Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant.
Folcher, Marc; Oesterle, Sabine; Zwicky, Katharina; Thekkottil, Thushara; Heymoz, Julie; Hohmann, Muriel; Christen, Matthias; Daoud El-Baba, Marie; Buchmann, Peter; Fussenegger, Martin
2014-11-11
Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain-computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered optogenetic implant containing designer cells engineered for near-infrared (NIR) light-adjustable expression of the human glycoprotein SEAP (secreted alkaline phosphatase). The synthetic optogenetic signalling pathway interfacing the BCI with target gene expression consists of an engineered NIR light-activated bacterial diguanylate cyclase (DGCL) producing the orthogonal second messenger cyclic diguanosine monophosphate (c-di-GMP), which triggers the stimulator of interferon genes (STING)-dependent induction of synthetic interferon-β promoters. Humans generating different mental states (biofeedback control, concentration, meditation) can differentially control SEAP production of the designer cells in culture and of subcutaneous wireless-powered optogenetic implants in mice.
Immunotherapy for B-Cell Neoplasms using T Cells expressing Chimeric Antigen Receptors
Boulassel, Mohamed-Rachid; Galal, Ahmed
2012-01-01
Immunotherapy with T cells expressing chimeric antigen receptors (CAR) is being evaluated as a potential treatment for B-cell neoplasms. In recent clinical trials it has shown promising results. As the number of potential candidate antigens expands, the choice of suitable target antigens becomes more challenging to design studies and to assess optimal efficacy of CAR. Careful evaluation of candidate target antigens is required to ensure that T cells expressing CAR will preferentially kill malignant cells with a minimal toxicity against normal tissues. B cells express specific surface antigens that can theoretically act as targets for CAR design. Although many of these antigens can stimulate effective cellular immune responses in vivo, their implementation in clinical settings remains a challenge. Only targeted B-cell antigens CD19 and CD20 have been tested in clinical trials. This article reviews exploitable B cell surface antigens for CAR design and examines obstacles that could interfere with the identification of potentially useful cellular targets. PMID:23269948
Tian, J; Andreadis, S T
2009-07-01
Expression of multiple genes from the same target cell is required in several technological and therapeutic applications such as quantitative measurements of promoter activity or in vivo tracking of stem cells. In spite of such need, reaching independent and high-level dual-gene expression cannot be reliably accomplished by current gene transfer vehicles. To address this issue, we designed a lentiviral vector carrying two transcriptional units separated by polyadenylation, terminator and insulator sequences. With this design, the expression level of both genes was as high as that yielded from lentiviral vectors containing only a single transcriptional unit. Similar results were observed with several promoters and cell types including epidermal keratinocytes, bone marrow mesenchymal stem cells and hair follicle stem cells. Notably, we demonstrated quantitative dynamic monitoring of gene expression in primary cells with no need for selection protocols suggesting that this optimized lentivirus may be useful in high-throughput gene expression profiling studies.
DNA Duplex-Based Photodynamic Molecular Beacon for Targeted Killing of Retinoblastoma Cell.
Wei, Yanchun; Lu, Cuixia; Chen, Qun; Xing, Da
2016-11-01
Retinoblastoma (RB) is the most common primary intraocular malignancy of infancy. An alternative RB treatment protocol is proposed and tested. It is based on a photodynamic therapy (PDT) with a designed molecular beacon that specifically targets the murine double minute x (MDMX) high-expressed RB cells. A MDMX mRNA triggered photodynamic molecular beacon is designed by binding a photosensitizer molecule (pyropheophorbide-a, or PPa) and a black hole quencher-3 (BHQ3) through a complementary oligonucleotide sequence. Cells with and without MDMX high-expression are incubated with the beacon and then irradiated with a laser. The fluorescence and reactive oxygen species are detected in solution to verify the specific activation of PPa by the perfectly matched DNA targets. The cell viabilities are evaluated with CCK-8 and flow cytometry assay. The fluorescence and photo-cytoxicity of PPa is recovered and significantly higher in the MDMX high-expressed Y79 and WERI-Rb1 cells, compared to that with the MDMX low-expressed cells. The synthesized beacon exhibits high PDT efficiency toward MDMX high-expressed RB cells. The data suggest that the designed beacon may provide a potential alternative for RB therapy and secures the ground for future investigation.
AMTEC radioisotope power system for the Pluto Express mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenok, J.F. III; Sievers, R.K.
1995-12-31
The Alkali Metal Thermal to Electric Converter (AMTEC) technology has made substantial advances in the last 3 years through design improvements and technical innovations. In 1993 programs began to produce an AMTEC cell specifically for the NASA Pluto Express Mission. A set of efficiency goals was established for this series of cells to be developed. According to this plan, cell {number_sign}8 would be 17% efficient but was actually 18% efficient. Achieving this goal, as well as design advances that allow the cell to be compact, has resulted in pushing the cell from an unexciting 2 W/kg and 2% efficiency tomore » very attractive 40 W/kg and 18% measured efficiency. This paper will describe the design and predict the performance of a radioisotope powered AMTEC system for the Pluto Express mission.« less
DeSigN: connecting gene expression with therapeutics for drug repurposing and development.
Lee, Bernard Kok Bang; Tiong, Kai Hung; Chang, Jit Kang; Liew, Chee Sun; Abdul Rahman, Zainal Ariff; Tan, Aik Choon; Khang, Tsung Fei; Cheong, Sok Ching
2017-01-25
The drug discovery and development pipeline is a long and arduous process that inevitably hampers rapid drug development. Therefore, strategies to improve the efficiency of drug development are urgently needed to enable effective drugs to enter the clinic. Precision medicine has demonstrated that genetic features of cancer cells can be used for predicting drug response, and emerging evidence suggest that gene-drug connections could be predicted more accurately by exploring the cumulative effects of many genes simultaneously. We developed DeSigN, a web-based tool for predicting drug efficacy against cancer cell lines using gene expression patterns. The algorithm correlates phenotype-specific gene signatures derived from differentially expressed genes with pre-defined gene expression profiles associated with drug response data (IC 50 ) from 140 drugs. DeSigN successfully predicted the right drug sensitivity outcome in four published GEO studies. Additionally, it predicted bosutinib, a Src/Abl kinase inhibitor, as a sensitive inhibitor for oral squamous cell carcinoma (OSCC) cell lines. In vitro validation of bosutinib in OSCC cell lines demonstrated that indeed, these cell lines were sensitive to bosutinib with IC 50 of 0.8-1.2 μM. As further confirmation, we demonstrated experimentally that bosutinib has anti-proliferative activity in OSCC cell lines, demonstrating that DeSigN was able to robustly predict drug that could be beneficial for tumour control. DeSigN is a robust method that is useful for the identification of candidate drugs using an input gene signature obtained from gene expression analysis. This user-friendly platform could be used to identify drugs with unanticipated efficacy against cancer cell lines of interest, and therefore could be used for the repurposing of drugs, thus improving the efficiency of drug development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xiao; Gang, Yi; Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi Province
2015-02-06
Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself.more » The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity.« less
The food additive vanillic acid controls transgene expression in mammalian cells and mice.
Gitzinger, Marc; Kemmer, Christian; Fluri, David A; El-Baba, Marie Daoud; Weber, Wilfried; Fussenegger, Martin
2012-03-01
Trigger-inducible transcription-control devices that reversibly fine-tune transgene expression in response to molecular cues have significantly advanced the rational reprogramming of mammalian cells. When designed for use in future gene- and cell-based therapies the trigger molecules have to be carefully chosen in order to provide maximum specificity, minimal side-effects and optimal pharmacokinetics in a mammalian organism. Capitalizing on control components that enable Caulobacter crescentus to metabolize vanillic acid originating from lignin degradation that occurs in its oligotrophic freshwater habitat, we have designed synthetic devices that specifically adjust transgene expression in mammalian cells when exposed to vanillic acid. Even in mice transgene expression was robust, precise and tunable in response to vanillic acid. As a licensed food additive that is regularly consumed by humans via flavoured convenience food and specific fresh vegetable and fruits, vanillic acid can be considered as a safe trigger molecule that could be used for diet-controlled transgene expression in future gene- and cell-based therapies.
Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells.
Gatto, Sole; Puri, Pier Lorenzo; Malecova, Barbora
2017-01-01
Single cell gene expression profiling is a fundamental tool for studying the heterogeneity of a cell population by addressing the phenotypic and functional characteristics of each cell. Technological advances that have coupled microfluidic technologies with high-throughput quantitative RT-PCR analyses have enabled detailed analyses of single cells in various biological contexts. In this chapter, we describe the procedure for isolating the skeletal muscle interstitial cells termed Fibro-Adipogenic Progenitors (FAPs ) and their gene expression profiling at the single cell level. Moreover, we accompany our bench protocol with bioinformatics analysis designed to process raw data as well as to visualize single cell gene expression data. Single cell gene expression profiling is therefore a useful tool in the investigation of FAPs heterogeneity and their contribution to muscle homeostasis.
IAA8 expression during vascular cell differentiation
Andrew T. Groover; Amy Pattishall; Alan M. Jones
2003-01-01
We report the characterization of a member of the auxin-induced IAA gene family from zinnia, designated zIAA8, which is expressed by mesophyll cells differentiating as tracheary elements in vitro. Transcription of zIAA8 is upregulated within 3 h after cell isolation in inductive medium,...
MERP1: a mammalian ependymin-related protein gene differentially expressed in hematopoietic cells.
Gregorio-King, Claudia C; McLeod, Janet L; Collier, Fiona McL; Collier, Gregory R; Bolton, Karyn A; Van Der Meer, Gavin J; Apostolopoulos, Jim; Kirkland, Mark A
2002-03-20
We have utilized differential display polymerase chain reaction to investigate the gene expression of hematopoietic progenitor cells from adult bone marrow and umbilical cord blood. A differentially expressed gene was identified in CD34+ hematopoietic progenitor cells, with low expression in CD34- cells. We have obtained the full coding sequence of this gene which we designated human mammalian ependymin-related protein 1 (MERP1). Expression of MERP1 was found in a variety of normal human tissues, and is 4- and 10-fold higher in adult bone marrow and umbilical cord blood CD34+ cells, respectively, compared to CD34- cells. Additionally, MERP1 expression in a hematopoietic stem cell enriched population was down-regulated with proliferation and differentiation. Conceptual translation of the MERP1 open reading frame reveals significant homology to two families of glycoprotein calcium-dependant cell adhesion molecules: ependymins and protocadherins.
Phage-mediated Delivery of Targeted sRNA Constructs to Knock Down Gene Expression in E. coli.
Bernheim, Aude G; Libis, Vincent K; Lindner, Ariel B; Wintermute, Edwin H
2016-03-20
RNA-mediated knockdowns are widely used to control gene expression. This versatile family of techniques makes use of short RNA (sRNA) that can be synthesized with any sequence and designed to complement any gene targeted for silencing. Because sRNA constructs can be introduced to many cell types directly or using a variety of vectors, gene expression can be repressed in living cells without laborious genetic modification. The most common RNA knockdown technology, RNA interference (RNAi), makes use of the endogenous RNA-induced silencing complex (RISC) to mediate sequence recognition and cleavage of the target mRNA. Applications of this technique are therefore limited to RISC-expressing organisms, primarily eukaryotes. Recently, a new generation of RNA biotechnologists have developed alternative mechanisms for controlling gene expression through RNA, and so made possible RNA-mediated gene knockdowns in bacteria. Here we describe a method for silencing gene expression in E. coli that functionally resembles RNAi. In this system a synthetic phagemid is designed to express sRNA, which may designed to target any sequence. The expression construct is delivered to a population of E. coli cells with non-lytic M13 phage, after which it is able to stably replicate as a plasmid. Antisense recognition and silencing of the target mRNA is mediated by the Hfq protein, endogenous to E. coli. This protocol includes methods for designing the antisense sRNA, constructing the phagemid vector, packaging the phagemid into M13 bacteriophage, preparing a live cell population for infection, and performing the infection itself. The fluorescent protein mKate2 and the antibiotic resistance gene chloramphenicol acetyltransferase (CAT) are targeted to generate representative data and to quantify knockdown effectiveness.
Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors.
Song, Erwei; Zhu, Pengcheng; Lee, Sang-Kyung; Chowdhury, Dipanjan; Kussman, Steven; Dykxhoorn, Derek M; Feng, Yi; Palliser, Deborah; Weiner, David B; Shankar, Premlata; Marasco, Wayne A; Lieberman, Judy
2005-06-01
Delivery of small interfering RNAs (siRNAs) into cells is a key obstacle to their therapeutic application. We designed a protamine-antibody fusion protein to deliver siRNA to HIV-infected or envelope-transfected cells. The fusion protein (F105-P) was designed with the protamine coding sequence linked to the C terminus of the heavy chain Fab fragment of an HIV-1 envelope antibody. siRNAs bound to F105-P induced silencing only in cells expressing HIV-1 envelope. Additionally, siRNAs targeted against the HIV-1 capsid gene gag, inhibited HIV replication in hard-to-transfect, HIV-infected primary T cells. Intratumoral or intravenous injection of F105-P-complexed siRNAs into mice targeted HIV envelope-expressing B16 melanoma cells, but not normal tissue or envelope-negative B16 cells; injection of F105-P with siRNAs targeting c-myc, MDM2 and VEGF inhibited envelope-expressing subcutaneous B16 tumors. Furthermore, an ErbB2 single-chain antibody fused with protamine delivered siRNAs specifically into ErbB2-expressing cancer cells. This study demonstrates the potential for systemic, cell-type specific, antibody-mediated siRNA delivery.
Targeted repression of AXIN2 and MYC gene expression using designer TALEs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu
Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacentmore » to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.« less
Pascal, Laura E; True, Lawrence D; Campbell, David S; Deutsch, Eric W; Risk, Michael; Coleman, Ilsa M; Eichner, Lillian J; Nelson, Peter S; Liu, Alvin Y
2008-01-01
Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD) genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate – basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial – and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63). Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50) but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers. PMID:18501003
Ahmadi, Samira; Davami, Fatemeh; Davoudi, Noushin; Nematpour, Fatemeh; Ahmadi, Maryam; Ebadat, Saeedeh; Azadmanesh, Kayhan; Barkhordari, Farzaneh; Mahboudi, Fereidoun
2017-01-01
Establishing stable Chinese Hamster Ovary (CHO) cells producing monoclonal antibodies (mAbs) usually pass through the random integration of vectors to the cell genome, which is sensitive to gene silencing. One approach to overcome this issue is to target a highly transcribed region in the genome. Transposons are useful devices to target active parts of genomes, and PiggyBac (PB) transposon can be considered as a good option. In the present study, three PB transposon donor vectors containing both heavy and light chains were constructed, one contained independent expression cassettes while the others utilized either an Internal Ribosome Entry Site (IRES) or 2A element to express mAb. Conventional cell pools were created by transferring donor vectors into the CHO cells, whereas transposon-based cells were generated by transfecting the cells with donor vectors with a companion of a transposase-encoding helper vector, with 1:2.5 helper/donor vectors ratio. To evaluate the influence of helper/donor vectors ratio on expression, the second transposon-based cell pools were generated with 1:5 helper/donor ratio. Expression levels in the transposon-based cells were two to five -folds more than those created by conventional method except for the IRES-mediated ones, in which the observed difference increased more than 100-fold. The results were dependent on both donor vector design and vectors ratios.
Ahmadi, Samira; Davami, Fatemeh; Davoudi, Noushin; Nematpour, Fatemeh; Ahmadi, Maryam; Ebadat, Saeedeh; Azadmanesh, Kayhan; Barkhordari, Farzaneh
2017-01-01
Establishing stable Chinese Hamster Ovary (CHO) cells producing monoclonal antibodies (mAbs) usually pass through the random integration of vectors to the cell genome, which is sensitive to gene silencing. One approach to overcome this issue is to target a highly transcribed region in the genome. Transposons are useful devices to target active parts of genomes, and PiggyBac (PB) transposon can be considered as a good option. In the present study, three PB transposon donor vectors containing both heavy and light chains were constructed, one contained independent expression cassettes while the others utilized either an Internal Ribosome Entry Site (IRES) or 2A element to express mAb. Conventional cell pools were created by transferring donor vectors into the CHO cells, whereas transposon-based cells were generated by transfecting the cells with donor vectors with a companion of a transposase-encoding helper vector, with 1:2.5 helper/donor vectors ratio. To evaluate the influence of helper/donor vectors ratio on expression, the second transposon-based cell pools were generated with 1:5 helper/donor ratio. Expression levels in the transposon-based cells were two to five -folds more than those created by conventional method except for the IRES-mediated ones, in which the observed difference increased more than 100-fold. The results were dependent on both donor vector design and vectors ratios. PMID:28662065
Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X
2004-01-01
Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613
Interdependence of cell growth and gene expression: origins and consequences.
Scott, Matthew; Gunderson, Carl W; Mateescu, Eduard M; Zhang, Zhongge; Hwa, Terence
2010-11-19
In bacteria, the rate of cell proliferation and the level of gene expression are intimately intertwined. Elucidating these relations is important both for understanding the physiological functions of endogenous genetic circuits and for designing robust synthetic systems. We describe a phenomenological study that reveals intrinsic constraints governing the allocation of resources toward protein synthesis and other aspects of cell growth. A theory incorporating these constraints can accurately predict how cell proliferation and gene expression affect one another, quantitatively accounting for the effect of translation-inhibiting antibiotics on gene expression and the effect of gratuitous protein expression on cell growth. The use of such empirical relations, analogous to phenomenological laws, may facilitate our understanding and manipulation of complex biological systems before underlying regulatory circuits are elucidated.
Effect of miRNA-203 on cervical cancer cells and its underlying mechanism.
Yin, X Z; Zhao, D M; Zhang, G X; Liu, L
2016-09-23
miRNA-203 is involved in the development and progression of various types of cancer. However, its role in cervical cancer remains unclear. The aim of this study was to investigate the effect of miRNA-203 on the proliferation and migration of HeLa cervical cancer cells, as well as survivin expression in these cells. A miRNA-203 primer probe was designed according to a sequence obtained from NCBI. The expression of miRNA-203 in cervical epithelial cells and cervical cancer cells was detected by quantitative reverse transcriptase-polymerase chain reaction. The miRNA-203 expression pattern was compared between these two cell lines. The cervical cancer cells were transfected with miRNA-203 mimic or inhibitor to determine their effects on proliferation and migration. The expression of the miRNA-203 target protein (survivin) was analyzed by western blot. Cervical cancer cells showed reduced miRNA-203 expression compared to cervical epithelial cells. Transfection of miRNA-203 mimic upregulated the expression of miRNA-203, suppressed cell proliferation and migration, and downregulated survivin expression (P < 0.05). However, downregulation of miRNA-203 expression did not affect proliferation, migration, and survivin expression in cervical cancer cells (P > 0.05). In conclusion, upregulation of miRNA-203 in cervical cancer cells inhibits the proliferative and migratory capacities of these cells by downregulating the expression of survivin.
Constructing Chimeric Antigen for Precise Screening of HTLV-I Infection.
Heydari Zarnagh, Hafez; Hassanpour, Kazem; Rasaee, Mohammad Javad
2015-08-01
Individual preparation of two human T-cell lymphotropic virus type I (HTLV-I) diagnostic GST fused peptides (MTA-1 and GD21) is time-consuming and expensive. The aim of this study was to design a novel single chimeric antigen (SCA) to obviate separate expression of proteins and reduce the cost of reagent preparation. Structural protein fragments, including immunodominant B cell linear epitopes, were selected and different SCAs were designed. Tertiary structure, epitope exposure, solubility and stability were calculated for each SCA and compared with each other. The synthetic DNA encoding the interested SCA was sub-cloned into pET32a expression vector, expressed as a soluble form in Escherichia coli BL21 (DE3) cells and purified under native condition using affinity chromatography. The SDS-PAGE results indicated that thioredoxin-fused SCA was successfully expressed as a soluble form in E. coli BL21 (DE3) cells. The results of ELISA confirmed that SCA reacted with anti-HTLV-I antibodies in a concentration-dependent manner. Our results indicated that the designed SCA may be a good candidate for the screening of HTLV-I carriers with antigen-antibody-based tests.
Genome engineering for improved recombinant protein expression in Escherichia coli.
Mahalik, Shubhashree; Sharma, Ashish K; Mukherjee, Krishna J
2014-12-19
A metabolic engineering perspective which views recombinant protein expression as a multistep pathway allows us to move beyond vector design and identify the downstream rate limiting steps in expression. In E.coli these are typically at the translational level and the supply of precursors in the form of energy, amino acids and nucleotides. Further recombinant protein production triggers a global cellular stress response which feedback inhibits both growth and product formation. Countering this requires a system level analysis followed by a rational host cell engineering to sustain expression for longer time periods. Another strategy to increase protein yields could be to divert the metabolic flux away from biomass formation and towards recombinant protein production. This would require a growth stoppage mechanism which does not affect the metabolic activity of the cell or the transcriptional or translational efficiencies. Finally cells have to be designed for efficient export to prevent buildup of proteins inside the cytoplasm and also simplify downstream processing. The rational and the high throughput strategies that can be used for the construction of such improved host cell platforms for recombinant protein expression is the focus of this review.
The level of HER2 expression is a predictor of antibody-HER2 trafficking behavior in cancer cells
Ram, Sripad; Kim, Dongyoung; Ober, Raimund J; Ward, E Sally
2014-01-01
The receptor tyrosine kinase HER2 is known to play a central role in mitogenic signaling, motivating the development of targeted, HER2-specific therapies. However, despite the longstanding use of antibodies to target HER2, controversies remain concerning antibody/HER2 trafficking behavior in cancer cells. Understanding this behavior has direct relevance to the mechanism of action and effective design of such antibodies. In the current study, we analyzed the intracellular dynamics of trastuzumab, a marketed HER2-targeting antibody, in a panel of breast and prostate cancer cell lines that have a wide range of HER2 expression levels. Our results reveal distinct post-endocytic trafficking behavior of antibody-HER2 complexes in cells with different HER2 expression levels. In particular, HER2-overexpressing cells exhibit efficient HER2 recycling and limited reductions in HER2 levels upon antibody treatment, and consequently display a high level of antibody persistence on their plasma membrane. By contrast, in cells with low HER2 expression, trastuzumab treatment results in rapid antibody clearance from the plasma membrane combined with substantial decreases in HER2 levels and undetectable levels of recycling. A cell line with intermediate levels of HER2 expression exhibits both antibody recycling and clearance from the cell surface. Significantly, these analyses demonstrate that HER2 expression levels, rather than cell origin (breast or prostate), is a determinant of subcellular trafficking properties. Such studies have relevance to optimizing the design of antibodies to target HER2. PMID:25517306
Hong, Y K; Kim, D H; Beletskii, A; Lee, C; Memili, E; Strauss, W M
2001-04-01
Most conditional expression vectors designed for mammalian cells have been valuable systems for studying genes of interest by regulating their expressions. The available vectors, however, are reliable for the short-length cDNA clones and not optimal for relatively long fragments of genomic DNA or long cDNAs. Here, we report the construction of two bacterial artificial chromosome (BAC) vectors, capable of harboring large inserts and shuttling among Escherichia coli, yeast, and mammalian cells. These two vectors, pEYMT and pEYMI, contain conditional expression systems which are designed to be regulated by tetracycline and mouse interferons, respectively. To test the properties of the vectors, we cloned in both vectors the green fluorescence protein (GFP) through an in vitro ligation reaction and the 17.8-kb-long X-inactive-specific transcript (Xist) cDNA through homologous recombination in yeast. Subsequently, we characterized their regulated expression properties using real-time quantitative RT-PCR (TaqMan) and RNA-fluorescent in situ hybridization (FISH). We demonstrate that these two BAC vectors are good systems for recombination-based cloning and regulated expression of large genes in mammalian cells. Copyright 2001 Academic Press.
Tagliavia, Marcello; Cuttitta, Angela
2016-01-01
High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.
Moore, Paul A; Shah, Kalpana; Yang, Yinhua; Alderson, Ralph; Roberts, Penny; Long, Vatana; Liu, Daorong; Li, Jonathan C; Burke, Steve; Ciccarone, Valentina; Li, Hua; Fieger, Claudia B; Hooley, Jeff; Easton, Ann; Licea, Monica; Gorlatov, Sergey; King, Kathleen L; Young, Peter; Adami, Arash; Loo, Deryk; Chichili, Gurunadh R; Liu, Liqin; Smith, Douglas H; Brown, Jennifer G; Chen, Francine Z; Koenig, Scott; Mather, Jennie; Bonvini, Ezio; Johnson, Syd
2018-06-04
We have developed MGD007 (anti-glycoprotein A33 x anti-CD3), a DART® protein designed to redirect T-cells to target gpA33 expressing colon cancer. The gpA33 target was selected based on an antibody-based screen to identify cancer antigens universally expressed in both primary and metastatic CRC specimens, including putative cancer stem cell populations. MGD007 displays the anticipated bispecific binding properties and mediates potent lysis of gpA33-positive cancer cell lines, including models of colorectal cancer stem cells, through recruitment of T-cells. Xenograft studies showed tumor growth inhibition at doses as low as 4 µg/kg. Both CD8 and CD4 T cells mediated lysis of gpA33-expressing tumor cells, with activity accompanied by increases in granzyme and perforin. Notably, suppressive T-cell populations could also be leveraged to mediate lysis of gpA33 expressing tumor cells. Concomitant with CTL activity, both T-cell activation and expansion are observed in a gpA33-dependent manner. No cytokine activation was observed with human PBMC alone, consistent with the absence of gpA33 expression on peripheral blood cell populations. Following prolonged exposure to MGD007 and gpA33 positive tumor cells, T cells express PD 1 and LAG-3 and acquire a memory phenotype but retain ability to support potent cell killing. In cynomolgus monkeys, 4 weekly doses of 100 µg/kg were well tolerated, with prolonged PK consistent with that of an Fc-containing molecule. Taken together MGD007 displays potent activity against colorectal cancer cells consistent with a mechanism of action endowed in its design and support further investigation of MGD007 as a potential novel therapeutic treatment for colorectal cancer. Copyright ©2018, American Association for Cancer Research.
Toward eliminating HLA class I expression to generate universal cells from allogeneic donors
Torikai, Hiroki; Reik, Andreas; Soldner, Frank; Warren, Edus H.; Yuen, Carrie; Zhou, Yuanyue; Crossland, Denise L.; Huls, Helen; Littman, Nicholas; Zhang, Ziying; Tykodi, Scott S.; Kebriaei, Partow; Lee, Dean A.; Miller, Jeffrey C.; Rebar, Edward J.; Holmes, Michael C.; Jaenisch, Rudolf; Champlin, Richard E.; Gregory, Philip D.
2013-01-01
Long-term engraftment of allogeneic cells necessitates eluding immune-mediated rejection, which is currently achieved by matching for human leukocyte antigen (HLA) expression, immunosuppression, and/or delivery of donor-derived cells to sanctuary sites. Genetic engineering provides an alternative approach to avoid clearance of cells that are recognized as “non-self” by the recipient. To this end, we developed designer zinc finger nucleases and employed a “hit-and-run” approach to genetic editing for selective elimination of HLA expression. Electro-transfer of mRNA species coding for these engineered nucleases completely disrupted expression of HLA-A on human T cells, including CD19-specific T cells. The HLA-Aneg T-cell pools can be enriched and evade lysis by HLA-restricted cytotoxic T-cell clones. Recognition by natural killer cells of cells that had lost HLA expression was circumvented by enforced expression of nonclassical HLA molecules. Furthermore, we demonstrate that zinc finger nucleases can eliminate HLA-A expression from embryonic stem cells, which broadens the applicability of this strategy beyond infusing HLA-disparate immune cells. These findings establish that clinically appealing cell types derived from donors with disparate HLA expression can be genetically edited to evade an immune response and provide a foundation whereby cells from a single donor can be administered to multiple recipients. PMID:23741009
AMTEC radioisotope power system design and analysis for Pluto Express Fly-By
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, T.J.; Huang, C.; Sievers, R.K.
1997-12-31
The Pluto Express Fly-By program requires a Radioisotope Power System (RPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, high-efficiency RPS to power the Pluto Express Fly-By spacecraft. An AMTEC-based RPS using the General Purpose Heat Source (GPHS) has been conceptually designed to satisfy the Pluto Express power requirements. Integrated AMTEC cell and system thermal/electrical design analyses, structural design analyses, and mass analyses were performed to define an optimum system design. Using fresh radioisotope fuel at beginning of mission, the RPS producesmore » 102 watts of power, has a mass of 8.35 kg (specific power density = 12.2 watts/kg), with a system conversion efficiency of 20.3%. Mass/power scale-up estimates have also been generated, indicating that a 150-watt version of this RPS would weigh approximately 11.3 kg. This paper presents and discusses the key features of this RPS design, the design and analysis methodology, and the numerous system and AMTEC cell tradeoff studies establishing the optimum AMTEC-based RPS.« less
Gene Architectures that Minimize Cost of Gene Expression.
Frumkin, Idan; Schirman, Dvir; Rotman, Aviv; Li, Fangfei; Zahavi, Liron; Mordret, Ernest; Asraf, Omer; Wu, Song; Levy, Sasha F; Pilpel, Yitzhak
2017-01-05
Gene expression burdens cells by consuming resources and energy. While numerous studies have investigated regulation of expression level, little is known about gene design elements that govern expression costs. Here, we ask how cells minimize production costs while maintaining a given protein expression level and whether there are gene architectures that optimize this process. We measured fitness of ∼14,000 E. coli strains, each expressing a reporter gene with a unique 5' architecture. By comparing cost-effective and ineffective architectures, we found that cost per protein molecule could be minimized by lowering transcription levels, regulating translation speeds, and utilizing amino acids that are cheap to synthesize and that are less hydrophobic. We then examined natural E. coli genes and found that highly expressed genes have evolved more forcefully to minimize costs associated with their expression. Our study thus elucidates gene design elements that improve the economy of protein expression in natural and heterologous systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Chaya, D; Fougère-Deschatrette, C; Weiss, M C
1997-01-01
Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver. PMID:9343392
Chaya, D; Fougère-Deschatrette, C; Weiss, M C
1997-11-01
Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver.
Yang, Chih-Chiu; Lu, Chung-Lun; Chen, Sherwin; Liao, Wen-Liang; Chen, Shiu-Nan
2015-05-01
In this study, diverse haemocytes from Pacific white shrimp Litopenaeus vannamei were spread by flow cytometer sorting system. Using the two commonly flow cytometric parameters FSC and SSC, the haemocytes could be divided into three populations. Microscopy observation of L. vannamei haemocytes in anticoagulant buffer revealed three morphologically distinct cell types designated as granular cell, hyaline cell and semigranular cell. Immune genes, which includes prophenoloxidase (proPO), lipopolysaccharide-β-glucan binding protein (LGBP), peroxinectin, crustin, lysozyme, penaeid-3a and transglutaminase (TGase), expressed from different haemocyte were analysed by quantitative real time PCR (qPCR). Results from the mRNA expression was estimated by relative level of each gene to β-actin gene. Finally, the seven genes could be grouped by their dominant expression sites. ProPO, LGBP and peroxinectin were highly expressed in granular cells, while LGBP, crustin, lysozyme and P-3a were highly expressed in semigranular cells and TGase was highly expressed in hyaline cells. In this study, L. vannamei haemocytes were firstly grouped into three different types and the immune related genes expression in grouped haemocytes were estimated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vector modifications to eliminate transposase expression following piggyBac-mediated transgenesis
Chakraborty, Syandan; Ji, HaYeun; Chen, Jack; Gersbach, Charles A.; Leong, Kam W.
2014-01-01
Transgene insertion plays an important role in gene therapy and in biological studies. Transposon-based systems that integrate transgenes by transposase-catalyzed “cut-and-paste” mechanism have emerged as an attractive system for transgenesis. Hyperactive piggyBac transposon is particularly promising due to its ability to integrate large transgenes with high efficiency. However, prolonged expression of transposase can become a potential source of genotoxic effects due to uncontrolled transposition of the integrated transgene from one chromosomal locus to another. In this study we propose a vector design to decrease post-transposition expression of transposase and to eliminate the cells that have residual transposase expression. We design a single plasmid construct that combines the transposase and the transpositioning transgene element to share a single polyA sequence for termination. Consequently, the separation of the transposase element from the polyA sequence after transposition leads to its deactivation. We also co-express Herpes Simplex Virus thymidine kinase (HSV-tk) with the transposase. Therefore, cells having residual transposase expression can be eliminated by the administration of ganciclovir. We demonstrate the utility of this combination transposon system by integrating and expressing a model therapeutic gene, human coagulation Factor IX, in HEK293T cells. PMID:25492703
Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A.D.; Bender, M.A.; Harris, E.A.S.
1988-11-01
Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitatesmore » an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.« less
TCL1 oncogene expression in AIDS-related lymphomas and lymphoid tissues
Teitell, Michael; Damore, Michael A.; Sulur, Girija G.; Turner, Devin E.; Stern, Marc-Henri; Said, Jonathan W.; Denny, Christopher T.; Wall, Randolph
1999-01-01
AIDS-related non-Hodgkin’s lymphoma (AIDS NHL) comprises a diverse and heterogeneous group of high-grade B cell tumors. Certain classes of AIDS NHL are associated with alterations in oncogenes or tumor-suppressor genes or infections by oncogenic herpesviruses. However, the clinically significant class of AIDS NHL designated immunoblastic lymphoma plasmacytoid (AIDS IBLP) lacks any consistent genetic alterations. We identified the TCL1 oncogene from a set of AIDS IBLP-associated cDNA fragments generated by subtractive hybridization with non-AIDS IBLP. Aberrant TCL1 expression has been implicated in T cell leukemia/lymphoma development, and its expression also has been seen in many established B cell tumor lines. However, TCL1 expression has not been reported in AIDS NHL. We find that TCL1 is expressed in the majority of AIDS IBLP tumors examined. TCL1 protein expression is restricted to tumor cells in AIDS IBLP tissue samples analyzed with immunohistochemical staining. Hyperplastic lymph node and tonsil also exhibit strong TCL1 protein expression in mantle zone B cells and in rare interfollicular zone cells, whereas follicle-center B cells (centroblasts and centrocytes) show weaker expression. These results establish TCL1 as the most prevalent of all of the surveyed oncogenes associated with AIDS IBLP. They also indicate that abundant TCL1 expression in quiescent mantle zone B cells is down-regulated in activated germinal center follicular B cells in parallel to the known expression pattern of BCL-2. High-level expression in nonproliferating B cells suggests that TCL1 may function in protecting naïve preactivated B cells from apoptosis. PMID:10449776
The Genomic and Transcriptomic Landscape of a HeLa Cell Line
Landry, Jonathan J. M.; Pyl, Paul Theodor; Rausch, Tobias; Zichner, Thomas; Tekkedil, Manu M.; Stütz, Adrian M.; Jauch, Anna; Aiyar, Raeka S.; Pau, Gregoire; Delhomme, Nicolas; Gagneur, Julien; Korbel, Jan O.; Huber, Wolfgang; Steinmetz, Lars M.
2013-01-01
HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology. PMID:23550136
Pybus, Leon P; Dean, Greg; West, Nathan R; Smith, Andrew; Daramola, Olalekan; Field, Ray; Wilkinson, Stephen J; James, David C
2014-02-01
Despite improvements in volumetric titer for monoclonal antibody (MAb) production processes using Chinese hamster ovary (CHO) cells, some "difficult-to-express" (DTE) MAbs inexplicably reach much lower process titers. These DTE MAbs require intensive cell line and process development activity, rendering them more costly or even unsuitable to manufacture. To rapidly and rationally identify an optimal strategy to improve production of DTE MAbs, we have developed an engineering design platform combining high-yielding transient production, empirical modeling of MAb synthesis incorporating an unfolded protein response (UPR) regulatory loop with directed expression and cell engineering approaches. Utilizing a panel of eight IgG1 λ MAbs varying >4-fold in volumetric titer, we showed that MAb-specific limitations on folding and assembly rate functioned to induce a proportionate UPR in host CHO cells with a corresponding reduction in cell growth rate. Derived from comparative empirical modeling of cellular constraints on the production of each MAb we employed two strategies to increase production of DTE MAbs designed to avoid UPR induction through an improvement in the rate/cellular capacity for MAb folding and assembly reactions. Firstly, we altered the transfected LC:HC gene ratio and secondly, we co-expressed a variety of molecular chaperones, foldases or UPR transactivators (BiP, CypB, PDI, and active forms of ATF6 and XBP1) with recombinant MAbs. DTE MAb production was significantly improved by both strategies, although the mode of action was dependent upon the approach employed. Increased LC:HC ratio or CypB co-expression improved cell growth with no effect on qP. In contrast, BiP, ATF6c and XBP1s co-expression increased qP and reduced cell growth. This study demonstrates that expression-engineering strategies to improve production of DTE proteins in mammalian cells should be product specific, and based on rapid predictive tools to assess the relative impact of different engineering interventions. © 2013 Wiley Periodicals, Inc.
Singh, Harjeet; Figliola, Matthew J.; Dawson, Margaret J.; Olivares, Simon; Zhang, Ling; Yang, Ge; Maiti, Sourindra; Manuri, Pallavi; Senyukov, Vladimir; Jena, Bipulendu; Kebriaei, Partow; Champlin, Richard E.; Huls, Helen; Cooper, Laurence J. N.
2013-01-01
Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28) that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB) transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC) in the presence of interleukin (IL)-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT). We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼1010 T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion. PMID:23741305
Rushworth, David; Jena, Bipulendu; Olivares, Simon; Maiti, Sourindra; Briggs, Neima; Somanchi, Srinivas; Dai, Jianliang; Lee, Dean; Cooper, Laurence J. N.
2014-01-01
T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to non-viral gene transfer in T cells uses ex vivo numeric expansion of CAR+ T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through co-culture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed one ligand that could activate CAR+ T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated CARL+ aAPC propagate CAR+ T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Employing CARL enables one aAPC to numerically expand all CAR+ T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR+ T cells of any specificity. PMID:24714354
Shao, Weijuan; Xiong, Xiaoquan; Ip, Wilfred; Xu, Fenghao; Song, Zhuolun; Zeng, Kejing; Hernandez, Marcela; Liang, Tao; Weng, Jianping; Gaisano, Herbert; Nostro, M Cristina; Jin, Tianru
2015-04-01
Disruption of TCF7L2 in mouse pancreatic β-cells has generated different outcomes in several investigations. Here we aim to clarify role of β-cell TCF7L2 and Wnt signaling using a functional-knockdown approach. Adenovirus-mediated dominant negative TCF7L2 (TCF7L2DN) expression was conducted in Ins-1 cells. The fusion gene in which TCF7L2DN expression is driven by P TRE3G was utilized to generate the transgenic mouse line TCF7L2DN Tet . The double transgenic line was created by mating TCF7L2DN Tet with Ins2-rtTA, designated as βTCFDN. β-cell specific TCF7L2DN expression was induced in βTCFDN by doxycycline feeding. TCF7L2DN expression in Ins-1 cells reduced GSIS, cell proliferation and expression of a battery of genes including incretin receptors and β-cell transcription factors. Inducing TCF7L2DN expression in βTCFDN during adulthood or immediately after weaning generated no or very modest metabolic defect, while its expression during embryonic development by doxycycline feeding in pregnant mothers resulted in significant glucose intolerance associated with altered β-cell gene expression and reduced β-cell mass. Our observations support a cell autonomous role for TCF7L2 in pancreatic β-cells suggested by most, though not all, investigations. βTCFDN is a novel model for further exploring the role of TCF7L2 in β-cell genesis and metabolic homeostasis.
Sabbatino, Francesco; Villani, Vincenzo; Yearley, Jennifer H.; Deshpande, Vikram; Cai, Lei; Konstantinidis, Ioannis T.; Moon, Christina; Nota, Sjoerd; Wang, Yangyang; Al-Sukaini, Ahmad; Zhu, Andrew X.; Goyal, Lipika; Ting, David T.; Bardeesy, Nabeel; Hong, Theodore S.; Castillo, Carlos Fernandez-del; Tanabe, Kenneth K.; Lillemoe, Keith D.; Ferrone, Soldano; Ferrone, Cristina R.
2017-01-01
Purpose More effective therapy is needed for intrahepatic cholangiocarcinoma (ICC). The encouraging clinical results obtained with checkpoint molecule-specific monoclonal antibodies (mAb) have prompted us to investigate whether this type of immunotherapy may be applicable to ICC. The aims of this study were to determine whether (i) patients mount a T-cell immune response to their ICC, (ii) checkpoint molecules are expressed on both T cells and tumor cells, and (iii) tumor cells are susceptible to recognition by cognate T cells. Experimental Design Twenty-seven ICC tumors were analyzed for (i) lymphocyte infiltrate, (ii) HLA class I and HLA class II expression, and (iii) PD-1 and PD-L1 expression by T cells and ICC cells, respectively. The results of this analysis were correlated with the clinicopathologic characteristics of the patients investigated. Results Lymphocyte infiltrates were identified in all tumors. PD-L1 expression and HLA class I antigen expression by ICC cells was observed in 8 and 11, respectively, of the 27 tumors analyzed. HLA class I antigen expression correlated with CD8+ T-cell infiltrate. Furthermore, positive HLA class I antigen expression in combination with negative/rare PD-L1 expression was associated with favorable clinical course of the disease. Conclusions ICC patients are likely to mount a T-cell immune response against their own tumors. Defects in HLA class I antigen expression in combination with PD-L1 expression by ICC cells provide them with an immune escape mechanism. This mechanism justifies the implementation of immunotherapy with checkpoint molecule-specific mAbs in patients bearing ICC tumors without defects in HLA class I antigen expression. PMID:26373575
Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.
Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F
2014-10-17
The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.
In-Vivo Real-Time Control of Protein Expression from Endogenous and Synthetic Gene Networks
Orabona, Emanuele; De Stefano, Luca; Ferry, Mike; Hasty, Jeff; di Bernardo, Mario; di Bernardo, Diego
2014-01-01
We describe an innovative experimental and computational approach to control the expression of a protein in a population of yeast cells. We designed a simple control algorithm to automatically regulate the administration of inducer molecules to the cells by comparing the actual protein expression level in the cell population with the desired expression level. We then built an automated platform based on a microfluidic device, a time-lapse microscopy apparatus, and a set of motorized syringes, all controlled by a computer. We tested the platform to force yeast cells to express a desired fixed, or time-varying, amount of a reporter protein over thousands of minutes. The computer automatically switched the type of sugar administered to the cells, its concentration and its duration, according to the control algorithm. Our approach can be used to control expression of any protein, fused to a fluorescent reporter, provided that an external molecule known to (indirectly) affect its promoter activity is available. PMID:24831205
GAPTrap: A Simple Expression System for Pluripotent Stem Cells and Their Derivatives.
Kao, Tim; Labonne, Tanya; Niclis, Jonathan C; Chaurasia, Ritu; Lokmic, Zerina; Qian, Elizabeth; Bruveris, Freya F; Howden, Sara E; Motazedian, Ali; Schiesser, Jacqueline V; Costa, Magdaline; Sourris, Koula; Ng, Elizabeth; Anderson, David; Giudice, Antonietta; Farlie, Peter; Cheung, Michael; Lamande, Shireen R; Penington, Anthony J; Parish, Clare L; Thomson, Lachlan H; Rafii, Arash; Elliott, David A; Elefanty, Andrew G; Stanley, Edouard G
2016-09-13
The ability to reliably express fluorescent reporters or other genes of interest is important for using human pluripotent stem cells (hPSCs) as a platform for investigating cell fates and gene function. We describe a simple expression system, designated GAPTrap (GT), in which reporter genes, including GFP, mCherry, mTagBFP2, luc2, Gluc, and lacZ are inserted into the GAPDH locus in hPSCs. Independent clones harboring variations of the GT vectors expressed remarkably consistent levels of the reporter gene. Differentiation experiments showed that reporter expression was reliably maintained in hematopoietic cells, cardiac mesoderm, definitive endoderm, and ventral midbrain dopaminergic neurons. Similarly, analysis of teratomas derived from GT-lacZ hPSCs showed that β-galactosidase expression was maintained in a spectrum of cell types representing derivatives of the three germ layers. Thus, the GAPTrap vectors represent a robust and straightforward tagging system that enables indelible labeling of PSCs and their differentiated derivatives. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Keogh, M C; Chen, D; Schmitt, J F; Dennehy, U; Kakkar, V V; Lemoine, N R
1999-04-01
The facility to direct tissue-specific expression of therapeutic gene constructs is desirable for many gene therapy applications. We describe the creation of a muscle-selective expression vector which supports transcription in vascular smooth muscle, cardiac muscle and skeletal muscle, while it is essentially silent in other cell types such as endothelial cells, hepatocytes and fibroblasts. Specific transcriptional regulatory elements have been identified in the human vascular smooth muscle cell (VSMC) alpha-actin gene, and used to create an expression vector which directs the expression of genes in cis to muscle cells. The vector contains an enhancer element we have identified in the 5' flanking region of the human VSMC alpha-actin gene involved in mediating VSMC expression. Heterologous pairing experiments have shown that the enhancer does not interact with the basal transcription complex recruited at the minimal SV40 early promoter. Such a vector has direct application in the modulation of VSMC proliferation associated with intimal hyperplasia/restenosis.
Cosmetics-triggered percutaneous remote control of transgene expression in mice.
Wang, Hui; Ye, Haifeng; Xie, Mingqi; Daoud El-Baba, Marie; Fussenegger, Martin
2015-08-18
Synthetic biology has significantly advanced the rational design of trigger-inducible gene switches that program cellular behavior in a reliable and predictable manner. Capitalizing on genetic componentry, including the repressor PmeR and its cognate operator OPmeR, that has evolved in Pseudomonas syringae pathovar tomato DC3000 to sense and resist plant-defence metabolites of the paraben class, we have designed a set of inducible and repressible mammalian transcription-control devices that could dose-dependently fine-tune transgene expression in mammalian cells and mice in response to paraben derivatives. With an over 60-years track record as licensed preservatives in the cosmetics industry, paraben derivatives have become a commonplace ingredient of most skin-care products including shower gels, cleansing toners and hand creams. As parabens can rapidly reach the bloodstream of mice following topical application, we used this feature to percutaneously program transgene expression of subcutaneous designer cell implants using off-the-shelf commercial paraben-containing skin-care cosmetics. The combination of non-invasive, transdermal and orthogonal trigger-inducible remote control of transgene expression may provide novel opportunities for dynamic interventions in future gene and cell-based therapies. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Cosmetics-triggered percutaneous remote control of transgene expression in mice
Wang, Hui; Ye, Haifeng; Xie, Mingqi; Daoud El-Baba, Marie; Fussenegger, Martin
2015-01-01
Synthetic biology has significantly advanced the rational design of trigger-inducible gene switches that program cellular behavior in a reliable and predictable manner. Capitalizing on genetic componentry, including the repressor PmeR and its cognate operator OPmeR, that has evolved in Pseudomonas syringae pathovar tomato DC3000 to sense and resist plant-defence metabolites of the paraben class, we have designed a set of inducible and repressible mammalian transcription-control devices that could dose-dependently fine-tune transgene expression in mammalian cells and mice in response to paraben derivatives. With an over 60-years track record as licensed preservatives in the cosmetics industry, paraben derivatives have become a commonplace ingredient of most skin-care products including shower gels, cleansing toners and hand creams. As parabens can rapidly reach the bloodstream of mice following topical application, we used this feature to percutaneously program transgene expression of subcutaneous designer cell implants using off-the-shelf commercial paraben-containing skin-care cosmetics. The combination of non-invasive, transdermal and orthogonal trigger-inducible remote control of transgene expression may provide novel opportunities for dynamic interventions in future gene and cell-based therapies. PMID:25943548
Espinoza, J. Luis; Takami, Akiyoshi; Yoshioka, Katsuji; Nakata, Katsuya; Sato, Tokiharu; Kasahara, Yoshihito; Nakao, Shinji
2012-01-01
Background NKG2D is an activating receptor expressed by natural killer and T cells, which have crucial functions in tumor and microbial immunosurveillance. Several cytokines have been identified as modulators of NKG2D receptor expression. However, little is known about NKG2D gene regulation. In this study, we found that microRNA 1245 attenuated the expression of NKG2D in natural killer cells. Design and Methods We investigated the potential interactions between the 3′-untranslated region of the NKG2D gene and microRNA as well as their functional roles in the regulation of NKG2D expression and cytotoxicity in natural killer cells. Results Transforming growth factor-β1, a major negative regulator of NKG2D expression, post-transcriptionally up-regulated mature microRNA-1245 expression, thus down-regulating NKG2D expression and impairing NKG2D-mediated immune responses in natural killer cells. Conversely, microRNA-1245 down-regulation significantly increased the expression of NKG2D expression in natural killer cells, resulting in more efficient NKG2D-mediated cytotoxicity. Conclusions These results reveal a novel NKG2D regulatory pathway mediated by microRNA-1245, which may represent one of the mechanisms used by transforming growth factor-β1 to attenuate NKG2D expression in natural killer cells. PMID:22491735
Kim, Taeuk; Folcher, Marc; Charpin-El Hamri, Ghislaine; Fussenegger, Martin
2015-05-01
Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC activity or inhibiting PDE activity have become the predominant treatment strategy for a wide range of medical conditions, including congestive heart failure, pulmonary hypertension, atherosclerosis-based claudication and erectile dysfunction. By fusing the cGMP receptor protein (CRP) of Rhodospirillum centenum to the Herpes simplex-derived transactivation domain VP16, we created a novel synthetic mammalian cGMP-sensing transcription factor (GTA) that activates synthetic promoters (PGTA) containing newly identified GTA-specific operator sites in a concentration-dependent manner. In cell lines expressing endogenous natriuretic peptide receptor A (NPR-A) (HeLa), GTA/PGTA-driven transgene expression was induced by B-type natriuretic peptide (BNP; Nesiritide(®)) in a concentration-dependent manner, which activated NPR-A׳s intracellular GC domain and triggered a corresponding cGMP surge. Ectopic expression of NPR-A in NPR-A-negative cell lines (HEK-293T) produced high cGMP levels and mediated maximum GTA/PGTA-driven transgene expression, which was suppressed by co-expression of PDEs (PDE-3A, PDE-5A and PDE-9A) and was re-triggered by the corresponding PDE inhibitor drugs (Pletal(®), Perfan(®), Primacor(®) (PDE-3A), Viagra(®), Levitra(®), Cialis(®) (PDE-5A) and BAY73-6691 (PDE-9A)). Mice implanted with microencapsulated designer cells co-expressing the GTA/PGTA device with NPR-A and PDE-5A showed control of blood SEAP levels through administration of sildenafil (Viagra(®)). Designer cells engineered for PDE inhibitor-modulated transgene expression may provide a cell-based PDE-targeting drug discovery platform and enable drug-adjusted gene- and cell-based therapies. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Liu, Zhenguo; Jiang, Yuehua; Hao, Hong; Gupta, Kalpna; Xu, Jian; Chu, Ling; McFalls, Edward; Zweier, Jay; Verfaillie, Catherine; Bache, Robert J
2007-09-01
This study was designed to investigate the developmental expression of endothelial nitric oxide synthase (eNOS) during stem cell differentiation into endothelial cells and to examine the functional status of the newly differentiated endothelial cells. Mouse adult multipotent progenitor cells (MAPCs) were used as the source of stem cells and were induced to differentiate into endothelial cells with vascular endothelial growth factor (VEGF) in serum-free medium. Expression of eNOS in the cells during differentiation was evaluated with real-time PCR, nitric oxide synthase (NOS) activity, and Western blot analysis. It was found that eNOS, but no other NOS, was present in undifferentiated MAPCs. eNOS expression disappeared in the cells immediately after induction of differentiation. However, eNOS expression reoccurred at day 7 during differentiation. Increasing eNOS mRNA, protein content, and activity were observed in the cells at days 14 and 21 during differentiation. The differentiated endothelial cells formed dense capillary networks on growth factor-reduced Matrigel. VEGF-stimulated phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2 occurred in these cells, which was inhibited by NOS inhibitor N(G)-nitro-L-arginine methyl ester. In conclusion, these data demonstrate that eNOS is present in MAPCs and is dynamically expressed during the differentiation of MAPCs into endothelial cells in vitro.
Larson, Jennifer; Yasmin, Tahmina; Sens, Donald A.; Zhou, Xu Dong; Sens, Mary Ann; Garrett, Scott H.; Dunlevy, Jane R.; Cao, Ling; Somji, Seema
2010-01-01
SPARC belongs to a class of extracellular matrix-associated proteins that have counteradhesive properties. The ability of SPARC to modulate cell-cell and cell-matrix interactions provides a strong rationale for studies designed to determine its expression in cancer. The objective of this study was to determine if SPARC expression was altered in cadmium (Cd+2) and arsenite (As+3) induced bladder cancer and if these alterations were present in archival specimens of human bladder cancer. The expression of SPARC was determined in human parental UROtsa cells, their Cd+2 and As+3 transformed counterparts and derived tumors, and in archival specimens of human bladder cancer using a combination of real time reverse transcriptase polymerase chain reaction, western blotting, immunofluoresence localization and immunohistochemical staining. It was demonstrated that SPARC expression was down-regulated in Cd+2 and As+3 transformed UROtsa cells. In addition, the malignant epithelial component of tumors derived from these cell lines were also down-regulated for SPARC expression, but the stromal cells recruited to these tumors was highly reactive for SPARC. This finding was shown to translate to specimens of human bladder cancer where tumor cells were SPARC negative, but stromal cells were positive. Acute exposure of UROtsa cells to both cadmium and arsenite reduced the expression of SPARC through a mechanism that did not involve changes in DNA methylation or histone acetylation. These studies suggest that environmental exposure to As+3 or Cd+2 can alter cell-cell and cell-matrix interactions in normal urothelial cells through a reduction in the expression of SPARC. The SPARC associated loss of cell-cell and cell-matrix contacts may participate in the multi-step process of bladder carcinogenesis. PMID:20837119
A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications
NASA Technical Reports Server (NTRS)
Platt, Donald W.; Hoover, Richard B.
2009-01-01
A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.
A regulatory toolbox of MiniPromoters to drive selective expression in the brain.
Portales-Casamar, Elodie; Swanson, Douglas J; Liu, Li; de Leeuw, Charles N; Banks, Kathleen G; Ho Sui, Shannan J; Fulton, Debra L; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J; Babyak, Nazar; Black, Sonia F; Bonaguro, Russell J; Brauer, Erich; Candido, Tara R; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C Y; Chopra, Vik; Docking, T Roderick; Dreolini, Lisa; D'Souza, Cletus A; Flynn, Erin K; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y; Lim, Jonathan S; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L; Schmouth, Jean-François; Swanson, Magdalena I; Tam, Bonny; Ticoll, Amy; Turner, Jenna L; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F; Wilson, Gary; Wong, Bibiana K Y; Wong, Siaw H; Wong, Tony Y T; Yang, George S; Ypsilanti, Athena R; Jones, Steven J M; Holt, Robert A; Goldowitz, Daniel; Wasserman, Wyeth W; Simpson, Elizabeth M
2010-09-21
The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination "knockins" in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5' of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type-specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies.
Rabieian, Reyhaneh; Moein, Shiva; Khanahmad, Hossein; Mortazavi, Mojgan; Gheisari, Yousof
2018-05-26
The transforming growth factor (TGF)-β signaling pathway plays a key role in various cellular processes. However, insufficient knowledge about the complex and sometimes paradoxical functions of this pathway hinders its therapeutic targeting. In this study, the transcriptional profile of seven mediators and downstream elements of the TGF-β pathway were assessed in TGF-β treated and untreated human kidney derived cells for 2 weeks in a time course manner. As expected the up-regulation of ACTA2 and COL1A2 was evident in the treated cells. However, we observed remarkable fluctuations in gene expression, even in the supposedly steady states. The magnitude of noise was diverse in the examined genes. Our findings underscore the significance of time-course designs for gene expression analyses and clearly show that misleading data can be obtained in single point measurements. Furthermore, we propose specific considerations in the interpretation of time-course data in the context of noisy gene expression. © 2018 International Federation for Cell Biology.
Signatures of tumour immunity distinguish Asian and non-Asian gastric adenocarcinomas
Lin, Suling J; Gagnon-Bartsch, Johann A; Tan, Iain Beehuat; Earle, Sophie; Ruff, Louise; Pettinger, Katherine; Ylstra, Bauke; van Grieken, Nicole; Rha, Sun Young; Chung, Hyun Cheol; Lee, Ju-Seog; Cheong, Jae Ho; Noh, Sung Hoon; Aoyama, Toru; Miyagi, Yohei; Tsuburaya, Akira; Yoshikawa, Takaki; Ajani, Jaffer A; Boussioutas, Alex; Yeoh, Khay Guan; Yong, Wei Peng; So, Jimmy; Lee, Jeeyun; Kang, Won Ki; Kim, Sung; Kameda, Yoichi; Arai, Tomio; zur Hausen, Axel; Speed, Terence P; Grabsch, Heike I; Tan, Patrick
2015-01-01
Objective Differences in gastric cancer (GC) clinical outcomes between patients in Asian and non-Asian countries has been historically attributed to variability in clinical management. However, recent international Phase III trials suggest that even with standardised treatments, GC outcomes differ by geography. Here, we investigated gene expression differences between Asian and non-Asian GCs, and if these molecular differences might influence clinical outcome. Design We compared gene expression profiles of 1016 GCs from six Asian and three non-Asian GC cohorts, using a two-stage meta-analysis design and a novel biostatistical method (RUV-4) to adjust for technical variation between cohorts. We further validated our findings by computerised immunohistochemical analysis on two independent tissue microarray (TMA) cohorts from Asian and non-Asian localities (n=665). Results Gene signatures differentially expressed between Asians and non-Asian GCs were related to immune function and inflammation. Non-Asian GCs were significantly enriched in signatures related to T-cell biology, including CTLA-4 signalling. Similarly, in the TMA cohorts, non-Asian GCs showed significantly higher expression of T-cell markers (CD3, CD45R0, CD8) and lower expression of the immunosuppressive T-regulatory cell marker FOXP3 compared to Asian GCs (p<0.05). Inflammatory cell markers CD66b and CD68 also exhibited significant cohort differences (p<0.05). Exploratory analyses revealed a significant relationship between tumour immunity factors, geographic locality-specific prognosis, and postchemotherapy outcomes. Conclusions Analyses of >1600 GCs suggest that Asian and non-Asian GCs exhibit distinct tumour immunity signatures related to T-cell function. These differences may influence geographical differences in clinical outcome, and the design of future trials particularly in immuno-oncology. PMID:25385008
NASA Astrophysics Data System (ADS)
Ulianova, Onega; Moiseeva, Yulia; Filonova, Nadezhda; Subbotina, Irina; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Ulyanov, Sergey; Larionova, Olga; Utz, Sergey; Feodorova, Valentina
2018-04-01
Principles of two-cascaded laser speckle-microscopy prospect for application to express diagnostics of chlamydial infection are developed. Prototype of two-cascaded speckle-microscope is designed and tested. Specific case of illumination of bacterial cells by dynamic speckles is considered. Express method of detection of epithelial cells, containing defects, which are caused by Chlamydia trachomatis bacteria, is suggested. Results of improved recognition of C. trachomatis bacteria are discussed.
McClean, S.; Hill, B. T.
1994-01-01
Exposure of Chinese hamster ovary (CHO) cells to fractionated X-irradiation [ten fractions of 9 Gray (Gy)] resulted in the expression of a multiple drug resistance phenotype which was distinct from that of drug-selected cells in two features: (i) resistance to vinca alkaloids and epipodophyllotoxins but sensitivity to anthracyclines was retained; (ii) overexpression of P-glycoprotein (Pgp) but regulated by post-translational stability rather than by any elevation in Pgp mRNA (Hill et al., 1990). It was also reported that when these cells (designated DXR-10) were subsequently exposed to another ten fractions of 9 Gy (20 x 9 Gy in total), no further increases in drug resistance or in the extent of Pgp expression were observed. To examine this apparent plateauing of the drug resistance phenotype following X-ray pretreatment, DXR-10 cells were instead treated with ten pulsed vincristine exposures. The resultant cell line, designated DXR-10/VCR-10, proved to be more resistant to vincristine, implying that the effect of further drug selection was additive to that of X-ray pretreatment. In addition, these cells showed resistance to doxorubicin and increased Pgp expression which was matched by a concomitant elevation in Pgp mRNA. These findings appear to confirm that Pgp expression is differentially regulated in tumour cells showing drug resistance after drug as opposed to X-ray selection. Images Figure 2 Figure 3 Figure 5 PMID:7908216
Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold naoparticles
Li, Xi; Zhou, Hongyu; Yang, Lei; Du, Guoqing; Pai-Panandiker, Atmaram; Huang, Xuefei; Yan, Bing
2011-01-01
A dual-ligand gold nanoparticle (DLGNP) was designed and synthesized to explore the therapeutic benefits of multivalent interactions between gold nanoparticles (GNPs) and cancer cells. DLGNP was tested on human epidermal cancer cells (KB), which had high expression of folate receptor. The cellular uptake of DLGNP was increased by 3.9 and 12.7 folds compared with GNP-folate or GNP-glucose. The enhanced cell recognition was due to multivalent interactions between both ligands on GNPs and cancer cells as shown by the ligand competition experiments. Furthermore, the multivalent interactions increased contrast between cells with high and low expression of folate receptors. The enhanced cell recognition enabled DLGNP to kill KB cells under X-ray irradiation at a dose that was safe to folate receptor low-expression (such as normal) cells. Thus DLGP has the potential to be a cancer-specific nano-theranostic agent. PMID:21232787
Bacterial cell-free expression technology to in vitro systems engineering and optimization.
