single potential human spermatogonial stem cells without somatic contamination for down-stream applications, for example cell culture and gene expression analysis. We isolated pure populations of single potential human spermatogonial stem cells (hSSC) without contaminating somatic cells and analyzed gene expression of these cells via single-cell real-time RT-PCR. The isolation of a pure hSSC fraction could enable clinical applications such as fertility preservation for prepubertal boys and in vitro-spermatogenesis. By utilizing largely nonspecific markers for the isolation of spermatogonia (SPG) and hSSC, previously published cell selection methods are not able to deliver pure target cell populations without contamination by testicular somatic cells. However, uniform cell populations free of somatic cells are necessary to guarantee defined growth conditions in cell culture experiments and to prevent unintended stem cell differentiation. Fibroblast growth factor receptor 3 (FGFR3) is a cell surface protein of human undifferentiated A-type SPG and a promising candidate marker for hSSC. It is exclusively expressed in small, non-proliferating subgroups of this spermatogonial cell type together with the pluripotency-associated protein and spermatogonial nuclear marker undifferentiated embryonic cell transcription factor 1 (UTF1). We specifically selected the FGFR3-positive spermatogonial subpopulation from two 30 mg biopsies per patient from a total of 37 patients with full spermatogenesis and three patients with meiotic arrest. We then employed cell selection with magnetic beads in combination with a fluorescence-activated cell sorter antibody directed against human FGFR3 to tag and visually identify human FGFR3-positive spermatogonia. Positively selected and bead-labeled cells were subsequently picked with a micromanipulator. Analysis of the isolated cells was carried out by single-cell real-time RT-PCR, real-time RT

  6. Expression of CD44 and CD29 by PEComa cells suggests their possible origin of mesenchymal stem cells.

    PubMed

    Liu, Ruixue; Jia, Wei; Zou, Hong; Wang, Xinhua; Ren, Yan; Zhao, Jin; Wang, Lianghai; Li, Man; Qi, Yan; Shen, Yaoyuan; Liang, Weihua; Jiang, Jinfang; Sun, Zhenzhu; Pang, Lijuan; Li, Feng

    2015-01-01

    Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. The perivascular epithelioid cell (PEC) co-expresses melanocytic and muscle markers. Since no normal counterpart to the PEC has ever been identified in any normal tissue, the cell origin of these tumors is still uncertain. Although, several hypotheses have recently been advanced to explain the histogenesis of PEComa, it remains unclear. The aim of this study was to discuss whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of PEComa. For this purpose, we detected the immunoexpression of 5 kinds of stem cell markers on PEComas, including CD29, CD44, CD133, ALDH1, and nestin. In addition to observed histopathologic morphology, we also performed PEComa relevant clinical diagnostic markers (HMB-45, SMA, melan-A, Desmin, Ki-67, S-100 and TFE3) to identify whether they belonged to PEComas. Our study included 13 PEComa samples, and we obtained positive immunoexpression results as follows: CD29 (13/13), CD44 (8/13), ALDH1 (10/13), nestin (1/13), and CD133 (0/13). Since CD44 and CD29 are surface proteins associated with MSCs, these results suggest that PEComa might arise from MSCs. However, whether MSCs are the origin of PEComa needs to be further explored in the future.

  7. Expression of endogenous retroviruses is negatively regulated by the pluripotency marker Rex1/Zfp42

    PubMed Central

    Guallar, D.; Pérez-Palacios, R.; Climent, M.; Martínez-Abadía, I.; Larraga, A.; Fernández-Juan, M.; Vallejo, C.; Muniesa, P.; Schoorlemmer, J.

    2012-01-01

    Rex1/Zfp42 is a Yy1-related zinc-finger protein whose expression is frequently used to identify pluripotent stem cells. We show that depletion of Rex1 levels notably affected self-renewal of mouse embryonic stem (ES) cells in clonal assays, in the absence of evident differences in expression of marker genes for pluripotency or differentiation. By contrast, marked differences in expression of several endogenous retroviral elements (ERVs) were evident upon Rex1 depletion. We demonstrate association of REX1 to specific elements in chromatin-immunoprecipitation assays, most strongly to muERV-L and to a lower extent to IAP and musD elements. Rex1 regulates muERV-L expression in vivo, as we show altered levels upon transient gain-and-loss of Rex1 function in pre-implantation embryos. We also find REX1 can associate with the lysine-demethylase LSD1/KDM1A, suggesting they act in concert. Similar to REX1 binding to retrotransposable elements (REs) in ES cells, we also detected binding of the REX1 related proteins YY1 and YY2 to REs, although the binding preferences of the two proteins were slightly different. Altogether, we show that Rex1 regulates ERV expression in mouse ES cells and during pre-implantation development and suggest that Rex1 and its relatives have evolved as regulators of endogenous retroviral transcription. PMID:22844087

  8. Adoptive cell therapy for lymphoma with CD4 T cells depleted of CD137-expressing regulatory T cells.

    PubMed

    Goldstein, Matthew J; Kohrt, Holbrook E; Houot, Roch; Varghese, Bindu; Lin, Jack T; Swanson, Erica; Levy, Ronald

    2012-03-01

    Adoptive immunotherapy with antitumor T cells is a promising novel approach for the treatment of cancer. However, T-cell therapy may be limited by the cotransfer of regulatory T cells (T(reg)). Here, we explored this hypothesis by using 2 cell surface markers, CD44 and CD137, to isolate antitumor CD4 T cells while excluding T(regs). In a murine model of B-cell lymphoma, only CD137(neg)CD44(hi) CD4 T cells infiltrated tumor sites and provided protection. Conversely, the population of CD137(pos)CD44hi CD4 T cells consisted primarily of activated T(regs). Notably, this CD137(pos) T(reg) population persisted following adoptive transfer and maintained expression of FoxP3 as well as CD137. Moreover, in vitro these CD137(pos) cells suppressed the proliferation of effector cells in a contact-dependent manner, and in vivo adding the CD137(pos)CD44(hi) CD4 cells to CD137(neg)CD44(hi) CD4 cells suppressed the antitumor immune response. Thus, CD137 expression on CD4 T cells defined a population of activated T(regs) that greatly limited antitumor immune responses. Consistent with observations in the murine model, human lymphoma biopsies also contained a population of CD137(pos) CD4 T cells that were predominantly CD25(pos)FoxP3(pos) T(regs). In conclusion, our findings identify 2 surface markers that can be used to facilitate the enrichment of antitumor CD4 T cells while depleting an inhibitory T(reg) population.

  9. EphA2 Expression Is a Key Driver of Migration and Invasion and a Poor Prognostic Marker in Colorectal Cancer.

    PubMed

    Dunne, Philip D; Dasgupta, Sonali; Blayney, Jaine K; McArt, Darragh G; Redmond, Keara L; Weir, Jessica-Anne; Bradley, Conor A; Sasazuki, Takehiko; Shirasawa, Senji; Wang, Tingting; Srivastava, Supriya; Ong, Chee Wee; Arthur, Ken; Salto-Tellez, Manuel; Wilson, Richard H; Johnston, Patrick G; Van Schaeybroeck, Sandra

    2016-01-01

    EphA2, a member of the Eph receptor tyrosine kinases family, is an important regulator of tumor initiation, neovascularization, and metastasis in a wide range of epithelial and mesenchymal cancers; however, its role in colorectal cancer recurrence and progression is unclear. EphA2 expression was determined by immunohistochemistry in stage II/III colorectal tumors (N = 338), and findings correlated with clinical outcome. The correlation between EphA2 expression and stem cell markers CD44 and Lgr5 was examined. The role of EphA2 in migration/invasion was assessed using a panel of KRAS wild-type (WT) and mutant (MT) parental and invasive colorectal cancer cell line models. Colorectal tumors displayed significantly higher expression levels of EphA2 compared with matched normal tissue, which positively correlated with high CD44 and Lgr5 expression levels. Moreover, high EphA2 mRNA and protein expression were found to be associated with poor overall survival in stage II/III colorectal cancer tissues, in both univariate and multivariate analyses. Preclinically, we found that EphA2 was highly expressed in KRASMT colorectal cancer cells and that EphA2 levels are regulated by the KRAS-driven MAPK and RalGDS-RalA pathways. Moreover, EphA2 levels were elevated in several invasive daughter cell lines, and downregulation of EphA2 using RNAi or recombinant EFNA1 suppressed migration and invasion of KRASMT colorectal cancer cells. These data show that EpHA2 is a poor prognostic marker in stage II/III colorectal cancer, which may be due to its ability to promote cell migration and invasion, providing support for the further investigation of EphA2 as a novel prognostic biomarker and therapeutic target. ©2015 American Association for Cancer Research.

  10. EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer

    PubMed Central

    Blayney, Jaine K.; McArt, Darragh G.; Redmond, Keara L.; Weir, Jessica-Anne; Bradley, Conor A.; Sasazuki, Takehiko; Shirasawa, Senji; Wang, Tingting; Srivastava, Supriya; Ong, Chee Wee; Arthur, Ken; Salto-Tellez, Manuel; Wilson, Richard H.

    2015-01-01

    Purpose EphA2, a member of the Eph receptor tyrosine kinases family, is an important regulator of tumour initiation, neo-vascularization and metastasis in a wide range of epithelial and mesenchymal cancers, however its role in colorectal cancer (CRC) recurrence and progression is unclear. Experimental Design EphA2 expression was determined by immunohistochemistry in stage II/III colorectal tumours (N=338), and findings correlated with clinical outcome. The correlation between EphA2 expression and stem cell markers CD44 and Lgr5 was examined. The role of EphA2 in migration/invasion was assessed using a panel of KRAS wild-type (WT) and mutant (MT) parental and invasive CRC cell line models. Results Colorectal tumours displayed significantly higher expression levels of EphA2 compared with matched normal tissue, which positively correlated with high CD44 and Lgr5 expression levels. Moreover, high EphA2 mRNA and protein expression were found to be associated with poor overall survival in stage II/III CRC tissues, in both univariate and multivariate analyses. Pre-clinically, we found that EphA2 was highly expressed in KRASMT CRC cells and that EphA2 levels are regulated by the KRAS-driven MAPK and RalGDS-RalA pathways. Moreover, EphA2 levels were elevated in several invasive daughter cell lines and down-regulation of EphA2 using RNAi or recombinant EFNA1, suppressed migration and invasion of KRASMT CRC cells. Conclusions These data show that EpHA2 is a poor prognostic marker in stage II/III CRC, which may be due to its ability to promote cell migration and invasion, providing support for the further investigation of EphA2 as a novel prognostic biomarker and therapeutic target. PMID:26283684

  11. XIAP and Ki-67: A Correlation Between Antiapoptotic and Proliferative Marker Expression in Benign and Malignant Tumours of Salivary Gland: An Immunohistochemical Study.

    PubMed

    Bagulkar, Bhupesh Bhayyaji; Gawande, Madhuri; Chaudhary, Minal; Gadbail, Amol Ramchandra; Patil, Swati; Bagulkar, Smita

    2015-02-01

    Impaired balance between cell proliferation and apoptosis is crucial to the development of malignant neoplasm. The purpose of this study was to evaluate and compare the expression of X-Linked inhibitor of apoptotic protein (XIAP) (antiapoptotic marker) and Ki-67 (proliferative marker) expression in benign and malignant salivary gland (SG) tumours. The study consisted of 40 cases of benign SG tumours and 50 cases of malignant SG tumours. The immunohistochemistry was carried out by using Ki-67 antibody (clone MIB-1) and XIAP antibody in all the groups. XIAP expression was significantly higher in malignant SG tumours than benign SG tumours (p = 0.016). Ki-67 LI was significantly higher in malignant SG tumours than benign SG tumours (p = 0.0002). Statistically significant positive correlation between Ki-67 count and XIAP expression was noted in benign and malignant SG tumours (p = 0.000). As the expression of an antiapoptotic marker (XIAP) increases, the expression of a proliferative marker (Ki-67) also increases from benign to malignant SG tumours. Thus, targeted therapy of XIAP may play a future role in the management of SG malignancy.

  12. XIAP and Ki-67: A Correlation Between Antiapoptotic and Proliferative Marker Expression in Benign and Malignant Tumours of Salivary Gland: An Immunohistochemical Study

    PubMed Central

    Gawande, Madhuri; Chaudhary, Minal; Gadbail, Amol Ramchandra; Patil, Swati; Bagulkar, Smita

    2015-01-01

    Background: Impaired balance between cell proliferation and apoptosis is crucial to the development of malignant neoplasm. The purpose of this study was to evaluate and compare the expression of X-Linked inhibitor of apoptotic protein (XIAP) (antiapoptotic marker) and Ki-67 (proliferative marker) expression in benign and malignant salivary gland (SG) tumours. Materials and Methods: The study consisted of 40 cases of benign SG tumours and 50 cases of malignant SG tumours. The immunohistochemistry was carried out by using Ki-67 antibody (clone MIB-1) and XIAP antibody in all the groups. Results: XIAP expression was significantly higher in malignant SG tumours than benign SG tumours (p = 0.016). Ki-67 LI was significantly higher in malignant SG tumours than benign SG tumours (p = 0.0002). Statistically significant positive correlation between Ki-67 count and XIAP expression was noted in benign and malignant SG tumours (p = 0.000). Conclusion: As the expression of an antiapoptotic marker (XIAP) increases, the expression of a proliferative marker (Ki-67) also increases from benign to malignant SG tumours. Thus, targeted therapy of XIAP may play a future role in the management of SG malignancy. PMID:25859460

  13. Induction of endoplasmic reticulum calcium pump expression during early leukemic B cell differentiation.

    PubMed

    Aït Ghezali, Lamia; Arbabian, Atousa; Roudot, Hervé; Brouland, Jean-Philippe; Baran-Marszak, Fanny; Salvaris, Evelyn; Boyd, Andrew; Drexler, Hans G; Enyedi, Agnes; Letestu, Remi; Varin-Blank, Nadine; Papp, Bela

    2017-06-26

    Endoplasmic reticulum (ER) calcium storage and release play important roles in B lymphocyte maturation, survival, antigen-dependent cell activation and immunoglobulin synthesis. Calcium is accumulated in the endoplasmic reticulum (ER) by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). Because lymphocyte function is critically dependent on SERCA activity, it is important to understand qualitative and quantitative changes of SERCA protein expression that occur during B lymphoid differentiation and leukemogenesis. In this work we investigated the modulation of SERCA expression during the pharmacologically induced differentiation of leukemic precursor B lymphoblast cell lines that carry the E2A-PBX1 fusion oncoprotein. Changes of SERCA levels during differentiation were determined and compared to those of established early B lymphoid differentiation markers. SERCA expression of the cells was compared to that of mature B cell lines as well, and the effect of the direct inhibition of SERCA-dependent calcium transport on the differentiation process was investigated. We show that E2A-PBX1 + leukemia cells simultaneously express SERCA2 and SERCA3-type calcium pumps; however, their SERCA3 expression is markedly inferior to that of mature B cells. Activation of protein kinase C enzymes by phorbol ester leads to phenotypic differentiation of the cells, and this is accompanied by the induction of SERCA3 expression. Direct pharmacological inhibition of SERCA-dependent calcium transport during phorbol ester treatment interferes with the differentiation process. These data show that the calcium pump composition of the ER is concurrent with increased SERCA3 expression during the differentiation of precursor B acute lymphoblastic leukemia cells, that a cross-talk exists between SERCA function and the control of differentiation, and that SERCA3 may constitute an interesting new marker for the study of early B cell phenotype.

  14. s-SHIP expression identifies a subset of murine basal prostate cells as neonatal stem cells

    PubMed Central

    Brocqueville, Guillaume; Chmelar, Renee S.; Bauderlique-Le Roy, Hélène; Deruy, Emeric; Tian, Lu; Vessella, Robert L.; Greenberg, Norman M.; Bourette, Roland P.

    2016-01-01

    Isolation of prostate stem cells (PSCs) is crucial for understanding their biology during normal development and tumorigenesis. In this aim, we used a transgenic mouse model expressing GFP from the stem cell-specific s-SHIP promoter to mark putative stem cells during postnatal prostate development. Here we show that cells identified by GFP expression are present transiently during early prostate development and localize to the basal cell layer of the epithelium. These prostate GFP+ cells are a subpopulation of the Lin− CD24+ Sca-1+ CD49f+ cells and are capable of self-renewal together with enhanced growth potential in sphere-forming assay in vitro, a phenotype consistent with that of a PSC population. Transplantation assays of prostate GFP+ cells demonstrate reconstitution of prostate ducts containing both basal and luminal cells in renal grafts. Altogether, these results demonstrate that s-SHIP promoter expression is a new marker for neonatal basal prostate cells exhibiting stem cell properties that enables PSCs in situ identification and isolation via a single consistent parameter. Transcriptional profiling of these GFP+ neonatal stem cells showed an increased expression of several components of the Wnt signaling pathway. It also identified stem cell regulators with potential applications for further analyses of normal and cancer stem cells. PMID:27081082

  15. Delayed Rectifier and A-Type Potassium Channels Associated with Kv 2.1 and Kv 4.3 Expression in Embryonic Rat Neural Progenitor Cells

    PubMed Central

    Smith, Dean O.; Rosenheimer, Julie L.; Kalil, Ronald E.

    2008-01-01

    Background Because of the importance of voltage-activated K+ channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Methodology/Principal Findings Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and βIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. Conclusions/Significance We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K+ currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells. PMID:18270591

  16. Delayed rectifier and A-type potassium channels associated with Kv 2.1 and Kv 4.3 expression in embryonic rat neural progenitor cells.

    PubMed

    Smith, Dean O; Rosenheimer, Julie L; Kalil, Ronald E

    2008-02-13

    Because of the importance of voltage-activated K(+) channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and betaIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K(+) currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells.

  17. Expression of pericardial fluid T-cells and related inflammatory cytokines in patients with chronic heart failure.

    PubMed

    Iskandar, Reinard; Liu, Shengchen; Xiang, Fei; Chen, Wen; Li, Liangpeng; Qin, Wei; Huang, Fuhua; Chen, Xin

    2017-05-01

    Pericardial fluid, as a biochemical indicator of heart status, directly indicates pathological alteration to the heart. The accumulation of pericardial fluid can be attributed to an underlying systemic or local inflammatory process. However, the pericardial fluid expression of cellular surface markers, as well as several cytokines in chronic heart failure (CHF), remain unclear. In order to evaluate these issues further the pericardial fluid expression of several cytokines and the surface expression of activity markers between CHF patients and non-heart failure (NHF) patients were analyzed. The pericardial fluid expression of cytokines was measured by immunofluorescence and biomarker of plasma N-terminal propeptide of B-type natriuretic peptide (NT-proBNP), while pericardial fluid levels of soluble glycoprotein 130 (sgp130) were analyzed by ELISA in 50 CHF and 24 NHF patients. In addition, the surface expression of activation markers for T-cells was measured by immunohistochemistry. Patients with CHF demonstrated increased levels of plasma NT-proBNP and pericardial fluid sgp130. Surface expression of cellular activation markers CD25 and Foxp3 in the pericardial fluid was increased in patients with CHF. Moreover, the pro- and anti-inflammatory cytokines interferon (IFN)-γ, interleukin (IL)-6 and IL-10 in patients with CHF also demonstrated an increased expression within its pericardial fluid. In addition, there was infiltration of inflammatory cells and enhanced expression of inflammatory cytokines in the pericardial fluid of patients with CHF, which may reflect T cell activation, suggesting that systemic inflammation is important in the progression of CHF. This evidence could indicate a possible novel target for future therapeutics and prevention of CHF.

  18. Expression of synaptogyrin-1 in T1R2-expressing type II taste cells and type III taste cells of rat circumvallate taste buds.

    PubMed

    Kotani, Takeshi; Toyono, Takashi; Seta, Yuji; Kitou, Ayae; Kataoka, Shinji; Toyoshima, Kuniaki

    2013-09-01

    Synaptogyrins are conserved components of the exocytic apparatus and function as regulators of Ca(2+)-dependent exocytosis. The synaptogyrin family comprises three isoforms: two neuronal (synaptogyrin-1 and -3) and one ubiquitous (synaptogyrin-2) form. Although the expression patterns of the exocytic proteins synaptotagmin-1, SNAP-25, synaptobrevin-2 and synaptophysin have been elucidated in taste buds, the function and expression pattern of synaptogyrin-1 in rat gustatory tissues have not been determined. Therefore, we examined the expression patterns of synaptogyrin-1 and several cell-specific markers of type II and III cells in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays and immunoblot analysis revealed the expression of synaptogyrin-1 mRNA and its protein in circumvallate papillae. In fungiform, foliate and circumvallate papillae, the antibody against synaptogyrin-1 immunolabeled a subset of taste bud cells and intra- and subgemmal nerve processes. Double-labeling experiments revealed the expression of synaptogyrin-1 in most taste cells immunoreactive for aromatic L-amino acid decarboxylase and the neural cell adhesion molecule. A subset of synaptogyrin-1-immunoreactive taste cells also expressed phospholipase Cβ2, gustducin, or sweet taste receptor (T1R2). In addition, most synaptogyrin-1-immunoreactive taste cells expressed synaptobrevin-2. These results suggest that synaptogyrin-1 plays a regulatory role in transmission at the synapses of type III cells and is involved in exocytic function with synaptobrevin-2 in a subset of type II cells in rat taste buds.

  19. THY-1 Receptor Expression Differentiates Cardiosphere-Derived Cells with Divergent Cardiogenic Differentiation Potential

    PubMed Central

    Gago-Lopez, Nuria; Awaji, Obinna; Zhang, Yiqiang; Ko, Christopher; Nsair, Ali; Liem, David; Stempien-Otero, April; MacLellan, W. Robb

    2014-01-01

    Summary Despite over a decade of intense research, the identity and differentiation potential of human adult cardiac progenitor cells (aCPC) remains controversial. Cardiospheres have been proposed as a means to expand aCPCs in vitro, but the identity of the progenitor cell within these 3D structures is unknown. We show that clones derived from cardiospheres could be subdivided based on expression of thymocyte differentiation antigen 1 (THY-1/CD90) into two distinct populations that exhibit divergent cardiac differentiation potential. One population, which is CD90+, expressed markers consistent with a mesenchymal/myofibroblast cell. The second clone type was CD90− and could form mature, functional myocytes with sarcomeres albeit at a very low rate. These two populations of cardiogenic clones displayed distinct cell surface markers and unique transcriptomes. Our study suggests that a rare aCPC exists in cardiospheres along with a mesenchymal/myofibroblast cell, which demonstrates incomplete cardiac myocyte differentiation. PMID:24936447

  20. Comparison of the value of PCNA and Ki-67 as markers of cell proliferation in ameloblastic tumor

    PubMed Central

    Mosqueda-Taylor, Adalberto; Molina-Frechero, Nelly; Mori-Estevez, Ana D.; Sánchez-Acuña, Guillermo

    2013-01-01

    Objectives: The aim of this study was to compare among PCNAand Ki-67 as the most reliable immunohistochemical marker for evaluating cell proliferation in ameloblastic tumors. Study Design: Observational, retrospective, and descriptive study of a large series of ameloblastic tumors, composed of 161 ameloblastomas and four ameloblastic carcinomas, to determine and compare PCNA and Ki-67 expression using immunohistochemistry techniques. Results: When analyzing Ki-67 positivity, the desmoplastic ameloblastoma demonstrated a significantly lower proliferation rate (1.9%) compared with the solid/multicystic and unicystic ameloblastomas and ameloblastic carcinomas (p<0.05), whereas the ameloblastic carcinomas displayed a significantly higher rate compared with all of the other ameloblastomas (48.7%) (p<0.05). When analyzing cell proliferation with PCNA, we found significant differences only between the ameloblastic carcinomas (93.3%) and the desmoplastic ameloblastomas (p<0.05). When differences between the immunopositivity for PCNA and Ki-67 were compared, the percentages were higher for PCNA in all types of ameloblastomas and ameloblastic carcinomas. In all cases, the percentages were greater than 80%, whereas the immunopositivity for Ki-67 was significantly lower; for example, the ameloblastic carcinoma expressed the highest positivity and only reached 48.7%, compared to 93.3% when we used PCNA. Conclusions: In the present study, when we used the proliferation cell marker Ki-67, the percentages of positivity were more specific and varied among the different types of ameloblastomas, suggesting that Ki-67 is a more specific marker for the proliferation of ameloblastic tumor cells. Key words:Ameloblastomas, ameloblastic carcinoma, PCNA, Ki-67, cell proliferation markers. PMID:23229269

  1. Radiation Response of Cancer Stem-Like Cells From Established Human Cell Lines After Sorting for Surface Markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Assar, Osama; Muschel, Ruth J.; Mantoni, Tine S.

    2009-11-15

    Purpose: A subpopulation of cancer stem-like cells (CSLC) is hypothesized to exist in different cancer cell lines and to mediate radioresistance in solid tumors. Methods and Materials: Cells were stained for CSLC markers and sorted (fluorescence-activated cell sorter/magnetic beads) to compare foci and radiosensitivity of phosphorylated histone H2AX at Ser 139 (gamma-H2AX) in sorted vs. unsorted populations in eight cell lines from different organs. CSLC properties were examined using anchorage-independent growth and levels of activated Notch1. Validation consisted of testing tumorigenicity and postirradiation enrichment of CSLC in xenograft tumors. Results: The quantity of CSLC was generally in good agreement withmore » primary tumors. CSLC from MDA-MB-231 (breast) and Panc-1 and PSN-1 (both pancreatic) cells had fewer residual gamma-H2AX foci than unsorted cells, pointing to radioresistance of CSLC. However, only MDA-MB-231 CSLC were more radioresistant than unsorted cells. Furthermore, MDA-MB-231 CSLC showed enhanced anchorage-independent growth and overexpression of activated Notch1 protein. The expression of cancer stem cell surface markers in the MDA-MB-231 xenograft model was increased after exposure to fractionated radiation. In contrast to PSN-1 cells, a growth advantage for MDA-MB-231 CSLC xenograft tumors was found compared to tumors arising from unsorted cells. Conclusions: CSLC subpopulations showed no general radioresistant phenotype, despite the quantities of CSLC subpopulations shown to correspond relatively well in other reports. Likewise, CSLC characteristics were found in some but not all of the tested cell lines. The reported problems in testing for CSLC in cell lines may be overcome by additional techniques, beyond sorting for markers.« less

  2. Leu-9 (CD 7) positivity in acute leukemias: a marker of T-cell lineage?

    PubMed

    Ben-Ezra, J; Winberg, C D; Wu, A; Rappaport, H

    1987-01-01

    Monoclonal antibody Leu-9 (CD 7) has been reported to be a sensitive and specific marker for T-cell lineage in leukemic processes, since it is positive in patients whose leukemic cells fail to express other T-cell antigens. To test whether Leu-9 is indeed specific for T-cell leukemias, we examined in detail 10 cases of acute leukemia in which reactions were positive for Leu-9 and negative for other T-cell-associated markers including T-11, Leu-1, T-3, and E-rosettes. Morphologically and cytochemically, 2 of these 10 leukemias were classified as lymphoblastic, 4 as myeloblastic, 2 as monoblastic, 1 as megakaryoblastic, and 1 as undifferentiated. The case of acute megakaryoblastic leukemia is the first reported case to be Leu-9 positive. None of the 10 were TdT positive. Of six cases (two monoblastic, one lymphoblastic, one myeloblastic, one megakaryoblastic, and one undifferentiated) in which we evaluated for DNA gene rearrangements, only one, a peroxidase-positive leukemia, showed a novel band on study of the T-cell-receptor beta-chain gene. We therefore conclude that Leu-9 is not a specific marker to T-cell lineage and that, in the absence of other supporting data, Leu-9 positivity should not be used as the sole basis of classifying an acute leukemia as being T-cell derived.

  3. Cell-based capacitance sensor for analysis of EGFR expression on cell membrane

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Myeong; Shin, Yong-Cheol; Ha, Ji Hye; Lee, Jong-Ho; Han, Dong-Wook; Kim, Jong-Man; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2013-02-01

    Cancer cells have many kinds of cancer biomarkers. Among them, the epidermal growth factor (EGF) receptors can show a possibility for a cancer marker because the over-expression of EGF receptor is related with fibrous, colorectal, cervical and gastric tumorigenesis. We fabricated the capacitance sensor with a gap area of 50 μm × 200 μm by using photolithography and lift-off method. Using the capacitance sensor, we investigated the time dependent capacitance changes of different kinds of fibrous cells, such as HT1080 fibrosarcoma, L-929 fibroblast cell line and nHDF dermal fibroblast primary cell. We found that when we put the EGF, the capacitance decreased due to the immobilization of EGF to EGF receptor on the cell membrane. The quantitative determination of EGF receptor level for various fibrous cells was carried out and the results showed good correlation with conventional method. Based on our results, we suggest that the capacitance sensor can measure the expression level of the EGF receptor on cell membrane and be a good candidate as a cancer diagnosis.

  4. New markers for tracking endoderm induction and hepatocyte differentiation from human pluripotent stem cells

    PubMed Central

    Holtzinger, Audrey; Streeter, Philip R.; Sarangi, Farida; Hillborn, Scott; Niapour, Maryam; Ogawa, Shinichiro; Keller, Gordon

    2015-01-01

    The efficient generation of hepatocytes from human pluripotent stem cells (hPSCs) requires the induction of a proper endoderm population, broadly characterized by the expression of the cell surface marker CXCR4. Strategies to identify and isolate endoderm subpopulations predisposed to the liver fate do not exist. In this study, we generated mouse monoclonal antibodies against human embryonic stem cell-derived definitive endoderm with the goal of identifying cell surface markers that can be used to track the development of this germ layer and its specification to a hepatic fate. Through this approach, we identified two endoderm-specific antibodies, HDE1 and HDE2, which stain different stages of endoderm development and distinct derivative cell types. HDE1 marks a definitive endoderm population with high hepatic potential, whereas staining of HDE2 tracks with developing hepatocyte progenitors and hepatocytes. When used in combination, the staining patterns of these antibodies enable one to optimize endoderm induction and hepatic specification from any hPSC line. PMID:26493401

  5. Induction of hepatocyte-like cells from mouse embryonic stem cells by lentivirus-mediated constitutive expression of Foxa2/Hnf4a.

    PubMed

    Liu, Tao; Zhang, Shichang; Xiang, Dedong; Wang, Yingjie

    2013-11-01

    Hepatocytes can be generated from embryonic stem cells (ESCs) using inducers such as chemical compounds and cytokines, but issues related to low differentiation efficiencies remain to be resolved. Recent work has shown that overexpression of lineage-specific transcription factors can directly cause cells phenotypic changes, including differentiation, trans-differentiation, and de-differentiation. We hypothesized that lentivirus-mediated constitutive expression of forkhead box A2 (Foxa2) and hepatocyte nuclear factor 4 alpha (Hnf4a) could promote inducing mouse ESCs to hepatocyte-likes cells. First, ESC lines that stably expressed Foxa2, Hnf4a, or Foxa2/Hnf4a were constructed via lentiviral expression vectors. Second, observations of cell morphology changes were made during the cell culture process, followed by experiments examining teratoma formation. Then, the effects of constitutive expression of Foxa2 and Hnf4a on hepatic differentiation and maturation were determined by measuring the marker gene expression levels of Albumin, α-fetoprotein, Cytokeratin18, and α1-antitrypsin. The results indicate that constitutive expression of Foxa2 and Hnf4a does not affect ESCs culture, teratoma formation, or the expression levels of the specific hepatocyte genes under autonomous differentiation. However, with some assistance from inducing factors, Foxa2 significantly increased the hepatic differentiation of ESCs, whereas the expression of Hnf4a alone or Foxa2/Hnf4a could not. Differentiated CCE-Foxa2 cells were more superior in expressing several liver-specific markers and protein, storing glycogen than differentiated CCE cells. Therefore, our method employing the transduction of Foxa2 would be a valuable tool for the efficient generation of functional hepatocytes derived from ESCs. © 2013 Wiley Periodicals, Inc.

  6. Long non-coding RNA BANCR regulates cancer stem cell markers in papillary thyroid cancer via the RAF/MEK/ERK signaling pathway.

    PubMed

    Wang, Yuanyuan; Lin, Xiangde; Fu, Xinghao; Yan, Wei; Lin, Fusheng; Kuang, Penghao; Luo, Yezhe; Lin, Ende; Hong, Xiaoquan; Wu, Guoyang

    2018-06-18

    Thyroid cancer is one of the most common malignant tumors of the endocrine system. Among all thyroid cancers, papillary thyroid carcinoma (PTC) is the most common type. The BRAF-activated non-coding RNA (BANCR) is a 693-bp nucleotide transcript which was first identified in melanoma. However, the role of BANCR in the development of thyroid cancer remains unclear. Therefore, the present study investigated the potential involvement of BANCR in the development of thyroid cancer in vitro using patient tissue samples and a panel of thyroid cancer cell lines, and in vivo using a xenograft mouse model. We observed that BANCR was expressed at a higher level in human thyroid tumor tissues than that noted in the adjacent normal tissues. The expression level of BANCR differed between cultured thyroid cancer cell lines; BANCR expression was lower in the BCPAP cell line than that observed in the CAL-62, WRO and FTC-133 cell lines. Western blot analysis and flow cytometry revealed that overexpression of BANCR in the BCPAP cell line resulted in increased expression of the cancer stem cell markers, LGR5 and EpCAM. Single-clone formation experiments showed that upregulated expression of BANCR in the BCPAP cell line promoted an increase in the number of clones formed. Similarly, in microsphere formation experiments, overexpression of BANCR resulted in increased number and size of microspheres compared with the control cell line. Western blotting experiments showed that BANCR overexpression in BCPAP upregulated the expression of phosphorylated c-Raf, MEK1/2 and ERK1/2. Inhibition of c-Raf via U0126 decreased the expression of LGR5 and EpCAM, as well as phosphorylated levels of c-Raf, MEK1/2 and ERK1/2 in the BCPAP cells, compared to levels in the DMSO controls. In the xenograft mouse model, BANCR overexpression in the thyroid cancer cells significantly increased tumor growth. Taken together, these results suggest that BANCR plays a role in PTC development by regulating the

  7. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum.

    PubMed

    Kawanami, Aya; Matsushita, Takehiko; Chan, Yuk Yu; Murakami, Shunichi

    2009-08-28

    We generated Prx1CreER-GFP transgenic mice that express tamoxifen-inducible Cre recombinase and GFP under the control of a 2.4 kb Prx1 promoter. The transgene is expressed in osteochondro progenitor cells in the developing limb buds and in a subpopulation of periosteal cells that is closely associated with the cortical bone. GFP-expressing cells isolated from the diaphyses of long bones by cell sorting express multiple markers of periosteal cells, including Prx1, Fgf18, Tenascin-W, Periostin, and Thrombospondin 2. In addition, these cells undergo chondrogenic and osteogenic differentiation in culture upon induction. Cell fate analysis using the Rosa26 LacZ reporter indicated that transgene-expressing cells give rise to some of the chondrocytes and osteoblasts in the fracture callus. Collectively, these observations strongly suggest that the transgene-expressing cells are osteochondro progenitor cells in the periosteum. The established Prx1CreER-GFP mice would offer novel approaches for analyzing the functions of periosteal cells in vitro and in vivo.

  8. Expression of Coxsackievirus and Adenovirus Receptor Separates Hematopoietic and Cardiac Progenitor Cells in Fetal Liver Kinase 1-Expressing Mesoderm

    PubMed Central

    Tashiro, Katsuhisa; Hirata, Nobue; Okada, Atsumasa; Yamaguchi, Tomoko; Takayama, Kazuo; Mizuguchi, Hiroyuki

    2015-01-01

    In developing embryos or in vitro differentiation cultures using pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, fetal liver kinase 1 (Flk1)-expressing mesodermal cells are thought to be a heterogeneous population that includes hematopoietic progenitors, endothelial progenitors, and cardiac progenitors. However, information on cell surface markers for separating these progenitors in Flk1+ cells is currently limited. In the present study, we show that distinct types of progenitor cells in Flk1+ cells could be separated according to the expression of coxsackievirus and adenovirus receptor (CAR, also known as CXADR), a tight junction component molecule. We found that mouse and human PSC- and mouse embryo-derived Flk1+ cells could be subdivided into Flk1+CAR+ cells and Flk1+CAR− cells. The progenitor cells with cardiac potential were almost entirely restricted to Flk1+CAR+ cells, and Flk1+CAR− cells efficiently differentiated into hematopoietic cells. Endothelial differentiation potential was observed in both populations. Furthermore, from the expression of CAR, Flk1, and platelet-derived growth factor receptor-α (PDGFRα), Flk1+ cells could be separated into three populations (Flk1+PDGFRα−CAR− cells, Flk1+PDGFRα−CAR+ cells, and Flk1+PDGFRα+CAR+ cells). Flk1+PDGFRα+ cells and Flk1+PDGFRα− cells have been reported as cardiac and hematopoietic progenitor cells, respectively. We identified a novel population (Flk1+PDGFRα−CAR+ cells) with the potential to differentiate into not only hematopoietic cells and endothelial cells but also cardiomyocytes. Our findings indicate that CAR would be a novel and prominent marker for separating PSC- and embryo-derived Flk1+ mesodermal cells with distinct differentiation potentials. PMID:25762001

  9. Acute myeloid leukemia stem cell markers in prognosis and targeted therapy: potential impact of BMI-1, TIM-3 and CLL-1.