Caschera, Filippo
2017-06-01
Cell-free expression system is a technology for the synthesis of proteins in vitro . The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.
Brito, Jose L.R.; Walker, Brian; Jenner, Matthew; Dickens, Nicholas J.; Brown, Nicola J.M.; Ross, Fiona M.; Avramidou, Athanasia; Irving, Julie A.E.; Gonzalez, David; Davies, Faith E.; Morgan, Gareth J.
2009-01-01
Background The recurrent immunoglobulin translocation, t(4;14)(p16;q32) occurs in 15% of multiple myeloma patients and is associated with poor prognosis, through an unknown mechanism. The t(4;14) up-regulates fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET) genes. The involvement of MMSET in the pathogenesis of t(4;14) multiple myeloma and the mechanism or genes deregulated by MMSET upregulation are still unclear. Design and Methods The expression of MMSET was analyzed using a novel antibody. The involvement of MMSET in t(4;14) myelomagenesis was assessed by small interfering RNA mediated knockdown combined with several biological assays. In addition, the differential gene expression of MMSET-induced knockdown was analyzed with expression microarrays. MMSET gene targets in primary patient material was analyzed by expression microarrays. Results We found that MMSET isoforms are expressed in multiple myeloma cell lines, being exclusively up-regulated in t(4;14)-positive cells. Suppression of MMSET expression affected cell proliferation by both decreasing cell viability and cell cycle progression of cells with the t(4;14) translocation. These findings were associated with reduced expression of genes involved in the regulation of cell cycle progression (e.g. CCND2, CCNG1, BRCA1, AURKA and CHEK1), apoptosis (CASP1, CASP4 and FOXO3A) and cell adhesion (ADAM9 and DSG2). Furthermore, we identified genes involved in the latter processes that were differentially expressed in t(4;14) multiple myeloma patient samples. Conclusions In conclusion, dysregulation of MMSET affects the expression of several genes involved in the regulation of cell cycle progression, cell adhesion and survival. PMID:19059936
Androgen deprivation and stem cell markers in prostate cancers
Tang, Yao; Hamburger, Anne W; Wang, Linbo; Khan, Mohammad Afnan; Hussain, Arif
2010-01-01
In our previous studies using human LNCaP xenografts and TRAMP (transgenic adenocarcinoma of mouse prostate) mice, androgen deprivation therapy (ADT) resulted in a temporary cessation of prostate cancer (PCa) growth, but then tumors grew faster with more malignant behaviour. To understand whether cancer stem cells might play a role in PCa progression in these animal models, we investigated the expressions of stem cell-related markers in tumors at different time points after ADT. In both animal models, enhanced expressions of stem cell markers were observed in tumors of castrated mice, as compared to non-castrated controls. This increased cell population that expressed stem cell markers is designated as stem-like cells (SLC) in this article. We also observed that the SLC peaked at relatively early time points after ADT, before tumors resumed their growth. These results suggest that the SLC population may play a role in tumor re-growth and disease progression, and that targeting the SLC at their peak-expression time point may prevent tumor recurrence following ADT. PMID:20126580
Chang, Hsin-Ning; Pang, Jong-Hwei Su; Yang, Sien-Hung; Hung, Chi-Feng; Chiang, Chi-Hsin; Lin, Tung-Yi; Lin, Yin-Ku
2010-09-14
The use of indigo naturalis to treat psoriasis has proved effective in our previous clinical studies. The present study was designed to examine the anti-inflammatory effect of indigo naturalis in primary cultured human umbilical vein endothelial cells (HUVECs). Pretreatment of cells with indigo naturalis extract attenuated TNF-α-induced increase in Jurkat T cell adhesion to HUVECs as well as decreased the protein and messenger (m)RNA expression levels of vascular cell adhesion molecule-1 (VCAM-1) on HUVECs. Indigo naturalis extract also inhibited the protein expression of activator protein-1 (AP-1)/c-Jun, a critical transcription factor for the activation of VCAM-1 gene expression. Since the reduction of lymphocyte adhesion to vascular cells by indigo naturalis extract could subsequently reduce the inflammatory reactions caused by lymphocyte infiltration in the epidermal layer and help to improve psoriasis, this study provides a potential mechanism for the anti-inflammatory therapeutic effect of indigo naturalis extract in psoriasis.
[Effect of EMP-1 gene on human esophageal cancer cell line].
Wang, Hai-tao; Liu, Zhi-hua; Wang, Xiu-qin; Wu, Min
2002-03-01
EMP-1 was selected from a series of differential expressed genes obtained from cDNA microarray in the authors' lab. Epithelial membrane pnteiu-1 gene (EMP-1) was expressed 6 fold lower in esophageal cancer than in normal tissue. The authors further designed the experiment to study the effect of human EMP-1 gene on human esophageal cancer cell line in order to explain the function of this gene on the carcinogensis and progression esophageal cancer. EMP-1 gene was cloned into eukaryotic vector and transfected into the human esophageal cancer cell line. The transfection effect was qualified by Western blot and RT-PCR method. The cell growth curve was observed and the cell cycle was checked by FACS method. EMP-1 was transfected into EC9706 cell line and its expression was up-regulated. The cell growth is accelerated and expression of EMP-1 is linked to induction of S phase arrest. EMP-1 gene has some relationship with carcinogenesis of esophagus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krieg, A.M.; Gourley, M.F.; Steinberg, A.D.
1991-05-01
Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymicmore » epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.« less
Du, Jian; Che, Pao-Lin; Wang, Zhi-Yun; Aich, Udayanath; Yarema, Kevin J.
2011-01-01
This study combines metabolic oligosaccharide engineering (MOE), a technology where the glycocalyx of living cells is endowed with chemical features not normally found in sugars, with custom-designed three dimensional biomaterial substrates to enhance the adhesion of cancer cells and control their morphology and gene expression. Specifically, Ac5ManNTGc, a thiol-bearing analogue of N-acetyl-d-mannosamine (ManNAc) was used to introduce thiolated sialic acids into the glycocalyx of human Jurkat T-lymphoma derived cells. In parallel 2D films and 3D electrospun nanofibrous scaffolds were prepared from polyethersulfone (PES) and (as controls) left unmodified or aminated. Alternately, the materials were malemided or gold-coated to provide bioorthogonal binding partners for the thiol groups newly expressed on the cell surface. Cell attachment was modulated by both the topography of the substrate surface and by the chemical compatibility of the binding interface between the cell and the substrate; a substantial increase in binding for normally non-adhesive Jurkat line for 3D scaffold compared to 2D surfaces with an added degree of adhesion resulting from chemoselective binding to malemidede-derivatived or gold-coated surfaces. In addition, the morphology of the cells attached to the 3D scaffolds via MOE-mediated adhesion was dramatically altered and the expression of genes involved in cell adhesion changed in a time-dependent manner. This study showed that cell adhesion could be enhanced, gene expression modulated, and cell fate controlled by introducing the 3D topograhical cues into the growth substrate and by creating a glycoengineered binding interface where the chemistry of both the cell surface and biomaterials scaffold was controlled to facilitate a new mode of carbohydrate-mediated adhesion. PMID:21549424
Zhang, Ningning; Dolan, Maureen; Wu, Di; Phillips, Gregory C; Xu, Jianfeng
2016-12-01
Cell growth medium composition has profound impacts on the O -glycosylation of a "designer" arabinogalactan protein-based module; full glycosylation is essential in directing efficient extracellular secretion of the tagged recombinant protein. Expression of recombinant proteins in plant cells as fusion with a de novo designed hydroxyproline (Hyp)-O-glycosylated peptide (HypGP) tag, termed HypGP engineering technology, resulted in dramatically increased secreted protein yields. This is due to the function of the HypGP tag as a molecular carrier in promoting efficient transport of conjoined proteins into culture media. To optimize the cell culture to achieve the best secreted protein yields, the medium effects on the cell growth and protein secretion were investigated using as a model system the tobacco BY-2 cell expressing enhanced green fluorescence protein (EGFP) fused with a (SP) 32 tag (32 tandem repeats of "Ser-Pro" motif). The (SP) 32 tag was found to undergo two-stage Hyp-O-glycosylation in plant cells with the dramatic secretion of the conjoined EGFP correlating with the triggering of the second-stage glycosylation. The BY-2 cell culture in SH medium generated a high secreted protein yield (125 mg/L) with a low cell biomass accumulation (~7.5 gDW/L). In contrast, very low secreted protein yields (~1.5 mg/L) with a high cell biomass accumulation (13.5 gDW/L) were obtained in MS medium. The macronutrients, specifically, the nitrogen supply greatly impacted the glycosylation of the (SP) 32 tag and subsequent protein secretion. Modified MS medium with reduced nitrogen levels boosted the secreted EGFP yields to 168 mg/L. This study demonstrates the profound impacts of medium composition on the secreted yields of a HypGP-tagged protein, and provides a basis for medium design to achieve the highest productivity of the HypGP engineering technology.
Smith, Justine R; Choi, Dongseok; Chipps, Timothy J; Pan, Yuzhen; Zamora, David O; Davies, Michael H; Babra, Bobby; Powers, Michael R; Planck, Stephen R; Rosenbaum, James T
2007-06-01
Consistent with clinical observations that posterior uveitis frequently involves the retinal vasculature and recent recognition of vascular heterogeneity, the hypothesis for this study was that retinal vascular endothelium was a cell population of unique molecular phenotype. Donor-matched cultures of primary retinal and choroidal endothelial cells from six human cadavers were incubated with either Toxoplasma gondii tachyzoites (10:1, parasites per cell) or Escherichia coli lipopolysaccharide (100 ng/mL); control cultures were simultaneously incubated with medium. Gene expression profiling of endothelial cells was performed using oligonucleotide arrays containing probes designed to detect 8746 human transcripts. After normalization, differential gene expression was assessed by the significance analysis of microarrays, with the false-discovery rate set at 5%. For selected genes, differences in the level of expression between retinal and choroidal cells were evaluated by real-time RT-PCR. Graphic descriptive analysis demonstrated a strong correlation between gene expression of unstimulated retinal and choroidal endothelial cells, but also highlighted distinctly different patterns of expression that were greater than differences noted between donors or between unstimulated and stimulated cells. Overall, 779 (8.9%) of 8746 transcripts were differentially represented. Of note, the 330 transcripts that were present at higher levels in retinal cells included a larger percentage of transcripts encoding molecules involved in the immune response. Differential gene expression was confirmed for 12 transcripts by RT-PCR. Retinal and choroidal vascular endothelial cells display distinctive gene expression profiles. The findings suggest the possibility of treating posterior uveitis by targeting specific interactions between the retinal endothelial cell and an infiltrating leukocyte.
From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.
Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J
2014-03-01
Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.
Rottiers, P; Verfaillie, T; Contreras, R; Revets, H; Desmedt, M; Dooms, H; Fiers, W; Grooten, J
1998-11-09
Progression to malignancy of transformed cells involves complex genetic alterations and aberrant gene expression patterns. While aberrant gene expression is often caused by alterations in individual genes, the contribution of the tumoral environment to the triggering of this gene expression is less well established. The stable but heterogeneous expression in cultured EL4/13 cells of a novel tumor-associated antigen, designated as HTgp-175, was chosen for the investigation of gene expression during tumor formation. Homogeneously HTgp-175-negative EL4/13 cells, isolated by cell sorting or obtained by subcloning, acquired HTgp-175 expression as a result of tumor formation. The tumorigenicity of HTgp-175-negative vs. HTgp-175-positive EL4 variants was identical, indicating that induction but not selection accounted for the phenotypic switch from HTgp-175-negative to HTgp-175-positive. Although mutagenesis experiments showed that the protein was not essential for tumor establishment, tumor-derived cells showed increased malignancy, linking HTgp-175 expression with genetic changes accompanying tumor progression. This novel gene expression was not an isolated event, since it was accompanied by ectopic expression of the large chondroitin sulfate proteoglycan PG-M and of normal differentiation antigens. We conclude that signals derived from the tumoral microenvironment contribute significantly to the aberrant gene expression pattern of malignant cells, apparently by fortuitous activation of differentiation processes and cause expression of novel differentiation antigens as well as of inappropriate tumor-associated and ectopic antigens.
Nielsen, Alec A K; Segall-Shapiro, Thomas H; Voigt, Christopher A
2013-12-01
Cells use regulatory networks to perform computational operations to respond to their environment. Reliably manipulating such networks would be valuable for many applications in biotechnology; for example, in having genes turn on only under a defined set of conditions or implementing dynamic or temporal control of expression. Still, building such synthetic regulatory circuits remains one of the most difficult challenges in genetic engineering and as a result they have not found widespread application. Here, we review recent advances that address the key challenges in the forward design of genetic circuits. First, we look at new design concepts, including the construction of layered digital and analog circuits, and new approaches to control circuit response functions. Second, we review recent work to apply part mining and computational design to expand the number of regulators that can be used together within one cell. Finally, we describe new approaches to obtain precise gene expression and to reduce context dependence that will accelerate circuit design by more reliably balancing regulators while reducing toxicity. Copyright © 2013. Published by Elsevier Ltd.
Expression and Functional Significance of HtrA1 Loss in Endometrial Cancer
Mullany, Sally A.; Moslemi-Kebria, Mehdi; Rattan, Ramandeep; Khurana, Ashwani; Clayton, Amy; Ota, Takayo; Mariani, Andrea; Podratz, Karl C.; Chien, Jeremy; Shridhar, Viji
2010-01-01
Purpose The purpose of this study was to determine if loss of serine protease HtrA1 in endometrial cancer will promote the invasive potential of EC cell lines. Experimental design Western blot analysis and immunohistochemistry methods were used to determine HtrA1 expression in EC cell lines and primary tumors, respectively. Migration, invasion assays and in vivo xenograft experiment were performed to compare the extent of metastasis between HtrA1 expressing and HtrA-1 knocked down clones. Results Western blot analysis of HtrA1 in 13 EC cell lines revealed complete loss of HtrA1 expression in all 7 papillary serous EC cell lines. Downregulation of HtrA1 in Hec1A and Hec1B cell lines resulted in a 3-4 fold increase in the invasive potential. Exogenous expression of HtrA1 in Ark 1 and Ark 2 cells resulted in 3-4 fold decrease in both invasive and migration potential of these cells. There was an increased rate of metastasis to the lungs associated with HtrA1 downregulation in Hec1B cells compared to control cells with endogenous HtrA1 expression. Enhanced expression of HtrA1 in Ark 2 cells resulted in significantly less tumor nodules metastasizing to the lungs compared to parental or protease deficient (SA mutant) Ark 2 cells. Immunohistochemical (IHC) analysis showed 57% (105/184) of primary EC tumors had low HtrA1 expression. The association of low HtrA1 expression with high-grade endometrioid tumors was statistically significant (p=0.016). Conclusions Collectively, these data indicate loss of HtrA1 may contribute to the aggressiveness and metastatic ability of endometrial tumors. PMID:21098697
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Yong; Wang Honglan; Mazzone, Theodore
2006-08-01
We identified stem cells from the umbilical cord blood, designated cord blood-stem cells (CB-SC). CB-SC displayed important embryonic stem (ES) cell characteristics including expression of ES-cell-specific molecular markers including transcription factors OCT-4 and Nanog, along with stage-specific embryonic antigen (SSEA)-3 and SSEA-4. CB-SC also expressed hematopoietic cell antigens including CD9, CD45 and CD117, but were negative for CD34. CB-SC displayed very low immunogenicity as indicated by expression of a very low level of major histocompatibility complex (MHC) antigens and failure to stimulate the proliferation of allogeneic lymphocytes. CB-SC could give rise to cells with endothelial-like and neuronal-like characteristics in vitro,more » as demonstrated by expression of lineage-associated markers. Notably, CB-SC could be stimulated to differentiate into functional insulin-producing cells in vivo and eliminated hyperglycemia after transplantation into a streptozotocin-induced diabetic mouse model. These findings may have significant potential to advance stem-cell-based therapeutics.« less
Designed cell consortia as fragrance-programmable analog-to-digital converters.
Müller, Marius; Ausländer, Simon; Spinnler, Andrea; Ausländer, David; Sikorski, Julian; Folcher, Marc; Fussenegger, Martin
2017-03-01
Synthetic biology advances the rational engineering of mammalian cells to achieve cell-based therapy goals. Synthetic gene networks have nearly reached the complexity of digital electronic circuits and enable single cells to perform programmable arithmetic calculations or to provide dynamic remote control of transgenes through electromagnetic waves. We designed a synthetic multilayered gaseous-fragrance-programmable analog-to-digital converter (ADC) allowing for remote control of digital gene expression with 2-bit AND-, OR- and NOR-gate logic in synchronized cell consortia. The ADC consists of multiple sampling-and-quantization modules sensing analog gaseous fragrance inputs; a gas-to-liquid transducer converting fragrance intensity into diffusible cell-to-cell signaling compounds; a digitization unit with a genetic amplifier circuit to improve the signal-to-noise ratio; and recombinase-based digital expression switches enabling 2-bit processing of logic gates. Synthetic ADCs that can remotely control cellular activities with digital precision may enable the development of novel biosensors and may provide bioelectronic interfaces synchronizing analog metabolic pathways with digital electronics.
Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection
Ferrari, Guido; Haynes, Barton F.; Koenig, Scott; Nordstrom, Jeffrey L.; Margolis, David M.; Tomaras, Georgia D.
2017-01-01
HIV-1 is a retrovirus that integrates into host chromatin and can remain transcriptionally quiescent in a pool of immune cells. This characteristic enables HIV-1 to evade both host immune responses and antiretroviral drugs, leading to persistent infection. Upon reactivation of proviral gene expression, HIV-1 envelope (HIV-1 Env) glycoproteins are expressed on the cell surface, transforming latently infected cells into targets for HIV-1 Env-specific monoclonal antibodies (mAbs), which can engage immune effector cells to kill productively infected CD4+ T cells and thus limit the spread of progeny virus. Recent innovations in antibody engineering have resulted in novel immunotherapeutics such as bispecific dual-affinity re-targeting (DART) molecules and other bi- and trispecific antibody designs that can recognize HIV-1 Env and recruit cytotoxic effector cells to kill CD4+ T cells latently infected with HIV‑1. Here, we review these immunotherapies, which are designed with the goal of curing HIV-1 infection. PMID:27725635
Bagdonaite, Ieva; Wandall, Hans H.; Litvinov, Ivan V.; Nastasi, Claudia; Becker, Jürgen C.; Dabelsteen, Sally; Geisler, Carsten; Bonefeld, Charlotte M.; Zhang, Qian; Wasik, Mariusz A.; Zhou, Youwen; Sasseville, Denis; Ødum, Niels; Woetmann, Anders
2015-01-01
CD22 is a member of the Sialic acid-binding Ig-like lectin (Siglec) family of lectins described to be exclusively present in B lymphocytes and B cell-derived neoplasms. Here, we describe a novel splice form of CD22 (designated CD22ΔN), which lacks the N-terminal domain as demonstrated by exon-specific RT-PCR and differential recognition by anti-CD22 antibodies. Importantly, CD22ΔN mRNA is expressed in skin lesions from 39 out of 60 patients with cutaneous T cell lymphoma (CTCL), whereas few patients (6 out of 60) expresses full-length, wild type CD22 (CD22wt). In addition, IHC staining of tumor biopsies confirmed the expression of CD22 in CD4+ T cells. Moreover, four out of four malignant T cell lines express CD22: Two cell lines express CD22ΔN (MyLa2059 and PB2B) and two express CD22wt (MAC-1 and MAC-2A). siRNA-mediated silencing of CD22 impairs proliferation and survival of malignant T cells, demonstrating a functional role for both CD22ΔN and CD22wt in these cells. In conclusion, we provide the first evidence for an ectopic expression of CD22 and a novel splice variant regulating malignant proliferation and survival in CTCL. Analysis of expression and function of CD22 in cutaneous lymphomas may form the basis for development of novel targeted therapies for our patients. PMID:25957418
Bagdonaite, Ieva; Wandall, Hans H; Litvinov, Ivan V; Nastasi, Claudia; Becker, Jürgen C; Dabelsteen, Sally; Geisler, Carsten; Bonefeld, Charlotte M; Zhang, Qian; Wasik, Mariusz A; Zhou, Youwen; Sasseville, Denis; Ødum, Niels; Woetmann, Anders
2015-06-10
CD22 is a member of the Sialic acid-binding Ig-like lectin (Siglec) family of lectins described to be exclusively present in B lymphocytes and B cell-derived neoplasms. Here, we describe a novel splice form of CD22 (designated CD22âN), which lacks the N-terminal domain as demonstrated by exon-specific RT-PCR and differential recognition by anti-CD22 antibodies. Importantly, CD22âN mRNA is expressed in skin lesions from 39 out of 60 patients with cutaneous T cell lymphoma (CTCL), whereas few patients (6 out of 60) expresses full-length, wild type CD22 (CD22wt). In addition, IHC staining of tumor biopsies confirmed the expression of CD22 in CD4+ T cells. Moreover, four out of four malignant T cell lines express CD22: Two cell lines express CD22âN (MyLa2059 and PB2B) and two express CD22wt (MAC-1 and MAC-2A). siRNA-mediated silencing of CD22 impairs proliferation and survival of malignant T cells, demonstrating a functional role for both CD22âN and CD22wt in these cells.In conclusion, we provide the first evidence for an ectopic expression of CD22 and a novel splice variant regulating malignant proliferation and survival in CTCL. Analysis of expression and function of CD22 in cutaneous lymphomas may form the basis for development of novel targeted therapies for our patients.
Quan, Yong; Jin, Yisheng; Faria, Teresa N; Tilford, Charles A; He, Aiqing; Wall, Doris A; Smith, Ronald L; Vig, Balvinder S
2012-06-18
The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5-7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells.
Quan, Yong; Jin, Yisheng; Faria, Teresa N.; Tilford, Charles A.; He, Aiqing; Wall, Doris A.; Smith, Ronald L.; Vig, Balvinder S.
2012-01-01
The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5–7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells. PMID:24300234
Wormley, Floyd L.; Chaiban, Joseph; Fidel, Paul L.
2001-01-01
Cell-mediated immunity by Th1-type CD4+ T cells is the predominant host defense mechanism against mucosal candidiasis. However, studies using an estrogen-dependent murine model of vaginal candidiasis have demonstrated little to no change in resident vaginal T cells during infection and no systemic T-cell infiltration despite the presence of Candida-specific systemic Th1-type responses in infected mice. The present study was designed to further investigate these observations by characterizing T-cell activation and cell adhesion molecule expression during primary and secondary C. albicans vaginal infections. While flow cytometry analysis of activation markers showed some evidence for activation of CD3+ draining lymph node and/or vaginal lymphocytes during both primary and secondary vaginal Candida infection, CD3+ cells expressing the homing receptors and integrins α4β7, αM290β7, and α4β1 in draining lymph nodes of mice with primary and secondary infections were reduced compared to results for uninfected mice. At the local level, few vaginal lymphocytes expressed integrins, with only minor changes observed during both primary and secondary infections. On the other hand, immunohistochemical analysis of vaginal cell adhesion molecule expression showed increases in mucosal addressin cell adhesion molecule 1 and vascular cell adhesion molecule 1 expression during both primary and secondary infections. Altogether, these data suggest that although the vaginal tissue is permissive to cellular infiltration during a vaginal Candida infection, the reduced numbers of systemic cells expressing the reciprocal cellular adhesion molecules may preempt cellular infiltration, thereby limiting Candida-specific T-cell responses against infection. PMID:11447188
Zhou, Wenli; Sadeghieh, Sanaz; Abruzzese, Ronald; Uppada, Subhadra; Meredith, Justin; Ohlrichs, Charletta; Broek, Diane; Polejaeva, Irina
2009-09-01
Among many factors that potentially affect somatic cell nuclear transfer (SCNT) embryo development is the donor cell itself. Cloning potentials of somatic donor cells vary greatly, possibly because the cells have different capacities to be reprogrammed by ooplasma. It is therefore intriguing to identify factors that regulate the reprogrammability of somatic donor cells. Gene expression analysis is a widely used tool to investigate underlying mechanisms of various phenotypes. In this study, we conducted a retrospective analysis investigating whether donor cell lines with distinct cloning efficiencies express different levels of genes involved in epigenetic reprogramming including histone deacetylase-1 (HDAC1), -2 (HDAC2); DNA methyltransferase-1 (DNMT1), -3a (DNMT3a),-3b (DNMT3b), and the bovine homolog of yeast sucrose nonfermenting-2 (SNF2L), a SWI/SNF family of ATPases. Cell samples from 12 bovine donor cell lines were collected at the time of nuclear transfer experiments and expression levels of the genes were measured using quantitative polymerase chain reaction (PCR). Our results show that there are no significant differences in expression levels of these genes between donor cell lines of high and low cloning efficiency defined as live calving rates, although inverse correlations are observed between in vitro embryo developmental rates and expression levels of HDAC2 and SNF2L. We also show that selection of stable reference genes is important for relative quantification, and different batches of cells can have different gene expression patterns. In summary, we demonstrate that expression levels of these epigenome regulatory genes in bovine donor cells are not correlated with cloning potential. The experimental design and data analysis method reported here can be applied to study any genes expressed in donor cells.
Mitsui, Yozo; Hirata, Hiroshi; Arichi, Naoko; Hiraki, Miho; Yasumoto, Hiroaki; Chang, Inik; Fukuhara, Shinichiro; Yamamura, Soichiro; Shahryari, Varahram; Deng, Guoren; Saini, Sharanjot; Majid, Shahana; Dahiya, Rajvir; Tanaka, Yuichiro; Shiina, Hiroaki
2015-01-01
We investigated whether impaired regulation of bone morphogenetic protein-2 (BMP-2) via epigenetic pathways is associated with renal cell carcinoma (RCC) pathogenesis. Expression and CpG methylation of the BMP-2 gene were analyzed using RCC cell lines, and 96 matched RCC and normal renal tissues. We also performed functional analysis using BMP-2 restored RCC cells. A significant association of BMP-2 mRNA expression was also found with advanced tumor stage and lymph node involvement, while lower BMP-2 mRNA expression was significantly associated with poor overall survival after radical nephrectomy. In RCC cells, BMP-2 restoration significantly inhibited cell proliferation, migration, invasion, and colony formation. In addition, BMP-2 overexpression induced p21WAF1/CIP1 and p27KIP1 expression, and cellular apoptosis in RCC cells. BMP-2 mRNA expression was significantly enhanced in RCC cells by 5-aza-2′-deoxycitidine treatment. The prevalence of BMP-2 promoter methylation was significantly greater and BMP-2 mRNA expression was significantly lower in RCC samples as compared to normal kidney samples. Furthermore, a significant correlation was found between BMP-2 promoter methylation and mRNA transcription in tumors. Aberrant BMP-2 methylation and the resultant loss of BMP-2 expression may be a useful molecular marker for designing improved diagnostic and therapeutic strategies for RCC. PMID:25797254
Zhang, Y; Ohyashiki, J H; Takaku, T; Shimizu, N; Ohyashiki, K
2006-01-01
Nasal NK/T-cell lymphoma is an aggressive subtype of non-Hodgkin lymphoma (NHL) that is closely associated with Epstein–Barr virus (EBV). The clonal expansion of EBV-infected NK or T cells is also seen in patients with chronic active EBV (CAEBV) infection, suggesting that two diseases might share a partially similar mechanism by which EBV affects host cellular gene expression. To understand the pathogenesis of EBV-associated NK/T-cell lymphoproliferative disorders (LPD) and design new therapies, we employed a novel EBV DNA microarray to compare patterns of EBV expression in six cell lines established from EBV-associated NK/T-cell LPD. We found that expression of BZLF1, which encodes the immediate-early gene product Zta, was expressed in SNK/T cells and the expression levels were preferentially high in cell lines from CAEBV infection. We also analyzsd the gene expression patterns of host cellular genes using a human oligonucleotide DNA microarray. We identified a subset of pathogenically and clinically relevant host cellular genes, including TNFRSF10D, CDK2, HSPCA, IL12A as a common molecular biological properties of EBV-associated NK/T-cell LPD and a subset of genes, such as PDCD4 as a putative contributor for disease progression. This study describes a novel approach from the aspects of viral and host gene expression, which could identify novel therapeutic targets in EBV-associated NK/T-cell LPD. PMID:16449999
Johari, Yusuf B; Estes, Scott D; Alves, Christina S; Sinacore, Marty S; James, David C
2015-12-01
Based on an optimized electroporation protocol, we designed a rapid, milliliter-scale diagnostic transient production assay to identify limitations in the ability of Chinese hamster ovary (CHO) cells to produce a model "difficult-to-express" homodimeric Fc-fusion protein, Sp35Fc, that exhibited very low volumetric titer and intracellular formation of disulfide-bonded oligomeric aggregates post-transfection. As expression of Sp35Fc induced an unfolded protein response in transfected host cells, we utilized the transient assay to compare, in parallel, multiple functionally diverse strategies to engineer intracellular processing of Sp35Fc in order to increase production and reduce aggregation as two discrete design objectives. Specifically, we compared the effect of (i) co-expression of ER-resident molecular chaperones (BiP, PDI, CypB) or active forms of UPR transactivators (ATF6c, XBP1s) at varying recombinant gene load, (ii) addition of small molecules known to act as chemical chaperones (PBA, DMSO, glycerol, betaine, TMAO) or modulate UPR signaling (PERK inhibitor GSK2606414) at varying concentration, (iii) a reduction in culture temperature to 32°C. Using this information, we designed a biphasic, Sp35Fc-specific transient manufacturing process mediated by lipofection that utilized CypB co-expression at an optimal Sp35Fc:CypB gene ratio of 5:1 to initially maximize transfected cell proliferation, followed by addition of a combination of PBA (0.5 mM) and glycerol (1% v/v) at the onset of stationary phase to maximize cell specific production and eliminate Sp35Fc aggregation. Using this optimal, engineered process transient Sp35Fc production was significantly increased sixfold over a 12 day production process with no evidence of disulfide-bonded aggregates. Finally, transient production in clonally derived sub-populations (derived from parental CHO host) screened for a heritably improved capability to produce Sp35Fc was also significantly improved by the optimized process, showing that protein-specific cell/process engineering can provide a solution that exceeds the limits of genetic/functional diversity within heterogeneous host cell populations. . © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
D'Alonzo, Richard C.; Kowalski, Aaron J.; Denhardt, David T.; Nickols, G. Allen; Partridge, Nicola C.
2002-01-01
Both collagenase-3 and osteocalcin mRNAs are expressed maximally during the later stages of osteoblast differentiation. Here, we demonstrate that collagenase-3 mRNA expression in differentiating MC3T3-E1 cells is dependent upon the presence of ascorbic acid, is inhibited in the presence of the collagen synthesis inhibitor, 3,4-dehydroproline, and is stimulated by growth on collagen in the absence of ascorbic acid. Transient transfection studies show that collagenase-3 promoter activity increases during cell differentiation and requires the presence of ascorbic acid. Additionally, we show that, in differentiating MC3T3-E1 cells, collagenase-3 gene expression increases in the presence of an anti-osteopontin monoclonal antibody that binds near the RGD motif of this protein, whereas osteocalcin expression is inhibited. Furthermore, an RGD peptidomimetic compound, designed to block interaction of ligands to the alpha(v) integrin subunit, increases osteocalcin expression and inhibits collagenase-3 expression, suggesting that the RGD peptidomimetic initiates certain alpha(v) integrin signaling in osteoblastic cells. Overall, these studies demonstrate that stimulation of collagenase-3 expression during osteoblast differentiation requires synthesis of a collagenous matrix and that osteopontin and alpha(v) integrins exert divergent regulation of collagenase-3 and osteocalcin expression during osteoblast differentiation.
In silico design of context-responsive mammalian promoters with user-defined functionality
Gibson, Suzanne J.; Hatton, Diane
2017-01-01
Abstract Comprehensive de novo-design of complex mammalian promoters is restricted by unpredictable combinatorial interactions between constituent transcription factor regulatory elements (TFREs). In this study, we show that modular binding sites that do not function cooperatively can be identified by analyzing host cell transcription factor expression profiles, and subsequently testing cognate TFRE activities in varying homotypic and heterotypic promoter architectures. TFREs that displayed position-insensitive, additive function within a specific expression context could be rationally combined together in silico to create promoters with highly predictable activities. As TFRE order and spacing did not affect the performance of these TFRE-combinations, compositions could be specifically arranged to preclude the formation of undesirable sequence features. This facilitated simple in silico-design of promoters with context-required, user-defined functionalities. To demonstrate this, we de novo-created promoters for biopharmaceutical production in CHO cells that exhibited precisely designed activity dynamics and long-term expression-stability, without causing observable retroactive effects on cellular performance. The design process described can be utilized for applications requiring context-responsive, customizable promoter function, particularly where co-expression of synthetic TFs is not suitable. Although the synthetic promoter structure utilized does not closely resemble native mammalian architectures, our findings also provide additional support for a flexible billboard model of promoter regulation. PMID:28977454
Novel AgoshRNA molecules for silencing of the CCR5 co-receptor for HIV-1 infection
Herrera-Carrillo, Elena
2017-01-01
Allogeneic transplantation of blood stem cells from a CCR5-Δ32 homozygous donor to an HIV-infected individual, the “Berlin patient”, led to a cure. Since then there has been a search for approaches that mimic this intervention in a gene therapy setting. RNA interference (RNAi) has evolved as a powerful tool to regulate gene expression in a sequence-specific manner and can be used to inactivate the CCR5 mRNA. Short hairpin RNA (shRNA) molecules can impair CCR5 expression, but these molecules may cause unintended side effects and they will not be processed in cells that lack Dicer, such as monocytes. Dicer-independent RNAi pathways have opened opportunities for new AgoshRNA designs that rely exclusively on Ago2 for maturation. Furthermore, AgoshRNA processing yields a single active guide RNA, thus reducing off-target effects. In this study, we tested different AgoshRNA designs against CCR5. We selected AgoshRNAs that potently downregulated CCR5 expression on human T cells and peripheral blood mononuclear cells (PBMC) and that had no apparent adverse effect on T cell development as assessed in a competitive cell growth assay. CCR5 knockdown significantly protected T cells from CCR5 tropic HIV-1 infection. PMID:28542329
Zhang, Xiaomeng; Shao, Bin; Wu, Yangle; Qi, Ouyang
2013-01-01
One of the major objectives in systems biology is to understand the relation between the topological structures and the dynamics of biological regulatory networks. In this context, various mathematical tools have been developed to deduct structures of regulatory networks from microarray expression data. In general, from a single data set, one cannot deduct the whole network structure; additional expression data are usually needed. Thus how to design a microarray expression experiment in order to get the most information is a practical problem in systems biology. Here we propose three methods, namely, maximum distance method, trajectory entropy method, and sampling method, to derive the optimal initial conditions for experiments. The performance of these methods is tested and evaluated in three well-known regulatory networks (budding yeast cell cycle, fission yeast cell cycle, and E. coli. SOS network). Based on the evaluation, we propose an efficient strategy for the design of microarray expression experiments.
2007-11-01
SDS-PAGE gel . The Western blot made from this gel was probed with antibody that recognizes the myc-tag. When compared to the extracts from the...SDS-PAGE gel and blotted onto a filter. The filter was probed with an anti-myc antibody. The levels of myc-tagged PCDH-PC protein in cells co...Specific Aim 2. Design and test antisense oligonucleotides ( ASOs ) that suppress PCDH-PC expression in prostate cancer cells. Work Done: We used
Chronology of Islet Differentiation Revealed By Temporal Cell Labeling
Miyatsuka, Takeshi; Li, Zhongmei; German, Michael S.
2009-01-01
OBJECTIVE Neurogenin 3 plays a pivotal role in pancreatic endocrine differentiation. Whereas mouse models expressing reporters such as eGFP or LacZ under the control of the Neurog3 gene enable us to label cells in the pancreatic endocrine lineage, the long half-life of most reporter proteins makes it difficult to distinguish cells actively expressing neurogenin 3 from differentiated cells that have stopped transcribing the gene. RESEARCH DESIGN AND METHODS In order to separate the transient neurogenin 3 –expressing endocrine progenitor cells from the differentiating endocrine cells, we developed a mouse model (Ngn3-Timer) in which DsRed-E5, a fluorescent protein that shifts its emission spectrum from green to red over time, was expressed transgenically from the NEUROG3 locus. RESULTS In the Ngn3-Timer embryos, green-dominant cells could be readily detected by microscopy or flow cytometry and distinguished from green/red double-positive cells. When fluorescent cells were sorted into three different populations by a fluorescence-activated cell sorter, placed in culture, and then reanalyzed by flow cytometry, green-dominant cells converted to green/red double-positive cells within 6 h. The sorted cell populations were then used to determine the temporal patterns of expression for 145 transcriptional regulators in the developing pancreas. CONCLUSIONS The precise temporal resolution of this model defines the narrow window of neurogenin 3 expression in islet progenitor cells and permits sequential analyses of sorted cells as well as the testing of gene regulatory models for the differentiation of pancreatic islet cells. PMID:19478145
Supported Lipid Bilayer Technology for the Study of Cellular Interfaces
Crites, Travis J.; Maddox, Michael; Padhan, Kartika; Muller, James; Eigsti, Calvin; Varma, Rajat
2015-01-01
Glass-supported lipid bilayers presenting freely diffusing proteins have served as a powerful tool for studying cell-cell interfaces, in particular, T cell–antigen presenting cell (APC) interactions, using optical microscopy. Here we expand upon existing protocols and describe the preparation of liposomes by an extrusion method, and describe how this system can be used to study immune synapse formation by Jurkat cells. We also present a method for forming such lipid bilayers on silica beads for the study of signaling responses by population methods, such as western blotting, flow cytometry, and gene-expression analysis. Finally, we describe how to design and prepare transmembrane-anchored protein-laden liposomes, following expression in suspension CHO (CHOs) cells, a mammalian expression system alternative to insect and bacterial cell lines, which do not produce mammalian glycosylation patterns. Such transmembrane-anchored proteins may have many novel applications in cell biology and immunology. PMID:26331983
A regulatory toolbox of MiniPromoters to drive selective expression in the brain
Portales-Casamar, Elodie; Swanson, Douglas J.; Liu, Li; de Leeuw, Charles N.; Banks, Kathleen G.; Ho Sui, Shannan J.; Fulton, Debra L.; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J.; Babyak, Nazar; Black, Sonia F.; Bonaguro, Russell J.; Brauer, Erich; Candido, Tara R.; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C. Y.; Chopra, Vik; Docking, T. Roderick; Dreolini, Lisa; D'Souza, Cletus A.; Flynn, Erin K.; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G.; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y.; Lim, Jonathan S.; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J.; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L.; Schmouth, Jean-François; Swanson, Magdalena I.; Tam, Bonny; Ticoll, Amy; Turner, Jenna L.; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F.; Wilson, Gary; Wong, Bibiana K. Y.; Wong, Siaw H.; Wong, Tony Y. T.; Yang, George S.; Ypsilanti, Athena R.; Jones, Steven J. M.; Holt, Robert A.; Goldowitz, Daniel; Wasserman, Wyeth W.; Simpson, Elizabeth M.
2010-01-01
The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination “knockins” in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5′ of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type–specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies. PMID:20807748
Fabrication of hydrogels with elasticity changed by alkaline phosphatase for stem cell culture.
Toda, Hiroyuki; Yamamoto, Masaya; Uyama, Hiroshi; Tabata, Yasuhiko
2016-01-01
The objective of this study is to design hydrogels whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture and evaluate the effect of hydrogel elasticity on an osteogenic gene expression of cells. Hydrogels were prepared by the radical polymerization of acrylamide (AAm), N,N'-methylenebisacrylamide (BIS), and Phosmer™M containing phosphate groups (PE-PAAm hydrogels). The storage modulus of PE-PAAm hydrogels prepared was changed by the preparation conditions. When human mesenchymal stem cells (hMSC) were cultured on the ALP-responsive PE-PAAm hydrogels in the presence or absence of ALP, the morphology of hMSC was observed and one of the osteogenic differentiation markers, Runx2, was evaluated. By ALP addition into the culture medium, the morphology of hMSC was changed into an elongated shape without cell damage. ALP addition modified the level of Runx2 gene expression, which was influenced by the modulus of PE-PAAm hydrogels. It is concluded that the elasticity change of hydrogel substrates in cell culture had an influence on the Runx2 gene expression of hMSC. Stem cells sense the surface elasticity of culture substrates, and their differentiation fate is biologically modified by substrate properties. Most of experiments have been performed in static conditions during cell culture, while the in vivo microenvironment is dynamically changed. In this study, we established to design an enzyme-responsive hydrogel whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture to mimic in vivo conditions. As a result, the cells were deformed and the gene expression level of an osteogenic maker, Runx2, was modified by ALP treatment. This is the novel report describing to demonstrate that the dynamic alteration of hydrogel substrate elasticity could modulate the osteoblastic gene expression of human MSC in vitro. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Protein Expression in Insect and Mammalian Cells Using Baculoviruses in Wave Bioreactors.
Kadwell, Sue H; Overton, Laurie K
2016-01-01
Many types of disposable bioreactors for protein expression in insect and mammalian cells are now available. They differ in design, capacity, and sensor options, with many selections available for either rocking platform, orbitally shaken, pneumatically mixed, or stirred-tank bioreactors lined with an integral disposable bag (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). WAVE Bioreactors™ were among the first disposable systems to be developed (Singh, Cytotechnology 30:149-158, 1999). Since their commercialization in 1999, Wave Bioreactors have become routinely used in many laboratories due to their ease of operation, limited utility requirements, and protein expression levels comparability to traditional stirred-tank bioreactors. Wave Bioreactors are designed to use a presterilized Cellbag™, which is attached to a rocking platform and inflated with filtered air provided by the bioreactor unit. The Cellbag can be filled with medium and cells and maintained at a set temperature. The rocking motion, which is adjusted through angle and rock speed settings, provides mixing of oxygen (and CO2, which is used to control pH in mammalian cell cultures) from the headspace created in the inflated Cellbag with the cell culture medium and cells. This rocking motion can be adjusted to prevent cell shear damage. Dissolved oxygen and pH can be monitored during scale-up, and samples can be easily removed to monitor other parameters. Insect and mammalian cells grow very well in Wave Bioreactors (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). Combining Wave Bioreactor cell growth capabilities with recombinant baculoviruses engineered for insect or mammalian cell expression has proven to be a powerful tool for rapid production of a wide range of proteins.
Gordon, Nancy; Koshkina, Nadezhda V.; Jia, Shu-Fang; Khanna, Chand; Mendoza, Arnulfo; Worth, Laura L.; Kleinerman, Eugenie S.
2015-01-01
Purpose Pulmonary metastases continue to be a significant problem in osteosarcoma. Apoptosis dysfunction is known to influence tumor development. Fas (CD95, APO-1)/FasL is one of the most extensively studied apoptotic pathways. Because FasL is constitutively expressed in the lung, cells that express Fas should be eliminated by lung endothelium. Cells with low or no cell surface Fas expression may be able to evade this innate defense mechanism. The purpose of these studies was to evaluate Fas expression in osteosarcoma lung metastases and the effect of gemcitabine on Fas expression and tumor growth. Experimental Design and Results Using the K7M2 murine osteosarcoma model, Fas expression was quantified using immunohistochemistry. High levels of Fas were present in primary tumors, but no Fas expression was present in actively growing lung metastases. Blocking the Fas pathway using Fas-associated death domain dominant-negative delayed tumor cell clearance from the lung and increased metastatic potential. Treatment of mice with aerosol gemcitabine resulted in increased Fas expression and subsequent tum or regression. Conclusions We conclude that corruption of the Fas pathway is critical to the ability of osteosarcoma cells to grow in the lung. Agents such as gemcitabine that up-regulate cell surface Fas expression may therefore be effective in treating osteosarcoma lung metastases. These data also suggest that an additional mechanism by which gemcitabine induces regression of osteosarcoma lung metastases is mediated by enhancing the sensitivity of the tumor cells to the constitutive FasL in the lung. PMID:17671136
Chang, Fung-Wei; Fan, Hueng-Chuen; Liu, Jui-Ming; Fan, Tai-Ping; Jing, Jin; Yang, Chia-Ling; Hsu, Ren-Jun
2017-01-14
Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance.
Chang, Fung-Wei; Fan, Hueng-Chuen; Liu, Jui-Ming; Fan, Tai-Ping; Jing, Jin; Yang, Chia-Ling; Hsu, Ren-Jun
2017-01-01
Background: Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. Results: In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. Conclusions: E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance. PMID:28098816
Environmental effects on molecular biomarkers expression in pancreatic and brain cancer
NASA Astrophysics Data System (ADS)
Mensah, Lawrence; Mallidi, Srivalleesha; Massodi, Iqbal; Anbil, Sriram; Mai, Zhiming; Hasan, Tayyaba
2013-03-01
A complete understanding of the biological mechanisms regulating devastating disease such as cancer remains elusive. Pancreatic and brain cancers are primary among the cancer types with poor prognosis. Molecular biomarkers have emerged as group of proteins that are preferentially overexpressed in cancers and with a key role in driving disease progression and resistance to chemotherapy. The epidermal growth factor receptor (EGFR), a cell proliferative biomarker is particularly highly expressed in most cancers including brain and pancreatic cancers. The ability of EGFR to sustain prolong cell proliferation is augmented by biomarkers such as Bax, Bcl-XL and Bcl-2, proteins regulating the apoptotic process. To better understand the role and effect of the microenvironment on these biomarkers in pancreatic cancer (PaCa); we analysed two pancreatic tumor lines (AsPc-1 and MiaPaCa-2) in 2D, 3D in-vitro cultures and in orthotopic tumors at different growth stages. We also investigated in patient derived glioblastoma (GBM) tumor cultures, the ability to utilize the EGFR expression to specifically deliver photosensitizer to the cells for photodynamic therapy. Overall, our results suggest that (1) microenvironment changes affect biomarker expression; thereby it is critical to understand these effects prior to designing combination therapies and (2) EGFR expression in tumor cells indeed could serve as a reliable and a robust biomarker that could be used to design targeted and image-guided photodynamic therapy.
Albumin-induced apoptosis of tubular cells is modulated by BASP1
Sanchez-Niño, M D; Fernandez-Fernandez, B; Perez-Gomez, M V; Poveda, J; Sanz, A B; Cannata-Ortiz, P; Ruiz-Ortega, M; Egido, J; Selgas, R; Ortiz, A
2015-01-01
Albuminuria promotes tubular injury and cell death, and is associated with faster progression of chronic kidney disease (CKD) to end-stage renal disease. However, the molecular mechanisms regulating tubular cell death in response to albuminuria are not fully understood. Brain abundant signal protein 1 (BASP1) was recently shown to mediate glucose-induced apoptosis in tubular cells. We have studied the role of BASP1 in albumin-induced tubular cell death. BASP1 expression was studied in experimental puromycin aminonucleoside-induced nephrotic syndrome in rats and in human nephrotic syndrome. The role of BASP1 in albumin-induced apoptosis was studied in cultured human HK2 proximal tubular epithelial cells. Puromycin aminonucleoside induced proteinuria and increased total kidney BASP1 mRNA and protein expression. Immunohistochemistry localized the increased BASP1 to tubular cells. BASP1 expression colocalized with deoxynucleotidyl-transferase-mediated dUTP nick-end labeling staining for apoptotic cells. Increased tubular BASP1 expression was observed in human proteinuric nephropathy by immunohistochemistry, providing evidence for potential clinical relevance. In cultured tubular cells, albumin induced apoptosis and increased BASP1 mRNA and protein expression at 6–48 h. Confocal microscopy localized the increased BASP1 expression in albumin-treated cells mainly to the perinuclear area. A peripheral location near the cell membrane was more conspicuous in albumin-treated apoptotic cells, where it colocalized with actin. Inhibition of BASP1 expression by a BASP1 siRNA protected from albumin-induced apoptosis. In conclusion, albumin-induced apoptosis in tubular cells is BASP1-dependent. This information may be used to design novel therapeutic approaches to slow CKD progression based on protection of tubular cells from the adverse consequences of albuminuria. PMID:25675304
Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells
Zhong, Guocai; Wang, Haimin; Bailey, Charles C; Gao, Guangping; Farzan, Michael
2016-01-01
Efforts to control mammalian gene expression with ligand-responsive riboswitches have been hindered by lack of a general method for generating efficient switches in mammalian systems. Here we describe a rational-design approach that enables rapid development of efficient cis-acting aptazyme riboswitches. We identified communication-module characteristics associated with aptazyme functionality through analysis of a 32-aptazyme test panel. We then developed a scoring system that predicts an aptazymes’s activity by integrating three characteristics of communication-module bases: hydrogen bonding, base stacking, and distance to the enzymatic core. We validated the power and generality of this approach by designing aptazymes responsive to three distinct ligands, each with markedly wider dynamic ranges than any previously reported. These aptayzmes efficiently regulated adeno-associated virus (AAV)-vectored transgene expression in cultured mammalian cells and mice, highlighting one application of these broadly usable regulatory switches. Our approach enables efficient, protein-independent control of gene expression by a range of small molecules. DOI: http://dx.doi.org/10.7554/eLife.18858.001 PMID:27805569
Cho, SiHyun; Mutlu, Levent; Zhou, Yuping; Taylor, Hugh S.
2018-01-01
Objectives To evaluate associations between aromatase inhibitor (AI) treatment and let-7 family microRNA expression in endometriosis. Design In vitro study using Ishikawa cells and human endometrial stromal cells (HESC) obtained from patients with endometriosis Setting University research center. Patients Women undergoing laparoscopic surgery for endometriosis Interventions HESCs and Ishikawa cells treated with various letrozol concentrations and transfected with a mimic of let-7 subtypes of interest Main Outcome Measures microRNAs let7a-f and aromatase expression were evaluated. Migration potential after transfection with a let-7f mimic were analyzed. Results After letrozole treatment for 48 hours, all let-7 subtypes showed a trend toward increased expression in a dose dependent manner in Ishikawa cells, and significant differences were found in let-7b and let-7f between controls and the 20 μmol/L treated groups. Further, let-7f showed significant differences between control and 1.0 μmol/L treatment group, a typical therapeutic level, in HESCs. Transfection of a let-7f mimic decreased aromatase expression in both Ishikawa cells and HESC, and led to a significant decrease in number of migrating cells in both cell types. Conclusions AI treatment significantly increased expression of let-7f in Ishikawa cells and HESCs from patient with endometriosis; increased lef-7f expression effectively reduced the migration of endometrial cells. Modulation of miRNAs involved in the pathogenesis of endometriosis may have therapeutic potential for endometriosis. PMID:27320036
Hybrid promoters directed tBid gene expression to breast cancer cells by transcriptional targeting.
Farokhimanesh, Samila; Rahbarizadeh, Fatemeh; Rasaee, Mohammad J; Kamali, Abbas; Mashkani, Baratali
2010-01-01
Developing cancer gene therapy constructs based on transcriptional targeting of genes to cancer cells is a new and promising modality for treatment of cancer. Introducing truncated Bid (tBid), a recently known member of the Bcl-2 family, eradicates cancer cells efficiently. For transcriptional targeting of tBid, two dual-specificity promoters, combining cancer specific core promoters and response modules, were designed. These two core promoter modules contained cancer specific promoters of MUC1 and Survivin genes accompanied by hypoxia-responsive elements and estrogen responsive elements (microenvironment condition of breast cancer cells) which were employed to achieve a higher and more specific level of tBid expression in breast cancer cells. Correlation of the level of tBid expression in normal and cancer cell lines with promoter activity was measured by RT-PCR after treatment with hypoxia and estrogen. The level of tBid expression under control of new hybrid promoters was compared with its expression under control of cytomegalovirus (CMV) promoter as a control. Our data revealed that the level of tBid expression in breast cancer cells were nearly 11 times more than normal cells because of the cancer specific promoters, although tBid expression under control of CMV promoter was almost the same in normal and cancer cell lines. Increased apoptosis was detected in the transfected breast cancer cell lines by the Caspase-3 activity assay. The application of these promoters may prove to have the advantage of tumor selective gene therapy in breast cancer cells and low-potential toxicity for normal tissues.
Ly49 Receptors: Innate and Adaptive Immune Paradigms
Rahim, Mir Munir A.; Tu, Megan M.; Mahmoud, Ahmad Bakur; Wight, Andrew; Abou-Samra, Elias; Lima, Patricia D. A.; Makrigiannis, Andrew P.
2014-01-01
The Ly49 receptors are type II C-type lectin-like membrane glycoproteins encoded by a family of highly polymorphic and polygenic genes within the mouse natural killer (NK) gene complex. This gene family is designated Klra, and includes genes that encode both inhibitory and activating Ly49 receptors in mice. Ly49 receptors recognize class I major histocompatibility complex-I (MHC-I) and MHC-I-like proteins on normal as well as altered cells. Their functional homologs in humans are the killer cell immunoglobulin-like receptors, which recognize HLA class I molecules as ligands. Classically, Ly49 receptors are described as being expressed on both the developing and mature NK cells. The inhibitory Ly49 receptors are involved in NK cell education, a process in which NK cells acquire function and tolerance toward cells that express “self-MHC-I.” On the other hand, the activating Ly49 receptors recognize altered cells expressing activating ligands. New evidence shows a broader Ly49 expression pattern on both innate and adaptive immune cells. Ly49 receptors have been described on multiple NK cell subsets, such as uterine NK and memory NK cells, as well as NKT cells, dendritic cells, plasmacytoid dendritic cells, macrophages, neutrophils, and cells of the adaptive immune system, such as activated T cells and regulatory CD8+ T cells. In this review, we discuss the expression pattern and proposed functions of Ly49 receptors on various immune cells and their contribution to immunity. PMID:24765094
Tršan, Tihana; Vuković, Kristina; Filipović, Petra; Brizić, Ana Lesac; Lemmermann, Niels A W; Schober, Kilian; Busch, Dirk H; Britt, William J; Messerle, Martin; Krmpotić, Astrid; Jonjić, Stipan
2017-08-01
Designing CD8 + T-cell vaccines, which would provide protection against tumors is still considered a great challenge in immunotherapy. Here we show the robust potential of cytomegalovirus (CMV) vector expressing the NKG2D ligand RAE-1γ as CD8 + T cell-based vaccine against malignant tumors. Immunization with the CMV vector expressing RAE-1γ, delayed tumor growth or even provided complete protection against tumor challenge in both prophylactic and therapeutic settings. Moreover, a potent tumor control in mice vaccinated with this vector can be further enhanced by blocking the immune checkpoints TIGIT and PD-1. CMV vector expressing RAE-1γ potentiated expansion of KLRG1 + CD8 + T cells with enhanced effector properties. This vaccination was even more efficient in neonatal mice, resulting in the expansion and long-term maintenance of epitope-specific CD8 + T cells conferring robust resistance against tumor challenge. Our data show that immunomodulation of CD8 + T-cell responses promoted by herpesvirus expressing a ligand for NKG2D receptor can provide a powerful platform for the prevention and treatment of CD8 + T-cell sensitive tumors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MiR-9 Promotes Apoptosis Via Suppressing SMC1A Expression in GBM Cell Lines.
Zu, Yong; Zhu, Zhichuan; Lin, Min; Xu, Dafeng; Liang, Yongjun; Wang, Yueqian; Qiao, Zhengdong; Cao, Ting; Yang, Dan; Gao, Lili; Jin, Pengpeng; Zhang, Peng; Fu, Jianjun; Zheng, Jing
2017-01-01
Glioblastomas multiforme (GBM) is the most malignant brain cancer, which presented vast genomic variation with complicated pathologic mechanism. MicroRNA is a delicate post-transcriptional tuner of gene expression in the organisms by targeting and regulating protein coding genes. MiR-9 was reported as a significant biomarker for GBM patient prognosis and a key factor in regulation of GBM cancer stem cells. To explore the effect of miR-9 on GBM cell growth, we over expressed miR-9 in U87 and U251 cells. The cell viability decreased and apoptosis increased after miR-9 overexpression in these cells. To identify the target of miR-9, we scanned miR-9 binding site in the 3'UTRs region of expression SMC1A (structural maintenance of chromosomes 1A) genes and designed a fluorescent reporter assay to measure miR-9 binding to this region. Our results revealed that miR-9 binds to the 3'sUTR region of SMC1A and down-regulated SMC1A expression. Our results indicated that miR-9 was a potential therapeutic target for GBM through triggering apoptosis of cancer cells.
Surface Expression of Hsp25 and Hsp72 Differentially Regulates Tumor Growth and Metastasis
Bausero, María A.; Page, Diana T.; Osinaga, Eduardo; Asea, Alexzander
2006-01-01
The expression of unique surface structures on tumors that allow for recognition and activation of host immunocompetent cells plays an important role in determining tumor growth and/or metastasis. Recent studies have identified an important role for heat shock proteins (Hsp) in antitumor surveillance; however, the exact role of Hsp expressed on the surface of tumors has not been fully addressed. In this study, we show that 4T1 mammary adenocarcinoma cells sorted for high Hsp25 surface expression (Hsp25high) grow significantly faster than cells sorted for intermediate Hsp25 surface expression (Hsp25intermediate) or wild-type 4T1 cells implanted into the abdominal breast gland of female BALB/c mice (p < 0.05). In addition, histological examination of lung tissues revealed that Hsp25high 4T1 cells metastasized to the lungs more aggressively than either Hsp25intermediate or wild-type 4T1 cells (p < 0.05). Exposure of 4T1 cells to nonlethal heat shock (43°C, 30 min) induced the surface expression of Hsp72 and a concomitant reduction in Hsp25 surface expression. The growth and metastastic potential of Hsp72+ 4T1 cells was significantly less than that of Hsp25high, Hsp25intermediate or wild-type 4T1 cells (p < 0.05). Taken together, these studies identify an important role for expression of Hsp25 and Hsp72 during tumor growth and metastatic spread which might be helpful in the design of antimetastatic therapies. PMID:15627887
Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis.
Bausero, María A; Page, Diana T; Osinaga, Eduardo; Asea, Alexzander
2004-01-01
The expression of unique surface structures on tumors that allow for recognition and activation of host immunocompetent cells plays an important role in determining tumor growth and/or metastasis. Recent studies have identified an important role for heat shock proteins (Hsp) in antitumor surveillance; however, the exact role of Hsp expressed on the surface of tumors has not been fully addressed. In this study, we show that 4T1 mammary adenocarcinoma cells sorted for high Hsp25 surface expression (Hsp25(high)) grow significantly faster than cells sorted for intermediate Hsp25 surface expression (Hsp25(intermediate)) or wild-type 4T1 cells implanted into the abdominal breast gland of female BALB/c mice (p < 0.05). In addition, histological examination of lung tissues revealed that Hsp25(high) 4T1 cells metastasized to the lungs more aggressively than either Hsp25(intermediate) or wild-type 4T1 cells (p < 0.05). Exposure of 4T1 cells to nonlethal heat shock (43 degrees C, 30 min) induced the surface expression of Hsp72 and a concomitant reduction in Hsp25 surface expression. The growth and metastastic potential of Hsp72(+) 4T1 cells was significantly less than that of Hsp25(high), Hsp25(intermediate) or wild-type 4T1 cells (p < 0.05). Taken together, these studies identify an important role for expression of Hsp25 and Hsp72 during tumor growth and metastatic spread which might be helpful in the design of antimetastatic therapies. Copyright 2004 S. Karger AG, Basel.