    PubMed

    Darwish, Noureldien H E; Sudha, Thangirala; Godugu, Kavitha; Elbaz, Osama; Abdelghaffar, Hasan A; Hassan, Emad E A; Mousa, Shaker A

    2016-09-06

    Acute myeloid leukemia (AML) patients show high relapse rates and some develop conventional chemotherapy resistance. Leukemia Stem Cells (LSCs) are the main player for AML relapses and drug resistance. LSCs might rely on the B-cell-specific Moloney murine leukemia virus integration site-1 (BMI-1) in promoting cellular proliferation and survival. Growth of LSCs in microenvironments that are deprived of nutrients leads to up-regulation of the signaling pathways during the progression of the disease, which may illustrate the sensitivity of LSCs to inhibitors of those signaling pathways as compared to normal cells. We analyzed the expression of LSC markers (CD34, CLL-1, TIM-3 and BMI-1) using quantitative RT-PCR in bone marrow samples of 40 AML patients of different FAB types (M1, M2, M3, M4, M5, and M7). We also studied the expression of these markers in 2 AML cell lines (Kasumi-1 and KG-1a) using flow cytometry and quantitative RT-PCR. The overexpression of TIM-3, CLL-1, and BMI-1 was markedly correlated with poor prognosis in these patients. Our in vitro findings demonstrate that targeting BMI-1, which markedly increased in the leukemic cells, was associated with marked decrease in leukemic burden. This study also presents results for blocking LSCs' surface markers CD44, CLL-1, and TIM-3. These markers may play an important role in elimination of AML. Our study indicates a correlation between the expression of markers TIM-3, CLL-1, and especially of BMI-1 and the aggressiveness of AML and thus the potential impact of prognosis and therapies that target LSCs on improving the cure rates.

  10. Expression of monoacylglycerol lipase as a marker of tumour invasion and progression in malignant melanoma.

    PubMed

    Baba, Yuko; Funakoshi, T; Mori, M; Emoto, K; Masugi, Y; Ekmekcioglu, S; Amagai, M; Tanese, K

    2017-12-01

    Accumulating evidence suggests that the lipid lytic enzyme monoacylglycerol lipase (MAGL) promotes tumour invasion and metastasis through up-regulation of pro-tumorigenic signalling lipids in several tumour cell lines. However, the expression status of MAGL in clinical melanoma tissues and its clinicopathological significance remain unclear. To correlate the tumour expression status of MAGL with the clinicopathological information of patients with malignant melanoma. Polymerase chain reaction (PCR) array screening was performed, and the results were validated using immunocytochemical analysis of tumour and non-tumour melanocytic cell lines. Immunohistochemical staining for MAGL was performed for 74 melanoma samples, including 48 primary and 26 metastatic tumours, in which the expression of MAGL was determined by evaluating the percentage of MAGL-positive tumour cells and the MAGL staining intensity. Finally, we analysed the association of MAGL expression status with tumour progression, tumour thickness and vascular invasion of the primary lesion. Immunocytochemical analysis revealed that MAGL was expressed in all 12 melanoma cell lines, but not in normal human epidermal melanocytes. In the immunohistochemical analysis, positive staining for MAGL was noted in 32 of 48 (64.5%) primary lesions, 14 of 17 (82.4%) lymph node metastatic lesions and 7 of 9 (77.8%) skin metastatic lesions. Metastatic tumours had a significantly higher staining intensity (P = 0.033 for lymph node, P = 0.010 for skin). In the analysis of primary lesions, higher MAGL expression correlated with greater tumour thickness (P = 0.015) and the presence of vascular invasion (P = 0.017). On further evaluation of MAGL-positive primary lesions, staining intensity of MAGL tended to be higher in deeper areas of the tumour mass. The expression of MAGL in tumour cells reflects the aggressiveness of melanoma cells and may serve as a marker of tumour progression. © 2017 European Academy of Dermatology and

  11. Glutathione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells.

    PubMed

    Scharmach, E; Hessel, S; Niemann, B; Lampen, A

    2009-11-30

    The human colon adenocarcinoma cell line Caco-2 is frequently used to study human intestinal metabolism and transport of xenobiotica. Previous studies have shown that both Caco-2 cells and human colon cells constitutively express the multigene family of detoxifying enzymes glutathione S-transferases (GSTs), particularly GST alpha and GST pi. GSTs may play a fundamental role in the molecular interplay between phase I, II enzymes and ABC-transporters. The gut fermentation product, butyrate, can modulate the potential for detoxification. The aim of this study was to investigate the basal expression of further cytosolic GSTs in Caco-2 cells during cell differentiation. In addition, a comparison was made with expression levels in MCF-7 and HepG2, two other cell types with barrier functions. Finally, the butyrate-mediated modulation of gene and protein expression was determined by real time PCR and western blot analysis. In Caco-2, gene and protein expression levels of GST alpha increased during cell differentiation. High levels of GSTO1 and GSTP1 were constantly expressed. No expression of GSTM5 and GSTT1 was detected. HepG2 expressed GSTO1 and MCF-7 GSTZ1 most intensively. No expression of GSTA5, GSTM5, or GSTP1 was detected in either cell. Incubation of Caco-2 cells with butyrate (5 mM) significantly induced GSTA1 and GSTM2 in proliferating Caco-2 cells. In differentiated cells, butyrate tended to increase GSTO1 and GSTP1. The results of this study show that a differentiation-dependent expression of GSTs in Caco-2 cells may reflect the in vivo situation and indicate the potential of butyrate to modify intestinal metabolism. GSTA1-A4 have been identified as good markers for cell differentiation. The Caco-2 cell line is a useful model for assessing the potential of food-related substances to modulate the GST expression pattern.

  12. Fructose-Bisphosphate Aldolase A Is a Potential Metastasis-Associated Marker of Lung Squamous Cell Carcinoma and Promotes Lung Cell Tumorigenesis and Migration

    PubMed Central

    Hao, Lihong; Song, Yang; Wang, Lan; Gong, Linlin; Liu, Lu; Qi, Xiaoyu; Hou, Zhaoyuan; Shao, Shujuan

    2014-01-01

    Fructose-bisphosphate aldolase A (ALDOA) is a key enzyme in glycolysis and is responsible for catalyzing the reversible conversion of fructose-1,6-bisphosphate to glyceraldehydes-3-phosphate and dihydroxyacetone phosphate. ALDOA contributes to various cellular functions such as muscle maintenance, regulation of cell shape and mobility, striated muscle contraction, actin filament organization and ATP biosynthetic process. Here, we reported that ALDOA is a highly expressed in lung squamous cell carcinoma (LSCC) and its expression level is correlated with LSCC metastasis, grades, differentiation status and poor prognosis. Depletion of ALDOA expression in the lung squamous carcinoma NCI-H520 cells reduces the capabilities of cell motility and tumorigenesis. These data suggest that ALDOA could be a potential marker for LSCC metastasis and a therapeutic target for drug development. PMID:24465716

  13. Fructose-bisphosphate aldolase a is a potential metastasis-associated marker of lung squamous cell carcinoma and promotes lung cell tumorigenesis and migration.

    PubMed

    Du, Sha; Guan, Zhuzhu; Hao, Lihong; Song, Yang; Wang, Lan; Gong, Linlin; Liu, Lu; Qi, Xiaoyu; Hou, Zhaoyuan; Shao, Shujuan

    2014-01-01

    Fructose-bisphosphate aldolase A (ALDOA) is a key enzyme in glycolysis and is responsible for catalyzing the reversible conversion of fructose-1,6-bisphosphate to glyceraldehydes-3-phosphate and dihydroxyacetone phosphate. ALDOA contributes to various cellular functions such as muscle maintenance, regulation of cell shape and mobility, striated muscle contraction, actin filament organization and ATP biosynthetic process. Here, we reported that ALDOA is a highly expressed in lung squamous cell carcinoma (LSCC) and its expression level is correlated with LSCC metastasis, grades, differentiation status and poor prognosis. Depletion of ALDOA expression in the lung squamous carcinoma NCI-H520 cells reduces the capabilities of cell motility and tumorigenesis. These data suggest that ALDOA could be a potential marker for LSCC metastasis and a therapeutic target for drug development.

  14. The expression of selected molecular markers of immune tolerance in psoriatic patients.

    PubMed

    Bartosińska, Joanna; Purkot, Joanna; Kowal, Małgorzata; Michalak-Stoma, Anna; Krasowska, Dorota; Chodorowska, Grażyna; Giannopoulos, Krzysztof

    2018-04-24

    Psoriasis is a chronic autoinflammatory disease whose underlying molecular mechanisms remain unclear. The disease is mediated by the cells and molecules of both the innate and adaptive immune systems. Some T cell surface molecules, including neuropilin-1 (NRP1), programmed death 1 (PD-1) and the human leukocyte antigen G (HLA-G), are known to play a role in the maintenance of immune tolerance. The aim of this study was to investigate HLA-G, NRP1 and programmed cell death gene (PDCD1) mRNA expression in psoriatic patients. The study included 72 psoriatic patients and 35 healthy individuals. Twentyone patients (29.17%) suffered from concomitant psoriatic arthritis. The mRNA expression of HLA-G, NRP1, and PDCD1 were determined using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The severity of skin lesions was assessed by means of the Psoriasis Area and Severity Index (PASI), Body Surface Area (BSA), the Patient Global Assessment (PGA), and the Dermatology Life Quality Index (DLQI). The median value of the PASI was 11.5, and of BSA was 15.8%. The expressions of NRP1 and PDCD1, but not HLA-G, were significantly lower in psoriatic patients in comparison with the control group. The expression of HLA-G, NRP1 and PDCD1 were not significantly different in the psoriatic arthritis and psoriasis vulgaris patients. The results of this study suggest that the molecular markers of immune tolerance, i.e., HLA-G, NRP1, and PD-1, may be involved in the immune response in psoriatic patients.

  15. The CD11a and Endothelial Protein C Receptor Marker Combination Simplifies and Improves the Purification of Mouse Hematopoietic Stem Cells

    PubMed Central

    Karimzadeh, Alborz; Scarfone, Vanessa M.; Varady, Erika; Chao, Connie; Grathwohl, Karin; Fathman, John W.; Fruman, David A.; Serwold, Thomas

    2018-01-01

    Abstract Hematopoietic stem cells (HSCs) are the self‐renewing multipotent progenitors to all blood cell types. Identification and isolation of HSCs for study has depended on the expression of combinations of surface markers on HSCs that reliably distinguish them from other cell types. However, the increasing number of markers required to isolate HSCs has made it tedious, expensive, and difficult for newcomers, suggesting the need for a simpler panel of HSC markers. We previously showed that phenotypic HSCs could be separated based on expression of CD11a and that only the CD11a negative fraction contained true HSCs. Here, we show that CD11a and another HSC marker, endothelial protein C receptor (EPCR), can be used to effectively identify and purify HSCs. We introduce a new two‐color HSC sorting method that can highly enrich for HSCs with efficiencies comparable to the gold standard combination of CD150 and CD48. Our results demonstrate that adding CD11a and EPCR to the HSC biologist's toolkit improves the purity of and simplifies isolation of HSCs. stem cells translational medicine 2018;7:468–476 PMID:29543389

  16. Changes in the expression of potassium channels during mouse T cell development

    PubMed Central

    1986-01-01

    In this report we have combined the whole-cell electrophysiological recording technique with flow microfluorometry to isolate phenotypically defined thymocytes and T lymphocytes. Results obtained showed that J11d-/Lyt-2-/L3T4- cells express none or very few delayed rectifier K+ channels, whereas most other Lyt-2-/L3T4- cells, as well as typical cortical thymocytes (Lyt-2+/L3T4+), do express K+ channels. Mature (Lyt-2+/L3T4- or Lyt-2-/L3T4+) thymocytes, which are heterogeneous for J11d expression, were also found to be heterogeneous for K+ channel expression. Consistent with this finding was the observation that the cortisone-resistant subpopulation of thymocytes, which express low levels of J11d, were enriched for cells expressing low levels of K+ channels. Mature phenotype peripheral T lymphocytes expressed very low levels of K+ channels, but upon activation with Con A were found to express high levels of K+ channels. The results suggest that K+ channel expression in T cells is developmentally regulated. Increased expression of the channel is induced in response to mitogenic signals throughout the T cell lineage. Expression of the channel, therefore, serves as a useful marker in defining steps in the T cell differentiation pathway. PMID:2431091

  17. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells.

    PubMed

    Peters, Derek T; Henderson, Christopher A; Warren, Curtis R; Friesen, Max; Xia, Fang; Becker, Caroline E; Musunuru, Kiran; Cowan, Chad A

    2016-05-01

    Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. © 2016. Published by The Company of Biologists Ltd.

  18. Expression of a novel stress-inducible protein, sestrin 2, in rat glomerular parietal epithelial cells

    PubMed Central

    Hamatani, Hiroko; Sakairi, Toru; Takahashi, Satoshi; Watanabe, Mitsuharu; Maeshima, Akito; Ohse, Takamoto; Pippin, Jeffery W.; Shankland, Stuart J.; Nojima, Yoshihisa

    2014-01-01

    Sestrin 2, initially identified as a p53 target protein, accumulates in cells exposed to stress and inhibits mammalian target of rapamycin (mTOR) signaling. In normal rat kidneys, sestrin 2 was selectively expressed in parietal epithelial cells (PECs), identified by the marker protein gene product 9.5. In adriamycin nephropathy, sestrin 2 expression decreased in PECs on day 14, together with increased expression of phosphorylated S6 ribosomal protein (P-S6RP), a downstream target of mTOR. Sestrin 2 expression was markedly decreased on day 42, coinciding with glomerulosclerosis and severe periglomerular fibrosis. In puromycin aminonucleoside nephropathy, decreased sestrin 2 expression, increased P-S6RP expression, and periglomerular fibrosis were observed on day 9, when massive proteinuria developed. These changes were transient and nearly normalized by day 28. In crescentic glomerulonephritis, sestrin 2 expression was not detected in cellular crescents, whereas P-S6RP increased. In conditionally immortalized cultured PECs, the forced downregulation of sestrin 2 by short hairpin RNA resulted in increased expression of P-S6RP and increased apoptosis. These data suggest that sestrin 2 is involved in PEC homeostasis by regulating the activity of mTOR. In addition, sestrin 2 could be a novel marker of PECs, and decreased expression of sestrin 2 might be a marker of PEC injury. PMID:25056347

  19. The Effect of Recombinant Tyrosine Hydroxylase Expression on the Neurogenic Differentiation Potency of Mesenchymal Stem Cells

    PubMed Central

    Duruksu, Gokhan; Karaoz, Erdal

    2018-01-01

    Objective Tyrosine hydroxylase (TH) is a rate-limiting enzyme in dopamine synthesis, making the enhancement of its activity a target for ensuring sufficient dopamine levels. Rat bone marrow mesenchymal stem cells (rBM-MSCs) are known to synthesize TH after differentiating into neuronal cells through chemical induction, but the effect of its ectopic expression on these cells has not yet been determined. This study investigated the effects of ectopic recombinant TH expression on the stemness characteristics of rBM-MSCs. Methods After cloning, a cell line with stable TH expression was maintained, and the proliferation, the gene expression profile, and differentiation potential of rBM-MSCs were analyzed. Analysis of the cells showed an increment in the proliferation rate that could be reversed by the neutralization of TH. Results The constitutive expression of TH in rBM-MSCs was successfully implemented, without significantly affecting their osteogenic and adipogenic differentiation potential. TH expression improved the expression of other neuronal markers, such as glial fibrillary acidic protein, β-tubulin, nestin, and c-Fos, confirming the neurogenic differentiation capacity of the stem cells. The expression of brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) significantly increased after the chemical induction of neurogenic differentiation. Conclusion In this study, the expression of recombinant TH improved the neuroprotective effect of MSCs by upregulating the expression of BDNF and CNTF. Although the neuronal markers were upregulated, the expression of recombinant TH alone in rBM-MSCs was not sufficient for MSCs to differentiate into neurogenic cell lines. PMID:29656620

  20. SYTO probes: markers of apoptotic cell demise.

    PubMed

    Wlodkowic, Donald; Skommer, Joanna

    2007-10-01

    As mechanistic studies on tumor cell death advance towards their ultimate translational goal, there is a need for specific, rapid, and high-throughput analytical tools to detect diverse cell demise modes. Patented DNA-binding SYTO probes, for example, are gaining increasing interest as easy-to-use markers of caspase-dependent apoptotic cell death. They are proving convenient for tracking apoptosis in diverse hematopoietic cell lines and primary tumor samples, and, due to their spectral characteristics, appear to be useful for the development of multiparameter flow cytometry assays. Herein, several protocols for multiparametric assessment of apoptotic events using SYTO probes are provided. There are protocols describing the use of green fluorescent SYTO 16 and red fluorescent SYTO 17 dyes in combination with plasma membrane permeability markers. Another protocol highlights the multiparametric use of SYTO 16 dye in conjunction with the mitochondrial membrane potential sensitive probe, tetramethylrhodamine methyl ester (TMRM), and the plasma membrane permeability marker, 7-aminoactinomycin D (7-AAD).

  1. Delayed Cutaneous Wound Healing and Aberrant Expression of Hair Follicle Stem Cell Markers in Mice Selectively Lacking Ctip2 in Epidermis

    PubMed Central

    Bajaj, Gaurav; Guha, Gunjan; Wang, Zhixing; Jang, Hyo-Sang; Leid, Mark; Indra, Arup Kumar; Ganguli-Indra, Gitali

    2012-01-01

    Background COUP-TF interacting protein 2 [(Ctip2), also known as Bcl11b] is an important regulator of skin homeostasis, and is overexpressed in head and neck cancer. Ctip2ep−/− mice, selectively ablated for Ctip2 in epidermal keratinocytes, exhibited impaired terminal differentiation and delayed epidermal permeability barrier (EPB) establishment during development, similar to what was observed in Ctip2 null (Ctip2−/−) mice. Considering that as an important role of Ctip2, and the fact that molecular networks which underlie cancer progression partially overlap with those responsible for tissue remodeling, we sought to determine the role of Ctip2 during cutaneous wound healing. Methodology/Principal Findings Full thickness excisional wound healing experiments were performed on Ctip2L2/L2 and Ctip2ep−/− animals per time point and used for harvesting samples for histology, immunohistochemistry (IHC) and immunoblotting. Results demonstrated inherent defects in proliferation and migration of Ctip2 lacking keratinocytes during re-epithelialization. Mutant mice exhibited reduced epidermal proliferation, delayed keratinocyte activation, altered cell-cell adhesion and impaired ECM development. Post wounding, Ctip2ep−/− mice wounds displayed lack of E-Cadherin suppression in the migratory tongue, insufficient expression of alpha smooth muscle actin (alpha SMA) in the dermis, and robust induction of K8. Importantly, dysregulated expression of several hair follicle (HF) stem cell markers such as K15, NFATc1, CD133, CD34 and Lrig1 was observed in mutant skin during wound repair. Conclusions/Significance Results confirm a cell autonomous role of keratinocytic Ctip2 to modulate cell migration, proliferation and/or differentiation, and to maintain HF stem cells during cutaneous wounding. Furthermore, Ctip2 in a non-cell autonomous manner regulated granulation tissue formation and tissue contraction during wound closure. PMID:22383956

  2. Utility of MRI versus tumor markers for post-treatment surveillance of marker-positive CNS germ cell tumors.

    PubMed

    Cheung, Victoria; Segal, Devorah; Gardner, Sharon L; Zagzag, David; Wisoff, Jeffrey H; Allen, Jeffrey C; Karajannis, Matthias A

    2016-09-01

    Patients with marker-positive central nervous system (CNS) germ cell tumors are typically monitored for tumor recurrence with both tumor markers (AFP and b-hCG) and MRI. We hypothesize that the recurrence of these tumors will always be accompanied by an elevation in tumor markers, and that surveillance MRI may not be necessary. We retrospectively identified 28 patients with CNS germ cell tumors treated at our institution that presented with an elevated serum or cerebrospinal fluid (CSF) tumor marker at the time of diagnosis. We then identified those who had a tumor recurrence after having been in remission and whether each recurrence was detected via MRI changes, elevated tumor markers, or both. Four patients suffered a tumor recurrence. Only one patient had simultaneously elevated tumor markers and MRI evidence of recurrence. Two patients had evidence of recurrence on MRI without corresponding elevations in serum or CSF tumor markers. One patient had abnormal tumor markers with no evidence of recurrence on MRI until 6 months later. We conclude that in patients with marker-positive CNS germ cell tumors who achieve complete remission, continued surveillance imaging in addition to measurement of tumor markers is indicated to detect recurrences.

  3. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    PubMed Central

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression.Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells. PMID:22952666

  4. NCR1 Expression Identifies Canine Natural Killer Cell Subsets with Phenotypic Similarity to Human Natural Killer Cells

    PubMed Central

    Foltz, Jennifer A.; Somanchi, Srinivas S.; Yang, Yanwen; Aquino-Lopez, Arianexys; Bishop, Erin E.; Lee, Dean A.

    2016-01-01

    Canines spontaneously develop many cancers similar to humans – including osteosarcoma, leukemia, and lymphoma – offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46), the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3−/NKp46+ cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3−/NKp46+ NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3−/NKp46+ cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and granulocyte-macrophage colony-stimulating factor as measured by Luminex. Similar to human NK cells, CD3−/NKp46+ cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median = 20,283-fold in 21 days). Furthermore, we identify a minor Null population (CD3−/CD21−/CD14−/NKp46−) with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3−/NKp46+ cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46+ NK cells and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46− subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy. PMID:27933061

  5. Highly osteogenic PDL stem cell clones specifically express elevated levels of ICAM1, ITGB1 and TERT.

    PubMed

    Sununliganon, Laddawun; Singhatanadgit, Weerachai

    2012-01-01

    Cells derived from the periodontal ligament (PDL) have previously been reported to have stem cell-like characteristics (PDL stem cells; PDLSCs) and play an important part in bone engineering, including that of alveolar bone. However, these populations have been heterogeneous, and thus far no specific marker has yet been established from adult human stem cells derived from PDL tissue. We have previously isolated highly purified single cell-derived PDLSC clones and delineated their phenotypic and functional characteristics. In this report, we further obtained three homogeneous and distinct PDLSC clones demonstrating low, moderate and high mineralized matrix forming ability-namely PC12, PC4 and PC3, respectively, and the expression of mesenchymal stem cell pathway-specific genes in these clones was investigated. PCR array revealed that the expression of intercellular adhesion molecule 1 (ICAM1), integrin beta 1 (ITGB1) and telomerase reverse transcriptase (TERT) was associated with highly osteogenic PDLSC clones, as determined by the expression of key osteoblastic markers and their ability to form alizarin red S positive mineralized matrix in vitro. The present results suggest that these three mesenchymal stem cell-associated markers could potentially be used to isolate PDLSCs with high osteogenic capability for engineering new bone.

  6. The CD11a and Endothelial Protein C Receptor Marker Combination Simplifies and Improves the Purification of Mouse Hematopoietic Stem Cells.

    PubMed

    Karimzadeh, Alborz; Scarfone, Vanessa M; Varady, Erika; Chao, Connie; Grathwohl, Karin; Fathman, John W; Fruman, David A; Serwold, Thomas; Inlay, Matthew A

    2018-06-01

    Hematopoietic stem cells (HSCs) are the self-renewing multipotent progenitors to all blood cell types. Identification and isolation of HSCs for study has depended on the expression of combinations of surface markers on HSCs that reliably distinguish them from other cell types. However, the increasing number of markers required to isolate HSCs has made it tedious, expensive, and difficult for newcomers, suggesting the need for a simpler panel of HSC markers. We previously showed that phenotypic HSCs could be separated based on expression of CD11a and that only the CD11a negative fraction contained true HSCs. Here, we show that CD11a and another HSC marker, endothelial protein C receptor (EPCR), can be used to effectively identify and purify HSCs. We introduce a new two-color HSC sorting method that can highly enrich for HSCs with efficiencies comparable to the gold standard combination of CD150 and CD48. Our results demonstrate that adding CD11a and EPCR to the HSC biologist's toolkit improves the purity of and simplifies isolation of HSCs. Stem Cells Translational Medicine 2018;7:468-476. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  7. VISA is Required for B Cell Expression of TLR7

    PubMed Central

    Xu, Liang-Guo; Jin, Lei; Zhang, Bi-Cheng; Akerlund, Janie L.; Shu, Hong-Bing; Cambier, John C.

    2011-01-01

    B cells play a critical role in the initialization and development of the Systemic Lupus Erythematosus (SLE) that is dependent on the expression of the endosomal ssRNA receptor TLR7. Previous studies have established that B cell expression of TLR7 is controlled by the Type I IFN secreted by Plasmacytoid Dendritic Cells (PDC). Here we report that VISA, also known as MAVS, IPS-1 and CardIf, essential for RIG-I/MDA5-mediated signaling following sensing of cytosolic RNA, regulate B cell expression of TLR7 and CD23. We found that B cells from VISA−/− mouse express reduced TLR7, but normal basal levels of Type I IFN. We also show that while IFNβ and TLR7 agonists synergize to promote TLR7 expression in VISA−/− B cells, they do not fully complement the defect seen in VISA−/− cells. Cell transfer experiments revealed that the observed effects of VISA−/− are B cell intrinsic. The reduced TLR7 expression in B cells is correlated with impaired TLR7 agonist-induced up-regulation of activation markers CD69 and CD86, cell proliferation, production of IFNα, TNF, IL-12 and NF-κB activation. Finally, studies indicate that genetic background may influence the observed phenotype of our VISA−/− mice, since VISA−/− B cells differ in CD23 and TLR7 expression when on C57BL/6 vs 129Sv-C57BL/6 background. Thus, our findings suggest an unexpected link between VISA-mediated cytosolic RLR signaling and autoimmunity. PMID:22105994

  8. VISA is required for B cell expression of TLR7.

    PubMed

    Xu, Liang-Guo; Jin, Lei; Zhang, Bi-Cheng; Akerlund, Linda J; Shu, Hong-Bing; Cambier, John C

    2012-01-01

    B cells play a critical role in the initialization and development of the systemic lupus erythematosus that is dependent on the expression of the endosomal ssRNA receptor TLR7. Previous studies have established that B cell expression of TLR7 is controlled by the type I IFN secreted by plasmacytoid dendritic cells. In this article, we report that VISA, also known as MAVS, IPS-1, and CardIf, essential for RIG-I/MDA5-mediated signaling following sensing of cytosolic RNA, regulate B cell expression of TLR7 and CD23. We found that B cells from a VISA(-/-) mouse express reduced TLR7 but normal basal levels of type I IFN. We also show that although IFN-β and TLR7 agonists synergize to promote TLR7 expression in VISA(-/-) B cells, they do not fully complement the defect seen in VISA(-/-) cells. Cell transfer experiments revealed that the observed effects of VISA(-/-) are B cell intrinsic. The reduced TLR7 expression in B cells is correlated with impaired TLR7 agonist-induced upregulation of activation markers CD69 and CD86, cell proliferation, production of IFN-α, TNF, and IL-12, and NF-κB activation. Finally, studies indicate that genetic background may influence the observed phenotype of our VISA(-/-) mice, because VISA(-/-) B cells differ in CD23 and TLR7 expression when on C57BL/6 versus 129Sv-C57BL/6 background. Thus, our findings suggest an unexpected link between VISA-mediated cytosolic RLR signaling and autoimmunity.

  9. Marker expression, behaviors, and responses vary in different lines of conditionally immortalized cultured podocytes

    PubMed Central

    Chittiprol, Seetharamaiah; Chen, Phylip; Petrovic-Djergovic, Danica; Eichler, Tad

    2011-01-01

    The state-of-the-art cultured podocyte is conditionally immortalized by expression of a temperature-sensitive mutant of the SV40 large-T antigen. These cultures proliferate at 33°C and differentiate at 37°C into arborized cells that more closely resemble in vivo podocytes. However, the degree of resemblance remains controversial. In this study, several parameters were measured in podocyte cell lines derived from mouse (JR, KE), human (MS), and rat (HK). In all lines, the quantities of NEPH1 and podocin proteins and NEPH1 and SYNPO mRNAs were comparable to glomeruli, while synaptopodin and nephrin proteins and NPHS1 and NPHS2 mRNAs were <5% of glomerular levels. Expression of Wilms' tumor-1 (WT1) mRNA in mouse lines was comparable to glomeruli, but rat and human lines expressed little WT1. Undifferentiated human and mouse lines had similar proliferation rates that decreased after differentiation, while the rate in rat cells remained constant. The motility of different lines varied as measured by both general motility and wound-healing assays. The toxicity of puromycin aminonucleoside was MS ∼ JR >> KE, and of doxorubicin was JR ∼ KE > MS, while HK cells were almost unaffected. Process formation was largely a result of contractile action after formation of lamellipodia. These findings demonstrate dramatic differences in marker expression, response to toxins, and motility between lines of podocytes from different species and even between similarly-derived mouse lines. PMID:21632959

  10. Marker expression, behaviors, and responses vary in different lines of conditionally immortalized cultured podocytes.

    PubMed

    Chittiprol, Seetharamaiah; Chen, Phylip; Petrovic-Djergovic, Danica; Eichler, Tad; Ransom, Richard F

    2011-09-01

    The state-of-the-art cultured podocyte is conditionally immortalized by expression of a temperature-sensitive mutant of the SV40 large-T antigen. These cultures proliferate at 33°C and differentiate at 37°C into arborized cells that more closely resemble in vivo podocytes. However, the degree of resemblance remains controversial. In this study, several parameters were measured in podocyte cell lines derived from mouse (JR, KE), human (MS), and rat (HK). In all lines, the quantities of NEPH1 and podocin proteins and NEPH1 and SYNPO mRNAs were comparable to glomeruli, while synaptopodin and nephrin proteins and NPHS1 and NPHS2 mRNAs were <5% of glomerular levels. Expression of Wilms' tumor-1 (WT1) mRNA in mouse lines was comparable to glomeruli, but rat and human lines expressed little WT1. Undifferentiated human and mouse lines had similar proliferation rates that decreased after differentiation, while the rate in rat cells remained constant. The motility of different lines varied as measured by both general motility and wound-healing assays. The toxicity of puromycin aminonucleoside was MS ∼ JR > KE, and of doxorubicin was JR ∼ KE > MS, while HK cells were almost unaffected. Process formation was largely a result of contractile action after formation of lamellipodia. These findings demonstrate dramatic differences in marker expression, response to toxins, and motility between lines of podocytes from different species and even between similarly-derived mouse lines.

  11. Trans-differentiation of the adipose tissue-derived stem cells into neuron-like cells expressing neurotrophins by selegiline.

    PubMed

    Abdanipour, Alireza; Tiraihi, Taki; Delshad, Alireza

    2011-01-01

    Adult stem cells (ASC) are undifferentiated cells found throughout the body. These cells are promising tools for cell replacement therapy in neurodegenerative disease. Adipose tissue is the most abundant and accessible source of ASC. This study was conducted to evaluate effect of selegiline on differentiation of adipose-derived stem cells (ADSC) into functional neuron-like cells (NLC), and also level of the neurotrophin expression in differentiated cells. ADSC were transdifferentiated into NLC using selegiline where CD90, CD49d, CD31, CD106 and CD45 were used as markers for ADSC identification. Lipogenic and osteogenic differentiation of ADSC were used to characterize the ADSC. ADSC were treated with selegiline at different concentrations (from 10(-6) to 10(-11) mM) and time points (3, 6, 12, 24 and 48 h). Percentage of viable cells, nestin and neurofilament 68 (NF-68) immunoreactive cells were used as markers for differentiation. The optimal dose for neurotrophin expressions in differentiating cells was evaluated using reverse transcriptase-PCR. NLC function was evaluated by loading and unloading with FM1-43 dye. ADSC were immunoreactive to CD90 (95.67 ± 2.26), CD49d (71.52 ± 6.64) and CD31 (0.6 ± 0.86), but no immunoreactivity was detected for CD106 and CD45. The results of neural differentiation showed the highest percentage of nestin and NF-68 positive cells at 10(-9) mM concentration of selegiline (exposed for 24 h). The differentiated cells expressed synapsin and neurotrophin genes except brain-derived neurotrophic factor. ADSC can be an alternative source in cell-based therapy for neurodegenerative diseases using selegiline to induce ADSC differentiation to neuronal lineage.

  12. Pancreatic β-Cells Express the Fetal Islet Hormone Gastrin in Rodent and Human Diabetes.

    PubMed

    Dahan, Tehila; Ziv, Oren; Horwitz, Elad; Zemmour, Hai; Lavi, Judith; Swisa, Avital; Leibowitz, Gil; Ashcroft, Frances M; In't Veld, Peter; Glaser, Benjamin; Dor, Yuval

    2017-02-01

    β-Cell failure in type 2 diabetes (T2D) was recently proposed to involve dedifferentiation of β-cells and ectopic expression of other islet hormones, including somatostatin and glucagon. Here we show that gastrin, a stomach hormone typically expressed in the pancreas only during embryogenesis, is expressed in islets of diabetic rodents and humans with T2D. Although gastrin in mice is expressed in insulin + cells, gastrin expression in humans with T2D occurs in both insulin + and somatostatin + cells. Genetic lineage tracing in mice indicates that gastrin expression is turned on in a subset of differentiated β-cells after exposure to severe hyperglycemia. Gastrin expression in adult β-cells does not involve the endocrine progenitor cell regulator neurogenin3 but requires membrane depolarization, calcium influx, and calcineurin signaling. In vivo and in vitro experiments show that gastrin expression is rapidly eliminated upon exposure of β-cells to normal glucose levels. These results reveal the fetal hormone gastrin as a novel marker for reversible human β-cell reprogramming in diabetes. © 2017 by the American Diabetes Association.

  13. Pancreatic β-Cells Express the Fetal Islet Hormone Gastrin in Rodent and Human Diabetes

    PubMed Central

    Dahan, Tehila; Ziv, Oren; Horwitz, Elad; Zemmour, Hai; Lavi, Judith; Swisa, Avital; Leibowitz, Gil; Ashcroft, Frances M.; In’t Veld, Peter

    2017-01-01

    β-Cell failure in type 2 diabetes (T2D) was recently proposed to involve dedifferentiation of β-cells and ectopic expression of other islet hormones, including somatostatin and glucagon. Here we show that gastrin, a stomach hormone typically expressed in the pancreas only during embryogenesis, is expressed in islets of diabetic rodents and humans with T2D. Although gastrin in mice is expressed in insulin+ cells, gastrin expression in humans with T2D occurs in both insulin+ and somatostatin+ cells. Genetic lineage tracing in mice indicates that gastrin expression is turned on in a subset of differentiated β-cells after exposure to severe hyperglycemia. Gastrin expression in adult β-cells does not involve the endocrine progenitor cell regulator neurogenin3 but requires membrane depolarization, calcium influx, and calcineurin signaling. In vivo and in vitro experiments show that gastrin expression is rapidly eliminated upon exposure of β-cells to normal glucose levels. These results reveal the fetal hormone gastrin as a novel marker for reversible human β-cell reprogramming in diabetes. PMID:27864307

  14. Loss of c-KIT expression in thyroid cancer cells.

    PubMed

    Franceschi, Sara; Lessi, Francesca; Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria

    2017-01-01

    Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression.

  15. Loss of c-KIT expression in thyroid cancer cells

    PubMed Central

    Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria

    2017-01-01

    Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression. PMID:28301608

  16. Expression of CD44 and CD29 by PEComa cells suggests their possible origin of mesenchymal stem cells

    PubMed Central

    Liu, Ruixue; Jia, Wei; Zou, Hong; Wang, Xinhua; Ren, Yan; Zhao, Jin; Wang, Lianghai; Li, Man; Qi, Yan; Shen, Yaoyuan; Liang, Weihua; Jiang, Jinfang; Sun, Zhenzhu; Pang, Lijuan; Li, Feng

    2015-01-01

    Background: Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. The perivascular epithelioid cell (PEC) co-expresses melanocytic and muscle markers. Since no normal counterpart to the PEC has ever been identified in any normal tissue, the cell origin of these tumors is still uncertain. Although, several hypotheses have recently been advanced to explain the histogenesis of PEComa, it remains unclear. Methods: The aim of this study was to discuss whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of PEComa. For this purpose, we detected the immunoexpression of 5 kinds of stem cell markers on PEComas, including CD29, CD44, CD133, ALDH1, and nestin. In addition to observed histopathologic morphology, we also performed PEComa relevant clinical diagnostic markers (HMB-45, SMA, melan-A, Desmin, Ki-67, S-100 and TFE3) to identify whether they belonged to PEComas. Results: Our study included 13 PEComa samples, and we obtained positive immunoexpression results as follows: CD29 (13/13), CD44 (8/13), ALDH1 (10/13), nestin (1/13), and CD133 (0/13). Conclusions: Since CD44 and CD29 are surface proteins associated with MSCs, these results suggest that PEComa might arise from MSCs. However, whether MSCs are the origin of PEComa needs to be further explored in the future. PMID:26722497

  17. The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells.

    PubMed

    Nabatov, Alexey A; Raginov, Ivan S

    2015-01-01

    This study aimed to clarify interactions of the pattern-recognition receptor DC-SIGN with cells from the HIV-infected peripheral blood lymphocyte cultures. Cells from control and HIV-infected peripheral blood lymphocyte cultures were tested for the surface expression of DC-SIGN ligands. The DC-SIGN ligand expressing cells were analyzed for the role of DC-SIGN-ligand interaction in their functionality. In the vast majority of experiments HIV-infected lymphocytes did not express detectable DC-SIGN ligands on their cell surfaces. In contrast, non-infected cells, carrying NK-specific marker CD56, expressed cell surface DC-SIGN ligands. The weakly polysialylated CD56 was identified as a novel DC-SIGN ligand. The treatment of DC-SIGN expressing dendritic cells with anti-DC-SIGN antibodies increased the anti-dendritic cell cytotoxicity of CD56(pos) cells. The treatment of CD56(pos) cells with a peptide, blocking the weakly polysialylated CD56-specifc trans-homophilic interactions, inhibited their anti-dendritic cells cytotoxicity. The interaction between DC-SIGN and CD56 inhibits homotypic intercellular interactions of CD56(pos) cells and protects DC-SIGN expressing dendritic cells against CD56(pos) cell-mediated cytotoxicity. This finding can have an impact on the development of approaches to HIV infection and cancer therapy as well as in transplantation medicine.