Reprogramming cells with synthetic proteins
Yang, Xiaoxiao; Malik, Vikas; Jauch, Ralf
2015-01-01
Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs) has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to “read” genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivo counterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies. PMID:25652623
Epithelial to mesenchymal transition in human endocrine islet cells
Moreno-Amador, José Luis; Téllez, Noèlia; Marin, Sandra; Aloy-Reverté, Caterina; Semino, Carlos; Nacher, Montserrat
2018-01-01
Background β-cells undergo an epithelial to mesenchymal transition (EMT) when expanded in monolayer culture and give rise to highly proliferative mesenchymal cells that retain the potential to re-differentiate into insulin-producing cells. Objective To investigate whether EMT takes place in the endocrine non-β cells of human islets. Methodology Human islets isolated from 12 multiorgan donors were dissociated into single cells, purified by magnetic cell sorting, and cultured in monolayer. Results Co-expression of insulin and the mesenchymal marker vimentin was identified within the first passage (p1) and increased subsequently (insulin+vimentin+ 7.2±6% at p1; 43±15% at p4). The endocrine non-β-cells did also co-express vimentin (glucagon+vimentin+ 59±1.5% and 93±6%, somatostatin+vimentin+ 16±9.4% and 90±10% at p1 and p4 respectively; PP+vimentin+ 74±14% at p1; 88±12% at p2). The percentage of cells expressing only endocrine markers was progressively reduced (0.6±0.2% insulin+, 0.2±0.1% glucagon+, and 0.3±0.2% somatostatin+ cells at p4, and 0.7±0.3% PP+ cells at p2. Changes in gene expression were also indicated of EMT, with reduced expression of endocrine markers and the epithelial marker CDH-1 (p<0.01), and increased expression of mesenchymal markers (CDH-2, SNAI2, ZEB1, ZEB2, VIM, NT5E and ACTA2; p<0.05). Treatment with the EMT inhibitor A83-01 significantly reduced the percentage of co-expressing cells and preserved the expression of endocrine markers. Conclusions In adult human islets, all four endocrine islet cell types undergo EMT when islet cells are expanded in monolayer conditions. The presence of EMT in all islet endocrine cells could be relevant to design of strategies aiming to re-differentiate the expanded islet cells towards a β-cell phenotype. PMID:29360826
Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.
Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi
2016-08-01
The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland. © 2016 International Federation for Cell Biology.
Kia, Azadeh; Yata, Teerapong; Hajji, Nabil; Hajitou, Amin
2013-10-22
Bacteriophage (phage), viruses that infect bacteria only, have become promising vectors for targeted systemic delivery of genes to cancer, although, with poor efficiency. We previously designed an improved phage vector by incorporating cis genetic elements of adeno-associated virus (AAV). This novel AAV/phage hybrid (AAVP) specifically targeted systemic delivery of therapeutic genes into tumors. To advance the AAVP vector, we recently introduced the stress-inducible Grp78 tumor specific promoter and found that this dual tumor-targeted AAVP provides persistent gene expression, over time, in cancer cells compared to silenced gene expression from the CMV promoter in the parental AAVP. Herein, we investigated the effect of histone deacetylation and DNA methylation on AAVP-mediated gene expression in cancer cells and explored the effect of cell confluence state on AAVP gene expression efficacy. Using a combination of AAVP expressing the GFP reporter gene, flow cytometry, inhibitors of histone deacetylation, and DNA methylation, we have demonstrated that histone deacetylation and DNA methylation are associated with silencing of gene expression from the CMV promoter in the parental AAVP. Importantly, inhibitors of histone deacetylases boost gene expression in cancer cells from the Grp78 promoter in the dual tumor-targeted AAVP. However, cell confluence had no effect on AAVP-guided gene expression. Our findings prove that combination of histone deacetylase inhibitor drugs with the Grp78 promoter is an effective approach to improve AAVP-mediated gene expression in cancer cells and should be considered for AAVP-based clinical cancer gene therapy.
Nanoscale TiO2 nanotubes govern the biological behavior of human glioma and osteosarcoma cells
Tian, Ang; Qin, Xiaofei; Wu, Anhua; Zhang, Hangzhou; Xu, Quan; Xing, Deguang; Yang, He; Qiu, Bo; Xue, Xiangxin; Zhang, Dongyong; Dong, Chenbo
2015-01-01
Cells respond to their surroundings through an interactive adhesion process that has direct effects on cell proliferation and migration. This research was designed to investigate the effects of TiO2 nanotubes with different topographies and structures on the biological behavior of cultured cells. The results demonstrated that the nanotube diameter, rather than the crystalline structure of the coatings, was a major factor for the biological behavior of the cultured cells. The optimal diameter of the nanotubes was 20 nm for cell adhesion, migration, and proliferation in both glioma and osteosarcoma cells. The expression levels of vitronectin and phosphor-focal adhesion kinase were affected by the nanotube diameter; therefore, it is proposed that the responses of vitronectin and phosphor-focal adhesion kinase to the nanotube could modulate cell fate. In addition, the geometry and size of the nanotube coating could regulate the degree of expression of acetylated α-tubulin, thus indirectly modulating cell migration behavior. Moreover, the expression levels of apoptosis-associated proteins were influenced by the topography. In conclusion, a nanotube diameter of 20 nm was the critical threshold that upregulated the expression level of Bcl-2 and obviously decreased the expression levels of Bax and caspase-3. This information will be useful for future biomedical and clinical applications. PMID:25848261
Zhao, Fu-Jun; Han, Bang-Min; Yu, Sheng-Qiang; Xia, Shu-Jie
2009-01-01
This study was designed to investigate the different involvements of prostatic stromal cells from the normal transitional zone (TZ) or peripheral zone (PZ) in the carcinogenesis of prostate cancer (PCa) epithelial cells (PC-3) in vitro and in vivo co-culture models. Ultra-structures and gene expression profiles of primary cultures of human prostatic stromal cells from the normal TZ or PZ were analyzed by electron microscopy and microarray analysis. In vitro and in vivo co-culture models composed of normal TZ or PZ stromal cells and human PCa PC-3 cells were established. We assessed tumor growth and weight in the in vivo nude mice model. There are morphological and ultra-structural differences in stromal cells from TZ and PZ of the normal prostate. In all, 514 differentially expressed genes were selected by microarray analysis; 483 genes were more highly expressed in stromal cells from TZ and 31 were more highly expressed in those from PZ. Co-culture with PZ stromal cells and transforming growth factor-β1 (TGF-β1) increased the tumor growth of PC-3 cells in vitro and in vivo, as well as Bcl-2 expression. On the other hand, stromal cells of TZ suppressed PC-3 cell tumor growth in the mouse model. We conclude that ultra-structures and gene expression differ between the stromal cells from TZ or PZ of the normal prostate, and stroma–epithelium interactions from TZ or PZ might be responsible for the distinct zonal localization of prostate tumor formation. PMID:19122679
Identification of a set of genes showing regionally enriched expression in the mouse brain
D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa LC; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven JM
2008-01-01
Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression. PMID:18625066
Identification of a set of genes showing regionally enriched expression in the mouse brain.
D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa L C; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven J M
2008-07-14
The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.
Xu, Lin; Xu, Qian; Li, Xiwen; Zhang, Xiaoling
2017-10-01
The proliferation and apoptosis of tumor cells are regulated by a variety of microRNAs (miRs). miR‑21 can inhibit the apoptosis of cancer cells in vitro. Tumor necrosis factor α (TNF‑α) serves an important role in the induction of proliferation of cervical cancer cells. Previous studies have demonstrated that the expression level of miR‑21 is associated with TNF‑α expression in alveolar macrophages. However, to the best of our knowledge, whether miR‑21 regulates TNF‑α in cervical cells has not been reported. The present study was designed to investigate whether miR‑21 regulates TNF‑α expression, proliferation and apoptosis of cervical cancer cells. miR‑21, miR‑21 inhibitor and control miRNA were synthesized and transfected into HeLa cervical cancer cells. Reverse transcription‑quantitative polymerase chain reaction was used to measure the expression levels of miR‑21 and TNF‑α at the mRNA level. Western blotting was used to measure the expression levels of TNF‑α at the protein level. MTT assay and Hoechest‑33342 staining were used to measure the proliferation and apoptosis of HeLa cells. miR‑21 was identified to upregulate the mRNA and protein expression levels of TNF‑α. Furthermore, upregulation of TNF‑α enhanced the proliferation capability of HeLa cells. Changes in the expression levels of miR‑21 and TNF‑α did not significantly affect the apoptosis of Hela cells. In conclusion, the present study demonstrated that miR‑21 regulates the expression of TNF‑α in HeLa cells. Additionally, the expression level of TNF‑α was positively associated with the proliferation capability of Hela cells, but not apoptosis. Therefore, miR‑21 regulates the proliferation of HeLa cells through regulation of TNF‑α. These results provide novel potential therapeutic targets for the treatment of cervical cancer.
Lai, Jian-Ping; Lai, Saien; Tuluc, Florin; Tansky, Morris F.; Kilpatrick, Laurie E.; Leeman, Susan E.; Douglas, Steven D.
2008-01-01
The neurokinin-1 receptor (NK1R) has two naturally occurring forms that differ in the length of the carboxyl terminus: a full-length receptor consisting of 407 aa and a truncated receptor consisting of 311 aa. We examined whether there are differential signaling properties attributable to the carboxyl terminus of this receptor by using stably transfected human embryonic kidney (HEK293) cell lines that express either full-length or truncated NK1R. Substance P (SP) specifically triggered intracellular calcium increase in HEK293 cells expressing full-length NK1R but had no effect in the cells expressing the truncated NK1R. In addition, in cells expressing full-length NK1R, SP activated NF-κB and IL-8 mRNA expression, but in cells expressing the truncated NK1R, SP did not activate NF-κB, and it decreased IL-8 mRNA expression. In cells expressing full-length NK1R, SP stimulated phosphorylation of PKCδ but inhibited phosphorylation of PKCδ in cells expressing truncated NK1R. There are also differences in the timing of SP-induced ERK activation in cells expressing the two different forms of the receptor. Full-length NK1R activation of ERK was rapid (peak within 1–2 min), whereas truncated NK1R-mediated activation was slower (peak at 20–30 min). Thus, the carboxyl terminus of NK1R is the structural basis for differences in the functional properties of the full-length and truncated NK1R. These differences may provide important information toward the design of new NK1R receptor antagonists. PMID:18713853
Shepard, Jaclyn A.; Huang, Alyssa; Shikanova, Ariella; Shea, Lonnie D.
2010-01-01
In regenerative medicine, hydrogels are employed to fill defects and support the infiltration of cells that can ultimately regenerate tissue. Gene delivery within hydrogels targeting infiltrating cells has the potential to promote tissue formation, but the delivery efficiency of nonviral vectors within hydrogels is low hindering their applicability in tissue regeneration. To improve their functionality, we have conducted a mechanistic study to investigate the contribution of cell migration and matrix degradation on gene delivery. In this report, lipoplexes were entrapped within hydrogels based on poly(ethylene glycol) (PEG) crosslinked with peptides containing matrix metalloproteinase degradable sequences. The mesh size of these hydrogels is substantially less than the size of the entrapped lipoplexes, which can function to retain vectors. Cell migration and transfection were simultaneously measured within hydrogels with varying density of cell adhesion sites (Arg-Gly-Asp peptides) and solids content. Increasing RGD density increased expression levels up to 100-fold, while greater solids content sustained expression levels for 16 days. Increasing RGD density and decreasing solids content increased cell migration, which indicates expression levels increase with increased cell migration. Initially exposing cells to vector resulted in transient expression that declined after 2 days, verifying the requirement of migration to sustain expression. Transfected cells were predominantly located within the population of migrating cells for hydrogels that supported cell migration. Although the small mesh size retained at least 70% of the lipoplexes in the absence of cells after 32 days, the presence of cells decreased retention to 10% after 16 days. These results indicate that vectors retained within hydrogels contact migrating cells, and that persistent cell migration can maintain elevated expression levels. Thus matrix degradation and cell migration are fundamental design parameters for maximizing gene delivery from hydrogels. PMID:20450944
Hosseini, Motahare-Sadat; Tafazzoli-Shadpour, Mohammad; Haghighipour, Nooshin; Aghdami, Naser; Goodarzi, Alireza
2015-10-01
In this study, we examined chondrogenic regulation of 2 types of mesenchymal stem cells seeded on the bioengineered substrate in monolayer cultures under mechanically defined conditions to mimic the in vivo microenvironment of chondrocytes within articular cartilage tissues. Human adipose-derived mesenchymal stem cells (ASCs) and bone marrow mesenchymal stem cells (BSCs) were exposed to 0.2 Pa shear stress, 3 MPa cyclic hydrostatic pressure, and combined loading with different sequences on chemically designed medical-grade silicone rubber, while no soluble growth factors were added to the culture medium. The expression levels of chondrogenic-specific genes of SOX9, aggrecan, and type II collagen (Col II) were measured. Results were compared to those of cells treated by biological growth factor. Gene expression patterns were dependent on the loading regime. Moreover, the source of mesenchymal stem cells (adipose or bone marrow) was influential in gene expression. Overall, enhanced expression of chondrogenic markers was found through application of mechanical stimuli. The response was generally found to be significantly promoted when the 2 loading regimes were superimposed. Differentiation of ASCs was shown by a modest increase in gene expression profiles. In general, BSCs expressed higher levels of chondrogenic gene expression than ASCs after 3 weeks. A greater effect on Col II and SOX9 mRNA expression was observed when combined loadings were applied. Results may be applied in determining the proper loading sequence for obtaining functional target cells in cartilage engineering applications.
Niranjan, Rituraj; Kamat, Pradeep Kumar; Nath, Chandishwar; Shukla, Rakesh
2010-02-17
The present study was designed to investigate effect of guggulipid, a drug developed by CDRI and nimesulide on LPS stimulated neuroinflammatory changes in rat astrocytoma cell line (C6). Rat astrocytoma cells (C6) were stimulated with LPS (10 microg/ml) alone and in combinations with different concentrations of guggulipid or nimesulide for 24h of incubation. Nitrite release in culture supernatant, ROS in cells, expressions of COX-2, GFAP and TNF-alpha in cell lysate were estimated. LPS (10 microg/ml) stimulated C6 cells to release nitrite, ROS generation, up regulated COX-2 and GFAP expressions at protein level and TNF-alpha at mRNA level. Both guggulipid and nimesulide significantly attenuated nitrite release, ROS generation and also down regulated expressions of COX-2, GFAP and TNF-alpha. Guggulipid and nimesulide per se did not have any significant effect on C6 cells. Results demonstrate the anti-inflammatory effect of guggulipid comparable to nimesulide which suggest potential use of guggulipid in neuroinflammation associated conditions in CNS disorders. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Bosetti, M; Boccafoschi, F; Calarco, A; Leigheb, M; Gatti, S; Piffanelli, V; Peluso, G; Cannas, M
2008-01-01
The aim of this study was to design a functional bio-engineered material to be used as scaffold for autologous mesenchymal stem cells in ligament tissue engineering. Polyelectrolyte modified HEMA hydrogel (HEMA-co-METAC), applied as coating on silk fibroin fibres, has been formulated in order to take advantage of the biocompatibility of the polyelectrolyte by increasing its mechanical properties with silk fibres. Human bone marrow mesenchymal stem cells behaviour on such reinforced polyelectrolyte has been studied by evaluating cell morphology, cell number, attachment, spreading and proliferation together with collagen matrix production and its mRNA expression. Silk fibroin fibres matrices with HEMA-co-METAC coating exhibited acceptable mechanical behaviour compared to the natural ligament, good human mesenchymal stem cell adhesion and with mRNA expression studies higher levels of collagen types I and III expression when compared to control cells on polystyrene. These data indicate high expression of mRNA for proteins responsible for the functional characteristics of the ligaments and suggest a potential for use of this biomaterial in ligament tissue-engineering applications.
Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Kawabe, Akio; Tanaka, Yoshiya
2018-03-01
In rheumatoid arthritis (RA), P-glycoprotein (P-gp) expression on activated B cells is associated with active efflux of intracellular drugs, resulting in drug resistance. CXCR4 is associated with migration of B cells. This study was designed to elucidate the relevance of P-gp expression on CXCR4 + B cells to clinical manifestations in refractory RA. CD19 + B cells were analyzed using flow cytometry and immunohistochemistry. P-gp was highly expressed especially on CXCR4 + CD19 + B cells in RA. The proportion of P-gp-expressing CXCR4 + B cells correlated with disease activity, estimated by Simplified Disease Activity Index (SDAI), and showed marked expansion in RA patients with high SDAI and extra-articular involvement. In highly active RA, massive infiltration of P-gp + CXCR4 + CD19 + B cells was noted in CXCL12-expressing inflammatory lesions of RA synovitis and RA-associated interstitial pneumonitis. In RA patient with active extra-articular involvement, intracellular dexamethasone level (IDL) in lymphocytes diminished with expansion of P-gp + CXCR4 + CD19 + B cells. Adalimumab reduced P-gp + CXCR4 + CD19 + B cells, increased IDL in lymphocytes, and improved the clinical manifestation and allowed tapering of concomitant medications. Expansion of P-gp + CXCR4 + B cells seems to be associated with drug resistance, disease activity and progressive destructive arthritis with extra-articular involvement in RA.
Beta-Poisson model for single-cell RNA-seq data analyses.
Vu, Trung Nghia; Wills, Quin F; Kalari, Krishna R; Niu, Nifang; Wang, Liewei; Rantalainen, Mattias; Pawitan, Yudi
2016-07-15
Single-cell RNA-sequencing technology allows detection of gene expression at the single-cell level. One typical feature of the data is a bimodality in the cellular distribution even for highly expressed genes, primarily caused by a proportion of non-expressing cells. The standard and the over-dispersed gamma-Poisson models that are commonly used in bulk-cell RNA-sequencing are not able to capture this property. We introduce a beta-Poisson mixture model that can capture the bimodality of the single-cell gene expression distribution. We further integrate the model into the generalized linear model framework in order to perform differential expression analyses. The whole analytical procedure is called BPSC. The results from several real single-cell RNA-seq datasets indicate that ∼90% of the transcripts are well characterized by the beta-Poisson model; the model-fit from BPSC is better than the fit of the standard gamma-Poisson model in > 80% of the transcripts. Moreover, in differential expression analyses of simulated and real datasets, BPSC performs well against edgeR, a conventional method widely used in bulk-cell RNA-sequencing data, and against scde and MAST, two recent methods specifically designed for single-cell RNA-seq data. An R package BPSC for model fitting and differential expression analyses of single-cell RNA-seq data is available under GPL-3 license at https://github.com/nghiavtr/BPSC CONTACT: yudi.pawitan@ki.se or mattias.rantalainen@ki.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ma, Qiangzhong; Gomes, Erica M; Lo, Agnes Shuk-Yee; Junghans, Richard P
2014-02-01
Adoptive immunotherapy by infusion of designer T cells (dTc) engineered with chimeric antigen receptors (CARs) for tumoricidal activity represents a potentially highly specific modality for the treatment of cancer. In this study, 2nd generation (gen) anti-prostate specific membrane antigen (PSMA) dTc were developed for improving the efficacy of previously developed 1st gen dTc for prostate cancer immunotherapy. The 1st gen dTc are modified with chimeric immunoglobulin-T cell receptor (IgTCR) while the 2nd gen dTc are engineered with an immunoglobulin-CD28-T cell receptor (IgCD28TCR), which incorporates a CD28 costimulatory signal for optimal T cell activation. A 2nd gen anti-PSMA IgCD28TCR CAR was constructed by inserting the CD28 signal domain into the 1st gen CAR. 1st and 2nd gen anti-PSMA dTc were created by transducing human T cells with anti-PSMA CARs and their antitumor efficacy was compared for specific activation on PSMA-expressing tumor contact, cytotoxicity against PSMA-expressing tumor cells in vitro, and suppression of tumor growth in an animal model. The 2nd gen dTc can be optimally activated to secrete larger amounts of cytokines such as IL2 and IFNγ than 1st gen and to proliferate more vigorously on PSMA-expressing tumor contact. More importantly, the 2nd gen dTc preserve the PSMA-specific cytotoxicity in vitro and suppress tumor growth in animal models with significant higher potency. Our results demonstrate that 2nd gen anti-PSMA designer T cells exhibit superior antitumor functions versus 1st gen, providing a rationale for advancing this improved agent toward clinical application in prostate cancer immunotherapy. © 2013 Wiley Periodicals, Inc.
Nibbering, P H; Van de Gevel, J S; Van Furth, R
1990-07-20
The present study was performed in order to establish whether a cell-ELISA could be used to determine the expression of antigens by adherent murine peritoneal macrophages and also quantify the numbers of such macrophages. Accurate determination of the number of adherent macrophages proved to be possible with a cell-ELISA designed to assess complement receptor type III (CRIII) expression. Expression of CRIII was considerably more sensitive than determination of the cell-protein or DNA content as a measure of the number of adherent macrophages. For the calculation of the expression of CRIII, Ia antigen, and antigen F4/80 by resident and activated macrophages, use was made of the linear part of the curve obtained when the numbers of macrophages were plotted against the absorbance values for each of the antigens. The values for CRIII expression did not differ significantly between resident macrophages, macrophages activated with recombinant interferon-gamma (rIFN-gamma) and macrophages activated with BCG/PPD. IFN-gamma-activated and BCG/PPD-activated macrophages expressed Ia antigen significantly more intensely than did resident peritoneal macrophages. In contrast the activated macrophages expressed F4/80 significantly less intensely than resident peritoneal macrophages.
Molecular design for recombinant adeno-associated virus (rAAV) vector production.
Aponte-Ubillus, Juan Jose; Barajas, Daniel; Peltier, Joseph; Bardliving, Cameron; Shamlou, Parviz; Gold, Daniel
2018-02-01
Recombinant adeno-associated virus (rAAV) vectors are increasingly popular tools for gene therapy applications. Their non-pathogenic status, low inflammatory potential, availability of viral serotypes with different tissue tropisms, and prospective long-lasting gene expression are important attributes that make rAAVs safe and efficient therapeutic options. Over the last three decades, several groups have engineered recombinant AAV-producing platforms, yielding high titers of transducing vector particles. Current specific productivity yields from different platforms range from 10 3 to 10 5 vector genomes (vg) per cell, and there is an ongoing effort to improve vector yields in order to satisfy high product demands required for clinical trials and future commercialization.Crucial aspects of vector production include the molecular design of the rAAV-producing host cell line along with the design of AAV genes, promoters, and regulatory elements. Appropriately, configuring and balancing the expression of these elements not only contributes toward high productivity, it also improves process robustness and product quality. In this mini-review, the rational design of rAAV-producing expression systems is discussed, with special attention to molecular strategies that contribute to high-yielding, biomanufacturing-amenable rAAV production processes. Details on molecular optimization from four rAAV expression systems are covered: adenovirus, herpesvirus, and baculovirus complementation systems, as well as a recently explored yeast expression system.
Upregulation of human DNA binding protein A (dbpA) in gastric cancer cells.
Wang, Guo-rong; Zheng, Yan; Che, Xiang-ming; Wang, Xin-yang; Zhao, Jia-hui; Wu, Kai-jie; Zeng, Jin; Pan, Chen-en; He, Da-lin
2009-10-01
To determine the effect of human DNA binding protein (dbpA) on the biology of gastric cancer cells. DbpA expression was analyzed by Western blot analysis and immunofluorescence staining in gastric cancer tissues and cell lines. A dbpA-specific small interference (si) RNA was designed and synthesized. Suppressive effect of siRNA on dbpA expression was assessed by real-time RT-PCR. Transwell migration and colony formation assays were used to assess the inhibitory effects of dbpA siRNA on cell invasion and tumorigenesis in vitro. Drug-sensitivity was evaluated using a conventional 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The expression of dbpA was upregulated in gastric cancer tissues and cell lines as compared to adjacent normal tissues or gastric epithelial cells. siRNA treatment successfully silenced dbpA expression. Silencing of dbpA increased expression of E-cadherin, decreased expression of adenomatous polyposis coli (APC), beta-catenin and cyclin D1, but had no effect on expression of NF-kappaB. Silencing of dbpA also suppressed cell invasion and colony formation of SGC7901 cells, and enhanced their chemosensitivity to 5-fluorouracil. DbpA plays an important role in the pathogenesis and development of gastric cancer, and the process involves E-cadherin, APC, beta-catenin and cyclin D1. Silencing of dbpA might be a novel therapeutic strategy for increasing chemosensitivity to 5-fluorouracil in gastric cancer.
K C, Tara Bahadur; Suga, Kanako; Isoshima, Takashi; Aigaki, Toshiro; Ito, Yoshihiro; Shiba, Kiyotaka; Uzawa, Takanori
2018-06-02
Detection of the cells expressing an epithelial cell adhesion molecule (EpCAM) is a crucial step to identify circulating tumor cells (CTCs) from blood. To detect the EpCAM, we here designed and synthesized a series of fluorogenic peptides. Specifically, we functionalized an EpCAM-binding peptide, Ep114, by replacing its amino acids to an aminophenylalanine that was modified with environmentally sensitive 7-nitro-2,1,3-benzoxadiazole (NBD-amPhe). Among six synthesized peptides, we have found that two peptides, Q4X and V6X (X represents NBD-amPhe), retain the Ep114's binding ability and specifically mark EpCAM-expressing cells by just adding these peptides to the cultivation medium. Our wash-free, fluorogenic peptide ligands would boost the development of next generation devices for CTC diagnoses. Copyright © 2018 Elsevier Inc. All rights reserved.
Nowicki, Theodore S; Escuin-Ordinas, Helena; Avramis, Earl; Chmielowski, Bartosz; Chodon, Thinle; Berent-Maoz, Beata; Wang, Xiaoyan; Kaplan-Lefko, Paula; Yang, Lili; Baltimore, David; Economou, James S; Ribas, Antoni; Comin-Anduix, Begoña
2018-06-01
Adoptive cell therapy (ACT) consisting of genetically engineered T cells expressing tumor antigen-specific T-cell receptors displays robust initial antitumor activity, followed by loss of T-cell activity/persistence and frequent disease relapse. We characterized baseline and longitudinal T-cell phenotype variations resulting from different manufacturing and administration protocols in patients who received ACT. Patients with melanoma who enrolled in the F5-MART-1 clinical trial (NCT00910650) received infusions of MART-1 T-cell receptors transgenic T cells with MART-1 peptide-pulsed dendritic cell vaccination. Patients were divided into cohorts based on several manufacturing changes in the generation and administration of the transgenic T cells: decreasing ex vivo stimulation/expansion time, increased cell dose, and receiving fresh instead of cryopreserved cells. T-cell phenotypes were analyzed by flow cytometry at baseline and longitudinally in peripheral blood. Transgenic T cells with shorter ex vivo culture/expansion periods displayed significantly increased expression of markers associated with less differentiated naive/memory populations, as well as significantly decreased expression of the inhibitory receptor programmed death 1 (PD1). Patients receiving fresh infusions of transgenic cells demonstrated expansion of central memory T cells and delayed acquisition of PD1 expression compared with patients who received cryopreserved products. Freshly infused transgenic T cells showed persistence and expansion of naive and memory T-cell populations and delayed acquisition of PD1 expression, which correlated with this cohort's superior persistence of transgenic cells and response to dendritic cell vaccines. These results may be useful in designing future ACT protocols.
Nowicki, Theodore S.; Escuin-Ordinas, Helena; Avramis, Earl; Chmielowski, Bartosz; Chodon, Thinle; Berent-Maoz, Beata; Wang, Xiaoyan; Kaplan-Lefko, Paula; Yang, Lili; Baltimore, David; Economou, James S.; Ribas, Antoni
2018-01-01
Adoptive cell therapy (ACT) consisting of genetically engineered T cells expressing tumor antigen-specific T-cell receptors displays robust initial antitumor activity, followed by loss of T-cell activity/persistence and frequent disease relapse. We characterized baseline and longitudinal T-cell phenotype variations resulting from different manufacturing and administration protocols in patients who received ACT. Patients with melanoma who enrolled in the F5-MART-1 clinical trial (NCT00910650) received infusions of MART-1 T-cell receptors transgenic T cells with MART-1 peptide-pulsed dendritic cell vaccination. Patients were divided into cohorts based on several manufacturing changes in the generation and administration of the transgenic T cells: decreasing ex vivo stimulation/expansion time, increased cell dose, and receiving fresh instead of cryopreserved cells. T-cell phenotypes were analyzed by flow cytometry at baseline and longitudinally in peripheral blood. Transgenic T cells with shorter ex vivo culture/expansion periods displayed significantly increased expression of markers associated with less differentiated naive/memory populations, as well as significantly decreased expression of the inhibitory receptor programmed death 1 (PD1). Patients receiving fresh infusions of transgenic cells demonstrated expansion of central memory T cells and delayed acquisition of PD1 expression compared with patients who received cryopreserved products. Freshly infused transgenic T cells showed persistence and expansion of naive and memory T-cell populations and delayed acquisition of PD1 expression, which correlated with this cohort’s superior persistence of transgenic cells and response to dendritic cell vaccines. These results may be useful in designing future ACT protocols. PMID:29470191
Heydari Zarnagh, Hafez; Ravanshad, Mehrdad; Pourfatollah, Ali Akbar; Rasaee, Mohammad Javad
2015-04-01
Computational tools are reliable alternatives to laborious work in chimeric protein design. In this study, a chimeric antigen was designed using computational techniques for simultaneous detection of anti-HTLV-I and anti-HBV in infected sera. Databases were searched for amino acid sequences of HBV/HLV-I diagnostic antigens. The immunodominant fragments were selected based on propensity scales. The diagnostic antigen was designed using these fragments. Secondary and tertiary structures were predicted and the B-cell epitopes were mapped on the surface of built model. The synthetic DNA coding antigen was sub-cloned into pGS21a expression vector. SDS-PAGE analysis showed that glutathione fused antigen was highly expressed in E. coli BL21 (DE3) cells. The recombinant antigen was purified by nickel affinity chromatography. ELISA results showed that soluble antigen could specifically react with the HTLV-I and HBV infected sera. This specific antigen could be used as suitable agent for antibody-antigen based screening tests and can help clinicians in order to perform quick and precise screening of the HBV and HTLV-I infections.
Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary
2016-01-01
Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design. PMID:27812180
Gurskaya, N G; Staroverov, D B; Lukyanov, K A
2016-01-01
Alternative splicing is an important mechanism of regulation of gene expression and expansion of proteome complexity. Recently we developed a new fluorescence reporter for quantitative analysis of alternative splicing of a target cassette exon in live cells (Gurskaya et al., 2012). It consists of a specially designed minigene encoding red and green fluorescent proteins (Katushka and TagGFP2) and a fragment of the target gene between them. Skipping or inclusion of the alternative exon induces a frameshift; ie, alternative exon length must not be a multiple of 3. Finally, red and green fluorescence intensities of cells expressing this reporter are used to estimate the percentage of alternative (exon-skipped) and normal (exon-retained) transcripts. Here, we provide a detailed description of design and application of the fluorescence reporter of a target alternative exon splicing in mammalian cell lines. © 2016 Elsevier Inc. All rights reserved.
Zhou, Qiong; Hu, Ya; Howard, O M Zack; Oppenheim, Joost J; Chen, Xin
2014-01-01
CD4(+) T cells stimulate immune responses through distinct patterns of cytokine produced by Th1, Th2 or Th17 cells, or inhibit immune responses through Foxp3-expressing regulatory T cells (Tregs). Paradoxically, effector T cells were recently shown to activate Tregs, however, it remains unclear which Th subset is responsible for this effect. In this study, we found that Th17 cells expressed the highest levels of TNF among in vitro generated Th subsets, and most potently promoted expansion and stabilized Foxp3 expression by Tregs when co-transferred into Rag1(-/-) mice. Both TNF and IL-2 produced by Th17 cells contributed to this effect. The stimulatory effect of Th17 cells on Tregs was largely abolished when co-transferred with TNFR2-deficient Tregs. Furthermore, Tregs deficient in TNFR2 also supported a much lower production of IL-17A and TNF expression by co-transferred Th17 cells. Thus, our data indicate that the TNF-TNFR2 pathway plays a crucial role in the reciprocal stimulatory effect of Th17 cells and Tregs. This bidirectional interaction should be taken into account when designing therapy targeting Th17 cells, Tregs, TNF and TNFR2. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis
Scott, RE; Ghule, PN; Stein, JL; Stein, GS
2015-01-01
The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoint with the development of chromosomal instability. This paper presents the outcome of systems biology studies designed to evaluate if networks of covariate cell cycle gene transcripts exist in proliferative mammalian tissues including mice, rats and humans. The GeneNetwork website that contains numerous gene expression datasets from different species, sexes and tissues represents the foundational resource for these studies (www.genenetwork.org). In addition, WebGestalt, a gene ontology tool, facilitated the identification of expression networks of genes that co-vary with key cell cycle targets, especially Cdc20 and Plk1 (www.bioinfo.vanderbilt.edu/webgestalt). Cell cycle expression networks of such covariate mRNAs exist in multiple proliferative tissues including liver, lung, pituitary, adipose and lymphoid tissues among others but not in brain or retina that have low proliferative potential. Sixty-three covariate cell cycle gene transcripts (mRNAs) compose the average cell cycle network with p = e−13 to e−36. Cell cycle expression networks show species, sex and tissue variability and they are enriched in mRNA transcripts associated with mitosis many of which are associated with chromosomal instability. PMID:25808367
si-RNA-mediated knockdown of PDLIM5 suppresses gastric cancer cell proliferation in vitro.
Li, Yanliang; Gao, Yongsheng; Xu, Yue; Sun, Xianjun; Song, Xilin; Ma, Heng; Yang, Mingshan
2015-04-01
Gastric cancer is the second most prominent cause of cancer mortality in the world. This study was designed to identify the possible use of si-RNA-mediated PDLIM5 gene silencing as a therapeutic tool for gastric cancer. Expression levels of PDLIM5 were detected in several gastric cancer cell lines using Western blot and qRT-PCR. We found PDLIM5 is highly expressed in all cultured gastric cancer cell lines. Small interfering RNA (si-RNA) was then employed to knock down PDLIM5 expression in MGC80-3 gastric cancer cells. Knockdown of PDLIM5 significantly inhibited cell proliferation and colony formation. Moreover, the absence of PDLIM5 in MGC80-3 cells led to S phase cell cycle arrest and apoptosis. This study highlights the critical role of PDLIM5 in gastric cancer cell growth and suggests that si-RNA-mediated silencing of PDLIM5 might serve as a potential therapeutic approach for the treatment of gastric cancer. © 2014 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Zhang, Yuanxing
Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.
Parra, Edwin Roger; Villalobos, Pamela; Zhang, Jiexin; Behrens, Carmen; Mino, Barbara; Swisher, Stephen; Sepesi, Boris; Weissferdt, Annika; Kalhor, Neda; Heymach, John Victor; Moran, Cesar; Zhang, Jianjun; Lee, Jack; Rodriguez-Canales, Jaime; Gibbons, Don; Wistuba, Ignacio I
2018-06-01
The understanding of immune checkpoint molecules' co-expression in non-small cell lung carcinoma (NCLC) is important to potentially design combinatorial immunotherapy approaches. We studied 225 formalin-fixed, paraffin-embedded tumor tissues from stage I-III NCLCs - 142 adenocarcinomas (ADCs) and 83 squamous cell carcinomas (SCCs) - placed in tissue microarrays. Nine immune checkpoint markers were evaluated; four (programmed death ligand 1 [PD-L1], B7-H3, B7-H4, and indoleamine 2,3-dioxygenase 1 [IDO-1]) expressed predominantly in malignant cells (MCs) and five (inducible T cell costimulator, V-set immunoregulatory receptor, T-cell immunoglobulin mucin family member 3, lymphocyte activating 3, and OX40) expressed mostly in stromal tumor-associated inflammatory cells (TAICs). All markers were examined using a quantitative image analysis and correlated with clinicopathologic features, TAICs, and molecular characteristics. Using above the median value as positive expression in MCs and high density of TAICs expressing those markers, we identified higher expression of immune checkpoints in SCC than ADC. Common simultaneous expression by MCs was PD-L1 + B7-H3 + IDO-1 in ADC and PD-L1 + B7-H3, or B7-H3 + B7-H4, in SCC. TAICs expressing checkpoint were significantly higher in current smokers than in never smokers. Almost all the immune checkpoint markers showed positive correlation with TAICs expressing inflammatory cell markers. KRAS-mutant ADC specimens showed higher expression of PD-L1 in MCs and of B7-H3, T-cell immunoglobulin mucin family member 3, and IDO-1 in TAICs than wild type. Kaplan-Meier survival curves showed worse prognosis in ADC patients with higher B7-H4 expression by MCs. We found frequent immunohistochemical co-expression of immune checkpoints in surgically resected NCLC tumors and correlated with tumor histology, smoking history, tumor size, and the density of inflammatory cells and tumor mutational status. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
2018-01-01
The cell division rate, size and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics. We have modelled stochastic gene expression inside growing and dividing cells to study the effect of division rates on noise in mRNA and protein expression. We use assumptions and parameters relevant to Escherichia coli, for which abundant quantitative data are available. We find that coupling of transcription, but not translation rates to the rate of cell division can result in protein concentration and noise homeostasis across conditions. Interestingly, we find that the increased cell size at fast division rates, observed in E. coli and other unicellular organisms, buffers noise levels even for proteins with decreased expression at faster growth. We then investigate the functional importance of these regulations using gene regulatory networks that exhibit bi-stability and oscillations. We find that network topology affects robustness to changes in division rate in complex and unexpected ways. In particular, a simple model of persistence, based on global physiological feedback, predicts increased proportion of persister cells at slow division rates. Altogether, our study reveals how cell size regulation in response to cell division rate could help controlling gene expression noise. It also highlights that understanding circuits' robustness across growth conditions is key for the effective design of synthetic biological systems. PMID:29657814
Al-Ansary, Ghada H; Eldehna, Wagdy M; Ghabbour, Hazem A; Al-Rashood, Sara T A; Al-Rashood, Khalid A; Eladwy, Radwa A; Al-Dhfyan, Abdullah; Kabil, Maha M; Abdel-Aziz, Hatem A
2017-12-01
Cancer stem cells (CSCs) have been objects of intensive study since their identification in 1994. Adopting a structural rigidification approach, a novel series of 3-phenylthiazolo[3,2-a]benzimidazoles 4a-d was designed and synthesised, in an attempt to develop potent anticancer agent that can target the bulk of tumour cells and CSCs. The anti-proliferative activity of the synthesised compounds was evaluated against two cell lines, namely; colon cancer HT-29 and triple negative breast cancer MDA-MB-468 cell lines. Also, their inhibitory activity against the cell surface expression of CD133 was examined. In particular, compound 4b emerged as a promising hit molecule as it manifested good antineoplastic potency against both tested cell lines (IC 50 = 9 and 12 μM, respectively), beside its ability to inhibit the cell surface expression of CD133 by 50% suggesting a promising potential of effectively controlling the tumour by eradicating the tumour bulk and inhibiting the proliferation of the CSCs. Moreover, compounds 4a and 4c showed moderate activity against HT-29 (IC 50 = 21 and 29 μM, respectively) and MDA-MB-468 (IC 50 = 23 and 24 μM, respectively) cell lines, while they inhibited the CD133 expression by 14% and 48%, respectively. Finally, a single crystal X-ray diffraction was recorded for compound 4d.
Zeng, Bo; Zeng, Zhen; Liu, Chang; Yang, Yaying
2017-06-01
Objective To investigate the effect of Golgi α-mannosidase II (GM2) gene knockdown on adhesion abilities of BGC-823 human gastric carcinoma cells. Methods Three plasmid vectors expressing GM2 shRNAs and a negative control plasmid vector were designed, constructed and then transfected into BGC-823 cells by Lipofectamine TM 2000. After transfection, the mRNA and protein levels of GM2 in BGC-823 cells were detected by real-time quantitative PCR (qRT-PCR) and Western blotting to evaluate the transfection efficacy. The best plasmid for GM2 gene knockdown was selected and stably transfected into BGC-823 cells. Adhesion abilities of BGC-823 cells after GM2 gene silencing were observed by cell-cell, cell-matrix and cell-endothelial cell adhesion assays. At the same time, the expressions of E-cadherin, P-selectin, CD44v6 and intercellular adhesion molecule-1 (ICAM-1) proteins were detected by Western blotting after GM2 gene knockdown. Results The expression of GM2 was effectively knockdown in GM2-shRNA-2-transfected BGC-823 cells. Compared with the blank control group and the negative control group, the intercellular adhesion ability of the GM2-shRNA-2-transfected cells increased significantly, while their cell-matrix and cell-endothelium adhesion abilities markedly decreased. In GM2-shRNA-2 transfection group, E-cadherin expression was significantly elevated and the P-selectin expression was significantly reduced, while the expression levels of CD44v6 and ICAM-1 were not obviously changed. Conclusion After GM2 gene knockdown, the intercellular adhesion ability of gastric carcinoma BGC-823 cells is enhanced, while the adhesion abilities with the extracellular matrix and endothelial cells are weakened. The changes might be related to the up-regulated expression of E-cadherin and the down-regulation of P-selectin.
Yu, Qiu-Yun; Zhou, Xin-Feng; Xia, Qing; Shen, Jia; Yan, Jia; Zhu, Jiu-Ting; Li, Xiang; Shu, Ming
2018-01-01
This study explored the effects involved in silencing CLIC4 on apoptosis and proliferation of mouse liver cancer Hca-F and Hca-P cells. A CLIC4-target small interfering RNA (siRNA) was designed to compound into two individual complementary oligonucleotide chains. A process of annealing and connection to a pSilencer vector was followed by transfection with Hca-F and Hca-P cells. Quantitative real-time polymerase chain reaction and Western blotting techniques were used to determine CLIC4 mRNA and protein expressions. CCK8 assay and flow cytometry were employed for analysis of the survival and apoptosis rate as well as the cell cycle in an octreotide-induced apoptosis model. Expressions of caspase 3, caspase 9, and cleaved PARP were measured using Western blotting. The CLIC4 mRNA and protein expressions in Hca-F and Hca-P cells transfected by pSilencer-CLIC4 siRNA plasmid in the blank group displayed remarkably decreased levels of expression, when compared with both the control and negative control (NC) groups. Decreased survival rates and cleaved PARP expression, increased cell apoptosis rate,expressions of caspase 3 and caspase 9 in Hca-F and Hca-P cells were detected in groups that had been cultured in a medium containing octreotide. The pSilencer-CLIC4 siRNA-2 group when compared with the control and NC groups exhibited decreased survival rates, cleaved PARP expression, increased cell apoptosis rates, and increased expressions of caspase 3 and caspase 9 of Hca-F and Hca-P cells. The results demonstrated that siRNA-induced down-regulation of CLIC4 could proliferation, while in turn promoting apoptosis of mouse liver cancer Hca-F and Hca-P cells. J. Cell. Biochem. 119: 659-668, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Wang, P; Liu, S; Cheng, B; Wu, X Z; Ding, S S; Xu, L; Liu, Y; Duan, L; Sun, S Z
2017-03-08
Objective: To study effects of cyclin D1 overexpression on the proliferation and differentiation of cervical squamous cell carcinoma SiHa cells and to investigate related signaling molecules. Methods: Primers were designed to amplify the full length of cyclin D1 gene and cyclin D1 gene was amplified by PCR for constructing pcDNA3.1 plasmid vector. The construct was then transfected into SiHa cells, and the cells with stable overexpression of cyclin D1 were established, cyclin D1 gene and protein expression were detected by RT-PCR and Western blot, respectively. Cell growth curve was documented by MTT assay. CK7, E-cadherin, vimentin, Snail gene and protein expression in transfected cells were detected by RT-PCR and Western blot. RT-PCR was used to detect the mRNA expression of proliferation and differentiation-related genes like CDK4, CDK2, p21, p27, cyclin E, Rb, E2F, E6/E7 and Ki-67. After synchronization of cells, RT-PCR was used to detect of cyclin D1 and p21 mRNA expression at different time points of the cell cycle. Results: The G-3 cells with cyclin D1 overexpression were successfully established. The growth curve and Ki-67 mRNA expression accelerated in G-3 cells.Vimentin and Snail expression significantly increased at both gene and protein levels, while E-cadherin, CK7 gene and protein expression significantly decreased, indicating epithelial mesenchymal transitionoccurred in G-3 cells.Meanwhile, mRNA expression of cyclin D1, CDK4, CDK2, p21, p27, cyclin E, E2F and Rb increased, while E6/E7 and p16 showed no significant change. The expression trends of p21 and cyclin D1 were almost identical with fluctuation at different time points in the cell cycle. Conclusions: Overexpression of cyclin D1 induced by gene transfection promotes proliferation and epithelial mesenchymal transition in SiHa cells.The process is accompanied by up-regulation of CDK4, CDK2, p21, p27 and cyclin E genes.p21 expression increases synchronously with cyclin D1, suggesting a regulatory role in epithelial mesenchymal transition by affecting expression of vimentin in G-3 cells.
Programmable single-cell mammalian biocomputers.
Ausländer, Simon; Ausländer, David; Müller, Marius; Wieland, Markus; Fussenegger, Martin
2012-07-05
Synthetic biology has advanced the design of standardized control devices that program cellular functions and metabolic activities in living organisms. Rational interconnection of these synthetic switches resulted in increasingly complex designer networks that execute input-triggered genetic instructions with precision, robustness and computational logic reminiscent of electronic circuits. Using trigger-controlled transcription factors, which independently control gene expression, and RNA-binding proteins that inhibit the translation of transcripts harbouring specific RNA target motifs, we have designed a set of synthetic transcription–translation control devices that could be rewired in a plug-and-play manner. Here we show that these combinatorial circuits integrated a two-molecule input and performed digital computations with NOT, AND, NAND and N-IMPLY expression logic in single mammalian cells. Functional interconnection of two N-IMPLY variants resulted in bitwise intracellular XOR operations, and a combinatorial arrangement of three logic gates enabled independent cells to perform programmable half-subtractor and half-adder calculations. Individual mammalian cells capable of executing basic molecular arithmetic functions isolated or coordinated to metabolic activities in a predictable, precise and robust manner may provide new treatment strategies and bio-electronic interfaces in future gene-based and cell-based therapies.
Zheng, Tingting; Fu, Jia-Ju; Hu, Lihui; Qiu, Fan; Hu, Minjin; Zhu, Jun-Jie; Hua, Zi-Chun; Wang, Hui
2013-06-04
The variable susceptibility to the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment observed in various types of leukemia cells is related to the difference in the expression levels of death receptors, DR4 and DR5, on the cell surfaces. Quantifying the DR4/DR5 expression status on leukemia cell surfaces is of vital importance to the development of diagnostic tools to guide death receptor-based leukemia treatment. Taking the full advantages of novel nanobiotechnology, we have developed a robust electrochemical cytosensing approach toward ultrasensitive detection of leukemia cells with detection limit as low as ~40 cells and quantitative evaluation of DR4/DR5 expression on leukemia cell surfaces. The optimization of electron transfer and cell capture processes at specifically tailored nanobiointerfaces and the incorporation of multiple functions into rationally designed nanoprobes provide unique opportunities of integrating high specificity and signal amplification on one electrochemical cytosensor. The high sensitivity and selectivity of this electrochemical cytosensing approach also allows us to evaluate the dynamic alteration of DR4/DR5 expression on the surfaces of living cells in response to drug treatments. Using the TRAIL-resistant HL-60 cells and TRAIL-sensitive Jurkat cells as model cells, we have further verified that the TRAIL susceptibility of various types of leukemia cells is directly correlated to the surface expression levels of DR4/DR5. This versatile electrochemical cytosensing platform is believed to be of great clinical value for the early diagnosis of human leukemia and the evaluation of therapeutic effects on leukemia patients after radiation therapy or drug treatment.
Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Huey; Shabbir, Arsalan; Molnar, Merced
2007-03-30
Multiple pseudogenes have been proposed for embryonic stem (ES) cell-specific genes, and their abundance suggests that some of these potential pseudogenes may be functional. ES cell-specific expression of Oct4 regulates stem cell pluripotency and self-renewing state. Although Oct4 expression has been reported in adult tissues during gene reprogramming, the detected Oct4 signal might be contributed by Oct4 pseudogenes. Among the multiple Oct4 transcripts characterized here is a {approx}1 kb clone derived from P19 embryonal carcinoma stem cells, which shares a {approx}87% sequence homology with the parent Oct4 gene, and has the potential of encoding an 80-amino acid product (designated asmore » Oct4P1). Adenoviral expression of Oct4P1 in mesenchymal stem cells promotes their proliferation and inhibits their osteochondral differentiation. These dual effects of Oct4P1 are reminiscent of the stem cell regulatory function of the parent Oct4, and suggest that Oct4P1 may be a functional pseudogene or a novel Oct4-related gene with a unique function in stem cells.« less
Jensen, Helene H; Holst, Mikkel R; Login, Frédéric H; Morgen, Jeanette J; Nejsum, Lene N
2018-06-01
Aquaporin-5 (AQP5) is a plasma membrane water channel mainly expressed in secretory glands. Increased expression of AQP5 is observed in multiple cancers, including breast cancer, where high expression correlates with the degree of metastasis and poor prognosis. Moreover, studies in cancer cells have suggested that AQP5 activates Ras signaling, drives morphological changes, and in particular increased invasiveness. To design intervention strategies, it is of utmost importance to characterize and dissect the cell biological changes induced by altered AQP5 expression. To isolate the effect of AQP5 overexpression from the cancer background, AQP5 was overexpressed in normal epithelial MDCK cells which have no endogenous AQP5 expression. AQP5 overexpression promoted actin stress fiber formation and lamellipodia dynamics. Moreover, AQP5 decreased cell circularity. Phosphorylation of AQP5 on serine 156 in the second intracellular loop has been shown to activate the Ras pathway. When serine 156 was mutated to alanine to mimic the nonphosphorylated state, the decrease in cell circularity was reversed, indicating that the AQP5-Ras axis is involved in the effect on cell shape. Interestingly, the cellular changes mediated by AQP5 were not associated with induction of epithelial-to-mesenchymal transition. Thus, AQP5 may contribute to cancer by altering cellular morphology and actin organization, which increase the metastatic potential.
Retrovirus-based vectors for transient and permanent cell modification.
Schott, Juliane W; Hoffmann, Dirk; Schambach, Axel
2015-10-01
Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Expression profiling of G-protein-coupled receptors in human urothelium and related cell lines.
Ochodnický, Peter; Humphreys, Sian; Eccles, Rachel; Poljakovic, Mirjana; Wiklund, Peter; Michel, Martin C
2012-09-01
What's known on the subject? and What does the study add? Urothelium emerged as a crucial integrator of sensory inputs and outputs in the bladder wall, and urothelial G-protein-coupled receptors (GPCRs) may represent plausible targets for treatment of various bladder pathologies. Urothelial cell lines provide a useful tool to study urothelial receptor function, but their validity as models for native human urothelium remains unclear. We characterize the mRNA expression of genes coding for GPCRs in human freshly isolated urothelium and compare the expression pattern with those in human urothelial cell lines. To characterize the mRNA expression pattern of genes coding for G-protein-coupled receptors (GPCRs) in human freshly isolated urothelium. To compare GPCR expression in human urothelium-derived cell lines to explore the suitability of these cell lines as model systems to study urothelial function. Native human urothelium (commercially sourced) and human urothelium-derived non-cancer (UROtsa and TERT-NHUC) and cancer (J82) cell lines were used. For mRNA expression profiling we used custom-designed real-time polymerase chain reaction array for 40 receptors and several related genes. Native urothelium expressed a wide variety of GPCRs, including α(1A), α(1D) and all subtypes of α(2) and β adrenoceptors. In addition, M(2) and M(3) cholinergic muscarinic receptors, angiotensin II AT(1) receptor, serotonin 5-HT(2A) receptor and all subtypes of bradykinin, endothelin, cannabinoid, tachykinin and sphingosine-1-phosphate receptors were detected. Nerve growth factor and both its low- and high-affinity receptors were also expressed in urothelium. In all cell lines expression of most GPCRs was markedly downregulated, with few exceptions. In UROtsa cells, but much less in other cell lines, the expression of β(2) adrenoceptors, M(3) muscarinic receptors, B(1) and B(2) bradykinin receptors, ET(B) endothelin receptors and several subtypes of sphingosine-1-phosphate receptors was largely retained. Human urothelium expresses a wide range of receptors which enables sensing and integration of various extracellular signals. Human urothelium-derived cell lines, especially UROtsa cells, show comparable mRNA expression to native tissue for several physiologically relevant GPCRs, but lose expression of many other receptors. The use of cell lines as model systems of human urothelium requires careful validation of suitability for the genes of interest. © 2012 BJU INTERNATIONAL.
Sato, Mototaka; Nakai, Yasutomo; Nakata, Wataru; Yoshida, Takahiro; Hatano, Koji; Kawashima, Atsunari; Fujita, Kazutoshi; Uemura, Motohide; Takayama, Hitoshi; Nonomura, Norio
2013-01-01
Purpose Extracellular matrix metalloproteinase inducer (EMMPRIN) has been reported to play crucial roles, including in angiogenesis, in several carcinomas. However, the correlation between EMMPRIN levels and angiogenesis expression profile has not been reported, and the role of EMMPRIN in renal cell carcinoma (RCC) is unclear. In the present study, we evaluated the association of EMMPRIN with angiogenesis, its value in prognosis, and its roles in RCC. Experimental Design EMMPRIN expression was examined in 50 RCC patients treated with radical nephrectomy. Angiogenesis, proliferation, and invasion activity were evaluated using EMMPRIN knockdown RCC cell lines. The size of EMMPRIN-overexpressing xenografts was measured and the degree of angiogenesis was quantified. EMMPRIN expression was evaluated in RCC patients who received sunitinib therapy and in sunitinib-resistant cells. Further, the relation between EMMPRIN expression and sensitivity to sunitinib was examined. Results EMMPRIN score was significantly associated with clinicopathological parameters in RCC patients, as well as being significantly correlated with microvessel area (MVA) in immature vessels and with prognosis. Down-regulation of EMMPRIN by siRNA led to decreased VEGF and bFGF expression, cell proliferation, and invasive potential. EMMPRIN over-expressing xenografts showed accelerated growth and MVA of immature vessels. EMMPRIN expression was significantly increased in patients who received sunitinib therapy as well as in sunitinib-resistant 786-O cells (786-suni). EMMPRIN-overexpressing RCC cells were resistant to sunitinib. Conclusion Our findings indicate that high expression of EMMPRIN in RCC plays important roles in tumor progression and sunitinib resistance. Therefore, EMMPRIN could be a novel target for the treatment of RCC. PMID:24073208
Wu, Yuan-Yuan; Ma, Tie-Liang; Ge, Zhi-Jun; Lin, Jie; Ding, Wei-Liang; Feng, Jia-Ke; Zhou, Su-Jun; Chen, Guo-Chang; Tan, Yong-Fei; Cui, Guo-Xing
2014-10-01
The present study aimed to investigate the role of JWA gene in the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells and the effect on the MAPK signaling pathway. Human PANC-1 pancreatic cancer cells were cultured in vitro , and small interfering RNA (siRNA) was designed for the JWA gene. The siRNA was transfected into PANC-1 cells. Subsequently, the cell proliferation was measured by MTT assay; cell apoptosis was detected by analyzing BAX and Bcl-2 protein expression; cell migration and invasion were measured using Transwell ® chambers; and the protein expression of JWA and ERK1/2, JNK and p38 and their phosphorylated forms were measured by western blotting. By utilizing the MTT assay, the results showed that when JWA protein expression was inhibited, the proliferation of PANC-1 cells was enhanced. In addition, the expression of apoptosis-associated protein (AAP) BAX was substantially decreased, while the expression of the apoptosis inhibitor gene, Bcl-2 , was significantly enhanced. Using Transwell chambers, it was found that the number of penetrating PANC-1 cells was significantly increased after transfection with JWA siRNA, suggesting that the migration and invasion of the cells was substantially increased. By studying the association between JWA and the MAPK pathway in PANC-1 cells, it was found that the expression of p-ERK1/2 of the MAPK pathway was significantly downregulated following JWA siRNA transfection. However, the expression levels of ERK1/2, JNK, p38, p-JNK and p-p38 showed no significant differences. In conclusion, it was shown that JWA affects the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells which could be attributed to effects on the expression of ERK1/2 in the MAPK pathway.
Li, Jinhua; Franek, Karl J; Patterson, Andrea L; Holmes, Lillia M; Burgin, Kelly E; Ji, Jianfei; Yu, Xianzhong; Wagner, Thomas E; Wei, Yanzhang
2003-11-01
Down-regulation of the major histocompatibility complex (MHC) is one of the major mechanisms that tumor cells adopted to escape immunosurveillance. Therefore, specifically coating tumor cells with foreign MHC may make tumor cells a better target for immune recognition and surveillance. In this study, we designed and generated a fusion protein, H2Kd/scPSMA, consisting of a single chain antibody against human prostate specific membrane antigen (PSMA) and the extracellular domain of mouse H-2Kd. The expression of this fusion protein in B16F0 mouse melanoma cells was confirmed by RT-PCR and fluorescent activated cell sorting (FACS). Our animal study showed that the expression of H2Kd/scPSMA in B16F0/PSMA5, a B16F0 cell line expressing human PSMA, significantly inhibited tumor growth as demonstrated in the pulmonary metastasis assay and tumor growth study and improved overall survival.
Ojima-Kato, Teruyo; Nagai, Satomi; Nakano, Hideo
2017-05-01
Despite advances in microbial protein expression systems, low production of proteins remains a great concern for some genes. Here we report that the insertion of a short peptide tag, consisting of Ser-Lys-Ile-Lys (SKIK), adjacent to the start codon of genes encoding difficult-to-express proteins can increase protein expression in Escherichia coli and Saccharomyces cerevisiae. Protein expression levels of a mouse monoclonal antibody (mAb), rabbit mAbs obtained from clonal B cells, and an artificially designed peptide were significantly increased simply by the addition of the SKIK tag in E. coli systems. In particular, a ∼30-fold increase in protein production was observed for the mouse mAb, and the artificially designed peptide band became detectable in sodium dodecyl sulfate-poly acrylamide gel electrophoresis after coomassie brilliant blue staining or western blotting on adding the SKIK tag. The tag also increased the expression of tagged proteins in S. cerevisiae and an E. coli cell-free protein synthesis system. Although the mechanism of high protein expression on addition of the tag is unclear, our findings offer great benefits to biotechnology research and industry. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Miri-Moghaddam, Ebrahim; Deezagi, Abdolkhaleg; Soheili, Zahra Sohaila; Shariati, Parvin
2010-01-01
The close correlation between telomerase activity and human telomerase reverse transcriptase (hTERT) expression has made hTERT to be considered as a selective molecular target for human cancer therapy. In this study, the ability of short-interfering RNA (siRNA) to downregulate hTERT expression and its correlation with cell growth and apoptosis in the promyelocytic cell line HL-60 was evaluated. hTERT siRNA was designed and transfected to HL-60. hTERT mRNA expression, cell proliferation and apoptotic cells were measured. The results indicated that hTERT siRNA resulted in 97.2 ± 0.6% downregulation of the hTERT mRNA content; inhibition of the cell proliferation rate was about 52.8 ± 2.3% and the apoptotic index of cells was 30.5 ± 1.5%. hTERT plays an essential role in cell proliferation and control of the viability of leukemic cells, thus promising the development of drugs for leukemia. Copyright © 2010 S. Karger AG, Basel.
Design and optimization of reverse-transcription quantitative PCR experiments.
Tichopad, Ales; Kitchen, Rob; Riedmaier, Irmgard; Becker, Christiane; Ståhlberg, Anders; Kubista, Mikael
2009-10-01
Quantitative PCR (qPCR) is a valuable technique for accurately and reliably profiling and quantifying gene expression. Typically, samples obtained from the organism of study have to be processed via several preparative steps before qPCR. We estimated the errors of sample withdrawal and extraction, reverse transcription (RT), and qPCR that are introduced into measurements of mRNA concentrations. We performed hierarchically arranged experiments with 3 animals, 3 samples, 3 RT reactions, and 3 qPCRs and quantified the expression of several genes in solid tissue, blood, cell culture, and single cells. A nested ANOVA design was used to model the experiments, and relative and absolute errors were calculated with this model for each processing level in the hierarchical design. We found that intersubject differences became easily confounded by sample heterogeneity for single cells and solid tissue. In cell cultures and blood, the noise from the RT and qPCR steps contributed substantially to the overall error because the sampling noise was less pronounced. We recommend the use of sample replicates preferentially to any other replicates when working with solid tissue, cell cultures, and single cells, and we recommend the use of RT replicates when working with blood. We show how an optimal sampling plan can be calculated for a limited budget. .