  18. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging

    PubMed Central

    Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D

    2010-01-01

    Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269

  19. The influence of TSA and VPA on the in vitro differentiation of bone marrow mesenchymal stem cells into neuronal lineage cells: Gene expression studies.

    PubMed

    Fila-Danilow, Anna; Borkowska, Paulina; Paul-Samojedny, Monika; Kowalczyk, Malgorzata; Kowalski, Jan

    2017-03-27

    Epigenetic mechanisms regulate the transcription of genes, which can affect the differentiation of MSCs. The aim of the current work is to determine how the histone deacetylase inhibitors TSA and VPA affect the expression of neuronal lineage genes in a culture of rat MSCs (rMSCs). We analyzed the expression of early neuron marker gene (Tubb3), mature neuron markers genes (Vacht, Th, Htr2a) and the oligodendrocyte progenitor marker gene (GalC). Moreover, changes in the gene expression after three different periods of exposure to TSA and VPA were investigated for the first time. After six days of exposition to TSA and VPA, the expression of Tubb3 and GalC decreased, while the expression of Th increased. The highest increase of VAChT expression was observed after three days of TSA and VPA treatment. A decrease in Htr2a gene expression was observed after TSA treatment and an increase was observed after VPA treatment. We also observed that TSA and VPA inhibited cell proliferation and the formation of neurospheres in the rMSCs culture. The central findings of our study are that TSA and VPA affect the expression of neuronal lineage genes in an rMSCs culture. After exposure to TSA or VPA, the expression of early neuronal gene decreases but equally the expression of mature neuron genes increases. After TSA and VPA treatment ER of the oligodendrocyte progenitor marker decreased. TSA and VPA inhibit cell proliferation and the formation of neurospheres in rMSCs culture.

  20. In Vitro Expression of Cytokeratin 19 in Adipose-Derived Stem Cells Is Induced by Epidermal Growth Factor.

    PubMed

    Chen, Shangliang; Wang, Mingzhu; Chen, Xinglu; Chen, Shaolian; Liu, Li; Zhu, Jianbin; Wang, Jinhui; Yang, Xiaorong; Cai, Xiangsheng

    2018-06-21

    BACKGROUND Cytokeratin 19 (CK19) is a typical epithelial marker. In this study, we determined whether epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) could enhance CK19 expression in adipose-derived stem cells (ADSCs), thereby inducing the differentiation of ADSCs into epithelial-like cells. MATERIAL AND METHODS ADSCs were isolated from perinephric fat, and the expression of CD29, CD90, and CD105 was confirmed. Following isolation, ADSCs were cultured in static medium or medium containing EGF or bFGF. RESULTS Flow cytometry revealed that EGF and bFGF could alter mesenchymal stem cell markers as well as the cell cycle of ADSCs. Western blotting and immunofluorescence revealed that after 14 days, EGF treatment enhanced the expression of CK19 in ADSCs. CONCLUSIONS Our findings offer important insight for the clinical use of ADSCs in the generation of epithelial-like cells in the future.

  1. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression.more » Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time.« less

  2. Regulatory role of hexosamine biosynthetic pathway on hepatic cancer stem cell marker CD133 under low glucose conditions

    NASA Astrophysics Data System (ADS)

    Lin, Shu-Hai; Liu, Tengfei; Ming, Xiaoyan; Tang, Zhi; Fu, Li; Schmitt-Kopplin, Philippe; Kanawati, Basem; Guan, Xin-Yuan; Cai, Zongwei

    2016-02-01

    Cancer was hypothesized to be driven by cancer stem cells (CSCs), but the metabolic determinants of CSC-like phenotype still remain elusive. Here, we present that hexosamine biosynthetic pathway (HBP) at least in part rescues cancer cell fate with inactivation of glycolysis. Firstly, metabolomic analysis profiled cellular metabolome in CSCs of hepatocellular carcinoma using CD133 cell-surface marker. The metabolic signatures of CD133-positive subpopulation compared to CD133-negative cells highlighted HBP as one of the distinct metabolic pathways, prompting us to uncover the role of HBP in maintenance of CSC-like phenotype. To address this, CSC-like phenotypes and cell survival were investigated in cancer cells under low glucose conditions. As a result, HBP inhibitor azaserine reduced CD133-positive subpopulation and CD133 expression under high glucose condition. Furthermore, treatment of N-Acetylglucosamine in part restores CD133-positive subpopulation when either 2.5 mM glucose in culture media or glycolytic inhibitor 2-deoxy-D-glucose in HCC cell lines was applied, enhancing CD133 expression as well as promoting cancer cell survival. Together, HBP might be a key metabolic determinant in the functions of hepatic CSC marker CD133.

  3. Human Uterine Leiomyoma Stem/Progenitor Cells Expressing CD34 and CD49b Initiate Tumors In Vivo

    PubMed Central

    Ono, Masanori; Moravek, Molly B.; Coon, John S.; Navarro, Antonia; Monsivais, Diana; Dyson, Matthew T.; Druschitz, Stacy A.; Malpani, Saurabh S.; Serna, Vanida A.; Qiang, Wenan; Chakravarti, Debabrata; Kim, J. Julie; Bulun, Serdar E.

    2015-01-01

    Context: Uterine leiomyoma is the most common benign tumor in reproductive-age women. Using a dye-exclusion technique, we previously identified a side population of leiomyoma cells exhibiting stem cell characteristics. However, unless mixed with mature myometrial cells, these leiomyoma side population cells did not survive or grow well in vitro or in vivo. Objective: The objective of this study was to identify cell surface markers to isolate leiomyoma stem/progenitor cells. Design: Real-time PCR screening was used to identify cell surface markers preferentially expressed in leiomyoma side population cells. In vitro colony-formation assay and in vivo tumor-regeneration assay were used to demonstrate functions of leiomyoma stem/progenitor cells. Results: We found significantly elevated CD49b and CD34 gene expression in side population cells compared with main population cells. Leiomyoma cells were sorted into three populations based on the expression of CD34 and CD49b: CD34+/CD49b+, CD34+/CD49b−, and CD34−/CD49b− cells, with the majority of the side population cells residing in the CD34+/CD49b+ fraction. Of these populations, CD34+/CD49b+ cells expressed the lowest levels of estrogen receptor-α, progesterone receptor, and α-smooth muscle actin, but the highest levels of KLF4, NANOG, SOX2, and OCT4, confirming their more undifferentiated status. The stemness of CD34+/CD49b+ cells was also demonstrated by their strongest in vitro colony-formation capacity and in vivo tumor-regeneration ability. Conclusions: CD34 and CD49b are cell surface markers that can be used to enrich a subpopulation of leiomyoma cells possessing stem/progenitor cell properties; this technique will accelerate efforts to develop new therapies for uterine leiomyoma. PMID:25658015

  4. The Prognostic Role of Cancer Stem Cell Markers for Long-term Outcome After Resection of Colonic Liver Metastases.

    PubMed

    Spelt, Lidewij; Sasor, Agata; Ansari, Daniel; Hilmersson, Katarzyna Said; Andersson, Roland

    2018-01-01

    To assess the expression of cancer stem cell (CSC) markers CD44, CD133 and CD24 in colon cancer liver metastases and analyse their predictive value for overall survival (OS) and disease-free survival (DFS) after liver resection. Patients operated on for colon cancer liver metastases were included. CSC marker expression was determined through immunohistochemistry analysis. OS and DFS were compared between marker-positive and marker-negative patients. Multivariate analysis was performed to select predictive variables for OS and DFS. CD133-positive patients had a worse DFS than CD133-negative patients, with a median DFS of 12 and 25 months (p=0.051). Multivariate analysis selected CD133 expression as a significant predictor for DFS. CD44 and CD24 were not found to predict OS or DFS. CD133 expression in colonic liver metastases is a negative prognostic factor for DFS after liver resection. In the future, CD133 could be used as a biomarker for risk stratification, and possibly for developing novel targeted therapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers.

    PubMed

    Wingate, K; Bonani, W; Tan, Y; Bryant, S J; Tan, W

    2012-04-01

    The importance of mesenchymal stem cells (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. Electrospinning and photopolymerization techniques were used to fabricate a three-dimensional (3-D) polyethylene glycol dimethacrylate nanofiber hydrogel matrix with tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus of the hydrated 3-D matrices ranged from 2 to 15 kPa, similar to the in vivo elasticity of the intima basement membrane and media layer. MSC seeded on rigid matrices (8-15 kPa) showed an increase in cell area compared with those seeded on soft matrices (2-5 kPa). Furthermore, the matrix elasticity guided the cells to express different vascular-specific phenotypes with high differentiation efficiency. Around 95% of MSC seeded on the 3-D matrices with an elasticity of 3 kPa showed Flk-1 endothelial markers within 24h, while only 20% of MSC seeded on the matrices with elasticity >8 kPa demonstrated Flk-1 marker. In contrast, ∼80% of MSC seeded on 3-D matrices with elasticity >8 kPa demonstrated smooth muscle α-actin marker within 24h, while fewer than 10% of MSC seeded on 3-D matrices with elasticity <5 kPa showed α-actin markers. The ability to control MSC differentiation into either endothelial or smooth muscle-like cells based purely on the local elasticity of the substrate could be a powerful tool for vascular tissue regeneration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Expression of lumican in hidroacanthoma simplex and clonal-type seborrheic keratosis as a potent differential diagnostic marker.

    PubMed

    Takayama, Ryoko; Ansai, Shin-Ichi; Ishiwata, Toshiyuki; Yamamoto, Tetsushi; Matsuda, Yoko; Naito, Zenya; Kawana, Seiji

    2014-08-01

    Lumican, a member of the small leucine-rich proteoglycan family, regulates the assembly and diameter of collagen fibers in the extracellular matrix of various tissues. The lumican expression correlates with pathological conditions and the growth and metastasis of various malignancies. In cutaneous neoplasms, the lumican expression is lower in advanced-stage malignant melanomas that invade the dermis than in early-stage melanomas. Furthermore, we have recently reported that the expression pattern of lumican is different from that of actinic keratosis and the Bowen disease. Lumican is positive in the poroid cells of intraepidermal sweat ducts; therefore, we examined the expression patterns of lumican in acanthotic-type seborrheic keratosis and Pinkus-type poroma followed by clonal-type seborrheic keratosis and hidroacanthoma simplex. The neoplastic cells of acanthotic-type seborrheic keratosis exhibited positive immunostaining in only 1 of 31 cases (3.23%), whereas the poroid cells of Pinkus-type poroma exhibited positive immunoreactivity in 26 of 28 patients (92.8%). In the hidroacanthoma simplex cases, lumican was expressed in poroid cells forming intraepidermal nests in 22 of 28 patients (78.6%), whereas the neoplastic cells in most cases of clonal-type seborrheic keratosis were negative for lumican. In some seborrheic keratosis cases that were positive for lumican in neoplastic cells, lumican was observed in squamoid cells but not in basaloid cells. Therefore, it is necessary to evaluate the immunoreactivity of lumican in seborrheic keratosis and in basaloid cells. These findings suggest that lumican is a potent differential diagnostic marker that distinguishes hidroacanthoma simplex from clonal-type seborrheic keratosis.

  7. Distinct Expression of Phenotypic Markers in Placodes- and Neural Crest-Derived Afferent Neurons Innervating the Rat Stomach.

    PubMed

    Trancikova, Alzbeta; Kovacova, Eva; Ru, Fei; Varga, Kristian; Brozmanova, Mariana; Tatar, Milos; Kollarik, Marian

    2018-02-01

    Visceral pain is initiated by activation of primary afferent neurons among which the capsaicin-sensitive (TRPV1-positive) neurons play an important role. The stomach is a common source of visceral pain. Similar to other organs, the stomach receives dual spinal and vagal afferent innervation. Developmentally, spinal dorsal root ganglia (DRG) and vagal jugular neurons originate from embryonic neural crest and vagal nodose neurons originate from placodes. In thoracic organs the neural crest- and placodes-derived TRPV1-positive neurons have distinct phenotypes differing in activation profile, neurotrophic regulation and reflex responses. It is unknown to whether such distinction exists in the stomach. We hypothesized that gastric neural crest- and placodes-derived TRPV1-positive neurons express phenotypic markers indicative of placodes and neural crest phenotypes. Gastric DRG and vagal neurons were retrogradely traced by DiI injected into the rat stomach wall. Single-cell RT-PCR was performed on traced gastric neurons. Retrograde tracing demonstrated that vagal gastric neurons locate exclusively into the nodose portion of the rat jugular/petrosal/nodose complex. Gastric DRG TRPV1-positive neurons preferentially expressed markers PPT-A, TrkA and GFRα 3 typical for neural crest-derived TRPV1-positive visceral neurons. In contrast, gastric nodose TRPV1-positive neurons preferentially expressed markers P2X 2 and TrkB typical for placodes-derived TRPV1-positive visceral neurons. Differential expression of neural crest and placodes markers was less pronounced in TRPV1-negative DRG and nodose populations. There are phenotypic distinctions between the neural crest-derived DRG and placodes-derived vagal nodose TRPV1-positive neurons innervating the rat stomach that are similar to those described in thoracic organs.

  8. Duct- and Acinar-Derived Pancreatic Ductal Adenocarcinomas Show Distinct Tumor Progression and Marker Expression.

    PubMed

    Ferreira, Rute M M; Sancho, Rocio; Messal, Hendrik A; Nye, Emma; Spencer-Dene, Bradley; Stone, Richard K; Stamp, Gordon; Rosewell, Ian; Quaglia, Alberto; Behrens, Axel

    2017-10-24

    The cell of origin of pancreatic ductal adenocarcinoma (PDAC) has been controversial. Here, we show that identical oncogenic drivers trigger PDAC originating from both ductal and acinar cells with similar histology but with distinct pathophysiology and marker expression dependent on cell of origin. Whereas acinar-derived tumors exhibited low AGR2 expression and were preceded by pancreatic intraepithelial neoplasias (PanINs), duct-derived tumors displayed high AGR2 and developed independently of a PanIN stage via non-mucinous lesions. Using orthotopic transplantation and chimera experiments, we demonstrate that PanIN-like lesions can be induced by PDAC as bystanders in adjacent healthy tissues, explaining the co-existence of mucinous and non-mucinous lesions and highlighting the need to distinguish between true precursor PanINs and PanIN-like bystander lesions. Our results suggest AGR2 as a tool to stratify PDAC according to cell of origin, highlight that not all PanIN-like lesions are precursors of PDAC, and add an alternative progression route to the current model of PDAC development. Copyright © 2017 Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  9. Evaluation of ABCG2 and p63 expression in canine cornea and cultivated corneal epithelial cells.

    PubMed

    Morita, Maresuke; Fujita, Naoki; Takahashi, Ayaka; Nam, Eun Ryel; Yui, Sho; Chung, Cheng Shu; Kawahara, Naoya; Lin, Hsing Yi; Tsuzuki, Keiko; Nakagawa, Takayuki; Nishimura, Ryohei

    2015-01-01

    To examine the expressions of ABCG2 and p63 in canine corneal epithelia and to evaluate their significance in corneal regeneration. Canine corneal and limbal epithelial cells were obtained from five healthy beagle dogs. We analyzed the morphological properties of cultivated limbal and corneal epithelial cells. We compared the expressions of ABCG2 and p63 in the limbus and central cornea by immunohistochemistry and real-time quantitative PCR. We analyzed the expression of these markers in cultivated cells by immunocytochemistry and real-time quantitative PCR. The limbal epithelial cells were smaller and proliferated more rapidly than the corneal epithelial cells in primary cultures. The corneal cells failed to be subcultured, whereas the limbal cells could be subcultured with increasing cell size. ABCG2 was localized in the basal layer of the limbal epithelium, and p63 was widely detected in the entire corneal epithelia. ABCG2 expression was significantly higher, and p63 was slightly higher in the limbus compared with the central cornea. ABCG2 was detected only in limbal cells in primary culture, not in corneal cells or passaged limbal cells. p63 was detected in both limbal and corneal cells and decreased gradually in the limbal cells with the cell passages. ABCG2 was localized in canine limbal epithelial cells, and p63 was widely expressed in canine corneal epithelia. ABCG2 and p63 could prove to be useful markers in dogs for putative corneal epithelial stem cells and for corneal epithelial cell proliferation, respectively. © 2014 American College of Veterinary Ophthalmologists.

  10. LEF1 is preferentially expressed in the tubal-peritoneal junctions and is a reliable marker of tubal intraepithelial lesions

    PubMed Central

    Schmoeckel, Elisa; Odai-Afotey, Ashley A.; Schleiβheimer, Michael; Rottmann, Miriam; Flesken-Nikitin, Andrea; Ellenson, Lora H.; Kirchner, Thomas; Mayr, Doris; Nikitin, Alexander Yu.

    2017-01-01

    Recently it has been reported that serous tubal intraepithelial carcinoma (STIC), the likely precursor of ovarian/extra-uterine high-grade serous carcinoma, are frequently located in the vicinity of tubal-peritoneal junctions, consistent with the cancer-prone features of many epithelial transitional regions. To test if p53 (aka TP53)-signatures and secretory cell outgrowths (SCOUTs) also localize to tubal-peritoneal junctions, we examined these lesions in the fallopian tubes of patients undergoing salpingo-oophorectomy for sporadic high-grade serous carcinomas or as a prophylactic procedure for carriers of familial BRCA1 or 2 mutations. STICs were located closest to the tubal-peritoneal junctions with an average distance of 1.31 mm, while SCOUTs were not detected in the fimbriated end of the fallopian tube. Since many epithelial transitional regions contain stem cells, we also determined the expression of stem cell markers in the normal fallopian tube, tubal intraepithelial lesions and high-grade serous carcinomas. Of those, LEF1 was consistently expressed in the tubal-peritoneal junctions and all lesions, independent of p53 status. All SCOUTs demonstrated strong nuclear expression of β-catenin consistent with the LEF1 participation in the canonical WNT pathway. However, β-catenin was preferentially located in the cytoplasm of cells comprising STICs and p53 signatures, suggesting WNT-independent function of LEF1 in those lesions. Both frequency of LEF1 expression and β-catenin nuclear expression correlated with the worst 5 year patient survival, supporting important role of both proteins in high-grade serous carcinoma. Taken together, our findings suggest the existence of stem cell niche within the tubal-peritoneal junctions. Furthermore, they support the notion that the pathogenesis of SCOUTs is distinct from that of STICs and p53 signatures. The location and discrete patterns of LEF1 and β-catenin expression may serve as highly sensitive and reliable

  11. Human Naive T Cells Express Functional CXCL8 and Promote Tumorigenesis.

    PubMed

    Crespo, Joel; Wu, Ke; Li, Wei; Kryczek, Ilona; Maj, Tomasz; Vatan, Linda; Wei, Shuang; Opipari, Anthony W; Zou, Weiping

    2018-05-25

    Naive T cells are thought to be functionally quiescent. In this study, we studied and compared the phenotype, cytokine profile, and potential function of human naive CD4 + T cells in umbilical cord and peripheral blood. We found that naive CD4 + T cells, but not memory T cells, expressed high levels of chemokine CXCL8. CXCL8 + naive T cells were preferentially enriched CD31 + T cells and did not express T cell activation markers or typical Th effector cytokines, including IFN-γ, IL-4, IL-17, and IL-22. In addition, upon activation, naive T cells retained high levels of CXCL8 expression. Furthermore, we showed that naive T cell-derived CXCL8 mediated neutrophil migration in the in vitro migration assay, supported tumor sphere formation, and promoted tumor growth in an in vivo human xenograft model. Thus, human naive T cells are phenotypically and functionally heterogeneous and can carry out active functions in immune responses. Copyright © 2018 by The American Association of Immunologists, Inc.

  12. A CD133-expressing murine liver oval cell population with bilineage potential.

    PubMed

    Rountree, C Bart; Barsky, Lora; Ge, Shundi; Zhu, Judy; Senadheera, Shantha; Crooks, Gay M

    2007-10-01

    Although oval cells are postulated to be adult liver stem cells, a well-defined phenotype of a bipotent liver stem cell remains elusive. The heterogeneity of cells within the oval cell fraction has hindered lineage potential studies. Our goal was to identify an enriched population of bipotent oval cells using a combination of flow cytometry and single cell gene expression in conjunction with lineage-specific liver injury models. Expression of cell surface markers on nonparenchymal, nonhematopoietic (CD45-) cells were characterized. Cell populations were isolated by flow cytometry for gene expression studies. 3,5-Diethoxycarbonyl-1,4-dihydrocollidine toxic injury induced cell cycling and expansion specifically in the subpopulation of oval cells in the periportal zone that express CD133. CD133+CD45- cells expressed hepatoblast and stem cell-associated genes, and single cells coexpressed both hepatocyte and cholangiocyte-associated genes, indicating bilineage potential. CD133+CD45- cells proliferated in response to liver injury. Following toxic hepatocyte damage, CD133+CD45- cells demonstrated upregulated expression of the hepatocyte gene Albumin. In contrast, toxic cholangiocyte injury resulted in upregulation of the cholangiocyte gene Ck19. After 21-28 days in culture, CD133+CD45- cells continued to generate cells of both hepatocyte and cholangiocyte lineages. Thus, CD133 expression identifies a population of oval cells in adult murine liver with the gene expression profile and function of primitive, bipotent liver stem cells. In response to lineage-specific injury, these cells demonstrate a lineage-appropriate genetic response. Disclosure of potential conflicts of interest is found at the end of this article.

  13. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells

    PubMed Central

    Crozat, Karine; Guiton, Rachel; Contreras, Vanessa; Feuillet, Vincent; Dutertre, Charles-Antoine; Ventre, Erwan; Vu Manh, Thien-Phong; Baranek, Thomas; Storset, Anne K.; Marvel, Jacqueline; Boudinot, Pierre; Hosmalin, Anne; Schwartz-Cornil, Isabelle

    2010-01-01

    Human BDCA3+ dendritic cells (DCs) were suggested to be homologous to mouse CD8α+ DCs. We demonstrate that human BDCA3+ DCs are more efficient than their BDCA1+ counterparts or plasmacytoid DCs (pDCs) in cross-presenting antigen and activating CD8+ T cells, which is similar to mouse CD8α+ DCs as compared with CD11b+ DCs or pDCs, although with more moderate differences between human DC subsets. Yet, no specific marker was known to be shared between homologous DC subsets across species. We found that XC chemokine receptor 1 (XCR1) is specifically expressed and active in mouse CD8α+, human BDCA3+, and sheep CD26+ DCs and is conserved across species. The mRNA encoding the XCR1 ligand chemokine (C motif) ligand 1 (XCL1) is selectively expressed in natural killer (NK) and CD8+ T lymphocytes at steady-state and is enhanced upon activation. Moreover, the Xcl1 mRNA is selectively expressed at high levels in central memory compared with naive CD8+ T lymphocytes. Finally, XCR1−/− mice have decreased early CD8+ T cell responses to Listeria monocytogenes infection, which is associated with higher bacterial loads early in infection. Therefore, XCR1 constitutes the first conserved specific marker for cell subsets homologous to mouse CD8α+ DCs in higher vertebrates and promotes their ability to activate early CD8+ T cell defenses against an intracellular pathogenic bacteria. PMID:20479118

  14. Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice.

    PubMed

    May, Randal; Riehl, Terrence E; Hunt, Clayton; Sureban, Sripathi M; Anant, Shrikant; Houchen, Courtney W

    2008-03-01

    In the gut, tumorigenesis arises from intestinal or colonic crypt stem cells. Currently, no definitive markers exist that reliably identify gut stem cells. Here, we used the putative stem cell marker doublecortin and CaM kinase-like-1 (DCAMKL-1) to examine radiation-induced stem cell apoptosis and adenomatous polyposis coli (APC)/multiple intestinal neoplasia (min) mice to determine the effects of APC mutation on DCAMKL-1 expression. Immunoreactive DCAMKL-1 staining was demonstrated in the intestinal stem cell zone. Furthermore, we observed apoptosis of the cells negative for DCAMKL-1 at 6 hours. We found DNA damage in all the cells in the crypt region, including the DCAMKL-1-positive cells. We also observed stem cell apoptosis and mitotic DCAMKL-1-expressing cells 24 hours after irradiation. Moreover, in APC/min mice, DCAMKL-1-expressing cells were negative for proliferating cell nuclear antigen and nuclear beta-catenin in normal-appearing intestine. However, beta-catenin was nuclear in DCAMKL-1-positive cells in adenomas. Thus, nuclear translocation of beta-catenin distinguishes normal and adenoma stem cells. Targeting DCAMKL-1 may represent a strategy for developing novel chemotherapeutic agents.

  15. Expression of drebrin, an actin binding protein, in basal cell carcinoma, trichoblastoma and trichoepithelioma.

    PubMed

    Mizutani, Yoko; Iwamoto, Ikuko; Kanoh, Hiroyuki; Seishima, Mariko; Nagata, Koh-ichi

    2014-06-01

    Drebrin, an F-actin binding protein, is known to play important roles in cell migration, synaptogenesis and neural plasticity. Although drebrin was long thought to be specific for neuronal cells, its expression has recently been reported in non-neuronal cells. As for skin-derived cells, drebrin was shown to be enriched at adhering junctions (AJs) in cultured primary keratinocytes and also be highly expressed in basal cell carcinoma (BCC) cells. Since BCC and two types of benign neoplasm, trichoblastoma and trichoepithelioma, are considered to derive from the same origin, follicular germinative cells, it is sometimes difficult to morphologically distinguish BCC from trichoblastoma and trichoepithelioma. In this study, we performed immunohistochemical staining of drebrin in BCC, trichoblastoma and trichoepithelioma, to examine whether drebrin could serve as a biomarker for BCC diagnosis. In western blotting, drebrin was detected highly and moderately in the lysates from a squamous cell carcinoma cell line, DJM-1, and normal human epidermis, respectively. In immunofluorescence analyses, drebrin was colocalized with markers of AJs and tight junctions in DJM-1 cells and detected at cell-cell junction areas of human normal epidermis tissue. We then examined the distribution patterns of drebrin in BCC, trichoblastoma and trichoepithelioma. In BCC tissues, intense and homogeneous drebrin expression was observed mainly at tumor cell-cell boundaries. In contrast, drebrin was stained only weakly and non-homogeneously in trichoblastoma and trichoepthelioma tissue samples. For differential diagnosis of BCC, drebrin may be a novel and useful marker.

  16. Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells.

    PubMed

    Hagmann, Sebastien; Moradi, Babak; Frank, Sebastian; Dreher, Thomas; Kämmerer, Peer Wolfgang; Richter, Wiltrud; Gotterbarm, Tobias

    2013-07-30

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play an important role in modern tissue engineering, while distinct variations of culture media compositions and supplements have been reported. Because MSCs are heterogeneous regarding their regenerative potential and their surface markers, these parameters were compared in four widely used culture media compositions. MSCs were isolated from bone marrow and expanded in four established cell culture media. MSC yield/1000 MNCs, passage time and growth index were observed. In P4, typical MSC surface markers were analysed by fluorescence cytometry. Additionally, chondrogenic, adipogenic and osteogenic differentiation potential were evaluated. Growth index and P0 cell yield varied importantly between the media. The different expansion media had a significant influence on the expression of CD10, CD90, CD105, CD140b CD146 and STRO-1. While no significant differences were observed regarding osteogenic and adipogenic differentiation, chondrogenic differentiation was superior in medium A as reflected by GAG/DNA content. The choice of expansion medium can have a significant influence on growth, differentiation potential and surface marker expression of mesenchymal stromal cells, which is of fundamental importance for tissue engineering procedures.

  17. Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells.

    PubMed

    Kobayashi, Masakatsu; Taniura, Hideo; Yoshikawa, Kazuaki

    2002-11-01

    Necdin is expressed predominantly in postmitotic neurons, and ectopic expression of this protein strongly suppresses cell growth. Necdin has been implicated in the pathogenesis of Prader-Willi syndrome, a human neurodevelopmental disorder associated with genomic imprinting. Here we demonstrate that ectopic expression of necdin induces a neuronal phenotype in neuroblastoma cells. Necdin was undetectable in mouse neuroblastoma N1E-115 cells under undifferentiated and differentiated conditions. N1E-115 cells transfected with necdin cDNA showed morphological differentiation such as neurite outgrowth and expression of the synaptic marker proteins synaptotagmin and synaptophysin. In addition, Western blot analysis of the retinoblastoma protein (Rb) family members Rb, p130, and p107 revealed that necdin cDNA transfectants contained an increased level of p130 and a reduced level of p107, a pattern seen in differentiated G(0) cells. The transcription factors E2F1 and E2F4 physically interacted with necdin via their carboxyl-terminal transactivation domains, but only E2F1 abrogated necdin-induced growth arrest and neurite outgrowth of neuroblastoma cells. Overexpression of E2F1 in differentiated N1E-115 cells induced apoptosis, which was antagonized by co-expression of necdin. These results suggest that necdin promotes the differentiation and survival of neurons through its antagonistic interactions with E2F1.

  18. Earth Mover's Distance (EMD): A True Metric for Comparing Biomarker Expression Levels in Cell Populations.

    PubMed

    Orlova, Darya Y; Zimmerman, Noah; Meehan, Stephen; Meehan, Connor; Waters, Jeffrey; Ghosn, Eliver E B; Filatenkov, Alexander; Kolyagin, Gleb A; Gernez, Yael; Tsuda, Shanel; Moore, Wayne; Moss, Richard B; Herzenberg, Leonore A; Walther, Guenther

    2016-01-01

    Changes in the frequencies of cell subsets that (co)express characteristic biomarkers, or levels of the biomarkers on the subsets, are widely used as indices of drug response, disease prognosis, stem cell reconstitution, etc. However, although the currently available computational "gating" tools accurately reveal subset frequencies and marker expression levels, they fail to enable statistically reliable judgements as to whether these frequencies and expression levels differ significantly between/among subject groups. Here we introduce flow cytometry data analysis pipeline which includes the Earth Mover's Distance (EMD) metric as solution to this problem. Well known as an informative quantitative measure of differences between distributions, we present three exemplary studies showing that EMD 1) reveals clinically-relevant shifts in two markers on blood basophils responding to an offending allergen; 2) shows that ablative tumor radiation induces significant changes in the murine colon cancer tumor microenvironment; and, 3) ranks immunological differences in mouse peritoneal cavity cells harvested from three genetically distinct mouse strains.

  19. Comprehensive Mass Cytometry Analysis of Cell Cycle, Activation, and Coinhibitory Receptors Expression in CD4 T Cells from Healthy and HIV-Infected Individuals.

    PubMed

    Corneau, Aurélien; Cosma, Antonio; Even, Sophie; Katlama, Christine; Le Grand, Roger; Frachet, Véronique; Blanc, Catherine; Autran, Brigitte

    2017-01-01

    Mass cytometry allows large multiplex analysis of cell cycle stages together with differentiation, activation, and exhaustion markers, allowing further assessment of the quiescence status of resting CD4 T cells. Peripheral blood CD4 T lymphocytes from 8 individuals, 4 healthy donors, and 4 HIV-infected on antiretroviral treatment (T) were stained with the same 26 monoclonal antibodies and dyes targeting surface and intracellular markers of differentiation, activation, exhaustion, and cell cycle stages. Samples were run on a CYTOF-2. Patterns of naïve [TN] CD4 T cells strongly differed from all other memory subsets central-memory (CM), transitional-memory (TM), effector-memory (EM), and terminally differentiated RA-expressing (TEMRA) subsets, while stem-cell memory (SCM) and T follicular-helper cells (TfH) were close to CM and TM cells with the highest percentages in cell cycle. EM and TEMRA were the most altered by HIV infection, with an increased frequency of activated and cycling cells. Activation markers and coinhibitory receptor expression differed among cell cycle stages, with HLA-DR fitting better than CD25 or CD38 with cycle, and opposite PD-1 gradients along differentiation and cell cycle. "Resting" DR-CD25- CD4+ T cells contained similar amounts of cells in G1 than the activated DR ± CD25± ones but three fold lower cells in S-G2-M. This broad multiplex mass cytometry analysis demonstrates some subsets of the so-called "resting" CD25-DR- CD4+ T cells contain noticeable amounts of cells into cycle or expressing coinhibitory receptors, opening new avenues for a redefinition of resting peripheral blood CD4 T cells harboring the HIV reservoirs. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  20. TMED6-COG8 is a novel molecular marker of TFE3 translocation renal cell carcinoma

    PubMed Central

    Xu, Yongcan; Rao, Qiu; Xia, Qiuyuan; Shi, Shanshan; Shi, Qunli; Ma, Henghui; Lu, Zhenfeng; Chen, Hui; Zhou, Xiaojun

    2015-01-01

    TFE3 translocation renal cell carcinoma is a highly aggressive malignancy which often occurs primarily in children and young adults. The pathognomonic molecular lesion in this subtype is a translocation event involving the TFE3 transcription factor at chromosome Xp11.2. Hence, the pathological diagnosis of an Xp11.2 translocation RCC is based upon morphology, TFE3 immunohistochemistry, or genetic analyses. However, due to the false-positive immunoreactivity for TFE3 IHC and expensive for TFE3 break-apart FISH assay, additional molecular markers are necessary to help provide early diagnose and individualization treatment. Owing to recent advances in microarray and RNA-Seq, Pflueger et al. have discovered that TMED6-COG8 is dramatically increased in TFE3 translocation RCCs, compared with clear cell RCCs and papillary RCCs, implying that TMED6-COG8 might be a new molecular tumor marker of TFE3 translocation RCCs. To extend this observation, we firstly validated the TMED6-COG8 expression level by qRT-PCR in RCCs including Xp11.2 translocation RCCs (n = 5), clear cell RCCs (n = 7) and papillary RCCs (n = 5). Then, we also examined the expression level of TMED6-COG8 chimera in Xp11.2 translocation alveolar soft part sarcoma. We found that TMED6-COG8 chimera expression level was higher in Xp11.2 translocation RCCs than in ASPS (P < 0.05). What’s more, the expression levels of TMED6-COG8 chimera in esophagus cancers (n = 32), gastric cancers (n = 11), colorectal cancers (n = 12), hepatocellular carcinomas (n = 10) and non-small-cell lung cancers (n = 12) were assessed. Unexpectedly, TMED6-COG8 chimera was decreased in these five human types. Therefore, our observations from this study indicated that TMED6-COG8 chimera might act as a novel diagnostic marker in Xp11.2 translocation RCCs. PMID:26045774

  1. Diverse effects of lead nitrate on the proliferation, differentiation, and gene expression of stem cells isolated from a dental origin.

    PubMed

    Abdullah, Mariam; Rahman, Fazliny Abd; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Abu Kasim, Noor Hayaty; Musa, Sabri

    2014-01-01

    Lead (Pb(2+)) exposure continues to be a significant public health problem. Therefore, it is vital to have a continuous epidemiological dataset for a better understanding of Pb(2+) toxicity. In the present study, we have exposed stem cells isolated from deciduous and permanent teeth, periodontal ligament, and bone marrow to five different types of Pb(2+) concentrations (160, 80, 40, 20, and 10 µM) for 24 hours to identify the adverse effects of Pb(2+) on the proliferation, differentiation, and gene expression on these cell lines. We found that Pb(2+) treatment altered the morphology and adhesion of the cells in a dose-dependent manner. There were no significant changes in terms of cell surface phenotypes. Cells exposed to Pb(2+) continued to differentiate into chondrogenesis and adipogenesis, and a severe downregulation was observed in osteogenesis. Gene expression studies revealed a constant expression of key markers associated with stemness (Oct 4, Rex 1) and DNA repair enzyme markers, but downregulation occurred with some ectoderm and endoderm markers, demonstrating an irregular and untimely differentiation trail. Our study revealed for the first time that Pb(2+) exposure not only affects the phenotypic characteristics but also induces significant alteration in the differentiation and gene expression in the cells.

  2. Mash1-expressing cells could differentiate to type III cells in adult mouse taste buds.

    PubMed

    Takagi, Hiroki; Seta, Yuji; Kataoka, Shinji; Nakatomi, Mitsushiro; Toyono, Takashi; Kawamoto, Tatsuo

    2018-03-10

    The gustatory cells in taste buds have been identified as paraneuronal; they possess characteristics of both neuronal and epithelial cells. Like neurons, they form synapses, store and release transmitters, and are capable of generating an action potential. Like epithelial cells, taste cells have a limited life span and are regularly replaced throughout life. However, little is known about the molecular mechanisms that regulate taste cell genesis and differentiation. In the present study, to begin to understand these mechanisms, we investigated the role of Mash1-positive cells in regulating adult taste bud cell differentiation through the loss of Mash1-positive cells using the Cre-loxP system. We found that the cells expressing type III cell markers-aromatic L-amino acid decarboxylase (AADC), carbonic anhydrase 4 (CA4), glutamate decarboxylase 67 (GAD67), neural cell adhesion molecule (NCAM), and synaptosomal-associated protein 25 (SNAP25)-were significantly reduced in the circumvallate taste buds after the administration of tamoxifen. However, gustducin and phospholipase C beta2 (PLC beta2)-markers of type II taste bud cells-were not significantly changed in the circumvallate taste buds after the administration of tamoxifen. These results suggest that Mash1-positive cells could be differentiated to type III cells, not type II cells in the taste buds.