Zhang, Ningning; Gonzalez, Maria; Savary, Brett; Xu, Jianfeng
2016-03-01
Low-yield protein production remains the most significant economic hurdle with plant cell culture technology. Fusions of recombinant proteins with hydroxyproline-O-glycosylated designer glycopeptide tags have consistently boosted secreted protein yields. This prompted us to study the process development of this technology aiming to achieve productivity levels necessary for commercial viability. We used a tobacco BY-2 cell culture expressing EGFP as fusion with a glycopeptide tag comprised of 32 repeat of "Ser-Pro" dipeptide, or (SP)32 , to study cell growth and protein secretion, culture scale-up, and establishment of perfusion cultures for continuous production. The BY-2 cells accumulated low levels of cell biomass (~7.5 g DW/L) in Schenk & Hildebrandt medium, but secreted high yields of (SP)32 -tagged EGFP (125 mg/L). Protein productivity of the cell culture has been stable for 6.0 years. The BY-2 cells cultured in a 5-L bioreactor similarly produced high secreted protein yield at 131 mg/L. Successful operation of a cell perfusion culture for 30 days was achieved under the perfusion rate of 0.25 and 0.5 day(-1) , generating a protein volumetric productivity of 17.6 and 28.9 mg/day/L, respectively. This research demonstrates the great potential of the designer glycopeptide technology for use in commercial production of valuable proteins with plant cell cultures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cimpean, Anca Maria; Raica, Marius
2016-12-01
Scattered data suggested that disodium cromolyn, well known as a mast cell stabilizer shows some effects on tumor cells and tumor-associated newly formed vascular networks. Most of these studies used tumor cell lines assessed by in vitro studies. Nor disodium cromolyn effects on melanoma cell lines were studied yet, neither its influence on recruited tumor blood vessels or angiogenic growth factors expression. We designed here a study regarding disodium cromolyn effects on A375 melanoma tumor cells implanted on chick embryo chorioallantoic membrane (CAM) and on blood vessels recruited by the experimental melanoma in the absence of mast cells, knowing that within CAM, the existence of mast cells are not certified yet. We also assessed the role of disodium cromolyn on the expression of several angiogenic growth factors. Disodium cromoglycate differentially acts on tumor cells and blood vessels. Extensive necrotic areas of experimental melanoma together with an increased number of peritumor blood vessels were observed in treated specimens as compared with untreated tumors. Disodium cromolyn inhibited VEGF and PDGF-BB expression, and had no effects on EG VEGF expression between treated and non treated specimens in a mast cells free microenvironment. Our results sustain the direct antitumor effects of sodium cromolyn and suggest the involvement of several growth factors in the recruitment of tumor vessels by A375 melanoma tumor cells. The expression of growth factors is differentially influenced by sodium cromolyn treatment.
Pullagurla, Swathi R; Witek, Małgorzata A; Jackson, Joshua M; Lindell, Maria A M; Hupert, Mateusz L; Nesterova, Irina V; Baird, Alison E; Soper, Steven A
2014-04-15
We report the design and performance of a polymer microfluidic device that can affinity select multiple types of biological cells simultaneously with sufficient recovery and purity to allow for the expression profiling of mRNA isolated from these cells. The microfluidic device consisted of four independent selection beds with curvilinear channels that were 25 μm wide and 80 μm deep and were modified with antibodies targeting antigens specifically expressed by two different cell types. Bifurcated and Z-configured device geometries were evaluated for cell selection. As an example of the performance of these devices, CD4+ T-cells and neutrophils were selected from whole blood as these cells are known to express genes found in stroke-related expression profiles that can be used for the diagnosis of this disease. CD4+ T-cells and neutrophils were simultaneously isolated with purities >90% using affinity-based capture in cyclic olefin copolymer (COC) devices with a processing time of ∼3 min. In addition, sufficient quantities of the cells could be recovered from a 50 μL whole blood input to allow for reverse transcription-polymerase chain reaction (RT-PCR) following cell lysis. The expression of genes from isolated T-cells and neutrophils, such as S100A9, TCRB, and FPR1, was evaluated using RT-PCR. The modification and isolation procedures demonstrated here can also be used to analyze other cell types as well where multiple subsets must be interrogated.
Kang, Shin-Young; Kim, Yeon-Gu; Kang, Seunghee; Lee, Hong Weon; Lee, Eun Gyo
2016-05-01
Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO-K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO-K1 genomic DNA fragments with a CMV promoter-driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gulce Iz, Sultan; Inevi, Muge Anil; Metiner, Pelin Saglam; Tamis, Duygu Ayyildiz; Kisbet, Nazli
2018-01-01
Recent developments in medical biotechnology have facilitated to enhance the production of monoclonal antibodies (mAbs) and recombinant proteins in mammalian cells. Human mAbs for clinical applications have focused on three areas, particularly cancer, immunological disorders, and infectious diseases. Tumor necrosis factor alpha (TNF-α), which has both proinflammatory and immunoregulatory functions, is an important target in biopharmaceutical industry. In this study, a humanized anti-TNF-α mAb producing stable CHO cell line which produces a biosimilar of Humira (adalimumab) was used. Adalimumab is a fully human anti-TNF mAb among the top-selling mAb products in recent years as a biosimilar. Products from mammalian cell bioprocesses are a derivative of cell viability and metabolism, which is mainly disrupted by cell death in bioreactors. Thus, different strategies are used to increase the product yield. Suppression of apoptosis, also called anti-apoptotic cell engineering, is the most remarkable strategy to enhance lifetime of cells for a longer production period. In fact, using anti-apoptotic cell engineering as a BioDesign approach was inspired by nature; nature gives prolonged life span to some cells like stem cells, tumor cells, and memory B and T cells, and researchers have been using this strategy for different purposes. In this study, as a biomimicry approach, anti-apoptotic cell engineering was used to increase the anti-TNF-α mAb production from the humanized anti-TNF-α mAb producing stable CHO cell line by Bcl-xL anti-apoptotic protein. It was shown that transient transfection of CHO cells by the Bcl-xL anti-apoptotic protein expressing plasmid prolonged the cell survival rate and protected cells from apoptosis. The transient expression of Bcl-xL using CHO cells enhanced the anti-TNF-α production. The production of anti-TNF-α in CHO cells was increased up to 215 mg/L with an increase of 160% after cells were transfected with Bcl-xL expressing plasmid with polyethylenimine (PEI) reagent at the ratio of 1:6 (DNA:PEI). In conclusion, the anti-apoptotic efficacy of the Bcl-xL expressing plasmid in humanized anti-TNF-α MAb producing stable CHO cells is compatible with curative effect for high efficiency recombinant protein production. Thus, this model can be used for large-scale production of biosimilars through transient Bcl-xL gene expression as a cost-effective method.
Van Ba, Hoa; Hwang, Inho
2014-02-01
Caspase-9 has been reported as the key regulator of apoptosis, however, its role in skeletal myoblast development and molecular involvements during cell growth still remains unknown. The current study aimed to present the key role of caspase-9 in the expressions of apoptotic caspases and genome, and cell viability during myoblast growth using RNA interference mediated silencing. Three small interference RNA sequences (siRNAs) targeting caspase-9 gene was designed and ligated into pSilencer plasmid vector to construct shRNA expression constructs. Cells were transfected with the constructs for 48 h. Results indicated that all three siRNAs could silence the caspase-9 mRNA expression significantly. Particularly, the mRNA expression level of caspase-9 in the cells transfected by shRNA1, shRNA2 and shRNA3 constructs were reduced by 37.85%, 68.20% and 58.14%, respectively. Suppression of caspase-9 led to the significant increases in the mRNA and protein expressions of effector caspase-3, whereas the reduction in mRNA and protein expressions of caspase-7. The microarray results showed that the suppression of caspase-9 resulted in significant upregulations of cell proliferation-, adhesion-, growth-, development- and division-regulating genes, whereas the reduction in the expressions of cell death program- and stress response-regulating genes. Furthermore, cell viability was significantly increased following the transfection. These data suggest that caspase-9 could play an important role in the control of cell growth, and knockdown of caspase-9 may have genuine potential in the treatment of skeletal muscle atrophy. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
CellFinder: a cell data repository
Stachelscheid, Harald; Seltmann, Stefanie; Lekschas, Fritz; Fontaine, Jean-Fred; Mah, Nancy; Neves, Mariana; Andrade-Navarro, Miguel A.; Leser, Ulf; Kurtz, Andreas
2014-01-01
CellFinder (http://www.cellfinder.org) is a comprehensive one-stop resource for molecular data characterizing mammalian cells in different tissues and in different development stages. It is built from carefully selected data sets stemming from other curated databases and the biomedical literature. To date, CellFinder describes 3394 cell types and 50 951 cell lines. The database currently contains 3055 microscopic and anatomical images, 205 whole-genome expression profiles of 194 cell/tissue types from RNA-seq and microarrays and 553 905 protein expressions for 535 cells/tissues. Text mining of a corpus of >2000 publications followed by manual curation confirmed expression information on ∼900 proteins and genes. CellFinder’s data model is capable to seamlessly represent entities from single cells to the organ level, to incorporate mappings between homologous entities in different species and to describe processes of cell development and differentiation. Its ontological backbone currently consists of 204 741 ontology terms incorporated from 10 different ontologies unified under the novel CELDA ontology. CellFinder’s web portal allows searching, browsing and comparing the stored data, interactive construction of developmental trees and navigating the partonomic hierarchy of cells and tissues through a unique body browser designed for life scientists and clinicians. PMID:24304896
Lahiji, Armin; Kučerová-Levisohn, Martina; Lovett, Jordana; Holmes, Roxanne; Zúñiga-Pflücker, Juan Carlos; Ortiz, Benjamin D.
2013-01-01
Locus Control Regions (LCR) are cis-acting gene regulatory elements with the unique, integration site-independent ability to transfer the characteristics of their locus-of-origin’s gene expression pattern to a linked transgene in mice. LCR activities have been discovered in numerous T cell lineage expressed gene loci. These elements can be adapted to the design of stem cell gene therapy vectors that direct robust therapeutic gene expression to the T cell progeny of engineered stem cells. Currently, transgenic mice provide the only experimental approach that wholly supports all the critical aspects of LCR activity. Herein we report manifestation of all key features of mouse T cell receptor (TCR)-α gene LCR function in T cells derived in vitro from mouse embryonic stem cells (ESC). High level, copy number-related TCRα LCR-linked reporter gene expression levels are cell type-restricted in this system, and upregulated during the expected stage transition of T cell development. We further report that de novo introduction of TCRα LCR linked transgenes into existing T cell lines yields incomplete LCR activity. Together, these data indicate that establishing full TCRα LCR activity requires critical molecular events occurring prior to final T-lineage determination. This study additionally validates a novel, tractable and more rapid approach for the study of LCR activity in T cells, and its translation to therapeutic genetic engineering. PMID:23720809
c-Myc-Dependent Cell Competition in Human Cancer Cells.
Patel, Manish S; Shah, Heta S; Shrivastava, Neeta
2017-07-01
Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, Daisuke; Kato, Kazunori, E-mail: kzkatou@juntendo.ac.jp; Department of Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421
2013-05-17
Highlights: •Spheroids were created from esophageal carcinoma cells using NanoCulture® Plates. •The proportion of strongly ALDH-positive cells increased in 3-D culture. •Expression of cancer stem cell-related genes was enhanced in 3-D culture. •CA-9 expression was enhanced, suggesting hypoxia had been induced in 3-D culture. •Drug resistance was increased. 3-D culture is useful for inducing cancer stem cells. -- Abstract: In recent years, research on resistance to chemotherapy and radiotherapy in cancer treatment has come under the spotlight, and researchers have also begun investigating the relationship between resistance and cancer stem cells. Cancer stem cells are assumed to be present inmore » esophageal cancer, but experimental methods for identification and culture of these cells have not yet been established. To solve this problem, we created spheroids using a NanoCulture® Plate (NCP) for 3-dimensional (3-D) cell culture, which was designed as a means for experimentally reproducing the 3-D structures found in the body. We investigated the potential for induction of cancer stem cells from esophageal cancer cells. Using flow cytometry we analyzed the expression of surface antigen markers CD44, CD133, CD338 (ABCG2), CD318 (CDCP1), and CD326 (EpCAM), which are known cancer stem cell markers. None of these surface antigen markers showed enhanced expression in 3-D cultured cells. We then analyzed aldehyde dehydrogenase (ALDH) enzymatic activity using the ALDEFLUOR reagent, which can identify immature cells such as stem cells and precursor cells. 3-D-cultured cells were strongly positive for ALDH enzyme activity. We also analyzed the expression of the stem cell-related genes Sox-2, Nanog, Oct3/4, and Lin28 using RT-PCR. Expression of Sox-2, Nanog, and Lin28 was enhanced. Analysis of expression of the hypoxic surface antigen marker carbonic anhydrase-9 (CA-9), which is an indicator of cancer stem cell induction and maintenance, revealed that CA-9 expression was enhanced, suggesting that hypoxia had been induced. Comparison of cancer drug resistance using cisplatin and doxorubicin in 3-D-cultured esophageal cancer cells showed that cancer drug resistance had increased. These results indicate that 3-D culture of esophageal squamous cell carcinoma lines is a useful method for inducing cancer stem cells.« less
Tromans, James Matthew; Harris, Mitchell; Stringer, Simon Maitland
2011-01-01
Experimental studies have provided evidence that the visual processing areas of the primate brain represent facial identity and facial expression within different subpopulations of neurons. For example, in non-human primates there is evidence that cells within the inferior temporal gyrus (TE) respond primarily to facial identity, while cells within the superior temporal sulcus (STS) respond to facial expression. More recently, it has been found that the orbitofrontal cortex (OFC) of non-human primates contains some cells that respond exclusively to changes in facial identity, while other cells respond exclusively to facial expression. How might the primate visual system develop physically separate representations of facial identity and expression given that the visual system is always exposed to simultaneous combinations of facial identity and expression during learning? In this paper, a biologically plausible neural network model, VisNet, of the ventral visual pathway is trained on a set of carefully-designed cartoon faces with different identities and expressions. The VisNet model architecture is composed of a hierarchical series of four Self-Organising Maps (SOMs), with associative learning in the feedforward synaptic connections between successive layers. During learning, the network develops separate clusters of cells that respond exclusively to either facial identity or facial expression. We interpret the performance of the network in terms of the learning properties of SOMs, which are able to exploit the statistical indendependence between facial identity and expression.
Slaney, Clare Y; von Scheidt, Bianca; Davenport, Alexander J; Beavis, Paul A; Westwood, Jennifer A; Mardiana, Sherly; Tscharke, David C; Ellis, Sarah; Prince, H Miles; Trapani, Joseph A; Johnstone, Ricky W; Smyth, Mark J; Teng, Michele W; Ali, Aesha; Yu, Zhiya; Rosenberg, Steven A; Restifo, Nicholas P; Neeson, Paul; Darcy, Phillip K; Kershaw, Michael H
2017-05-15
Purpose: While adoptive transfer of T cells bearing a chimeric antigen receptor (CAR) can eliminate substantial burdens of some leukemias, the ultimate challenge remains the eradication of large solid tumors for most cancers. We aimed to develop an immunotherapy approach effective against large tumors in an immunocompetent, self-antigen preclinical mouse model. Experimental Design: In this study, we generated dual-specific T cells expressing both a CAR specific for Her2 and a TCR specific for the melanocyte protein (gp100). We used a regimen of adoptive cell transfer incorporating vaccination (ACTIV), with recombinant vaccinia virus expressing gp100, to treat a range of tumors including orthotopic breast tumors and large liver tumors. Results: ACTIV therapy induced durable complete remission of a variety of Her2 + tumors, some in excess of 150 mm 2 , in immunocompetent mice expressing Her2 in normal tissues, including the breast and brain. Vaccinia virus induced extensive proliferation of T cells, leading to massive infiltration of T cells into tumors. Durable tumor responses required the chemokine receptor CXCR3 and exogenous IL2, but were independent of IFNγ. Mice were resistant to tumor rechallenge, indicating immune memory involving epitope spreading. Evidence of limited neurologic toxicity was observed, associated with infiltration of cerebellum by T cells, but was only transient. Conclusions: This study supports a view that it is possible to design a highly effective combination immunotherapy for solid cancers, with acceptable transient toxicity, even when the target antigen is also expressed in vital tissues. Clin Cancer Res; 23(10); 2478-90. ©2016 AACR . ©2016 American Association for Cancer Research.
NASA Technical Reports Server (NTRS)
Savinell, R. F.; Fritts, S. D.
1986-01-01
There is increasing interest in hydrogen-bromine fuel cells as both primary and regenerative energy storage systems. One promising design for a hydrogen-bromine fuel cell is a negative half cell having only a gas phase, which is separated by a cationic exchange membrane from a positive half cell having an aqueous electrolyte. The hydrogen gas and the aqueous bromide solution are stored external to the cell. In order to calculate the energy storage capacity and to predict and assess the performance of a single cell, the open circuit potential (OCV) must be estimated for different states of change, under various conditions. Theoretical expressions were derived to estimate the OCV of a hydrogen-bromine fuel cell. In these expressions temperature, hydrogen pressure, and bromine and hydrobromic acid concentrations were taken into consideration. Also included are the effects of the Nafion membrance separator and the various bromide complex species. Activity coefficients were taken into account in one of the expressions. The sensitivity of these parameters on the calculated OCV was studied.
Reimer, Andreas; Vasilevich, Aliaksei; Hulshof, Frits; Viswanathan, Priyalakshmi; van Blitterswijk, Clemens A.; de Boer, Jan; Watt, Fiona M.
2016-01-01
It is well established that topographical features modulate cell behaviour, including cell morphology, proliferation and differentiation. To define the effects of topography on human induced pluripotent stem cells (iPSC), we plated cells on a topographical library containing over 1000 different features in medium lacking animal products (xeno-free). Using high content imaging, we determined the effect of each topography on cell proliferation and expression of the pluripotency marker Oct4 24 h after seeding. Features that maintained Oct4 expression also supported proliferation and cell-cell adhesion at 24 h, and by 4 days colonies of Oct4-positive, Sox2-positive cells had formed. Computational analysis revealed that small feature size was the most important determinant of pluripotency, followed by high wave number and high feature density. Using this information we correctly predicted whether any given topography within our library would support the pluripotent state at 24 h. This approach not only facilitates the design of substrates for optimal human iPSC expansion, but also, potentially, identification of topographies with other desirable characteristics, such as promoting differentiation. PMID:26757610
Reimer, Andreas; Vasilevich, Aliaksei; Hulshof, Frits; Viswanathan, Priyalakshmi; van Blitterswijk, Clemens A; de Boer, Jan; Watt, Fiona M
2016-01-13
It is well established that topographical features modulate cell behaviour, including cell morphology, proliferation and differentiation. To define the effects of topography on human induced pluripotent stem cells (iPSC), we plated cells on a topographical library containing over 1000 different features in medium lacking animal products (xeno-free). Using high content imaging, we determined the effect of each topography on cell proliferation and expression of the pluripotency marker Oct4 24 h after seeding. Features that maintained Oct4 expression also supported proliferation and cell-cell adhesion at 24 h, and by 4 days colonies of Oct4-positive, Sox2-positive cells had formed. Computational analysis revealed that small feature size was the most important determinant of pluripotency, followed by high wave number and high feature density. Using this information we correctly predicted whether any given topography within our library would support the pluripotent state at 24 h. This approach not only facilitates the design of substrates for optimal human iPSC expansion, but also, potentially, identification of topographies with other desirable characteristics, such as promoting differentiation.
Zhang, Ruowen; Wang, Yulei; Li, Jingxia; Jin, Honglei; Song, Shaojiang; Huang, Chuanshu
2014-01-01
Yuanhuacine (YHL-14), the major component of daphnane diterpene ester isolated from the flower buds of Daphne genkwa, has been reported to have activity against cell proliferation in various cancer cell lines. Nevertheless, the potential mechanism has not been explored yet. Here we demonstrate that YHL-14 inhibits bladder and colon cancer cell growth through up-regulation of p21 expression in an Sp1-dependent manner. We found that YHL-14 treatment resulted in up-regulation of p21 expression and a significant G2/M phase arrest in T24T and HCT116 cells without affecting p53 protein expression and activation. Further studies indicate that p21 induction by YHL-14 occurs at the transcriptional level via up-regulation of Sp1 protein expression. Moreover, our results show that p38 is essential for YHL-14-mediated Sp1 protein stabilization, G2/M growth arrest induction, and anchorage-independent growth inhibition of cancer cells. Taken together, our studies demonstrate a novel mechanism of YHL-14 against cancer cell growth in bladder and colon cancer cell lines, which provides valuable information for the design and synthesis of other new conformation-constrained derivatives on the basis of the structure of YHL-14 for cancer therapy. PMID:24451377
Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials
Zhao, Nan; Zhu, Donghui
2016-01-01
Biodegradable tailored magnesium (Mg) alloys are some of the most promising scaffolds for cardiovascular stents. During the course of degradation after implantation, all the alloying elements in the scaffold will be released to the surrounding vascular tissues. However, fundamental questions regarding the toxicity of alloying elements towards vascular cells, the maximum amount of each element that could be used in alloy design, or how each of the alloying elements affects vascular cellular activity and gene expression, are still not fully answered. This work systematically addressed these questions by revealing how application of different alloying elements commonly used in Mg stent materials influences several indices of human endothelial cell health, i.e., viability, proliferations, cytoskeletal reorganizations, migration, and the gene expression profile. The overall cell viability and proliferation showed a decreasing trend with increasing concentrations of the ions, and the half maximal effective concentrations (EC50) for each element were determined. When applied at a low concentration of around 10 mM, Mg had no adverse effects but improved cell proliferation and migration instead. Mg ions also altered endothelial gene expression significantly in a dose dependent manner. Most of the changed genes are related to angiogenesis and the cell adhesion signaling pathways. Findings from this work provide useful information on maximum safe doses of these ions for endothelial cells, endothelial responses towards these metal ions, and some guidance for future Mg stent design. PMID:25363018
Production of membrane proteins without cells or detergents.
Rajesh, Sundaresan; Knowles, Timothy; Overduin, Michael
2011-04-30
The production of membrane proteins in cellular systems is besieged by several problems due to their hydrophobic nature which often causes misfolding, protein aggregation and cytotoxicity, resulting in poor yields of stable proteins. Cell-free expression has emerged as one of the most versatile alternatives for circumventing these obstacles by producing membrane proteins directly into designed hydrophobic environments. Efficient optimisation of expression and solubilisation conditions using a variety of detergents, membrane mimetics and lipids has yielded structurally and functionally intact membrane proteins, with yields several fold above the levels possible from cell-based systems. Here we review recently developed techniques available to produce functional membrane proteins, and discuss amphipols, nanodisc and styrene maleic acid lipid particle (SMALP) technologies that can be exploited alongside cell-free expression of membrane proteins. Copyright © 2010 Elsevier B.V. All rights reserved.
Stankevicius, Vaidotas; Kunigenas, Linas; Stankunas, Edvinas; Kuodyte, Karolina; Strainiene, Egle; Cicenas, Jonas; Samalavicius, Narimantas E; Suziedelis, Kestutis
2017-03-18
Numerous lines of evidence support the hierarchical model of cancer development and tumor initiation. According to the theory, cancer stem cells play a crucial role in the formation of the tumor and should be targeted for more effective anticancer treatment. However, cancer stem cells quickly loose their characteristics when propagated as 2D cell culture, indicating that the 2D cell culture does not provide the appropriate settings to maintain an in vivo environment. In this study we have investigated the expression of self-renewal, cancer stem cell and epithelial to mesenchymal transition markers after the transfer of human colorectal carcinoma cell DLD1 and HT29 lines from 2D cell cultures to scaffold-attached laminin rich extracellular matrix and scaffold-free multicellular spheroid 3D culture models. Based on the up-regulated expression of multipotency, CSC and EMT markers, our data suggests that human colorectal carcinoma cells grown in 3D exhibit enhanced cancer stem cell characteristics. Therefore, in order to design more efficient targeted therapies, we suggest that 3D cell culture models should be employed in cancer stem cell research. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Kløverpris, Henrik N.; McGregor, Reuben; McLaren, James E.; Ladell, Kristin; Stryhn, Anette; Koofhethile, Catherine; Brener, Jacqui; Chen, Fabian; Riddell, Lynn; Graziano, Luzzi; Klenerman, Paul; Leslie, Alasdair; Buus, Søren; Price, David A.; Goulder, Philip
2014-01-01
Objectives: Although CD8+ T cells play a critical role in the control of HIV-1 infection, their antiviral efficacy can be limited by antigenic variation and immune exhaustion. The latter phenomenon is characterized by the upregulation of multiple inhibitory receptors, such as programmed death-1 (PD-1), CD244 and lymphocyte activation gene-3 (LAG-3), which modulate the functional capabilities of CD8+ T cells. Design and methods: Here, we used an array of different human leukocyte antigen (HLA)-B∗15 : 03 and HLA-B∗42 : 01 tetramers to characterize inhibitory receptor expression as a function of differentiation on HIV-1-specific CD8+ T-cell populations (n = 128) spanning 11 different epitope targets. Results: Expression levels of PD-1, but not CD244 or LAG-3, varied substantially across epitope specificities both within and between individuals. Differential expression of PD-1 on T-cell receptor (TCR) clonotypes within individual HIV-1-specific CD8+ T-cell populations was also apparent, independent of clonal dominance hierarchies. Positive correlations were detected between PD-1 expression and plasma viral load, which were reinforced by stratification for epitope sequence stability and dictated by effector memory CD8+ T cells. Conclusion: Collectively, these data suggest that PD-1 expression on HIV-1-specific CD8+ T cells tracks antigen load at the level of epitope specificity and TCR clonotype usage. These findings are important because they provide evidence that PD-1 expression levels are influenced by peptide/HLA class I antigen exposure. PMID:24906112
TUSC3 induces autophagy in human non-small cell lung cancer cells through Wnt/β-catenin signaling
Peng, Yun; Cao, Jun; Yao, Xiao-Yi; Wang, Jian-Xin; Zhong, Mei-Zuo; Gan, Ping-Ping; Li, Jian-Huang
2017-01-01
We investigated the effects of tumor suppressor candidate 3 (TUSC3) on autophagy in human non-small cell lung cancer (NSCLC) cells. A total of 118 NSCLC patients (88 males and 30 females) who underwent surgery at our institute were enrolled in the study. Immunohistochemical analysis revealed that TUSC3 protein expression was lower in NSCLC specimens than adjacent normal tissue. Correspondingly, there was greater methylation of TUSC3 in NSCLC than adjacent normal tissue. After transient transfection of A549 NSCLC cells with constructs designed to up-regulate or down-regulate TUSC3 expression, we analyzed the effects of inhibiting the Wnt pathway (XAV939) and autophagy (chloroquine, CQ) on the behavior of NSCLC cells. We also performed TOP/FOP-Flash reporter assays, MTT assays, Annexin V-FITC/propidium iodide staining, and acridine orange staining to evaluate Wnt/β-catenin signaling, cell proliferation, apoptosis, and autophagy, respectively. Expression of Wnt/β-catenin pathway components and autophagy-related proteins was analyzed using qRT-PCR and Western blotting. We found that TUSC3 inhibited cell proliferation and promoted both apoptosis and autophagy in A549 cells. In addition, TUSC3 increased expression of autophagy-related proteins. It also increased expression of Wnt/β-catenin signaling pathway components and promoted nuclear transfer of β-catenin, resulting in activation of Wnt/β-catenin signaling. TUSC3 thus induces autophagy in human NSCLC cells through activation of the Wnt/β-catenin signaling pathway. PMID:28881786
TUSC3 induces autophagy in human non-small cell lung cancer cells through Wnt/β-catenin signaling.
Peng, Yun; Cao, Jun; Yao, Xiao-Yi; Wang, Jian-Xin; Zhong, Mei-Zuo; Gan, Ping-Ping; Li, Jian-Huang
2017-08-08
We investigated the effects of tumor suppressor candidate 3 ( TUSC3 ) on autophagy in human non-small cell lung cancer (NSCLC) cells. A total of 118 NSCLC patients (88 males and 30 females) who underwent surgery at our institute were enrolled in the study. Immunohistochemical analysis revealed that TUSC3 protein expression was lower in NSCLC specimens than adjacent normal tissue. Correspondingly, there was greater methylation of TUSC3 in NSCLC than adjacent normal tissue. After transient transfection of A549 NSCLC cells with constructs designed to up-regulate or down-regulate TUSC3 expression, we analyzed the effects of inhibiting the Wnt pathway (XAV939) and autophagy (chloroquine, CQ) on the behavior of NSCLC cells. We also performed TOP/FOP-Flash reporter assays, MTT assays, Annexin V-FITC/propidium iodide staining, and acridine orange staining to evaluate Wnt/β-catenin signaling, cell proliferation, apoptosis, and autophagy, respectively. Expression of Wnt/β-catenin pathway components and autophagy-related proteins was analyzed using qRT-PCR and Western blotting. We found that TUSC3 inhibited cell proliferation and promoted both apoptosis and autophagy in A549 cells. In addition, TUSC3 increased expression of autophagy-related proteins. It also increased expression of Wnt/β-catenin signaling pathway components and promoted nuclear transfer of β-catenin, resulting in activation of Wnt/β-catenin signaling. TUSC3 thus induces autophagy in human NSCLC cells through activation of the Wnt/β-catenin signaling pathway.
Yamazaki, Hiroki; Iwano, Tomomi; Otsuka, Saori; Kagawa, Yumiko; Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro; Takagi, Satoshi
2015-04-01
Transitional cell carcinoma (TCC) in dogs is an aggressive malignant neoplasm, originating in the epithelium of the urinary bladder. The DEK nuclear protein is overexpressed in several types of human bladder cancer, where it is involved in chromatin reconstruction, gene transcription and apoptosis. Since DEK represents a potential therapeutic target for canine TCC, this study was designed to investigate DEK expression in canine TCC and to determine the effects of DEK mRNA silencing on TCC cells in vitro. The gene expression profiles of seven selected cancer-associated genes was assessed in four canine TCC cell lines and expression of DEK protein was evaluated in bladder tissue biopsies from healthy dogs and those affected with cystitis or TCC. After transfection of four canine TCC cell lines with DEK-specific or scrambled siRNA, annexin V staining was performed to evaluate apoptosis, and methylthiazole tetrazolium assays were performed to assess both cell viability and sensitivity to carboplatin. DEK mRNA expression was relatively high in canine TCC cells and expression of the DEK protein was significantly greater in TCC tumours compared with the other tissue samples. After transfection with DEK-specific siRNA, apoptosis, cell growth inhibition, and enhanced sensitivity to carboplatin were observed in all TCC cells assessed. These research findings suggest that DEK could be a potential therapeutic target for canine TCC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adnectin-Based Design of Chimeric Antigen Receptor for T Cell Engineering.
Han, Xiaolu; Cinay, Gunce E; Zhao, Yifan; Guo, Yunfei; Zhang, Xiaoyang; Wang, Pin
2017-11-01
Although chimeric antigen receptor (CAR)-engineered T cell therapy has achieved encouraging clinical trial results for treating hematological cancers, further optimization can likely expand this therapeutic success to more patients and other cancer types. Most CAR constructs used in clinical trials incorporate single chain variable fragment (scFv) as the extracellular antigen recognition domain. The immunogenicity of nonhuman scFv could cause host rejection against CAR T cells and compromise their persistence and efficacy. The limited availability of scFvs and slow discovery of new monoclonal antibodies also limit the development of novel CAR constructs. Adnectin, a class of affinity molecules derived from the tenth type III domain of human fibronectin, can be an alternative to scFv as an antigen-binding moiety in the design of CAR molecules. We constructed adnectin-based CARs targeting epithelial growth factor receptor (EGFR) and found that compared to scFv-based CAR, T cells engineered with adnectin-based CARs exhibited equivalent cell-killing activity against target H292 lung cancer cells in vitro and had comparable antitumor efficacy in xenograft tumor-bearing mice in vivo. In addition, with optimal affinity tuning, adnectin-based CAR showed higher selectivity on target cells with high EGFR expression than on those with low expression. This new design of adnectin CARs can potentially facilitate the development of T cell immunotherapy for cancer and other diseases. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Ren; Zhou, Mingxing; Li, Jine; Wang, Zihua; Zhang, Weikai; Yue, Chunyan; Ma, Yan; Peng, Hailin; Wei, Zewen; Hu, Zhiyuan
2018-03-01
EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.[Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madonna, Rosalinda; Institute of Cardiology, and Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti; Shelat, Harnath
2009-10-15
Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiacmore » myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.« less
Barber, Alison G.; Castillo-Martin, Mireia; Bonal, Dennis M.; Rybicki, Benjamin A.; Christiano, Angela M.; Cordon-Cardo, Carlos
2014-01-01
Purpose The expression of desmogleins (DSGs), which are known to be crucial for establishing and maintaining the cell-cell adhesion required for tissue integrity, has been well characterized in the epidermis and hair follicle; however, their expression in other epithelial tissues such as prostate is poorly understood. Although downregulation of classical cadherins, such as E-cadherin, has been described in prostate cancer tissue samples, the expression of desmogleins has only been previously reported in prostate cancer cell lines. In this study we characterized desmoglein expression in normal prostate tissues, and further investigated whether Desmoglein 2 (DSG2) expression specifically can serve as a potential clinical prognostic factor for patients diagnosed with primary prostate cancer. Experimental Design We utilized immunofluorescence to examine DSG2 expression in normal prostate (n = 50) and in a clinically well-characterized cohort of prostate cancer patients (n = 414). Correlation of DSG2 expression with clinico-pathological characteristics and biochemical recurrence was analyzed to assess its clinical significance. Results These studies revealed that DSG2 and DSG4 were specifically expressed in prostatic luminal cells, whereas basal cells lack their expression. In contrast, DSG1 and DSG3 were not expressed in normal prostate epithelium. Further analyses of DSG2 expression in prostate cancer revealed that reduced levels of this biomarker were a significant independent marker of poor clinical outcome. Conclusion Here we report for the first time that a low DSG2 expression phenotype is a useful prognostic biomarker of tumor aggressiveness and may serve as an aid in identifying patients with clinically significant prostate cancer. PMID:24896103
Venetoclax Is Effective in Small-Cell Lung Cancers with High BCL-2 Expression.
Lochmann, Timothy L; Floros, Konstantinos V; Naseri, Mitra; Powell, Krista M; Cook, Wade; March, Ryan J; Stein, Giovanna T; Greninger, Patricia; Maves, Yuki Kato; Saunders, Laura R; Dylla, Scott J; Costa, Carlotta; Boikos, Sosipatros A; Leverson, Joel D; Souers, Andrew J; Krystal, Geoffrey W; Harada, Hisashi; Benes, Cyril H; Faber, Anthony C
2018-01-15
Purpose: Small-cell lung cancer (SCLC) is an often-fatal neuroendocrine carcinoma usually presenting as extensive disease, carrying a 3% 5-year survival. Despite notable advances in SCLC genomics, new therapies remain elusive, largely due to a lack of druggable targets. Experimental Design: We used a high-throughput drug screen to identify a venetoclax-sensitive SCLC subpopulation and validated the findings with multiple patient-derived xenografts of SCLC. Results: Our drug screen consisting of a very large collection of cell lines demonstrated that venetoclax, an FDA-approved BCL-2 inhibitor, was found to be active in a substantial fraction of SCLC cell lines. Venetoclax induced BIM-dependent apoptosis in vitro and blocked tumor growth and induced tumor regressions in mice bearing high BCL-2-expressing SCLC tumors in vivo BCL-2 expression was a predictive biomarker for sensitivity in SCLC cell lines and was highly expressed in a subset of SCLC cell lines and tumors, suggesting that a substantial fraction of patients with SCLC could benefit from venetoclax. Mechanistically, we uncover a novel role for gene methylation that helped discriminate high BCL-2-expressing SCLCs. Conclusions: Altogether, our findings identify venetoclax as a promising new therapy for high BCL-2-expressing SCLCs. Clin Cancer Res; 24(2); 360-9. ©2017 AACR . ©2017 American Association for Cancer Research.
Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi
2017-01-01
ABSTRACT The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer (http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively. PMID:28453368
Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Nakade, Shota; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi
2017-05-04
The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer ( http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html ), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively.
Rauta, Pradipta R; Nayak, Bismita; Monteiro, Gabriel A; Mateus, Marília
2017-01-10
The current investigation aimed at designing DNA vaccines against Aeromonas hydrophila infections. The DNA vaccine candidates were designed to express two antigenic outer membrane protein (Aha1) peptides and to be delivered by a nanoparticle-based delivery system. Gene sequences of conserved regions of antigenic Aha1 [aha1(211-381), aha1(211-381)opt, aha1(703-999) and aha1(703-999)opt] were cloned into pVAX-GFP expression vector. The selected DNA vaccine candidates were purified from E. coli DH5α and transfected into Chinese hamster ovary cells. The expression of the antigenic peptides was measured in cells along post-transfection time, through the fluorescence intensity of the reporter GFP. The lipofection efficiency of aha-pVAX-GFP was highest after 24h incubation. Formulated PLGA-chitosan nanoparticle/plasmid DNA complexes were characterized in terms of size, size distribution and zeta potential. Nanocomplexes with average diameters in the range of 150-170nm transfected in a similar fashion into CHO cells confirmed transfection efficiency comparable to that of lipofection. DNA entrapment and further DNase digestion assays demonstrated ability for pDNA protection by the nanoparticles against enzymatic digestion. Copyright © 2016 Elsevier B.V. All rights reserved.
Strekalova, Elena; Malin, Dmitry; Good, David M.; Cryns, Vincent L.
2015-01-01
Purpose Many neoplasms are vulnerable to methionine deficiency by mechanisms that are poorly understood. Because gene profiling studies have revealed that methionine depletion increases TNF-related apoptosis-inducing ligand receptor-2 (TRAIL-R2) mRNA, we postulated that methionine stress sensitizes breast cancer cells to proapoptotic TRAIL-R2 agonists. Experimental Design Human triple (ER/PR/HER2)-negative breast carcinoma cell lines were cultured in control or methionine-free media. The effects of methionine depletion on TRAIL receptor expression and sensitivity to chemotherapy or a humanized agonistic TRAIL-R2 monoclonal antibody (lexatumumab) were determined. The melanoma-associated antigen MAGED2 was silenced to delineate its functional role in sensitizing TNBC cells to methionine stress. An orthotopic TNBC model was utilized to evaluate the effects of dietary methionine deficiency, lexatumumab or the combination. Results Methionine depletion sensitized TNBC cells to lexatumumab-induced caspase activation and apoptosis by increasing TRAIL-R2 mRNA and cell surface expression. MCF-10A cells transformed by oncogenic H-Ras, but not untransformed cells, and matrix-detached TNBC cells were highly sensitive to the combination of lexatumumab and methionine depletion. Proteomics analyses revealed that MAGED2, which has been reported to reduce TRAIL-R2 expression, was suppressed by methionine stress. Silencing MAGED2 recapitulated features of methionine deprivation, including enhanced mRNA and cell surface expression of TRAIL receptors and increased sensitivity to TRAIL receptor agonists. Dietary methionine deprivation enhanced the antitumor effects of lexatumumab in an orthotopic metastatic TNBC model. Conclusion Methionine depletion exposes a targetable defect in TNBC cells by increasing TRAIL-R2 expression. Our findings provide the foundation for a clinical trial combining dietary methionine restriction and TRAIL-R2 agonists. PMID:25724522
Chen, Caixia; Jin, Xin; Meng, Xianglan; Zheng, Chengwei; Shen, Yanhui; Wang, Yiqing
2011-06-25
Inflammation is a primary event in atherogenesis. Oleoylethanolamide (OEA), a naturally occurring fatty-acid ethanolamide, lowers lipid levels in liver and blood through activation of the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPARα). We designed and synthesized (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl, 1-methyl) (OPA), an OEA analog. The present study investigated the effect of OPA on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVEC). OPA inhibited expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) stimulated by Tumor Necrosis Factor-α (TNF-α) via activation of PPARα. This inhibition of VCAM-1 and ICAM-1 expression decreased adhesion of monocyte-like cells to stimulated endothelial cells. These results demonstrate that OPA may have anti-inflammatory properties. Our results thus provide new insights into possible future therapeutic approaches to the treatment of atherosclerosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Chicken homeobox gene Msx-1: structure, expression in limb buds and effect of retinoic acid.
Yokouchi, Y; Ohsugi, K; Sasaki, H; Kuroiwa, A
1991-10-01
A chicken gene carrying a homeobox highly homologous to the Drosophila muscle segment homeobox (msh) gene was isolated and designated as Msx-1. Conceptual translation from the longest ORF gave a protein of 259 amino acids lacking the conserved hexapeptide. Northern analysis detected a single 2.6 kb transcript. As early as day 2 of incubation, the transcript was detected but was not found in adult tissue. In situ hybridization analysis revealed that Msx-1 expression is closely related to a particular mesenchymal cell lineage during limb bud formation. In early stage embryos, Msx-1 was expressed in the somatopleure. When primordial mesenchyme cells for limb bud were generated from the Wolffian ridge of the somatopleure, Msx-1 expression began to diminish in the posterior half of the limb bud then in the presumptive cartilage-forming mesenchyme. In developing limb buds, remarkable expression was seen in the apical ectodermal ridge (AER), which is responsible for the sustained outgrowth and development of the limb. The Msx-1 transcripts were found in the limb mesenchymal cells in the region covering the necrotic zone and ectodermal cells overlying such mesenchymal cells. Both ectodermal and mesenchymal expression in limb bud were rapidly suppressed by local treatment of retinoic acid which can generate mirror-image duplication of digits. This indicates that retinoic acid alters the marginal presumptive non-cartilage forming mesenchyme cell lineage through suppression of Msx-1 expression.
AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.
Dinculescu, Astra; Stupay, Rachel M; Deng, Wen-Tao; Dyka, Frank M; Min, Seok-Hong; Boye, Sanford L; Chiodo, Vince A; Abrahan, Carolina E; Zhu, Ping; Li, Qiuhong; Strettoi, Enrica; Novelli, Elena; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Smith, W Clay; Hauswirth, William W
2016-01-01
Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.
Saggese, Taryn; Thambyah, Ashvin; Wade, Kelly; McGlashan, Susan Read
2018-05-01
Objective The nucleus pulposus of the human intervertebral disc contains 2 cell types: notochordal (NC) and mature nucleus pulposus (MNP) cells. NC cell loss is associated with disc degeneration and this process may be initiated by mechanical stress and/or nutrient deprivation. This study aimed to investigate the functional responses of NC and MNP cells to hydrostatic pressures and glucose restriction. Design Bovine MNP and NC cells were cultured in 3-dimensional alginate beads under low (0.4-0.8 MPa) and high (1.6-2.4 MPa) dynamic pressure for 24 hours. Cells were cultured in either physiological (5.5 mM) glucose media or glucose-restriction (0.55 mM) media. Finally, the combined effect of glucose restriction and high pressure was examined. Results Cell viability and notochordal phenotypic markers were not significantly altered in response to pressure or glucose restriction. MNP cells responded to low pressure with an increase in glycosaminoglycan (GAG) production while high pressure significantly decreased ACAN gene expression compared with atmospheric controls. NC cells showed no response in matrix gene expression or GAG production with either loading regime. Glucose restriction decreased NC cell TIMP-1 expression but had no effect on MNP cells. The combination of glucose restriction and high pressure only affected MNP cell gene expression, with decreased ACAN, Col2α1, and ADAMTS-5 expression. Conclusion This study shows that NC cells are more resistant to acute mechanical stresses than MNP cells and provides a strong rationale for future studies to further our understanding the role of NC cells within the disc, and the effects of long-term exposure to physical stresses.
1996-01-01
The expression of the constituent alpha 1 chain of laminin-1, a major component of basement membranes, is markedly regulated during development and differentiation. We have designed an antisense RNA strategy to analyze the direct involvement of the alpha 1 chain in laminin assembly, basement membrane formation, and cell differentiation. We report that the absence of alpha 1-chain expression, resulting from the stable transfection of the human colonic cancer Caco2 cells with an eukaryotic expression vector comprising a cDNA fragment of the alpha 1 chain inserted in an antisense orientation, led to (a) an incorrect secretion of the two other constituent chains of laminin-1, the beta 1/gamma 1 chains, (b) the lack of basement membrane assembly when Caco2-deficient cells were cultured on top of fibroblasts, assessed by the absence of collagen IV and nidogen deposition, and (c) changes in the structural polarity of cells accompanied by the inhibition of an apical digestive enzyme, sucrase-isomaltase. The results demonstrate that the alpha 1 chain is required for secretion of laminin-1 and for the assembly of basement membrane network. Furthermore, expression of the laminin alpha 1-chain gene may be a regulatory element in determining cell differentiation. PMID:8609173
Petermann, Astrid; Stampnik, Yvonn; Cui, Yan; Morrison, Helen; Pachow, Doreen; Kliese, Nadine; Mawrin, Christian; Böhmer, Frank-D
2015-05-01
Brain-invasive growth of a subset of meningiomas is associated with less favorable prognosis. The molecular mechanisms causing invasiveness are only partially understood, however, the expression of matrix metalloproteinases (MMPs) has been identified as a contributing factor. We have previously found that loss of density enhanced phosphatase-1 (DEP-1, also designated PTPRJ), a transmembrane protein-tyrosine phosphatase, promotes meningioma cell motility and invasive growth in an orthotopic xenotransplantation model. We have now analyzed potential alterations of the expression of genes involved in motility control, caused by DEP-1 loss in meningioma cell lines. DEP-1 depleted cells exhibited increased expression of mRNA encoding MMP-9, and the growth factors EGF and FGF-2. The increase of MMP-9 expression in DEP-1 depleted cells was also readily detectable at the protein level by zymography. MMP-9 upregulation was sensitive to chemical inhibitors of growth factor signal transduction. Conversely, MMP-9 mRNA levels could be stimulated with growth factors (e.g. EGF) and inflammatory cytokines (e.g. TNFα). Increase of MMP-9 expression by DEP-1 depletion, or growth factor/cytokine stimulation qualitatively correlated with increased invasiveness in vitro scored as transmigration through matrigel-coated membranes. The studies suggest induction of MMP-9 expression promoted by DEP-1 deficiency, or potentially by growth factors and inflammatory cytokines, as a mechanism contributing to meningioma brain invasiveness.
PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina
Hickmott, Jack W; Chen, Chih-yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M
2016-01-01
Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. PMID:27556059
PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina.
Hickmott, Jack W; Chen, Chih-Yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M
2016-01-01
Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.
Rapid discovery of protein interactions by cell-free protein technologies.
He, M; Taussig, M J
2007-11-01
Cell-free transcription and translation provides an open, controllable environment for production of correctly folded, soluble proteins and allows the rapid generation of proteins from DNA without the need for cloning. Thus it is becoming an increasingly attractive alternative to conventional in vivo expression systems, especially when parallel expression of multiple proteins is required. Through novel design and exploitation, powerful cell-free technologies of ribosome display and protein in situ arrays have been developed for in vitro production and isolation of protein-binding molecules from large libraries. These technologies can be combined for rapid detection of protein interactions.
Generation of Transgenic Mouse Fluorescent Reporter Lines for Studying Hematopoietic Development
Vacaru, Andrei M.; Vitale, Joseph; Nieves, Johnathan; Baron, Margaret H.
2015-01-01
During the development of the hematopoietic system, at least 8 distinct lineages are generated in the mouse embryo. Transgenic mice expressing fluorescent proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to multipotent progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene, survey available fluorescent probes, and methods for confirming and analyzing transgene expression in the hematopoietic systems of the embryo, fetus, and postnatal/adult animal. PMID:25064110
Javan, Bita; Atyabi, Fatemeh; Shahbazi, Majid
2018-06-01
This investigation was conducted to construct a hypoxia/colorectal dual-specific bidirectional short hairpin RNA (shRNA) expression vector and to transfect it into the colon cancer cell line HT-29 with PEI/chitosan-TBA nanoparticles for the simultaneous knock down of β-catenin and Bcl-2 under hypoxia. To construct a pRNA-bipHRE-CEA vector, the carcinoma embryonic antigen (CEA) promoter designed in two directions and the vascular endothelial growth factor (VEGF) enhancer were inserted between two promoters for hypoxic cancer specific gene expression. To confirm the therapeutic effect of the dual-specific vector, β-catenin and Bcl-2 shRNAs were inserted downstream of each promoter. The physicochemical properties, the cytotoxicity, and the transfection efficiency of these PEI/chitosan-TBA nanoparticles were investigated. In addition, the antitumor effects of the designed vector on the expression of β-catenin and Bcl-2, cell cycle distribution, and apoptosis were investigated in vitro. The silencing effect of the hypoxia-response shRNA expression vector was relatively low (18%-25%) under normoxia, whereas it was significantly increased to approximately 50%-60% in the HT-29 cell line. Moreover, the cancer cells showed significant G0/G1 arrest and increased apoptosis due to gene silencing under hypoxia. Furthermore, MTS assay, fluorescence microscopy images, and flow cytometry analyses confirmed that the PEI/chitosan-TBA blend system provided effective transfection with low cytotoxicity. This novel hypoxia-responsive shRNA expression vector may be useful for RNA interference (RNAi)-based cancer gene therapy in hypoxic colorectal tumors. Moreover, the PEI/chitosan-TBA copolymer might be a promising gene carrier for use in gene transfer in vivo. Copyright © 2018. Published by Elsevier Inc.
Hydrostatic pressure modulates mRNA expressions for matrix proteins in human meniscal cells.
Suzuki, Toru; Toyoda, Takashi; Suzuki, Hiroshi; Hisamori, Noriyuki; Matsumoto, Hideo; Toyama, Yoshiaki
2006-01-01
There have been few reports describing the effects of mechanical loading on the metabolism of meniscal cells. The aim of this study was to investigate the effects of hydrostatic pressure on meniscal cell metabolism. Human meniscal cells were cultured in alginate beads for 3 days. They were then subjected to 4 MPa hydrostatic pressure for 4 hours in either a static or cyclic (1 Hz) mode using a specially designed and constructed system. Immediately after the pressure application, the messenger RNA levels for aggrecan, type I collagen, matrix metalloproteinases (MMP) -1, -3, -9, -13 and tissue inhibitors of metalloproteinases (TIMP) -1 and -2 were measured. It was found that the application of static hydrostatic pressure caused a significant decrease in mRNA expression for MMP-1 and -13 (p<0.05). In contrast, the application of cyclic hydrostatic pressure was associated with a significant increase in type I collagen (p<0.01), TIMP-1 and -2 mRNA expression (p<0.01). These results would suggest that hydrostatic pressure in isolation can modulate mRNA expressions for matrix proteins in meniscal cells.
Mining for osteogenic surface topographies: In silico design to in vivo osseo-integration.
Hulshof, Frits F B; Papenburg, Bernke; Vasilevich, Aliaksei; Hulsman, Marc; Zhao, Yiping; Levers, Marloes; Fekete, Natalie; de Boer, Meint; Yuan, Huipin; Singh, Shantanu; Beijer, Nick; Bray, Mark-Anthony; Logan, David J; Reinders, Marcel; Carpenter, Anne E; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan
2017-08-01
Stem cells respond to the physicochemical parameters of the substrate on which they grow. Quantitative material activity relationships - the relationships between substrate parameters and the phenotypes they induce - have so far poorly predicted the success of bioactive implant surfaces. In this report, we screened a library of randomly selected designed surface topographies for those inducing osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell shape features, surface design parameters, and osteogenic marker expression were strongly correlated in vitro. Furthermore, the surfaces with the highest osteogenic potential in vitro also demonstrated their osteogenic effect in vivo: these indeed strongly enhanced bone bonding in a rabbit femur model. Our work shows that by giving stem cells specific physicochemical parameters through designed surface topographies, differentiation of these cells can be dictated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of 89Zr-Ontuxizumab for in vivo TEM-1/endosialin PET applications
Lange, Sara E.S.; Zheleznyak, Alex; Studer, Matthew; O'Shannessy, Daniel J.; Lapi, Suzanne E.; Van Tine, Brian A.
2016-01-01
Purpose The complexity of sarcoma has led to the need for patient selection via in vivo biomarkers. Tumor endothelial marker-1 (TEM-1) is a cell surface marker expressed by the tumor microenvironment. Currently MORAb-004 (Ontuxizumab), an anti-TEM-1 humanized monoclonal antibody, is in sarcoma clinical trials. Development of positron emission tomography (PET) for in vivo TEM-1 expression may allow for stratification of patients, potentially enhancing clinical outcomes seen with Ontuxizumab. Results Characterization of cell lines revealed clear differences in TEM-1 expression. One high expressing (RD-ES) and one low expressing (LUPI) cell line were xenografted, and mice were injected with 89Zr-Ontuxizumab. PET imaging post-injection revealed that TEM-1 was highly expressed and readily detectable in vivo only in RD-ES. In vivo biodistribution studies confirmed high radiopharmaceutical uptake in tumor relative to normal organs. Experimental Design Sarcoma cell lines were characterized for TEM-1 expression. Ontuxizumab was labeled with 89Zr and evaluated for immunoreactivity preservation. 89Zr-Ontuxizumab was injected into mice with high or null expressing TEM-1 xenografts. In vivo PET imaging experiments were performed. Conclusion 89Zr-Ontuxizumab can be used in vivo to determine high versus low TEM-1 expression. Reliable PET imaging of TEM-1 in sarcoma patients may allow for identification of patients that will attain the greatest benefit from anti-TEM-1 therapy. PMID:26909615
Gao, Wen; Yin, Jun; Bao, Lichen; Wang, Qun; Hou, Shan; Yue, Yali; Yao, Wenbing; Gao, Xiangdong
2018-05-18
Escherichia coli extracellular expression systems have a number of advantages over other systems, such as lower pyrogen levels and a simple purification process. Various approaches, such as the generation of leaky mutants via chromosomal engineering, have been explored for this expression system. However, extracellular protein yields in leaky mutants are relatively low compared to that in intracellular expression systems and therefore need to be improved. In this work, we describe the construction, characterization, and mechanism of enhanced extracellular expression in Escherichia coli. On the basis of the localizations, functions, and transcription levels of cell envelope proteins, we systematically elucidated the effects of multiple gene deletions on cell growth and extracellular expression using modified CRISPR/Cas9-based genome editing and a FlAsH labeling assay. High extracellular yields of heterologous proteins of different sizes were obtained by screening multiple gene mutations. The enhancement of extracellular secretion was associated with the derepression of translation and translocation. This work utilized universal methods in the design of extracellular expression systems for genes not directly associated with protein synthesis that were used to generate strains with higher protein expression capability. We anticipate that extracellular expression systems may help to shed light on the poorly understood aspects of these secretion processes as well as to further assist in the construction of engineered prokaryotic cells for efficient extracellular production of heterologous proteins.
The effect of Pokemon on bladder cancer epithelial-mesenchymal transition.
Guo, Changcheng; Zhu, Kai; Sun, Wei; Yang, Bin; Gu, Wenyu; Luo, Jun; Peng, Bo; Zheng, Junhua
2014-01-24
This study aimed at detecting Pokemon expression in bladder cancer cell and investigating the relationship between Pokemon and epithelial-mesenchymal transition. Furthermore, we investigated the functions of Pokemon in the carcinogenesis and development of bladder cancer. This study was also designed to observe the inhibitory effects of siRNA expression vector on Pokemon in bladder cancer cell. The siRNA expression vectors which were constructed to express a short hairpin RNA against Pokemon were transfected to the bladder cancer cells T24 with a liposome. Levels of Pokemon, E-cadherin and β-catenin mRNA and protein were examined by real-time quantitative-fluorescent PCR and Western blot analysis, respectively. The effects of Pokemon silencing on epithelial-mesenchymal transition of T24 cells were evaluated with wound-healing assay. Pokemon was strongly inhibited by siRNA treatment, especially siRNA3 treatment group, as it was reflected by Western blot and real-time PCR. The gene and protein of E-cadherin expression level showed increased markedly after Pokemon was inhibited by RNA interference. While there were no differences in the levels of gene and protein of β-catenin among five groups. The bladder cancer cell after Pokemon siRNA interference showed a significantly reduced wound-closing efficiency at 6, 12 and 24h. Our findings suggest Pokemon may inhibit the expression of E-cadherin. The low expression of E-cadherin lead to increasing the phenotype and apical-base polarity of epithelial cells. These changes of cells may result in the recurrence and progression of bladder cancer at last. Copyright © 2013 Elsevier Inc. All rights reserved.
Touzard, Eve; Reinaud, Pierrette; Dubois, Olivier; Guyader-Joly, Catherine; Humblot, Patrice; Ponsart, Claire; Charpigny, Gilles
2013-10-01
Pregnancy-associated glycoproteins (PAGs) constitute a multigenic family of aspartic proteinases expressed in the trophoblast of the ruminant placenta. In Bos taurus, this family comprises 21 members segregated into ancient and modern phylogenetic groups. Ancient PAGs have been reported to be synthesized throughout the trophoblastic cell layer whereas modern PAGs are produced by binucleate cells of cotyledons. The aim of this study was to investigate modern and ancient PAGs during gestation in cotyledonary and intercotyledonary tissues. To obtain convincing and innovative results despite the high sequence identity shared between PAGs, we designed specific tools such as amplification primers and antibodies. Using real-time RT-PCR, we described the transcript expression of 16 bovine PAGs. Overall, PAGs are characterized by an increase in their expression during gestation. However, we demonstrated a segregation of modern PAGs in cotyledons and of ancient PAGs in the intercotyledonary chorion, except for the ancient PAG2 expressed in cotyledons. By raising specific antibodies against the modern PAG1 and ancient PAG11 and PAG2, we established the expression kinetics of the proteins using western blotting. Immunohistochemistry showed that PAGs were produced by specific cellular populations: PAG1 by binucleate cells in the whole trophoblastic layer, PAG11 was localized in binucleate cells of the intercotyledonary trophoblast and the chorionic plate of the cotyledon, while PAG2 was produced in mononucleate cells of the internal villi of the cotyledon. These results revealed a highly specific regulation of PAG expression and cell localization as a function of their phylogenetic status, suggesting distinct biological functions within placental tissues.
Chowdhury, Indrajit; Thompson, Winston E; Welch, Crystal; Thomas, Kelwyn; Matthews, Roland
2013-12-01
Mammalian ovarian follicular development is tightly regulated by crosstalk between cell death and survival signals, which include both endocrine and intra-ovarian regulators. Whether the follicle ultimately ovulates or undergoes atresia is dependent on the expression and actions of factors promoting follicular cell proliferation, differentiation or apoptosis. Prohibitin (PHB) is a highly conserved, ubiquitous protein that is abundantly expressed in granulosa cells (GCs) and associated with GC differentiation and apoptosis. The current study was designed to characterize the regulation of anti-apoptotic and pro-apoptotic factors in undifferentiated rat GCs (gonadotropin independent phase) governed by PHB. Microarray technology was initially employed to identify potential apoptosis-related genes, whose expression levels within GCs were altered by either staurosporine (STS) alone or STS in presence of ectopically over-expressed PHB. Next, immunoblot studies were performed to examine the expression patterns of selective Bcl-2 family members identified by the microarray analysis, which are commonly regulated in the intrinsic-apoptotic pathway. These studies were designed to measure protein levels of Bcl2 family in relation to expression of the acidic isoform (phosphorylated) PHB and the components of MEK-Erk1/2 pathway. These studies indicated that over-expression of PHB in undifferentiated GCs inhibit apoptosis which concomitantly results in an increased level of the anti-apoptotic proteins Bcl2 and Bclxl, reduced release of cytochrome c from mitochondria and inhibition of caspase-3 activity. In contrast, silencing of PHB expression resulted in change of mitochondrial morphology from the regular reticular network to a fragmented form, which enhanced sensitization of these GCs to the induction of apoptosis. Collectively, these studies have provided new insights on the PHB-mediated anti-apoptotic mechanism, which occurs in undifferentiated GCs through a PHB → Mek-Erk1/2 → Bcl/Bcl-xL pathway and may have important clinical implications.
Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme
2011-03-18
11]. To facilitate measurement of additional kinetic constants, secreted forms of wt and V146H/L363E hCE1 were expressed in Spodoptera frugiperda Sf21...Comparison of Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Spodoptera frugiperda , and COS7 cells for recombinant gene expression
Adenoviral receptor expression of normal bladder and transitional cell carcinoma of the bladder.