  3. [Individual variability of immunological markers, radiosensitivity and oxidative status in blood lymphocytes of Moscow residents].

    PubMed

    Pelevina, I I; Aleshchenko, A V; Antoshchina, M M; Kudriashova, O M; Nikonova, M F; Riabchenko, N I; Serebrianyĭ, A M; Iarilin, A A

    2013-01-01

    Expression of activation (CD69) and proliferation (Ki67) markers, their connection with each other, with the oxidative status (reactive oxygen species--ROS) and with radiosensitivity (determined by micronucleus test) have been studied on stimulated blood lymphocytes from Moscow inhabitants. It was shown that the content of T-lymphocytes with the expressed CD69 and the content of T-lymphocytes with the expressed Ki67 markers correlate (r = 0.571; p = 0.0004). We can suppose that expression of the CD69 marker (24 h after PHA stimulation) is needed for the cell cycle progression, but it is not enough for the high expression of Ki67 markers 48 h after stimulation (DNA synthesis phase). It was discovered that T-lymphocytes with the CD69 marker or T-lymphocytes with the Ki67 marker are connected by the negative correlation with the frequency of irradiated cell with micronucleus (MN) r = -0.487; p = 0.010; r = -0.440; p = 0.008, respectively. So we can suppose that lymphocyte radiosensitivity decreased with the increase of expression activation and proliferation markers. It was shown that radiosensitivity determined by MN test is not connected with the oxidative status determined by the reactive oxygen species content including superoxide anion radicals. It is possible to explain by the fact that the ROS concentration has been determined in non-stimulated lymphocytes, but frequencies of cells with MN - in the stimulated cells 48 h after stimulation. Using separate analysis of individual differences by the studied parameters that were determined in the same people, it was shown that individual differences are high enough in the same cases. For example, the radiosensitivity when cells were irradiated 48 h after stimulation, ROS concentration, cell content with activation and proliferation markers. In conclusion, we can say that we failed to find important correlation between the parameters studied. However, the presence of individual differences in the marker expression

  4. Prediction of preservative sensitization potential using surface marker CD86 and/or CD54 expression on human cell line, THP-1.

    PubMed

    Sakaguchi, Hitoshi; Miyazawa, Masaaki; Yoshida, Yukiko; Ito, Yuichi; Suzuki, Hiroyuki

    2007-02-01

    Preservatives are important components in many products, but have a history of purported allergy. Several assays [e.g., guinea pig maximization test (GPMT), local lymph node assay (LLNA)] are used to evaluate allergy potential of preservatives. We recently developed the human Cell Line Activation Test (h-CLAT), an in vitro skin sensitization test using human THP-1 cells. This test evaluates the augmentation of CD86 and CD54 expression, which are key events in the sensitization process, as an indicator of allergy following treatment with test chemical. Earlier, we found that a sub-toxic concentration was needed for the up-regulation of surface marker expression. In this study, we further evaluate the capability of h-CLAT to predict allergy potential using eight preservatives. Cytotoxicity was determined using propidium iodide with flow cytometry analysis and five doses that produce a 95, 85, 75, 65, and 50% cell viability were selected. If a material did not have any cytotoxicity at the highest technical dose (HTD), five doses are set using serial 1.3 dilutions of the HTD. The test materials used were six known allergic preservatives (e.g., methylchloroisothiazolinone/methylisothiazolinone, formaldehyde), and two non-allergic preservatives (methylparaben and 4-hydroxybenzoic acid). All allergic preservatives augmented CD86 and/or CD54 expression, indicating h-CLAT correctly identified the allergens. No augmentation was observed with the non-allergic preservatives; also correctly identified by h-CLAT. In addition, we report two threshold concentrations that may be used to categorize skin sensitization potency like the LLNA estimated concentration that yield a three-fold stimulation (EC3) value. These corresponding values are the estimated concentration which gives a relative fluorescence intensity (RFI) = 150 for CD86 and an RFI = 200 for CD54. These data suggest that h-CLAT, using THP-1 cells, may be able to predict the allergy potential of preservatives and

  5. Variable expression of molecular markers in juvenile nasopharyngeal angiofibroma.

    PubMed

    Mishra, A; Pandey, A; Mishra, S C

    2017-09-01

    Molecular categorisation may explain the wide variation in the clinical characteristics of juvenile nasopharyngeal angiofibroma. Variations in molecular markers in juvenile nasopharyngeal angiofibroma in an Indian population were investigated and compared with global reports. Variable molecular marker expression was demonstrated at the regional and global levels. A wide variation in molecular characteristics is evident. Molecular data have been reported for only 11 countries, indicating a clear geographical bias. Only 58 markers have been studied, and most are yet to be validated. Research into the molecular epidemiology of juvenile nasopharyngeal angiofibroma is still in its infancy. Although the molecular variation is not well understood, data obtained so far have prompted important research questions. Hence, multicentre collaborative molecular studies are needed to establish the aetiopathogenesis and establish molecular surrogates for clinical characteristics.

  6. Optical Deformability as New Diagnostic Cell Marker

    NASA Astrophysics Data System (ADS)

    Guck, Jochen; Lincoln, Bryan; Schinkinger, Stefan; Wottawah, Falk; Moore, Samantha; Ananthakrishnan, Revathi; Kas, Josef

    2002-03-01

    The optical stretcher is a novel laser tool that can deform individual cells in rapid succession. When a cell is trapped between two counterpropagating laser beams the optically induced surface forces stretch the cell along the laser axis. The degree of stretching depends on the optical properties, which determine the forces, as well as the mechanical properties, which govern the response of the cell to the forces. Our results show that different cells can be distinguished based on their optical deformability, which naturally suggests using the optical deformability of cells as a novel cell marker. Many diseases are reflected in an altered cytoskeleton, which leads to a different optical deformability. An important example is the malignant transformation of cells, which is accompanied by a decrease in cytoskeletal integrity and, consequently, cell elasticity. Using optical deformability as cell marker holds the promise of earlier detection and improved diagnosis of cancer. In this context, the optical stretcher can be used as a diagnostic device to detect and sort abnormal cells. Future applications in the study of the normal differentiation of cells from stem cells to mature cells are envisioned.

  7. Gene expression markers of age-related inflammation in two human cohorts.

    PubMed

    Pilling, Luke C; Joehanes, Roby; Melzer, David; Harries, Lorna W; Henley, William; Dupuis, Josée; Lin, Honghuang; Mitchell, Marcus; Hernandez, Dena; Ying, Sai-Xia; Lunetta, Kathryn L; Benjamin, Emelia J; Singleton, Andrew; Levy, Daniel; Munson, Peter; Murabito, Joanne M; Ferrucci, Luigi

    2015-10-01

    Chronically elevated circulating inflammatory markers are common in older persons but mechanisms are unclear. Many blood transcripts (>800 genes) are associated with interleukin-6 protein levels (IL6) independent of age. We aimed to identify gene transcripts statistically mediating, as drivers or responders, the increasing levels of IL6 protein in blood at older ages. Blood derived in-vivo RNA from the Framingham Heart Study (FHS, n=2422, ages 40-92 yrs) and InCHIANTI study (n=694, ages 30-104 yrs), with Affymetrix and Illumina expression arrays respectively (>17,000 genes tested), were tested for statistical mediation of the age-IL6 association using resampling techniques, adjusted for confounders and multiple testing. In FHS, IL6 expression was not associated with IL6 protein levels in blood. 102 genes (0.6% of 17,324 expressed) statistically mediated the age-IL6 association of which 25 replicated in InCHIANTI (including 5 of the 10 largest effect genes). The largest effect gene (SLC4A10, coding for NCBE, a sodium bicarbonate transporter) mediated 19% (adjusted CI 8.9 to 34.1%) and replicated by PCR in InCHIANTI (n=194, 35.6% mediated, p=0.01). Other replicated mediators included PRF1 (perforin, a cytolytic protein in cytotoxic T lymphocytes and NK cells) and IL1B (Interleukin 1 beta): few other cytokines were significant mediators. This transcriptome-wide study on human blood identified a small distinct set of genes that statistically mediate the age-IL6 association. Findings are robust across two cohorts and different expression technologies. Raised IL6 levels may not derive from circulating white cells in age related inflammation. Published by Elsevier Inc.

  8. Isolation of Oct4-Expressing Extraembryonic Endoderm Precursor Cell Lines

    PubMed Central

    Debeb, Bisrat G.; Galat, Vasiliy; Epple-Farmer, Jessica; Iannaccone, Steve; Woodward, Wendy A.; Bader, Michael; Iannaccone, Philip; Binas, Bert

    2009-01-01

    Background The extraembryonic endoderm (ExEn) defines the yolk sac, a set of membranes that provide essential support for mammalian embryos. Recent findings suggest that the committed ExEn precursor is present already in the embryonic Inner Cell Mass (ICM) as a group of cells that intermingles with the closely related epiblast precursor. All ICM cells contain Oct4, a key transcription factor that is first expressed at the morula stage. In vitro, the epiblast precursor is most closely represented by the well-characterized embryonic stem (ES) cell lines that maintain the expression of Oct4, but analogous ExEn precursor cell lines are not known and it is unclear if they would express Oct4. Methodology/Principal Findings Here we report the isolation and characterization of permanently proliferating Oct4-expressing rat cell lines (“XEN-P cell lines”), which closely resemble the ExEn precursor. We isolated the XEN-P cell lines from blastocysts and characterized them by plating and gene expression assays as well as by injection into embryos. Like ES cells, the XEN-P cells express Oct4 and SSEA1 at high levels and their growth is stimulated by leukemia inhibitory factor, but instead of the epiblast determinant Nanog, they express the ExEn determinants Gata6 and Gata4. Further, they lack markers characteristic of the more differentiated primitive/visceral and parietal ExEn stages, but exclusively differentiate into these stages in vitro and contribute to them in vivo. Conclusions/Significance Our findings (i) suggest strongly that the ExEn precursor is a self-renewable entity, (ii) indicate that active Oct4 gene expression (transcription plus translation) is part of its molecular identity, and (iii) provide an in vitro model of early ExEn differentiation. PMID:19784378

  9. Stem Cell Markers (Cytokeratin 17 and Cytokeratin 19) in Scarring and Nonscarring Alopecia

    PubMed Central

    El Sakka, Dalia; Gaber, Mohamed Abdel Wahed; Abdou, Asmaa Gaber; Wahed, Moshira Abdel; Saleh, Ahmed Abdel-Wahab; Shehata, Walla

    2016-01-01

    Background: Alopecia is one of the most important hair follicle (HF) disorders, which is divided into scarring (cicatricial) and nonscarring (noncicatricial) types. Objective: The aim of this study is to investigate the expression of stem cell (SC) markers such as cytokeratin (CK) 17 and CK19 in scarring and nonscarring alopecia. Materials and Methods: Thirty patients with scalp alopecia (15 with scarring alopecia and 15 without) together with ten healthy volunteers were included in this study. Biopsies were taken from all participants and stained for CK17 and CK19 using immunohistochemistry. Results: There was a statistically significant difference between the nonscarring group and the control group with regard to CK17 expression in the outer layers of the HFs (P = 0.00) and CK19 staining of the inner layers of the HFs (P = 0.008). There was a statistically significant difference between the scarring and the control groups regarding CK17 expression in the outer (P = 0.00) and the inner layers (P = 0.00) of the HFs and CK19 expression in the inner layers of the HFs (P = 0.00). CK17 expression in the outer layers (P = 0.02) and the inner layers of the HFs (P = 0.00) together with CK19 expression in the inner layers of the HFs (P = 0.00) showed statistically significant differences between scarring and nonscarring alopecia groups. Conclusions: The presence of SC markers (CK17 and CK19) in the HFs was affected in both scarring and nonscarring alopecia, but the defect in scarring alopecia is more evident than that of nonscarring alopecia. The persistence of SC markers in some types of scarring alopecia could give a hope for the recovery of these lesions. Further studies are recommended to clarify the benefit from using HF SCs in the treatment of alopecia. PMID:27761086

  10. Predictive markers of chemoresistance in advanced stages epithelial ovarian carcinoma.

    PubMed

    Bonneau, Claire; Rouzier, Roman; Geyl, Caroline; Cortez, Annie; Castela, Mathieu; Lis, Raphael; Daraï, Emile; Touboul, Cyril

    2015-01-01

    DNA repair mechanisms, environment-mediated drug resistance and cancer initiating cells (CIC) are three major research concepts that can explain the chemoresistance of epithelial ovarian cancer (EOC). The objective was to test if changes in the expression of potential markers associated with drug resistance before and after chemotherapy would correlate with platinum resistance, defined as a recurrence within the first year after chemotherapy cessation, and with survival, in advanced EOC. We included 32 patients with stage IIIC-IV EOC who underwent laparoscopy to evaluate the extent of carcinomatosis, neoadjuvant chemotherapy (carboplatin/taxol) and interval surgery. Biopsies taken during the initial laparoscopies and interval surgeries were evaluated using immunohistochemistry for the expression of 7 proteins: CD117, CD44 and ALDH1 to evaluate CIC; IL-6, IL-8 and BMP2 to evaluate environment-mediated drug resistance; and ERCC1 to evaluate DNA repair. Expression measurements were correlated with platin resistance and survival. The markers' relevance was confirmed in vitro using chemoresistance tests and flow cytometric measurements of the proportion of CD44+ cells. 17 patients were chemoresistant and 15 patients were chemosensitive. We observed increases in CD44, IL-6 and ERCC1 expression and stable ALDH1, CD117, IL-8, and BMP2 expression. Reduced expression of cancer initiating cell markers and increased expression of environment-mediated drug resistance markers were associated with poor prognosis. We also demonstrated that CD44+ cells had survival advantages in vitro. Changes in CD44 and IL-8 expression on tumor cells appeared to correlate with overall survival and should be further tested as predictors of chemoresistance using larger cohort. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Abcg2 expression marks tissue-specific stem cells in multiple organs in a mouse progeny tracking model.

    PubMed

    Fatima, Soghra; Zhou, Sheng; Sorrentino, Brian P

    2012-02-01

    The side population phenotype is associated with the Hoechst dye efflux activity of the Abcg2 transporter and identifies hematopoietic stem cells (HSCs) in the bone marrow. This association suggests the direct use of Abcg2 expression to identify adult stem cells in various other organs. We have generated a lineage tracing mouse model based on an allele that coexpresses both Abcg2 and a CreERT2 expression cassette. By crossing these mice with lox-STOP-lox reporter lines (LacZ or YFP), cells that express Abcg2 and their progeny were identified following treatment with tamoxifen (Tam). In the liver and kidney, in which mature cells express Abcg2, reporter gene expression verified the expected physiologic expression pattern of the recombinant allele. Long-term marking of HSCs was seen in multiple peripheral blood lineages from adult mice, demonstrating that Abcg2(+) bone marrow HSCs contribute to steady-state hematopoiesis. Stem cell tracing patterns were seen in the small intestine and in seminiferous tubules in the testis 20 months after Tam treatment, proving that stem cells from these organs express Abcg2. Interstitial cells from skeletal and cardiac muscle were labeled, and some cells were costained with endothelial markers, raising the possibility that these cells may function in the repair response to muscle injury. Altogether, these studies prove that Abcg2 is a stem cell marker for blood, small intestine, testicular germ cells, and possibly for injured skeletal and/or cardiac muscle and provide a new model for studying stem cell activity that does not require transplant-based assays. Copyright © 2011 AlphaMed Press.

  12. Knockdown of Ran GTPase expression inhibits the proliferation and migration of breast cancer cells.

    PubMed

    Sheng, Chenyi; Qiu, Jian; Wang, Yingying; He, Zhixian; Wang, Hua; Wang, Qingqing; Huang, Yeqing; Zhu, Lianxin; Shi, Feng; Chen, Yingying; Xiong, Shiyao; Xu, Zhen; Ni, Qichao

    2018-05-03

    Breast cancer is the second leading cause of cancer‑associated mortality in women worldwide. Strong evidence has suggested that Ran, which is a small GTP binding protein involved in the transport of RNA and protein across the nucleus, may be a key cellular protein involved in the metastatic progression of cancer. The present study investigated Ran gene expression in breast cancer tissue samples obtained from 140 patients who had undergone surgical resection for breast cancer. Western blot analysis of Ran in breast cancer tissues and paired adjacent normal tissues showed that expression of Ran was significantly increased in breast cancer tissues. Immunohistochemistry analyses conducted on formalin‑fixed paraffin‑embedded breast cancer tissue sections revealed that Ran expression was associated with tumor histological grade, nerve invasion and metastasis, vascular metastasis and Ki‑67 expression (a marker of cell proliferation). Kaplan‑Meier survival analysis showed that increased Ran expression in patients with breast cancer was positively associated with a poor survival prognosis. Furthermore, in vitro experiments demonstrated that highly migratory MDA‑MB‑231 cancer cells treated with Ran‑si‑RNA (si‑Ran), which knocked down expression of Ran, exhibited decreased motility in trans‑well migration and wound healing assays. Cell cycle analysis of Ran knocked down MDA‑MB‑231 cells implicated Ran in cell cycle arrest and the inhibition of proliferation. Furthermore, a starvation and re‑feeding (CCK‑8) assay was performed, which indicated that Ran regulated breast cancer cell proliferation. Taken together, the results provide strong in vitro evidence of the involvement of Ran in the progression of breast cancer and suggest that it could have high potential as a therapeutic target and/or marker of disease.

  13. Molecular cloning, sequence characterization and recombinant expression of Nanog gene in goat fibroblast cells using lentiviral based expression system.

    PubMed

    Singhal, Dinesh K; Singhal, Raxita; Malik, Hruda N; Kumar, Surender; Kumar, Sudarshan; Mohanty, Ashok K; Kaushik, Jai K; Malakar, Dhruba

    2014-01-01

    Nanog is a homeodomain containing protein which plays important roles in regulation of signaling pathways for maintenance and induction of pluripotency in stem cells. Because of its unique expression in stem cells it is also regarded as pluripotency marker. In this study goat Nanog (gNanog) gene has been amplified, cloned and characterized at sequence level with successful over-expression in CHO-K1 cell line using a lentiviral based system. gNanog ORF is 903 bp long which codes for Nanog protein of size 300 amino acids (aas). Complete nucleotide sequence shows some evolutionary mutation in goat in comparision to other species. Protein sequence of goat is highly similar to other species. Overall, gNanog nucleotide sequence and predicted protein sequence showed high similarity and minimum divergence with cattle (96 % identity/4 % divergence) and buffalo (94/5 %) while low similarity and high divergence with pig (84/15 %), human (81/23 %) and mouse (69/40 %) indicating evolutionary closeness of gNanog to cattle and buffalo. gNanog lentiviral expression construct was prepared for over-expression of Nanog gene in adult goat fibroblast cells. Lentiviral expression construct of Nanog enabled continuous protein expression for induction and maintenance of pluripotency. Western blotting revealed the expression of Nanog gene at protein level which supported that the lentiviral expression system is highly promising for Nanog protein expression in differentiated goat cell.

  14. Cytoplasmic expression of Twist1, an EMT-related transcription factor, is associated with higher grades renal cell carcinomas and worse progression-free survival in clear cell renal cell carcinoma.

    PubMed

    Rasti, Arezoo; Madjd, Zahra; Abolhasani, Maryam; Mehrazma, Mitra; Janani, Leila; Saeednejad Zanjani, Leili; Asgari, Mojgan

    2018-05-01

    Twist1 is a key transcription factor, which confers tumor cells with cancer stem cell (CSC)-like characteristics and enhances epithelial-mesenchymal transition in pathological conditions including tumor malignancy and metastasis. This study aimed to evaluate the expression patterns and clinical significance of Twist1 in renal cell carcinoma (RCC). The cytoplasmic and nuclear expression of Twist1 were examined in 252 well-defined renal tumor tissues, including 173 (68.7%) clear cell renal cell carcinomas (ccRCC), 45 (17.9%) papillary renal cell carcinomas (pRCC) and 34 (13.5%) chromophobe renal cell carcinoma, by immunohistochemistry on a tissue microarray. The association between expression of this marker and clinicopathologic parameters and survival outcomes were then analyzed. Twist1 was mainly localized to the cytoplasm of tumor cells (98.8%). Increased cytoplasmic expression of Twist1 was associated with higher grade tumors (P = 0.045), renal vein invasion (P = 0.031) and microvascular invasion (P = 0.044) in RCC. It was positively correlated with higher grade tumors (P = 0.026), shorter progression-free survival time (P = 0.027) in patients with ccRCC, and also with higher stage in pRCC patients (P = 0.036). Significantly higher cytoplasmic expression levels of Twist1 were found in ccRCC and pRCC subtypes, due to their more aggressive tumor behavior. Increased cytoplasmic expression of Twist1 had a critical role in worse prognosis in ccRCC. These findings suggest that cytoplasmic, rather than nuclear expression of Twist1 can be considered as a prognostic and therapeutic marker for targeted therapy of RCC, especially for ccRCC patients.

  15. Protein markers of malignant potential in penile and vulvar lichen sclerosus.

    PubMed

    Carlson, Bayard C; Hofer, Matthias D; Ballek, Nathaniel; Yang, Ximing J; Meeks, Joshua J; Gonzalez, Chris M

    2013-08-01

    Lichen sclerosus is an inflammatory skin disorder affecting anogenital areas in males and females that is associated with squamous cell carcinoma. However, there is a lack of data on the role of biomarkers for predicting lichen sclerosus progression to squamous cell carcinoma. We focused on early protein markers of squamous cell carcinoma and their expression in lichen sclerosus to improve the mechanistic and diagnostic understanding of lichen sclerosus. We performed an extensive PubMed® and MEDLINE® search for protein markers found in early stages of vulvar and penile squamous cell carcinoma, and their prevalence in associated lichen sclerosus lesions. In recent years several markers have been implicated as precursor markers for malignant transformation of lichen sclerosus into squamous cell carcinoma, including p53, Ki-67, γ-H2AX, MCM3 and cyclin D1. These proteins are up-regulated in lichen sclerosus of the vulva/penis and squamous cell carcinoma. Various levels of evidence show an association between lichen sclerosus and squamous cell carcinoma. p16 is over expressed in penile and vulvar squamous cell carcinoma associated with human papillomavirus infection but conflicting reports exist about its expression in lichen sclerosus. The angiogenesis markers vascular endothelial growth factor and cyclooxygenase-2 are expressed at higher levels, and microvessel density is increased in vulvar lichen sclerosus and squamous cell carcinoma, indicating a possible similar association in penile lichen sclerosus. Only a minority of lichen sclerosus cases are associated with squamous cell carcinoma. However, the therapeutic implications of a squamous cell carcinoma diagnosis are severe. Clinically, we lack an understanding of how to separate indolent lichen sclerosus cases from those in danger of progression to squamous cell carcinoma. Several protein markers show promise for further delineating the pathobiology of lichen sclerosus and the potential malignant transformation

  16. Checkpoint kinase 1 expression is an adverse prognostic marker and therapeutic target in MYC-driven medulloblastoma

    PubMed Central

    Shah, Monil; Mulcahy Levy, Jean M.; Griesinger, Andrea M.; Alimova, Irina; Harris, Peter S.; Birks, Diane K.; Donson, Andrew M.; Davidson, Nathan; Remke, Marc; Taylor, Michael D.; Handler, Michael H.; Foreman, Nicholas K.; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-01-01

    Checkpoint kinase 1 (CHK1) is an integral component of the cell cycle as well as the DNA Damage Response (DDR) pathway. Previous work has demonstrated the effectiveness of inhibiting CHK1 with small-molecule inhibitors, but the role of CHK1 mediated DDR in medulloblastoma is unknown. CHK1, both at the mRNA and protein level, is highly expressed in medulloblastoma and elevated CHK1 expression in Group3 medulloblastoma is an adverse prognostic marker. CHK1 inhibition with the small-molecule drug AZD7762, results in decreased cell growth, increased DNA damage and cell apoptosis. Furthermore, AZD7762 acts in synergy with cisplatin in reducing cell proliferation in medulloblastoma. Similar phenotypic changes were observed with another CHK1 inhibitor, PF477736, as well as genetic knockdown using siRNA against CHK1. Treatments with small-molecule inhibitors of CHK1 profoundly modulated the expression of both upstream and downstream target proteins within the CHK1 signaling pathways. This suggests the presence of a feedback loop in activating CHK1. Overall, our results demonstrate that small-molecule inhibition of CHK1 in combination with, cisplatin, is more advantageous than either treatment alone, especially for Group 3 medulloblastoma, and therefore this combined therapeutic approach serves as an avenue for further investigation. PMID:27449089

  17. Checkpoint kinase 1 expression is an adverse prognostic marker and therapeutic target in MYC-driven medulloblastoma.

    PubMed

    Prince, Eric W; Balakrishnan, Ilango; Shah, Monil; Mulcahy Levy, Jean M; Griesinger, Andrea M; Alimova, Irina; Harris, Peter S; Birks, Diane K; Donson, Andrew M; Davidson, Nathan; Remke, Marc; Taylor, Michael D; Handler, Michael H; Foreman, Nicholas K; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-08-16

    Checkpoint kinase 1 (CHK1) is an integral component of the cell cycle as well as the DNA Damage Response (DDR) pathway. Previous work has demonstrated the effectiveness of inhibiting CHK1 with small-molecule inhibitors, but the role of CHK1 mediated DDR in medulloblastoma is unknown. CHK1, both at the mRNA and protein level, is highly expressed in medulloblastoma and elevated CHK1 expression in Group3 medulloblastoma is an adverse prognostic marker. CHK1 inhibition with the small-molecule drug AZD7762, results in decreased cell growth, increased DNA damage and cell apoptosis. Furthermore, AZD7762 acts in synergy with cisplatin in reducing cell proliferation in medulloblastoma. Similar phenotypic changes were observed with another CHK1 inhibitor, PF477736, as well as genetic knockdown using siRNA against CHK1. Treatments with small-molecule inhibitors of CHK1 profoundly modulated the expression of both upstream and downstream target proteins within the CHK1 signaling pathways. This suggests the presence of a feedback loop in activating CHK1. Overall, our results demonstrate that small-molecule inhibition of CHK1 in combination with, cisplatin, is more advantageous than either treatment alone, especially for Group 3 medulloblastoma, and therefore this combined therapeutic approach serves as an avenue for further investigation.

  18. CD32-Expressing CD4 T Cells Are Phenotypically Diverse and Can Contain Proviral HIV DNA.

    PubMed

    Martin, Genevieve E; Pace, Matthew; Thornhill, John P; Phetsouphanh, Chansavath; Meyerowitz, Jodi; Gossez, Morgane; Brown, Helen; Olejniczak, Natalia; Lwanga, Julianne; Ramjee, Gita; Kaleebu, Pontiano; Porter, Kholoud; Willberg, Christian B; Klenerman, Paul; Nwokolo, Nneka; Fox, Julie; Fidler, Sarah; Frater, John

    2018-01-01

    Efforts to both characterize and eradicate the HIV reservoir have been limited by the rarity of latently infected cells and the absence of a specific denoting biomarker. CD32a (FcγRIIa) has been proposed to be a marker for an enriched CD4 T cell HIV reservoir, but this finding remains controversial. Here, we explore the expression of CD32 on CD3 + CD4 + cells in participants from two primary HIV infection studies and identify at least three distinct phenotypes (CD32 low , CD32 + CD14 + , and CD32 high ). Of note, CD4 negative enrichment kits remove the majority of CD4 + CD32 + T cells, potentially skewing subsequent analyses if used. CD32 high CD4 T cells had higher levels of HLA-DR and HIV co-receptor expression than other subsets, compatible with their being more susceptible to infection. Surprisingly, they also expressed high levels of CD20, TCRαβ, IgD, and IgM (but not IgG), markers for both T cells and naïve B cells. Compared with other populations, CD32 low cells had a more differentiated memory phenotype and high levels of immune checkpoint receptors, programmed death receptor-1 (PD-1), Tim-3, and TIGIT. Within all three CD3 + CD4 + CD32 + phenotypes, cells could be identified in infected participants, which contained HIV DNA. CD32 expression on CD4 T cells did not correlate with HIV DNA or cell-associated HIV RNA (both surrogate measures of overall reservoir size) or predict time to rebound viremia following treatment interruption, suggesting that it is not a dominant biomarker for HIV persistence. Our data suggest that while CD32 + T cells can be infected with HIV, CD32 is not a specific marker of the reservoir although it might identify a population of HIV enriched cells in certain situations.

  19. The immunohistochemical expression of endocrine gland-derived-VEGF (EG-VEGF) as a prognostic marker in ovarian cancer.

    PubMed

    Bălu, Sevilla; Pirtea, L; Gaje, Puşa; Cîmpean, Anca Maria; Raica, M

    2012-01-01

    Ovarian cancer-related angiogenesis is a complex process orchestrated by many positive and negative regulators. Many growth factors are involved in the development of the tumor-associated vasculature, and from these, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) seems to play a crucial role. EG-VEGF is the first organ-specific angiogenic factor and its effects are restricted to the endothelial cells of the endocrine glands. Although EG-VEGF was detected in both normal and neoplastic ovaries, its clinical significance remains controversial. In the present study, we analyzed 30 patients with epithelial ovarian cancer, and the immunohistochemical expression of EG-VEGF was compared with the conventional clinico-pathological parameters of prognosis. Neoplastic cells of the ovarian carcinoma expressed EG-VEGF in 73.33% of the cases, as a cytoplasmic granular product of reaction. We found a strong correlation between the expression of EG-VEGF at protein level and tumor stage, grade, and microscopic type. The expression of EG-VEGF was found in patients with stage III and IV, but not in stage II. The majority of serous adenocarcinoma, half of the cases with clear cell carcinoma and two cases with endometrioid carcinoma showed definite expression in tumor cells. No positive reaction was found in the cases with mucinous carcinoma. Our results showed that EG-VEGF expression is an indicator not only of the advanced stage, but also of ovarian cancer progression. Based on these data, we concluded that EG-VEGF expression in tumor cells of the epithelial ovarian cancer is a good marker of unfavorable prognosis and could be an attractive therapeutic target in patients with advanced-stage tumors, refractory conventional chemotherapy.

  20. Mammalian target of rapamycin inhibitors, temsirolimus and torin 1, attenuate stemness-associated properties and expression of mesenchymal markers promoted by phorbol-myristate-acetate and oncostatin-M in glioblastoma cells.

    PubMed

    Chandrika, Goparaju; Natesh, Kumar; Ranade, Deepak; Chugh, Ashish; Shastry, Padma

    2017-03-01

    The phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway is crucial for tumor survival, proliferation, and progression, making it an attractive target for therapeutic intervention. In glioblastoma, activated mammalian target of rapamycin promotes invasive phenotype and correlates with poor patient survival. A wide range of mammalian target of rapamycin inhibitors are currently being evaluated for cytotoxicity and anti-proliferative activity in various tumor types but are not explored sufficiently for controlling tumor invasion and recurrence. We recently reported that mammalian target of rapamycin inhibitors-rapamycin, temsirolimus, torin 1, and PP242-suppressed invasion and migration promoted by tumor necrosis factor-alpha and phorbol-myristate-acetate in glioblastoma cells. As aggressive invasion and migration of tumors are associated with mesenchymal and stem-like cell properties, this study aimed to examine the effect of mammalian target of rapamycin inhibitors on these features in glioblastoma cells. We demonstrate that temsirolimus and torin 1 effectively reduced the constitutive as well as phorbol-myristate-acetate/oncostatin-M-induced expression of mesenchymal markers (fibronectin, vimentin, and YKL40) and neural stem cell markers (Sox2, Oct4, nestin, and mushashi1). The inhibitors significantly abrogated the neurosphere-forming capacity induced by phorbol-myristate-acetate and oncostatin-M. Furthermore, we demonstrate that the drugs dephosphorylated signal transducer and activator transcription factor 3, a major regulator of mesenchymal and neural stem cell markers implicating the role of signal transducer and activator transcription factor 3 in the inhibitory action of these drugs. The findings demonstrate the potential of mammalian target of rapamycin inhibitors as "stemness-inhibiting drugs" and a promising therapeutic approach to target glioma stem cells.

  1. Histone Deacetylase Inhibitor Induces the Expression of Select Epithelial Genes in Mouse Utricle Sensory Epithelia-Derived Progenitor Cells

    PubMed Central

    Wang, Jue

    2014-01-01

    Abstract Mouse utricle sensory epithelial cell–derived progenitor cells (MUCs), which have hair cell progenitor and mesenchymal features via epithelial-to-mesenchymal transition (EMT) as previously described, provide a potential approach for hair cell regeneration via cell transplantation. In this study, we treated MUCs with trichostatin A (TSA) to determine whether histone deacetylase inhibitor is able to stimulate the expression of epithelial genes in MUCs, an essential step for guiding mesenchymal-like MUCs to become sensory epithelial cells. After 72 h of TSA treatment, MUCs acquired epithelial-like features, which were indicated by increased expression of epithelial markers such as Cdh1, Krt18, and Dsp. Additionally, TSA decreased the expression of mesenchymal markers, including Zeb1, Zeb2, Snai1, and Snai2, and prosensory genes Lfng, Six1, and Dlx5. Moreover, the expression of the hair cell genes Atoh1 and Myo6 was increased in TSA-treated MUCs. We also observed significantly decreased expression of Hdac2 and Hdac3 in TSA-treated MUCs. However, no remarkable change was detected in protein expression using immunofluorescence, indicating that TSA-induced HDAC inhibition may contribute to the initial stage of the mesenchymal-to-epithelial phenotypic change. In the future, more work is needed to induce hair cell regeneration using inner ear tissue–derived progenitors to achieve an entire mesenchymal-to-epithelial transition. PMID:24945595

  2. Intratubular germ cell neoplasia of the human testis: heterogeneous protein expression and relation to invasive potential

    PubMed Central

    Mitchell, Rod T; Camacho-Moll, Maria; Macdonald, Joni; Anderson, Richard A; Kelnar, Christopher JH; O’Donnell, Marie; Sharpe, Richard M; Smith, Lee B; Grigor, Ken M; Wallace, W Hamish B; Stoop, Hans; Wolffenbuttel, Katja P; Donat, Roland

    2014-01-01

    Testicular germ cell cancer develops from pre-malignant intratubular germ cell neoplasia, unclassified cells that are believed to arise from failure of normal maturation of fetal germ cells from gonocytes (OCT4+/ MAGEA4−) into pre-spermatogonia (OCT4−/MAGEA4+). Intratubular germ cell neoplasia cell subpopulations based on stage of germ cell differentiation have been described, however the importance of these subpopulations in terms of invasive potential has not been reported. We hypothesised that cells expressing an immature (OCT4+/MAGEA4−) germ cell profile would exhibit an increased proliferation rate compared to those with a mature profile (OCT4+/ MAGEA4+). Therefore, we performed triple immunofluorescence and stereology to quantify the different intratubular germ cell neoplasia cell subpopulations, based on expression of germ cell (OCT4, PLAP, AP2γ, MAGEA4, VASA) and proliferation (Ki67) markers, in testis sections from patients with pre-invasive disease, seminoma and non-seminoma. We compared these subpopulations with normal human fetal testis and with seminoma cells. Heterogeneity of protein expression was demonstrated in intratubular germ cell neoplasia cells with respect to gonocyte and spermatogonial markers. It included an embryonic/fetal germ cell subpopulation lacking expression of the definitive intratubular germ cell neoplasia marker OCT4, that did not correspond to a physiological (fetal) germ cell subpopulation. OCT4+/MAGEA4- cells showed a significantly increased rate of proliferation compared with the OCT4+/MAGEA4+ population (12.8 v 3.4%, p<0.0001) irrespective of histological tumour type, reflected in the predominance of OCT4+/MAGEA4− cells in the invasive tumour component. Surprisingly, OCT4+/MAGEA4− cells in patients with pre-invasive disease showed significantly higher proliferation compared to those with seminoma or non-seminoma (18.1 v 10.2 v 7.2%, p<0.05 respectively). In conclusion, this study has demonstrated that OCT4+/MAGEA4

  3. Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma.

    PubMed

    Wan, Qi; Tang, Jing; Han, Yu; Wang, Dan

    2018-01-01

    Uveal melanoma is an aggressive cancer which has a high percentage recurrence and with a worse prognosis. Identify the potential prognostic markers of uveal melanoma may provide information for early detection of recurrence and treatment. RNA sequence data of uveal melanoma and patient clinic traits were obtained from The Cancer Genome Atlas (TCGA) database. Co-expression modules were built by weighted gene co -expression network analysis (WGCNA) and applied to investigate the relationship underlying modules and clinic traits. Besides, functional enrichment analysis was performed on these co-expression genes from interested modules. First, using WGCNA, identified 21 co-expression modules were constructed by the 10975 genes from the 80 human uveal melanoma samples. The number of genes in these modules ranged from 42 to 5091. Found four co -expression modules significantly correlated with three clinic traits (status, recurrence and recurrence Time). Module red, and purple positively correlated with patient's life status and recurrence Time. Module green positively correlates with recurrence. The result of functional enrichment analysis showed that the module magenta was mainly enriched genetic material assemble processes, the purple module was mainly enriched in tissue homeostasis and melanosome membrane and the module red was mainly enriched metastasis of cell, suggesting its critical role in the recurrence and development of the disease. Additionally, identified the hug gene (top connectivity with other genes) in each module. The hub gene SLC17A7, NTRK2, ABTB1 and ADPRHL1 might play a vital role in recurrence of uveal melanoma. Our findings provided the framework of co-expression gene modules of uveal melanoma and identified some prognostic markers might be detection of recurrence and treatment for uveal melanoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration.