Buscarini, Maurizio; Quek, Marcus L; Gilliam-Hegarich, Susan; Kasahara, Nori; Bochner, Bernard
2007-01-01
The insertion of absent or underexpressed genes into cancer cells to alter their malignant phenotype is an important potential application of available gene therapy technology. One of the more common viral vector systems that has been extensively studied for this purpose are the replication-deficient adenoviruses (Ad). Adenoviral infection of cells is mediated through a complex pathway, initiated following viral-cell attachment. Adenoviral-cell attachment occurs following interactions with a 46-kDa transmembrane protein with high affinity for both the Coxsackie and adenovirus, designated the CAR (Coxsackie and adenoviral receptor). Additional important cell-viral interactions that occur involve the alpha(v)-based integrins, specifically alpha(v)beta3 and alpha(v)beta5. The purpose of the present study was to determine the extent of expression and localization of the known Ad receptor proteins (CAR, alpha(v)beta3, and alpha(v)beta5) in normal and cancerous human bladders. Frozen tissue samples of normal bladder and invasive transitional cell cancers of the bladder were evaluated. Tissue blocks containing muscle-invasive transitional cell carcinoma (TCC) were obtained following radical cystectomy, which were performed at our institution. Thirty-two invasive transitional cell bladder tumors were evaluated, each with a matched sample of histologically normal-appearing bladder used as a control. Four additional samples of normal bladder were obtained from patients with no evidence of disease of the bladder and served as further controls. Three additional cases of invasive bladder cancer with no matching normal tissue were also evaluated. Identification of the CAR receptor was performed using the anti-CAR mouse monoclonal antibody designated RmBC. The integrins alpha(v)beta3 and alpha(v)beta5 were identified using the mouse monoclonal antibodies designated LM609 and P1F6 respectively. All slides were evaluated by two of the authors (M.B., B.B.) without knowledge of the clinical and pathological data. Normal bladder: Normal bladder mucosa demonstrated a marked positivity for CAR in 29/35 (82.8%) cases. In contrast, normal transitional epithelial cells were uniformly negative when tested for the integrins alpha(v)beta3 and alpha(v)beta5. Subepithelial tissues, specifically the connective tissue components of the lamina propria and deep muscle wall of the bladder, were positive for alpha(v)beta3 and for alpha(v)beta5 in 61 and 75% of samples, respectively. Endothelial cells associated with the various layers throughout the bladder uniformly expressed both integrins and served as a consistent internal control for both antibodies. An almost identical staining pattern of the endothelium was observed using LM609 and P1F6 in all samples tested. Bladder transitional cell carcinoma: CAR immunoreactivity against TCC cells was uniformly decreased compared to normal transitional cells. Nine tumors exhibited a weak positivity for CAR while the remaining samples were negative. In some cases, the absence of CAR positivity was associated with histological evidence of carcinoma in situ. In 6 cases, it led to the identification of small regions of carcinoma in situ that were not noted on primary pathological evaluation. Peritumoral connective tissue expressed both integrins in the majority of cases, similar to the pattern described above for normal bladder. Transitional cell cancers demonstrated a similar pattern of expression of alpha(v)beta5, in which all tumor cells exhibited minimal or no staining. The success of all viral-mediated gene therapy strategies relies on the ability of the vector to efficiently deliver its genetic material to a target cell population. In the current study, we demonstrate that the bladder epithelial layer consistently expresses high levels of CAR. Deeper layers of the epithelium also express CAR, including the basal layer cells. A decrease in the expression of CAR appears as an early event in bladder carcinogenesis. We observed that both alpha(v)beta3 and alpha(v)beta5 are strongly expressed in muscle cells surrounding the neoplastic cells, as well as within the peritumoral connective tissue. In cases of invasive bladder cancer that have lost CAR expression, an adenoviral vector may still be utilized through the less efficient interactions with the integrins. Bladder tumor tissue may be less susceptible to an adenoviral-mediated gene therapy approach in which a significant percentage of tumor cells require transduction. Adenoviral uptake by tumor or peritumoral cells with subsequent gene transfer could be predicted by the level of CAR and alpha(v)-based integrin expression. This would enhance our ability to identify those patients whose tumors would be more susceptible to Ad-mediated gene delivery as part of an antitumor treatment. 2007 S. Karger AG, Basel
Cell-specific dysregulation of microRNA expression in obese white adipose tissue.
Oger, Frédérik; Gheeraert, Celine; Mogilenko, Denis; Benomar, Yacir; Molendi-Coste, Olivier; Bouchaert, Emmanuel; Caron, Sandrine; Dombrowicz, David; Pattou, François; Duez, Hélène; Eeckhoute, Jérome; Staels, Bart; Lefebvre, Philippe
2014-08-01
Obesity is characterized by the excessive accumulation of dysfunctional white adipose tissue (WAT), leading to a strong perturbation of metabolic regulations. However, the molecular events underlying this process are not fully understood. MicroRNAs (miRNAs) are small noncoding RNAs acting as posttranscriptional regulators of gene expression in multiple tissues and organs. However, their expression and roles in WAT cell subtypes, which include not only adipocytes but also immune, endothelial, and mesenchymal stem cells as well as preadipocytes, have not been characterized. Design/Results: By applying differential miRNome analysis, we demonstrate that the expression of several miRNAs is dysregulated in epididymal WAT from ob/ob and high-fat diet-fed mice. Adipose tissue-specific down-regulation of miR-200a and miR-200b and the up-regulation of miR-342-3p, miR-335-5p, and miR-335-3p were observed. Importantly, a similarly altered expression of miR-200a and miR-200b was observed in obese diabetic patients. Furthermore, cell fractionation of mouse adipose tissue revealed that miRNAs are differentially expressed in adipocytes and in subpopulations from the stromal vascular fraction. Finally, integration of transcriptomic data showed that bioinformatically predicted miRNA target genes rarely showed anticorrelated expression with that of targeting miRNA, in contrast to experimentally validated target genes. Taken together, our data indicate that the dysregulated expression of miRNAs occurs in distinct cell types and is likely to affect cell-specific function(s) of obese WAT.
2011-01-01
Background Polygalacturonase-inhibiting proteins (PGIPs) directly limit the effective ingress of fungal pathogens by inhibiting cell wall-degrading endopolygalacturonases (ePGs). Transgenic tobacco plants over-expressing grapevine (Vitis vinifera) Vvpgip1 have previously been shown to be resistant to Botrytis infection. In this study we characterized two of these PGIP over-expressing lines with known resistance phenotypes by gene expression and hormone profiling in the absence of pathogen infection. Results Global gene expression was performed by a cross-species microarray approach using a potato cDNA microarray. The degree of potential cross-hybridization between probes was modeled by a novel computational workflow designed in-house. Probe annotations were updated by predicting probe-to-transcript hybridizations and combining information derived from other plant species. Comparing uninfected Vvpgip1-overexpressing lines to wild-type (WT), 318 probes showed significant change in expression. Functional groups of genes involved in metabolism and associated to the cell wall were identified and consequent cell wall analysis revealed increased lignin-levels in the transgenic lines, but no major differences in cell wall-derived polysaccharides. GO enrichment analysis also identified genes responsive to auxin, which was supported by elevated indole-acetic acid (IAA) levels in the transgenic lines. Finally, a down-regulation of xyloglucan endotransglycosylase/hydrolases (XTHs), which are important in cell wall remodeling, was linked to a decrease in total XTH activity. Conclusions This evaluation of PGIP over-expressing plants performed under pathogen-free conditions to exclude the classical PGIP-ePG inhibition interaction indicates additional roles for PGIPs beyond the inhibition of ePGs. PMID:22078230
Nair, Renjith P; Krishnan, Lissy K
2013-04-11
In the event of chronic diabetes or burn wounds, accomplishing skin regeneration is a major concern. Autologous skin grafting is the most effective remedy, but the tissue harvest may create more nonhealing wounds. Currently available skin substitutes have a limited clinical outcome because of immune reactions arising from the xenobiotic scaffold or allogenous cells. Autologous stem cells that can be collected without an additional injury may be a viable option for skin-tissue engineering. Presence of a low number of keratinocyte progenitor cells (KPCs) within the peripheral blood mononuclear cell (PBMNC) population has been indicated. Identification, isolation, expansion, and differentiation of KPCs is necessary before they are considered for skin regeneration, which is the focus of this study. Culture of isolated human PBMNCs on a cell-specific matrix was carried out to induce differentiation of KPCs. Flow cytometry and reverse transcriptase polymerase chain reaction were done for epithelial stem cell marker p63 and lineage markers cytokeratin 5 and cytokeratin 14, to track differentiation. Proliferation was confirmed by quantifying the proliferating cell nuclear antigen-expressing cells. Immunostaining with epithelial cell markers, involucrin and filaggrin, was carried out to establish terminal differentiation. Microscopic analysis confirmed growth and survival of KPCs on the dermal fibroblast monolayer and on a transplantable fibrin sheet. We demonstrated that KPCs are p63(+) and CD34-. The specifically designed composition of the extracellular matrix was found to support selective adhesion, proliferation, and differentiation of p63(+) KPCs. The PBMNC culture for 12 days under controlled conditions resulted in a homogenous population that expressed cytokeratins, and >90% of the cells were found to proliferate. Subculture for 5 days resulted in expression of filaggrin and involucrin, suggesting terminal differentiation. Transfer of matrix-selected KPCs to a dermal fibroblast monolayer or fibrin supported cell proliferation and showed typical hexagonal morphology of keratinocytes within 15 days. Circulating KPCs were identified with p63, which differentiated into keratinocytes with expression of the cytokeratins, involucrin and filaggrin. Components of the specifically designed matrix favored KPC attachment, directed differentiation, and may turn out to be a potential vehicle for cell transplantation.
2013-01-01
Introduction In the event of chronic diabetes or burn wounds, accomplishing skin regeneration is a major concern. Autologous skin grafting is the most effective remedy, but the tissue harvest may create more nonhealing wounds. Currently available skin substitutes have a limited clinical outcome because of immune reactions arising from the xenobiotic scaffold or allogenous cells. Autologous stem cells that can be collected without an additional injury may be a viable option for skin-tissue engineering. Presence of a low number of keratinocyte progenitor cells (KPCs) within the peripheral blood mononuclear cell (PBMNC) population has been indicated. Identification, isolation, expansion, and differentiation of KPCs is necessary before they are considered for skin regeneration, which is the focus of this study. Methods Culture of isolated human PBMNCs on a cell-specific matrix was carried out to induce differentiation of KPCs. Flow cytometry and reverse transcriptase polymerase chain reaction were done for epithelial stem cell marker p63 and lineage markers cytokeratin 5 and cytokeratin 14, to track differentiation. Proliferation was confirmed by quantifying the proliferating cell nuclear antigen-expressing cells. Immunostaining with epithelial cell markers, involucrin and filaggrin, was carried out to establish terminal differentiation. Microscopic analysis confirmed growth and survival of KPCs on the dermal fibroblast monolayer and on a transplantable fibrin sheet. Results We demonstrated that KPCs are p63+ and CD34-. The specifically designed composition of the extracellular matrix was found to support selective adhesion, proliferation, and differentiation of p63+ KPCs. The PBMNC culture for 12 days under controlled conditions resulted in a homogenous population that expressed cytokeratins, and >90% of the cells were found to proliferate. Subculture for 5 days resulted in expression of filaggrin and involucrin, suggesting terminal differentiation. Transfer of matrix-selected KPCs to a dermal fibroblast monolayer or fibrin supported cell proliferation and showed typical hexagonal morphology of keratinocytes within 15 days. Conclusions Circulating KPCs were identified with p63, which differentiated into keratinocytes with expression of the cytokeratins, involucrin and filaggrin. Components of the specifically designed matrix favored KPC attachment, directed differentiation, and may turn out to be a potential vehicle for cell transplantation. PMID:23578397
Antagonistic control of a dual-input mammalian gene switch by food additives.
Xie, Mingqi; Ye, Haifeng; Hamri, Ghislaine Charpin-El; Fussenegger, Martin
2014-08-01
Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Su, Yinghan; Sun, Bin; Lin, Xuejing; Zhao, Xinying; Ji, Weidan; He, Miaoxia; Qian, Haihua; Song, Xianmin; Yang, Jianmin; Wang, Jianmin; Chen, Jie
2016-08-02
In diffuse large B-cell lymphoma (DLBCL), many oncogenic microRNAs (OncomiRs) are highly expressed to promote disease development and progression by inhibiting the expression and function of certain tumor suppressor genes, and these OncomiRs comprise a promising new class of molecular targets for the treatment of DLBCL. However, most current therapeutic studies have focused on a single miRNA, with limited treatment outcomes. In this study, we generated tandem sequences of 10 copies of the complementary binding sequences to 13 OncomiRs and synthesized an interfering long non-coding RNA (i-lncRNA). The highly-expressed i-lncRNA in DLBCL cells would compete with the corresponding mRNAs of OncomiR target genes for binding OncomiRs, thereby effectively consuming a large amount of OncomiRs and protecting many tumor suppressor genes. The in vitro experiments confirmed that the i-lncRNA expression significantly inhibited cell proliferation, induced cell cycle arrest and apoptosis in DLBCL cell lines, mainly through upregulating the expression of PTEN, p27kip1, TIMP3, RECK and downregulating the expression of p38/MAPK, survivin, CDK4, c-myc. In the established SUDHL-4 xenografts in nude mice, the treatment strategy involving adenovirus-mediated i-lncRNA expression significantly inhibited the growth of DLBCL xenografts. Therefore, this treatment would specifically target the carcinogenic effects of many OncomiRs that are usually expressed in DLBCL and not in normal cells, such a strategy could improve anti-tumor efficacy and safety and may be a good prospect for clinical applications.
Hayashi, Hisamitsu; Mizuno, Tadahaya; Horikawa, Reiko; Nagasaka, Hironori; Yabuki, Takashi; Takikawa, Hajime; Sugiyama, Yuichi
2012-05-01
Multidrug resistance-associated protein 2 (in humans, MRP2; in rodents, Mrp2) mediates biliary excretion of bilirubin glucuronides. Therefore, upregulation of MRP2/Mrp2 expression may improve hyperbilirubinemia. We investigated the effects of 4-phenylbutyrate (4PBA), a drug used to treat ornithine transcarbamylase deficiency (OTCD), on the cell surface expression and transport function of MRP2/Mrp2 and serum T-Bil concentration. MRP2-expressing MDCKII (MRP2-MDCKII) cells and rats were studied to explore the change induced by 4PBA treatment in the cell surface expression and transport function of MRP2/Mrp2 and its underlying mechanism. Serum and liver specimens from OTCD patients were analyzed to examine the effect of 4PBA on hepatic MRP2 expression and serum T-Bil concentration in humans. In MRP2-MDCKII cells and the rat liver, 4PBA increased the cell surface expression and transport function of MRP2/Mrp2. In patients with OTCD, hepatic MRP2 expression increased and serum T-Bil concentration decreased significantly after 4PBA treatment. In vitro studies designed to explore the mechanism underlying this drug action suggested that cell surface-resident MRP2/Mrp2 is degraded via ubiquitination-mediated targeting to the endosomal/lysosomal degradation pathway and that 4PBA inhibits the degradation of cell surface-resident MRP2/Mrp2 by reducing its susceptibility to ubiquitination. 4PBA activates MRP2/Mrp2 function through increased expression of MRP2/Mrp2 at the hepatocanalicular membrane by modulating its ubiquitination, and thereby decreases serum T-Bil concentration. 4PBA has thus therapeutic potential for improving hyperbilirubinemia. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Epigenetic Inactivation of GALR1 in Head and Neck Cancer
Misawa, Kiyoshi; Ueda, Yo; Kanazawa, Takeharu; Misawa, Yuki; Jang, Ilwhan; Brenner, John Chadwick; Ogawa, Tetsuya; Takebayashi, Satoru; Grenman, Reidar A.; Herman, James G.; Mineta, Hiroyuki; Carey, Thomas E.
2011-01-01
Purpose One copy of the GALR1 locus on 18q is often deleted and expression is absent in some head and neck squamous cell carcinoma (HNSCC) cell lines. To determine if LOH and hypermethylation might silence the GALR1 gene, promoter methylation status and gene expression were assessed in a large panel of HNSCC cell lines and tumors. Experimental Design Promoter methylation of GALR1 in 72 cell lines and 100 primary tumor samples was analyzed using methylation-specific PCR (MSP). GALR1 expression and methylation status were analyzed further by real-time PCR and bisulfite sequencing analysis. Results The GALR1 promoter was fully or partially methylated in 38 of 72 HNSCC cell lines (52.7%) but not in the majority 18/20 (90.0%) of non-malignant lines. GALR1 methylation was also found in 38/100 (38%) primary tumor specimens. Methylation correlated with decreased GALR1 expression. In tumors methylation was significantly correlated with increased tumor size (P=0.0036), lymph-node status (P=0.0414), tumor stage (P=0.0037), cyclin D1 expression (P=0.0420), and p16 methylation (P=0.0494) and survival (P=0.045). Bisulfite sequencing of 36 CpG sites upstream of the transcription start site revealed that CpG methylation within transcription factor binding sites correlated with complete suppression of GALR1 mRNA. Treatment with TSA and 5-azacytidine restored GALR1 expression. In UM-SCC-23 cells that have total silencing of GALR1, exogenous GALR1 expression and stimulation with galanin suppressed cell proliferation. Conclusions Frequent promoter hypermethylation, gene silencing, association with prognosis, and growth suppression after re-expression support the hypothesis that GALR1 is a tumor suppressor gene in HNSCC. PMID:19047085
Takemura, Yuzuru; Miyachi, Hayato; Skelton, Lorraine; Jackman, Ann L.
1995-01-01
One of the resistance mechanisms to folate‐based thymidylate synthase (TS) inhibitors is the increase in TS activity in tumor cells. Human B lymphoblastoid cell line (W1L2) was made resistant to a lipophilic non‐polyglutamatable TS inhibitor (ZM249148), and the subline (W1L2:R179) showed a 20‐fold increase in TS enzyme activity with concomitant overexpression of TS mRNA. To overcome the resistance, we designed a ribozyme that can cleave the CUC sequences in a triple tandemly repeated sequence of TS mRNA. Expression of this ribozyme in W1L2:R179 cells transfected with Epstein Barr virus‐based expression vector resulted in sensitization to TS inhibitors concomitantly with a decrease of TS expression. The ribozyme expressed in transfectants was shown to be functional in cleaving artificial TS RNA in vitro. PMID:8567390
Identification of ADAM 31: a protein expressed in Leydig cells and specialized epithelia.
Liu, L; Smith, J W
2000-06-01
A family of proteins containing a disintegrin and metalloproteinase domain (ADAMs) has been identified recently. Here, we report the identification of a novel member of the ADAM protein family from mouse. This protein is designated ADAM 31. The complementary DNA sequence of ADAM 31 predicts a transmembrane protein with metalloproteinase, disintegrin, cysteine-rich, and cytoplasmic domains. Messenger RNA encoding ADAM 31 was most abundant in testes, but was also detected in many other tissues. More significantly, the antibodies raised against ADAM 31 reveal that the protein has a unique and restricted expression pattern. ADAM 31 is expressed in Leydig cells of the testes, but unlike many other ADAMs, it is not found on developing sperm. Furthermore, ADAM 31 is highly expressed on four types of specialized epithelia: the cauda epididymidis, the vas deferens, the convoluted tubules of the kidney, and the parietal cells of the stomach.
A controlled double-duration inducible gene expression system for cartilage tissue engineering.
Ma, Ying; Li, Junxiang; Yao, Yi; Wei, Daixu; Wang, Rui; Wu, Qiong
2016-05-25
Cartilage engineering that combines competent seeding cells and a compatible scaffold is increasingly gaining popularity and is potentially useful for the treatment of various bone and cartilage diseases. Intensive efforts have been made by researchers to improve the viability and functionality of seeding cells of engineered constructs that are implanted into damaged cartilage. Here, we designed an integrative system combining gene engineering and the controlled-release concept to solve the problems of both seeding cell viability and functionality through precisely regulating the anti-apoptotic gene bcl-2 in the short-term and the chondrogenic master regulator Sox9 in the long-term. Both in vitro and in vivo experiments demonstrated that our system enhances the cell viability and chondrogenic effects of the engineered scaffold after introduction of the system while restricting anti-apoptotic gene expression to only the early stage, thereby preventing potential oncogenic and overdose effects. Our system was designed to be modular and can also be readily adapted to other tissue engineering applications with minor modification.
Chu, Ling; Jiang, Yuehua; Hao, Hong; Xia, Yong; Xu, Jian; Liu, Zehao; Verfaillie, Catherine M; Zweier, Jay L; Liu, Zhenguo
2008-09-04
This study was designed to investigate the role of nitric oxide (NO) in bone marrow stem cells and their differentiation into endothelial cells in vitro. Adult mouse bone marrow multipotent progenitor cells (MAPCs) were used as the source of stem cells. Oct-4 expression (both mRNA and protein) was significantly increased by up to 68.0% in MAPCs when incubated with NO donors DETA-NONOate or sodium nitroprusside (SNP) in a concentration-dependant manner (n=3, P<0.05). However, the cell proliferation was dramatically decreased by over 3-folds when treated with DETA-NONOate or SNP for 48 h (n=3, P<0.05). When MAPCs were exposed to DETA-NONOate (100 microM) for the first 48 h during differentiation, the expression (both mRNA and protein) of vWF was significantly increased at day 14 in the differentiating cells. The effects of DETA-NONOate or SNP on cell proliferation, Oct-4 expression and endothelial differentiation of MAPCs were not affected by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one or cGMP analog 8-Br-cGMP. These data indicate that NO may regulate both the pluripotency and differentiation of MAPCs via a cGMP-independent mechanism.
Dumitrache, Alexandru; Klingeman, Dawn M; Natzke, Jace; Rodriguez, Miguel; Giannone, Richard J; Hettich, Robert L; Davison, Brian H; Brown, Steven D
2017-02-27
Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.
Sakkhachornphop, Supachai; Barbas, Carlos F; Keawvichit, Rassamee; Wongworapat, Kanlaya; Tayapiwatana, Chatchai
2012-09-01
Integration of the human immunodeficiency virus type 1 (HIV-1) genome into the host chromosome is a vital step in the HIV life cycle. The highly conserved cytosine-adenine (CA) dinucleotide sequence immediately upstream of the cleavage site is crucial for integrase (IN) activity. As this viral enzyme has an important role early in the HIV-1 replication cycle, interference with the IN substrate has become an attractive strategy for therapeutic intervention. We demonstrated that a designed zinc finger protein (ZFP) fused to green fluorescent protein (GFP) targets the 2-long terminal repeat (2-LTR) circle junctions of HIV-1 DNA with nanomolar affinity. We report now that 2LTRZFP-GFP stably transduced into 293T cells interfered with the expression of vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped lentiviral red fluorescent protein (RFP), as shown by the suppression of RFP expression. We also used a third-generation lentiviral vector and pCEP4 expression vector to deliver the 2LTRZFP-GFP transgene into human T-lymphocytic cells, and a stable cell line for long-term expression studies was selected for HIV-1 challenge. HIV-1 integration and replication were inhibited as measured by Alu-gag real-time PCR and p24 antigen assay. In addition, the molecular activity of 2LTRZFP-GFP was evaluated in peripheral blood mononuclear cells. The results were confirmed by Alu-gag real-time PCR for integration interference. We suggest that the expression of 2LTRZFP-GFP limited viral integration on intracellular immunization, and that it has potential for use in HIV gene therapy in the future.
Kleppa, Elisabeth; Ramsuran, Veron; Zulu, Siphosenkosi; Karlsen, Gunn Hege; Bere, Alfred; Passmore, Jo-Ann S.; Ndhlovu, Patricia; Lillebø, Kristine; Holmen, Sigve D.; Onsrud, Mathias; Gundersen, Svein Gunnar; Taylor, Myra; Kjetland, Eyrun F.; Ndung’u, Thumbi
2014-01-01
Background Schistosoma haematobium is a waterborne parasite that may cause female genital schistosomiasis (FGS), characterized by genital mucosal lesions. There is clinical and epidemiological evidence for a relationship between FGS and HIV. We investigated the impact of FGS on HIV target cell density and expression of the HIV co-receptor CCR5 in blood and cervical cytobrush samples. Furthermore we evaluated the effect of anti-schistosomal treatment on these cell populations. Design The study followed a case-control design with post treatment follow-up, nested in an on-going field study on FGS. Methods Blood and cervical cytobrush samples were collected from FGS negative and positive women for flow cytometry analyses. Urine samples were investigated for schistosome ova by microscopy and polymerase chain reaction (PCR). Results FGS was associated with a higher frequency of CD14+ cells (monocytes) in blood (11.5% in FGS+ vs. 2.2% in FGS-, p = 0.042). Frequencies of CD4+ cells expressing CCR5 were higher in blood samples from FGS+ than from FGS- women (4.7% vs. 1.5%, p = 0.018). The CD14+ cell population decreased significantly in both compartments after anti-schistosomal treatment (p = 0.043). Although the frequency of CD4+ cells did not change after treatment, frequencies of CCR5 expression by CD4+ cells decreased significantly in both compartments (from 3.4% to 0.5% in blood, p = 0.036; and from 42.4% to 5.6% in genital samples, p = 0.025). Conclusions The results support the hypothesis that FGS may increase the risk of HIV acquisition, not only through damage of the mucosal epithelial barrier, but also by affecting HIV target cell populations, and that anti-schistosomal treatment can modify this. PMID:24896815
Wang, Qi; Wang, Shuai; Sun, Si-Qiao; Cheng, Zhi-Hua; Zhang, Yang; Chen, Guang; Gu, Meng; Yao, Hai-Jun; Wang, Zhong; Zhou, Juan; Peng, Yu-Bing; Xu, Ming-Xi; Zhang, Ke; Sun, Xi-Wei
2016-01-01
This study was to explore the effects of RNA interference mediated vascular endothelial growth factor (VEGF) gene silencing on biological behavior of renal cell carcinoma (RCC), transplanted renal tumor and angiogenesis in nude mice. The specific siRNA sequence targeting VEGF were designed and synthesized to construct hVEGF-siRNA plasmid which was transfected into RCC 786-O cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used for the detection of VEGF gene expression and western blot was adopted for the examination of VEGF protein expression. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell growth as well as cell migration and invasion. The transplanted renal tumor models in nude mice were established, and the growth condition of nude mice, and VEGF protein expression in transplanted tumor slices and the microvessel density (MVD) were detected. The expression level of VEGF mRNA in VEGF-siRNA group was significant lower than that in the control group and negative group, suggesting that establishment of plasmid specifically inhibited the expression of VEGF gene The expression level of VEGF protein in VEGF-siRNA group was significant lower than that in the control group and negative group. VEGF gene silencing has the significant inhibition effects on proliferation, migration and invasion of RCC 786-O cells. The tumor weight, VEGF protein positive rate and MVD in VEGF-siRNA group were significant lower than those in negative group and blank group. The VEGF gene silencing could inhibit the cell proliferation, migration and invasion of RCC 786-O cells; inhibition of VEGF protein expression could prevent transplanted RCC growth and tumor angiogenesis.
[HDAC1 expression and effect of TSA on proliferation and apoptosis of A549 cells].
Huang, Hong; Zhang, Zhen-Xiang; Xu, Yong-Jian; Shao, Jing-Fang
2003-09-01
Histone deacetylase (HDAC) shows a high expression in many cancer cells and the inhibitor of HDAC1, trichostatin A (TSA), can inhibit the growth of cancer cells. Hypoxia is a common feature of malignant tumors. This paper was designed to investigate the expression of HDAC1 of A549 cell strains in hypoxia condition and the effect of TSA on their proliferation and apoptosis. The authors designed 1 normoxia group (control group) and 5 hypoxia groups (test groups): hypoxia 6h group (A), TSA + hypoxia 6h (B), hypoxia 12h group (C), hypoxia 24h group (D), TSA + hypoxia 24h (E), hypoxia 48h group (F). The expression of HDAC1 in A549 cells was examined using Western blot analysis. Proliferation, the apoptotic rates of A549 cells and the effect of TSA on them were determined using MTT method, immunohistochemistry, TUNEL method, and flow cytometry. The expression of mRNA of HDAC1 and the effect of TSA on it were determined using reverse transcription-polymerase chain reaction (RT-PCR). The A values expressed by HDAC1 in A549 cell strains were 138+/-11 in the control group, 78+/-4, 86+/-5, 124+/-3, and 120+/-9 in test groups A, C, D, and F, respectively. The A values of HDAC1mRNA versus the A values of beta-Atin mRNA were 0.68+/-0.03 in the control group, 0.46+/-0.03, 0.45+/-0.02, 0.70+/-0.03, and 0.33+/-0.02 in test groups A, C, D, and F, respectively. The A values of the expression of PCNA in A549 cell strains were 0.13+/-0.03 in the control group, 0.10+/-0.02, 0.11+/-0.02, 0.16+/-0.02, and 0.11+/-0.03 in test groups A, B, D, and E, respectively. The A values of MTT in A549 cell strains were 0.50+/-0.06 in the control group, 0.41+/-0.04, 0.45+/-0.03, 0.59+/-0.02, and 0.45+/-0.03 in test groups A, B, D, and E, respectively. The A values of positive cells of apoptosis in A549 cell strains were 0.16+/-0.04 in the control group, 0.18+/-0.02, 0.18+/-0.05, 0.20+/-0.05, and 0.23+/-0.05 in test groups A, B, D, and E, respectively. The apoptotic rates in A549 cells were 1.11% in the control group, 18.91%,14.30%, 36.99%, and 51.92% in test groups A, B, D, and E, respectively. The expression of HDAC1 plays an important role in the proliferation and apoptosis of A549 cells, which is regulated by hypoxia. TSA may serve as a new target for therapy of lung cancer.
Specialized mouse embryonic stem cells for studying vascular development.
Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E
2014-01-01
Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.
NASA Astrophysics Data System (ADS)
D'Ambrogio, A.
Skeletal system has two main functions, to provide mechanical integrity for both locomotion and protection and to play an important role in mineral homeostasis. There is extensive evidence showing loss of bone mass during long-term Space-Flights. The loss is due to a break in the equilibrium between the activity of osteoblasts (the cells that forms bone) and the activity of osteoclasts (the cells that resorbs bone). Surprisingly, there is scanty information about the possible altered gene expression occurring in cells that form bone in microgravity.(Just 69 articles result from a "gene expression in microgravity" MedLine query.) Gene-chip or microarray technology allows to screen thousands of genes at the same time: the use of this technology on samples coming from cells exposed to microgravity could provide us with many important informations. For example, the identification of the molecules or structures which are the first sensors of the mechanical stress derived from lack of gravity, could help in understanding which is the first event leading to bone loss due to long-term exposure to microgravity. Consequently, this structure could become a target for a custom-designed drug. It is evident that bone mass loss, observed during long-time stay in Space, represents an accelerated model of what happens in aging osteoporosis. Therefore, the discovery and design of drugs able to interfere with the bone-loss process, could help also in preventing negative physiological processes normally observed on Earth. Considering the aims stated above, my research is designed to:
Tokatlian, Talar; Cam, Cynthia; Siegman, Shayne N.; Lei, Yuguo; Segura, Tatiana
2013-01-01
The effective and sustained delivery of DNA locally would increase the applicability of gene therapy in tissue regeneration and therapeutic angiogenesis. One promising approach is to use porous hydrogel scaffolds to encapsulate and deliver nucleotides in the form of nanoparticles to the affected sites. We have designed and characterized micro-porous (µ-pore) hyaluronic acid hydrogels which allow for effective cell seeding in vitro post scaffold fabrication and allow for cell spreading and proliferation without requiring high levels of degradation. These factors, coupled with high loading efficiency of DNA polyplexes using a previously developed caged nanoparticle encapsulation (CnE) technique, then allowed for long-term sustained transfection and transgene expression of incorporated mMSCs. In this study, we examined the effect of pore size on gene transfer efficiency and the kinetics of transgene expression. For all investigated pore sizes (30, 60, and 100 µm), encapsulated DNA polyplexes were released steadily starting by day 4 for up to 10 days. Likewise, transgene expression was sustained over this period, although significant differences between different pore sizes were not observed. Cell viability was also shown to remain high over time, even in the presence of high concentrations of DNA polyplexes. The knowledge acquired through this in vitro model can be utilized to design and better predict scaffold-mediated gene delivery for local gene therapy in an in vivo model where host cells infiltrate the scaffold over time. PMID:22820309
2009-01-01
Background Cationic antimicrobial peptides (CAPs) with antitumor activity constitute a promising group of novel anticancer agents. These peptides induce lysis of cancer cells through interactions with the plasma membrane. It is not known which cancer cell membrane components influence their susceptibility to CAPs. We have previously shown that CAPs interact with the two glycosaminoglycans (GAGs), heparan sulfate (HS) and chondroitin sulfate (CS), which are present on the surface of most cells. The purpose of this study was to investigate the role of the two GAGs in the cytotoxic activity of CAPs. Methods Various cell lines, expressing different levels of cell surface GAGs, were exposed to bovine lactoferricin (LfcinB) and the designer peptide, KW5. The cytotoxic effect of the peptides was investigated by use of the colorimetric MTT viability assay. The cytotoxic effect on wild type CHO cells, expressing normal amounts of GAGs on the cell surface, and the mutant pgsA-745, that has no expression of GAGs on the cell surface, was also investigated. Results We show that cells not expressing HS were more susceptible to CAPs than cells expressing HS at the cell surface. Further, exogenously added heparin inhibited the cytotoxic effect of the peptides. Chondroitin sulfate had no effect on the cytotoxic activity of KW5 and only minor effects on LfcinB cytotoxicity. Conclusion Our results show for the first time that negatively charged molecules at the surface of cancer cells inhibit the cytotoxic activity of CAPs. Our results indicate that HS at the surface of cancer cells sequesters CAPs away from the phospholipid bilayer and thereby impede their ability to induce cytolysis. PMID:19527490
MCT1 promotes the cisplatin-resistance by antagonizing Fas in epithelial ovarian cancer.
Yan, Chunxiao; Yang, Fan; Zhou, Chunxia; Chen, Xuejun; Han, Xuechuan; Liu, Xueqin; Ma, Hongyun; Zheng, Wei
2015-01-01
This study was designed to investigate the role of MCT1 in the development of cisplatin-resistant ovarian cancer and its possible relationship with Fas. We found the expression of MCT1 was obviously increased both in cisplatin-resistant ovarian cancer tissue and A2780/CP cells compared with sensitive ovarian cancer tissue and cell lines A2780. And in A2780 cells treated with Cisplatin, the expression of MCT1 increased in a concentration-dependent manner, MCT1 knockdown attenuates cisplatin-induced cell viability. In A2780 and A2780/CP cells transfected with MCT1 siRNA, the activation of several downstream targets of Fas, including FasL and FAP-1 were largely prevented, whereas the expression of Caspase-3 was increased, accompanying with increased abundance of Fas. Coimmunoprecipitation and immunofluorescence showed that there is interaction between endogenous MCT1 with Fas in vivo and in vitro. In vivo, depletion of MCT1 by shRNA reverses cisplatin-resistance and the expression of Fas. This study showed that down regulation of MCT1 promote the sensibility to Cisplatin in ovarian cancer cell line. And this effect appeared to be mediated via antagonizing the effect of Fas.
MCT1 promotes the cisplatin-resistance by antagonizing Fas in epithelial ovarian cancer
Yan, Chunxiao; Yang, Fan; Zhou, Chunxia; Chen, Xuejun; Han, Xuechuan; Liu, Xueqin; Ma, Hongyun; Zheng, Wei
2015-01-01
This study was designed to investigate the role of MCT1 in the development of cisplatin-resistant ovarian cancer and its possible relationship with Fas. We found the expression of MCT1 was obviously increased both in cisplatin-resistant ovarian cancer tissue and A2780/CP cells compared with sensitive ovarian cancer tissue and cell lines A2780. And in A2780 cells treated with Cisplatin, the expression of MCT1 increased in a concentration-dependent manner, MCT1 knockdown attenuates cisplatin-induced cell viability. In A2780 and A2780/CP cells transfected with MCT1 siRNA, the activation of several downstream targets of Fas, including FasL and FAP-1 were largely prevented, whereas the expression of Caspase-3 was increased, accompanying with increased abundance of Fas. Coimmunoprecipitation and immunofluorescence showed that there is interaction between endogenous MCT1 with Fas in vivo and in vitro. In vivo, depletion of MCT1 by shRNA reverses cisplatin-resistance and the expression of Fas. This study showed that down regulation of MCT1 promote the sensibility to Cisplatin in ovarian cancer cell line. And this effect appeared to be mediated via antagonizing the effect of Fas. PMID:26045776
Suzuki, Motoshi; Toyoda, Naoya; Takagi, Shin
2014-01-01
Methods for turning on/off gene expression at the experimenter’s discretion would be useful for various biological studies. Recently, we reported on a novel microscope system utilizing an infrared laser-evoked gene operator (IR-LEGO) designed for inducing heat shock response efficiently in targeted single cells in living organisms without cell damage, thereby driving expression of a transgene under the control of a heat shock promoter. Although the original IR-LEGO can be successfully used for gene induction, several limitations hinder its wider application. Here, using the nematode Caenorhabditis elegans (C. elegans) as a subject, we have made improvements in IR-LEGO. For better spatial control of heating, a pulsed irradiation method using an optical chopper was introduced. As a result, single cells of C. elegans embryos as early as the 2-cell stage and single neurons in ganglia can be induced to express genes selectively. In addition, the introduction of site-specific recombination systems to IR-LEGO enables the induction of gene expression controlled by constitutive and cell type-specific promoters. The strategies adopted here will be useful for future applications of IR-LEGO to other organisms. PMID:24465705
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A; Kim, Sungjoon; Wilson, Christopher J; Lehár, Joseph; Kryukov, Gregory V; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F; Monahan, John E; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H; Cheng, Jill; Yu, Guoying K; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P; Gabriel, Stacey B; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E; Weber, Barbara L; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L; Meyerson, Matthew; Golub, Todd R; Morrissey, Michael P; Sellers, William R; Schlegel, Robert; Garraway, Levi A
2012-03-28
The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.
Inhibition of the NADPH oxidase regulates HO-1 expression in chronic myeloid leukemia
Singh, Melissa M.; Irwin, Mary E.; Gao, Yin; Ban, Kechen; Shi, Ping; Arlinghaus, Ralph B.; Amin, Hesham M.; Chandra, Joya
2011-01-01
Background Patients with blast crisis phase chronic myelogeneous leukemia (CML) have poor response to tyrosine kinase inhibitors designed to inhibit the BCR-ABL1 oncogene. Recent work has shown that heme oxygenase 1 (HO-1) expression is increased in BCR-ABL1 expressing cells and that inhibition of HO-1 in CML leads to reduced cellular growth suggesting HO-1 may be a plausible target for therapy. Here we sought to clarify the mechanism of HO-1 overexpression and the role of the NADPH oxidase as a contributor to this mechanism in CML. Methods HO-1 expression was evaluated in CML bone marrow specimens from patients in various stages of disease, in a transplant based model for CML and in CML cell lines. Chemical and genetic inhibition of the NADPH oxidase was carried out in CML cells. Results Blast crisis CML patient specimens displayed higher levels of HO-1 staining than chronic or accelerated phase. HO-1 upregulation in BCR-ABL1 expressing cells was suppressed by diphenyliodonium (DPI), a chemical inhibitor of the NADPH oxidase. Targeting the NADPH oxidase through RNAi to Rac1, a dominant negative Rac1 construct or an inhibitor of Rac1 activity also blunted HO-1 protein expression. Moreover, inhibition of the NADPH oxidase by RNAi directed towards p47phox similarly abrogated HO-1 levels. Conclusion BCR-ABL1 expression upregulates HO-1, a survival factor for CML cells. This upregulation is more pronounced in blast crisis CML relative to early stage disease and is mediated by the NADPH oxidase components Rac1 and p47phox. Expression of p47phox is increased in BCR-ABL1 expressing cells. PMID:22139798
Expression profiling of snoRNAs in normal hematopoiesis and AML
Warner, Wayne A.; Spencer, David H.; Trissal, Maria; White, Brian S.; Helton, Nichole; Ley, Timothy J.
2018-01-01
Small nucleolar RNAs (snoRNAs) are noncoding RNAs that contribute to ribosome biogenesis and RNA splicing by modifying ribosomal RNA and spliceosome RNAs, respectively. We optimized a next-generation sequencing approach and a custom analysis pipeline to identify and quantify expression of snoRNAs in acute myeloid leukemia (AML) and normal hematopoietic cell populations. We show that snoRNAs are expressed in a lineage- and development-specific fashion during hematopoiesis. The most striking examples involve snoRNAs located in 2 imprinted loci, which are highly expressed in hematopoietic progenitors and downregulated during myeloid differentiation. Although most snoRNAs are expressed at similar levels in AML cells compared with CD34+, a subset of snoRNAs showed consistent differential expression, with the great majority of these being decreased in the AML samples. Analysis of host gene expression, splicing patterns, and whole-genome sequence data for mutational events did not identify transcriptional patterns or genetic alterations that account for these expression differences. These data provide a comprehensive analysis of the snoRNA transcriptome in normal and leukemic cells and should be helpful in the design of studies to define the contribution of snoRNAs to normal and malignant hematopoiesis. PMID:29365324
Sequeira, Daniela P; Correia, Ricardo; Carrondo, Manuel J T; Roldão, António; Teixeira, Ana P; Alves, Paula M
2018-05-24
Safer and broadly protective vaccines are needed to cope with the continuous evolution of circulating influenza virus strains and promising approaches based on the expression of multiple hemagglutinins (HA) in a virus-like particle (VLP) have been proposed. However, expression of multiple genes in the same vector can lead to its instability due to tandem repetition of similar sequences. By combining stable with transient expression systems we can rationally distribute the number of genes to be expressed per platform and thus mitigate this risk. In this work, we developed a modular system comprising stable and baculovirus-mediated expression in insect cells for production of multi-HA influenza enveloped VLPs. First, a stable insect High Five cell population expressing two different HA proteins from subtype H3 was established. Infection of this cell population with a baculovirus vector encoding three other HA proteins from H3 subtype proved to be as competitive as traditional co-infection approaches in producing a pentavalent H3 VLP. Aiming at increasing HA expression, the stable insect cell population was infected at increasingly higher cell concentrations (CCI). However, cultures infected at CCI of 3×10 6 cells/mL showed lower HA titers per cell in comparison to standard CCI of 2×10 6 cells/mL, a phenomenon named "cell density effect". To lessen the negative impact of this phenomenon, a tailor-made refeed strategy was designed based on the exhaustion of key nutrients during cell growth. Noteworthy, cultures supplemented and infected at a CCI of 4×10 6 cells/mL showed comparable HA titers per cell to those of CCI of 2×10 6 cells/mL, thus leading to an increase of up to 4-fold in HA titers per mL. Scalability of the modular strategy herein proposed was successfully demonstrated in 2L stirred tank bioreactors with comparable HA protein levels observed between bioreactor and shake flasks cultures. Overall, this work demonstrates the suitability of combining stable with baculovirus-mediated expression in insect cells as an efficient platform for production of multi-HA influenza VLPs, surpassing the drawbacks of traditional co-infection strategies and/or the use of larger, unstable vectors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Expression profiles of inka2 in the murine nervous system.
Iwasaki, Yumi; Yumoto, Takahito; Sakakibara, Shin-Ichi
2015-01-01
Dynamic rearrangement of the actin cytoskeleton impacts many cellular characteristics in both the developing and adult central nervous systems (CNS), including the migration and adhesion of highly motile neural progenitor cells, axon guidance of immature neurons, and reconstruction of synaptic structures in the adult brain. Inka1, a known regulator of actin cytoskeleton reconstruction, is predominantly expressed by the neural crest cell lineage and regulates the migration and differentiation of these cells. In the present study, we identified a novel gene, designated as inka2, which is related to inka1. Inka2/fam212b is an evolutionarily conserved gene found in different vertebrate species and constitutes a novel gene family together with inka1. Northern blot analysis showed that inka2 mRNA was highly enriched in the nervous system. The spatiotemporal propagation cell profiles of those cells that expressed inka2 transcripts were compatible with those of Olig2-positive oligodendrocyte progenitor cells, which originate in the ventral ventricular zone during embryogenesis. Intense expression of inka2 was also noted in the proliferative neuronal progenitors in the developing cerebellum. On the other hand, immature newborn neurons in the embryonic brain showed no expression of inka2, except for the cells residing in the marginal zone of the embryonic telencephalon, which is known to contain transient cells including the non-subplate pioneer neurons and Cajal-Retzius cells. As brain development proceeds during the postnatal stage, inka2 expression emerged in some populations of immature neurons, including the neocortical pyramidal neurons, hippocampal pyramidal neurons, and granule cells migrating in the cerebellar cortex. In the adult brain, the expression of inka2 was interestingly confined in terminally differentiated neurons in the restricted forebrain regions. Taken together, as a novel regulator of actin cytoskeletons in the CNS, inka2 may be involved in multiple actin-driven processes, including cell migration and establishment of neuronal polarity. Copyright © 2015 Elsevier B.V. All rights reserved.
Synthetic biology: tools to design microbes for the production of chemicals and fuels.
Seo, Sang Woo; Yang, Jina; Min, Byung Eun; Jang, Sungho; Lim, Jae Hyung; Lim, Hyun Gyu; Kim, Seong Cheol; Kim, Se Yeon; Jeong, Jun Hong; Jung, Gyoo Yeol
2013-11-01
The engineering of biological systems to achieve specific purposes requires design tools that function in a predictable and quantitative manner. Recent advances in the field of synthetic biology, particularly in the programmable control of gene expression at multiple levels of regulation, have increased our ability to efficiently design and optimize biological systems to perform designed tasks. Furthermore, implementation of these designs in biological systems highlights the potential of using these tools to build microbial cell factories for the production of chemicals and fuels. In this paper, we review current developments in the design of tools for controlling gene expression at transcriptional, post-transcriptional and post-translational levels, and consider potential applications of these tools. Copyright © 2013 Elsevier Inc. All rights reserved.
Kusakabe, Ken-ichi; Ide, Nobuyuki; Daigo, Yataro; Tachibana, Yuki; Itoh, Takeshi; Yamamoto, Takahiko; Hashizume, Hiroshi; Hato, Yoshio; Higashino, Kenichi; Okano, Yousuke; Sato, Yuji; Inoue, Makiko; Iguchi, Motofumi; Kanazawa, Takayuki; Ishioka, Yukichi; Dohi, Keiji; Kido, Yasuto; Sakamoto, Shingo; Yasuo, Kazuya; Maeda, Masahiro; Higaki, Masayo; Ueda, Kazuo; Yoshizawa, Hidenori; Baba, Yoshiyasu; Shiota, Takeshi; Murai, Hitoshi; Nakamura, Yusuke
2013-06-13
Monopolar spindle 1 (Mps1) is essential for centrosome duplication, the spindle assembly check point, and the maintenance of chromosomal instability. Mps1 is highly expressed in cancer cells, and its expression levels correlate with the histological grades of cancers. Thus, selective Mps1 inhibitors offer an attractive opportunity for the development of novel cancer therapies. To design novel Mps1 inhibitors, we utilized the pan-kinase inhibitor anthrapyrazolone (4, SP600125) and its crystal structure bound to JNK1. Our design efforts led to the identification of indazole-based lead 6 with an Mps1 IC50 value of 498 nM. Optimization of the 3- and 6-positions on the indazole core of 6 resulted in 23c with improved Mps1 activity (IC50 = 3.06 nM). Finally, application of structure-based design using the X-ray structure of 23d bound to Mps1 culminated in the discovery of 32a and 32b with improved potency for cellular Mps1 and A549 lung cancer cells. Moreover, 32a and 32b exhibited reasonable selectivities over 120 and 166 kinases, respectively.
Iyer, Sukanya
2013-01-01
Realizing the potential of cell free systems will require development of ligand sensitive gene promoters that control gene expression in response to a ligand of interest. Here, we describe an approach to designing ligand sensitive transcriptional control in cell free systems that is based on the combination of a DNA aptamer that binds thrombin and the T7 bacteriophage promoter. Placement of the aptamer near the T7 promoter, and using a primarily single stranded template, results in up to a five-fold change in gene expression in a ligand concentration dependent manner. We further demonstrate that the sensitivity to thrombin concentration and the fold change in expression can be tuned by altering the position of the aptamer. The results described here pave the way for the use of DNA aptamers to achieve modular regulation of transcription in response to a wide variety of ligands in cell free systems. PMID:24059754
From noise to synthetic nucleoli: can synthetic biology achieve new insights?
Ciechonska, Marta; Grob, Alice; Isalan, Mark
2016-04-18
Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."
[Biological characteristics of a chimeric rabies virus expressing canine parvovirus VP2 protein].
Niu, Xue-Feng; Liu, Xiao-Hui; Sun, Zhao-Jin; Shi, He-He; Chen, Jing; Jiang, Bido; Sun, Jing-Chen; Guo, Xiao-Feng
2009-09-01
To obtain a bivalence vaccine against canine rabies virus and canine parvovirus, a chimeric rabies virus expressing canine parvovirus VP2 protein was generated by the technique of reverse genetics. It was shown that the chimeric virus designated as HEP-Flury (VP2) grew well on BHK-21 cells and the VP2 gene could still be stably expressed after ten passages on BHK-21 cells. Experiments on the mice immunized with the chimeric virus HEP-Flury (VP2) demonstrated that specific antibodies against rabies virus and canine parvovirus were induced in immunized mice after vaccination with the live chimeric virus.
Yu, Yue; Liu, Liangliang; Xie, Ning; Xue, Hui; Fazli, Ladan; Buttyan, Ralph; Wang, Yuzhuo; Gleave, Martin
2013-01-01
Context: Like other tissues, the prostate is an admixture of many different cell types that can be segregated into components of the epithelium or stroma. Reciprocal interactions between these 2 types of cells are critical for maintaining prostate homeostasis, whereas aberrant stromal cell proliferation can disrupt this balance and result in diseases such as benign prostatic hyperplasia. Although the androgen and estrogen receptors are relatively well studied for their functions in controlling stromal cell proliferation and differentiation, the role of the progesterone receptor (PR) remains unclear. Objective: The aim of the study was to investigate the expression and function of the PR in the prostate. Design and Setting: Human prostate biopsies, renal capsule xenografts, and prostate stromal cells were used. Immunohistochemistry, Western blotting, real-time quantitative PCR, cell proliferation, flow cytometry, and gene microarray analyses were performed. Results: Two PR isoforms, PRA and PRB, are expressed in prostate stromal fibroblasts and smooth muscle cells, but not in epithelial cells. Both PR isoforms suppress prostate stromal cell proliferation through inhibition of the expression of cyclinA, cyclinB, and cdc25c, thus delaying cell cycling through S and M phases. Gene microarray analyses further demonstrated that PRA and PRB regulated different transcriptomes. However, one of the major gene groups commonly regulated by both PR isoforms was the one associated with regulation of cell proliferation. Conclusion: PR plays an inhibitory role in prostate stromal cell proliferation. PMID:23666965
Chen, Chiung-Mei; Chen, I-Cheng; Chen, Ying-Lin; Lin, Te-Hsien; Chen, Wan-Ling; Chao, Chih-Ying; Wu, Yih-Ru; Lu, Yeah-Ting; Lee, Cheng-Yu; Chien, Hong-Chi; Chen, Ting-Shou; Lee-Chen, Guey-Jen; Lee, Chi-Mei
2016-11-15
The F-box protein 7 (FBXO7) mutations have been identified in families with early-onset parkinsonism and pyramidal tract signs, and designated as PARK15. In addition, FBXO7 mutations were found in typical and young onset Parkinson's disease (PD). Evidence has also shown that FBXO7 plays an important role in the development of dopaminergic neurons and increased stability and overexpression of FBXO7 may be beneficial to PD. We screened extracts of medicinal herbs to enhance FBXO7 expression for neuroprotection in MPP + -treated cells. Promoter reporter assay in HEK-293 cells was used to examine the cis/trans elements controlling FBXO7 expression and to screen extracts of medicinal herbs enhancing FBXO7 expression. MTT assay was performed to assess cell viability of MPP + -treated HEK-293/SH-SY5Y cells. In addition, proteasome activity, mitochondrial membrane potential and FBXO7/TRAF2/GATA2 protein expression were evaluated. We demonstrated that -202--57 region of the FBXO7 promoter is likely to contain sequences that are bound by positive trans protein factors to activate FBXO7 expression and GATA2 is the main trans protein factor enhancing FBXO7 expression. Extracts of medicinal herbs Oenanthe javanica (Blume) DC. (Umbelliferae), Casuarina equisetifolia L. (Casuarinaceae), and Sorghum bicolor (L.) Moench (Gramineae) improved cell viability of both MPP + -treated HEK-293 and SH-SY5Y cells, rescued proteasome activity in MPP + -treated HEK-293 cells, and restored mitochondrial membrane potential in MPP + -treated SH-SY5Y cells. These protection effects of herbal extracts are acting through enhancing FBXO7 and decreasing TRAF2 expression, which is probably mediated by GATA2 induction. Collectively, our study provides new targets, FBXO7 and its regulator GATA2, for the development of potential treatments of PD. Copyright © 2016 Elsevier GmbH. All rights reserved.
Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia
Porter, David L.; Levine, Bruce L.; Kalos, Michael; Bagg, Adam; June, Carl H.
2012-01-01
SUMMARY We designed a lentiviral vector expressing a chimeric antigen receptor with specificity for the B-cell antigen CD19, coupled with CD137 (a costimulatory receptor in T cells [4-1BB]) and CD3-zeta (a signal-transduction component of the T-cell antigen receptor) signaling domains. A low dose (approximately 1.5×105 cells per kilogram of body weight) of autologous chimeric antigen receptor–modified T cells reinfused into a patient with refractory chronic lymphocytic leukemia (CLL) expanded to a level that was more than 1000 times as high as the initial engraftment level in vivo, with delayed development of the tumor lysis syndrome and with complete remission. Apart from the tumor lysis syndrome, the only other grade 3/4 toxic effect related to chimeric antigen receptor T cells was lymphopenia. Engineered cells persisted at high levels for 6 months in the blood and bone marrow and continued to express the chimeric antigen receptor. A specific immune response was detected in the bone marrow, accompanied by loss of normal B cells and leukemia cells that express CD19. Remission was ongoing 10 months after treatment. Hypogammaglobulinemia was an expected chronic toxic effect. PMID:21830940
Moravek, Molly B.; Yin, Ping; Coon, John S.; Ono, Masanori; Druschitz, Stacy A.; Malpani, Saurabh S.; Dyson, Matthew T.; Rademaker, Alfred W.; Robins, Jared C.; Wei, Jian-Jun; Kim, J. Julie
2017-01-01
Context: Uterine leiomyomas (fibroids) are the most common benign tumors in women. Recently, three populations of leiomyoma cells were discovered on the basis of CD34 and CD49b expression, but molecular differences between these populations remain unknown. Objective: To define differential gene expression and signaling pathways in leiomyoma cell populations. Design: Cells from human leiomyoma tissue were sorted by flow cytometry into three populations: CD34+/CD49b+, CD34+/CD49b−, and CD34−/CD49b−. Microarray gene expression profiling and pathway analysis were performed. To investigate the insulinlike growth factor (IGF) pathway, real-time quantitative polymerase chain reaction, immunoblotting, and 5-ethynyl-2′-deoxyuridine incorporation studies were performed in cells isolated from fresh leiomyoma. Setting: Research laboratory. Patients: Eight African American women. Interventions: None Main Outcomes Measures: Gene expression patterns, cell proliferation, and differentiation. Results: A total of 1164 genes were differentially expressed in the three leiomyoma cell populations, suggesting a hierarchical differentiation order whereby CD34+/CD49b+ stem cells differentiate to CD34+/CD49b− intermediary cells, which then terminally differentiate to CD34−/CD49b− cells. Pathway analysis revealed differential expression of several IGF signaling pathway genes. IGF2 was overexpressed in CD34+/CD49b− vs CD34−/CD49b− cells (83-fold; P < 0.05). Insulin receptor A (IR-A) expression was higher and IGF1 receptor lower in CD34+/CD49b+ vs CD34−/CD49b− cells (15-fold and 0.35-fold, respectively; P < 0.05). IGF2 significantly increased cell number (1.4-fold; P < 0.001), proliferation indices, and extracellular signal-regulated kinase (ERK) phosphorylation. ERK inhibition decreased IGF2-stimulated cell proliferation. Conclusions: IGF2 and IR-A are important for leiomyoma stem cell proliferation and may represent paracrine signaling between leiomyoma cell types. Therapies targeting the IGF pathway should be investigated for both treatment and prevention of leiomyomas. PMID:28324020
2012-01-01
Background PCA3 is a non-coding RNA (ncRNA) that is highly expressed in prostate cancer (PCa) cells, but its functional role is unknown. To investigate its putative function in PCa biology, we used gene expression knockdown by small interference RNA, and also analyzed its involvement in androgen receptor (AR) signaling. Methods LNCaP and PC3 cells were used as in vitro models for these functional assays, and three different siRNA sequences were specifically designed to target PCA3 exon 4. Transfected cells were analyzed by real-time qRT-PCR and cell growth, viability, and apoptosis assays. Associations between PCA3 and the androgen-receptor (AR) signaling pathway were investigated by treating LNCaP cells with 100 nM dihydrotestosterone (DHT) and with its antagonist (flutamide), and analyzing the expression of some AR-modulated genes (TMPRSS2, NDRG1, GREB1, PSA, AR, FGF8, CdK1, CdK2 and PMEPA1). PCA3 expression levels were investigated in different cell compartments by using differential centrifugation and qRT-PCR. Results LNCaP siPCA3-transfected cells significantly inhibited cell growth and viability, and increased the proportion of cells in the sub G0/G1 phase of the cell cycle and the percentage of pyknotic nuclei, compared to those transfected with scramble siRNA (siSCr)-transfected cells. DHT-treated LNCaP cells induced a significant upregulation of PCA3 expression, which was reversed by flutamide. In siPCA3/LNCaP-transfected cells, the expression of AR target genes was downregulated compared to siSCr-transfected cells. The siPCA3 transfection also counteracted DHT stimulatory effects on the AR signaling cascade, significantly downregulating expression of the AR target gene. Analysis of PCA3 expression in different cell compartments provided evidence that the main functional roles of PCA3 occur in the nuclei and microsomal cell fractions. Conclusions Our findings suggest that the ncRNA PCA3 is involved in the control of PCa cell survival, in part through modulating AR signaling, which may raise new possibilities of using PCA3 knockdown as an additional therapeutic strategy for PCa control. PMID:23130941
Kasi, Devi; Catherine, Christy; Lee, Seung-Won; Lee, Kyung-Ho; Kim, Yu Jung; Ro Lee, Myeong; Ju, Jung Won; Kim, Dong-Myung
2017-05-01
The rapidly evolving cloning and sequencing technologies have enabled understanding of genomic structure of parasite genomes, opening up new ways of combatting parasite-related diseases. To make the most of the exponentially accumulating genomic data, however, it is crucial to analyze the proteins encoded by these genomic sequences. In this study, we adopted an engineered cell-free protein synthesis system for large-scale expression screening of an expression sequence tag (EST) library of Clonorchis sinensis to identify potential antigens that can be used for diagnosis and treatment of clonorchiasis. To allow high-throughput expression and identification of individual genes comprising the library, a cell-free synthesis reaction was designed such that both the template DNA and the expressed proteins were co-immobilized on the same microbeads, leading to microbead-based linkage of the genotype and phenotype. This reaction configuration allowed streamlined expression, recovery, and analysis of proteins. This approach enabled us to identify 21 antigenic proteins. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:832-837, 2017. © 2017 American Institute of Chemical Engineers.
Aoshi, Taiki; Suzuki, Mina; Uchijima, Masato; Nagata, Toshi; Koide, Yukio
2005-03-01
Identification of CD8+ T cell epitopes is important because detection of specific CD8+ T cells after infection or immunization requires prior knowledge of epitope specificity. Furthermore, identification of CD8+ T cell epitopes permits the development of specific preventive and therapeutic approaches to both infections and tumors. Thus far, CD8+ T cell epitopes have been identified either using an overlapping peptide library covering an entire protein, or using algorithms designed to identify likely peptides that bind to major histocompatibility complex (MHC) class I molecules. The synthesis of overlapping peptides can be prohibitively expensive, and the algorithm programs used to predict CD8+ T cell epitopes are not always accurate. Here we describe a retroviral expression system that specifically allows longer polypeptides and shorter peptides to be expressed in the cytoplasm, and thereby to be processed onto class I MHC molecules. T cells from mice that were immunized with a DNA vaccine encoding MPT-51 were probed against MHC-compatible cell lines retrovirally transduced with overlapping gene fragments encoding 120-140 amino acids of the MPT-51 molecule. After further testing of shorter peptide sequences, we identified a CD8+ T cell epitope using cell lines expressing a relatively small number of algorithm-predicted candidate epitopes. We found that one of the requirements for cell surface display of the 20-mer peptide was the need for cotranslational ubiquitination. The restriction molecule was identified as Dd following transduction with MHC class I genes followed by transduction with the oligonucleotide encoding the epitope. The retroviral expression system described here is cost-effective, particularly if the target molecule is large, and could be adapted to identifying T cell epitopes recognized in infectious disease and against tumor cell antigens.
Graham, Christine M; Christensen, Jillian R; Thomas, D Brian
2007-01-01
Influenza A virus causes worldwide epidemics and pandemics and the investigation of memory T helper (Th) cells that help maintain serological memory following infection is important for vaccine design. In this study we investigated CD94 and NKG2 gene expression in memory CD4 T-cell clones established from the spleens of C57BL/10 (H-2b) and BALB/c (H-2d) mice infected with influenza A virus (H3N2). CD94 and NKG2A/C/E proteins form heterodimeric membrane receptors that are involved in virus recognition. CD94 and NKG2 expression have been well characterized in natural killer (NK) and cytotoxic T cells. Despite CD94 being potentially an important marker for Th1 cells involved in virus infection, however, there has been little investigation of its expression or function in the CD4 T-cell lineage and no studies have looked at in-vivo-generated Th cells or memory cells. We show in this study that in-vivo-generated CD4 Th1 cells, but not Th2 cells, exhibited full-length CD94 and NKG2A gene expression following activation with viral peptide. For NKG2A, a novel ‘short’ (possibly redundant) truncated isoform was detectable in a Th2 cell clone. Another member of the NK receptor family, NKG2D, but not NKG2C or E, was also differentially expressed in Th1 cells. We show here that CD94 and NKG2A may exist as multiple isoforms with the potential to distinguish helper T-cell subsets. PMID:17462078
Marshall, Marianne E.; Hinz, Trista K.; Kono, Scott A.; Singleton, Katherine R.; Bichon, Brady; Ware, Kathryn E.; Marek, Lindsay; Frederick, Barbara A.; Raben, David; Heasley, Lynn E.
2011-01-01
Purpose We previously reported that a fibroblast growth factor (FGF) receptor (FGFR) signaling pathway drives growth of lung cancer cell lines of squamous and large cell histologies. Herein, we explored FGFR dependency in cell lines derived from the tobacco-related malignancy, head and neck squamous cell carcinoma (HNSCC). Experimental Design FGF and FGFR mRNA and protein expression was assessed in nine HNSCC cell lines. Dependence on secreted FGF2 for cell growth was tested with FP-1039, an FGFR1-Fc fusion protein. FGFR and EGFR-dependence was defined by sensitivity to multiple inhibitors selective for FGFRs or EGFR. Results FGF2 was expressed in eight of the nine HNSCC cell lines examined. Also, FGFR2 and FGFR3 were frequently expressed while only two lines expressed FGFR1. FP-1039 inhibited growth of HNSCC cell lines expressing FGF2, identifying FGF2 as an autocrine growth factor. FGFR inhibitors selectively reduced in vitro growth and ERK signaling in three HNSCC cell lines while three distinct lines exhibited responsiveness to both EGFR and FGFR inhibitors. Combinations of these drugs yielded additive growth inhibition. Finally, three cell lines were highly sensitive to EGFR TKIs with no contribution from FGFR pathways. Conclusions FGFR signaling was dominant or co-dominant with EGFR in six HNSCC lines while three lines exhibited little or no role for FGFRs and were highly EGFR-dependent. Thus, the HNSCC cell lines can be divided into subsets defined by sensitivity to EGFR and FGFR-specific TKIs. FGFR inhibitors may represent novel therapeutics to deploy alone or in combination with EGFR inhibitors in HNSCC. PMID:21673064
NASA Astrophysics Data System (ADS)
Chen, Ming-Chih; Hsiao, Shen-Fu
In this paper, we propose an area-efficient design of Advanced Encryption Standard (AES) processor by applying a new common-expression-elimination (CSE) method to the sub-functions of various transformations required in AES. The proposed method reduces the area cost of realizing the sub-functions by extracting the common factors in the bit-level XOR/AND-based sum-of-product expressions of these sub-functions using a new CSE algorithm. Cell-based implementation results show that the AES processor with our proposed CSE method has significant area improvement compared with previous designs.
Bandeira, Vanessa S; Tomás, Hélio A; Alici, Evren; Carrondo, Manuel J T; Coroadinha, Ana S
2017-04-01
Gammaretrovirus and lentivirus are the preferred viral vectors to genetically modify T and natural killer cells to be used in immune cell therapies. The transduction efficiency of hematopoietic and T cells is more efficient using gibbon ape leukemia virus (GaLV) pseudotyping. In this context gammaretroviral vector producer cells offer competitive higher titers than transient lentiviral vectors productions. The main aim of this work was to identify the key parameters governing GaLV-pseudotyped gammaretroviral vector productivity in stable producer cells, using a retroviral vector expression cassette enabling positive (facilitating cell enrichment) and negative cell selection (allowing cell elimination). The retroviral vector contains a thymidine kinase suicide gene fused with a ouabain-resistant Na + ,K + -ATPase gene, a potential safer and faster marker. The establishment of retroviral vector producer cells is traditionally performed by randomly integrating the retroviral vector expression cassette codifying the transgene. More recently, recombinase-mediated cassette exchange methodologies have been introduced to achieve targeted integration. Herein we compared random and targeted integration of the retroviral vector transgene construct. Two retroviral producer cell lines, 293 OuaS and 293 FlexOuaS, were generated by random and targeted integration, respectively, producing high titers (on the order of 10 7 infectious particles·ml -1 ). Results showed that the retroviral vector transgene cassette is the key retroviral vector component determining the viral titers notwithstanding, single-copy integration is sufficient to provide high titers. The expression levels of the three retroviral constructs (gag-pol, GaLV env, and retroviral vector transgene) were analyzed. Although gag-pol and GaLV env gene expression levels should surpass a minimal threshold, we found that relatively modest expression levels of these two expression cassettes are required. Their levels of expression should not be maximized. We concluded, to establish a high producer retroviral vector cell line only the expression level of the genomic retroviral RNA, that is, the retroviral vector transgene cassette, should be maximized, both through (1) the optimization of its design (i.e., genetic elements composition) and (2) the selection of high expressing chromosomal locus for its integration. The use of methodologies identifying and promoting integration into high-expression loci, as targeted integration or high-throughput screening are in this perspective highly valuable.
[Apoptosis of human lung carcinoma cell line GLC-82 induced by high power electromagnetic pulse].
Cao, Xiao-zhe; Zhao, Mei-lan; Wang, De-wen; Dong, Bo
2002-09-01
Electromagnetic pulse (EMP) could be used for sterilization of food and the efficiency is higher than 2450 MHz continuous microwave done. This study was designed to evaluate the effect of electromagnetic pulse (EMP) on apoptosis of human lung carcinoma cell line GLC-82, so that to explore and develop therapeutic means for cancer. The injury changes in GLC-82 cells after irradiated with EMP (electric field intensity was 60 kV/m, 5 pulses/2 min) were analyzed by cytometry, MTT chronometry, and flow cytometry. The immunohistochemical SP staining was used to determine the expressions of bcl-2 protein and p53 protein. The stained positive cells were analyzed by CMIAS-II image analysis system at a magnification 400. All data were analyzed by SPSS8.0 software. EMP could obviously inhibited proliferation and activity of lung carcinoma cell line GLC-82. The absorbance value (A570) of MTT decreased immediately, at 0 h, 1 h, and 6 h after the GLC-82 cells irradiated by EMP as compared with control group. The highest apoptosis rate was found to reach 13.38% by flow cytometry at 6 h after EMP irradiation. Down-regulation of bcl-2 expression and up-regulation of p53 expression were induced by EMP. EMP promotes apoptosis of GLC-82 cells. At same time, EMP can down-regulate bcl-2 expression and up-regulate p53 expression in GLC-82 cells. The bcl-2 and the p53 protein may involve the apoptotic process.
Sapoznik, Sivan; Ortenberg, Rona; Galore-Haskel, Gilli; Kozlovski, Stav; Levy, Daphna; Avivi, Camila; Barshack, Iris; Cohen, Cyrille J; Besser, Michal J; Schachter, Jacob; Markel, Gal
2012-10-01
Adoptive cell transfer therapy with reactive T cells is one of the most promising immunotherapeutic modalities for metastatic melanoma patients. Homing of the transferred T cells to all tumor sites in sufficient numbers is of great importance. Here, we seek to exploit endogenous chemotactic signals in order to manipulate and enhance the directional trafficking of transferred T cells toward melanoma. Chemokine profiling of 15 melanoma cultures shows that CXCL1 and CXCL8 are abundantly expressed and secreted from melanoma cultures. However, the complimentary analysis on 40 melanoma patient-derived tumor-infiltrating lymphocytes (TIL) proves that the corresponding chemokine receptors are either not expressed (CXCR2) or expressed at low levels (CXCR1). Using the in vitro transwell system, we demonstrate that TIL cells preferentially migrate toward melanoma and that endogenously expressing CXCR1 TIL cells are significantly enriched among the migrating lymphocytes. The role of the chemokines CXCL1 and CXCL8 is demonstrated by partial abrogation of this enrichment with anti-CXCL1 and anti-CXCL8 neutralizing antibodies. The role of the chemokine receptor CXCR1 is validated by the enhanced migration of CXCR1-engineered TIL cells toward melanoma or recombinant CXCL8. Cytotoxicity and IFNγ secretion activity are unaltered by CXCR1 expression profile. Taken together, these results mark CXCR1 as a candidate for genetic manipulations to enhance trafficking of adoptively transferred T cells. This approach is complimentary and potentially synergistic with other genetic strategies designed to enhance anti-tumor potency.
Will, Elke; Bailey, Jeff; Schuesler, Todd; Modlich, Ute; Balcik, Brenden; Burzynski, Ben; Witte, David; Layh-Schmitt, Gerlinde; Rudolph, Cornelia; Schlegelberger, Brigitte; von Kalle, Christof; Baum, Christopher; Sorrentino, Brian P; Wagner, Lars M; Kelly, Patrick; Reeves, Lilith; Williams, David A
2007-04-01
Although retroviral vectors are one of the most widely used vehicles for gene transfer, there is no uniformly accepted pre-clinical model defined to assess their safety, in particular their risk related to insertional mutagenesis. In the murine pre-clinical study presented here, 40 test and 10 control mice were transplanted with ex vivo manipulated bone marrow cells to assess the long-term effects of the transduction of hematopoietic cells with the retroviral vector MSCV-MGMT(P140K)wc. Test mice had significant gene marking 8-12 months post-transplantation with an average of 0.93 vector copies per cell and 41.5% of peripheral blood cells expressing the transgene MGMT(P140K), thus confirming persistent vector expression. Unexpectedly, six test mice developed malignant lymphoma. No vector was detected in the tumor cells of five animals with malignancies, indicating that the malignancies were not caused by insertional mutagenesis or MGMT(P140K) expression. Mice from a concurrent study with a different transgene also revealed additional cases of vector-negative lymphomas of host origin. We conclude that the background tumor formation in this mouse model complicates safety determination of retroviral vectors and propose an improved study design that we predict will increase the relevance and accuracy of interpretation of pre-clinical mouse studies.
Design criteria for synthetic riboswitches acting on transcription
Wachsmuth, Manja; Domin, Gesine; Lorenz, Ronny; Serfling, Robert; Findeiß, Sven; Stadler, Peter F; Mörl, Mario
2015-01-01
Riboswitches are RNA-based regulators of gene expression composed of a ligand-sensing aptamer domain followed by an overlapping expression platform. The regulation occurs at either the level of transcription (by formation of terminator or antiterminator structures) or translation (by presentation or sequestering of the ribosomal binding site). Due to a modular composition, these elements can be manipulated by combining different aptamers and expression platforms and therefore represent useful tools to regulate gene expression in synthetic biology. Using computationally designed theophylline-dependent riboswitches we show that 2 parameters, terminator hairpin stability and folding traps, have a major impact on the functionality of the designed constructs. These have to be considered very carefully during design phase. Furthermore, a combination of several copies of individual riboswitches leads to a much improved activation ratio between induced and uninduced gene activity and to a linear dose-dependent increase in reporter gene expression. Such serial arrangements of synthetic riboswitches closely resemble their natural counterparts and may form the basis for simple quantitative read out systems for the detection of specific target molecules in the cell. PMID:25826571
Induction of Proteinases in the Human Preovulatory Follicle of the Menstrual Cycle by hCG
Rosewell, Katherine L.; Al-Alem, Linah; Zakerkish, Farnosh; McCord, Lauren; Akin, James W.; Chaffin, Charles L.; Brännström, Mats; Curry, Thomas E.
2014-01-01
Objective To explore the temporal expression in granulosa and theca cells of key members of the MMP and ADAMTS families across the periovulatory period in women in order to gain insight into their possible roles during ovulation and early luteinization. Design Experimental prospective clinical study and laboratory-based investigation. Setting University Medical Center and private IVF center. Animal and Patient(s) Thirty eight premenopausal women undergoing surgery for tubal ligation and 6 premenopausal women undergoing ART. Intervention(s) Administration of hCG and harvesting of follicles by laparoscopy and collection of granulosa-lutein cells at oocyte retrieval. Main Outcome Measure(s) Expression of mRNA for MMPs and ADAMTSs in human granulosa cells and theca cells collected across the periovulatory period of the menstrual cycle and in cultured granulosa-lutein cells after hCG. Localization of MMPs and ADAMTSs by immunohistochemistry. Result(s) Expression of MMP1 and MMP19 mRNA increased in both granulosa and theca cells after hCG administration. ADAMTS1 and ADAMTS 9 mRNA increased in granulosa cells after hCG treatment, however thecal cell expression for ADAMTS1 was unchanged while ADAMTS9 expression was decreased. Expression of MMP8 and MMP13 mRNA was unchanged. Immunohistochemistry confirmed the localization of MMP1, MMP19, ADAMTS1 and ADAMTS9 to the granulosa and thecal cell layers. Conclusion(s) The collection of the dominant follicle throughout the periovulatory period has allowed the identification of proteolytic remodeling enzymes in the granulosa and theca compartments that may be critically involved in human ovulation. These proteinases may work in concert to regulate breakdown of the follicular wall and release of the oocyte. PMID:25516084
Bleckmann, Maren; Schürig, Margitta; Chen, Fang-Fang; Yen, Zen-Zen; Lindemann, Nils; Meyer, Steffen; Spehr, Johannes; van den Heuvel, Joop
2016-01-01
The Baculovirus Expression Vector System (BEVS) is widely used to produce high amounts of recombinant proteins. Nevertheless, generating recombinant baculovirus in high quality is rather time-consuming and labor-intensive. Alternatively, virus-free expression in insect cells did not achieve similar expression levels for most proteins so far. The transactivation method is a promising approach for protein expression in Sf21 cells. It combines advantages of BEVS and plasmid-based expression by activating strong virus-dependent promoters on a transfected plasmid by baculoviral coinfection. Here, we identified expression elements required for transactivation. Therefore, we designed several vectors comprising different viral promoters or promoter combinations and tested them for eGFP expression using the automated BioLector microcultivation system. Remarkably, only the combination of the very late promoter p10 together with the homologous region 5 (hr5) could boost expression during transactivation. Other elements, like p10 alone or the late viral promoter polH, did not respond to transactivation. A new combination of hr5 and p10 with the strongest immediate early OpMNPV viral promoter OpIE2 improved the yield of eGFP by ~25% in comparison to the previous applied hr5-IE1-p10 expression cassette. Furthermore, we observed a strong influence of the transcription termination sequence and vector backbone on the level of expression. Finally, the expression levels for transactivation, BEVS and solely plasmid-based expression were compared for the marker protein eGFP, underlining the potential of transactivation for fast recombinant protein expression in Sf21 cells. In conclusion, essential elements for transactivation could be identified. The optimal elements were applied to generate an improved vector applicable in virus-free plasmid-based expression, transactivation and BEVS.
BCL-W has a fundamental role in B cell survival and lymphomagenesis.
Adams, Clare M; Kim, Annette S; Mitra, Ramkrishna; Choi, John K; Gong, Jerald Z; Eischen, Christine M
2017-02-01
Compromised apoptotic signaling is a prerequisite for tumorigenesis. The design of effective therapies for cancer treatment depends on a comprehensive understanding of the mechanisms that govern cell survival. The antiapoptotic proteins of the BCL-2 family are key regulators of cell survival and are frequently overexpressed in malignancies, leading to increased cancer cell survival. Unlike BCL-2 and BCL-XL, the closest antiapoptotic relative BCL-W is required for spermatogenesis, but was considered dispensable for all other cell types. Here, however, we have exposed a critical role for BCL-W in B cell survival and lymphomagenesis. Loss of Bcl-w conferred sensitivity to growth factor deprivation-induced B cell apoptosis. Moreover, Bcl-w loss profoundly delayed MYC-mediated B cell lymphoma development due to increased MYC-induced B cell apoptosis. We also determined that MYC regulates BCL-W expression through its transcriptional regulation of specific miR. BCL-W expression was highly selected for in patient samples of Burkitt lymphoma (BL), with 88.5% expressing BCL-W. BCL-W knockdown in BL cell lines induced apoptosis, and its overexpression conferred resistance to BCL-2 family-targeting BH3 mimetics. Additionally, BCL-W was overexpressed in diffuse large B cell lymphoma and correlated with decreased patient survival. Collectively, our results reveal that BCL-W profoundly contributes to B cell lymphoma, and its expression could serve as a biomarker for diagnosis and aid in the development of better targeted therapies.
BCL-W has a fundamental role in B cell survival and lymphomagenesis
Adams, Clare M.; Kim, Annette S.; Mitra, Ramkrishna; Choi, John K.; Gong, Jerald Z.; Eischen, Christine M.
2017-01-01
Compromised apoptotic signaling is a prerequisite for tumorigenesis. The design of effective therapies for cancer treatment depends on a comprehensive understanding of the mechanisms that govern cell survival. The antiapoptotic proteins of the BCL-2 family are key regulators of cell survival and are frequently overexpressed in malignancies, leading to increased cancer cell survival. Unlike BCL-2 and BCL-XL, the closest antiapoptotic relative BCL-W is required for spermatogenesis, but was considered dispensable for all other cell types. Here, however, we have exposed a critical role for BCL-W in B cell survival and lymphomagenesis. Loss of Bcl-w conferred sensitivity to growth factor deprivation–induced B cell apoptosis. Moreover, Bcl-w loss profoundly delayed MYC-mediated B cell lymphoma development due to increased MYC-induced B cell apoptosis. We also determined that MYC regulates BCL-W expression through its transcriptional regulation of specific miR. BCL-W expression was highly selected for in patient samples of Burkitt lymphoma (BL), with 88.5% expressing BCL-W. BCL-W knockdown in BL cell lines induced apoptosis, and its overexpression conferred resistance to BCL-2 family–targeting BH3 mimetics. Additionally, BCL-W was overexpressed in diffuse large B cell lymphoma and correlated with decreased patient survival. Collectively, our results reveal that BCL-W profoundly contributes to B cell lymphoma, and its expression could serve as a biomarker for diagnosis and aid in the development of better targeted therapies. PMID:28094768
Dumitrache, Alexandru; Klingeman, Dawn M.; Natzke, Jace; ...
2017-02-27
Clostridium thermocellum forms biofilms adherent to lignocellulosic feedstock in a typical continuous cell-monolayer to efficiently break down and uptake cellulose hydrolysates. The sessile cells of biofilms may revert to non-adherent planktonic cells through generation of offspring cells or microenvironment constraints such as limited surface area. These interdependent cell populations co-exist and have different contributions to culture activity and growth. Here, we developed a novel bioreactor design to rapidly harvest sessile and planktonic cell populations for omics studies. In RNA-seq analyses, within 3299 protein coding genes, 59% (or 1958 genes) were differentially expressed with a minimum two-fold change between the twomore » cell populations isolated simultaneously at high culture activity. Furthermore, sessile cells had definitive greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division; planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. Our knowledge of these cellular adaptations will aid the engineering of industrially relevant strains for consolidated bioprocessing of solid lignocellulosic biomass« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrache, Alexandru; Klingeman, Dawn M.; Natzke, Jace
Clostridium thermocellum forms biofilms adherent to lignocellulosic feedstock in a typical continuous cell-monolayer to efficiently break down and uptake cellulose hydrolysates. The sessile cells of biofilms may revert to non-adherent planktonic cells through generation of offspring cells or microenvironment constraints such as limited surface area. These interdependent cell populations co-exist and have different contributions to culture activity and growth. Here, we developed a novel bioreactor design to rapidly harvest sessile and planktonic cell populations for omics studies. In RNA-seq analyses, within 3299 protein coding genes, 59% (or 1958 genes) were differentially expressed with a minimum two-fold change between the twomore » cell populations isolated simultaneously at high culture activity. Furthermore, sessile cells had definitive greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division; planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. Our knowledge of these cellular adaptations will aid the engineering of industrially relevant strains for consolidated bioprocessing of solid lignocellulosic biomass« less
Shei, William; Liu, Jun; Htoon, Hla M; Aung, Tin; Vithana, Eranga N
2013-01-01
To characterize the relative expression levels of all the solute carrier 4 (Slc4) transporter family members (Slc4a1-Slc4a11) in murine corneal endothelium using real-time quantitative (qPCR), to identify further important members besides Slc4a11 and Slc4a4, and to explore how close to the baseline levels the gene expressions remain after cells have been subjected to expansion and culture. Descemet's membrane-endothelial layers of 8-10-week-old C57BL6 mice were stripped from corneas and used for both primary cell culture and direct RNA extraction. Total RNA (from uncultured cells as well as cultured cells at passages 2 and 7) was reverse transcribed, and the cDNA was used for real time qPCR using specific primers for all the Slc4 family members. The geNorm method was applied to determine the most stable housekeeping genes and normalization factor, which was calculated from multiple housekeeping genes for more accurate and robust quantification. qPCR analyses revealed that all Slc4 bicarbonate transporter family members were expressed in mouse corneal endothelium. Slc4a11 showed the highest expression, which was approximately three times higher than that of Slc4a4 (3.4±0.3; p=0.004). All Slc4 genes were also expressed in cultured cells, and interestingly, the expression of Slc4a11 in cultured cells was significantly reduced by approximately 20-fold (0.05±0.001; p=0.000001) in early passage and by approximately sevenfold (0.14±0.002; p=0.000002) in late passage cells. Given the known involvement of SLC4A4 and SLC4A11 in corneal dystrophies, we speculate that the other two highly expressed genes in the uncultured corneal endothelium, SLC4A2 and SLC4A7, are worthy of being considered as potential candidate genes for corneal endothelial diseases. Moreover, as cell culture can affect expression levels of Slc4 genes, caution and careful design of experiments are necessary when undertaking studies of Slc4-mediated ion transport in cultured cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandon, C.A.; Diaz, C.; Arrigo, A.-P.
2005-09-23
A whole-cell bioassay has been developed for the total toxicity testing of liquid samples. The method is based on the induction of the bioluminescent activity of genetically manipulated mammalian cells. For that purpose, transfection was used to introduce, in HeLa cells, a DNA sensing element that responds to chemical stress agents (heavy metals, genotoxic agents, and endocrine-disrupting chemicals). Such element was designed to direct the expression of a reporting gene (firefly luciferase) through the activation of Drosophila melanogaster hsp22 promoter. A molecular approach was conducted to optimize hsp22 promoter element in order to decrease the background expression level of themore » reporting gene and to increase the sensitivity of the bioassay for testing endocrine disruptors. As a result, in the presence of 20-100 {mu}M cadmium chloride, a 6-fold increase in luciferase expression was obtained using a specially designed truncated hsp22 promoter construction. The following chemicals known to be found in the polluted samples were tested: CdCl{sub 2}, Cd(NO{sub 3}){sub 2}, NaAsO{sub 2}, alachlore, fentine acetate, thiram, and maneb. The stressing effect of each of them was sensitively detected by the present bioassay in the 0.05-50 {mu}M concentration range.« less
BAFF, a Novel Ligand of the Tumor Necrosis Factor Family, Stimulates B Cell Growth
Schneider, Pascal; MacKay, Fabienne; Steiner, Véronique; Hofmann, Kay; Bodmer, Jean-Luc; Holler, Nils; Ambrose, Christine; Lawton, Pornsri; Bixler, Sarah; Acha-Orbea, Hans; Valmori, Danila; Romero, Pedro; Werner-Favre, Christiane; Zubler, Rudolph H.; Browning, Jeffrey L.; Tschopp, Jürg
1999-01-01
Members of the tumor necrosis factor (TNF) family induce pleiotropic biological responses, including cell growth, differentiation, and even death. Here we describe a novel member of the TNF family, designated BAFF (for B cell activating factor belonging to the TNF family), which is expressed by T cells and dendritic cells. Human BAFF was mapped to chromosome 13q32-34. Membrane-bound BAFF was processed and secreted through the action of a protease whose specificity matches that of the furin family of proprotein convertases. The expression of BAFF receptor appeared to be restricted to B cells. Both membrane-bound and soluble BAFF induced proliferation of anti-immunoglobulin M–stimulated peripheral blood B lymphocytes. Moreover, increased amounts of immunoglobulins were found in supernatants of germinal center–like B cells costimulated with BAFF. These results suggest that BAFF plays an important role as costimulator of B cell proliferation and function. PMID:10359578
Action of the photosensitizer QLT0074 upon human T lymphocytes in vitro
NASA Astrophysics Data System (ADS)
Hunt, David W. C.; Jiang, Huijun; Salmon, Ruth A.; Granville, David J.; North, John R.; Richter, Anna M.
2001-04-01
A new photosensitizer, presently designated QLT0074, may be useful for the treatment of skin conditions, particularly those mediated by T lymphocytes, with photodynamic therapy (PDT). QLT0074 was tested against human peripheral blood T cells and Jurkat T lymphoma cells. Low concentrations of QLT0074 and blue light were sufficient to induce apoptosis in peripheral blood T cells or Jurkat T lymphoma cells as indicated by expression of the apoptosis-associated mitochondrial 7A6 marker, annexin-V labeling or activation of capsase-3 and cleavage of the capsase substrate poly(ADP-ribose)polymerase (PARP). Flow cytometry studies performed following PDT showed that peripheral blood T cells with high expression of the interleukin-2 receptor (CD25) took up greater amounts of QLT0074 and were eliminated to a greater degree than T cells with low CD25 levels. This effect of PDT was also shown by the reduction in the percentage of T cells that expressed other activation-associated markers such as very late activation antigen-4 (CD49d), human leukocyte antigen DR (HLA-DR), intercellular adhesion molecule-1 (CD54) and Fas (CD95). In the case of T cells that remained viable following PDT, CD25 expression was lower while CD54, CD95 and HLA-DR levels were unchanged. Thus, PDT with QLT0074 has selective, dose-dependent effects on T cells in vitro.
Tas13D inhibits growth of SMMC-7721 cell via suppression VEGF and EGF expression.
He, Huai-Zhen; Wang, Nan; Zhang, Jie; Zheng, Lei; Zhang, Yan-Min
2012-01-01
Taspine, isolated from Radix et Rhizoma Leonticis has demosntrated potential proctiective effects against cancer. Tas13D, a novel taspine derivative synthetized by structure-based drug design, have been shown to possess interesting biological and pharmacological activities. The current study was designed to evaluate its antiproliferative activity and underlying mechanisms. Antiproliferative activity of tas13D was evaluated by xenograft in athymic mice in vivo, and by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and cell migration assays with human liver cancer (SMMC-7721) cell lines in vitro. Docking between tas13D and VEGFR and EGFR was studied by with a Sybyl/Surflex module. VEGF and EGF and their receptor expression was determined by ELISA and real-time PCR methods, respectively. Our present study showed that tas13D inhibited SMMC-7721 xenograft tumor growth, bound tightly with the active site of kinase domains of EGFR and VEGFR, and reduced SMMC-7721 cell proliferation (IC=34.7 μmol/L) and migration compared to negative controls. VEGF and EGF mRNAs were significantly reduced by tas13D treatment in a dose-dependent manner, along with VEGF and EGF production. The obtained results suggest that tas13D inhibits tumor growth and cell proliferation by inhibiting cell migration, downregulating mRNA expression of VEGF and EGF, and decreasing angiogenic factor production. Tas13D deserves further consideration as a chemotherapeutic agent.
The origin of pre-neoplastic metaplasia in the stomach: Chief cells emerge from the Mist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldenring, James R., E-mail: jim.goldenring@vanderbilt.edu; Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN; Nam, Ki Taek
2011-11-15
The digestive-enzyme secreting, gastric epithelial chief (zymogenic) cell is remarkable and underappreciated. Here, we discuss how all available evidence suggests that mature chief cells in the adult, mammalian stomach are postmitotic, slowly turning over cells that arise via a relatively long-lived progenitor, the mucous neck cell, The differentiation of chief cells from neck cells does not involve cell division, and the neck cell has its own distinct pattern of gene expression and putative physiological function. Thus, the ontogeny of the normal chief cell lineage exemplifies transdifferentiation. Furthermore, under pathophysiogical loss of acid-secreting parietal cell, the chief cell lineage can itselfmore » trasndifferentiate into a mucous cell metaplasia designated Spasmolytic Polypeptide Expressing Metaplasia (SPEM). Especially in the presence of inflammation, this metaplastic lineage can regain proliferative capacity and, in humans may also further differentiate into intestinal metaplasia. The results indicate that gastric fundic lineages display remarkable plasticity in both physiological ontogeny and pathophysiological pre-neoplastic metaplasia.« less
BTK suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling.
Gu, Chunyan; Peng, Hailin; Lu, Yue; Yang, Hongbao; Tian, Zhidan; Yin, Gang; Zhang, Wen; Lu, Sicheng; Zhang, Yi; Yang, Ye
2017-08-22
We previously explored the role of BTK in maintaining multiple myeloma stem cells (MMSCs) self-renewal and drug-resistance. Here we investigated the elevation of BTK suppressing MM cellular senescence, a state of irreversible cellular growth arrest. We firstly discovered that an increased expression of BTK in MM samples compared to normal controls by immunohistochemistry (IHC), and significant chromosomal gain in primary samples. In addition, BTK high-expressing MM patients are associated with poor outcome in both Total Therapy 2 (TT2) and TT3 cohorts. Knockdown BTK expression by shRNA induced MM cellular senescence using β-galactosidase (SA-b-gal) staining, cell growth arrest by cell cycle staining and decreased clonogenicity while forcing BTK expression in MM cells abrogated these characteristics. We also validated this feature in mouse embryonic fibroblast cells (MEFs), which showed that elevated BTK expression was resistant to MEF senescence after serial cultivation in vitro . Further mechanism study revealed that BTK activated AKT signaling leading to down-regulation of P27 expression and hindered RB activity while AKT inhibitor, LY294002, overcame BTK-overexpression induced cellular senescence resistance. Eventually we demonstrated that BTK inhibitor, CGI-1746, induced MM cellular senescence, colony reduction and tumorigenecity inhibition in vivo . Summarily, we designate a novel mechanism of BTK in mediating MM growth, and BTK inhibitor is of great potential in vivo and in vitro suggesting BTK is a promising therapeutic target for MM.
Zhang, Yuan; Qu, Yuan; Niu, Tian; Wang, Haiyan; Liu, Kun
2017-02-26
Intracellular adhesion molecule 1 (ICAM-1) is an important inflammatory factor that causes retinal damage during diabetic retinopathy. Hyperglycaemia can increase ICAM-1 expression in endothelial cells and the ICAM-1 promoter is responsive to the transcription factor specificity protein 1 (Sp1). O-GlcNAc modification is driven by the glucose concentration and has a profound effect on Sp1 activity. In this study, we investigated the underlying mechanism through which hyperglycaemia triggers ICAM-1 expression, which is mediated by O-GlcNAc modification of Sp1 in human umbilical vein endothelial cells (HUVECs) and rat retinal capillary endothelial cells (RRCECs). We showed that hyperglycaemia (30 mM) increased ICAM-1 expression compared to control conditions (5 mM). The addition of an OGT inhibitor decreased ICAM-1 expression and addition of an OGA inhibitor enhanced ICAM-1 expression. Furthermore, cells transduced with siSp1 exhibited dramatically decreased ICAM-1 expression. These results proved that the up-regulation of ICAM-1 with hyperglycaemia is mediated by O-GlcNAc modification of Sp1. It helps to explain the mechanism of ICAM-1 processing in HUVECs and RRCECs. Understanding how this inflammatory factor is modulated during diabetic retinopathy will ultimately help to design novel therapeutics to treat this condition. Copyright © 2017. Published by Elsevier Inc.
Kułdo, J M; Ásgeirsdóttir, S A; Zwiers, P J; Bellu, A R; Rots, M G; Schalk, J A C; Ogawara, K I; Trautwein, C; Banas, B; Haisma, H J; Molema, G; Kamps, J A A M
2013-02-28
In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed. Selectivity for the endothelial cells was achieved by introduction of antibodies specific for inflammatory endothelial adhesion molecules E-selectin or VCAM-1 chemically linked to the virus via polyethylene glycol. In vitro, the retargeted adenoviruses selectively infected cytokine-activated endothelial cells to express functional transgene. The comparison of transductional capacity of both retargeted viruses revealed that E-selectin based transgene delivery exerted superior pharmacological effects. Targeted delivery mediated dnIκB transgene expression in endothelial cells inhibited the induced expression of several inflammatory genes, including adhesion molecules, cytokines, and chemokines. In vivo, in mice suffering from glomerulonephritis, E-selectin-retargeted adenovirus selectively homed in the kidney to microvascular glomerular endothelium. Subsequent downregulation of endothelial adhesion molecule expression 2 days after induction of inflammation demonstrated the pharmacological potential of this gene therapy approach. The data justify further studies towards therapeutic virus design and optimization of treatment schedules to investigate their capacity to interfere with inflammatory disease progression. Copyright © 2012 Elsevier B.V. All rights reserved.
Regulation and function of the atypical cadherin FAT1 in hepatocellular carcinoma.
Valletta, Daniela; Czech, Barbara; Spruss, Thilo; Ikenberg, Kristian; Wild, Peter; Hartmann, Arndt; Weiss, Thomas S; Oefner, Peter J; Müller, Martina; Bosserhoff, Anja-Katrin; Hellerbrand, Claus
2014-06-01
In human cancers, giant cadherin FAT1 may function both, as an oncogene and a tumor suppressor. Here, we investigated the expression and function of FAT1 in hepatocellular carcinoma (HCC). FAT1 expression was increased in human HCC cell lines and tissues compared with primary human hepatocytes and non-tumorous liver tissue as assessed by quantitative PCR and western blot analysis. Combined immunohistochemical and tissue microarray analysis showed a significant correlation of FAT1 expression with tumor stage and proliferation. Suppression of FAT1 expression by short hairpin RNA impaired proliferation and migration as well as apoptosis resistance of HCC cells in vitro. In nude mice, tumors formed by FAT1-suppressed HCC cells showed a delayed onset and more apoptosis compared with tumors of control cells. Both hepatocyte growth factor and hypoxia-mediated hypoxia-inducible factor 1 alpha activation were identified as strong inducers of FAT1 in HCC. Moreover, demethylating agents induced FAT1 expression in HCC cells. Hypoxia lead to reduced levels of the methyl group donor S-adenosyl-L-methionine (SAM) and hypoxia-induced FAT1 expression was inhibited by SAM supplementation in HCC cells. Together, these findings indicate that FAT1 expression in HCC is regulated via promotor methylation. FAT1 appears as relevant mediator of hypoxia and growth receptor signaling to critical tumorigenic pathways in HCC. This knowledge may facilitate the rational design of novel therapeutics against this highly aggressive malignancy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Protein and genome evolution in Mammalian cells for biotechnology applications.
Majors, Brian S; Chiang, Gisela G; Betenbaugh, Michael J
2009-06-01
Mutation and selection are the essential steps of evolution. Researchers have long used in vitro mutagenesis, expression, and selection techniques in laboratory bacteria and yeast cultures to evolve proteins with new properties, termed directed evolution. Unfortunately, the nature of mammalian cells makes applying these mutagenesis and whole-organism evolution techniques to mammalian protein expression systems laborious and time consuming. Mammalian evolution systems would be useful to test unique mammalian cell proteins and protein characteristics, such as complex glycosylation. Protein evolution in mammalian cells would allow for generation of novel diagnostic tools and designer polypeptides that can only be tested in a mammalian expression system. Recent advances have shown that mammalian cells of the immune system can be utilized to evolve transgenes during their natural mutagenesis processes, thus creating proteins with unique properties, such as fluorescence. On a more global level, researchers have shown that mutation systems that affect the entire genome of a mammalian cell can give rise to cells with unique phenotypes suitable for commercial processes. This review examines the advances in mammalian cell and protein evolution and the application of this work toward advances in commercial mammalian cell biotechnology.
Human epidermal langerhans cells express the immunoregulatory enzyme indoleamine 2,3-dioxygenase.
von Bubnoff, Dagmar; Bausinger, Huguette; Matz, Heike; Koch, Susanne; Häcker, Georg; Takikawa, Osamu; Bieber, Thomas; Hanau, Daniel; de la Salle, Henri
2004-08-01
Langerhans cells (LC) are a special subset of dendritic cells integrating cutaneous immunity. The study of LC function is of major interest not only for efforts of vaccine design and immunotherapy but also for gaining an insight into the pathogenesis of immune-mediated cutaneous diseases and neoplasias. Recently, defined antigen-presenting cells were described that express indoleamine 2,3-dioxygenase (IDO) and inhibit T cell proliferation in vitro and in vivo. Here, we show that stimulation with interferon-gamma (IFN-gamma) induces the expression of functionally active IDO in highly purified human epidermal LC. The induction of IDO after stimulation of LC with IFN-gamma seems to follow a defined kinetic with rapid upregulation followed by a downregulation after about 24 h of culture. Accordingly, proliferation of T cells induced by anti-CD3 antibodies was modulated by supernatants of IFN-gamma-activated human epidermal LC. Importantly, downregulation of T cell proliferation by supernatants of 24 h IFN-gamma-activated LC was prevented by inhibition of IDO. These results indicate that LC not only have the capacity to stimulate but also to inhibit T cells, and suggest that LC possess an immunoregulatory function in promoting T cell tolerance by production of IDO.
Human Uterine Leiomyoma Stem/Progenitor Cells Expressing CD34 and CD49b Initiate Tumors In Vivo
Ono, Masanori; Moravek, Molly B.; Coon, John S.; Navarro, Antonia; Monsivais, Diana; Dyson, Matthew T.; Druschitz, Stacy A.; Malpani, Saurabh S.; Serna, Vanida A.; Qiang, Wenan; Chakravarti, Debabrata; Kim, J. Julie; Bulun, Serdar E.
2015-01-01
Context: Uterine leiomyoma is the most common benign tumor in reproductive-age women. Using a dye-exclusion technique, we previously identified a side population of leiomyoma cells exhibiting stem cell characteristics. However, unless mixed with mature myometrial cells, these leiomyoma side population cells did not survive or grow well in vitro or in vivo. Objective: The objective of this study was to identify cell surface markers to isolate leiomyoma stem/progenitor cells. Design: Real-time PCR screening was used to identify cell surface markers preferentially expressed in leiomyoma side population cells. In vitro colony-formation assay and in vivo tumor-regeneration assay were used to demonstrate functions of leiomyoma stem/progenitor cells. Results: We found significantly elevated CD49b and CD34 gene expression in side population cells compared with main population cells. Leiomyoma cells were sorted into three populations based on the expression of CD34 and CD49b: CD34+/CD49b+, CD34+/CD49b−, and CD34−/CD49b− cells, with the majority of the side population cells residing in the CD34+/CD49b+ fraction. Of these populations, CD34+/CD49b+ cells expressed the lowest levels of estrogen receptor-α, progesterone receptor, and α-smooth muscle actin, but the highest levels of KLF4, NANOG, SOX2, and OCT4, confirming their more undifferentiated status. The stemness of CD34+/CD49b+ cells was also demonstrated by their strongest in vitro colony-formation capacity and in vivo tumor-regeneration ability. Conclusions: CD34 and CD49b are cell surface markers that can be used to enrich a subpopulation of leiomyoma cells possessing stem/progenitor cell properties; this technique will accelerate efforts to develop new therapies for uterine leiomyoma. PMID:25658015
Zhao, Yan-Dong; Cheng, Sai-Yu; Ou, Shan; Xiao, Zhi; He, Wen-Juan; Jian-Cui; Ruan, Huai-Zhen
2012-01-01
This study was designed to evaluate the effect of hypobaric hypoxia (HH) on the function and expression of P2X receptors in rat hippocampus CA1 pyramidal cells. The functional changes of P2X receptors were investigated through the cell HH model and the expressional alterations of P2X receptors were observed through the animal HH model. P2X receptors mediated currents were recorded from the freshly dissociated CA1 pyramidal cells of 7-day-old SD rats by whole cell patch clamp recording. The expression and distribution of P2X receptors were observed through immunohistochemistry and western blot at HH 3-day and 7-day. In acute HH conditions, the amplitudes of ATP evoked peak currents were decreased compared to control. The immunohistochemistry and western blot results reflected there was no change in P2X receptors expression after 3 days HH injury, while P2X receptors expression was up-regulated in response to 7 days HH injury. These findings supported the possibility that the function of P2X receptors was sensitive to HH damage and long-term function decrease should result in the expression increase of P2X receptors.
Romanienko, Peter J; Giacalone, Joseph; Ingenito, Joanne; Wang, Yijie; Isaka, Mayumi; Johnson, Thomas; You, Yun; Mark, Willie H
2016-01-01
The genomes of more than 50 organisms have now been manipulated due to rapid advancement of gene editing technology. One way to perform gene editing in the mouse using the CRISPR/CAS system, guide RNA (gRNA) and CAS9 mRNA transcribed in vitro are microinjected into fertilized eggs that are then allowed to develop to term. As a rule, gRNAs are tested first in tissue culture cells and the one with the highest locus-specific cleavage activity is chosen for microinjection. For cell transfections, gRNAs are typically expressed using the human U6 promoter (hU6). However, gRNAs for microinjection into zygotes are obtained by in vitro transcription from a T7 bacteriophage promoter in a separate plasmid vector. Here, we describe the design and construction of a combined U6T7 hybrid promoter from which the same gRNA sequence can be expressed. An expression vector containing such a hybrid promoter can now be used to generate gRNA for testing in mammalian cells as well as for microinjection purposes. The gRNAs expressed and transcribed from this vector are found to be functional in cells as well as in mice.
Petrik, Deborah L.; Cass, Cynthia L.; Padmakshan, Dharshana; ...
2016-02-04
Utility vectors with promoters that confer desired spatial and temporal expression patterns are useful tools for studying gene and cellular function and for industrial applications. To target the expression of DNA sequences of interest to cells forming plant secondary cell walls, which generate most of the vegetative biomass, upstream regulatory sequences of the Brachypodium distachyon lignin biosynthetic gene BdPMT and the cellulose synthase genes BdCESA7 and BdCESA8 were isolated and cloned into binary vectors designed for Agrobacterium-mediated transformation of monocots. Expression patterns were assessed using the β-glucuronidase gene GUSPlus and X-glucuronide staining. All three promoters showed strong expression levels inmore » stem tissue at the base of internodes where cell wall deposition is most active, in both vascular bundle xylem vessels and tracheids, and in interfascicular tissues, with expression less pronounced in developmentally older tissues. In leaves, BdCESA7 and BdCESA8 promoter-driven expression was strongest in leaf veins, leaf margins, and trichomes; relatively weaker and patchy expression was observed in the epidermis. BdPMT promoter-driven expression was similar to the BdCESA promoters expression patterns, including strong expression in trichomes. The intensity and extent of GUS staining varied considerably between transgenic lines, suggesting that positional effects influenced promoter activity. Introducing the BdPMT and BdCESA8 Open Reading Frames into BdPMT and BdCESA8 utility promoter binary vectors, respectively, and transforming those constructs into Brachypodium pmt and cesa8 loss-of-function mutants resulted in rescue of the corresponding mutant phenotypes. This work therefore validates the functionality of these utility promoter binary vectors for use in Brachypodium and likely other grass species. Lastly, the identification, in Bdcesa8-1 T-DNA mutant stems, of an 80% reduction in crystalline cellulose levels confirms that the BdCESA8 gene is a secondary-cell-wall-forming cellulose synthase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Deborah L.; Cass, Cynthia L.; Padmakshan, Dharshana
Utility vectors with promoters that confer desired spatial and temporal expression patterns are useful tools for studying gene and cellular function and for industrial applications. To target the expression of DNA sequences of interest to cells forming plant secondary cell walls, which generate most of the vegetative biomass, upstream regulatory sequences of the Brachypodium distachyon lignin biosynthetic gene BdPMT and the cellulose synthase genes BdCESA7 and BdCESA8 were isolated and cloned into binary vectors designed for Agrobacterium-mediated transformation of monocots. Expression patterns were assessed using the β-glucuronidase gene GUSPlus and X-glucuronide staining. All three promoters showed strong expression levels inmore » stem tissue at the base of internodes where cell wall deposition is most active, in both vascular bundle xylem vessels and tracheids, and in interfascicular tissues, with expression less pronounced in developmentally older tissues. In leaves, BdCESA7 and BdCESA8 promoter-driven expression was strongest in leaf veins, leaf margins, and trichomes; relatively weaker and patchy expression was observed in the epidermis. BdPMT promoter-driven expression was similar to the BdCESA promoters expression patterns, including strong expression in trichomes. The intensity and extent of GUS staining varied considerably between transgenic lines, suggesting that positional effects influenced promoter activity. Introducing the BdPMT and BdCESA8 Open Reading Frames into BdPMT and BdCESA8 utility promoter binary vectors, respectively, and transforming those constructs into Brachypodium pmt and cesa8 loss-of-function mutants resulted in rescue of the corresponding mutant phenotypes. This work therefore validates the functionality of these utility promoter binary vectors for use in Brachypodium and likely other grass species. Lastly, the identification, in Bdcesa8-1 T-DNA mutant stems, of an 80% reduction in crystalline cellulose levels confirms that the BdCESA8 gene is a secondary-cell-wall-forming cellulose synthase.« less
Biotin decorated PLGA nanoparticles containing SN-38 designed for cancer therapy.
Mehdizadeh, Mozhdeh; Rouhani, Hasti; Sepehri, Nima; Varshochian, Reyhaneh; Ghahremani, Mohammad Hossein; Amini, Mohsen; Gharghabi, Mehdi; Ostad, Seyed Nasser; Atyabi, Fatemeh; Baharian, Azin; Dinarvand, Rassoul
2017-05-01
Active targeted chemotherapy is expected to provide more specific delivery of cytotoxic drugs to the tumor cells and hence reducing the side effects on healthy tissues. Due to the over expression of biotin receptors on cancerous cells as a result of further requirement for rapid proliferations, biotin can be a good candidate as a targeting agent. In this study, biotin decorated PLGA nanoparticles (NPs) containing SN-38 were prepared and in vitro studies were evaluated for their improved anti-cancer properties. In conclusion, biotin targeted PLGA NPs containing SN-38 showed preferential anticancer properties against tumor cells with biotin receptor over expression.
Global gene expression analysis of apple fruit development from the floral bud to ripe fruit
Janssen, Bart J; Thodey, Kate; Schaffer, Robert J; Alba, Rob; Balakrishnan, Lena; Bishop, Rebecca; Bowen, Judith H; Crowhurst, Ross N; Gleave, Andrew P; Ledger, Susan; McArtney, Steve; Pichler, Franz B; Snowden, Kimberley C; Ward, Shayna
2008-01-01
Background Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45–55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Results Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Conclusion Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development. PMID:18279528
Global gene expression analysis of apple fruit development from the floral bud to ripe fruit.
Janssen, Bart J; Thodey, Kate; Schaffer, Robert J; Alba, Rob; Balakrishnan, Lena; Bishop, Rebecca; Bowen, Judith H; Crowhurst, Ross N; Gleave, Andrew P; Ledger, Susan; McArtney, Steve; Pichler, Franz B; Snowden, Kimberley C; Ward, Shayna
2008-02-17
Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45-55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.
Development of Defective and Persistent Sendai Virus Vector
Nishimura, Ken; Sano, Masayuki; Ohtaka, Manami; Furuta, Birei; Umemura, Yoko; Nakajima, Yoshiro; Ikehara, Yuzuru; Kobayashi, Toshihiro; Segawa, Hiroaki; Takayasu, Satoko; Sato, Hideyuki; Motomura, Kaori; Uchida, Eriko; Kanayasu-Toyoda, Toshie; Asashima, Makoto; Nakauchi, Hiromitsu; Yamaguchi, Teruhide; Nakanishi, Mahito
2011-01-01
The ectopic expression of transcription factors can reprogram differentiated tissue cells into induced pluripotent stem cells. However, this is a slow and inefficient process, depending on the simultaneous delivery of multiple genes encoding essential reprogramming factors and on their sustained expression in target cells. Moreover, once cell reprogramming is accomplished, these exogenous reprogramming factors should be replaced with their endogenous counterparts for establishing autoregulated pluripotency. Complete and designed removal of the exogenous genes from the reprogrammed cells would be an ideal option for satisfying this latter requisite as well as for minimizing the risk of malignant cell transformation. However, no single gene delivery/expression system has ever been equipped with these contradictory characteristics. Here we report the development of a novel replication-defective and persistent Sendai virus (SeVdp) vector based on a noncytopathic variant virus, which fulfills all of these requirements for cell reprogramming. The SeVdp vector could accommodate up to four exogenous genes, deliver them efficiently into various mammalian cells (including primary tissue cells and human hematopoietic stem cells) and express them stably in the cytoplasm at a prefixed balance. Furthermore, interfering with viral transcription/replication using siRNA could erase the genomic RNA of SeVdp vector from the target cells quickly and thoroughly. A SeVdp vector installed with Oct4/Sox2/Klf4/c-Myc could reprogram mouse primary fibroblasts quite efficiently; ∼1% of the cells were reprogrammed to Nanog-positive induced pluripotent stem cells without chromosomal gene integration. Thus, this SeVdp vector has potential as a tool for advanced cell reprogramming and for stem cell research. PMID:21138846
Maul, Timothy M.; Chew, Douglas W.; Nieponice, Alejandro
2011-01-01
Mesenchymal stem cell (MSC) therapy has demonstrated applications in vascular regenerative medicine. Although blood vessels exist in a mechanically dynamic environment, there has been no rigorous, systematic analysis of mechanical stimulation on stem cell differentiation. We hypothesize that mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward smooth muscle (SMCs) and endothelial cells (ECs). This was tested using a unique experimental platform to differentially apply various mechanical stimuli in parallel. Three forces, cyclic stretch, cyclic pressure, and laminar shear stress, were applied independently to mimic several vascular physiologic conditions. Experiments were conducted using subconfluent MSCs for 5 days and demonstrated significant effects on morphology and proliferation depending upon the type, magnitude, frequency, and duration of applied stimulation. We have defined thresholds of cyclic stretch that potentiate SMC protein expression, but did not find EC protein expression under any condition tested. However, a second set of experiments performed at confluence and aimed to elicit the temporal gene expression response of a select magnitude of each stimulus revealed that EC gene expression can be increased with cyclic pressure and shear stress in a cell-contact-dependent manner. Further, these MSCs also appear to express genes from multiple lineages simultaneously which may warrant further investigation into post-transcriptional mechanisms for controlling protein expression. To our knowledge, this is the first systematic examination of the effects of mechanical stimulation on MSCs and has implications for the understanding of stem cell biology, as well as potential bioreactor designs for tissue engineering and cell therapy applications. PMID:21253809
Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge
2014-09-01
We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Tan, Huiqing; Yi, Lijuan; Rote, Neal S.; Hurd, William W.
2012-01-01
Context: Progesterone promotes uterine relaxation during pregnancy and its withdrawal induces labor. Progesterone withdrawal in human parturition is mediated in part by changes in the relative levels of the nuclear progesterone receptor isoforms, PR-A and PR-B, in myometrial cells. Parturition also involves myometrial inflammation; however, the functional link between nuclear PR-mediated progesterone actions and inflammation in human myometrial cells is unclear. Objective: Our objective was to determine how PR-A and PR-B regulate progesterone action in human myometrial cells and specifically the expression of genes encoding contraction-associated proteins and proinflammatory mediators. Design: Effects of PR-A and PR-B on the capacity for progesterone to modulate gene expression was determined using an immortalized human myometrial cell line stably transfected with inducible PR-A and PR-B expression transgenes and conditioned to express various PR-A and PR-B levels. Gene expression was assessed by genome wide transcriptome analysis, quantitative RT-PCR and immunoblotting. Results: PR-A and PR-B were each transcriptionally active in response to progesterone and affected the expression of distinct gene cohorts. The capacity for progesterone to affect gene expression was dependent on the PR-A to PR-B ratio. This was especially apparent for the expression of proinflammatory genes. Progesterone decreased proinflammatory gene expression when the PR-A to PR-B ratio favored PR-B and increased proinflammatory gene expression when the ratio favored PR-A. Progesterone via PR-B increased expression of inhibitor-κBα, a repressor of the nuclear factor-κB transcription factor, and inhibited basal and lipopolysaccharide-induced proinflammatory gene expression. Both of those PR-B-mediated effects were inhibited by PR-A. Conclusions: Our data suggest that during most of human pregnancy, when myometrial cells are PR-B dominant, progesterone promotes myometrial quiescence through PR-B-mediated antiinflammatory actions. At parturition, the rise in PR-A expression promotes labor by inhibiting the antiinflammatory actions of PR-B and stimulating proinflammatory gene expression in response to progesterone. PMID:22419721
Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.
Kabadi, Ami M; Gersbach, Charles A
2014-09-01
Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Resuehr, David; Glore, Dana R.; Taylor, Hugh S.; Bruner-Tran, Kaylon L.; Osteen, Kevin G.
2012-01-01
Objective To examine the differentiation-related expression of CB1-R mRNA and protein in endometrial tissue obtained from women with and without endometriosis and to determine the impact of acute TCDD exposure on CB1-R gene expression in isolated endometrial stromal cells. Design Laboratory-based study Setting University-affiliated medical center Patients Women with and without endometriosis undergoing volunteer endometrial biopsies after informed consent. Interventions None Main Outcome Measures Analysis of in vivo CB1-R mRNA and protein expression in human endometrial tissues and mRNA expression in isolated stromal cells following exposure to TCDD or a progesterone receptor antagonist (Onapristone). Results CB1-R mRNA and protein expression was highest during the progesterone-dominated secretory phase in control women, while expression was minimal in endometrial tissues acquired from women with endometriosis, regardless of the cycle phase. Although progesterone was found to induce CB1-R mRNA expression in endometrial stromal cells from control donors, steroid-induced expression of this gene was inhibited by co-treatment with either TCDD or Onapristone. Conclusions Our studies reveal a role for the anti-inflammatory actions of progesterone in regulating endometrial cannabinoid signaling, which is disrupted in women with endometriosis. Significantly, our studies demonstrate, for the first time, that acute TCDD exposure disrupts cannabinoid signaling in the human endometrium. PMID:22789143
Ma, Li-Li; Wang, Da-Wei; Yu, Xu-Dong; Zhou, Yan-Ling
2016-07-01
Tangeretin (TANG), present in peel of citrus fruits, has been shown to various medicinal properties such as chemopreventive and neuroprotective. However, the chemopreventive effect of TANG on glioblastoma cells has not been examined. The present study was designed to explore the anticancer potential of TANG in glioblastoma cells and to investigate the related mechanism. Human glioblastoma U-87MG and LN-18 cells were treated with 45μM concentration of TANG and cell growth was measured by MTT assay. The cell cycle distribution and cell death were measured by flow cytometry. The expression of cell cycle and apoptosis related genes were analyzed by quantitative RT-PCR and western blot. The cells treated with TANG were significantly increased cell growth suppression and cell death effects than vehicle treated cells. Further, TANG treatment increases G2/M arrest and apoptosis by modulating PTEN and cell-cycle regulated genes such as cyclin-D and cdc-2 mRNA and protein expressions. Moreover, the ability of TANG to decrease cell growth and to induce cell death was compromised when PTEN was knockdown by siRNA. Taken together, the chemopreventive effect of TANG is associated with regulation of cell-cycle and apoptosis in glioblastoma, thereby attenuating glioblastoma cell growth. Hence, the present findings suggest that TANG may be a therapeutic agent for glioblastoma treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Stable and high expression of Galectin-8 tightly controls metastatic progression of prostate cancer
Gentilini, Lucas Daniel; Pérez, Ignacio González; Kotler, Monica Lidia; Chauchereau, Anne; Laderach, Diego Jose; Compagno, Daniel
2017-01-01
Two decades ago, Galectin-8 was described as a prostate carcinoma biomarker since it is only expressed in the neoplastic prostate, but not in the healthy tissue. To date, no biological function has been attributed to Galectin-8 that could explain this differential expression. In this study we silenced Galectin-8 in two human prostate cancer cell lines, PC3 and IGR-CaP1, and designed a pre-clinical experimental model that allows monitoring the pathology from its early steps to the long-term metastatic stages. We show for the first time that the natural and conserved expression of Gal-8 in tumour cells is responsible for the metastatic evolution of prostate cancer. In fact, Gal-8 controls the rearrangement of the cytoskeleton and E-Cadherin expression, with a major impact on anoikis and homotypic aggregation of tumour cells, both being essential processes for the survival of circulating tumour cells during metastasis. While localized prostate cancer can be cured, metastatic and advanced disease remains a significant therapeutic challenge, urging for the identification of prognostic markers of the metastatic process. Collectively, our results highlight Galectin-8 as a potential target for anti-metastatic therapy against prostate cancer. PMID:28591719
Demozay, Damien; Tsunekawa, Shin; Briaud, Isabelle; Shah, Ramila; Rhodes, Christopher J.
2011-01-01
OBJECTIVE Insulin receptor substrate-2 (IRS-2) plays an essential role in pancreatic islet β-cells by promoting growth and survival. IRS-2 turnover is rapid in primary β-cells, but its expression is highly regulated at the transcriptional level, especially by glucose. The aim was to investigate the molecular mechanism on how glucose regulates IRS-2 gene expression in β-cells. RESEARCH DESIGN AND METHODS Rat islets were exposed to inhibitors or subjected to adenoviral vector–mediated gene manipulations and then to glucose-induced IRS-2 expression analyzed by real-time PCR and immunoblotting. Transcription factor nuclear factor of activated T cells (NFAT) interaction with IRS-2 promoter was analyzed by chromatin immunoprecipitation assay and glucose-induced NFAT translocation by immunohistochemistry. RESULTS Glucose-induced IRS-2 expression occurred in pancreatic islet β-cells in vivo but not in liver. Modulating rat islet β-cell Ca2+ influx with nifedipine or depolarization demonstrated that glucose-induced IRS-2 gene expression was dependent on a rise in intracellular calcium concentration derived from extracellular sources. Calcineurin inhibitors (FK506, cyclosporin A, and a peptide calcineurin inhibitor [CAIN]) abolished glucose-induced IRS-2 mRNA and protein levels, whereas expression of a constitutively active calcineurin increased them. Specific inhibition of NFAT with the peptide inhibitor VIVIT prevented a glucose-induced IRS-2 transcription. NFATc1 translocation to the nucleus in response to glucose and association of NFATc1 to conserved NFAT binding sites in the IRS-2 promoter were demonstrated. CONCLUSIONS The mechanism behind glucose-induced transcriptional control of IRS-2 gene expression specific to the islet β-cell is mediated by the Ca2+/calcineurin/NFAT pathway. This insight into the IRS-2 regulation could provide novel therapeutic means in type 2 diabetes to maintain an adequate functional mass. PMID:21940781
BHD Tumor Cell Line and Renal Cell Carcinoma Line | NCI Technology Transfer Center | TTC
Scientists at the National Cancer Institute have developed a novel renal cell carcinoma (RCC) cell line designated UOK257, which was derived from the surgical kidney tissue of a patient with hereditary Birt-Hogg-Dube''''(BHD) syndrome and companion cell line UOK257-2 in which FLCN expression has been restored by lentivirus infection. The NCI Urologic Oncology Branch seeks parties interested in licensing or collaborative research to co-develop, evaluate, or commercialize kidney cancer tumor cell lines.
Engineered T cells for cancer treatment
Anurathapan, Usanarat; Leen, Ann M.; Brenner, Malcolm K.; Vera, Juan F.
2014-01-01
Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate even fibrotic tissue and kill antigen-expressing tumor cells. A variety of groups have investigated different genetic engineering strategies designed to enhance tumor specificity, increase T cell potency, improve proliferation, persistence, or migratory capacity, and increase safety. In this review we focus on recent developments in the T cell engineering arena, discuss the application of these engineered cell products clinically, and outline future prospects for this therapeutic modality. PMID:24239105
Malavasi, N V; Rodrigues, D B; Chammas, R; Chura-Chambi, R M; Barbuto, J A M; Balduino, K; Nonogaki, S; Morganti, L
2010-01-01
Endostatin (ES) is a potent inhibitor of angiogenesis and tumor growth. Continuous ES delivery of ES improves the efficacy and potency of the antitumoral therapy. The TheraCyte system is a polytetrafluoroethylene (PTFE) semipermeable membrane macroencapsulation system for implantation of genetically engineered cells specially designed for the in vivo delivery of therapeutic proteins, such as ES, which circumvents the problem of limited half-life and variation in circulating levels. In order to enable neovascularization at the tissues adjacent to the devices prior to ES secretion by the cells inside them, we designed a scheme in which empty TheraCyte devices were preimplanted SC into immunodeficient mice. Only after healing (17 days later) were Chinese hamster ovary cells expressing ES injected into the preimplanted devices. In another model for device implantation, the cells expressing ES where loaded into the immunoisolation devices prior to implantation into the animals, and the TheraCyte were then immediately implanted SC into the mice. Throughout the 2-month study, constant high ES levels of up to 3.7 microg/ml were detected in the plasma of the mice preimplanted with the devices, while lower but also constant levels of ES (up to 2.1 microg/ml plasma) were detected in the mice that had received devices preloaded with the ES-expressing cells. Immunohistochemistry using anti-ES antibody showed reaction within the device and outside it, demonstrating that ES, secreted by the confined recombinant cells, permeated through the membrane and reached the surrounding tissues.