    PubMed

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration

    PubMed Central

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-01-01

    Background & Aims Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). Methods C57BL/6J mice were fed diets with or without ABA (100 mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. Results ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with down-regulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4+ and CD8+ T-lymphocytes in blood and MLN and regulatory T-cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. Conclusions We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. PMID:20236740

  6. NOTCH3 is expressed in human apical papilla and in subpopulations of stem cells isolated from the tissue.

    PubMed

    Jamal, Mohamed; Chogle, Sami M; Karam, Sherif M; Huang, George T-J

    2015-09-01

    NOTCH plays a role in regulating stem cell function and fate decision. It is involved in tooth development and injury repair. Information regarding NOTCH expression in human dental root apical papilla (AP) and its residing stem cells (SCAP) is limited. Here we investigated the expression of NOTCH3, its ligand JAG1, and mesenchymal stem cell markers CD146 and STRO-1 in the AP or in the primary cultures of SCAP isolated from AP. Our in situ immunostaining showed that in the AP NOTCH3 and CD146 were co-expressed and associated with blood vessels having NOTCH3 located more peripherally. In cultured SCAP, NOTCH3 and JAG1 were co-expressed. Flow cytometry analysis showed that 7%, 16% and 98% of the isolated SCAP were positive for NOTCH3, STRO-1 and CD146, respectively with a rare 1.5% subpopulation of SCAP co-expressing all three markers. The expression level of NOTCH3 reduced when SCAP underwent osteogenic differentiation. Our findings are the first step towards defining the regulatory role of NOTCH3 in SCAP fate decision.

  7. Current molecular markers for gastric progenitor cells and gastric cancer stem cells.

    PubMed

    Qiao, Xiaotan T; Gumucio, Deborah L

    2011-07-01

    Gastric stem and progenitor cells (GPC) play key roles in the homeostatic renewal of gastric glands and are instrumental in epithelial repair after injury. Until very recently, the existence of GPC could only be inferred by indirect labeling strategies. The last few years have seen significant progress in the identification of biomarkers that allow prospective identification of GPC. The analysis of these unique cell populations is providing new insights into the molecular underpinnings of gastric epithelial homeostasis and repair. Of closely related interest is the potential to identify so-called cancer stem cells, a rare subpopulation of tumor-initiating cells. Here, we review the current useful biomarkers for GPC, including: (a) those that have been demonstrated by lineage tracing to give rise to all gastric cell lineages (e.g., the villin-transgene marker as well as Lgr5); (b) those that give rise to a subset of gastric lineages (e.g., TFF2); (c) markers that recognize cryptic progenitors for metaplasia (e.g., MIST1), and (d) markers that have not yet been analyzed by lineage tracing (e.g., DCKL1/DCAMKL1, CD133/PROM1, and CD44). The study of these markers has been mostly limited to the mouse model, but the hope is that the rapid pace of recent breakthroughs in this animal model will soon lead to a greater understanding of human gastric stem cell biology and to new insights into gastric cancer, the second leading cause of cancer-related death worldwide.

  8. Generation of mammalian cells stably expressing multiple genes at predetermined levels.

    PubMed

    Liu, X; Constantinescu, S N; Sun, Y; Bogan, J S; Hirsch, D; Weinberg, R A; Lodish, H F

    2000-04-10

    Expression of cloned genes at desired levels in cultured mammalian cells is essential for studying protein function. Controlled levels of expression have been difficult to achieve, especially for cell lines with low transfection efficiency or when expression of multiple genes is required. An internal ribosomal entry site (IRES) has been incorporated into many types of expression vectors to allow simultaneous expression of two genes. However, there has been no systematic quantitative analysis of expression levels in individual cells of genes linked by an IRES, and thus the broad use of these vectors in functional analysis has been limited. We constructed a set of retroviral expression vectors containing an IRES followed by a quantitative selectable marker such as green fluorescent protein (GFP) or truncated cell surface proteins CD2 or CD4. The gene of interest is placed in a multiple cloning site 5' of the IRES sequence under the control of the retroviral long terminal repeat (LTR) promoter. These vectors exploit the approximately 100-fold differences in levels of expression of a retrovirus vector depending on its site of insertion in the host chromosome. We show that the level of expression of the gene downstream of the IRES and the expression level and functional activity of the gene cloned upstream of the IRES are highly correlated in stably infected target cells. This feature makes our vectors extremely useful for the rapid generation of stably transfected cell populations or clonal cell lines expressing specific amounts of a desired protein simply by fluorescent activated cell sorting (FACS) based on the level of expression of the gene downstream of the IRES. We show how these vectors can be used to generate cells expressing high levels of the erythropoietin receptor (EpoR) or a dominant negative Smad3 protein and to generate cells expressing two different cloned proteins, Ski and Smad4. Correlation of a biologic effect with the level of expression of the

  9. Marker Protein Expression Combined With Expression Heterogeneity is a Powerful Indicator of Malignancy in Acral Lentiginous Melanomas.

    PubMed

    Cintra Lopes Carapeto, Fernando; Neves Comodo, Andréia; Germano, Andressa; Pereira Guimarães, Daiane; Barcelos, Denise; Fernandes, Mariana; Landman, Gilles

    2017-02-01

    Samples of acral lentiginous melanomas (ALMs) were obtained from the Department of Pathology at Escola Paulista de Medicina-Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil. Demographic, clinical, and follow-up data were obtained from the charts of Hospital São Paulo. From 2 tissue microarrays containing 60 nevi and quadruplicate samples of ≥1.0-mm of 49 ALM, sections were stained to evaluate SCF, KIT, BRAF, CYCLIND1, MYC, and PTEN immunohistochemical protein expression. Nevi and ALM from 2006 to 2010 were reviewed and collected. All specimens were in the vertical growth phase, and histopathological parameters indicated that tumors were at an advanced stage at diagnosis. Average tumor thickness was 6.95 mm, 63% were ulcerated, average mitotic index was 5 mitotic cells per mm, and 43% were at Clark's level V. Compared with nevi, the χ test showed that ALM significantly correlated with SCF protein expression (P = 0.001) and expression heterogeneity (P < 0.000). Similar findings were observed for KIT (P = 0.005, P = 0.003, respectively), MYC (P < 0.000, P < 0.000), and PTEN (P = 0.005, P < 0.000). Malignancy did not correlate with BRAF and CYCLIN D1 expression (P = 0.053 and P = 0.259, respectively), but it did significantly correlate with their heterogeneous expression (P < 0.000, P = 0.024, respectively). Combined protein expression had an odds ratio of greater malignancy when BRAF and MYC were positive and/or heterogeneously expressed (OR of 78 and 95, respectively). We show that marker protein expression, when combined with heterogeneous expression as shown by immunohistochemistry, is a powerful indicator of malignancy in ALMs, especially, when protein pairs are combined.

  10. Clinical and Pathological Significance of ER Stress Marker (BiP/GRP78 and PERK) Expression in Malignant Melanoma.

    PubMed

    Shimizu, Akira; Kaira, Kyoichi; Yasuda, Masahito; Asao, Takayuki; Ishikawa, Osamu

    2017-01-01

    Glucose-regulated protein of 78 kD (GRP78) also referred to as immunoglobulin heavy chain binding protein (BiP/GRP78) plays an important role in the endoplasmic reticulum (ER) stress. The level of BiP/GRP78 is highly elevated in various human cancers. The purpose of this study is to examine the prognostic significance of BiP/GRP78 expression in patients with malignant melanoma. A total of 133 malignant melanoma patients were analyzed, and tumor specimens were stained by immunohistochemistry for BiP/GRP78, PKR-like endoplasmic reticulum kinase (PERK), Ki-67, p53 and microvessel density (MVD) determined by CD34. BiP/GRP78 and PERK were highly expressed in 40 % (53/133) and 78 % (104/133), respectively. BiP/GRP78 disclosed a significant relationship with PERK expression, thickness, T factor, N factor, disease staging, cell proliferation (Ki-67) and MVD (CD34). By multivariate analysis, the high expression of BiP/GRP78 was identified as an independent prognostic factor for predicting poor survival against malignant melanoma. The increased BiP/GRP78 expression was clarified as an independent prognostic marker for predicting worse outcome. ER stress marker, BiP/GRP78 could be a powerful molecular target for the treatment of malignant melanoma.

  11. A novel dual-marker expression panel for easy and accurate risk stratification of patients with gastric cancer.

    PubMed

    Kanda, Mitsuro; Murotani, Kenta; Tanaka, Haruyoshi; Miwa, Takashi; Umeda, Shinichi; Tanaka, Chie; Kobayashi, Daisuke; Hayashi, Masamichi; Hattori, Norifumi; Suenaga, Masaya; Yamada, Suguru; Nakayama, Goro; Fujiwara, Michitaka; Kodera, Yasuhiro

    2018-05-07

    Development of specific biomarkers is necessary for individualized management of patients with gastric cancer. The aim of this study was to design a simple expression panel comprising novel molecular markers for precise risk stratification. Patients (n = 200) who underwent gastrectomy for gastric cancer were randomly assigned into learning and validation sets. Tissue mRNA expression levels of 15 candidate molecular markers were determined using quantitative PCR analysis. A dual-marker expression panel was created according to concordance index (C-index) values of overall survival for all 105 combinations of two markers in the learning set. The reproducibility and clinical significance of the dual-marker expression panel were evaluated in the validation set. The patient characteristics of the learning and validation sets were well balanced. The C-index values of combinations were significantly higher compared with those of single markers. The panel with the highest C-index (0.718) of the learning set comprised SYT8 and MAGED2, which clearly stratified patients into low-, intermediate-, and high-risk groups. The reproducibility of the panel was demonstrated in the validation set. High expression scores were significantly associated with larger tumor size, vascular invasion, lymph node metastasis, peritoneal metastasis, and advanced disease. The dual-marker expression panel provides a simple tool that clearly stratifies patients with gastric cancer into low-, intermediate-, and high risk after gastrectomy. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  12. RNA-Sequencing Gene Expression Profiling of Orbital Adipose-Derived Stem Cell Population Implicate HOX Genes and WNT Signaling Dysregulation in the Pathogenesis of Thyroid-Associated Orbitopathy.

    PubMed

    Tao, Wensi; Ayala-Haedo, Juan A; Field, Matthew G; Pelaez, Daniel; Wester, Sara T

    2017-12-01

    The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell-specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways.

  13. Discovering monotonic stemness marker genes from time-series stem cell microarray data.

    PubMed

    Wang, Hsei-Wei; Sun, Hsing-Jen; Chang, Ting-Yu; Lo, Hung-Hao; Cheng, Wei-Chung; Tseng, George C; Lin, Chin-Teng; Chang, Shing-Jyh; Pal, Nikhil; Chung, I-Fang

    2015-01-01

    Identification of genes with ascending or descending monotonic expression patterns over time or stages of stem cells is an important issue in time-series microarray data analysis. We propose a method named Monotonic Feature Selector (MFSelector) based on a concept of total discriminating error (DEtotal) to identify monotonic genes. MFSelector considers various time stages in stage order (i.e., Stage One vs. other stages, Stages One and Two vs. remaining stages and so on) and computes DEtotal of each gene. MFSelector can successfully identify genes with monotonic characteristics. We have demonstrated the effectiveness of MFSelector on two synthetic data sets and two stem cell differentiation data sets: embryonic stem cell neurogenesis (ESCN) and embryonic stem cell vasculogenesis (ESCV) data sets. We have also performed extensive quantitative comparisons of the three monotonic gene selection approaches. Some of the monotonic marker genes such as OCT4, NANOG, BLBP, discovered from the ESCN dataset exhibit consistent behavior with that reported in other studies. The role of monotonic genes found by MFSelector in either stemness or differentiation is validated using information obtained from Gene Ontology analysis and other literature. We justify and demonstrate that descending genes are involved in the proliferation or self-renewal activity of stem cells, while ascending genes are involved in differentiation of stem cells into variant cell lineages. We have developed a novel system, easy to use even with no pre-existing knowledge, to identify gene sets with monotonic expression patterns in multi-stage as well as in time-series genomics matrices. The case studies on ESCN and ESCV have helped to get a better understanding of stemness and differentiation. The novel monotonic marker genes discovered from a data set are found to exhibit consistent behavior in another independent data set, demonstrating the utility of the proposed method. The MFSelector R function and data

  14. Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas.

    PubMed

    Mishra, Amrendra; Sriram, Harshini; Chandarana, Pinal; Tanavde, Vivek; Kumar, Rekha V; Gopinath, Ashok; Govindarajan, Raman; Ramaswamy, S; Sadasivam, Subhashini

    2018-05-01

    The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44 + Lin - and CD44 - Lin - subpopulations were successfully isolated using fluorescence-activated cell sorting, and good-quality RNA was obtained from 14 such sorted pairs. Libraries from five pairs were sequenced and the results analysed using bioinformatics tools. Reverse transcription quantitative polymerase chain reaction was performed to experimentally validate the differential expression of selected candidate genes identified from the transcriptome sequencing in the same 5 and an additional 9 tumours. CD44 was expressed on the surface of poorly differentiated tumour cells, and within the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma samples, its messenger RNA levels were higher in tumours compared to normal. Transcriptomics revealed that 102 genes were upregulated and 85 genes were downregulated in CD44 + Lin - compared to CD44 - Lin - cells in at least 3 of the 5 tumours sequenced. The upregulated genes included those involved in immune regulation, while the downregulated genes were enriched for genes involved in cell adhesion. Decreased expression of PCDH18, MGP, SPARCL1 and KRTDAP was confirmed by reverse transcription quantitative polymerase chain reaction. Lower expression of

  15. Selecting antagonistic antibodies that control differentiation through inducible expression in embryonic stem cells

    PubMed Central

    Melidoni, Anna N.; Dyson, Michael R.; Wormald, Sam; McCafferty, John

    2013-01-01

    Antibodies that modulate receptor function have great untapped potential in the control of stem cell differentiation. In contrast to many natural ligands, antibodies are stable, exquisitely specific, and are unaffected by the regulatory mechanisms that act on natural ligands. Here we describe an innovative system for identifying such antibodies by introducing and expressing antibody gene populations in ES cells. Following induced antibody expression and secretion, changes in differentiation outcomes of individual antibody-expressing ES clones are monitored using lineage-specific gene expression to identify clones that encode and express signal-modifying antibodies. This in-cell expression and reporting system was exemplified by generating blocking antibodies to FGF4 and its receptor FGFR1β, identified through delayed onset of ES cell differentiation. Functionality of the selected antibodies was confirmed by addition of exogenous antibodies to three different ES reporter cell lines, where retained expression of pluripotency markers Oct4, Nanog, and Rex1 was observed. This work demonstrates the potential for discovery and utility of functional antibodies in stem cell differentiation. This work is also unique in constituting an example of ES cells carrying an inducible antibody that causes a functional protein “knock-down” and allows temporal control of stable signaling components at the protein level. PMID:24082130

  16. Proton receptor GPR68 expression in dendritic-cell-like S100β-positive cells of rat anterior pituitary gland: GPR68 induces interleukin-6 gene expression in extracellular acidification.

    PubMed

    Horiguchi, Kotaro; Higuchi, Masashi; Yoshida, Saishu; Nakakura, Takashi; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Kato, Takako; Kato, Yukio

    2014-11-01

    S100β-positive cells, which do not express the classical pituitary hormones, appear to possess multifunctional properties and are assumed to be heterogeneous in the anterior pituitary gland. The presence of several protein markers has shown that S100β-positive cells are composed of populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. Recently, we succeeded in separating S100β-positive cells into round-cell (dendritic-cell-like) and process-cell types. We also found the characteristic expression of anti-inflammatory factors (interleukin-6, Il-6) and membrane receptors (integrin β-6) in the round type. Here, we further investigate the function of the subpopulation of S100β-positive cells. Since IL-6 is also a paracrine factor that regulates hormone producing-cells, we examine whether a correlation exists among extracellular acid stress, IL-6 and hormone production by using primary cultures of anterior pituitary cells. Dendritic-cell-like S100β-positive cells notably expressed Gpr68 (proton receptor) and Il-6. Furthermore, the expression of Il-6 and proopiomelanocortin (Pomc) was up-regulated by extracellular acidification. The functional role of IL-6 and GPR68 in the gene expression of Pomc during extracellular acidification was also examined. Small interfering RNA for Il-6 up-regulated Pomc expression and that for Gpr68 reversed the down-regulation of Il-6 and up-regulated Pomc expression by extracellular acidification. Thus, S100β-positive dendritic-like cells can sense an increase in extracellular protons via GPR68 and respond by the production of IL-6 in order to suppress the up-regulation of Pomc expression.

  17. Impact of the putative cancer stem cell markers and growth factor receptor expression on the sensitivity of ovarian cancer cells to treatment with various forms of small molecule tyrosine kinase inhibitors and cytotoxic drugs.

    PubMed

    Puvanenthiran, Soozana; Essapen, Sharadah; Seddon, Alan M; Modjtahedi, Helmout

    2016-11-01

    Increased expression and activation of human epidermal growth factor receptor (EGFR) and HER-2 have been reported in numerous cancers. The aim of this study was to determine the sensitivity of a large panel of human ovarian cancer cell lines (OCCLs) to treatment with various forms of small molecule tyrosine kinase inhibitors (TKIs) and cytotoxic drugs. The aim was to see if there was any association between the protein expression of various biomarkers including three putative ovarian cancer stem cell (CSC) markers (CD24, CD44, CD117/c-Kit), P-glycoprotein (P-gp), and HER family members and response to treatment with these agents. The sensitivity of 10 ovarian tumour cell lines to the treatment with various forms of HER TKIs (gefitinib, erlotinib, lapatinib, sapitinib, afatinib, canertinib, neratinib), as well as other TKIs (dasatinib, imatinib, NVP-AEW541, crizotinib) and cytotoxic agents (paclitaxel, cisplatin and doxorubicin), as single agents or in combination, was determined by SRB assay. The effect on these agents on the cell cycle distribution, and downstream signaling molecules and tumour migration were determined using flow cytometry, western blotting, and the IncuCyte Clear View cell migration assay respectively. Of the HER inhibitors, the irreversible pan-TKIs (canertinib, neratinib and afatinib) were the most effective TKIs for inhibiting the growth of all ovarian cancer cells, and for blocking the phosphorylation of EGFR, HER-2, AKT and MAPK in SKOV3 cells. Interestingly, while the majority of cancer cells were highly sensitive to treatment with dasatinib, they were relatively resistant to treatment with imatinib (i.e., IC50 >10 µM). Of the cytotoxic agents, paclitaxel was the most effective for inhibiting the growth of OCCLs, and of various combinations of these drugs, only treatment with a combination of NVP-AEW541 and paclitaxel produced a synergistic or additive anti-proliferative effect in all three cell lines examined (i.e., SKOV3, Caov3, ES2

  18. Cell-type-specific expression of NFIX in the developing and adult cerebellum.

    PubMed

    Fraser, James; Essebier, Alexandra; Gronostajski, Richard M; Boden, Mikael; Wainwright, Brandon J; Harvey, Tracey J; Piper, Michael

    2017-07-01

    Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.

  19. PW1 gene/paternally expressed gene 3 (PW1/Peg3) identifies multiple adult stem and progenitor cell populations

    PubMed Central

    Besson, Vanessa; Smeriglio, Piera; Wegener, Amélie; Relaix, Frédéric; Nait Oumesmar, Brahim; Sassoon, David A.; Marazzi, Giovanna

    2011-01-01

    A variety of markers are invaluable for identifying and purifying stem/progenitor cells. Here we report the generation of a murine reporter line driven by Pw1 that reveals cycling and quiescent progenitor/stem cells in all adult tissues thus far examined, including the intestine, blood, testis, central nervous system, bone, skeletal muscle, and skin. Neurospheres generated from the adult PW1-reporter mouse show near 100% reporter-gene expression following a single passage. Furthermore, epidermal stem cells can be purified solely on the basis of reporter-gene expression. These cells are clonogenic, repopulate the epidermal stem-cell niches, and give rise to new hair follicles. Finally, we demonstrate that only PW1 reporter-expressing epidermal cells give rise to follicles that are capable of self-renewal following injury. Our data demonstrate that PW1 serves as an invaluable marker for competent self-renewing stem cells in a wide array of adult tissues, and the PW1-reporter mouse serves as a tool for rapid stem cell isolation and characterization. PMID:21709251

  20. Effect of developmental exposure to chlorpyrifos on the expression of neurotrophin growth factors and cell-specific markers in neonatal rat brain.

    PubMed

    Betancourt, Angela M; Burgess, Shane C; Carr, Russell L

    2006-08-01

    Chlorpyrifos (CPS), a known neurotoxicant, is a widely used agricultural organophosphorus insecticide. The effects of postnatal exposure to CPS on the expression of mRNA for two factors critical to brain development, nerve growth factor (NGF) and reelin, were investigated in the forebrain of rats. In addition, the expression of mRNA for the muscarinic acetylcholine receptor (mAChR) M(1) subtype and cell-specific markers for developing neurons (beta-III tubulin), astrocytes (glial fibrillary acidic protein, GFAP), and oligodendrocytes (myelin-associated glycoprotein, MAG) was also investigated. Oral administration of CPS (1.5 or 3.0 mg/kg) or the corn oil vehicle was performed daily from postnatal days (PNDs) 1 through 6. No signs of overt toxicity or of cholinergic hyperstimulation were observed after CPS administration. Body weight was significantly different from controls on PND7 in both males and females exposed to 3.0 mg/kg CPS. Quantitative PCR was performed on the forebrain. The expression of NGF, reelin, and M(1) mAChR mRNA was significantly reduced with both dosages of CPS in both sexes. beta-III Tubulin mRNA expression remained unchanged after exposure, whereas MAG mRNA expression was significantly decreased with both dosages of CPS in both sexes, suggesting effects on the developing oligodendrocytes. In contrast, GFAP mRNA levels were significantly increased with both dosages of CPS in both sexes, suggesting increased astrocyte reactivity. Our findings indicate that dosages of CPS which cause significant cholinesterase inhibition but do not exert overt toxicity can adversely affect the expression levels of critical genes involved in brain development during the early postnatal period in the rat.

  1. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32)

    PubMed Central

    2011-01-01

    Background Elevated numbers of regulatory T cells (Tregs) have been implicated in certain cancers. Depletion of Tregs has been shown to increase anti-tumor immunity. Tregs also play a critical role in the suppression of autoimmune responses. The study of Tregs has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32), also known as Glycoprotein A Repetitions Predominant (GARP), has been postulated as a novel surface marker of activated Tregs. However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of Tregs expressing LRRC32. Results Using naturally-occurring freshly isolated Tregs, we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ Tregs are distinct from LRRC32- Tregs with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ Tregs are more potent suppressors than LRRC32- Tregs. Conclusions A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent Treg populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of Tregs and the refinement of immunotherapeutic strategies aimed at targeting these cells. PMID:21615933

  2. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32).

    PubMed

    Chan, Derek V; Somani, Ally-Khan; Young, Andrew B; Massari, Jessica V; Ohtola, Jennifer; Sugiyama, Hideaki; Garaczi, Edina; Babineau, Denise; Cooper, Kevin D; McCormick, Thomas S

    2011-05-26

    Elevated numbers of regulatory T cells (T(regs)) have been implicated in certain cancers. Depletion of T(regs) has been shown to increase anti-tumor immunity. T(regs) also play a critical role in the suppression of autoimmune responses. The study of T(regs) has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32), also known as Glycoprotein A Repetitions Predominant (GARP), has been postulated as a novel surface marker of activated T(regs). However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of T(regs) expressing LRRC32. Using naturally-occurring freshly isolated T(regs), we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ T(regs) are distinct from LRRC32- T(regs) with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ T(regs) are more potent suppressors than LRRC32- T(regs). A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent T(reg) populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of T(regs) and the refinement of immunotherapeutic strategies aimed at targeting these cells.

  3. Msx1 and Msx2 are expressed in sub-populations of vascular smooth muscle cells.

    PubMed

    Goupille, Olivier; Saint Cloment, Cécile; Lopes, Miguel; Montarras, Didier; Robert, Benoît

    2008-08-01

    Using an nlacZ reporter gene inserted at the Msx1 and Msx2 loci, we could analyze the expression of these homeogenes in the adult mouse. We observed that Msx genes are prominently expressed in a subset of blood vessels. The Msx2nlacZ allele is mainly expressed in a restricted population of mural cells in peripheral arteries and veins. Msx1nlacZ is expressed to a lesser extent by vascular smooth muscle cells of peripheral arteries, but is highly expressed in arterioles and capillaries, making Msx1 a novel marker for a subpopulation of pericytes. Expression is set up early in developing vessels and maintained throughout life. In addition, expression of both genes is observed in a few endothelial cells of the aorta at fetal stages, and only Msx2 continues to be expressed in this layer at the adult stage. These results suggest major functions for Msx genes in vascular mural cell formation and remodeling. Copyright (c) 2008 Wiley-Liss, Inc.

  4. Maillard reaction products enriched food extract reduce the expression of myofibroblast phenotype markers.

    PubMed

    Ruhs, Stefanie; Nass, Norbert; Somoza, Veronika; Friess, Ulrich; Schinzel, Reinhard; Silber, Rolf-Edgar; Simm, Andreas

    2007-04-01

    Advanced glycation end products (AGE) are associated with a wide range of degenerative diseases. The present investigation aimed at analysing the influence of AGE containing nutritional extracts on cardiac fibroblasts (CFs) as the major cell type responsible for cardiac fibrosis. Mice CFs were treated with bread crust extract (BCE) which contained significant amounts of a variety of AGE modifications. BCE treatment with up to 30 mg/mL did not impair cell viability. Furthermore, BCE induced a moderate elevation of reactive oxygen species (ROS) production and activation of redox sensitive pathways like the p42/44(MAPK), p38(MAPK) and NF-kappaB but did not alter Akt kinase phosphorylation. Expression of smooth muscle alpha-actin and tropomyosin-1, which represent markers for myofibroblast differentiation, was reduced after bread crust treatment. These data suggest a putative antifibrotic effect of melanoidin-rich food.

  5. Gene expression profiles of brain endothelial cells during embryonic development at bulk and single-cell levels.

    PubMed

    Hupe, Mike; Li, Minerva Xueting; Kneitz, Susanne; Davydova, Daria; Yokota, Chika; Kele-Olovsson, Julianna; Hot, Belma; Stenman, Jan M; Gessler, Manfred

    2017-07-11

    The blood-brain barrier is a dynamic interface that separates the brain from the circulatory system, and it is formed by highly specialized endothelial cells. To explore the molecular mechanisms defining the unique nature of vascular development and differentiation in the brain, we generated high-resolution gene expression profiles of mouse embryonic brain endothelial cells using translating ribosome affinity purification and single-cell RNA sequencing. We compared the brain vascular translatome with the vascular translatomes of other organs and analyzed the vascular translatomes of the brain at different time points during embryonic development. Because canonical Wnt signaling is implicated in the formation of the blood-brain barrier, we also compared the brain endothelial translatome of wild-type mice with that of mice lacking the transcriptional cofactor β-catenin ( Ctnnb1 ). Our analysis revealed extensive molecular changes during the embryonic development of the brain endothelium. We identified genes encoding brain endothelium-specific transcription factors ( Foxf2 , Foxl2 , Foxq1 , Lef1 , Ppard , Zfp551 , and Zic3 ) that are associated with maturation of the blood-brain barrier and act downstream of the Wnt-β-catenin signaling pathway. Profiling of individual brain endothelial cells revealed substantial heterogeneity in the population. Nevertheless, the high abundance of Foxf2 , Foxq1 , Ppard , or Zic3 transcripts correlated with the increased expression of genes encoding markers of brain endothelial cell differentiation. Expression of Foxf2 and Zic3 in human umbilical vein endothelial cells induced the production of blood-brain barrier differentiation markers. This comprehensive data set may help to improve the engineering of in vitro blood-brain barrier models. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. A descriptive marker gene approach to single-cell pseudotime inference.

    PubMed

    Campbell, Kieran R; Yau, Christopher

    2018-06-23

    Pseudotime estimation from single-cell gene expression data allows the recovery of temporal information from otherwise static profiles of individual cells. Conventional pseudotime inference methods emphasise an unsupervised transcriptome-wide approach and use retrospective analysis to evaluate the behaviour of individual genes. However, the resulting trajectories can only be understood in terms of abstract geometric structures and not in terms of interpretable models of gene behaviour. Here we introduce an orthogonal Bayesian approach termed "Ouija" that learns pseudotimes from a small set of marker genes that might ordinarily be used to retrospectively confirm the accuracy of unsupervised pseudotime algorithms. Crucially, we model these genes in terms of switch-like or transient behaviour along the trajectory, allowing us to understand why the pseudotimes have been inferred and learn informative parameters about the behaviour of each gene. Since each gene is associated with a switch or peak time the genes are effectively ordered along with the cells, allowing each part of the trajectory to be understood in terms of the behaviour of certain genes. We demonstrate that this small panel of marker genes can recover pseudotimes that are consistent with those obtained using the entire transcriptome. Furthermore, we show that our method can detect differences in the regulation timings between two genes and identify "metastable" states - discrete cell types along the continuous trajectories - that recapitulate known cell types. An open source implementation is available as an R package at http://www.github.com/kieranrcampbell/ouija and as a Python/TensorFlow package at http://www.github.com/kieranrcampbell/ouijaflow. Supplementary text, figures, and tables are available at Bioinformatics online.

  7. p16 expression is not associated with human papillomavirus in urinary bladder squamous cell carcinoma.

    PubMed

    Alexander, Riley E; Hu, Yingchuan; Kum, Jennifer B; Montironi, Rodolfo; Lopez-Beltran, Antonio; Maclennan, Gregory T; Idrees, Muhammad T; Emerson, Robert E; Ulbright, Thomas M; Grignon, David G; Eble, John N; Cheng, Liang

    2012-11-01

    Squamous cell carcinoma of the urinary bladder is unusual and of unknown etiology. There is a well-established association between human papillomavirus (HPV) infection and the development of cervical and head/neck squamous cell carcinomas. However, the role of HPV in the pathogenesis of squamous cell carcinoma of the urinary bladder is uncertain. The purposes of this study were to investigate the possible role of HPV in the development of squamous cell carcinoma of the urinary bladder and to determine if p16 expression could serve as a surrogate marker for HPV in this malignancy. In all, 42 cases of squamous cell carcinoma of the urinary bladder and 27 cases of urothelial carcinoma with squamous differentiation were investigated. HPV infection was analyzed by both in situ hybridization at the DNA level and immunohistochemistry at the protein level. p16 protein expression was analyzed by immunohistochemistry. HPV DNA and protein were not detected in 42 cases of squamous cell carcinoma (0%, 0/42) or 27 cases of urothelial carcinoma with squamous differentiation (0%, 0/15). p16 expression was detected in 13 cases (31%, 13/42) of squamous cell carcinoma and 9 cases (33%, 9/27) of urothelial carcinoma with squamous differentiation. There was no correlation between p16 expression and the presence of HPV infection in squamous cell carcinoma of the bladder or urothelial carcinoma with squamous differentiation. Our data suggest that HPV does not play a role in the development of squamous cell carcinoma of the urinary bladder or urothelial carcinoma with squamous differentiation. p16 expression should not be used as a surrogate marker for evidence of HVP infection in either squamous cell carcinoma of the urinary bladder or urothelial carcinoma with squamous differentiation as neither HVP DNA nor protein is detectable in these neoplasms.

  8. Expression and function of orphan nuclear receptor TLX in adult neural stem cells.

    PubMed

    Shi, Yanhong; Chichung Lie, D; Taupin, Philippe; Nakashima, Kinichi; Ray, Jasodhara; Yu, Ruth T; Gage, Fred H; Evans, Ronald M

    2004-01-01

    The finding of neurogenesis in the adult brain led to the discovery of adult neural stem cells. TLX was initially identified as an orphan nuclear receptor expressed in vertebrate forebrains and is highly expressed in the adult brain. The brains of TLX-null mice have been reported to have no obvious defects during embryogenesis; however, mature mice suffer from retinopathies, severe limbic defects, aggressiveness, reduced copulation and progressively violent behaviour. Here we show that TLX maintains adult neural stem cells in an undifferentiated, proliferative state. We show that TLX-expressing cells isolated by fluorescence-activated cell sorting (FACS) from adult brains can proliferate, self-renew and differentiate into all neural cell types in vitro. By contrast, TLX-null cells isolated from adult mutant brains fail to proliferate. Reintroducing TLX into FACS-sorted TLX-null cells rescues their ability to proliferate and to self-renew. In vivo, TLX mutant mice show a loss of cell proliferation and reduced labelling of nestin in neurogenic areas in the adult brain. TLX can silence glia-specific expression of the astrocyte marker GFAP in neural stem cells, suggesting that transcriptional repression may be crucial in maintaining the undifferentiated state of these cells.

  9. Changes in the gene expression of co-cultured human fibroblast cells and osteosarcoma cells: the role of microenvironment.

    PubMed

    Salvatore, Viviana; Focaroli, Stefano; Teti, Gabriella; Mazzotti, Antonio; Falconi, Mirella

    2015-10-06

    The progression of malignant tumors does not depend exclusively on the autonomous properties of cancer cells; it is also influenced by tumor stroma reactivity and is under strict microenvironmental control. By themselves, stromal cells are not malignant, and they maintain normal tissue structure and function. However, through intercellular interactions or by paracrine secretions from cancer cells, normal stromal cells acquire abnormal phenotypes that sustain cancer cell growth and tumor progression. In their dysfunctional state, fibroblast and immune cells produce chemokines and growth factors that stimulate cancer cell growth and invasion. In our previous work, we established an in vitro model based on a monolayer co-culture system of healthy human fibroblasts (HFs) and human osteosarcoma cells (the MG-63 cell line) that simulates the microenvironment of tumor cells and healthy cells. The coexistence between MG-63 cells and HFs allowed us to identify the YKL-40 protein as the main marker for verifying the influence of tumor cells grown in contact with healthy cells. In this study, we evaluated the interactions of HFs and MG-63 cells in a transwell co-culture system over 24 h, 48 h, 72 h, and 96 h. We analyzed the contributions of these populations to the tumor microenvironment during cancer progression, as measured by multiple markers. We examined the effect of siRNA knockdown of YKL-40 by tracking the subsequent changes in gene expression within the co-culture. We validated the expression of several genes, focusing on those involved in cancer cell invasion, inflammatory responses, and angiogenesis: TNF alpha, IL-6, MMP-1, MMP-9, and VEGF. We compared the results to those from a transwell co-culture without the YKL-40 knockdown. In a pro-inflammatory environment promoted by TNF alpha and IL-6, siRNA knockdown of YKL-40 caused a down-regulation of VEGF and MMP-1 expression in HFs. These findings demonstrated that the tumor microenvironment has an influence on the

  10. mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma.

    PubMed

    Bache, Matthias; Rot, Swetlana; Keßler, Jacqueline; Güttler, Antje; Wichmann, Henri; Greither, Thomas; Wach, Sven; Taubert, Helge; Söling, Ariane; Bilkenroth, Udo; Kappler, Matthias; Vordermark, Dirk

    2015-06-01

    The roles of hypoxia-induced and stem cell-associated genes in the development of malignancy and tumour progression are well known. However, there are a limited number of studies analysing the impact of mRNA expression levels of hypoxia-induced and stem cell-associated genes in the tissues of brain tumours and glioblastoma patients. In this study, tumour tissues from patients with glioblastoma multiforme and tumour adjacent tissues were analysed. We investigated mRNA expression levels of hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-2α), carbonic anhydrase 9 (CA9), vascular endothelial growth factor (VEGF), glucose transporter-1 (GLUT-1) and osteopontin (OPN), and stem cell-associated genes survivin, epidermal growth factor receptor (EGFR), human telomerase reverse transcriptase (hTERT), Nanog and octamer binding transcription factor 4 (OCT4) using quantitative real-time polymerase chain reaction (qRT-PCR). Our data revealed higher mRNA expression levels of hypoxia-induced and stem cell-associated genes in tumour tissue than levels in the tumour adjacent tissues in patients with glioblastoma multiforme. A strong positive correlation between the mRNA expression levels of HIF-2α, CA9, VEGF, GLUT-1 and OPN suggests a specific hypoxia-associated profile of mRNA expression in glioblastoma multiforme. Additionally, the results indicate the role of stem-cell-related genes in tumour hypoxia. Kaplan-Maier analysis revealed that high mRNA expression levels of hypoxia-induced markers showed a trend towards shorter overall survival in glioblastoma patients (P=0.061). Our data suggest that mRNA expression levels of hypoxia-induced genes are important tumour markers in patients with glioblastoma multiforme.

  11. HCV T Cell Receptor Chain Modifications to Enhance Expression, Pairing, and Antigen Recognition in T Cells for Adoptive Transfer.

    PubMed

    Foley, Kendra C; Spear, Timothy T; Murray, David C; Nagato, Kaoru; Garrett-Mayer, Elizabeth; Nishimura, Michael I

    2017-06-16

    T cell receptor (TCR)-gene-modified T cells for adoptive cell transfer can mediate objective clinical responses in melanoma and other malignancies. When introducing a second TCR, mispairing between the endogenous and introduced α and β TCR chains limits expression of the introduced TCR, which can result in impaired efficacy or off-target reactivity and autoimmunity. One approach to promote proper TCR chain pairing involves modifications of the introduced TCR genes: introducing a disulfide bridge, substituting murine for human constant regions, codon optimization, TCR chain leucine zipper fusions, and a single-chain TCR. We have introduced these modifications into our hepatitis C virus (HCV) reactive TCR and utilize a marker gene, CD34t, which allows us to directly compare transduction efficiency with TCR expression and T cell function. Our results reveal that of the TCRs tested, T cells expressing the murine Cβ2 TCR or leucine zipper TCR have the highest levels of expression and the highest percentage of lytic and interferon-γ (IFN-γ)-producing T cells. Our studies give us a better understanding of how TCR modifications impact TCR expression and T cell function that may allow for optimization of TCR-modified T cells for adoptive cell transfer to treat patients with malignancies.

  12. Adult human pancreas-derived cells expressing stage-specific embryonic antigen 4 differentiate into Sox9-expressing and Ngn3-expressing pancreatic ducts in vivo.

    PubMed

    Lee, Song; Lee, Chan Mi; Kim, Song Cheol

    2016-11-11

    Tissue-specific stem/progenitor cells are found in various adult tissues and may have the capacity for lineage-specific differentiation, facilitating applications in autologous transplantation. Stage-specific embryonic antigen 4 (SSEA-4), an early embryonic glycolipid antigen, is expressed in cells derived from adult human pancreas exocrine tissue. Here, we examined the characteristics and lineage-specific differentiation capacity of SSEA-4 + cells. Human adult partial pancreas tissues were obtained from different donors and cultured in vitro. SSEA-4 + and CA19-9 + cells were isolated from adult human pancreas exocrine cells using magnetic-activated cell sorting, and gene expression was validated by quantitative polymerase chain reaction. To confirm in-vivo differentiation, SSEA-4 + and CA19-9 + cells were transplanted into the dorsal subcutaneous region of mice. Finally, morphological features of differentiated areas were confirmed by immunostaining and morphometric analysis. SSEA-4-expressing cells were detected in isolated pancreas exocrine cells from adult humans. These SSEA-4 + cells exhibited coexpression of CA19-9, a marker of pancreatic duct cells, but not amylase expression, as shown by immunostaining and flow cytometry. SSEA-4 + cells exhibited higher relative expression of Oct4, Nanog, Klf4, Sox2, and c-Myc mRNAs than CA19-9 + cells. Pancreatic intralobular ducts (PIDs) were generated from SSEA-4 + or CA19-9 + cells in vivo at 5 weeks after transplantation. However, newly formed PIDs from CA19-9 + cells were less abundant and showed an incomplete PID morphology. In contrast, newly formed PIDs from SSEA-4 + cells were abundant in the transplanted area and showed a crowded morphology, typical of PIDs. Sox9 and Ngn3, key transcription factors associated with pancreatic development and regeneration, were expressed in PIDs from SSEA-4 + cells. SSEA-4-expressing cells in the adult human pancreas may have the potential for regeneration of the pancreas and may

  13. Serglycin as a potential biomarker for glioma: association of serglycin expression, extent of mast cell recruitment and glioblastoma progression

    PubMed Central

    Roy, Ananya; Attarha, Sanaz; Weishaupt, Holger; Edqvist, Per-Henrik; Swartling, Fredrik J.; Bergqvist, Michael; Siebzehnrubl, Florian A.; Smits, Anja; Pontén, Fredrik; Tchougounova, Elena

    2017-01-01

    Serglycin is an intracellular proteoglycan with a unique ability to adopt highly divergent structures by glycosylation with variable types of glycosaminoglycans (GAGs) when expressed by different cell types. Serglycin is overexpressed in aggressive cancers suggesting its protumorigenic role. In this study, we explored the expression of serglycin in human glioma and its correlation with survival and immune cell infiltration. We demonstrate that serglycin is expressed in glioma and that increased expression predicts poor survival of patients. Analysis of serglycin expression in a large cohort of low- and high-grade human glioma samples reveals that its expression is grade dependent and is positively correlated with mast cell (MC) infiltration. Moreover, serglycin expression in patient-derived glioma cells is significantly increased upon MC co-culture. This is also accompanied by increased expression of CXCL12, CXCL10, as well as markers of cancer progression, including CD44, ZEB1 and vimentin. In conclusion, these findings indicate the importance of infiltrating MCs in glioma by modulating signaling cascades involving serglycin, CD44 and ZEB1. The present investigation reveals serglycin as a potential prognostic marker for glioma and demonstrates an association with the extent of MC recruitment and glioma progression, uncovering potential future therapeutic opportunities for patients. PMID:28445977

  14. Identification of Barramundi (Lates calcarifer) DC-SCRIPT, a Specific Molecular Marker for Dendritic Cells in Fish

    PubMed Central

    Zoccola, Emmanuelle; Delamare-Deboutteville, Jérôme; Barnes, Andrew C.

    2015-01-01

    Antigen presentation is a critical step bridging innate immune recognition and specific immune memory. In mammals, the process is orchestrated by dendritic cells (DCs) in the lymphatic system, which initiate clonal proliferation of antigen-specific lymphocytes. However, fish lack a classical lymphatic system and there are currently no cellular markers for DCs in fish, thus antigen-presentation in fish is poorly understood. Recently, antigen-presenting cells similar in structure and function to mammalian DCs were identified in various fish, including rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). The present study aimed to identify a potential molecular marker for DCs in fish and therefore targeted DC-SCRIPT, a well-conserved zinc finger protein that is preferentially expressed in all sub-types of human DCs. Putative dendritic cells were obtained in culture by maturation of spleen and pronephros-derived monocytes. DC-SCRIPT was identified in barramundi by homology using RACE PCR and genome walking. Specific expression of DC-SCRIPT was detected in barramundi cells by Stellaris mRNA FISH, in combination with MHCII expression when exposed to bacterial derived peptidoglycan, suggesting the presence of DCs in L. calcarifer. Moreover, morphological identification was achieved by light microscopy of cytospins prepared from these cultures. The cultured cells were morphologically similar to mammalian and trout DCs. Migration assays determined that these cells have the ability to move towards pathogens and pathogen associated molecular patterns, with a preference for peptidoglycans over lipopolysaccharides. The cells were also strongly phagocytic, engulfing bacteria and rapidly breaking them down. Barramundi DCs induced significant proliferation of responder populations of T-lymphocytes, supporting their role as antigen presenting cells. DC-SCRIPT expression in head kidney was higher 6 and 24 h following intraperitoneal challenge with peptidoglycan and

  15. Inverse correlation between microtubule-associated protein 1A/1B-light chain 3 and p62/sequestosome-1 expression in the progression of cutaneous squamous cell carcinoma.

    PubMed

    Yoshihara, Nagisa; Takagi, Atsushi; Ueno, Takashi; Ikeda, Shigaku

    2014-04-01

    The expression of autophagy-related markers has occasionally been reported to correlate with the clinical stage of disease in patients with solid cancer, indicating autophagy activation. However, there have been no such reports for cutaneous squamous cell carcinoma. In this study, we investigated the expression levels of two autophagy-related markers, microtubule-associated protein IA/IB light chain 3 (LC3) and p62/sequestosome-1 (p62), in cutaneous squamous cell carcinoma specimens and assessed their correlation to clinicopathological factors in patients with this type of cancer. As a marker of the autophagosome, LC3 expression increases with autophagosome formation/accumulation, whereas p62 expression decreases due to selective degradation via autophagy. We performed immunostaining for LC3 and p62 in 50 cutaneous squamous cell carcinoma specimens obtained from patients treated by surgical resection, counted the number of cells that showed positive staining, and calculated the percentage of positive cells per low-power microscopic field. We next investigated the correlations between the expression levels of these markers and various clinicopathological factors. The results indicated that LC3 expression increased significantly with advanced clinical stage (P < 0.001) and increased tumor diameter (P = 0.046). By contrast, the expression of p62 decreased significantly with advanced clinical stage (P < 0.001) and increased tumor diameter (P = 0.001). These results suggest that autophagy becomes activated during disease progression in patients with cutaneous squamous cell carcinoma. © 2014 Japanese Dermatological Association.

  16. Overexpression of tissue-nonspecific alkaline phosphatase increases the expression of neurogenic differentiation markers in the human SH-SY5Y neuroblastoma cell line.

    PubMed

    Graser, Stephanie; Mentrup, Birgit; Schneider, Doris; Klein-Hitpass, Ludger; Jakob, Franz; Hofmann, Christine

    2015-10-01

    Patients suffering from the rare hereditary disease hypophosphatasia (HPP), which is based on mutations in the ALPL gene, tend to develop central nervous system (CNS) related issues like epileptic seizures and neuropsychiatric illnesses such as anxiety and depression, in addition to well-known problems with the mineralization of bones and teeth. Analyses of the molecular role of tissue-nonspecific alkaline phosphatase (TNAP) in transgenic SH-SY5Y(TNAPhigh) neuroblastoma cells compared to SH-SY5Y(TNAPlow) cells indicate that the enzyme influences the expression levels of neuronal marker genes like RNA-binding protein, fox-1 homolog 3 (NEUN) and enolase 2, gamma neuronal (NSE) as well as microtubule-binding proteins like microtubule-associated protein 2 (MAP2) and microtubule-associated protein tau (TAU) during neurogenic differentiation. Fluorescence staining of SH-SY5Y(TNAPhigh) cells reveals TNAP localization throughout the whole length of the developed projection network and even synapsin Ι co-localization with strong TNAP signals at some spots at least at the early time points of differentiation. Additional immunocytochemical staining shows higher MAP2 expression in SH-SY5Y(TNAPhigh) cells and further a distinct up-regulation of tau and MAP2 in the course of neurogenic differentiation. Interestingly, transgenic SH-SY5Y(TNAPhigh) cells are able to develop longer cellular processes compared to control cells after stimulation with all-trans retinoic acid (RA). Current therapies for HPP prioritize improvement of the bone phenotype. Unraveling the molecular role of TNAP in extraosseous tissues, like in the CNS, will help to improve treatment strategies for HPP patients. Taking this rare disease as a model may also help to dissect TNAP's role in neurodegenerative diseases and even improve future treatment of common pathologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Leptin receptor expression and Gln223Arg polymorphism as prognostic markers in oral and oropharyngeal cancer.

    PubMed

    Rodrigues, P R S; Maia, L L; Santos, M; Peterle, G T; Alves, L U; Takamori, J T; Souza, R P; Barbosa, W M; Mercante, A M C; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-11-25

    The leptin gene product is released into the blood stream, passes through the blood-brain barrier, and finds the leptin receptor (LEPR) in the central nervous system. This hormone regulates food intake, hematopoiesis, inflammation, immunity, differentiation, and cell proliferation. The LEPR Gln223Arg polymorphism has been reported to alter receptor function and expression, both of which have been related with prognostics in several tumor types. Furthermore, several studies have shown a relationship between the Gln223Arg polymorphism and tumor development, and its role in oral and oropharyngeal squamous cell carcinoma is now well understood. In this study, 315 DNA samples were used for LEPR Gln223Arg genotyping and 87 primary oral and oropharyngeal squamous cell carcinomas were used for immunohistochemical expression analysis, such that a relationship between these and tumor development and prognosis could be established. Homozygous LEPR Arg223 was found to be associated with a 2-fold reduction in oral and oropharyngeal cancer risk. In contrast, the presence of the Arg223 allele in tumors was associated with worse disease-free and disease-specific survival. Low LEPR expression was found to be an independent risk factor, increasing the risk for lymph node metastasis 4-fold. In conclusion, the Gln223Arg polymorphism and LEPR expression might be valuable markers for oral and oropharyngeal cancer, suggesting that LEPR might serve as a potential target for future therapies.

  18. Expression and associations of TRAF1, BMI-1, ALDH1, and Lin28B in oral squamous cell carcinoma.

    PubMed

    Wu, Tian-Fu; Li, Yi-Cun; Ma, Si-Rui; Bing-Liu; Zhang, Wen-Feng; Sun, Zhi-Jun

    2017-04-01

    Tumor necrosis factor receptor-associated factor 1, an adaptor protein of tumor necrosis factor 2, is involved in classical nuclear factor (NF)-κB activation and lymphocyte recruitment. However, less is known about the expression and association of tumor necrosis factor receptor-associated factor 1 with cancer stem cell markers in oral squamous cell carcinoma. This study aimed to investigate the expression of tumor necrosis factor receptor-associated factor 1 and stem cell characteristic markers (lin28 homolog B, B cell-specific Moloney murine leukemia virus integration site 1, and aldehyde dehydrogenase 1) in oral squamous cell carcinoma and analyze their relations. Paraffin-embedded tissues of 78 oral squamous cell carcinomas, 39 normal oral mucosa, and 12 oral dysplasia tissues were employed in tissue microarrays, and the expression of tumor necrosis factor receptor-associated factor 1, B cell-specific Moloney murine leukemia virus integration site 1, aldehyde dehydrogenase 1, and lin28 homolog B was measured by immunohistostaining and digital pathological analysis. The expression of tumor necrosis factor receptor-associated factor 1 was higher in the oral squamous cell carcinoma group as compared with the expression in the oral mucosa (p < 0.01) and oral dysplasia (p < 0.001) groups. In addition, the expression of tumor necrosis factor receptor-associated factor 1 was associated with those of B cell-specific Moloney murine leukemia virus integration site 1, aldehyde dehydrogenase 1, and lin28 homolog B (p = 0.032, r 2  = 0.109; p < 0.0001, r 2  = 0.64; and p < 0.001, r 2  = 0.16) in oral squamous cell carcinoma. The patient survival rate was lower in the highly expressed tumor necrosis factor receptor-associated factor 1 group, although the difference was not significant. The clustering analysis showed that tumor necrosis factor receptor-associated factor 1 was most related to aldehyde dehydrogenase 1. These findings suggest

  19. RNA-Sequencing Gene Expression Profiling of Orbital Adipose-Derived Stem Cell Population Implicate HOX Genes and WNT Signaling Dysregulation in the Pathogenesis of Thyroid-Associated Orbitopathy

    PubMed Central

    Tao, Wensi; Ayala-Haedo, Juan A.; Field, Matthew G.; Pelaez, Daniel; Wester, Sara T.

    2017-01-01

    Purpose The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Methods Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell–specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Results Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Conclusion Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways. PMID:29214313

  20. Markers of T Cell Senescence in Humans

    PubMed Central

    Xu, Weili; Larbi, Anis

    2017-01-01

    Many countries are facing the aging of their population, and many more will face a similar obstacle in the near future, which could be a burden to many healthcare systems. Increased susceptibility to infections, cardiovascular and neurodegenerative disease, cancer as well as reduced efficacy of vaccination are important matters for researchers in the field of aging. As older adults show higher prevalence for a variety of diseases, this also implies higher risk of complications, including nosocomial infections, slower recovery and sequels that may reduce the autonomy and overall quality of life of older adults. The age-related effects on the immune system termed as “immunosenescence” can be exemplified by the reported hypo-responsiveness to influenza vaccination of the elderly. T cells, which belong to the adaptive arm of the immune system, have been extensively studied and the knowledge gathered enables a better understanding of how the immune system may be affected after acute/chronic infections and how this matters in the long run. In this review, we will focus on T cells and discuss the surface and molecular markers that are associated with T cell senescence. We will also look at the implications that senescent T cells could have on human health and diseases. Finally, we will discuss the benefits of having these markers for investigators and the future work that is needed to advance the field of T cell senescence markers. PMID:28796199

  1. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    PubMed

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  2. Combined caveolin-1 and epidermal growth factor receptor expression as a prognostic marker for breast cancer.

    PubMed

    Liang, Ya-Nan; Liu, Yu; Wang, Letian; Yao, Guodong; Li, Xiaobo; Meng, Xiangning; Wang, Fan; Li, Ming; Tong, Dandan; Geng, Jingshu

    2018-06-01

    Previous studies have indicated that caveolin-1 (Cav-1) is able to bind the signal transduction factor epidermal growth factor receptor (EGFR) to regulate its tyrosine kinase activity. The aim of the present study was to evaluate the clinical significance of Cav-1 gene expression in association with the expression of EGFR in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Cav-1 and EGFR expression using immunohistochemistry, and clinical significance was assessed using multivariate Cox regression analysis, Kaplan-Meier estimator curves and the log-rank test. Stromal Cav-1 was downregulated in 38.56% (118/306) of tumor tissues, whereas cytoplasmic EGFR and Cav-1 were overexpressed in 53.92% (165/306) and 44.12% (135/306) of breast cancer tissues, respectively. EGFR expression was positively associated with cytoplasmic Cav-1 and not associated with stromal Cav-1 expression in breast cancer samples; however, low expression of stromal Cav-1 was negatively associated with cytoplasmic Cav-1 expression in total tumor tissues, and analogous results were identified in the chemotherapy group. Multivariate Cox's proportional hazards model analysis revealed that, for patients in the estrogen receptor (ER)(+) group, the expression of stromal Cav-1 alone was a significant prognostic marker of breast cancer. However, in the chemotherapy, human epidermal growth factor receptor 2 (HER-2)(-), HER-2(+) and ER(-) groups, the use of combined markers was more effective prognostic marker. Stromal Cav-1 has a tumor suppressor function, and the combined marker stromal Cav-1/EGFR expression was identified as an improved prognostic marker in the diagnosis of breast cancer. Parenchymal expression of Cav-1 is able to promote EGFR signaling in breast cancer, potentially being required for EGFR-mediated initiation of mitosis.

  3. Increased Expression of PcG Protein YY1 Negatively Regulates B Cell Development while Allowing Accumulation of Myeloid Cells and LT-HSC Cells

    PubMed Central

    Pan, Xuan; Jones, Morgan; Jiang, Jie; Zaprazna, Kristina; Yu, Duonan; Pear, Warren; Maillard, Ivan; Atchison, Michael L.

    2012-01-01

    Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs. PMID:22292011

  4. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells.

    PubMed

    Wang, Rui; Kozhaya, Lina; Mercer, Frances; Khaitan, Alka; Fujii, Hodaka; Unutmaz, Derya

    2009-08-11

    The molecules that define human regulatory T cells (Tregs) phenotypically and functionally remain to be fully characterized. We recently showed that activated human Tregs express mRNA for a transmembrane protein called glycoprotein A repetitions predominant (GARP, or LRRC32). Here, using a GARP-specific mAb, we demonstrate that expression of GARP on activated Tregs correlates with their suppressive capacity. However, GARP was not induced on T cells activated in the presence of TGFbeta, which expressed high levels of FOXP3 and lacked suppressive function. Ectopic expression of FOXP3 in conventional T cells was also insufficient for induction of GARP expression in most donors. Functionally, silencing GARP in Tregs only moderately attenuated their suppressive activity. CD25+ T cells sorted for high GARP expression displayed more potent suppressive activity compared with CD25+GARP- cells. Remarkably, CD25+GARP- T cells expanded in culture contained 3-5 fold higher IL-17-secreting cells compared with either CD25+GARP+ or CD25-GARP- cells, suggesting that high GARP expression can potentially discriminate Tregs from those that have switched to Th17 lineage. We also determined whether GARP expression correlates with FOXP3-expressing T cells in human immunodeficiency virus (HIV) -infected subjects. A subset of HIV+ individuals with high percentages of FOXP3+ T cells did not show proportionate increase in GARP+ T cells. This finding suggests that higher FOXP3 levels observed in these HIV+ individuals is possibly due to immune activation rather than to an increase in Tregs. Our findings highlight the significance of GARP both in dissecting duality of Treg/Th17 cell differentiation and as a marker to identify bona fide Tregs during diseases with chronic immune activation.

  5. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells

    PubMed Central

    Wang, Rui; Kozhaya, Lina; Mercer, Frances; Khaitan, Alka; Fujii, Hodaka; Unutmaz, Derya

    2009-01-01

    The molecules that define human regulatory T cells (Tregs) phenotypically and functionally remain to be fully characterized. We recently showed that activated human Tregs express mRNA for a transmembrane protein called glycoprotein A repetitions predominant (GARP, or LRRC32). Here, using a GARP-specific mAb, we demonstrate that expression of GARP on activated Tregs correlates with their suppressive capacity. However, GARP was not induced on T cells activated in the presence of TGFβ, which expressed high levels of FOXP3 and lacked suppressive function. Ectopic expression of FOXP3 in conventional T cells was also insufficient for induction of GARP expression in most donors. Functionally, silencing GARP in Tregs only moderately attenuated their suppressive activity. CD25+ T cells sorted for high GARP expression displayed more potent suppressive activity compared with CD25+GARP− cells. Remarkably, CD25+GARP− T cells expanded in culture contained 3–5 fold higher IL-17-secreting cells compared with either CD25+GARP+ or CD25−GARP− cells, suggesting that high GARP expression can potentially discriminate Tregs from those that have switched to Th17 lineage. We also determined whether GARP expression correlates with FOXP3-expressing T cells in human immunodeficiency virus (HIV) −infected subjects. A subset of HIV+ individuals with high percentages of FOXP3+ T cells did not show proportionate increase in GARP+ T cells. This finding suggests that higher FOXP3 levels observed in these HIV+ individuals is possibly due to immune activation rather than to an increase in Tregs. Our findings highlight the significance of GARP both in dissecting duality of Treg/Th17 cell differentiation and as a marker to identify bona fide Tregs during diseases with chronic immune activation. PMID:19666573

  6. CRLF2 over-expression is a poor prognostic marker in children with high risk T-cell acute lymphoblastic leukemia

    PubMed Central

    Palmi, Chiara; Savino, Angela M.; Silvestri, Daniela; Bronzini, Ilaria; Cario, Gunnar; Paganin, Maddalena; Buldini, Barbara; Galbiati, Marta; Muckenthaler, Martina U.; Bugarin, Cristina; Mina, Pamela Della; Nagel, Stefan; Barisone, Elena; Casale, Fiorina; Locatelli, Franco; Nigro, Luca Lo; Micalizzi, Concetta; Parasole, Rosanna; Pession, Andrea; Putti, Maria C.; Santoro, Nicola; Testi, Anna M.; Ziino, Ottavio; Kulozik, Andreas E.; Zimmermann, Martin; Schrappe, Martin; Villa, Antonello; Gaipa, Giuseppe; Basso, Giuseppe; Biondi, Andrea; Valsecchi, Maria G.; Stanulla, Martin; Conter, Valentino; te Kronnie, Geertruy; Cazzaniga, Giovanni

    2016-01-01

    Pediatric T-ALL patients have a worse outcome compared to BCP-ALL patients and they could benefit from new prognostic marker identification. Alteration of CRLF2 gene, a hallmark correlated with poor outcome in BCP-ALL, has not been reported in T-ALL. We analyzed CRLF2 expression in 212 T-ALL pediatric patients enrolled in AIEOP-BFM ALL2000 study in Italian and German centers. Seventeen out of 120 (14.2%) Italian patients presented CRLF2 mRNA expression 5 times higher than the median (CRLF2-high); they had a significantly inferior event-free survival (41.2%±11.9 vs. 68.9%±4.6, p=0.006) and overall survival (47.1%±12.1 vs. 73.8%±4.3, p=0.009) and an increased cumulative incidence of relapse/resistance (52.9%±12.1 vs. 26.2%±4.3, p=0.007) compared to CRLF2-low patients. The prognostic value of CRLF2 over-expression was validated in the German cohort. Of note, CRLF2 over-expression was associated with poor prognosis in the high risk (HR) subgroup where CRLF2-high patients were more frequently allocated. Interestingly, although in T-ALL CRLF2 protein was localized mainly in the cytoplasm, in CRLF2-high blasts we found a trend towards a stronger TSLP-induced pSTAT5 response, sensitive to the JAK inhibitor Ruxolitinib. In conclusion, CRLF2 over-expression is a poor prognostic marker identifying a subset of HR T-ALL patients that could benefit from alternative therapy, potentially targeting the CRLF2 pathway. PMID:27449287

  7. CRLF2 over-expression is a poor prognostic marker in children with high risk T-cell acute lymphoblastic leukemia.

    PubMed

    Palmi, Chiara; Savino, Angela M; Silvestri, Daniela; Bronzini, Ilaria; Cario, Gunnar; Paganin, Maddalena; Buldini, Barbara; Galbiati, Marta; Muckenthaler, Martina U; Bugarin, Cristina; Della Mina, Pamela; Nagel, Stefan; Barisone, Elena; Casale, Fiorina; Locatelli, Franco; Lo Nigro, Luca; Micalizzi, Concetta; Parasole, Rosanna; Pession, Andrea; Putti, Maria C; Santoro, Nicola; Testi, Anna M; Ziino, Ottavio; Kulozik, Andreas E; Zimmermann, Martin; Schrappe, Martin; Villa, Antonello; Gaipa, Giuseppe; Basso, Giuseppe; Biondi, Andrea; Valsecchi, Maria G; Stanulla, Martin; Conter, Valentino; Te Kronnie, Geertruy; Cazzaniga, Giovanni

    2016-09-13

    Pediatric T-ALL patients have a worse outcome compared to BCP-ALL patients and they could benefit from new prognostic marker identification. Alteration of CRLF2 gene, a hallmark correlated with poor outcome in BCP-ALL, has not been reported in T-ALL.We analyzed CRLF2 expression in 212 T-ALL pediatric patients enrolled in AIEOP-BFM ALL2000 study in Italian and German centers.Seventeen out of 120 (14.2%) Italian patients presented CRLF2 mRNA expression 5 times higher than the median (CRLF2-high); they had a significantly inferior event-free survival (41.2%±11.9 vs. 68.9%±4.6, p=0.006) and overall survival (47.1%±12.1 vs. 73.8%±4.3, p=0.009) and an increased cumulative incidence of relapse/resistance (52.9%±12.1 vs. 26.2%±4.3, p=0.007) compared to CRLF2-low patients. The prognostic value of CRLF2 over-expression was validated in the German cohort. Of note, CRLF2 over-expression was associated with poor prognosis in the high risk (HR) subgroup where CRLF2-high patients were more frequently allocated.Interestingly, although in T-ALL CRLF2 protein was localized mainly in the cytoplasm, in CRLF2-high blasts we found a trend towards a stronger TSLP-induced pSTAT5 response, sensitive to the JAK inhibitor Ruxolitinib.In conclusion, CRLF2 over-expression is a poor prognostic marker identifying a subset of HR T-ALL patients that could benefit from alternative therapy, potentially targeting the CRLF2 pathway.

  8. Effects of Coating a Titanium Alloy with Fibronectin on the Expression of Osteoblast Gene Markers in the MC3T3 Osteoprogenitor Cell Line

    PubMed Central

    Rapuano, Bruce E.; Hackshaw, Kyle M.; Schniepp, Hannes C.; MacDonald, Daniel E.

    2013-01-01

    Purpose A number of environmental and patient-related factors contribute to implant failure. A significant fraction of these failures can be attributed to limited osseointegration resulting from poor bone healing responses. The overall goal of this study was to determine whether surface treatment of a titanium-aluminum-vanadium alloy (Ti-6Al-4V) implant material with a biomimetic protein coating could promote the differentiation of attached osteoblastic cells. The specific aims of the study were to investigate whether osteoprogenitor cells cultured on a rigorously cleaned implant specimen showed a normal pattern of differentiation and whether preadsorbed fibronectin accelerated or enhanced osteoblast differentiation. Materials and Methods Ti-6Al-4V disks were rigorously cleaned, passivated in nitric acid, and dry heat–sterilized; some of the disks were then coated with 1 nmol/L fibronectin. MC3T3 osteoprogenitor cells were then cultured on the pretreated disks for several weeks. Quantitative real-time polymerase chain reaction was performed to measure changes over time in the mRNA levels of osteoblast genes. Results Fibronectin increased the peak expression of all analyzed osteoblast gene markers. “Early” genes that normally mark the proliferative phase (0 to 10 days) of osteoblastic development showed peak expression within the first 10 days after cell attachment to the titanium alloy. In contrast, “late” genes that normally mark the differentiation (10 to 20 days) and mineralization (20 to 36 days) phases of osteoblastogenesis achieved peak expression only after approximately 3 to 4 weeks of culture. Conclusions Osteoprogenitors cultured on a rigorously cleaned Ti-6Al-4V alloy were found to demonstrate a normal pattern of osteoblast differentiation. Preadsorbed fibronectin was observed to stimulate osteoblast differentiation during the mineralization phase of osteoblastogenesis. PMID:23057020

  9. Secretagogin is a novel marker for neuroendocrine differentiation.

    PubMed

    Birkenkamp-Demtröder, Karin; Wagner, Ludwig; Brandt Sørensen, Flemming; Bording Astrup, Lone; Gartner, Wolfgang; Scherübl, Hans; Heine, Bernhard; Christiansen, Peer; Ørntoft, Torben Falck

    2005-01-01

    Our previous microarray-based studies identified secretagogin to be highly expressed in normal colon mucosa compared to basal expression in colon adenocarcinomas. The aim of this study was to analyze the differential expression of secretagogin in normal mucosa, adenocarcinomas, and neuroendocrine tumors. Western blotting, immunohistochemistry, immunofluorescence microscopy and ELISA were applied. Western blot analysis detected a 32-kDa secretagogin band in samples from normal mucosa. Immunohistochemical analyses on tissue specimens showed that secretagogin is exclusively expressed in neuroendocrine cells and nerve cells in normal mucosa of the digestive tract. Tissues adjacent to benign hyperplasic polyps and adenomas showed a decreased number of secretagogin-expressing neuroendocrine cells. Secretagogin co-localized with neuroendocrine markers (chromogranin A, neuron-specific enolase, synaptophysin) in neuroendocrine cells in crypts of normal mucosa, and in tumor cells of carcinoids. Secretagogin was strongly expressed in the cytosol and the nucleus of 19 well-differentiated neuroendocrine carcinoids and carcinoid metastases, as well as in neuroendocrine tumors from the lung, pancreas and adrenal gland. Secretagogin was detected in plasma from carcinoid patients with distant metastasis. Combined immunohistochemical analysis of secretagogin and FK506-binding protein 65, a protein de novo synthesized in adenocarcinomas, distinguished well-differentiated carcinoids, adenocarcinoids and undifferentiated carcinomas. We conclude that secretagogin is a novel marker for neuroendocrine differentiation.

  10. Undifferentiated embryonic cell transcription factor 1 (UTF1) and deleted in azoospermia-like (DAZL) expression in the testes of donkeys.

    PubMed

    Lee, Y S; Jung, H J; Yoon, M J

    2017-04-01

    Putative markers for each specific germ cell stage can be a useful tool to study the fate and functions of these cells. Undifferentiated embryonic cell transcription factor 1 (UTF1) is a putative marker for undifferentiated spermatogonia in humans, rats and horses. The deleted in azoospermia-like (DAZL) protein is also expressed by differentiated spermatogonia and primary spermatocytes in several species. However, whether the expression patterns of these molecular markers are identical and applicable to donkeys remains to be elucidated. The objective of this study was to investigate the expression patterns of UTF1 and DAZL in donkey testicular tissue, using immunohistochemistry (IHC). Testicular samples were collected from routine field castration of donkeys in Korea. The reproductive stages (pre- or post-puberty) of the testes were determined from the morphological characteristics of cross-sections of the seminiferous tubules. For IHC, the UTF1 and DAZL primary antibodies were diluted at 1:100 and 1:200, respectively. The immunolabelling revealed that UTF1 was expressed in approximately 50% of spermatogonia in the pre-pubertal stage, whereas its expression was limited to an early subset of spermatogonia in the post-pubertal stage. DAZL was expressed in some, but not all, spermatogonia in the pre-pubertal spermatogonia, and interestingly, its expression was also observed in spermatogonia and primary spermatocytes in the post-pubertal stage. Co-immunolabelling of the germ cells with both UTF1 and DAZL revealed three types of protein expression patterns at both reproductive stages, namely UTF1 only, DAZL only and both UTF1 and DAZL. These protein molecules were not expressed in Sertoli and Leydig cells. In conclusion, a co-immunolabelling system with UTF1 and DAZL antibodies may be used to identify undifferentiated (UTF1 only), differentiating (UTF1 and DAZL), and differentiated spermatogonia (DAZL only) in donkey testes. © 2017 Blackwell Verlag GmbH.

  11. The paratenon contributes to scleraxis-expressing cells during patellar tendon healing.

    PubMed

    Dyment, Nathaniel A; Liu, Chia-Feng; Kazemi, Namdar; Aschbacher-Smith, Lindsey E; Kenter, Keith; Breidenbach, Andrew P; Shearn, Jason T; Wylie, Christopher; Rowe, David W; Butler, David L

    2013-01-01

    The origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse. Normal adult patellar tendon consists of scleraxis-expressing (Scx) tendon fibroblasts situated among aligned collagen fibrils. The tendon body is surrounded by paratenon, which consists of a thin layer of cells that do not express Scx and collagen fibers oriented circumferentially around the tendon. At 3 days following injury, the paratenon thickens as cells within the paratenon proliferate and begin producing tenascin-C and fibromodulin. These cells migrate toward the defect site and express scleraxis and smooth muscle actin alpha by day 7. The thickened paratenon tissue eventually bridges the tendon defect by day 14. Similarly, cells within the periphery of the adjacent tendon struts express these markers and become disorganized. Cells within the defect region show increased expression of fibrillar collagens (Col1a1 and Col3a1) but decreased expression of tenogenic transcription factors (scleraxis and mohawk homeobox) and collagen assembly genes (fibromodulin and decorin). By contrast, early growth response 1 and 2 are upregulated in these tissues along with tenascin-C. These results suggest that paratenon cells, which normally do not express Scx, respond to injury by turning on Scx and assembling matrix to bridge the defect. Future studies are needed to determine the signaling pathways that drive these cells and whether they are capable of producing a functional tendon matrix. Understanding this process may guide tissue engineering strategies in the future by stimulating these cells to improve tendon repair.

  12. Transcriptome Dynamics of Developing Photoreceptors in Three‐Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks

    PubMed Central

    Kaewkhaw, Rossukon; Kaya, Koray Dogan; Brooks, Matthew; Homma, Kohei; Zou, Jizhong; Chaitankar, Vijender; Rao, Mahendra

    2015-01-01

    Abstract The derivation of three‐dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone‐rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp‐GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self‐organizing 3D retina‐like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S‐opsin and no rhodopsin or L/M‐opsin is present. The transcriptome profile, by RNA‐seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. Stem Cells 2015;33:3504–3518 PMID:26235913

  13. Decreased expression of CD69 in chronic fatigue syndrome in relation to inflammatory markers: evidence for a severe disorder in the early activation of T lymphocytes and natural killer cells.

    PubMed

    Mihaylova, Ivana; DeRuyter, Marcel; Rummens, Jean-Luc; Bosmans, Eugene; Maes, Michael

    2007-08-01

    There is some evidence that patients with chronic fatigue syndrome (CFS) suffer from immune abnormalities, such as immune activation and decreased immune cell responsivity upon polyclonal stimili. This study was designed to evaluate lymphocyte activation in CFS by using a CD69 expression assay. CD69 acts as a costimulatory molecule for T- and natural killer (NK) cell activation. We collected whole blood from CFS patients, who met CDC criteria, and healthy volunteers. The blood samples were stimulated with mitogens during 18 h and the levels of activated T and NK cells expressing CD69 were measured on a Coulter Epics flow cytometer using a three color immunofluorescence staining protocol. The expression of the CD69 activation marker on T cells (CD3+, CD3+CD4+, and CD3+CD8+) and on NK cells (CD45+CD56+) was significantly lower in CFS patients than in healthy subjects. These differences were significant to the extent that a significant diagnostic performance was obtained, i.e. the area under the ROC curve was around 89%. No differences either in the number of leukocytes or in the number or percentage of lymphocytes, i.e. CD3, CD4, CD8 and CD19, could be found between CFS patients and the controls. Patients with CFS show defects in T- and NK cell activation. Since induction of CD69 surface expression is dependent on the activation of the protein kinase C (PKC) activation pathway, it is suggested that in CFS there is a disorder in the early activation of the immune system involving PKC.

  14. Induction of CaSR expression circumvents the molecular features of malignant CaSR null colon cancer cells.

    PubMed

    Singh, Navneet; Chakrabarty, Subhas

    2013-11-15

    We recently reported on the isolation and characterization of calcium sensing receptor (CaSR) null human colon cancer cells (Singh et al., Int J Cancer 2013; 132: 1996-2005). CaSR null cells possess a myriad of molecular features that are linked to a highly malignant and drug resistant phenotype of colon cancer. The CaSR null phenotype can be maintained in defined human embryonic stem cell culture medium. We now show that the CaSR null cells can be induced to differentiate in conventional culture medium, regained the expression of CaSR with a concurrent reversal of the cellular and molecular features associated with the null phenotype. These features include cellular morphology, expression of colon cancer stem cell markers, expression of survivin and thymidylate synthase and sensitivity to fluorouracil. Other features include the expression of epithelial mesenchymal transition linked molecules and transcription factors, oncogenic miRNAs and tumor suppressive molecule and miRNA. With the exception of cancer stem cell markers, the reversal of molecular features, upon the induction of CaSR expression, is directly linked to the expression and function of CaSR because blocking CaSR induction by shRNA circumvented such reversal. We further report that methylation and demethylation of the CaSR gene promoter underlie CaSR expression. Due to the malignant nature of the CaSR null cells, inclusion of the CaSR null phenotype in disease management may improve on the mortality of this disease. Because CaSR is a robust promoter of differentiation and mediates its action through diverse mechanisms and pathways, inactivation of CaSR may serve as a new paradigm in colon carcinogenesis. Copyright © 2013 UICC.