Zhou, Ji-Hao; Yao, Yu-Shi; Li, Yong-Hui; Xu, Yi-Han; Li, Jing-Xin; Gao, Xiao-Ning; Zhou, Min-Hang; Jiang, Meng-Meng; Gao, Li; Ding, Yi; Lu, Xue-Chun; Shi, Jin-Long; Luo, Xu-Feng; Wang, Jia; Wang, Li-Li; Qu, Chunfeng; Bai, Xue-Feng; Yu, Li
2013-01-01
Lack of immunogenicity of cancer cells has been considered a major reason for their failure in induction of a tumor specific T cell response. In this paper, we present evidence that decitabine (DAC), a DNA methylation inhibitor that is currently used for the treatment of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and other malignant neoplasms, is capable of eliciting an anti-tumor cytotoxic T lymphocyte (CTL) response in mouse EL4 tumor model. C57BL/6 mice with established EL4 tumors were treated with DAC (1.0 mg/kg body weight) once daily for 5 days. We found that DAC treatment resulted in infiltration of IFN-γ producing T lymphocytes into tumors and caused tumor rejection. Depletion of CD8+, but not CD4+ T cells resumed tumor growth. DAC-induced CTL response appeared to be elicited by the induction of CD80 expression on tumor cells. Epigenetic evidence suggests that DAC induces CD80 expression in EL4 cells via demethylation of CpG dinucleotide sites in the promoter of CD80 gene. In addition, we also showed that a transient, low-dose DAC treatment can induce CD80 gene expression in a variety of human cancer cells. This study provides the first evidence that epigenetic modulation can induce the expression of a major T cell co-stimulatory molecule on cancer cells, which can overcome immune tolerance, and induce an efficient anti-tumor CTL response. The results have important implications in designing DAC-based cancer immunotherapy. PMID:23671644
Wang, Li-Xin; Mei, Zhen-Yang; Zhou, Ji-Hao; Yao, Yu-Shi; Li, Yong-Hui; Xu, Yi-Han; Li, Jing-Xin; Gao, Xiao-Ning; Zhou, Min-Hang; Jiang, Meng-Meng; Gao, Li; Ding, Yi; Lu, Xue-Chun; Shi, Jin-Long; Luo, Xu-Feng; Wang, Jia; Wang, Li-Li; Qu, Chunfeng; Bai, Xue-Feng; Yu, Li
2013-01-01
Lack of immunogenicity of cancer cells has been considered a major reason for their failure in induction of a tumor specific T cell response. In this paper, we present evidence that decitabine (DAC), a DNA methylation inhibitor that is currently used for the treatment of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and other malignant neoplasms, is capable of eliciting an anti-tumor cytotoxic T lymphocyte (CTL) response in mouse EL4 tumor model. C57BL/6 mice with established EL4 tumors were treated with DAC (1.0 mg/kg body weight) once daily for 5 days. We found that DAC treatment resulted in infiltration of IFN-γ producing T lymphocytes into tumors and caused tumor rejection. Depletion of CD8(+), but not CD4(+) T cells resumed tumor growth. DAC-induced CTL response appeared to be elicited by the induction of CD80 expression on tumor cells. Epigenetic evidence suggests that DAC induces CD80 expression in EL4 cells via demethylation of CpG dinucleotide sites in the promoter of CD80 gene. In addition, we also showed that a transient, low-dose DAC treatment can induce CD80 gene expression in a variety of human cancer cells. This study provides the first evidence that epigenetic modulation can induce the expression of a major T cell co-stimulatory molecule on cancer cells, which can overcome immune tolerance, and induce an efficient anti-tumor CTL response. The results have important implications in designing DAC-based cancer immunotherapy.
Song, Lei; Li, Dan; Li, Xiaoping; Ma, Lianjun; Bai, Xiaoxue; Wen, Zhongmei; Zhang, Xiufang; Chen, Dong; Peng, Liping
2017-03-01
Exposure to particulate matter (PM) with an aerodynamic diameter≤2.5μm (PM2.5) induces reactive oxygen species (ROS) and pro-inflammatory cytokine production, leading to airway epithelial injury. However, the mechanisms underlying the toxicity of PM2.5 have not been clarified. Here, we show that exposure to PM2.5 induces sustained activation of the nuclear factor kappa B (NF-κB) signaling in human airway epithelial Beas-2B (B2B) cells. In addition, PM2.5 exposure significantly decreased miR-331 expression in B2B cells, which was abrogated by inhibition of ROS or phosphoinositide 3-kinase (PI3K)/Akt pathway. Induction of miR-331 overexpression attenuated the PM2.5 exposure-induced NF-kBp65 nuclear translocation, IL-6 and IL-8 expression in B2B cells. Furthermore, miR-331 targeted the inhibitor of NF-κB kinase beta (IKK-β) by down-regulating the IKK-β-regulated luciferase activity in HEK293 cells. Moreover, induction of miR-331 over-expression inhibited IKK-β expression while induction of IKK-β over-expression prevented the inhibition of miR-331 on the PM2.5 exposure-induced NF-kBp65 nuclear translocation, IL-6 and IL-8 expression in B2B cells. Therefore, PM2.5 exposure decreased miR-331 expression via the ROS/PI3K/Akt pathway, resulting in an increase in the IKK-β expression and sustained NF-κB activation in human airway epithelial cells. Our findings may provide new insights into the molecular mechanisms underlying the toxicity of PM2.5 exposure and aid in design of new therapeutic strategies to prevent PM2.5-induced toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Hypergravity signal transduction and gene expression in cultured mammalian cells
NASA Technical Reports Server (NTRS)
Kumei, Y.; Whitson, P. A.
1994-01-01
A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells.
Anti-tumor therapy with macroencapsulated endostatin producer cells
2010-01-01
Background Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Results Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. Conclusions This study indicates that immunoisolation devices containing endostatin-expressing cells are effective for the inhibition of the growth of melanoma and Ehrlich tumors. Macroencapsulation of engineered cells is therefore a reliable platform for the refinement of innovative therapeutic strategies against tumors. PMID:20196841
Anti-tumor therapy with macroencapsulated endostatin producer cells.
Rodrigues, Danielle B; Chammas, Roger; Malavasi, Natália V; da Costa, Patrícia L N; Chura-Chambi, Rosa M; Balduino, Keli N; Morganti, Ligia
2010-03-02
Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. This study indicates that immunoisolation devices containing endostatin-expressing cells are effective for the inhibition of the growth of melanoma and Ehrlich tumors.Macroencapsulation of engineered cells is therefore a reliable platform for the refinement of innovative therapeutic strategies against tumors.
Rovère, C; Barbero, P; Kitabgi, P
1996-05-10
The neuropeptide precursor proneurotensin/neuromedin N (pro-NT/NN) is mainly expressed and differentially processed in the brain and in the small intestine. We showed previously that rMTC 6-23 cells process pro-NT/NN with a pattern similar to brain tissue and increase pro-NT/NN expression in response to dexamethasone, and that PC12 cells also produce pro-NT/NN but are virtually unable to process it. In addition, PC12 cells were reported to be devoid of the prohormone convertases PC1 and PC2. The present study was designed to identify the proprotein convertase(s) (PC) involved in pro-NT/NN processing in rMTC 6-23 cells and to compare PC1- and PC2-transfected PC12 cells for their ability to process pro-NT/NN. rMTC 6-23 cells were devoid of PC1, PC4, and PC5 but expressed furin and PC2. Stable expression of antisense PC2 RNA in rMTC 6-23 cells led to a 90% decrease in PC2 protein levels that correlated with a > 80% reduction of pro-NT/NN processing. PC2 expression was stimulated by dexamethasone in a time- and concentration-dependent manner. Stable PC12/PC2 transfectants processed pro-NT/NN with a pattern similar to that observed in the brain and in rMTC 6-23 cells. In contrast, stable PC12/PC1 transfectants reproduced the pro-NT/NN processing pattern seen in the gut. We conclude that (i) PC2 is the major pro-NT/NN convertase in rMTC 6-23 cells; (ii) its expression is coregulated with that of pro-NT/NN in this cell line; and (iii) PC2 and PC1 differentially process pro-NT/NN with brain and intestinal phenotype, respectively.
Effects of TGF-β signaling blockade on human A549 lung adenocarcinoma cell lines.
Xu, Cheng-Cheng; Wu, Lei-Ming; Sun, Wei; Zhang, Ni; Chen, Wen-Shu; Fu, Xiang-Ning
2011-01-01
Transforming growth factor β (TGF-β) is overexpressed in a wide variety of cancer types including lung adenocarcinoma (LAC), and the TGF-β signaling pathway plays an important role in tumor development. To determine whether blockade of the TGF-β signaling pathway can inhibit the malignant biological behavior of LAC, RNA interference (RNAi) technology was used to silence the expression of TGF-β receptor, type II (TGFβRII) in the LAC cell line, A549, and its effects on cell proliferation, invasion and metastasis were examined. Three specific small interfering RNAs (siRNAs) designed for targeting human TGFβRII were transfected into A549 cells. The expression of TGFβRII was detected by Western blot analysis. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The invasion and metastasis of A549 cells were investigated using the wound healing and Matrigel invasion assays. The expression of PI3K, phosphorylated Smad2, Smad4, Akt, Erk1/2, P38 and MMPs was detected by Western blot analysis. The TGFβRII siRNA significantly reduced the expression of TGFβRII in A549 cells. The knockdown of TGFβRII in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis. In addition to the Smad-dependent pathway, independent pathways including the Erk MAPK, PI3K/Akt and p38 MAPK pathways, as well as the expression of MMPs and VEGF, were inhibited. In conclusion, TGF-β signaling is required for LAC progression. Therefore, the blockade of this signaling pathway by the down-regulation of TGFβRII using SiRNA may provide a potential gene therapy for LAC.
Li, Hong-Wei; Yang, Xiang-Min; Tang, Juan; Wang, Shi-Jie; Chen, Zhi-Nan; Jiang, Jian-Li
2015-03-01
HAb18G/CD147 belongs to the immunoglobulin superfamily and predominantly functions as an inducer of matrix metalloproteinase secretion for tumor invasion and metastasis. This study was designed to investigate the effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells using zinc-finger nuclease (ZFNs)-targeted gene knockout approach. The HCC cell line SMMC-7721 was used for ZFNs-targeted cleavage of the HAb18G/CD147 gene. RT-PCR and Western blot assays were used to detect HAb18G/CD147 expression. HAb18G phenotypic changes following HAb18G/CD147 knockout in SMMC-K7721 cells were assessed using tumor cell adhesion, invasion, migration and colony formation and flow cytometric assays. These data demonstrated that tumor cell adhesion, invasion, migration, and colony formation capabilities of SMMC-K7721 were significantly reduced compared to parental cells or SMMC-7721 with re-expression of HAb18G/CD147 protein transfected with HAb18G/CD147 cDNA. Moreover, knockout of HAb18G/CD147 expression also induced SMMC-K7721 cells to undergo apoptosis compared to SMMC-7721 and SMMC-R7721 (P < 0.01). Molecularly, protein expression of p53 was induced in these cells, but re-expression of HAb18G/CD147 reduced p53 levels in SMMC-R7721 cells, possibly through inhibition of the PI3K-Akt-MDM2 signaling pathway. The findings provide a novel insight into the mechanisms underlying HAb18G/CD147-induced progression of HCC cells.
Anazawa, Yoshio; Nakagawa, Hidewaki; Furihara, Mutsuo; Ashida, Shingo; Tamura, Kenji; Yoshioka, Hiroki; Shuin, Taro; Fujioka, Tomoaki; Katagiri, Toyomasa; Nakamura, Yusuke
2005-06-01
Through genome-wide cDNA microarray analysis coupled with microdissection of prostate cancer cells, we identified a novel gene, prostate collagen triple helix (PCOTH), showing overexpression in prostate cancer cells and its precursor cells, prostatic intraepithelial neoplasia (PIN). Immunohistochemical analysis using polyclonal anti-PCOTH antibody confirmed elevated expression of PCOTH, a 100-amino-acid protein containing collagen triple-helix repeats, in prostate cancer cells and PINs. Knocking down PCOTH expression by small interfering RNA (siRNA) resulted in drastic attenuation of prostate cancer cell growth, and concordantly, LNCaP derivative cells that were designed to constitutively express exogenous PCOTH showed higher growth rate than LNCaP cells transfected with mock vector, suggesting the growth-promoting effect of PCOTH on prostate cancer cell. To investigate the biological mechanisms of this growth-promoting effect, we applied two-dimensional differential gel electrophoresis (2D-DIGE) to analyze the phospho-protein fractions in LNCaP cells transfected with PCOTH. We found that the phosphorylation level of oncoprotein TAF-Ibeta/SET was significantly elevated in LNCaP cells transfected with PCOTH than control LNCaP cells, and these findings were confirmed by Western blotting and in-gel kinase assay. Furthermore, knockdown of endogenous TAF-Ibeta expression by siRNA also attenuated viability of prostate cancer cells as well. These findings suggest that PCOTH is involved in growth and survival of prostate cancer cells thorough, in parts, the TAF-Ibeta pathway, and that this molecule should be a promising target for development of new therapeutic strategies for prostate cancers.
Molecular Design of Performance Proteins With Repetitive Sequences
NASA Astrophysics Data System (ADS)
Vendrely, Charlotte; Ackerschott, Christian; Römer, Lin; Scheibel, Thomas
Most performance proteins responsible for the mechanical stability of cells and organisms reveal highly repetitive sequences. Mimicking such performance proteins is of high interest for the design of nanostructured biomaterials. In this article, flagelliform silk is exemplary introduced to describe a general principle for designing genes of repetitive performance proteins for recombinant expression in Escherichia coli . In the first step, repeating amino acid sequence motifs are reversely transcripted into DNA cassettes, which can in a second step be seamlessly ligated, yielding a designed gene. Recombinant expression thereof leads to proteins mimicking the natural ones. The recombinant proteins can be assembled into nanostructured materials in a controlled manner, allowing their use in several applications.
Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era
2014-01-01
Background Genome-scale studies of psoriasis have been used to identify genes of potential relevance to disease mechanisms. For many identified genes, however, the cell type mediating disease activity is uncertain, which has limited our ability to design gene functional studies based on genomic findings. Methods We identified differentially expressed genes (DEGs) with altered expression in psoriasis lesions (n = 216 patients), as well as candidate genes near susceptibility loci from psoriasis GWAS studies. These gene sets were characterized based upon their expression across 10 cell types present in psoriasis lesions. Susceptibility-associated variation at intergenic (non-coding) loci was evaluated to identify sites of allele-specific transcription factor binding. Results Half of DEGs showed highest expression in skin cells, although the dominant cell type differed between psoriasis-increased DEGs (keratinocytes, 35%) and psoriasis-decreased DEGs (fibroblasts, 33%). In contrast, psoriasis GWAS candidates tended to have highest expression in immune cells (71%), with a significant fraction showing maximal expression in neutrophils (24%, P < 0.001). By identifying candidate cell types for genes near susceptibility loci, we could identify and prioritize SNPs at which susceptibility variants are predicted to influence transcription factor binding. This led to the identification of potentially causal (non-coding) SNPs for which susceptibility variants influence binding of AP-1, NF-κB, IRF1, STAT3 and STAT4. Conclusions These findings underscore the role of innate immunity in psoriasis and highlight neutrophils as a cell type linked with pathogenetic mechanisms. Assignment of candidate cell types to genes emerging from GWAS studies provides a first step towards functional analysis, and we have proposed an approach for generating hypotheses to explain GWAS hits at intergenic loci. PMID:24885462
Nardiello, Tricia; Jungbluth, Achim A.; Mei, Anna; DiLiberto, Maurizio; Huang, Xiangao; Dabrowski, Ania; Andrade, Valéria C. C.; Wasserstrum, Rebecca; Ely, Scott; Niesvizky, Ruben; Pearse, Roger; Coleman, Morton; Jayabalan, David S.; Bhardwaj, Nina; Old, Lloyd J.; Chen-Kiang, Selina; Cho, Hearn Jay
2011-01-01
Purpose The type I Melanoma Antigen GEnes (MAGEs) are commonly expressed in cancers, fueling speculation that they may be therapeutic targets with oncogenic potential. They form complexes with RING domain proteins that have E3 ubiquitin ligase activity and promote p53 degradation. MAGE-A3 was detected in tumor specimens from patients with multiple myeloma and its expression correlated with higher frequencies of Ki-67+ malignant cells. In this report, we examine the mechanistic role of MAGE-A in promoting survival of proliferating multiple myeloma cells. Experimental Design The impact of MAGE-A3 expression on survival and proliferation in vivo was examined by immunohistochemical analysis in an independent set of tumor specimens segregated into two groups; newly diagnosed, untreated patients and patients who had relapsed after chemotherapy. The mechanisms of MAGE-A3 activity were investigated in vitro by silencing its expression by shRNA interference in myeloma cell lines and primary cells and assessing the resultant effects on proliferation and apoptosis. Results MAGE-A3 was detected in a significantly higher percentage of relapsed patients compared to newly diagnosed, establishing a novel correlation with progression of disease. Silencing of MAGE-A demonstrated that it was dispensable for cell cycling, but was required for survival of proliferating myeloma cells. Loss of MAGE-A led to apoptosis mediated by p53-dependent activation of pro-apoptotic Bax expression and by reduction of survivin expression through both p53-dependent and independent mechanisms. Conclusions These data support a role for MAGE-A in the pathogenesis and progression of multiple myeloma by inhibiting apoptosis in proliferating myeloma cells through two novel mechanisms. PMID:21565982
Wolfe, Adam R.; Debeb, Bisrat G.; Lacerda, Lara; Larson, Richard; Bambhroliya, Arvind; Huang, Xuelin; Bertucci, Francois; Finetti, Pascal; Birnbaum, Daniel; Van Laere, Steven; Diagaradjan, Parmeswaran; Ruffell, Brian; Trenton, Nicholaus J.; Chu, Khoi; Hittelman, Walter; Diehl, Michael; Levental, Ilya; Ueno, Naoto T.; Woodward, Wendy A.
2016-01-01
Purpose We previously reported using statins was correlated with improved metastasis free survival in aggressive breast cancer. The purpose of this study was to examine the effect of statins on metastatic colonization by triple negative breast cancer (TNBC) cells. Experimental Design TNBC cell lines were treated with simvastatin and then studied for cell cycle progression and proliferation in vitro, and metastasis formation in vivo, following injection of statin-treated cells. Reverse-phase protein assay (RPPA) analysis was performed on statin-treated and control breast cancer cells. RNA interference targeting FOXO3a was used to measure the impact of simvastatin on FOXO3a-expressing cells. The prognostic value of FOXO3a mRNA expression was examined in 8 public breast cancer gene expression data sets including 1,479 patients. Results Simvastatin increased G1/S phase arrest of the cell cycle and inhibited both proliferation and migration of TNBC cells in vitro. In vitro pretreatment and in vivo treatment with simvastatin reduced metastases. Phosphorylated FOXO3a was downregulated after simvastatin treatment in (RPPA) analysis. Ectopic expression of FOXO3a enhanced mammosphere formation and migratory capacity in vitro. Knockdown of FOXO3a attenuated the effect of simvastatin on mammosphere formation and migration. Analysis of public gene expression data demonstrates FOXO3a mRNA downregulation was independently associated with shorter metastasis-free survival in all breast cancers, as well as in TNBC breast cancers. Conclusions Simvastatin inhibits in vitro endpoints associated with metastasis through a FOXO3a mechanism and reduced metastasis formation in vivo. FOXO3a expression is prognostic for metastasis formation in patient data. Further investigation of simvastatin as a cancer therapy is warranted. PMID:26590814
Zarei, Neda; Fazeli, Mehdi; Mohammadi, Mozafar; Nejatollahi, Foroogh
2018-06-01
FZD7 has a critical role as a surface receptor of Wnt/β-catenin signaling in cancer cells. Suppressing Wnt signaling through blocking FZD7 is shown to decrease cell viability, metastasis and invasion. Bioinformatic methods have been a powerful tool in epitope designing studies. Small size, high affinity and human origin of scFv antibodies have provided unique advantages for these recombinant antibodies. Two epitopes from extracellular domain of FZD7 were designed using bioinformatic methods. Specific anti-FZD7 scFvs were selected against these epitopes through panning process. The specificity of the scFvs was assessed by phage ELISA and the ability to bind to FZD7 expressing cell line (MDA-MB-231) was determined by flowcytometry. Antiproliferative and apoptotic effects of the scFvs were evaluated by MTT and Annexin V/PI assays. The effects of selected scFvs on expression level of Surivin, c-Myc and Dvl genes were also evaluated by real-time PCR. Results demonstrated selection of two specific scFvs (scFv-I and scFv-II) with frequencies of 35 and 20%. Both antibodies bound to the corresponding peptides and cell surface receptors as shown by phage ELISA and flowcytometry, respectively. The scFvs inhibited cell growth of MDA-MB-231 cells significantly as compared to untreated cells. Growth inhibition of 58.6 and 53.1% were detected for scFv-I and scFv-II, respectively. No significant growth inhibition was detected for SKBR-3 negative control cells. The scFvs induced apoptotic effects in the MDA-MB-231 treated cells after 48 h, which were 81.6 and 74.9% for scFv-I and scFv-II, respectively. Downregulation of Surivin, c-Myc and Dvl genes were also shown after 48h treatment of cells with either of scFvs (59.3-93.8%). ScFv-I showed significant higher antiproliferative and apoptotic effects than scFv-II. Bioinformatic methods could effectively select potential epitopes of FZD7 protein and suggest that epitope designing by bioinformatic methods could contribute to the selection of key antigens for cancer immunotherapy. The selected scFvs, especially scFv-I, with high antiproliferative and apoptotic effects could be considered as effective agents for immunotherapy of cancers expressing FZD7 receptor including triple negative breast cancer.
Tumor-targeting CTL expressing a single-chain Fv specific for VEGFR2.
Kanagawa, Naoko; Yanagawa, Tatsuya; Mukai, Yohei; Yoshioka, Yasuo; Okada, Naoki; Nakagawa, Shinsaku
2010-03-26
Cytotoxic T lymphocytes (CTL) are critical effector cells in tumor immunity. Adoptive transfer therapy with in vitro-expanded tumor-specific CTL is a promising approach for preventing cancer metastasis and recurrence. Transferred CTL are not effective in clinical trials, however, due to inadequate tumor-infiltration. Therefore, the development of functionally modified CTL, such as tumor-targeting CTL, is widely desired. Here, we designed the tumor-targeting CTL expressing a single-chain antibody fragment (scFv-CTL) specific for vascular endothelial growth factor receptor 2 (VEGFR2/flk1) by transducing the CTL with a retroviral vector. The scFv-CTL bound to VEGFR2/flk1-expressing cells and retained their cytotoxic activity against tumor cells. In addition, adoptive transfer of scFv-CTL into tumor-bearing mice effectively suppressed tumor growth due to the augmented accumulation of the transferred CTL in the tumor tissue. These findings indicate that the creation of CTL capable of targeting tumor vascular endothelial cells by scFv-expression technique is considerably promising for improvement of efficacy in adoptive immunotherapy. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications.
Mirzaei, Hamid R; Rodriguez, Analiz; Shepphird, Jennifer; Brown, Christine E; Badie, Behnam
2017-01-01
Adoptive cellular immunotherapy (ACT) employing engineered T lymphocytes expressing chimeric antigen receptors (CARs) has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.
Dystrophin Immunity in Duchenne’s Muscular Dystrophy
Mendell, Jerry R.; Campbell, Katherine; Rodino-Klapac, Louise; Sahenk, Zarife; Shilling, Chris; Lewis, Sarah; Bowles, Dawn; Gray, Steven; Li, Chengwen; Galloway, Gloria; Malik, Vinod; Coley, Brian; Clark, K. Reed; Li, Juan; Xiao, Xiao; Samulski, Jade; McPhee, Scott W.; Samulski, R. Jude; Walker, Christopher M.
2010-01-01
SUMMARY We report on delivery of a functional dystrophin transgene to skeletal muscle in six patients with Duchenne’s muscular dystrophy. Dystrophin-specific T cells were detected after treatment, providing evidence of transgene expression even when the functional protein was not visualized in skeletal muscle. Circulating dystrophin-specific T cells were unexpectedly detected in two patients before vector treatment. Revertant dystrophin fibers, which expressed functional, truncated dystrophin from the deleted endogenous gene after spontaneous in-frame splicing, contained epitopes targeted by the autoreactive T cells. The potential for T-cell immunity to self and nonself dystrophin epitopes should be considered in designing and monitoring experimental therapies for this disease. (Funded by the Muscular Dystrophy Association and others; ClinicalTrials.gov number, NCT00428935.) PMID:20925545
The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity
Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A.; Kim, Sungjoon; Wilson, Christopher J.; Lehár, Joseph; Kryukov, Gregory V.; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F.; Monahan, John E.; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A.; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H.; Cheng, Jill; Yu, Guoying K.; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D.; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C.; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P.; Gabriel, Stacey B.; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E.; Weber, Barbara L.; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L.; Meyerson, Matthew; Golub, Todd R.; Morrissey, Michael P.; Sellers, William R.; Schlegel, Robert; Garraway, Levi A.
2012-01-01
The systematic translation of cancer genomic data into knowledge of tumor biology and therapeutic avenues remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacologic annotation is available1. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacologic profiles for 24 anticancer drugs across 479 of the lines, this collection allowed identification of genetic, lineage, and gene expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Altogether, our results suggest that large, annotated cell line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of “personalized” therapeutic regimens2. PMID:22460905
Unremitting Cell Proliferation in the Secretory Phase of Eutopic Endometriosis
Franco-Murillo, Yanira; Miranda-Rodríguez, José Antonio; Rendón-Huerta, Erika; Montaño, Luis F.; Cornejo, Gerardo Velázquez; Gómez, Lucila Poblano; Valdez-Morales, Francisco Javier; Gonzalez-Sanchez, Ignacio
2014-01-01
Objective: Endometriosis is linked to altered cell proliferation and stem cell markers c-kit/stem cell factor (SCF) in ectopic endometrium. Our aim was to investigate whether c-kit/SCF also plays a role in eutopic endometrium. Design: Eutopic endometrium obtained from 35 women with endometriosis and 25 fertile eumenorrheic women was analyzed for in situ expression of SCF/c-kit, Ki67, RAC-alpha serine/threonine-protein kinase (Akt), phosphorylated RAC-alpha serine/threonin-protein kinase (pAkt), Glycogen synthase kinase 3 beta (GSK3β), and phosphorylated glycogen synthase kinase 3 beta (pGSK3β), throughout the menstrual cycle. Results: Expression of Ki67 and SCF was higher in endometriosis than in control tissue (P < .05) and greater in secretory rather than proliferative (P < .01) endometrium in endometriosis. Expression of c-kit was also higher in endometriosis although similar in both phases. Expression of Akt and GSK3β was identical in all samples and cycle phases, whereas pAkt and pGSK3β, opposed to control tissue, remained overexpressed in the secretory phase in endometriosis. Conclusion: Unceasing cell proliferation in the secretory phase of eutopic endometriosis is linked to deregulation of c-kit/SCF-associated signaling pathways. PMID:25194152
Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao
2014-01-24
Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Automation of large scale transient protein expression in mammalian cells
Zhao, Yuguang; Bishop, Benjamin; Clay, Jordan E.; Lu, Weixian; Jones, Margaret; Daenke, Susan; Siebold, Christian; Stuart, David I.; Yvonne Jones, E.; Radu Aricescu, A.
2011-01-01
Traditional mammalian expression systems rely on the time-consuming generation of stable cell lines; this is difficult to accommodate within a modern structural biology pipeline. Transient transfections are a fast, cost-effective solution, but require skilled cell culture scientists, making man-power a limiting factor in a setting where numerous samples are processed in parallel. Here we report a strategy employing a customised CompacT SelecT cell culture robot allowing the large-scale expression of multiple protein constructs in a transient format. Successful protocols have been designed for automated transient transfection of human embryonic kidney (HEK) 293T and 293S GnTI− cells in various flask formats. Protein yields obtained by this method were similar to those produced manually, with the added benefit of reproducibility, regardless of user. Automation of cell maintenance and transient transfection allows the expression of high quality recombinant protein in a completely sterile environment with limited support from a cell culture scientist. The reduction in human input has the added benefit of enabling continuous cell maintenance and protein production, features of particular importance to structural biology laboratories, which typically use large quantities of pure recombinant proteins, and often require rapid characterisation of a series of modified constructs. This automated method for large scale transient transfection is now offered as a Europe-wide service via the P-cube initiative. PMID:21571074
Gu, Xing; Ji, Xin; Shi, Le-Hua; Yi, Chang-Hong; Zhao, Yun-Peng; Wang, Ai-Hua; Lu, Lun-Gen; Yu, Wen-Bo; Gao, Chun-Fang
2012-11-01
Our previous work revealed transforming growth factor beta1 (TGFβ1) gene polymorphisms are associated with susceptibility to hepatocellular carcinoma and liver cirrhosis. However, no further study of functional substitution in hepatic cells has yet been reported. This study was designed to uncover the functional mechanisms of TGFβ1 gene polymorphisms in the pathogenesis of liver diseases. Two recombinant TGFβ1 expression plasmids containing TGFβ1 codon 10 Leu/Pro variation were constructed with CMV promoter and transfected into human hepatoma cell lines (HepG2 and SMMU 7721), hepatic stellate cells (LX-2), and immortalized hepatocytes (L02). The secretion capacities of TGFβ1 protein in the transfected cells were determined by ELISA. Apoptosis, proliferative activity, and expression of CD 105, CD83, and CD80 were also measured by use of flow cytometry. The ELISA results showed that cells transfected with CMV-Pro10 were more capable of TGFβ1 secretion than those transfected with CMV-Leu10. Functionally, CMV-Pro10 was more apoptosis-protective and induced more proliferation than CMV-Leu10 in transfected hepatic cells. Pro10 up-regulated expression of CD105 and down-regulated expression of CD83. TGFβ1 gene Leu10Pro variation in signal peptide has significant effects on TGFβ1 secretion and functions in hepatic cells.
rAAV-compatible MiniPromoters for restricted expression in the brain and eye.
de Leeuw, Charles N; Korecki, Andrea J; Berry, Garrett E; Hickmott, Jack W; Lam, Siu Ling; Lengyell, Tess C; Bonaguro, Russell J; Borretta, Lisa J; Chopra, Vikramjit; Chou, Alice Y; D'Souza, Cletus A; Kaspieva, Olga; Laprise, Stéphanie; McInerny, Simone C; Portales-Casamar, Elodie; Swanson-Newman, Magdalena I; Wong, Kaelan; Yang, George S; Zhou, Michelle; Jones, Steven J M; Holt, Robert A; Asokan, Aravind; Goldowitz, Daniel; Wasserman, Wyeth W; Simpson, Elizabeth M
2016-05-10
Small promoters that recapitulate endogenous gene expression patterns are important for basic, preclinical, and now clinical research. Recently, there has been a promising revival of gene therapy for diseases with unmet therapeutic needs. To date, most gene therapies have used viral-based ubiquitous promoters-however, promoters that restrict expression to target cells will minimize off-target side effects, broaden the palette of deliverable therapeutics, and thereby improve safety and efficacy. Here, we take steps towards filling the need for such promoters by developing a high-throughput pipeline that goes from genome-based bioinformatic design to rapid testing in vivo. For much of this work, therapeutically interesting Pleiades MiniPromoters (MiniPs; ~4 kb human DNA regulatory elements), previously tested in knock-in mice, were "cut down" to ~2.5 kb and tested in recombinant adeno-associated virus (rAAV), the virus of choice for gene therapy of the central nervous system. To evaluate our methods, we generated 29 experimental rAAV2/9 viruses carrying 19 different MiniPs, which were injected intravenously into neonatal mice to allow broad unbiased distribution, and characterized in neural tissues by X-gal immunohistochemistry for icre, or immunofluorescent detection of GFP. The data showed that 16 of the 19 (84 %) MiniPs recapitulated the expression pattern of their design source. This included expression of: Ple67 in brain raphe nuclei; Ple155 in Purkinje cells of the cerebellum, and retinal bipolar ON cells; Ple261 in endothelial cells of brain blood vessels; and Ple264 in retinal Müller glia. Overall, the methodology and MiniPs presented here represent important advances for basic and preclinical research, and may enable a paradigm shift in gene therapy.
Sakkhachornphop, Supachai; Barbas, Carlos F.; Keawvichit, Rassamee; Wongworapat, Kanlaya
2012-01-01
Abstract Integration of the human immunodeficiency virus type 1 (HIV-1) genome into the host chromosome is a vital step in the HIV life cycle. The highly conserved cytosine–adenine (CA) dinucleotide sequence immediately upstream of the cleavage site is crucial for integrase (IN) activity. As this viral enzyme has an important role early in the HIV-1 replication cycle, interference with the IN substrate has become an attractive strategy for therapeutic intervention. We demonstrated that a designed zinc finger protein (ZFP) fused to green fluorescent protein (GFP) targets the 2-long terminal repeat (2-LTR) circle junctions of HIV-1 DNA with nanomolar affinity. We report now that 2LTRZFP-GFP stably transduced into 293T cells interfered with the expression of vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped lentiviral red fluorescent protein (RFP), as shown by the suppression of RFP expression. We also used a third-generation lentiviral vector and pCEP4 expression vector to deliver the 2LTRZFP-GFP transgene into human T-lymphocytic cells, and a stable cell line for long-term expression studies was selected for HIV-1 challenge. HIV-1 integration and replication were inhibited as measured by Alu-gag real-time PCR and p24 antigen assay. In addition, the molecular activity of 2LTRZFP-GFP was evaluated in peripheral blood mononuclear cells. The results were confirmed by Alu-gag real-time PCR for integration interference. We suggest that the expression of 2LTRZFP-GFP limited viral integration on intracellular immunization, and that it has potential for use in HIV gene therapy in the future. PMID:22429108
Domain-swapped T cell receptors improve the safety of TCR gene therapy
Bethune, Michael T; Gee, Marvin H; Bunse, Mario; Lee, Mark S; Gschweng, Eric H; Pagadala, Meghana S; Zhou, Jing; Cheng, Donghui; Heath, James R; Kohn, Donald B; Kuhns, Michael S; Uckert, Wolfgang; Baltimore, David
2016-01-01
T cells engineered to express a tumor-specific αβ T cell receptor (TCR) mediate anti-tumor immunity. However, mispairing of the therapeutic αβ chains with endogenous αβ chains reduces therapeutic TCR surface expression and generates self-reactive TCRs. We report a general strategy to prevent TCR mispairing: swapping constant domains between the α and β chains of a therapeutic TCR. When paired, domain-swapped (ds)TCRs assemble with CD3, express on the cell surface, and mediate antigen-specific T cell responses. By contrast, dsTCR chains mispaired with endogenous chains cannot properly assemble with CD3 or signal, preventing autoimmunity. We validate this approach in cell-based assays and in a mouse model of TCR gene transfer-induced graft-versus-host disease. We also validate a related approach whereby replacement of αβ TCR domains with corresponding γδ TCR domains yields a functional TCR that does not mispair. This work enables the design of safer TCR gene therapies for cancer immunotherapy. DOI: http://dx.doi.org/10.7554/eLife.19095.001 PMID:27823582
Acerbi, Enzo; Viganò, Elena; Poidinger, Michael; Mortellaro, Alessandra; Zelante, Teresa; Stella, Fabio
2016-01-01
T helper 17 (TH17) cells represent a pivotal adaptive cell subset involved in multiple immune disorders in mammalian species. Deciphering the molecular interactions regulating TH17 cell differentiation is particularly critical for novel drug target discovery designed to control maladaptive inflammatory conditions. Using continuous time Bayesian networks over a time-course gene expression dataset, we inferred the global regulatory network controlling TH17 differentiation. From the network, we identified the Prdm1 gene encoding the B lymphocyte-induced maturation protein 1 as a crucial negative regulator of human TH17 cell differentiation. The results have been validated by perturbing Prdm1 expression on freshly isolated CD4+ naïve T cells: reduction of Prdm1 expression leads to augmentation of IL-17 release. These data unravel a possible novel target to control TH17 polarization in inflammatory disorders. Furthermore, this study represents the first in vitro validation of continuous time Bayesian networks as gene network reconstruction method and as hypothesis generation tool for wet-lab biological experiments. PMID:26976045
EMMPRIN contributes to the in vitro invasion of human salivary adenoid cystic carcinoma cells
YANG, XINJIE; ZHANG, PU; MA, QIN; KONG, LIANG; LI, YUAN; LIU, BAOLIN; LEI, DELIN
2012-01-01
Extracellular matrix metalloproteinase inducer (EMMPRIN) is a transmembrane glycoprotein that is involved in tumor invasion by stimulating matrix metalloproteinase (MMP) expression. Our previous immunohistochemical study found that the expression of EMMPRIN in salivary adenoid cystic carcinoma (SACC) was positively correlated with tumor perineural and perivascular invasion. The present study was designed to further investigate the role of EMMPRIN in the invasion of SACC. Western blot results showed that EMMPRIN was upregulated in the highly metastatic SACC cell line SACC-LM, compared to SACC-83, a SACC cell line with low metastatic ability. Blocking of EMMPRIN by its antibody significantly decreased the adhesion, secretion of MMP-2 and MMP-9, and invasion activity of SACC-LM cells in vitro (P<0.01). Co-cultures of SACC-LM cells with fibroblasts significantly produced elevated levels of MMP-2 and MMP-9, and promoted the in vitro invasion activity of SACC-LM cells, compared with cultures of SACC-LM cells alone (P<0.01). These results indicate that EMMPRIN may play an important role in the invasion of SACC by stimulating the expression of MMP-2 and MMP-9 in tumor and stromal cells. PMID:22200897
Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro✩
Secor, Eric R.; Singh, Anurag; Guernsey, Linda A.; McNamara, Jeff T.; Zhan, Lijun; Maulik, Nilanjana; Thrall, Roger S.
2009-01-01
Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4+ T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4+ T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4+ T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4+ T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions. PMID:19162239
Ouyang, Ann; Cerchiari, Alec E; Tang, Xinyan; Liebenberg, Ellen; Alliston, Tamara; Gartner, Zev J; Lotz, Jeffrey C
2017-01-01
Tissue engineering constructs to treat intervertebral disc degeneration must adapt to the hypoxic and inflammatory degenerative disc microenvironment. The objective of this study was to determine the effects of two key design factors, cell type and cell configuration, on the regenerative potential of nucleus pulposus cell (NPC) and mesenchymal stem cell (MSC) constructs. Anabolic and catabolic activity was quantified in constructs of varying cell type (NPCs, MSCs, and a 50:50 co-culture) and varying configuration (individual cells and micropellets). Anabolic and catabolic outcomes were both dependent on cell type. Gene expression of Agg and Col2A1, glycosaminoglycan (GAG) content, and aggrecan immunohistochemistry (IHC), were significantly higher in NPC-only and co-culture groups than in MSC-only groups, with NPC-only groups exhibiting the highest anabolic gene expression levels. However, NPC-only constructs also responded to inflammation and hypoxia with significant upregulation of catabolic genes (MMP-1, MMP-9, MMP-13, and ADAMTS-5). MSC-only groups were unaffected by degenerative media conditions, and co-culture with MSCs modulated catabolic induction of the NPCs. Culturing cells in a micropellet configuration dramatically reduced catabolic induction in co-culture and NPC-only groups. Co-culture micropellets, which take advantage of both cell type and configuration effects, had the most immunomodulatory response, with a significant decrease in MMP-13 and ADAMTS-5 expression in hypoxic and inflammatory media conditions. Co-culture micropellets were also found to self-organize into bilaminar formations with an MSC core and NPC outer layer. Further understanding of these cell type and configuration effects can improve tissue engineering designs. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 35:61-73, 2017. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society.
Chatterjee, Jayanta; Dai, Wei; Aziz, Nor Haslinda Abd; Teo, Pei Yun; Wahba, John; Phelps, David L; Maine, Christian J; Whilding, Lynsey M; Dina, Roberto; Trevisan, Giorgia; Flower, Kirsty J; George, Andrew J T; Ghaem-Maghami, Sadaf
2017-07-01
Purpose: We aimed to establish whether programmed cell death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, in ovarian cancer tumor tissue and blood, could be used as biomarkers for discrimination of tumor histology and prognosis of ovarian cancer. Experimental Design: Immune cells were separated from blood, ascites, and tumor tissue obtained from women with suspected ovarian cancer and studied for the differential expression of possible immune biomarkers using flow cytometry. PD-L1 expression on tumor-associated inflammatory cells was assessed by immunohistochemistry and tissue microarray. Plasma soluble PD-L1 was measured using sandwich ELISA. The relationships among immune markers were explored using hierarchical cluster analyses. Results: Biomarkers from the discovery cohort that associated with PD-L1 + cells were found. PD-L1 + CD14 + cells and PD-L1 + CD11c + cells in the monocyte gate showed a distinct expression pattern when comparing benign tumors and epithelial ovarian cancers (EOCs)-confirmed in the validation cohort. Receiver operating characteristic curves showed PD-L1 + and PD-L1 + CD14 + cells in the monocyte gate performed better than the well-established tumor marker CA-125 alone. Plasma soluble PD-L1 was elevated in patients with EOC compared with healthy women and patients with benign ovarian tumors. Low total PD-1 + expression on lymphocytes was associated with improved survival. Conclusions: Differential expression of immunological markers relating to the PD-1/PD-L1 pathway in blood can be used as potential diagnostic and prognostic markers in EOC. These data have implications for the development and trial of anti-PD-1/PD-L1 therapy in ovarian cancer. Clin Cancer Res; 23(13); 3453-60. ©2016 AACR . ©2016 American Association for Cancer Research.
Kanjanamekanant, K; Luckprom, P; Pavasant, P
2013-04-01
Mechanical stress is an important factor in maintaining homeostasis of the periodontium. Interleukin-1beta (IL-1β) and adenosine triphosphate (ATP) are considered potent inflammatory mediators. In macrophages, ATP-activated P2X7 receptor is involved in IL-1β processing and release. Our previous works demonstrated mechanical stress-induced expression of osteopontin and RANKL through the ATP/P2Y1 receptor in human periodontal ligament (HPDL) cells. This study was designed to examine the effect of mechanical stress on IL-1β expression in HPDL cells, as well as the mechanism and involvement of ATP and the P2 purinergic receptor. Cultured HPDL cells were treated with continuous compressive loading. IL-1β expression was analyzed at both mRNA and protein levels, using RT-PCR and ELISA, respectively. Cell viability was examined using the MTT assay. ATP was also used to stimulate HPDL cells. Inhibitors, antagonists and the small interfering RNA (siRNA) technique were used to investigate the role of ATP and the specific P2 subtypes responsible for IL-1β induction along with the intracellular mechanism. Mechanical stress could up-regulate IL-1β expression through the release of ATP in HPDL cells. ATP alone was also capable of increasing IL-1β expression. The induction of IL-1β was markedly inhibited by inhibitors and by siRNA targeting the P2X7 receptor. ATP-stimulated IL-1β expression was also diminished by intracellular calcium inhibitors. Our work clearly indicates the capability of HPDL cells to respond directly to mechanical stimulation. The results signified the important roles of ATP/P2 purinergic receptors, as well as intracellular calcium signaling, in mechanical stress-induced inflammation via up-regulation of the proinflammatory cytokine, IL-1β, in HPDL cells. © 2012 John Wiley & Sons A/S.
Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells.
Kwaks, Ted H J; Otte, Arie P
2006-03-01
Recombinant proteins form an increasingly large part of the portfolio of biopharmaceutical companies. Production of these often complex transgenic proteins is achieved predominantly in mammalian cell lines but the process is hampered by low yields and unstable expression. Some of these problems are caused by gene silencing at the level of chromatin - so-called epigenetic gene silencing. Here, we describe approaches, which have emerged during the past few years, designed to interfere with epigenetic gene silencing with the aim of enhancing and stabilizing transgene expression. These include targeting histones, the inclusion of specific DNA elements and targeting sites of high gene-expression. We conclude that employing epigenetic gene regulation tools, in combination with further process optimization, might represent the next step forward in the production of therapeutic proteins.
Wang, Xiaoyuan; Liow, Sing Shy; Wu, Qiaoqiong; Li, Chuang; Owh, Cally; Li, Zibiao; Loh, Xian Jun; Wu, Yun-Long
2017-11-01
Antiapoptotic Bcl-2 protein's upregulated expression is a key reason for drug resistance leading to failure of chemotherapy. In this report, a series of biocompatible amphiphilic cationic poly[(R)-3-hydroxybutyrate] (PHB)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) copolymer, comprising hydrophobic PHB block and cationic PDMAEMA block, is designed to codeliver hydrophobic chemotherapeutic paclitaxel and Bcl-2 converting gene Nur77/ΔDBD with enhanced stability, due to the micelle formation by hydrophobic PHB segment. This copolymer shows less toxicity but similar gene transfection efficiency to polyethyenimine (25k). More importantly, this codelivery approach by PHB-PDMAEMA leads to increased drug resistant HepG2/Bcl-2 cancer cell death, by increased expression of Nur77 proteins in the Bcl-2 present intracellular mitochondria. This work signifies for the first time that cationic amphiphilic PHB-b-PDMAEMA copolymers can be utilized for the drug and gene codelivery to drug resistant cancer cells with high expression of antiapoptosis Bcl-2 protein and the positive results are encouraging for the further design of codelivery platforms for combating drug resistant cancer cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhong, Hai-Jing; Wang, Wanhe; Kang, Tian-Shu; Yan, Hui; Yang, Yali; Xu, Lipeng; Wang, Yuqiang; Ma, Dik-Lung; Leung, Chung-Hang
2017-01-12
We report herein the identification of the rhodium(III) complex [Rh(phq) 2 (MOPIP)] + (1) as a potent and selective ATP-competitive neural precursor cell expressed, developmentally down-regulated 8 (NEDD8)-activating enzyme (NAE) inhibitor. Structure-activity relationship analysis indicated that the overall organometallic design of complex 1 was important for anti-inflammatory activity. Complex 1 showed promising anti-inflammatory activity in vivo for the potential treatment of inflammatory bowel disease.
Gene Silencing of Phogrin Unveils Its Essential Role in Glucose-Responsive Pancreatic β-Cell Growth
Torii, Seiji; Saito, Naoya; Kawano, Ayumi; Hou, Ni; Ueki, Kohjiro; Kulkarni, Rohit N.; Takeuchi, Toshiyuki
2009-01-01
OBJECTIVE—Phogrin and IA-2, autoantigens in insulin-dependent diabetes, have been shown to be involved in insulin secretion in pancreatic β-cells; however, implications at a molecular level are confusing from experiment to experiment. We analyzed biological functions of phogrin in β-cells by an RNA interference technique. RESEARCH DESIGN AND METHODS—Adenovirus-mediated expression of short hairpin RNA specific for phogrin (shPhogrin) was conducted using cultured β-cell lines and mouse islets. Both glucose-stimulated insulin secretion and cell proliferation rate were determined in the phogrin-knockdown cells. Furthermore, protein expression was profiled in these cells. To see the binding partner of phogrin in β-cells, coimmunoprecipitation analysis was carried out. RESULTS—Adenoviral expression of shPhogrin efficiently decreased its endogenous expression in pancreatic β-cells. Silencing of phogrin in β-cells abrogated the glucose-mediated mitogenic effect, which was accompanied by a reduction in the level of insulin receptor substrate 2 (IRS2) protein, without any changes in insulin secretion. Phogrin formed a complex with insulin receptor at the plasma membrane, and their interaction was promoted by high-glucose stimulation that in turn led to stabilization of IRS2 protein. Corroboratively, phogrin knockdown had no additional effect on the proliferation of β-cell line derived from the insulin receptor–knockout mouse. CONCLUSIONS—Phogrin is involved in β-cell growth via regulating stability of IRS2 protein by the molecular interaction with insulin receptor. We propose that phogrin and IA-2 function as an essential regulator of autocrine insulin action in pancreatic β-cells. PMID:19073770
Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J.; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco
2016-01-01
Abstract The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems. PMID:27124473
Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antczak, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco
2016-04-01
The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems.
Coronin 3 promotes gastric cancer metastasis via the up-regulation of MMP-9 and cathepsin K.
Ren, Gui; Tian, Qifei; An, Yanxin; Feng, Bin; Lu, Yuanyuan; Liang, Jie; Li, Kai; Shang, Yulong; Nie, Yongzhan; Wang, Xin; Fan, Daiming
2012-09-14
Coronins are a family of highly evolutionary conserved proteins reportedly involved in the regulation of actin cytoskeletal dynamics, although only coronin 3 has been shown to be related to cancer cell migration. In glioblastoma cells, the knockdown of coronin 3 inhibits cell proliferation and invasion. Coronin 3 is also associated with the aggression and metastasis of hepatocellular carcinoma. In this paper, we analyze the migration, invasion and metastasis abilities of gastric cancer cells after up- or down-regulation of coronin 3, and explore the mechanism of coronin 3 in the process of gastric cancer metastasis. The expression of coronin 3 was higher in the highly metastatic sub-cell line MKN28-M, which we established in our laboratory. We also demonstrated that the expression of coronin 3 was remarkably higher in lymph lode metastases than in primary gastric cancer tissues, and over-expression of coronin 3 was correlated with the increased clinical stage and lymph lode metastasis. Recombinant lentiviral vectors encoding shRNAs were designed to down-regulate coronin 3 expression in gastric cancer cell lines. Stable knockdown of coronin 3 by this lentiviral vector could efficiently inhibit the migration and invasion of MKN45 gastric cancer cells. In contrast, up-regulation of coronin 3 significantly enhanced migration and invasion of MKN28-NM cells. In addition, knockdown of coronin 3 significantly reduced liver metastasis in mice after tail vein injection of gastric cancer cells. The Human Tumor Metastasis PCR Array was used to screen the metastasis-associated genes identified by the down-regulation of coronin 3, and the results suggested that, following the knockdown of coronin 3, the tumor cell migration and invasion were inhibited by the reduced expression of MMP-9 and cathepsin K. Coronin 3 is highly expressed in gastric cancer metastases and can promote the metastatic behaviors of gastric cancer cells, including their migration and invasion.
Ankri, Chen; Shamalov, Katerina; Horovitz-Fried, Miryam; Mauer, Shmuel; Cohen, Cyrille J
2013-10-15
Adoptive transfer of T cells genetically modified to express cancer-specific receptors can mediate impressive tumor regression in terminally ill patients. However, T cell function and persistence over time could be hampered by the activation of inhibitory costimulatory pathways, such as programmed death 1 (PD1)/programmed death ligand 1, leading to T cell exhaustion and providing tumor cells with an escape mechanism from immunosurveillance. In addition, the lack of positive costimulation at the tumor site can further dampen T cell response. Thus, as T cell genetic engineering has become clinically relevant, we aimed at enhancing T cell antitumor activity by genetically diverting T cell-negative costimulatory signals into positive ones using chimeric costimulatory retargeting molecules and which are composed of the PD1 extracellular domain fused to the signaling domains of positive costimulatory molecules such as CD28 and 4-1BB. After characterizing the optimal PD1 chimera, we designed and optimized a tripartite retroviral vector that enables the simultaneous expression of this chimeric molecule in conjunction with a cancer-specific TCR. Human T cells, transduced to express a PD1/28 chimeric molecule, exhibited enhanced cytokine secretion and upregulation of activation markers upon coculture with tumor cells. These engineered cells also proliferated better compared with control cells. Finally, we tested the function of these cells in two xenograft models of human melanoma tumors and show that PD1/28-engineered human T cells demonstrated superior antitumor function. Overall, we propose that engineering T cells with a costimulatory retargeting molecule can enhance their function, which bears important implications for the improvement of T cell immunotherapy.
2013-01-01
Background Tumor-associated macrophages (TAMs) have high impact on the cancer development because they can facilitate matrix invasion, angiogenesis, and tumor cell motility. It gives cancer cells the capacity to invade normal tissues and metastasize. The signaling of colony-stimulating factor-1 receptor (CSF-1R) which is an important regulator of proliferation and differentiation of monocytes and macrophages regulates most of the tissue macrophages. However, CSF-1R is expressed also in breast epithelial tissue during some physiological stages i.g.: pregnancy and lactation. Its expression has been also detected in various cancers. Our previous study has showed the expression of CSF-1R in all examined canine mammary tumors. Moreover, it strongly correlated with grade of malignancy and ability to metastasis. This study was therefore designed to characterize the role of CSF-1R in canine mammary cancer cells proliferation, apoptosis, migration, and invasion. As far as we know, the study presented hereby is a pioneering experiment in this field of veterinary medicine. Results We showed that csf-1r silencing significantly increased apoptosis (Annexin V test), decreased proliferation (measured as Ki67 expression) and decreased migration (“wound healing” assay) of canine mammary cancer cells. Treatment of these cells with CSF-1 caused opposite effect. Moreover, csf-1r knock-down changed growth characteristics of highly invasive cell lines on Matrigel matrix, and significantly decreased the ability of these cells to invade matrix. CSF-1 treatment increased invasion of cancer cells. Conclusion The evidence of the expression and functional role of the CSF-1R in canine mammary cancer cells indicate that CSF-1R targeting may be a good therapeutic approach. PMID:23561040
The ontogeny of nanos homologue expression in the oligochaete annelid Tubifex tubifex.
Mohri, Ki-Ichi; Nakamoto, Ayaki; Shimizu, Takashi
2016-01-01
We have cloned and characterized the expression of a nanos homologue (designated Ttu-nos) from the oligochaete annelid Tubifex tubifex. Ttu-nos mRNA is distributed broadly throughout the early cleavage stages. Ttu-nos is expressed in most if not all of the early blastomeres, in which Ttu-nos RNA associates with pole plasms. Ttu-nos transcripts are concentrated to 2d and 4d cells. Shortly after 2d(111) (derived from 2d cell) divides into a bilateral pair of NOPQ proteloblasts, Ttu-nos RNA vanishes from the embryo, which is soon followed by the resumption of Ttu-nos expression in nascent primary blast cells produced by teloblasts. The resumption of Ttu-nos expression occurs only in a subset of teloblast lineages (viz., M, N and Q). After Ttu-nos expression is retained in the germ band for a while, it disappears in anterior-to-posterior progression. At the end of embryogenesis, there is no trace of Ttu-nos expression. Thereafter, growing juveniles do not show any sign of Ttu-nos expression, either. The first sign of Ttu-nos expression is detected in oocytes in the ovary of young adults (ca 40 days after hatching), and its expression continues in growing oocytes that undergo yolk deposition and maturation in the ovisac. Copyright © 2015 Elsevier B.V. All rights reserved.
Distinctive expression pattern of OCT4 variants in different types of breast cancer.
Soheili, Saamaaneh; Asadi, Malek Hossein; Farsinejad, Alireza
2017-01-01
OCT4 is a key regulator of self-renewal and pluripotency in embryonic stem cells which can potentially encode three spliced variants designated OCT4A, OCT4B and OCT4B1. Based on cancer stem cell concept, it is suggested that the stemness factors misexpressed in cancer cells and potentially is involved in tumorigenesis. Accordingly, in this study, we investigated the potential expression of OCT4 variants in breast cancer tissues. A total of 94 tumoral and peritumoral breast specimens were evaluated with respect to the expression of OCT4 variants using quantitative RT-PCR and immunohistochemical (IHC) analysis. We detected the expression of OCT4 variants in breast tumor tissues with no or very low levels of expression in peritumoral samples of the same patients. While OCT4B was highly expressed in lobular type of breast cancer, OCT4A and OCTB1 variants are highly expressed in low grade (I and II) ductal tumors. Furthermore, the results of this study revealed a considerable association between the expression level of OCT4 variants and the expression of ER, PR, Her2 and P53 factors. All data demonstrated a distinctive expression pattern of OCT4 spliced variants in different types of breast cancer and provide further evidence for the involvement of embryonic genes in carcinogenesis.
Gray, Steven J; Foti, Stacey B; Schwartz, Joel W; Bachaboina, Lavanya; Taylor-Blake, Bonnie; Coleman, Jennifer; Ehlers, Michael D; Zylka, Mark J; McCown, Thomas J; Samulski, R Jude
2011-09-01
With the increased use of small self-complementary adeno-associated viral (AAV) vectors, the design of compact promoters becomes critical for packaging and expressing larger transgenes under ubiquitous or cell-specific control. In a comparative study of commonly used 800-bp cytomegalovirus (CMV) and chicken β-actin (CBA) promoters, we report significant differences in the patterns of cell-specific gene expression in the central and peripheral nervous systems. The CMV promoter provides high initial neural expression that diminishes over time. The CBA promoter displayed mostly ubiquitous and high neural expression, but substantially lower expression in motor neurons (MNs). We report the creation of a novel hybrid form of the CBA promoter (CBh) that provides robust long-term expression in all cells observed with CMV or CBA, including MNs. To develop a short neuronal promoter to package larger transgenes into AAV vectors, we also found that a 229-bp fragment of the mouse methyl-CpG-binding protein-2 (MeCP2) promoter was able to drive neuron-specific expression within the CNS. Thus the 800-bp CBh promoter provides strong, long-term, and ubiquitous CNS expression whereas the MeCP2 promoter allows an extra 570-bp packaging capacity, with low and mostly neuronal expression within the CNS, similar to the MeCP2 transcription factor.
NASA Technical Reports Server (NTRS)
Mahtani, H. K.; Richmond, R. C.; Chang, T. Y.; Chang, C. C. Y.; Rose, M. Franklin (Technical Monitor)
2001-01-01
The enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an important contributor to the pathological expression of plaque leading to artherosclerosis n a major health problem. Adequate knowledge of the structure of this protein will enable pharmaceutical companies to design drugs specific to the enzyme. ACAT is a membrane protein located in the endoplasmic reticulum.t The protein has never been purified to homogeneity.T.Y. Chang's laboratory at Dartmouth College provided a 4-kb cDNA clone (K1) coding for a structural gene of the protein. We have modified the gene sequence and inserted the cDNA into the BioGreen His Baculovirus transfer vector. This was successfully expressed in Sf2l insect cells as a GFP-labeled ACAT protein. The advantage to this ACAT-GFP fusion protein (abbreviated GCAT) is that one can easily monitor its expression as a function of GFP excitation at 395 nm and emission at 509 nm. Moreover, the fusion protein GCAT can be detected on Western blots with the use of commercially available GFP antibodies. Antibodies against ACAT are not readily available. The presence of the 6xHis tag in the transfer vector facilitates purification of the recombinant protein since 6xHis fusion proteins bind with high affinity to Ni-NTA agarose. Obtaining highly pure protein in large quantities is essential for subsequent crystallization. The purified GCAT fusion protein can readily be cleaved into distinct GFP and ACAT proteins in the presence of thrombin. Thrombin digests the 6xHis tag linking the two protein sequences. Preliminary experiments have indicated that both GCAT and ACAT are expressed as functional proteins. The ultimate aim is to obtain large quantities of the ACAT protein in pure and functional form appropriate for protein crystal growth. Determining protein structure is the key to the design and development of effective drugs. X-ray analysis requires large homogeneous crystals that are difficult to obtain in the gravity environment of earth. Protein crystals grown in microgravity are often larger and have fewer defects than those grown on earth. The analysis of higher quality space-grown crystals will assist in structure-based drug design. We have successfully grown GCAT-infected Sf21 cells in both adhesion and suspension cultures. Expression levels of GCAT in cell lines such as Sf9 and High Five appear to be reduced. We intend to replicate GCAT expression in all three cell lines using the NASA rotating wall bioreactor which effectively duplicates a microgravity environment. The bioreactor itself could be launched to study the expression of the GFP and GCAT proteins in the actual microgravity environment achieved in orbit.
Expression and Regulation of the Retinoic Acid Receptor Beta Gene in Human Mammary Epithelial Cells
1996-09-01
Balb/c nu/nu female mice. We have obtained experimental design advice from Dr. Janet Price, University of Texas, M.D. Anderson Cancer Center, Houston...author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation...identified eight genes regulated by retinoic acid in either breast cancer cell lines and/or normal HMECs. We have continued to evaluate the methodology to
The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo
Meerbrey, Kristen L.; Hu, Guang; Kessler, Jessica D.; Roarty, Kevin; Fang, Justin E.; Herschkowitz, Jason I.; Burrows, Anna E.; Ciccia, Alberto; Sun, Tingting; Schmitt, Earlene M.; Bernardi, Ronald J.; Fu, Xiaoyong; Bland, Christopher S.; Cooper, Thomas A.; Schiff, Rachel; Rosen, Jeffrey M.; Westbrook, Thomas F.; Elledge, Stephen J.
2011-01-01
The discovery of RNAi has revolutionized loss-of-function genetic studies in mammalian systems. However, significant challenges still remain to fully exploit RNAi for mammalian genetics. For instance, genetic screens and in vivo studies could be broadly improved by methods that allow inducible and uniform gene expression control. To achieve this, we built the lentiviral pINDUCER series of expression vehicles for inducible RNAi in vivo. Using a multicistronic design, pINDUCER vehicles enable tracking of viral transduction and shRNA or cDNA induction in a broad spectrum of mammalian cell types in vivo. They achieve this uniform temporal, dose-dependent, and reversible control of gene expression across heterogenous cell populations via fluorescence-based quantification of reverse tet-transactivator expression. This feature allows isolation of cell populations that exhibit a potent, inducible target knockdown in vitro and in vivo that can be used in human xenotransplantation models to examine cancer drug targets. PMID:21307310
Berthoumieux, Sara; de Jong, Hidde; Baptist, Guillaume; Pinel, Corinne; Ranquet, Caroline; Ropers, Delphine; Geiselmann, Johannes
2013-01-01
Gene expression is controlled by the joint effect of (i) the global physiological state of the cell, in particular the activity of the gene expression machinery, and (ii) DNA-binding transcription factors and other specific regulators. We present a model-based approach to distinguish between these two effects using time-resolved measurements of promoter activities. We demonstrate the strength of the approach by analyzing a circuit involved in the regulation of carbon metabolism in E. coli. Our results show that the transcriptional response of the network is controlled by the physiological state of the cell and the signaling metabolite cyclic AMP (cAMP). The absence of a strong regulatory effect of transcription factors suggests that they are not the main coordinators of gene expression changes during growth transitions, but rather that they complement the effect of global physiological control mechanisms. This change of perspective has important consequences for the interpretation of transcriptome data and the design of biological networks in biotechnology and synthetic biology. PMID:23340840
Insights on ornithine decarboxylase silencing as a potential strategy for targeting retinoblastoma.