  15. Use of deep neural network ensembles to identify embryonic-fetal transition markers: repression of COX7A1 in embryonic and cancer cells

    PubMed Central

    West, Michael D.; Labat, Ivan; Sternberg, Hal; Larocca, Dana; Nasonkin, Igor; Chapman, Karen B.; Singh, Ratnesh; Makarev, Eugene; Aliper, Alex; Kazennov, Andrey; Alekseenko, Andrey; Shuvalov, Nikolai; Cheskidova, Evgenia; Alekseev, Aleksandr; Artemov, Artem; Putin, Evgeny; Mamoshina, Polina; Pryanichnikov, Nikita; Larocca, Jacob; Copeland, Karen; Izumchenko, Evgeny; Korzinkin, Mikhail; Zhavoronkov, Alex

    2018-01-01

    Here we present the application of deep neural network (DNN) ensembles trained on transcriptomic data to identify the novel markers associated with the mammalian embryonic-fetal transition (EFT). Molecular markers of this process could provide important insights into regulatory mechanisms of normal development, epimorphic tissue regeneration and cancer. Subsequent analysis of the most significant genes behind the DNNs classifier on an independent dataset of adult-derived and human embryonic stem cell (hESC)-derived progenitor cell lines led to the identification of COX7A1 gene as a potential EFT marker. COX7A1, encoding a cytochrome C oxidase subunit, was up-regulated in post-EFT murine and human cells including adult stem cells, but was not expressed in pre-EFT pluripotent embryonic stem cells or their in vitro-derived progeny. COX7A1 expression level was observed to be undetectable or low in multiple sarcoma and carcinoma cell lines as compared to normal controls. The knockout of the gene in mice led to a marked glycolytic shift reminiscent of the Warburg effect that occurs in cancer cells. The DNN approach facilitated the elucidation of a potentially new biomarker of cancer and pre-EFT cells, the embryo-onco phenotype, which may potentially be used as a target for controlling the embryonic-fetal transition. PMID:29487692

  16. Use of deep neural network ensembles to identify embryonic-fetal transition markers: repression of COX7A1 in embryonic and cancer cells.

    PubMed

    West, Michael D; Labat, Ivan; Sternberg, Hal; Larocca, Dana; Nasonkin, Igor; Chapman, Karen B; Singh, Ratnesh; Makarev, Eugene; Aliper, Alex; Kazennov, Andrey; Alekseenko, Andrey; Shuvalov, Nikolai; Cheskidova, Evgenia; Alekseev, Aleksandr; Artemov, Artem; Putin, Evgeny; Mamoshina, Polina; Pryanichnikov, Nikita; Larocca, Jacob; Copeland, Karen; Izumchenko, Evgeny; Korzinkin, Mikhail; Zhavoronkov, Alex

    2018-01-30

    Here we present the application of deep neural network (DNN) ensembles trained on transcriptomic data to identify the novel markers associated with the mammalian embryonic-fetal transition (EFT). Molecular markers of this process could provide important insights into regulatory mechanisms of normal development, epimorphic tissue regeneration and cancer. Subsequent analysis of the most significant genes behind the DNNs classifier on an independent dataset of adult-derived and human embryonic stem cell (hESC)-derived progenitor cell lines led to the identification of COX7A1 gene as a potential EFT marker. COX7A1 , encoding a cytochrome C oxidase subunit, was up-regulated in post-EFT murine and human cells including adult stem cells, but was not expressed in pre-EFT pluripotent embryonic stem cells or their in vitro -derived progeny. COX7A1 expression level was observed to be undetectable or low in multiple sarcoma and carcinoma cell lines as compared to normal controls. The knockout of the gene in mice led to a marked glycolytic shift reminiscent of the Warburg effect that occurs in cancer cells. The DNN approach facilitated the elucidation of a potentially new biomarker of cancer and pre-EFT cells, the embryo-onco phenotype, which may potentially be used as a target for controlling the embryonic-fetal transition.

  17. Stochastic gene expression in Arabidopsis thaliana.

    PubMed

    Araújo, Ilka Schultheiß; Pietsch, Jessica Magdalena; Keizer, Emma Mathilde; Greese, Bettina; Balkunde, Rachappa; Fleck, Christian; Hülskamp, Martin

    2017-12-14

    Although plant development is highly reproducible, some stochasticity exists. This developmental stochasticity may be caused by noisy gene expression. Here we analyze the fluctuation of protein expression in Arabidopsis thaliana. Using the photoconvertible KikGR marker, we show that the protein expressions of individual cells fluctuate over time. A dual reporter system was used to study extrinsic and intrinsic noise of marker gene expression. We report that extrinsic noise is higher than intrinsic noise and that extrinsic noise in stomata is clearly lower in comparison to several other tissues/cell types. Finally, we show that cells are coupled with respect to stochastic protein expression in young leaves, hypocotyls and roots but not in mature leaves. Our data indicate that stochasticity of gene expression can vary between tissues/cell types and that it can be coupled in a non-cell-autonomous manner.

  18. Upregulation of CYP 450s expression of immortalized hepatocyte-like cells derived from mesenchymal stem cells by enzyme inducers

    PubMed Central

    2011-01-01

    Background The strenuous procurement of cultured human hepatocytes and their short lives have constrained the cell culture model of cytochrome P450 (CYP450) induction, xenobiotic biotransformation, and hepatotoxicity. The development of continuous non-tumorous cell line steadily containing hepatocyte phenotypes would substitute the primary hepatocytes for these studies. Results The hepatocyte-like cells have been developed from hTERT plus Bmi-1-immortalized human mesenchymal stem cells to substitute the primary hepatocytes. The hepatocyte-like cells had polygonal morphology and steadily produced albumin, glycogen, urea and UGT1A1 beyond 6 months while maintaining proliferative capacity. Although these hepatocyte-like cells had low basal expression of CYP450 isotypes, their expressions could be extensively up regulated to 80 folds upon the exposure to enzyme inducers. Their inducibility outperformed the classical HepG2 cells. Conclusion The hepatocyte-like cells contained the markers of hepatocytes including CYP450 isotypes. The high inducibility of CYP450 transcripts could serve as a sensitive model for profiling xenobiotic-induced expression of CYP450. PMID:21961524

  19. Expression of hydroxyindole-O-methyltransferase enzyme in the human central nervous system and in pineal parenchymal cell tumors.

    PubMed

    Fukuda, Takahiro; Akiyama, Nobutake; Ikegami, Masahiro; Takahashi, Hitoshi; Sasaki, Atsushi; Oka, Hidehiro; Komori, Takashi; Tanaka, Yuko; Nakazato, Youichi; Akimoto, Jiro; Tanaka, Masahiko; Okada, Yoshikazu; Saito, Saburo

    2010-05-01

    Pineal parenchymal tumor (PPT) cells usually show immunoreactivity for synaptophysin, neuron-specific enolase, neurofilament protein, class III beta-tubulin, tau protein, PGP9.5, chromogranin, serotonin, retinal S-antigen, and rhodopsin, but these markers are not specific for PPTs. Melatonin is produced and secreted mainly bypineal parenchymal cells; hydroxyindole-O-methyltransferase (HIOMT) catalyzes the final reaction in melatonin biosynthesis. We hypothesized that HIOMT could serve as a tumor marker of PPTs, and we investigated HIOMT localization and HIOMT expression in samples of normal human tissue and in PPTs, primitive neuroectodermal tumors, and medulloblastomas. In normal tissue, HIOMT was expressed in retinal cells, pineal parenchymal cells, neurons of the Edinger-Westphal nucleus, microglia, macrophages, thyroid follicular epithelium, principal and oxyphil cells of parathyroid gland, adrenal cortical cells, hepatic parenchymal cells, renal tubule epithelium, and enteroendocrine cells of stomach and duodenum. The HIOMT was also expressed in all 46 PPTs studied. The proportions of HIOMT-immunoreactive cells successively decreased in the following tumors: pineocytoma, pineal parenchymal tumor of intermediate differentiation, and pineoblastoma. A few HIOMT-immunoreactive cells were observed in one of 6 primitive neuroectodermal tumors and 23 of 42 medulloblastomas. These results indicate that HIOMT immunohistochemistry may be useful for the diagnosis of PPTs and be a prognostic factor in PPTs.

  20. Tumour-associated glial host cells display a stem-like phenotype with a distinct gene expression profile and promote growth of GBM xenografts.

    PubMed

    Leiss, Lina; Mutlu, Ercan; Øyan, Anne; Yan, Tao; Tsinkalovsky, Oleg; Sleire, Linda; Petersen, Kjell; Rahman, Mohummad Aminur; Johannessen, Mireille; Mitra, Sidhartha S; Jacobsen, Hege K; Talasila, Krishna M; Miletic, Hrvoje; Jonassen, Inge; Li, Xingang; Brons, Nicolaas H; Kalland, Karl-Henning; Wang, Jian; Enger, Per Øyvind

    2017-02-07

    Little is known about the role of glial host cells in brain tumours. However, supporting stromal cells have been shown to foster tumour growth in other cancers. We isolated stromal cells from patient-derived glioblastoma (GBM) xenografts established in GFP-NOD/scid mice. With simultaneous removal of CD11b + immune and CD31 + endothelial cells by fluorescence activated cell sorting (FACS), we obtained a population of tumour-associated glial cells, TAGs, expressing markers of terminally differentiaed glial cell types or glial progenitors. This cell population was subsequently characterised using gene expression analyses and immunocytochemistry. Furthermore, sphere formation was assessed in vitro and their glioma growth-promoting ability was examined in vivo. Finally, the expression of TAG related markers was validated in human GBMs. TAGs were highly enriched for the expression of glial cell proteins including GFAP and myelin basic protein (MBP), and immature markers such as Nestin and O4. A fraction of TAGs displayed sphere formation in stem cell medium. Moreover, TAGs promoted brain tumour growth in vivo when co-implanted with glioma cells, compared to implanting only glioma cells, or glioma cells and unconditioned glial cells from mice without tumours. Genome-wide microarray analysis of TAGs showed an expression profile distinct from glial cells from healthy mice brains. Notably, TAGs upregulated genes associated with immature cell types and self-renewal, including Pou3f2 and Sox2. In addition, TAGs from highly angiogenic tumours showed upregulation of angiogenic factors, including Vegf and Angiopoietin 2. Immunohistochemistry of three GBMs, two patient biopsies and one GBM xenograft, confirmed that the expression of these genes was mainly confined to TAGs in the tumour bed. Furthermore, their expression profiles displayed a significant overlap with gene clusters defining prognostic subclasses of human GBMs. Our data demonstrate that glial host cells in brain

  1. CLDN1 expression in cervical cancer cells is related to tumor invasion and metastasis.

    PubMed

    Zhang, Wei-Na; Li, Wei; Wang, Xiao-Li; Hu, Zheng; Zhu, Da; Ding, Wen-Cheng; Liu, Dan; Li, Ke-Zhen; Ma, Ding; Wang, Hui

    2016-12-27

    Even though infection with human papillomaviruses (HPV) is very important, it is not the sole cause of cervical cancer. Because it is known that genetic variations that result from HPV infection are probably the most important causes of cervical cancer, we used human whole genome array comparative genomic hybridization to detect the copy number variations of genes in cervical squamous cell carcinoma. The results of the array were validated by PCR, FISH and immunohistochemistry. We find that the copy number and protein expression of claudin-1 (CLDN1) increase with the progression of cervical cancer. The strong positive staining of CLDN1 in the cervical lymph node metastasis group received a significantly higher score than the staining in the group with no lymph node metastasis of cervical cancer tissues. The overexpression of CLDN1 in SiHa cells can increase anti-apoptosis ability and promote invasive ability of these cells accompanied by a decrease in expression of the epithelial marker E-cadherin as well as an increase in the expression of the mesenchymal marker vimentin. CLDN1 induces the epithelial-mesenchymal transition (EMT) through its interaction with SNAI1. Furthermore, we demonstrate that CLDN1 overexpression has significant effects on the growth and metastasis of xenografted tumors in athymic mice. These data suggest that CLDN1 promotes invasion and metastasis in cervical cancer cells via the expression of EMT/invasion-related genes. Therefore, CLDN1 could be a potential therapeutic target for the treatment of cervical cancer.

  2. Identification of Phosphoproteins as Possible Differentiation Markers in All-Trans-Retinoic Acid-Treated Neuroblastoma Cells

    PubMed Central

    Mandili, Giorgia; Marini, Cristina; Carta, Franco; Zanini, Cristina; Prato, Mauro; Khadjavi, Amina

    2011-01-01

    Background Neuroblastic tumors account for 9–10% of pediatric tumors and neuroblastoma (NB) is the first cause of death in pre-school age children. NB is classified in four stages, depending on the extent of spreading. A fifth type of NB, so-called stage 4S (S for special), includes patients with metastatic tumors but with an overall survival that approximates 75% at five years. In most of these cases, the tumor regresses spontaneously and regression is probably associated with delayed neuroblast cell differentiation. Methodology/Principal Findings In order to identify new early markers to follow and predict this process for diagnostic and therapeutics intents, we mimicked the differentiation process treating NB cell line SJ-NK-P with all-trans-retinoic acid (ATRA) at different times; therefore the cell proteomic pattern by mass spectrometry and the phosphoproteomic pattern by a 2-DE approach coupled with anti-phosphoserine and anti-phosphotyrosine western blotting were studied. Conclusions/Significance Proteomic analysis identified only two proteins whose expression was significantly different in treated cells versus control cells: nucleoside diphosphate kinase A (NDKA) and reticulocalbin-1 (RCN1), which were both downregulated after 9 days of ATRA treatment. However, phosphoproteomic analysis identified 8 proteins that were differentially serine-phosphorylated and 3 that were differentially tyrosine-phosphorylated after ATRA treatment. All proteins were significantly regulated (at least 0.5-fold down-regulated). Our results suggest that differentially phosphorylated proteins could be considered as more promising markers of differentiation for NB than differentially expressed proteins. PMID:21573212

  3. Identification and validation of novel prognostic markers in Renal Cell Carcinoma.

    PubMed

    Rabjerg, Maj

    2017-10-01

    prognostic molecular markers in RCC and to identify novel targeted therapies by in-vitro studies. This was specifically conducted by investigating; 1) The impact of symptom presentation of RCC on prognosis, 2) The expression of Calcium-activated potassium channels in RCC, the correlation of KCa3.1 to prognosis in ccRCC and the ability of TRAM-34, RA-2 and Paxilline to inhibit the proliferation of ccRCC cell lines in-vitro, 3) The gene expression and prognostic value of 19 selected genes in ccRCC and 4) The expression of the protein kinase CK subunits in subtypes of RCC, the prognostic impact of high protein expression of the CK2α subunit in ccRCC and the ability of CX-4945 and E9 to inhibit ccRCC growth in-vitro. Our molecular study cohort consisted of 155 patients with different subtypes of RCC and the benign renal neoplasm, oncocytoma. They were diagnosed in Region of Southern Denmark in 2001-2013. Frozen tissue from tumor and normal renal cortex parenchyma, together with paraffin-embedded tissue was available for every patient. We performed gene expression analysis by qRT-PCR, immunohistochemical staining of Tissue Micro Arrays, protein kinase activity analysis and functional studies. Study I was performed as a descriptive observational study focusing on the prognostic impact of symptom presentation in RCC. We included 204 patients with renal neoplasms diagnosed in 2011-2012. Incidentally discovered RCC without symptomatic presentation had overall a better prognosis, and presented with smaller tumors, a lower T-stage, lower Fuhrman grade and lower Leibovich score. In addition, the non-symptomatic patient group experienced metastatic disease less frequently. In study II we focused on the expression of two calcium-activated potassium channels in ccRCC and oncocytoma. Both KCa3.1 and KCa1.1 were higher expressed in ccRCC compared to oncocytoma. High expression of KCa3.1 was moreover correlated with poor progression free survival of ccRCC. Functional studies provided new

  4. Effective Targeting of Multiple B-Cell Maturation Antigen-Expressing Hematological Malignances by Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cells.

    PubMed

    Friedman, Kevin M; Garrett, Tracy E; Evans, John W; Horton, Holly M; Latimer, Howard J; Seidel, Stacie L; Horvath, Christopher J; Morgan, Richard A

    2018-05-01

    B-cell maturation antigen (BCMA) expression has been proposed as a marker for the identification of malignant plasma cells in patients with multiple myeloma (MM). Nearly all MM tumor cells express BCMA, while normal tissue expression is restricted to plasma cells and a subset of mature B cells. Consistent BCMA expression was confirmed on MM biopsies (29/29 BCMA+), and it was further demonstrated that BCMA is expressed in a substantial number of lymphoma samples, as well as primary chronic lymphocytic leukemia B cells. To target BCMA using redirected autologous T cells, lentiviral vectors (LVV) encoding chimeric antigen receptors (CARs) were constructed with four unique anti-BCMA single-chain variable fragments, fused to the CD137 (4-1BB) co-stimulatory and CD3ζ signaling domains. One LVV, BB2121, was studied in detail, and BB2121 CAR-transduced T cells (bb2121) exhibited a high frequency of CAR + T cells and robust in vitro activity against MM cell lines, lymphoma cell lines, and primary chronic lymphocytic leukemia peripheral blood. Based on receptor quantification, bb2121 recognized tumor cells expressing as little as 222 BCMA molecules per cell. The in vivo pharmacology of anti-BCMA CAR T cells was studied in NSG mouse models of human MM, Burkitt lymphoma, and mantle cell lymphoma, where mice received a single intravenous administration of vehicle, control vector-transduced T cells, or anti-BCMA CAR-transduced T cells. In all models, the vehicle and control CAR T cells failed to inhibit tumor growth. In contrast, treatment with bb2121 resulted in rapid and sustained elimination of the tumors and 100% survival in all treatment models. Together, these data support the further development of anti-BCMA CAR T cells as a potential treatment for not only MM but also some lymphomas.

  5. Changes of neural markers expression during late neurogenic differentiation of human adipose-derived stem cells

    PubMed Central

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Background: Different studies have been done to obtain sufficient number of neural cells for treatment of neurodegenerative diseases, spinal cord, and traumatic brain injury because neural stem cells are limited in central nerves system. Recently, several studies have shown that adipose-derived stem cells (ADSCs) are the appropriate source of multipotent stem cells. Furthermore, these cells are found in large quantities. The aim of this study was an assessment of proliferation and potential of neurogenic differentiation of ADSCs with passing time. Materials and Methods: Neurosphere formation was used for neural induction in isolated human ADSCs (hADSCs). The rate of proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and potential of neural differentiation of induced hADSCs was evaluated by immunocytochemical and real-time reverse transcription polymerase chain reaction analysis after 10 and 14 days post-induction. Results: The rate of proliferation of induced hADSCs increased after 14 days while the expression of nestin, glial fibrillary acidic protein, and microtubule-associated protein 2 was decreased with passing time during neurogenic differentiation. Conclusion: These findings showed that the proliferation of induced cells increased with passing time, but in early neurogenic differentiation of hADSCs, neural expression was higher than late of differentiation. Thus, using of induced cells in early differentiation may be suggested for in vivo application. PMID:26605238

  6. A single EBV-based vector for stable episomal maintenance and expression of GFP in human embryonic stem cells.

    PubMed

    Thyagarajan, Bhaskar; Scheyhing, Kelly; Xue, Haipeng; Fontes, Andrew; Chesnut, Jon; Rao, Mahendra; Lakshmipathy, Uma

    2009-03-01

    Stable expression of transgenes in stem cells has been a challenge due to the nonavailability of efficient transfection methods and the inability of transgenes to support sustained gene expression. Several methods have been reported to stably modify both embryonic and adult stem cells. These methods rely on integration of the transgene into the genome of the host cell, which could result in an expression pattern dependent on the number of integrations and the genomic locus of integration. To overcome this issue, site-specific integration methods mediated by integrase, adeno-associated virus or via homologous recombination have been used to generate stable human embryonic stem cell (hESC) lines. In this study, we describe a vector that is maintained episomally in hESCs. The vector used in this study is based on components derived from the Epstein-Barr virus, containing the Epstein-Barr virus nuclear antigen 1 expression cassette and the OriP origin of replication. The vector also expresses the drug-resistance marker gene hygromycin, which allows for selection and long-term maintenance of cells harboring the plasmid. Using this vector system, we show sustained expression of green fluorescent protein in undifferentiated hESCs and their differentiating embryoid bodies. In addition, the stable hESC clones show comparable expression with and without drug selection. Consistent with this observation, bulk-transfected adipose tissue-derived mesenchymal stem cells showed persistent marker gene expression as they differentiate into adipocytes, osteoblasts and chondroblasts. Episomal vectors offer a fast and efficient method to create hESC reporter lines, which in turn allows one to test the effect of overexpression of various genes on stem cell growth, proliferation and differentiation.

  7. Uroplakins, specific membrane proteins of urothelial umbrella cells, as histological markers of metastatic transitional cell carcinomas.

    PubMed Central

    Moll, R.; Wu, X. R.; Lin, J. H.; Sun, T. T.

    1995-01-01

    Uroplakins (UPs) Ia, Ib, II, and III, transmembrane proteins constituting the asymmetrical unit membrane of urothelial umbrella cells, are the first specific urothelial differentiation markers described. We investigated the presence and localization patterns of UPs in various human carcinomas by applying immunohistochemistry (avidin-biotin-peroxidase complex method), using rabbit antibodies against UPs II and III, to paraffin sections. Positive reactions for UP III (sometimes very focal) were noted in 14 of the 16 papillary noninvasive transitional cell carcinomas (TCCs) (88%), 29 of the 55 invasive TCCs (53%), and 23 of the 35 TCC metastases (66%). Different localization patterns of UPs could be distinguished, including superficial membrane staining like that found in normal umbrella cells (in papillary carcinoma), luminal (microluminal) membrane staining (in papillary and invasive carcinoma), and, against expectations, peripheral membrane staining (in invasive carcinoma). Non-TCC carcinomas of various origins (n = 177) were consistently negative for UPs. The presence of UPs in metastatic TCCs represents a prime example of even advanced tumor progression being compatible with the (focal) expression of highly specialized differentiation repertoires. Although of only medium-grade sensitivity, UPs do seem to be highly specific urothelial lineage markers, thus operating up interesting histodiagnostic possibilities in cases of carcinoma metastases of uncertain origin. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7485401

  8. Association of Regulatory T Cells with Diabetes Type-1 and Its Renal and Vascular Complications Based on the Expression of Forkhead Box Protein P3 (FoxP3), Helios and Neurophilin-1.

    PubMed

    Khamechian, Tahereh; Irandoust, Behnaz; Mohammadi, Hanieh; Nikoueinejad, Hassan; Akbari, Hossein

    2018-04-01

    In recent years, it has been recognized that regulatory T cells (Tregs) play a critical role in maintaining immune tolerance. Moreover, the expression of two markers named Helios and neurophilin-1 (NRP-1) has been highlighted in such cells. Helios, an intracellular transcription marker, largely differentiates twomost operative sub group of Tregs, namely naturally occurring (nTreg) and induced (iTreg) Tregs, and NRP-1 is reckoned as a membranous activity marker of Tregs. We aimed to count peripheral mononuclear cells expressing such markers in a group of type 1 diabetes patients to elucidate the possible role of Tregs in the pathogenesis of such disease and its complications. Blood samples from 61 adult patients with type 1 diabetes and 61 sex and age-matched healthy controls were tested to count two types of Tregs, namely naturally occurring and inducible types, according to the expression of cell surface markers of CD4/CD25/CD47-FITC/PE/APC and intracellular markers of FoxP3/Helios-PE-CY5/eFlour450 by flow cytometry, respectively.We also investigated the relation between expression of such markers with HbA1c, urine albumin/creatinine ratio (UACR), and common carotid intima thickness (CIMT). The circulatory frequency of both Helios+ and Helios- T-cells were significantly decreased in patients compared to those in healthy controls (p<0.001). There was also a significant decrease in circulatory frequency of Helios+ NRP-1+ and Helios- NRP-1+ cells in the patients compared to controls (p=0.029). According to expression of Helios and NRP-1 markers, the number and function of both Tregs were decreased in diabetic patients. Moreover, the neurophilin expression was inversely associated with complications of type 1 diabetes.

  9. High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) study

    PubMed Central

    Langer, Christian; Radmacher, Michael D.; Ruppert, Amy S.; Whitman, Susan P.; Paschka, Peter; Mrózek, Krzysztof; Baldus, Claudia D.; Vukosavljevic, Tamara; Liu, Chang-Gong; Ross, Mary E.; Powell, Bayard L.; de la Chapelle, Albert; Kolitz, Jonathan E.; Larson, Richard A.; Marcucci, Guido

    2008-01-01

    BAALC expression is considered an independent prognostic factor in cytogenetically normal acute myeloid leukemia (CN-AML), but has yet to be investigated together with multiple other established prognostic molecular markers in CN-AML. We analyzed BAALC expression in 172 primary CN-AML patients younger than 60 years of age, treated similarly on CALGB protocols. High BAALC expression was associated with FLT3-ITD (P = .04), wild-type NPM1 (P < .001), mutated CEBPA (P = .003), MLL-PTD (P = .009), absent FLT3-TKD (P = .005), and high ERG expression (P = .05). In multivariable analysis, high BAALC expression independently predicted lower complete remission rates (P = .04) when adjusting for ERG expression and age, and shorter survival (P = .04) when adjusting for FLT3-ITD, NPM1, CEBPA, and white blood cell count. A gene-expression signature of 312 probe sets differentiating high from low BAALC expressers was identified. High BAALC expression was associated with overexpression of genes involved in drug resistance (MDR1) and stem cell markers (CD133, CD34, KIT). Global microRNA-expression analysis did not reveal significant differences between BAALC expression groups. However, an analysis of microRNAs that putatively target BAALC revealed a potentially interesting inverse association between expression of miR-148a and BAALC. We conclude that high BAALC expression is an independent adverse prognostic factor and is associated with a specific gene-expression profile. PMID:18378853

  10. Xin, an actin binding protein, is expressed within muscle satellite cells and newly regenerated skeletal muscle fibers.

    PubMed

    Hawke, Thomas J; Atkinson, Daniel J; Kanatous, Shane B; Van der Ven, Peter F M; Goetsch, Sean C; Garry, Daniel J

    2007-11-01

    Xin is a muscle-specific actin binding protein of which its role and regulation within skeletal muscle is not well understood. Here we demonstrate that Xin mRNA is robustly upregulated (>16-fold) within 12 h of skeletal muscle injury and is localized to the muscle satellite cell population. RT-PCR confirmed the expression pattern of Xin during regeneration, as well as within primary muscle myoblast cultures, but not other known stem cell populations. Immunohistochemical staining of single myofibers demonstrate Xin expression colocalized with the satellite cell marker Syndecan-4 further supporting the mRNA expression of Xin in satellite cells. In situ hybridization of regenerating muscle 5-7 days postinjury illustrates Xin expression within newly regenerated myofibers. Promoter-reporter assays demonstrate that known myogenic transcription factors [myocyte enhancer factor-2 (MEF2), myogenic differentiation-1 (MyoD), and myogenic factor-5 (Myf-5)] transactivate Xin promoter constructs supporting the muscle-specific expression of Xin. To determine the role of Xin within muscle precursor cells, proliferation, migration, and differentiation analysis using Xin, short hairpin RNA (shRNA) were undertaken in C2C12 myoblasts. Reducing endogenous Xin expression resulted in a 26% increase (P < 0.05) in cell proliferation and a 20% increase (P < 0.05) in myoblast migratory capacity. Skeletal muscle myosin heavy chain protein levels were increased (P < 0.05) with Xin shRNA administration; however, this was not accompanied by changes in myoglobin protein (another marker of differentiation) nor overt morphological differences relative to differentiating control cells. Taken together, the present findings support the hypothesis that Xin is expressed within muscle satellite cells during skeletal muscle regeneration and is involved in the regulation of myoblast function.

  11. Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21) and Nsg-2 (P19).

    PubMed

    Digilio, Laura; Yap, Chan Choo; Winckler, Bettina

    2015-01-01

    The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65) were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21) and Nsg-2 (P19) are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.

  12. TOPK is highly expressed in circulating tumor cells, enabling metastasis of prostate cancer

    PubMed Central

    Shi, Changhong; Hu, Peizhen; Yan, Wei; Wang, Zhe; Duan, Qiuhong; Lu, Fan; Qin, Lipeng; Lu, Tao; Xiao, Juanjuan; Wang, Yingmei; Zhu, Feng; Shao, Chen

    2015-01-01

    Circulating tumor cells (CTCs) are important for metastasis in prostate cancer. T-LAK cell-originated protein kinase (TOPK) is highly expressed in cancer cells. Herein, we established a xenograft animal model, isolated and cultured the CTCs, and found CTCs have significantly greater migratory capacity than parental cells. TOPK is more highly expressed in the CTCs than in parental cells and is also highly expressed in the metastatic nodules caused by CTCs in mice. Knocking down TOPK decreased the migration of CTCs both in vitro and in vivo. TOPK was modulated by the PI3K/PTEN and ERK pathways during the metastasis of prostate cancer. High levels of TOPK in the tumors of patients were correlated with advanced stages of prostate cancer, especially for high-risk patients of Gleason score≥8, PSA>20ng/ml. In summary, TOPK was speculated to be one of a potential marker and therapeutic target in advanced prostate cancer. PMID:25881543

  13. HBx drives alpha fetoprotein expression to promote initiation of liver cancer stem cells through activating PI3K/AKT signal pathway.

    PubMed

    Zhu, Mingyue; Li, Wei; Lu, Yan; Dong, Xu; Lin, Bo; Chen, Yi; Zhang, Xueer; Guo, Junli; Li, Mengsen

    2017-03-15

    Hepatitis B virus (HBV)-X protein (HBx) plays critical role in inducing the malignant transformation of liver cells. Alpha fetoprotein (AFP) expression is closely related to hepatocarcinogenesis. We report that Oct4, Klf4, Sox2 and c-myc expression positively associated with AFP(+)/HBV(+) hepatocellular carcinoma(HCC) tissues, and the expression of the stemness markers CD44, CD133 and EpCAM was significantly higher in AFP(+)/HBV(+) HCC tissues compared to normal liver tissues or AFP (-)/HBV(-) HCC tissues. AFP expression turned on prior to expression of Oct4, Klf4, Sox2 and c-myc, and the stemness markers CD44, CD133 and EpCAM in the normal human liver L-02 cell line or CHL cell lines upon transfection with MCV-HBx vectors. Stem-like cells generated more tumour colonies compared to primary cells, and xenografts induced tumourigenesis in nude mice. Expression of reprogramming-related proteins was significantly enhanced in HLE cells while transfected with pcDNA3.1-afp vectors. The specific PI3K inhibitor Ly294002 inhibited the effects of pcDNA3.1-afp vectors. AFP-siRNA vectors were able to inhibit tumour colony formation and reprogramming-related gene expression. Altogether, HBx stimulates AFP expression to induce natural reprogramming of liver cells, and AFP plays a critical role in promoting the initiation of HCC progenitor/stem cells. AFP may be a potential novel biotarget for combating HBV-induced hepatocarcinogenesis. © 2016 UICC.

  14. Regulation of c- and N-myc expression during induced differentiation of murine neuroblastoma cells.

    PubMed

    Larcher, J C; Vayssière, J L; Lossouarn, L; Gros, F; Croizat, B

    1991-04-01

    Using clones N1E-115 and N1A-103 from mouse neuroblastoma C1300, a comparative analysis of c- and N-myc gene expression was undertaken both in proliferating cells and in cultures exposed to conditions which induce differentiation. Under the latter conditions, while N1E-115 cells extend abundant neurites and express many biochemical features of mature neurons, clone N1A-103 stops dividing and expresses certain neurospecific markers but is unable to differentiate morphologically. In both clones, chemical agents, i.e. 1-methyl cyclohexane carboxylic acid (CCA) or dimethyl sulfoxide (DMSO), induce a decrease in c-myc expression. Similar results were found for N-myc gene in N1E-115 cells, but in contrast, in clone N1A-103, N-myc expression is increased with CCA and not modified with DMSO. Globally, this study favours the hypothesis that changes in c-myc expression would correspond to cell division blockade and differentiation, while modulations in N-myc are more closely related to an early phase of terminal differentiation.

  15. B lymphopoiesis is characterized by pre-B cell marker gene expression in fetal cattle and declines in adults.

    PubMed

    Ekman, Anna; Ilves, Mika; Iivanainen, Antti

    2012-05-01

    Fetal cattle B-cell development proceeds via a pre-B cell stage that is characterized by the expression of surrogate light chain and recombination activation genes. In this paper, we identify a new member of bovine pre-B lymphocyte genes, VPREB2. Using RT-qPCR, we assess the expression of VPREB2 and three other surrogate light chain genes as well as RAG1 and RAG2 in fetal and adult cattle tissues. The absence of VPREB1, IGLL1, RAG1 and RAG2 expression in adult tissues and the lack of B-lymphoid differentiation in adult bone marrow - OP9 stromal cell co-culture, suggest a decline of B lymphopoiesis in adult cattle. The marked differences in the expression profiles of VPREB2 and VPREB3 in comparison to those of VPREB1, IGLL1 and RAGs suggest that the biological roles of VPREB2 and VPREB3 are unrelated to the pre-B cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. TMPRSS4 induces cancer stem cell-like properties in lung cancer cells and correlates with ALDH expression in NSCLC patients.

    PubMed

    de Aberasturi, Arrate L; Redrado, Miriam; Villalba, Maria; Larzabal, Leyre; Pajares, Maria J; Garcia, Javier; Evans, Stephanie R; Garcia-Ros, David; Bodegas, Maria Elena; Lopez, Lissett; Montuenga, Luis; Calvo, Alfonso

    2016-01-28

    Metastasis involves a series of changes in cancer cells that promote their escape from the primary tumor and colonization to a new organ. This process is related to the transition from an epithelial to a mesenchymal phenotype (EMT). Recently, some authors have shown that migratory cells with an EMT phenotype share properties of cancer stem cells (CSCs), which allow them to form a new tumor mass. The type II transmembrane serine protease TMPRSS4 is highly expressed in some solid tumors, promotes metastasis and confers EMT features to cancer cells. We hypothesized that TMPRSS4 could also provide CSC properties. Overexpression of TMPRSS4 reduces E-cadherin and induces N-cadherin and vimentin in A549 lung cancer cells, supporting an EMT phenotype. These changes are accompanied by enhanced migration, invasion and tumorigenicity in vivo. TMPRSS4 expression was highly increased in a panel of lung cancer cells cultured as tumorspheres (a typical assay to enrich for CSCs). H358 and H441 cells with knocked-down TMPRSS4 levels were significantly less able to form primary and secondary tumorspheres than control cells. Moreover, they showed a lower proportion of ALDH+ cells (examined by FACS analysis) and lower expression of some CSC markers than controls. A549 cells overexpressing TMPRSS4 conferred the opposite phenotype and were also more sensitive to the CSC-targeted drug salinomycin than control cells, but were more resistant to regular chemotherapeutic drugs (cisplatin, gemcitabine and 5-fluorouracil). Analysis of 70 NSCLC samples from patients revealed a very significant correlation between TMPRSS4 expression and CSC markers ALDH (p = 0.0018) and OCT4 (p = 0.0004), suggesting that TMPRSS4 is associated with a CSC phenotype in patients' tumors. These results show that TMPRSS4, in addition to inducing EMT, can also promote CSC features in lung cancer; therefore, CSC-targeting drugs could be an appropriate treatment for TMPRSS4+ tumors. Copyright © 2015 Elsevier

  17. Nestin expression in neuroepithelial tumors.

    PubMed

    Schiffer, Davide; Manazza, Andrea; Tamagno, Ilaria

    2006-05-29

    Nestin is a marker of early stages of neurocytogenesis. It has been studied in 50 neuroepithelial tumors, mostly gliomas of different malignancy grades, by immunohistochemistry, immunofluorescence, immunoblotting, and confocal microscopy and compared with GFAP and Vimentin. As an early marker of differentiation, Nestin is almost not expressed in diffuse astrocytomas, variably expressed in anaplastic astrocytomas and strongly and irregularly expressed in glioblastomas. Negative in oligodendrogliomas, it stains ependymomas and shows a gradient of expression in pilocytic astrocytomas. In glioblastomas, Nestin distribution does not completely correspond to that of GFAP and Vimentin with which its expression varies in tumor cells in a complementary way, as confirmed by confocal microscopy. Tumor cells can thus either derive from or differentiate toward the neurocytogenetic stages. Hypothetically, they could be put in relation with radial glia where during embriogenesis the three antigens are successively expressed. Completely negative cells of invasive or recurrent glioblastomas may represent malignant selected clones after accumulation of mutations or early stem cells not expressing antigens.

  18. LAG-3 Represents a Marker of CD4+ T Cells with Regulatory Activity in Patients with Bone Fracture.

    PubMed

    Wang, Jun; Ti, Yunfan; Wang, Yicun; Guo, Guodong; Jiang, Hui; Chang, Menghan; Qian, Hongbo; Zhao, Jianning; Sun, Guojing

    2018-04-19

    The lymphocyte activation gene 3 (LAG-3) is a CD4 homolog with binding affinity to MHC class II molecules. It is thought that LAG-3 exerts a bimodal function, such that co-ligation of LAG-3 and CD3 could deliver an inhibitory signal in conventional T cells, whereas, on regulatory T cells, LAG-3 expression could promote their inhibitory function. In this study, we investigated the role of LAG-3 expression on CD4 + T cells in patients with long bone fracture. We found that LAG-3 + cells represented approximately 13% of peripheral blood CD4 + T cells on average. Compared to LAG-3 - CD4 + T cells, LAG-3 + CD4 + T cells presented significantly higher Foxp3 and CTLA-4 expression. Directly ex vivo or with TCR stimulation, LAG-3 + CD4 + T cells expressed significantly higher levels of IL-10 and TGF-β than LAG-3 - CD4 + T cells. Interestingly, blocking the LAG-3-MHC class II interaction actually increased the IL-10 expression by LAG-3 + CD4 + T cells. The frequency of LAG-3 + CD4 + T cell was positively correlated with restoration of healthy bone function in long bone fracture patients. These results together suggested that LAG-3 is a marker of CD4 + T cells with regulatory function; at the same time, LAG-3 might have limited the full suppressive potential of Treg cells.

  19. Pancreatic cancer cells express CD44 variant 9 and multidrug resistance protein 1 during mitosis.

    PubMed

    Kiuchi, Shizuka; Ikeshita, Shunji; Miyatake, Yukiko; Kasahara, Masanori

    2015-02-01

    Pancreatic cancer is one of the most lethal cancers with high metastatic potential and strong chemoresistance. Its intractable natures are attributed to high robustness in tumor cells for their survival. We demonstrate here that pancreatic cancer cells (PCCs) with an epithelial phenotype upregulate cell surface expression of CD44 variant 9 (CD44v9), an important cancer stem cell marker, during the mitotic phases of the cell cycle. Of five human CD44(+) PCC lines examined, three cell lines, PCI-24, PCI-43 and PCI-55, expressed E-cadherin and CD44 variants, suggesting that they have an epithelial phenotype. By contrast, PANC-1 and MIA PaCa-2 cells expressed vimentin and ZEB1, suggesting that they have a mesenchymal phenotype. PCCs with an epithelial phenotype upregulated cell surface expression of CD44v9 in prophase, metaphase, anaphase and telophase and downregulated CD44v9 expression in late-telophase, cytokinesis and interphase. Sorted CD44v9-negative PCI-55 cells resumed CD44v9 expression when they re-entered the mitotic stage. Interestingly, CD44v9(bright) mitotic cells expressed multidrug resistance protein 1 (MDR1) intracellularly. Upregulated expression of CD44v9 and MDR1 might contribute to the intractable nature of PCCs with high proliferative activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Ex vivo tetramer staining and cell surface phenotyping for early activation markers CD38 and HLA-DR to enumerate and characterize malaria antigen-specific CD8+ T-cells induced in human volunteers immunized with a Plasmodium falciparum adenovirus-vectored malaria vaccine expressing AMA1.

    PubMed

    Schwenk, Robert; Banania, Glenna; Epstein, Judy; Kim, Yohan; Peters, Bjoern; Belmonte, Maria; Ganeshan, Harini; Huang, Jun; Reyes, Sharina; Stryhn, Anette; Ockenhouse, Christian F; Buus, Soren; Richie, Thomas L; Sedegah, Martha

    2013-10-29

    Malaria is responsible for up to a 600,000 deaths per year; conveying an urgent need for the development of a malaria vaccine. Studies with whole sporozoite vaccines in mice and non-human primates have shown that sporozoite-induced CD8+ T cells targeting liver stage antigens can mediate sterile protection. There is a need for a direct method to identify and phenotype malaria vaccine-induced CD8+ T cells in humans. Fluorochrome-labelled tetramers consisting of appropriate MHC class I molecules in complex with predicted binding peptides derived from Plasmodium falciparum AMA-1 were used to label ex vivo AMA-1 epitope specific CD8+ T cells from research subjects responding strongly to immunization with the NMRC-M3V-Ad-PfCA (adenovirus-vectored) malaria vaccine. The identification of these CD8+ T cells on the basis of their expression of early activation markers was also investigated. Analyses by flow cytometry demonstrated that two of the six tetramers tested: TLDEMRHFY: HLA-A*01:01 and NEVVVKEEY: HLA-B*18:01, labelled tetramer-specific CD8+ T cells from two HLA-A*01:01 volunteers and one HLA-B*18:01 volunteer, respectively. By contrast, post-immune CD8+ T cells from all six of the immunized volunteers exhibited enhanced expression of the CD38 and HLA-DRhi early activation markers. For the three volunteers with positive tetramer staining, the early activation phenotype positive cells included essentially all of the tetramer positive, malaria epitope- specific CD8+ T cells suggesting that the early activation phenotype could identify all malaria vaccine-induced CD8+ T cells without prior knowledge of their exact epitope specificity. The results demonstrated that class I tetramers can identify ex vivo malaria vaccine antigen-specific CD8+ T cells and could therefore be used to determine their frequency, cell surface phenotype and transcription factor usage. The results also demonstrated that vaccine antigen-specific CD8+ T cells could be identified by activation markers

  1. Human embryonic stem cells express a unique set of microRNAs.

    PubMed

    Suh, Mi-Ra; Lee, Yoontae; Kim, Jung Yeon; Kim, Soo-Kyoung; Moon, Sung-Hwan; Lee, Ji Yeon; Cha, Kwang-Yul; Chung, Hyung Min; Yoon, Hyun Soo; Moon, Shin Yong; Kim, V Narry; Kim, Kye-Seong

    2004-06-15

    Human embryonic stem (hES) cells are pluripotent cell lines established from the explanted inner cell mass of human blastocysts. Despite their importance for human embryology and regenerative medicine, studies on hES cells, unlike those on mouse ES (mES) cells, have been hampered by difficulties in culture and by scant knowledge concerning the regulatory mechanism. Recent evidence from plants and animals indicates small RNAs of approximately 22 nucleotides (nt), collectively named microRNAs, play important roles in developmental regulation. Here we describe 36 miRNAs (from 32 stem-loops) identified by cDNA cloning in hES cells. Importantly, most of the newly cloned miRNAs are specifically expressed in hES cells and downregulated during development into embryoid bodies (EBs), while miRNAs previously reported from other human cell types are poorly expressed in hES cells. We further show that some of the ES-specific miRNA genes are highly related to each other, organized as clusters, and transcribed as polycistronic primary transcripts. These miRNA gene families have murine homologues that have similar genomic organizations and expression patterns, suggesting that they may operate key regulatory networks conserved in mammalian pluripotent stem cells. The newly identified hES-specific miRNAs may also serve as molecular markers for the early embryonic stage and for undifferentiated hES cells.

  2. Ezetimibe inhibits platelet activation and uPAR expression on endothelial cells.

    PubMed

    Becher, Tobias; Schulze, Torsten J; Schmitt, Melanie; Trinkmann, Frederik; El-Battrawy, Ibrahim; Akin, Ibrahim; Kälsch, Thorsten; Borggrefe, Martin; Stach, Ksenija

    2017-01-15

    Lipid lowering therapy constitutes the basis of cardiovascular disease therapy. The purpose of this study was to investigate effects of ezetimibe, a selective inhibitor of intestinal cholesterol absorption, on platelets and endothelial cells in an in vitro endothelial cell model. After a 24h incubation period with ezetimibe (concentrations 1, 50, 100 and 1000ng/ml), human umbilical vein endothelial cells (HUVEC) were stimulated for 1h with lipopolysaccharide (LPS) and were then incubated in direct contact with activated platelets. Following this, the expression of CD40L and CD62P on platelets, and the expression of ICAM-1, VCAM-1, uPAR, and MT1-MMP on endothelial cells were measured by flow cytometry. Supernatants were analysed by enzyme linked immunosorbent assay for soluble MCP-1, IL-6 and MMP-1. The increased expression of uPAR on endothelial cells by proinflammatory stimulation with LPS and by direct endothelial contact with activated platelets was significantly reduced through pre-incubation with 100ng/ml and 1000ng/ml ezetimibe (p<0.05). Platelets directly incubated with ezetimibe but without endothelial cell contact showed significantly reduced CD62P and CD40L surface expression (p<0.05). Ezetimibe had no significant effects on HUVEC expression of MT1-MMP, ICAM-1 and VCAM-1 and on CD40L expression on platelets in direct contact with endothelial cells. Levels of soluble IL-6 in HUVEC supernatants were significantly lower after pre-incubation with ezetimibe. In this in vitro analysis, ezetimibe directly attenuates platelet activation and has significant endothelial cell mediated effects on selected markers of atherosclerosis. Copyright © 2016. Published by Elsevier Ireland Ltd.

  3. Cellular Profile and Expression of Immunologic Markers in Chronic Apical Periodontitis from HIV-infected Patients Undergoing Highly Active Antiretroviral Therapy.

    PubMed

    Gama, Túlio Gustavo Veiga; Pires, Fabio Ramoa; Armada, Luciana; Gonçalves, Lucio Souza

    2016-06-01

    This study tested the hypothesis that the inflammatory cell profile (CD3-, CD4-, CD8-, CD20-, and CD68-positive cells) and the expression of immunologic markers (tumor necrosis factor α, interferon-γ, interleukin-6, and interleukin-18) in chronic apical periodontitis are the same between non-HIV-infected patients and HIV-infected patients undergoing highly active antiretroviral therapy (HAART). Thirty-four surgically excised chronic apical periodontitis lesions were sampled from 34 patients (17 HIV-infected and 17 non-HIV-infected). The lesions were extracted from teeth with no previous endodontic treatment. All HIV-infected patients were undergoing HAART. The specimens were submitted to histopathologic and immunohistochemical analyses by using an optical microscope. Immunoexpression was graded into 2 levels, focal to weak and moderate to strong. The χ(2), Fisher exact, and Mann-Whitney tests were used to analyze all significant differences between groups. Periapical cysts represented 70.6% and 52.9% of the lesions in the HIV-infected and non-HIV-infected groups, respectively; however, no statistically significant difference was observed (P = .481). There were no statistically significant differences between groups for the inflammatory cell profile and for any of the immunologic markers (P > .05). There are no statistically significant differences of the cellular profile and expression of immunologic markers in chronic apical periodontitis between non-HIV-infected patients and HIV-infected patients undergoing HAART. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. α-Solanine inhibits invasion of human prostate cancer cell by suppressing epithelial-mesenchymal transition and MMPs expression.

    PubMed

    Shen, Kun-Hung; Liao, Alex Chien-Hwa; Hung, Jui-Hsiang; Lee, Wei-Jiunn; Hu, Kai-Chieh; Lin, Pin-Tsen; Liao, Ruei-Fang; Chen, Pin-Shern

    2014-08-11

    α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn.), was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism of α-solanine on motility of the human prostate cancer cell PC-3. Results show that α-solanine reduces the viability of PC-3 cells. When treated with non-toxic doses of α-solanine, cell invasion is markedly suppressed by α-solanine. α-Solanine also significantly elevates epithelial marker E-cadherin expression, while it concomitantly decreases mesenchymal marker vimentin expression, suggesting it suppresses epithelial-mesenchymal transition (EMT). α-Solanine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9 and extracellular inducer of matrix metalloproteinase (EMMPRIN), but increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK), and tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Immunoblotting assays indicate α-solanine is effective in suppressing the phosphorylation of phosphatidylinositide-3 kinase (PI3K), Akt and ERK. Moreover, α-solanine downregulates oncogenic microRNA-21 (miR-21) and upregulates tumor suppressor miR-138 expression. Taken together, the results suggest that inhibition of PC-3 cell invasion by α-solanine may be, at least in part, through blocking EMT and MMPs expression. α-Solanine also reduces ERK and PI3K/Akt signaling pathways and regulates expression of miR-21 and miR-138. These findings suggest an attractive therapeutic potential of α-solanine for suppressing invasion of prostate cancer cell.

  5. Mucin expression in pleomorphic adenoma of salivary gland: a potential role for MUC1 as a marker to predict recurrence.

    PubMed

    Hamada, T; Matsukita, S; Goto, M; Kitajima, S; Batra, S K; Irimura, T; Sueyoshi, K; Sugihara, K; Yonezawa, S

    2004-08-01

    Pleomorphic adenoma of the salivary gland (PA) is essentially a benign neoplasm. However, patients with recurrent PA are difficult to manage. There are rare reports on useful immunohistochemical markers to detect a high risk of recurrence when the primary lesions are resected. To find a new marker to predict the recurrence of PA. Primary lesions of PA were collected from nine patients showing subsequent recurrence and from 40 patients without recurrence during at least 10 years of follow up of the disease. Paraffin wax embedded tumour samples of the two groups were examined for the expression profiles of MUC1 (differentially glycosylated forms), MUC2, MUC4, MUC5AC, and MUC6 using immunohistochemistry. Several clinicopathological factors were also examined. In univariate analysis of the factors examined, MUC1/DF3 high expression (more than 30% of the neoplastic cells stained) in the primary lesions was seen more frequently in patients with recurrence (four of nine) than in those without recurrence (three of 40; p = 0.011). Larger tumour size (more than 3.0 cm) of the primary PA was also a significant (p = 0.035) risk factor for the recurrence of PA. In multivariate analysis, only high expression of MUC1/DF3 was found to be a significant independent risk factor for the recurrence of PA (p = 0.021). Expression of MUC1/DF3 in PA is a useful marker to predict its recurrence. Those patients with PA showing positive MUC1/DF3 expression should be followed up carefully.

  6. Enhanced expression of PKM2 associates with the biological properties of cancer stem cells from A549 human lung cancer cells.

    PubMed

    Guo, Chang-Ying; Yan, Chen; Luo, Lan; Goto, Shinji; Urata, Yoshishige; Xu, Jian-Jun; Wen, Xiao-Ming; Kuang, Yu-Kang; Tou, Fang-Fang; Li, Tao-Sheng

    2017-04-01

    Cancer cells express the M2 isoform of glycolytic enzyme pyruvate kinase (PKM2) for favoring the survival under a hypoxic condition. Considering the relative low oxygen microenvironment in stem cell niche, we hypothesized that an enhanced PKM2 expression associates with the biological properties of cancer stem cells. We used A549 human lung cancer cell line and surgical resected lung cancer tissue samples from patients for experiments. We confirmed the co-localization of PKM2 and CD44, a popular marker for cancer stem cells in lung cancer tissue samples from patients. The expression of PKM2 was clearly observed in approximately 80% of the A549 human lung cancer cells. Remarkably, enhanced expression of PKM2 was specially observed in these cells that also positively expressed CD44. Downregulation of PKM2 in CD44+ cancer stem cells by siRNA significantly impaired the potency for spheroid formation, decreased the cell survival under fetal bovine serum deprivation and hypoxic conditions, but increased their sensitivity to anti-cancer drug of cisplatin and γ-ray. The enhanced expression of PKM2 seems to associate with the biological properties of cancer stem cells from A549 human lung cancer cells. Selective targeting of PKM2 may provide a new strategy for cancer therapy, especially for patients with therapeutic resistance.

  7. A rational approach for cancer stem-like cell isolation and characterization using CD44 and prominin-1(CD133) as selection markers

    PubMed Central

    Lee, Yi-Jen; Wu, Chang-Cheng; Li, Jhy-Wei; Ou, Chien-Chih; Hsu, Shih-Chung; Tseng, Hsiu-Hsueh; Kao, Ming-Ching; Liu, Jah-Yao

    2016-01-01

    The availability of adequate cancer stem cells or cancer stem-like cell (CSC) is important in cancer study. From ovarian cancer cell lines, SKOV3 and OVCAR3, we induced peritoneal ascites tumors in immunodeficient mice. Among the cells (SKOV3.PX1 and OVCAR3.PX1) from those tumors, we sorted both CD44 and CD133 positive cells (SKOV3.PX1_133+44+, OVCAR3.PX1_133+44+), which manifest the characteristics of self-renewal, multi-lineage differentiation, chemoresistance and tumorigenicity, those of cancer stem-like cells (CSLC). Intraperitoneal transplantation of these CD44 and CD133 positive cells resulted in poorer survival in the engrafted animals. Clinically, increased CD133 expression was found in moderately and poorly differentiated (grade II and III) ovarian serous cystadenocarcinomas. The ascites tumor cells from human ovarian cancers demonstrated more CD133 and CD44 expressions than those from primary ovarian or metastatic tumors and confer tumorigenicity in immunodeficient mice. Compared to their parental cells, the SKOV3.PX1_133+44+ and OVCAR3.PX1_133+44+ cells uniquely expressed 5 CD markers (CD97, CD104, CD107a, CD121a, and CD125). Among these markers, CD97, CD104, CD107a, and CD121a are significantly more expressed in the CD133+ and CD44+ double positive cells of human ovarian ascites tumor cells (Ascites_133+44+) than those from primary ovarian or metastatic tumors. The cancer stem-like cells were enriched from 3% to more than 70% after this manipulation. This intraperitoneal enrichment of cancer stem-like cells, from ovarian cancer cell lines or primary ovarian tumor, potentially provides an adequate amount of ovarian cancer stem-like cells for the ovarian cancer study and possibly benefits cancer therapy. PMID:27655682

  8. CD133 expression in osteosarcoma and derivation of CD133⁺ cells.

    PubMed

    Li, Ji; Zhong, Xiao-Yan; Li, Zong-Yu; Cai, Jin-Fang; Zou, Lin; Li, Jian-Min; Yang, Tao; Liu, Wei

    2013-02-01

    Cluster of differentiation 133 (CD133) is recognized as a stem cell marker for normal and cancerous tissues. Using cell culture and real‑time fluorescent polymerase chain reaction, CD133 expression was analyzed in osteosarcoma tissue and Saos‑2 cell lines. In addition, cancer stem cell‑related gene expression in the Saos‑2 cell line was determined to explore the mechanisms underlying tumorigenesis and high drug resistance in osteosarcoma. CD133+ cells were found to be widely distributed in various types of osteosarcoma tissue. Following cell culture, cells entered the G2/M and S cell cycle stages from G0/G1. Levels of CD133+ cells decreased to normal levels rapidly over the course of cell culture. Colony forming efficiency was higher in the CD133+ compared with the CD133‑ subpopulation of Saos‑2 cells. Expression levels of stem cell‑related genes, including multidrug resistance protein 1 (MDR1) and sex determining region Y‑box 2 (Sox2) in the CD133+ subpopulation of cells were found to be significantly higher compared with the CD133‑ subpopulation. These observations indicate that CD133+ Saos‑2 cells exhibit stem cell characteristics, including low abundance, quiescence and a high potential to undergo differentiation, as well as expression of key stem cell regulatory and drug resistance genes, which may cause osteosarcoma and high drug resistance.

  9. CD73 expression identifies a subset of IgM+ antigen-experienced cells with memory attributes that is T cell and CD40 signalling dependent.

    PubMed

    D'Souza, Lucas; Gupta, Sneh Lata; Bal, Vineeta; Rath, Satyajit; George, Anna

    2017-12-01

    B-cell memory was long characterized as isotype-switched, somatically mutated and germinal centre (GC)-derived. However, it is now clear that the memory pool is a complex mixture that includes unswitched and unmutated cells. Further, expression of CD73, CD80 and CD273 has allowed the categorization of B-cell memory into multiple subsets, with combinatorial expression of the markers increasing with GC progression, isotype-switching and acquisition of somatic mutations. We have extended these findings to determine whether these markers can be used to identify IgM memory phenotypically as arising from T-dependent versus T-independent responses. We report that CD73 expression identifies a subset of antigen-experienced IgM + cells that share attributes of functional B-cell memory. This subset is reduced in the spleens of T-cell-deficient and CD40-deficient mice and in mixed marrow chimeras made with mutant and wild-type marrow, the proportion of CD73 + IgM memory is restored in the T-cell-deficient donor compartment but not in the CD40-deficient donor compartment, indicating that CD40 ligation is involved in its generation. We also report that CD40 signalling supports optimal expression of CD73 on splenic T cells and age-associated B cells (ABCs), but not on other immune cells such as neutrophils, marginal zone B cells, peritoneal cavity B-1 B cells and regulatory T and B cells. Our data indicate that in addition to promoting GC-associated memory generation during B-cell differentiation, CD40-signalling can influence the composition of the unswitched memory B-cell pool. They also raise the possibility that a fraction of ABCs may represent T-cell-dependent IgM memory. © 2017 John Wiley & Sons Ltd.

  10. Does human endometrial LGR5 gene expression suggest the existence of another hormonally regulated epithelial stem cell niche?

    PubMed

    Tempest, N; Baker, A M; Wright, N A; Hapangama, D K

    2018-06-01

    Is human endometrial leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) gene expression limited to the postulated epithelial stem cell niche, stratum basalis glands, and is it hormonally regulated? LGR5 expressing cells are not limited to the postulated stem cell niche but LGR5 expression is hormonally regulated. The human endometrium is a highly regenerative tissue; however, endometrial epithelial stem cell markers are yet to be confirmed. LGR5 is a marker of stem cells in various epithelia. The study was conducted at a University Research Institute. Endometrial samples from 50 healthy women undergoing benign gynaecological surgery with no endometrial pathology at the Liverpool Women's hospital were included and analysed in the following six sub-categories; proliferative, secretory phases of menstrual cycle, postmenopausal, those using oral and local progestagens and samples for in vitro explant culture. In this study, we used the gold standard method, in situ hybridisation (ISH) along with qPCR and a systems biology approach to study the location of LGR5 gene expression in full thickness human endometrium and Fallopian tubes. The progesterone regulation of endometrial LGR5 was examined in vivo and in short-term cultured endometrial tissue explants in vitro. LGR5 expression was correlated with epithelial proliferation (Ki67), and expression of previously reported epithelia progenitor markers (SOX9 and SSEA-1) immunohistochemistry (IHC). LGR5 gene expression was significantly higher in the endometrial luminal epithelium than in all other epithelial compartments in the healthy human endometrium, including the endometrial stratum basalis (P < 0.05). The strongest SSEA-1 and SOX9 staining was observed in the stratum basalis glands, but the general trend of SOX9 and SSEA-1 expression followed the same cyclical pattern of expression as LGR5. Stratum functionalis epithelial Ki67-LI and LGR5 expression levels correlated significantly (r = 0.74, P = 0

  11. OCT4 expression mediates partial cardiomyocyte reprogramming of mesenchymal stromal cells

    PubMed Central

    Montanari, Sonia; Santa-Cruz, Diego; Viswanathan, Sowmya; Keating, Armand

    2017-01-01

    Mesenchymal stem/stromal cells (MSCs) are in numerous cell therapy clinical trials, including for injured myocardium. Acquisition of cardiomyocyte characteristics by MSCs may improve cardiac regeneration but the mechanisms regulating this process are unclear. Here, we investigated whether the pluripotency transcription factor OCT4 is involved in the activation of cardiac lineage genetic programs in MSCs. We employed our established co-culture model of MSCs with rat embryonic cardiomyocytes showing co-expression of cardiac markers on MSCs independent of cell fusion. Bone marrow-derived MSCs were isolated from transgenic mice expressing GFP under the control of the cardiac-specific α-myosin heavy chain promoter. After 5 days of co-culture, MSCs expressed cardiac specific genes, including Nkx2.5, atrial natriuretic factor and α-cardiac actin. The frequency of GFP+ cells was 7.6±1.9%, however, these cells retained the stromal cell phenotype, indicating, as expected, only partial differentiation. Global OCT4 expression increased 2.6±0.7-fold in co-cultured MSCs and of interest, 87±5% vs 79±4% of MSCs expressed OCT4 by flow cytometry in controls and after co-culture, respectively. Consistent with the latter observation, the GFP+ cells did not express nuclear OCT4 and showed a significant increase in OCT4 promoter methylation compared with undifferentiated MSCs (92% vs 45%), inferring that OCT4 is regulated by an epigenetic mechanism. We further showed that siRNA silencing of OCT4 in MSCs resulted in a reduced frequency of GFP+ cells in co-culture to less than 1%. Our data infer that OCT4 expression may have a direct effect on partial cardiomyocyte reprogramming of MSCs and suggest a new mechanism(s) associated with MSC multipotency and a requirement for crosstalk with the cardiac microenvironment. PMID:29216265

  12. OCT4 expression mediates partial cardiomyocyte reprogramming of mesenchymal stromal cells.

    PubMed

    Yannarelli, Gustavo; Pacienza, Natalia; Montanari, Sonia; Santa-Cruz, Diego; Viswanathan, Sowmya; Keating, Armand

    2017-01-01

    Mesenchymal stem/stromal cells (MSCs) are in numerous cell therapy clinical trials, including for injured myocardium. Acquisition of cardiomyocyte characteristics by MSCs may improve cardiac regeneration but the mechanisms regulating this process are unclear. Here, we investigated whether the pluripotency transcription factor OCT4 is involved in the activation of cardiac lineage genetic programs in MSCs. We employed our established co-culture model of MSCs with rat embryonic cardiomyocytes showing co-expression of cardiac markers on MSCs independent of cell fusion. Bone marrow-derived MSCs were isolated from transgenic mice expressing GFP under the control of the cardiac-specific α-myosin heavy chain promoter. After 5 days of co-culture, MSCs expressed cardiac specific genes, including Nkx2.5, atrial natriuretic factor and α-cardiac actin. The frequency of GFP+ cells was 7.6±1.9%, however, these cells retained the stromal cell phenotype, indicating, as expected, only partial differentiation. Global OCT4 expression increased 2.6±0.7-fold in co-cultured MSCs and of interest, 87±5% vs 79±4% of MSCs expressed OCT4 by flow cytometry in controls and after co-culture, respectively. Consistent with the latter observation, the GFP+ cells did not express nuclear OCT4 and showed a significant increase in OCT4 promoter methylation compared with undifferentiated MSCs (92% vs 45%), inferring that OCT4 is regulated by an epigenetic mechanism. We further showed that siRNA silencing of OCT4 in MSCs resulted in a reduced frequency of GFP+ cells in co-culture to less than 1%. Our data infer that OCT4 expression may have a direct effect on partial cardiomyocyte reprogramming of MSCs and suggest a new mechanism(s) associated with MSC multipotency and a requirement for crosstalk with the cardiac microenvironment.

  13. INSL5 may be a unique marker of colorectal endocrine cells and neuroendocrine tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashima, Hirosato, E-mail: hmashima1-tky@umin.ac.jp; Ohno, Hideki; Yamada, Yumi

    2013-03-22

    Highlights: ► INSL5 is expressed in enteroendocrine cells along the colorectum. ► INSL5 is expressed increasingly from proximal colon to rectum. ► INSL5 co-localizes rarely with chromogranin A. ► All rectal neuroendocrine tumors examined expressed INSL5. -- Abstract: Insulin-like peptide 5 (INSL5) is a member of the insulin superfamily, and is a potent agonist for RXFP4. We have shown that INSL5 is expressed in enteroendocrine cells (EECs) along the colorectum with a gradient increase toward the rectum. RXFP4 is ubiquitously expressed along the digestive tract. INSL5-positive EECs have little immunoreactivity to chromogranin A (CgA) and might be a unique markermore » of colorectal EECs. CgA-positive EECs were distributed normally along the colorectum in INSL5 null mice, suggesting that INSL5 is not required for the development of CgA-positive EECs. Exogenous INSL5 did not affect the proliferation of human colon cancer cell lines, and chemically-induced colitis in INSL5 null mice did not show any significant changes in inflammation or mucosal healing compared to wild-type mice. In contrast, all of the rectal neuroendocrine tumors examined co-expressed INSL5 and RXFP4. INSL5 may be a unique marker of colorectal EECs, and INSL5–RXFP4 signaling might play a role in an autocrine/paracrine fashion in the colorectal epithelium and rectal neuroendocrine tumors.« less

  14. Early predicted time to normalization of tumor markers predicts outcome in poor-prognosis nonseminomatous germ cell tumors.

    PubMed

    Fizazi, Karim; Culine, Stéphane; Kramar, Andrew; Amato, Robert J; Bouzy, Jeannine; Chen, Isan; Droz, Jean-Pierre; Logothetis, Christopher J

    2004-10-01

    The prognostic relevance of the rate of decline of serum alpha-fetoprotein (AFP) and human chorionic gonadotropin (HCG) during the first 3 weeks of chemotherapy for nonseminomatous germ cell tumors (NSGCT) was studied in the context of the International Germ Cell Cancer Collaborative Group (IGCCCG) classification. Data from 653 patients prospectively recruited in clinical trials were studied. Tumor markers were obtained before chemotherapy and 3 weeks later. Decline rates were calculated using a logarithmic formula and expressed as a predicted time to normalization (TTN). A favorable TTN was defined when both AFP and HCG had a favorable decline rate, including cases with normal values. The median follow-up was 50 months (range, 2 to 151 months). Tumor decline rate expressed as a predicted TTN was associated with both progression-free survival (PFS; P <.0001) and overall survival (OS; P <.0001). The 4-year PFS rates were 64% and 38% in patients from the poor-prognosis group who had a favorable and an unfavorable TTN, respectively. The 4-year OS rates were 83% and 58%, respectively. This effect was independent from the initial tumor marker values, the primary tumor site, and the presence of nonpulmonary visceral metastases: tumor marker decline rate remained a strong predictor for both PFS (hazard ratio = 2.5; P =.01) and OS (hazard ratio = 4.6; P =.002) in patients from the IGCCCG poor-prognosis group in multivariate analysis. Early predicted time to tumor marker normalization is an independent prognostic factor in patients with poor-prognosis NSGCT and may be a useful tool in the therapeutic management of these patients.

  15. Carboxypeptidase-M is regulated by lipids and CSFs in macrophages and dendritic cells and expressed selectively in tissue granulomas and foam cells

    PubMed Central

    Tsakiris, Ioannis; Torocsik, Daniel; Gyongyosi, Adrienn; Dozsa, Aniko; Szatmari, Istvan; Szanto, Attila; Soos, Gyorgyike; Nemes, Zoltan; Igali, Laszlo; Marton, Ildiko; Takats, Zoltan; Nagy, Laszlo; Dezso, Balazs

    2012-01-01

    Granulomatous inflammations, characterized by the presence of activated macrophages (MAs) forming epithelioid cell (EPC) clusters, are usually easy to recognize. However, in ambiguous cases the use of a MA marker that expresses selectively in EPCs may be needed. Here, we report that carboxypeptidase-M (CPM), a MA-differentiation marker, is preferentially induced in EPCs of all granuloma types studied, but not in resting MAs. As CPM is not expressed constitutively in MAs, this allows utilization of CPM-immunohistochemistry in diagnostics of minute granuloma detection when dense non-granulomatous MAs are also present. Despite this rule, hardly any detectable CPM was found in advanced/active tubercle caseous disease, albeit in early tuberculosis granuloma, MAs still expressed CPM. Indeed, in vitro both the CPM-protein and -mRNA became downregulated when MAs were infected with live mycobacteria. In vitro, MA-CPM transcript is neither induced remarkably by interferon-γ, known to cause classical MA activation, nor by IL-4, an alternative MA activator. Instead, CPM is selectively expressed in lipid-laden MAs, including the foam cells of atherosclerotic plaques, xanthomatous lesions and lipid pneumonias. By using serum, rich in lipids, and low-density lipoprotein (LDL) or VLDL, CPM upregulation could be reproduced in vitro in monocyte-derived MAs both at transcriptional and protein levels, and the increase is repressed under lipid-depleted conditions. The microarray analyses support the notion that CPM induction correlates with a robust progressive increase in CPM gene expression during monocyte to MA maturation and dendritic cell (DC) differentiation mediated by granulocyte–MA-colony-stimulating factor+IL-4. M-CSF alone also induced CPM. These results collectively indicate that CPM upregulation in MAs is preferentially associated with increased lipid uptake, and exposure to CSF, features of EPCs, also. Therefore, CPM-immunohistochemistry is useful for granuloma and

  16. Dexamethasone Stimulated Gene Expression in Peripheral Blood is a Sensitive Marker for Glucocorticoid Receptor Resistance in Depressed Patients

    PubMed Central

    Menke, Andreas; Arloth, Janine; Pütz, Benno; Weber, Peter; Klengel, Torsten; Mehta, Divya; Gonik, Mariya; Rex-Haffner, Monika; Rubel, Jennifer; Uhr, Manfred; Lucae, Susanne; Deussing, Jan M; Müller-Myhsok, Bertram; Holsboer, Florian; Binder, Elisabeth B

    2012-01-01

    Although gene expression profiles in peripheral blood in major depression are not likely to identify genes directly involved in the pathomechanism of affective disorders, they may serve as biomarkers for this disorder. As previous studies using baseline gene expression profiles have provided mixed results, our approach was to use an in vivo dexamethasone challenge test and to compare glucocorticoid receptor (GR)-mediated changes in gene expression between depressed patients and healthy controls. Whole genome gene expression data (baseline and following GR-stimulation with 1.5 mg dexamethasone p.o.) from two independent cohorts were analyzed to identify gene expression pattern that would predict case and control status using a training (N=18 cases/18 controls) and a test cohort (N=11/13). Dexamethasone led to reproducible regulation of 2670 genes in controls and 1151 transcripts in cases. Several genes, including FKBP5 and DUSP1, previously associated with the pathophysiology of major depression, were found to be reliable markers of GR-activation. Using random forest analyses for classification, GR-stimulated gene expression outperformed baseline gene expression as a classifier for case and control status with a correct classification of 79.1 vs 41.6% in the test cohort. GR-stimulated gene expression performed best in dexamethasone non-suppressor patients (88.7% correctly classified with 100% sensitivity), but also correctly classified 77.3% of the suppressor patients (76.7% sensitivity), when using a refined set of 19 genes. Our study suggests that in vivo stimulated gene expression in peripheral blood cells could be a promising molecular marker of altered GR-functioning, an important component of the underlying pathology, in patients suffering from depressive episodes. PMID:22237309

  17. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis

    PubMed Central

    Seidel, Kerstin; Marangoni, Pauline; Tang, Cynthia; Houshmand, Bahar; Du, Wen; Maas, Richard L; Murray, Steven; Oldham, Michael C; Klein, Ophir D

    2017-01-01

    Investigations into stem cell-fueled renewal of an organ benefit from an inventory of cell type-specific markers and a deep understanding of the cellular diversity within stem cell niches. Using the adult mouse incisor as a model for a continuously renewing organ, we performed an unbiased analysis of gene co-expression relationships to identify modules of co-expressed genes that represent differentiated cells, transit-amplifying cells, and residents of stem cell niches. Through in vivo lineage tracing, we demonstrated the power of this approach by showing that co-expression module members Lrig1 and Igfbp5 define populations of incisor epithelial and mesenchymal stem cells. We further discovered that two adjacent mesenchymal tissues, the periodontium and dental pulp, are maintained by distinct pools of stem cells. These findings reveal novel mechanisms of incisor renewal and illustrate how gene co-expression analysis of intact biological systems can provide insights into the transcriptional basis of cellular identity. DOI: http://dx.doi.org/10.7554/eLife.24712.001 PMID:28475038

  18. Inverse Relationship between Tumor Proliferation Markers and Connexin Expression in a Malignant Cardiac Tumor Originating from Mesenchymal Stem Cell Engineered Tissue in a Rat in vivo Model

    PubMed Central

    Spath, Cathleen; Schlegel, Franziska; Leontyev, Sergey; Mohr, Friedrich-Wilhelm; Dhein, Stefan

    2013-01-01

    Background: Recently, we demonstrated the beneficial effects of engineered heart tissues for the treatment of dilated cardiomyopathy in rats. For further development of this technique we started to produce engineered tissue (ET) from mesenchymal stem cells. Interestingly, we observed a malignant tumor invading the heart with an inverse relationship between proliferation markers and connexin expression. Methods: Commercial CD54+/CD90+/CD34−/CD45− bone marrow derived mesenchymal rat stem cells (cBM-MSC), characterized were used for production of mesenchymal stem-cell-ET (MSC-ET) by suspending them in a collagen I, matrigel-mixture and cultivating for 14 days with electrical stimulation. Three MSC-ET were implanted around the beating heart of adult rats for days. Another three MSC-ET were produced from freshly isolated rat bone marrow derived stem cells (sBM-MSC). Results: Three weeks after implantation of the MSC-ETs the hearts were surgically excised. While in 5/6 cases the ET was clearly distinguishable and was found as a ring containing mostly connective tissue around the heart, in 1/6 the heart was completely surrounded by a huge, undifferentiated, pleomorphic tumor originating from the cMSC-ET (cBM-MSC), classified as a high grade malignant sarcoma. Quantitatively we found a clear inverse relationship between cardiac connexin expression (Cx43, Cx40, or Cx45) and increased Ki-67 expression (Cx43: p < 0.0001, Cx45: p < 0.03, Cx40: p < 0.014). At the tumor-heart border there were significantly more Ki-67 positive cells (p = 0.001), and only 2% Cx45 and Ki-67-expressing cells, while the other connexins were nearly completely absent (p < 0.0001). Conclusion and Hypothesis: These observations strongly suggest the hypothesis, that invasive tumor growth is accompanied by reduction in connexins. This implicates that gap junction communication between tumor and normal tissue is reduced or absent, which could mean that growth and differentiation

  19. Isolation of major pancreatic cell types and long-term culture-initiating cells using novel human surface markers.

    PubMed

    Dorrell, Craig; Abraham, Stephanie L; Lanxon-Cookson, Kelsea M; Canaday, Pamela S; Streeter, Philip R; Grompe, Markus

    2008-09-01

    We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.

  20. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells.

    PubMed

    Barbet, Romain; Peiffer, Isabelle; Hatzfeld, Antoinette; Charbord, Pierre; Hatzfeld, Jacques A

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs (hES-MSCs), and hMSCs. Analysis of differentiation genes indicated that hES-MSCs express the sarcomeric muscle lineage in addition to the classical mesenchymal lineages, suggesting they are more primitive than hMSCs. Transcript analysis of membrane antigens suggests that IL1R1(low), BMPR1B(low), FLT4(low), LRRC32(low), and CD34 may be good candidates for the detection and isolation of the most primitive hMSCs. The expression in hMSCs of cytokine genes, such as IL6, IL8, or FLT3LG, without expression of the corresponding receptor, suggests a role for these cytokines in the paracrine control of stem cell niches. Our database may be shared with other laboratories in order to explore the considerable clinical potential of hES-MSCs, which appear to represent an intermediate developmental stage between hESCs and hMSCs.