Muthukumaran, Sivashanmugam; Bhuvanasundar, Renganathan; Umashankar, Vetrivel; Sulochana, K N
2018-02-01
Ornithine Decarboxylase (ODC) is a key enzyme involved in polyamine synthesis and is reported to be up regulated in several cancers. However, the effect of ODC gene silencing in retinoblastoma is to be understood for utilization in therapeutic applications. Hence, in this study, a novel siRNA (small interference RNA) targeting ODC was designed and validated in Human Y79 retinoblastoma cells for its effects on intracellular polyamine levels, Matrix Metalloproteinase 2 & 9 activity and Cell cycle. The designed siRNA showed efficient silencing of ODC mRNA expression and protein levels in Y79 cells. It also showed significant reduction of intracellular polyamine levels and altered levels of oncogenic LIN28b expression. By this study, a regulatory loop is proposed, wherein, ODC silencing in Y79 cells to result in decreased polyamine levels, thereby, leading to altered protein levels of Lin28b, MMP-2 and MMP-9, which falls in line with earlier studies in neuroblastoma. Thus, by this study, we propose ODC silencing as a prospective strategy for targeting retinoblastoma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Shiokawa, Zenyu; Hashimoto, Kentaro; Saito, Bunnai; Oguro, Yuya; Sumi, Hiroyuki; Yabuki, Masato; Yoshimatsu, Mie; Kosugi, Yohei; Debori, Yasuyuki; Morishita, Nao; Dougan, Douglas R; Snell, Gyorgy P; Yoshida, Sei; Ishikawa, Tomoyasu
2013-12-15
We previously reported octahydropyrrolo[1,2-a]pyrazine derivative 2 (T-3256336) as a potent antagonist for inhibitors of apoptosis (IAP) proteins. Because compound 2 was susceptible to MDR1 mediated efflux, we developed another scaffold, hexahydropyrazino[1,2-a]indole, using structure-based drug design. The fused benzene ring of this scaffold was aimed at increasing the lipophilicity and decreasing the basicity of the scaffold to improve the membrane permeability across MDR1 expressing cells. We established a chiral pool synthetic route to yield the desired tricyclic chiral isomers. Chemical modification of the core scaffold led to a representative compound 50, which showed strong inhibition of IAP binding (X chromosome-linked IAP [XIAP]: IC50 23 nM and cellular IAP [cIAP]: IC50 1.1 nM) and cell growth inhibition (MDA-MB-231 cells: GI50 2.8 nM) with high permeability and low potential of MDR1 substrate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Genetic engineering of somatic cells to study and improve cardiac function.
Kirkton, Robert D; Bursac, Nenad
2012-11-01
To demonstrate the utility of genetically engineered excitable cells for studies of basic electrophysiology and cardiac cell therapy. 'Zig-zag' networks of neonatal rat ventricular myocytes (NRVMs) were micropatterned onto thin elastomeric films to mimic the slow action potential (AP) conduction found in fibrotic myocardium. Addition of genetically engineered excitable human embryonic kidney cells (HEK-293 cells) ('Ex-293' cells stably expressing Kir2.1, Na(v)1.5, and Cx43 channels) increased both cardiac conduction velocity by 370% and twitch force amplitude by 64%. Furthermore, we stably expressed mutant Na(v)1.5 [A1924T (fast sodium channel mutant (substitution of alanine by threonine at amino acid 1924)] channels with hyperpolarized steady-state activation and showed that, despite a 71.6% reduction in peak I(Na), these cells propagated APs at the same velocity as the wild-type Na(v)1.5-expressing Ex-293 cells. Stable expression of Ca(v)3.3 (T-type voltage-gated calcium) channels in Ex-293 cells (to generate an 'ExCa-293' line) significantly increased their AP duration and reduced repolarization gradients in cocultures of these cells and NRVMs. Additional expression of an optogenetic construct [ChIEF (light-gated Channelrhodopsin mutant)]enabled light-based control of AP firing in ExCa-293 cells. We show that, despite being non-contractile, genetically engineered excitable cells can significantly improve both electrical and mechanical function of engineered cardiac tissues in vitro. We further demonstrate the utility of engineered cells for tissue-level studies of basic electrophysiology and cardiac channelopathies. In the future, this novel platform could be utilized in the high-throughput design of new genetically encoded indicators of cell electrical function, validation, and improvement of computer models of AP conduction, and development of novel engineered somatic cell therapies for the treatment of cardiac infarction and arrhythmias.
Yunoki, Tatsuya; Tabuchi, Yoshiaki; Hayashi, Atsushi; Kondo, Takashi
2016-07-01
BCL2-associated athanogene 3 (BAG3), a co-chaperone of the heat shock 70 kDa protein (HSPA) family of proteins, is a cytoprotective protein that acts against various stresses, including heat stress. The aim of the present study was to identify gene networks involved in the enhancement of hyperthermia (HT) sensitivity by the knockdown (KD) of BAG3 in human oral squamous cell carcinoma (OSCC) cells. Although a marked elevation in the protein expression of BAG3 was detected in human the OSCC HSC-3 cells exposed to HT at 44˚C for 90 min, its expression was almost completely suppressed in the cells transfected with small interfering RNA against BAG3 (siBAG) under normal and HT conditions. The silencing of BAG3 also enhanced the cell death that was increased in the HSC-3 cells by exposure to HT. Global gene expression analysis revealed many genes that were differentially expressed by >2-fold in the cells exposed to HT and transfected with siBAG. Moreover, Ingenuity® pathways analysis demonstrated two unique gene networks, designated as Pro-cell death and Anti-cell death, which were obtained from upregulated genes and were mainly associated with the biological functions of induction and the prevention of cell death, respectively. Of note, the expression levels of genes in the Pro-cell death and Anti-cell death gene networks were significantly elevated and reduced in the HT + BAG3-KD group compared to those in the HT control group, respectively. These results provide further insight into the molecular mechanisms involved in the enhancement of HT sensitivity by the silencing of BAG3 in human OSCC cells.
NASA Astrophysics Data System (ADS)
Guo, Weibo; Wang, Shu; Yu, Xin; Qiu, Jichuan; Li, Jianhua; Tang, Wei; Li, Zhou; Mou, Xiaoning; Liu, Hong; Wang, Zhonglin
2016-01-01
The cell-material interface is one of the most important considerations in designing a high-performance tissue engineering scaffold because the surface of the scaffold can determine the fate of stem cells. A conductive surface is required for a scaffold to direct stem cells toward neural differentiation. However, most conductive polymers are toxic and not amenable to biological degradation, which restricts the design of neural tissue engineering scaffolds. In this study, we used a bioactive three-dimensional (3D) porcine acellular dermal matrix (PADM), which is mainly composed of type I collagen, as a basic material and successfully assembled a layer of reduced graphene oxide (rGO) nanosheets on the surface of the PADM channels to obtain a porous 3D, biodegradable, conductive and biocompatible PADM-rGO hybrid neural tissue engineering scaffold. Compared with the PADM scaffold, assembling the rGO into the scaffold did not induce a significant change in the microstructure but endowed the PADM-rGO hybrid scaffold with good conductivity. A comparison of the neural differentiation of rat bone-marrow-derived mesenchymal stem cells (MSCs) was performed by culturing the MSCs on PADM and PADM-rGO scaffolds in neuronal culture medium, followed by the determination of gene expression and immunofluorescence staining. The results of both the gene expression and protein level assessments suggest that the rGO-assembled PADM scaffold may promote the differentiation of MSCs into neuronal cells with higher protein and gene expression levels after 7 days under neural differentiation conditions. This study demonstrated that the PADM-rGO hybrid scaffold is a promising scaffold for neural tissue engineering; this scaffold can not only support the growth of MSCs at a high proliferation rate but also enhance the differentiation of MSCs into neural cells.The cell-material interface is one of the most important considerations in designing a high-performance tissue engineering scaffold because the surface of the scaffold can determine the fate of stem cells. A conductive surface is required for a scaffold to direct stem cells toward neural differentiation. However, most conductive polymers are toxic and not amenable to biological degradation, which restricts the design of neural tissue engineering scaffolds. In this study, we used a bioactive three-dimensional (3D) porcine acellular dermal matrix (PADM), which is mainly composed of type I collagen, as a basic material and successfully assembled a layer of reduced graphene oxide (rGO) nanosheets on the surface of the PADM channels to obtain a porous 3D, biodegradable, conductive and biocompatible PADM-rGO hybrid neural tissue engineering scaffold. Compared with the PADM scaffold, assembling the rGO into the scaffold did not induce a significant change in the microstructure but endowed the PADM-rGO hybrid scaffold with good conductivity. A comparison of the neural differentiation of rat bone-marrow-derived mesenchymal stem cells (MSCs) was performed by culturing the MSCs on PADM and PADM-rGO scaffolds in neuronal culture medium, followed by the determination of gene expression and immunofluorescence staining. The results of both the gene expression and protein level assessments suggest that the rGO-assembled PADM scaffold may promote the differentiation of MSCs into neuronal cells with higher protein and gene expression levels after 7 days under neural differentiation conditions. This study demonstrated that the PADM-rGO hybrid scaffold is a promising scaffold for neural tissue engineering; this scaffold can not only support the growth of MSCs at a high proliferation rate but also enhance the differentiation of MSCs into neural cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06602f
Signatures of tumour immunity distinguish Asian and non-Asian gastric adenocarcinomas.
Lin, Suling J; Gagnon-Bartsch, Johann A; Tan, Iain Beehuat; Earle, Sophie; Ruff, Louise; Pettinger, Katherine; Ylstra, Bauke; van Grieken, Nicole; Rha, Sun Young; Chung, Hyun Cheol; Lee, Ju-Seog; Cheong, Jae Ho; Noh, Sung Hoon; Aoyama, Toru; Miyagi, Yohei; Tsuburaya, Akira; Yoshikawa, Takaki; Ajani, Jaffer A; Boussioutas, Alex; Yeoh, Khay Guan; Yong, Wei Peng; So, Jimmy; Lee, Jeeyun; Kang, Won Ki; Kim, Sung; Kameda, Yoichi; Arai, Tomio; Zur Hausen, Axel; Speed, Terence P; Grabsch, Heike I; Tan, Patrick
2015-11-01
Differences in gastric cancer (GC) clinical outcomes between patients in Asian and non-Asian countries has been historically attributed to variability in clinical management. However, recent international Phase III trials suggest that even with standardised treatments, GC outcomes differ by geography. Here, we investigated gene expression differences between Asian and non-Asian GCs, and if these molecular differences might influence clinical outcome. We compared gene expression profiles of 1016 GCs from six Asian and three non-Asian GC cohorts, using a two-stage meta-analysis design and a novel biostatistical method (RUV-4) to adjust for technical variation between cohorts. We further validated our findings by computerised immunohistochemical analysis on two independent tissue microarray (TMA) cohorts from Asian and non-Asian localities (n=665). Gene signatures differentially expressed between Asians and non-Asian GCs were related to immune function and inflammation. Non-Asian GCs were significantly enriched in signatures related to T-cell biology, including CTLA-4 signalling. Similarly, in the TMA cohorts, non-Asian GCs showed significantly higher expression of T-cell markers (CD3, CD45R0, CD8) and lower expression of the immunosuppressive T-regulatory cell marker FOXP3 compared to Asian GCs (p<0.05). Inflammatory cell markers CD66b and CD68 also exhibited significant cohort differences (p<0.05). Exploratory analyses revealed a significant relationship between tumour immunity factors, geographic locality-specific prognosis, and postchemotherapy outcomes. Analyses of >1600 GCs suggest that Asian and non-Asian GCs exhibit distinct tumour immunity signatures related to T-cell function. These differences may influence geographical differences in clinical outcome, and the design of future trials particularly in immuno-oncology. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
2012-01-01
Background Esophageal squamous cell carcinoma (ESCC), the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB), normal differentiated squamous epithelium (ND), and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA) were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and molecular pathways mediating ESCC development and provide information potentially useful in designing novel therapeutic interventions for this tumor type. PMID:22280838
Pestina, Tamara I; Hargrove, Phillip W; Jay, Dennis; Gray, John T; Boyd, Kelli M; Persons, Derek A
2008-01-01
Increased levels of red cell fetal hemogloblin, whether due to hereditary persistence of expression or from induction with hydroxyurea therapy, effectively ameliorate sickle cell disease (SCD). Therefore, we developed erythroid-specific, γ-globin lentiviral vectors for hematopoietic stem cell (HSC)-targeted gene therapy with the goal of permanently increasing fetal hemoglobin (HbF) production in sickle red cells. We evaluated two different γ-globin lentiviral vectors for therapeutic efficacy in the BERK sickle cell mouse model. The first vector, V5, contained the γ-globin gene driven by 3.1 kb of β-globin regulatory sequences and a 130-bp β-globin promoter. The second vector, V5m3, was identical except that the γ-globin 3′-untranslated region (3′-UTR) was replaced with the β-globin 3′-UTR. Adult erythroid cells have β-globin mRNA 3′-UTR-binding proteins that enhance β-globin mRNA stability and we postulated this design might enhance γ-globin expression. Stem cell gene transfer was efficient and nearly all red cells in transplanted mice expressed human γ-globin. Both vectors demonstrated efficacy in disease correction, with the V5m3 vector producing a higher level of γ-globin mRNA which was associated with high-level correction of anemia and secondary organ pathology. These data support the rationale for a gene therapy approach to SCD by permanently enhancing HbF using a γ-globin lentiviral vector. PMID:19050697
Lipophilic Polycation Vehicles Display High Plasmid DNA Delivery to Multiple Cell Types.
Wu, Yaoying; Smith, Adam E; Reineke, Theresa M
2017-08-16
A class of cationic poly(alkylamidoamine)s (PAAAs) containing lipophilic methylene linkers were designed and examined as in vitro plasmid DNA (pDNA) delivery agents. The PAAAs were synthesized via step-growth polymerization between a diamine monomer and each of four different diacid chloride monomers with varying methylene linker lengths, including glutaryl chloride, adipoyl chloride, pimeloyl chloride, and suberoyl chloride, which served to systematically increase the lipophilicity of the polymers. The synthesized polymers successfully complexed with pDNA in reduced serum medium at N/P ratios of 5 and greater, resulting in polyplexes with hydrodynamic diameters of approximately 1 μm. These polyplexes were tested for in vitro transgene expression and cytotoxicity using HDFa (human dermal fibroblast), HeLa (human cervical carcinoma), HMEC (human mammary epithelial), and HUVEC (human umbilical vein endothelial) cells. Interestingly, select PAAA polyplex formulations were found to be more effective than Lipofectamine 2000 at promoting transgene expression (GFP) while maintaining comparable or higher cell viability. Transgene expression was highest in HeLa cells (∼90% for most formulations) and lowest in HDFa cells (up to ∼20%) as measured by GFP fluorescence. In addition, the cytotoxicity of PAAA polyplex formulations was significantly increased as the molecular weight, N/P ratio, and methylene linker length were increased. The PAAA vehicles developed herein provide a new delivery vehicle design strategy of displaying attributes of both polycations and lipids, which show promise as a tunable scaffold for refining the structure-activity-toxicity profiles for future genome editing studies.
Woods, Matthew W; Zahoor, Muhammad Atif; Dizzell, Sara; Verschoor, Chris P; Kaushic, Charu
2018-01-01
Medroxyprogesterone acetate (MPA), a progestin-based hormonal contraceptive designed to mimic progesterone, has been linked to increased human immunodeficiency virus (HIV-1) susceptibility. Genital epithelial cells (GECs) form the mucosal lining of the female genital tract (FGT) and provide the first line of protection against HIV-1. The impact of endogenous sex hormones or MPA on the gene expression profile of GECs has not been comprehensively documented. Using microarray analysis, we characterized the transcriptional profile of primary endometrial epithelial cells grown in physiological levels of E2, P4, and MPA. Each hormone treatment altered the gene expression profile of GECs in a unique manner. Interestingly, although MPA is a progestogen, the gene expression profile induced by it was distinct from P4. MPA increased gene expression of genes related to inflammation and cholesterol synthesis linked to innate immunity and HIV-1 susceptibility. The analysis of gene expression profiles provides insights into the effects of sex hormones and MPA on GECs and allows us to posit possible mechanisms of the MPA-mediated increase in HIV-1 acquisition. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
CellLineNavigator: a workbench for cancer cell line analysis
Krupp, Markus; Itzel, Timo; Maass, Thorsten; Hildebrandt, Andreas; Galle, Peter R.; Teufel, Andreas
2013-01-01
The CellLineNavigator database, freely available at http://www.medicalgenomics.org/celllinenavigator, is a web-based workbench for large scale comparisons of a large collection of diverse cell lines. It aims to support experimental design in the fields of genomics, systems biology and translational biomedical research. Currently, this compendium holds genome wide expression profiles of 317 different cancer cell lines, categorized into 57 different pathological states and 28 individual tissues. To enlarge the scope of CellLineNavigator, the database was furthermore closely linked to commonly used bioinformatics databases and knowledge repositories. To ensure easy data access and search ability, a simple data and an intuitive querying interface were implemented. It allows the user to explore and filter gene expression, focusing on pathological or physiological conditions. For a more complex search, the advanced query interface may be used to query for (i) differentially expressed genes; (ii) pathological or physiological conditions; or (iii) gene names or functional attributes, such as Kyoto Encyclopaedia of Genes and Genomes pathway maps. These queries may also be combined. Finally, CellLineNavigator allows additional advanced analysis of differentially regulated genes by a direct link to the Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources. PMID:23118487
Xue, Jing-lun; Chen, Jin-zhong
2013-01-01
Background Phosphatase and tensin homologue (PTEN), as a tumor suppressor, plays vital roles in tumorigenesis and progression of prostate cancer. However, the mechanisms of PTEN regulation still need further investigation. We here report that a combination of four microRNAs (miR-19b, miR-23b, miR-26a and miR-92a) promotes prostate cell proliferation by regulating PTEN and its downstream signals in vitro. Methodology/Principal Findings We found that the four microRNAs (miRNAs) could effectively suppress PTEN expression by directly interacting with its 3’ UTR in prostate epithelial and cancer cells. Under-expression of the four miRNAs by antisense neutralization up-regulates PTEN expression, while overexpression of the four miRNAs accelerates epithelial and prostate cancer cell proliferation. Furthermore, the expression of the four miRNAs could, singly or jointly, alter the expression of the key components in the phosphoinositide 3-kinase (PI3K)/Akt pathway, including PIK3CA, PIK3CD, PIK3R1 and Akt, along with their downstream signal, cyclin D1. Conclusions These results suggested that the four miRNAs could promote prostate cancer cell proliferation by co-regulating the expression of PTEN, PI3K/Akt pathway and cyclin D1 in vitro. These findings increase understanding of the molecular mechanisms of prostate carcinogenesis and progression, even provide valuable insights into the diagnosis, prognosis, and rational design of novel therapeutics for prostate cancer. PMID:24098737
BTK suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling
Lu, Yue; Yang, Hongbao; Tian, Zhidan; Yin, Gang; Zhang, Wen; Lu, Sicheng; Zhang, Yi; Yang, Ye
2017-01-01
We previously explored the role of BTK in maintaining multiple myeloma stem cells (MMSCs) self-renewal and drug-resistance. Here we investigated the elevation of BTK suppressing MM cellular senescence, a state of irreversible cellular growth arrest. We firstly discovered that an increased expression of BTK in MM samples compared to normal controls by immunohistochemistry (IHC), and significant chromosomal gain in primary samples. In addition, BTK high-expressing MM patients are associated with poor outcome in both Total Therapy 2 (TT2) and TT3 cohorts. Knockdown BTK expression by shRNA induced MM cellular senescence using β-galactosidase (SA-b-gal) staining, cell growth arrest by cell cycle staining and decreased clonogenicity while forcing BTK expression in MM cells abrogated these characteristics. We also validated this feature in mouse embryonic fibroblast cells (MEFs), which showed that elevated BTK expression was resistant to MEF senescence after serial cultivation in vitro. Further mechanism study revealed that BTK activated AKT signaling leading to down-regulation of P27 expression and hindered RB activity while AKT inhibitor, LY294002, overcame BTK-overexpression induced cellular senescence resistance. Eventually we demonstrated that BTK inhibitor, CGI-1746, induced MM cellular senescence, colony reduction and tumorigenecity inhibition in vivo. Summarily, we designate a novel mechanism of BTK in mediating MM growth, and BTK inhibitor is of great potential in vivo and in vitro suggesting BTK is a promising therapeutic target for MM. PMID:28915637
Young, Brett C.; Stanic, Aleksandar K.; Panda, Britta; Rueda, Bo R.; Panda, Alexander
2014-01-01
OBJECTIVE Toll-like receptors (TLRs) are integral parts of the innate immune system and have been implicated in complications of pregnancy. The longitudinal expression of TLRs on dendritic cells in the maternal circulation during uncomplicated pregnancies is unknown. The objective of this study was to prospectively evaluate TLRs 1-9 as expressed on dendritic cells in the maternal circulation at defined intervals throughout pregnancy and postpartum. STUDY DESIGN This was a prospective cohort of 30 pregnant women with uncomplicated pregnancies and 30 nonpregnant controls. TLRs and cytokine expression was measured in unstimulated dendritic cells at 4 defined intervals during pregnancy and postpartum. Basal expression of TLRs and cytokines was measured by multicolor flow cytometry. The percent-positive dendritic cells for each TLRs were compared with both nonpregnant and postpartum levels with multivariate linear regression. RESULTS TLRs 1, 7, and 9 were elevated compared with nonpregnant controls with persistent elevation of TLR 1 and interleukin-12 (IL-12) into the postpartum period. Concordantly, levels of IL-6, IL-12, interferon alpha, and tumor necrosis factor alpha increased during pregnancy and returned to levels similar to nonpregnant controls during the postpartum period. The elevated levels of TLR 1 and IL-12 were persistent postpartum, challenging notions that immunologic changes during pregnancy resolve after the prototypical postpartum period. CONCLUSION Normal pregnancy is associated with time-dependent changes in TLR expression compared with nonpregnant controls; these findings may help elucidate immunologic dysfunction in complicated pregnancies. PMID:24291497
Acidic conditions induce the suppression of CD86 and CD54 expression in THP-1 cells.
Mitachi, Takafumi; Mezaki, Minori; Yamashita, Kunihiko; Itagaki, Hiroshi
2018-01-01
To evaluate the sensitization potential of chemicals in cosmetics, using non-animal methods, a number of in vitro safety tests have been designed. Current assays are based on the expression of cell surface markers, such as CD86 and CD54, which are associated with the activation of dendritic cells, in skin sensitization tests. However, these markers are influenced by culture conditions through activating danger signals. In this study, we investigated the relationship between extracellular pH and the expression of the skin sensitization test human cell line activation test (h-CLAT) markers CD86 and CD54. We measured expression levels after THP-1 cells were exposed to representative contact allergens, i.e., 2,4-dinitrochlorobenzene and imidazolidinyl urea, under acidic conditions. These conditions were set by exposure to hydrochloric acid, lactic acid, and citric acid. An acidic extracellular pH (6-7) suppressed the augmentation of CD86 and CD54 levels by the sensitizer. Additionally, when the CD86/CD54 expression levels were suppressed, a reduction in the intracellular pH was confirmed. Furthermore, we observed that Na + /H + exchanger 1 (NHE-1), a protein that contributes to the regulation of extracellular/intracellular pH, is involved in CD86 and CD54 expression. These findings suggest that the extracellular/intracellular pH has substantial effects on in vitro skin sensitization markers and should be considered in evaluations of the safety of mixtures and commercial products in the future.
Various fates of neuronal progenitor cells observed on several different chemical functional groups
NASA Astrophysics Data System (ADS)
Liu, Xi; Wang, Ying; He, Jin; Wang, Xiu-Mei; Cui, Fu-Zhai; Xu, Quan-Yuan
2011-12-01
Neuronal progenitor cells cultured on gold-coated glass surfaces modified by different chemical functional groups, including hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), bromo (-Br), mercapto (-SH), - Phenyl and methyl (-CH3), were studied here to investigate the influence of surface chemistry on the cells' adhesion, morphology, proliferation and functional gene expression. Focal adhesion staining indicated in the initial culture stage cells exhibited morphological changes in response to different chemical functional groups. Cells cultured on -NH2 grafted surface displayed focal adhesion plaque and flattened morphology and had the largest contact area. However, their counter parts on -CH3 grafted surface displayed no focal adhesion and rounded morphology and had the smallest contact area. After 6 days culture, the proliferation trend was as follows: -NH2 > -SH> -COOH> - Phenyl > - Br > -OH> -CH3. To determine the neural functional properties of the cells affected by surface chemistry, the expression of glutamate decarboxylase (GAD67), nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) were characterized. An increase of GAD67 expression was observed on -NH2, -COOH and -SH grafted surfaces, while no increase in NGF and BDNF expression was observed on any chemical surfaces. These results highlight the importance of surface chemistry in the fate determination of neuronal progenitor cells, and suggest that surface chemistry must be considered in the design of biomaterials for neural tissue engineering.
Bischoff, Kara; Ballew, Anna C.; Simon, Michael A.; O'Reilly, Alana M.
2009-01-01
Background The coordinated action of genes that control patterning, cell fate determination, cell size, and cell adhesion is required for proper wing formation in Drosophila. Defects in any of these basic processes can lead to wing aberrations, including blisters. The xenicid mutation was originally identified in a screen designed to uncover regulators of adhesion between wing surfaces [1]. Principal Findings Here, we demonstrate that expression of the βPS integrin or the patterning protein Engrailed are not affected in developing wing imaginal discs in xenicid mutants. Instead, expression of the homeotic protein Ultrabithorax (Ubx) is strongly increased in xenicid mutant cells. Conclusion Our results suggest that upregulation of Ubx transforms cells from a wing blade fate to a haltere fate, and that the presence of haltere cells within the wing blade is the primary defect leading to the adult wing phenotypes observed. PMID:19956620
Novel liposomal combination treatments using dual genes knockdown in oral cancer treatment
NASA Astrophysics Data System (ADS)
Wu, Jyun-Sian; Yeh, Chia-Hsien; Huang, Leaf; Hsu, Yih-Chih
2018-02-01
Small interfering RNA (siRNA) can be used to treat tumor because it can effectively knockdown target oncoprotein expression and it leads to cancer cell death and apoptosis. Hypoxia-inducible factors-1 (HIF-1) is a transcription factor gene. Its high expression of tumor hypoxia cells, activation of transcription factor HIF-1α and angiogenesis found in most cancerous tissues. HIF-1α protein in cancer cells are critical to cell survival, tumor growth and proliferation. Epidermal growth factor receptor (EGFR) gene is another common head and neck oncogene. The dual self-designed siRNA sequences were encapsulated in the lipid-calcium-phosphate (LCP) and targeted to sigma receptors on the surface of cancer cells via binding to amino ethyl anisamide (AEAA). We used human oral cancer cells to establish the xenograft animal model to study the combination therapy for therapeutic results.
Laubreton, Daphné; Bay, Sylvie; Sedlik, Christine; Artaud, Cécile; Ganneau, Christelle; Dériaud, Edith; Viel, Sophie; Puaux, Anne-Laure; Amigorena, Sebastian; Gérard, Catherine; Lo-Man, Richard; Leclerc, Claude
2016-03-01
Malignant transformations are often associated with aberrant glycosylation processes that lead to the expression of new carbohydrate antigens at the surface of tumor cells. Of these carbohydrate antigens, the Tn antigen is particularly highly expressed in many carcinomas, especially in breast carcinoma. We designed MAG-Tn3, a fully synthetic vaccine based on three consecutive Tn moieties that are O-linked to a CD4+ T cell epitope, to induce anti-Tn antibody responses that could be helpful for therapeutic vaccination against cancer. To ensure broad coverage within the human population, the tetanus toxoid-derived peptide TT830-844 was selected as a T-helper epitope because it can bind to various HLA-DRB molecules. We showed that the MAG-Tn3 vaccine, which was formulated with the GSK proprietary immunostimulant AS15 and designed for human cancer therapy, is able to induce an anti-Tn antibody response in mice of various H-2 haplotypes, and this response correlates with the ability to induce a specific T cell response against the TT830-844 peptide. The universality of the TT830-844 peptide was extended to new H-2 and HLA-DRB molecules that were capable of binding this T cell epitope. Finally, the MAG-Tn3 vaccine was able to induce anti-Tn antibody responses in cynomolgus monkeys, which targeted Tn-expressing tumor cells and mediated tumor cell death both in vitro and in vivo. Thus, MAG-Tn3 is a highly promising anticancer vaccine that is currently under evaluation in a phase I clinical trial.
Zhu, Hong; Gao, Jun; Wang, Lei; Qian, Ke-Jian; Cai, Li-Ping
2018-03-01
The aim of the present study was to investigate the mechanism of action by which naringin reverses the resistance of ovarian cancer cells to cisplatin. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and western blotting assays were used to detect the effects of different concentrations of naringin on the expressions of nuclear factor (NF)-κB and P-glycoprotein (P-gp) in the SKOV3/CDDP cell line. Small interfering RNA (siRNA) targeting NF-κB was designed and synthesized to silence NF-κB, and recombinant plasmid vectors overexpressing NF-κB were constructed to transfect cells. RT-qPCR and western blotting assays were subsequently performed to detect the effects of NF-κB on the expression of P-gp at the mRNA and protein levels. Naringin was added to the NF-κB-overexpressing SKOV3/CDDP cells and cultured for 48 h, followed by the detection of the expression of P-gp. RT-PCR and western blotting results demonstrated that the gene and protein expressions of NF-κB and P-gp were significantly decreased in a dose-dependent manner by naringin treatment (P<0.05). In cells overexpressing NF-κB, P-gp expression was significantly elevated (P<0.05), and the expression of P-gp was significantly decreased when NF-κB was silenced (P<0.05). Treatment with naringin was able to significantly ameliorate the NF-κB-induced overexpression of P-gp (P<0.05). These results indicate that naringin is able to inhibit the expression of NF-κB and P-gp in SKOV3/CDDP cells. Such an inhibitory effect may increase gradually with concentration, and is associated with blockade of the NF-κB signaling pathway. This pathway may represent one of the mechanisms of action by which Naringin reverses resistance to platinum-based agents in ovarian cancer cells.
McCourt, Clare; Maxwell, Pamela; Mazzucchelli, Roberta; Montironi, Rodolfo; Scarpelli, Marina; Salto-Tellez, Manuel; O’Sullivan, Joe M.; Longley, Daniel B.; Waugh, David J.J.
2012-01-01
Purpose To characterize the importance of cellular Fas-associated death domain (FADD)-like interleukin 1β-converting enzyme (FLICE) inhibitory protein (c-FLIP), a key regulator of caspase 8 (FLICE)-promoted apoptosis, in modulating the response of prostate cancer (CaP) cells to androgen receptor (AR)-targeted therapy. Experimental Design c-FLIP expression was characterized by immunohistochemical analysis of prostatectomy tissue. The functional importance of c-FLIP to survival and modulating response to bicalutamide was studied by molecular and pharmacological interventions. Results c-FLIP expression was increased in high-grade prostatic intra-epithelial neoplasia (HGPIN) and CaP tissue relative to normal prostate epithelium (P<0.001). Maximal c-FLIP expression was detected in castrate-resistant CaP (CRPC) (P<0.001). In vitro, silencing of c-FLIP induced spontaneous apoptosis and increased 22Rv1 and LNCaP cell sensitivity to bicalutamide, determined by flow cytometry, PARP cleavage and caspase activity assays. The histone deacetylase inhibitors (HDACi), droxinostat and SAHA, also down-regulated c-FLIP expression, induced caspase-8 and caspase-3/7 mediated apoptosis and increased apoptosis in bicalutamide-treated cells. Conversely, the elevated expression of c-FLIP detected in the CRPC cell line VCaP underpinned their insensitivity to bicalutamide and SAHA in vitro. However, knockdown of c-FLIP induced spontaneous apoptosis in VCaP cells, indicating its relevance to cell survival and therapeutic resistance. Conclusion c-FLIP reduces the efficacy of AR-targeted therapy and maintains the viability of CaP cells. A combination of HDACi with androgen-deprivation therapy (ADT) may be effective in early-stage disease, using c-FLIP expression as a predictive biomarker of sensitivity. Direct targeting of c-FLIP however may be relevant to enhance the response of existing and novel therapeutics in CRPC. PMID:22623731
Up-regulation of miR-146a contributes to the inhibition of invasion of pancreatic cancer cells
Li, Yiwei; VandenBoom, Timothy G.; Wang, Zhiwei; Kong, Dejuan; Ali, Shadan; Philip, Philip A.; Sarkar, Fazlul H.
2009-01-01
Pancreatic cancer (PC) is an aggressive malignancy with high mortality and is believed to be in part due to its highly invasive and metastatic behavior, which is associated with over-expression of EGFR and activation of NF-κB. Emerging evidence also suggest critical roles of microRNAs (miRNAs) in the regulation of various pathobiological processes including metastasis in PC and in other human malignancies. In the present study, we found lower expression of miR-146a in PC cells compared to normal human pancreatic duct epithelial (HPDE) cells. Interestingly, re-expression of miR-146a inhibited the invasive capacity of Colo357 and Panc-1 PC cells with concomitant down-regulation of EGFR and IRAK-1. Mechanistic studies including miR-146a re-expression, anti-miR-146 transfection, and EGFR knock-down experiment showed that there was a crosstalk between EGFR, MTA-2, IRAK-1, IκBα and NF-κB. Most importantly, we found that the treatment of PC cells with “natural agents” [3,3′-diinodolylmethane (DIM) or isoflavone] led to an increase in the expression of miR-146a and consequently down-regulated the expression of EGFR, MTA-2, IRAK-1 and NF-κB, resulting in the inhibition of invasion of Colo357 and Panc-1 cells. These results provide experimental evidence in support of the role of DIM and isoflavone as potential non-toxic agents as regulators of miRNA, which could be useful for the inhibition of cancer cell invasion and metastasis, and further suggesting that these agents could be important for designing novel targeted strategy for the treatment of PC. PMID:25242818
Cell separation: Terminology and practical considerations
Tomlinson, Sophie; Yang, Xuebin B; Kirkham, Jennifer
2013-01-01
Cell separation is a powerful tool in biological research. Increasing usage, particularly within the tissue engineering and regenerative medicine communities, means that researchers from a diverse range of backgrounds are utilising cell separation technologies. This review aims to offer potential solutions to cell sorting problems and to clarify common ambiguities in terminology and experimental design. The frequently used cell separation terms of ‘purity’, ‘recovery’ and ‘viability’ are discussed, and attempts are made to reach a consensus view of their sometimes ambiguous meanings. The importance of appropriate experimental design is considered, with aspects such as marker expression, tissue isolation and original cell population analysis discussed. Finally, specific technical issues such as cell clustering, dead cell removal and non-specific antibody binding are considered and potential solutions offered. The solutions offered may provide a starting point to improve the quality of cell separations achieved by both the novice and experienced researcher alike. PMID:23440031
Engineering growth factors for regenerative medicine applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.
Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell traffickingmore » behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.« less
Taube, Janis M.; Young, Geoffrey D.; McMiller, Tracee L.; Chen, Shuming; Salas, January T.; Pritchard, Theresa S.; Xu, Haiying; Meeker, Alan K.; Fan, Jinshui; Cheadle, Chris; Berger, Alan E.; Pardoll, Drew M.; Topalian, Suzanne L.
2015-01-01
Purpose Blocking the immunosuppressive PD-1/PD-L1 pathway has anti-tumor activity in multiple cancer types, and PD-L1 expression on tumor cells and infiltrating myeloid cells correlates with the likelihood of response. We previously found that IFNG (interferon-gamma) was over-expressed by TILs in PD-L1+ vs. PD-L1(−) melanomas, creating adaptive immune resistance by promoting PD-L1 display. The current study was undertaken to identify additional factors in the PD-L1+ melanoma microenvironment coordinately contributing to immunosuppression. Experimental design Archived, formalin-fixed paraffin-embedded melanoma specimens were assessed for PD-L1 protein expression at the tumor cell surface with immunohistochemistry (IHC). Whole genome expression analysis, quantitative (q)RT-PCR, immunohistochemistry, and functional in vitro validation studies were employed to assess factors differentially expressed in PD-L1+ versus PD-L1(−) melanomas. Results Functional annotation clustering based on whole genome expression profiling revealed pathways up-regulated in PD-L1+ melanomas, involving immune cell activation, inflammation, and antigen processing and presentation. Analysis by qRT-PCR demonstrated over-expression of functionally related genes in PD-L1+ melanomas, involved in CD8+ T cell activation (CD8A, IFNG, PRF1, CCL5), antigen presentation (CD163, TLR3, CXCL1, LYZ), and immunosuppression [PDCD1 (PD-1), CD274(PD-L1), LAG3, IL10]. Functional studies demonstrated that some factors, including IL-10 and IL-32-gamma, induced PD-L1 expression on monocytes but not tumor cells. Conclusions These studies elucidate the complexity of immune checkpoint regulation in the tumor microenvironment, identifying multiple factors likely contributing to coordinated immunosuppression. These factors may provide tumor escape mechanisms from anti-PD-1/PD-L1 therapy, and should be considered for co-targeting in combinatorial immunomodulation treatment strategies. PMID:25944800
Zhang, Jingzhu; Li, Xinhui; Ren, Yahao; Zhao, Yue; Xing, Aiping; Jiang, Congmin; Chen, Yanqiu; An, Li
2018-01-01
Intermittent fasting has been demonstrated to protect against Alzheimer's disease (AD), however, the mechanism is unclear. Histone acetylation and lipoprotein lipase (LPL) are involved in AD progression. Importantly, LPL has been documented to be regulated by histone deacetylases (HDACs) inhibitors (increase histone acetylation level) in adipocyte and mesenchymal stem cells, or by fasting in adipose and muscle tissues. In brain, however, whether histone acetylation or fasting regulates LPL expression is unknown. This study was designed to demonstrate intermittent fasting may protect against AD through increasing β-hydroxybutyrate, a HDACs inhibitor, to regulate LPL. We also investigated microRNA-29a expression associating with regulation of LPL and histone acetylation. The results showed LPL mRNA expression was increased and microRNA-29a expression was decreased in the cerebral cortex of AD model mice (APP/PS1), which were alleviated by intermittent fasting. No significant differences were found in the total expression of LPL protein (brain-derived and located in capillary endothelial cells from peripheral tissues) in the cerebral cortex of APP/PS1 mice. Further study indicated that LPL located in capillary endothelial cells was decreased in the cerebral cortex of APP/PS1 mice, which was alleviated by intermittent fasting. LPL and microRNA-29a expression were separately increased and down-regulated in 2 μM Aβ 25-35 -exposed SH-SY5Y cells, but respectively decreased and up-regulated in 10 μM Aβ 25-35 -exposed cells, which were all reversed by β-hydroxybutyrate. The increase of HDAC2/3 expression and the decrease of acetylated H3K9 and H4K12 levels were alleviated in APP/PS1 mice by intermittent fasting treatment, as well in 2 or 10 μM Aβ 25-35 -exposed cells by β-hydroxybutyrate treatment. These findings above suggested the results from APP/PS1 mice were consistent with those from cells treated with 2 μM Aβ 25-35 . Interestingly, LPL expression was reduced (0.2-folds) and microRNA-29a expression was up-regulated (1.7-folds) in HDAC2-silenced cells, but respectively increased (1.3-folds) and down-regulated (0.8-folds) in HDAC3-silenced cells. Furthermore, LPL expression was decreased in cells treated with microRNA-29a mimic and increased with inhibitor treatment. In conclusion, intermittent fasting inhibits the increase of brain-derived LPL expression in APP/PS1 mice partly through β-hydroxybutyrate-mediated down-regulation of microRNA-29a expression. HDAC2/3 may be implicated in the effect of β-hydroxybutyrate on microRNA-29a expression.
Genomic localization of the Z/EG transgene in the mouse genome.
Colombo, Sophie; Kumasaka, Mayuko; Lobe, Corrinne; Larue, Lionel
2010-02-01
The Z/EG transgenic mouse line, produced by Novak et al., displays tissue-specific EGFP expression after Cre-mediated recombination. The autofluorescence of EGFP allows the visualization of cells of interest displaying Cre recombination. The initial construct was designed such that cells without Cre recombination express the beta-galactosidase marker, facilitating counterselection. We used inverse PCR to identify the site of integration of the Z/EG transgene, to improve the efficiency of homozygous Z/EG mouse production. Recombined cells produced large amounts of EGFP protein, resulting in higher levels of fluorescence and therefore greater contrast with nonrecombined cells. We mapped the transgene to the G1 region of chromosome 5. This random insertion was found to have occurred 230-bp upstream from the start codon of the Rasa4 gene. The insertion of the Z/EG transgene in the C57BL/6 genetic background had no effect on Rasa4 expression. Homozygous Z/EG mice therefore had no obvious phenotype. (c) 2009 Wiley-Liss, Inc.
Li, Ming; Radvanyi, Laszlo; Yin, Bingnan; Li, Jia; Chivukula, Raghavender; Lin, Kevin; Lu, Yue; Shen, JianJun; Chang, David Z.; Li, Donghui; Johanning, Gary L.; Wang-Johanning, Feng
2017-01-01
Purpose We investigated the role of the human endogenous retrovirus type K (HERV-K) envelope (env) gene in pancreatic cancer (PC). Experimental Design shRNA was employed to knockdown (KD) the expression of HERV-K in PC cells. Results HERV-K env expression was detected in seven PC cell lines and in 80% of PC patient biopsies, but not in two normal pancreatic cell lines or uninvolved normal tissues. A new HERV-K splice variant was discovered in several PC cell lines. RT activity and virus-like particles were observed in culture media supernatant obtained from Panc-1 and Panc-2 cells. HERV-K viral RNA levels and anti-HERV-K antibody titers were significantly higher in PC patient sera (N=106) than in normal donor sera (N=40). Importantly, the in vitro and in vivo growth rates of three PC cell lines were significantly reduced after HERV-K KD by shRNA targeting HERV-K env, and there was reduced metastasis to lung after treatment. RNA-seq results revealed changes in gene expression after HERV-K env KD, including RAS and TP53. Furthermore, downregulation of HERV-K Env protein expression by shRNA also resulted in decreased expression of RAS, p-ERK, p-RSK, and p-AKT in several PC cells or tumors. Conclusion These results demonstrate that HERV-K influences signal transduction via the RAS-ERK-RSK pathway in PC. Our data highlight the potentially important role of HERV-K in tumorigenesis and progression of PC, and indicate that HERV-K viral proteins may be attractive biomarkers and/or tumor-associated antigens, as well as potentially useful targets for detection, diagnosis and immunotherapy of PC. PMID:28679769
Fundamental limits on dynamic inference from single-cell snapshots
Weinreb, Caleb; Tusi, Betsabeh K.; Socolovsky, Merav
2018-01-01
Single-cell expression profiling reveals the molecular states of individual cells with unprecedented detail. Because these methods destroy cells in the process of analysis, they cannot measure how gene expression changes over time. However, some information on dynamics is present in the data: the continuum of molecular states in the population can reflect the trajectory of a typical cell. Many methods for extracting single-cell dynamics from population data have been proposed. However, all such attempts face a common limitation: for any measured distribution of cell states, there are multiple dynamics that could give rise to it, and by extension, multiple possibilities for underlying mechanisms of gene regulation. Here, we describe the aspects of gene expression dynamics that cannot be inferred from a static snapshot alone and identify assumptions necessary to constrain a unique solution for cell dynamics from static snapshots. We translate these constraints into a practical algorithmic approach, population balance analysis (PBA), which makes use of a method from spectral graph theory to solve a class of high-dimensional differential equations. We use simulations to show the strengths and limitations of PBA, and then apply it to single-cell profiles of hematopoietic progenitor cells (HPCs). Cell state predictions from this analysis agree with HPC fate assays reported in several papers over the past two decades. By highlighting the fundamental limits on dynamic inference faced by any method, our framework provides a rigorous basis for dynamic interpretation of a gene expression continuum and clarifies best experimental designs for trajectory reconstruction from static snapshot measurements. PMID:29463712
Wen, Ting; Mingler, Melissa K.; Blanchard, Carine; Wahl, Benjamin; Pabst, Oliver; Rothenberg, Marc E.
2011-01-01
CD22 is currently recognized as a B cell-specific Siglec and has been exploited therapeutically with humanized anti-CD22 monoclonal antibody having been used against B cell leukemia. Herein, tissue-specific eosinophil mRNA microarray analysis identified that CD22 transcript levels of murine gastrointestinal (GI) eosinophils are 10-fold higher than those of lung eosinophils. In order to confirm the mRNA data at the protein level, we developed a FACS-based protocol designed to phenotype live GI eosinophils isolated from the murine lamina propria. Indeed, we found that jejunum eosinophils expressed remarkably high levels of surface CD22, similar to levels found in B cells across multiple mouse strains. In contrast, CD22 was undetectable on eosinophils from the colon, blood, thymus, spleen, uterus, peritoneal cavity and allergen-challenged lung. Eosinophils isolated from newborn mice did not express CD22 but subsequently upregulated CD22 expression to adult levels within the first 10 days after birth. The GI lamina propria from CD22 gene-targeted mice harbored more eosinophils than wild-type control mice, while the GI eosinophil turnover rate was unaltered in the absence of CD22. Our findings identify a novel expression pattern and tissue eosinophilia-regulating function for the “B cell-specific” inhibitory molecule CD22 on GI eosinophils. PMID:22190185
Wen, Ting; Mingler, Melissa K; Blanchard, Carine; Wahl, Benjamin; Pabst, Oliver; Rothenberg, Marc E
2012-02-01
CD22 is currently recognized as a B cell-specific Siglec and has been exploited therapeutically with humanized anti-CD22 mAb having been used against B cell leukemia. In this study, tissue-specific eosinophil mRNA microarray analysis identified that CD22 transcript levels of murine gastrointestinal (GI) eosinophils are 10-fold higher than those of lung eosinophils. To confirm the mRNA data at the protein level, we developed a FACS-based protocol designed to phenotype live GI eosinophils isolated from the murine lamina propria. Indeed, we found that jejunum eosinophils expressed remarkably high levels of surface CD22, similar to levels found in B cells across multiple mouse strains. In contrast, CD22 was undetectable on eosinophils from the colon, blood, thymus, spleen, uterus, peritoneal cavity, and allergen-challenged lung. Eosinophils isolated from newborn mice did not express CD22 but subsequently upregulated CD22 expression to adult levels within the first 10 d after birth. The GI lamina propria from CD22 gene-targeted mice harbored more eosinophils than wild type control mice, whereas the GI eosinophil turnover rate was unaltered in the absence of CD22. Our findings identify a novel expression pattern and tissue eosinophilia-regulating function for the "B cell-specific" inhibitory molecule CD22 on GI eosinophils.
Detection of MDR1 mRNA expression with optimized gold nanoparticle beacon
NASA Astrophysics Data System (ADS)
Zhou, Qiumei; Qian, Zhiyu; Gu, Yueqing
2016-03-01
MDR1 (multidrug resistance gene) mRNA expression is a promising biomarker for the prediction of doxorubicin resistance in clinic. However, the traditional technical process in clinic is complicated and cannot perform the real-time detection mRNA in living single cells. In this study, the expression of MDR1 mRNA was analyzed based on optimized gold nanoparticle beacon in tumor cells. Firstly, gold nanoparticle (AuNP) was modified by thiol-PEG, and the MDR1 beacon sequence was screened and optimized using a BLAST bioinformatics strategy. Then, optimized MDR1 molecular beacons were characterized by transmission electron microscope, UV-vis and fluorescence spectroscopies. The cytotoxicity of MDR1 molecular beacon on L-02, K562 and K562/Adr cells were investigated by MTT assay, suggesting that MDR1 molecular beacon was low inherent cytotoxicity. Dark field microscope was used to investigate the cellular uptake of hDAuNP beacon assisted with ultrasound. Finally, laser scanning confocal microscope images showed that there was a significant difference in MDR1 mRNA expression in K562 and K562/Adr cells, which was consistent with the results of q-PCR measurement. In summary, optimized MDR1 molecular beacon designed in this study is a reliable strategy for detection MDR1 mRNA expression in living tumor cells, and will be a promising strategy for in guiding patient treatment and management in individualized medication.
Moeller, Maria; Haynes, Nicole M; Trapani, Joseph A; Teng, Michele W L; Jackson, Jacob T; Tanner, Jane E; Cerutti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K
2004-05-01
T cells engineered to express single-chain antibody receptors that incorporate TCR-zeta and cluster designation (CD)28 signaling domains (scFv-alpha-erbB2-CD28-zeta) can be redirected in vivo to cancer cells that lack triggering costimulatory molecules. To assess the contribution of CD28 signaling to the function of the scFv-CD28-zeta receptor, we expressed a series of mutated scFv-CD28-zeta receptors directed against erbB2. Residues known to be critical for CD28 signaling were mutated from tyrosine to phenylalanine at position 170 or proline to alanine at positions 187 and 190. Primary mouse T cells expressing either of the mutant receptors demonstrated impaired cytokine (IFN-gamma and GM-CSF) production and decreased proliferation after antigen ligation in vitro and decreased antitumor efficacy in vivo compared with T cells expressing the wild-type scFv-CD28-zeta receptor, suggesting a key signaling role for the CD28 component of the scFv-CD28-zeta receptor. Importantly, cell surface expression, binding capacity and cytolytic activity mediated by the scFv-CD28-zeta receptor were not diminished by either mutation. Overall, this study has definitively demonstrated a functional role for the CD28 component of the scFv-CD28-zeta receptor and has shown that incorporation of costimulatory activity in chimeric scFv receptors is a powerful approach for improving adoptive cancer immunotherapy.
Epithelial Membrane Protein-2 is a Novel Therapeutic Target in Ovarian Cancer
Fu, Maoyong; Maresh, Erin L.; Soslow, Robert A.; Alavi, Mohammad; Mah, Vei; Zhou, Qin; Iasonos, Alexia; Goodglick, Lee; Gordon, Lynn K.; Braun, Jonathan; Wadehra, Madhuri
2010-01-01
Purpose The tetraspan protein epithelial membrane protein-2 (EMP2) has been shown to regulate the surface display and signaling from select integrin pairs, and it was recently identified as a prognostic biomarker in human endometrial cancer. In this study, we assessed the role of EMP2 in human ovarian cancer. Experimental Design We examined the expression of EMP2 within a population of women with ovarian cancer using tissue microarray assay technology. We evaluated the efficacy of EMP2-directed antibody therapy using a fully human recombinant bivalent antibody fragment (diabody) in vitro and ovarian cancer xenograft models in vivo. Results EMP2 was found to be highly expressed in over 70% of serous and endometrioid ovarian tumors compared to non-malignant ovarian epithelium using a human ovarian cancer tissue microarray. Using anti-EMP2 diabody, we evaluated the in vitro response of 9 human ovarian cancer cell lines with detectable EMP2 expression. Treatment of human ovarian cancer cell lines with anti-EMP2 diabodies induced cell death and retarded cell growth, and these response rates correlated with cellular EMP2 expression. We next assessed the effects of anti-EMP2 diabodies in mice bearing xenografts from the ovarian endometrioid carcinoma cell line OVCAR5. Anti-EMP2 diabodies significantly suppressed tumor growth and induced cell death in OVCAR5 xenografts. Conclusions These findings indicate that EMP2 is expressed in the majority of ovarian tumors and it may be a feasible target in vivo. PMID:20670949
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidhauser, C. Bissell, M.J.; Myers, C.A.; Casperson, G.F.
1990-12-01
Milk protein regulation involves synergistic action of lactogenic hormones and extracellular matrix (ECM). It is well established that substratum has a dramatic effect on morphology and function of mammary cells. The molecular mechanisms that regulate the ECM- and hormone-dependent gene expression, however, have not been resolved. To address this question, a subpopulation (designated CID 9) of the mouse mammary epithelial cell strain COMMA-2D has been developed in which more than 35% of the cells express {beta}-casein, form alveoli-like structures when plated onto a reconstituted basement membrane, and secrete {beta}-casein undirectionally into a lumen. These cells were stably transfected with amore » series of chloramphenicol acetyltransferase (CAT) fusion genes to study transcriptional regulation of the bovine {beta}-casein gene. The expression of CAT in these lines demonstrated a striking matrix and hormone dependency. This regulation occurered primarily at the transcriptional level and was dependent on the length of the 5{prime} flanking region of the {beta}-casein promotor. Both matrix and hormonal control of transcription occurred within at least the first 1790 base pairs upstream and/or 42 base pairs downstream of the transcriptional initiation site. The ECM effect was independent of glucocorticoid stimulation. However, prolactin was essential and hydrocortisone further increased CAT expression. Endogenous {beta}-casein expression in these lines was similar to that of the parent CID 9 cells. Our data indicate the existence of matrix-dependent elements that regulate transcription.« less
A Scalable Approach for Discovering Conserved Active Subnetworks across Species
Verfaillie, Catherine M.; Hu, Wei-Shou; Myers, Chad L.
2010-01-01
Overlaying differential changes in gene expression on protein interaction networks has proven to be a useful approach to interpreting the cell's dynamic response to a changing environment. Despite successes in finding active subnetworks in the context of a single species, the idea of overlaying lists of differentially expressed genes on networks has not yet been extended to support the analysis of multiple species' interaction networks. To address this problem, we designed a scalable, cross-species network search algorithm, neXus (Network - cross(X)-species - Search), that discovers conserved, active subnetworks based on parallel differential expression studies in multiple species. Our approach leverages functional linkage networks, which provide more comprehensive coverage of functional relationships than physical interaction networks by combining heterogeneous types of genomic data. We applied our cross-species approach to identify conserved modules that are differentially active in stem cells relative to differentiated cells based on parallel gene expression studies and functional linkage networks from mouse and human. We find hundreds of conserved active subnetworks enriched for stem cell-associated functions such as cell cycle, DNA repair, and chromatin modification processes. Using a variation of this approach, we also find a number of species-specific networks, which likely reflect mechanisms of stem cell function that have diverged between mouse and human. We assess the statistical significance of the subnetworks by comparing them with subnetworks discovered on random permutations of the differential expression data. We also describe several case examples that illustrate the utility of comparative analysis of active subnetworks. PMID:21170309
2011-01-01
Background The transcription factor Foxg1 is an important regulator of telencephalic cell cycles. Its inactivation causes premature lengthening of telencephalic progenitor cell cycles and increased neurogenic divisions, leading to severe hypoplasia of the telencephalon. These proliferation defects could be a secondary consequence of the loss of Foxg1 caused by the abnormal expression of several morphogens (Fibroblast growth factor 8, bone morphogenetic proteins) in the telencephalon of Foxg1 null mutants. Here we investigated whether Foxg1 has a cell autonomous role in the regulation of telencephalic progenitor proliferation. We analysed Foxg1+/+↔Foxg1-/- chimeras, in which mutant telencephalic cells have the potential to interact with, and to have any cell non-autonomous defects rescued by, normal wild-type cells. Results Our analysis showed that the Foxg1-/- cells are under-represented in the chimeric telencephalon and the proportion of them in S-phase is significantly smaller than that of their wild-type neighbours, indicating that their under-representation is caused by a cell autonomous reduction in their proliferation. We then analysed the expression of the cell-cycle regulator Pax6 and found that it is cell-autonomously downregulated in Foxg1-/- dorsal telencephalic cells. We went on to show that the introduction into Foxg1-/- embryos of a transgene designed to reverse Pax6 expression defects resulted in a partial rescue of the telencephalic progenitor proliferation defects. Conclusions We conclude that Foxg1 exerts control over telencephalic progenitor proliferation by cell autonomous mechanisms that include the regulation of Pax6, which itself is known to regulate proliferation cell autonomously in a regional manner. PMID:21418559
Xiao, Xiaodong; Chen, Yan; Mugabe, Sheila; Gao, Changshou; Tkaczyk, Christine; Mazor, Yariv; Pavlik, Peter; Wu, Herren; Dall'Acqua, William; Chowdhury, Partha Sarathi
2015-01-01
High throughput screenings of single chain Fv (scFv) antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins are then used for different types of cell based assays. Thus this system retains the speed of the current screening system for phage libraries and adds additional functionality to it.
Analysis of E2F factors during epidermal differentiation.
Chang, Wing Y; Dagnino, Lina
2005-01-01
The multigene E2F family of transcription factors is central in the control of cell cycle progression. The expression and activity of E2F proteins is tightly regulated transcriptionally and posttranslationally as a function of the proliferation and differentiation status of the cell. In this chapter, we review protocols designed to determine E2F mRNA abundance in tissues by in situ hybridization techniques. The ability to culture primary epidermal keratinocytes and maintain them as either undifferentiated or terminally differentiated cells allows the biochemical and molecular characterization of changes in E2F expression and activity. Thus, we also discuss in detail methods to analyze E2F protein abundance by immunoblot and their ability to bind DNA in cultured cells using electrophoretic mobility shift assays.
Koide, J; Takada, K; Sugiura, M; Sekine, H; Ito, T; Saito, K; Mori, S; Takeuchi, T; Uchida, S; Abe, T
1997-01-01
An Epstein-Barr virus (EBV)-infected fibroblast line, designated DSEK, was spontaneously established from synovial tissue of a patient with rheumatoid arthritis (RA). DSEK cells expressed EBV nuclear antigens EBNA-1 and EBNA-2 and latent membrane protein LMP-1. Cell surface markers of DSEK cells were similar to those of EBV-negative fibroblast clones derived from synoviocytes and were negative for lymphocyte and macrophage markers. DSEK cells expressed CD44, CD58, and HLA-DR antigens and spontaneously produced interleukin-10 basic fibroblast growth factor and transforming growth factor beta1. These results indicate that rheumatoid synoviocytes can be a target for EBV infection and suggest that EBV may play a role in the pathogenesis of RA. PMID:9032386
Olivier, Emmanuel; Qiu, Caihong; Bouhassira, Eric E
2012-08-01
The current supply of red blood cells expressing rare blood groups is not sufficient to cover all the existing transfusion needs for chronically transfused patients, such as sickle cell disease homozygous carriers, because of alloimmunization. In vitro production of cultured red blood cells is slowly emerging as a possible complement to the existing collection-based red blood cell procurement system. The yield of cultured red blood cells can theoretically be maximized by amplifying the stem, progenitor, or precursor compartment. Here, we combined methods designed to expand these three compartments to optimize the yield of cultured red blood cells and found that exposing CD34(+) cells to a short pulse of cytokines favorable for erythroid differentiation prior to stem cell expansion followed by progenitor expansion produced the highest yield of erythroid cells. This novel serum-free red blood cell production protocol was efficient on CD34(+) cells derived from human embryonic stem cells, 6-8-week yolk sacs, 16-18-week fetal livers, cord blood, and peripheral blood. The yields of cells obtained with these new protocols were larger by an order of magnitude than the yields observed previously. Globin expression analysis by high-performance liquid chromatography revealed that these expansion protocols generally yielded red blood cells that expressed a globin profile similar to that expected for the developmental age of the CD34(+) cells.
Sharma, Surendra; Munger, Karl
2018-05-01
Modulation of expression of noncoding RNAs is an important aspect of the oncogenic activities of high-risk human papillomavirus (HPV) E6 and E7 proteins. While HPV E6/E7-mediated alterations of microRNAs (miRNAs) has been studied in detail there are fewer reports on HPV-mediated dysregulation of long noncoding RNAs (lncRNAs). The cervical carcinoma expressed PCNA regulatory (CCEPR) lncRNA is highly expressed in cervical cancers and expression correlates with tumor size and patient outcome. We report that CCEPR is a nuclear lncRNA and that HPV16 E6 oncogene expression causes increased CCEPR expression through a mechanism that is not directly dependent on TP53 inactivation. CCEPR depletion in cervical carcinoma cell lines reduces viability, while overexpression enhances viability. In contrast to what was published and inspired its designation, there is no evidence for PCNA mRNA stabilization, and hence CCEPR likely functions through a different mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.
Assessment of Normal Variability in Peripheral Blood Gene Expression
Campbell, Catherine; Vernon, Suzanne D.; Karem, Kevin L.; ...
2002-01-01
Peripheral blood is representative of many systemic processes and is an ideal sample for expression profiling of diseases that have no known or accessible lesion. Peripheral blood is a complex mixture of cell types and some differences in peripheral blood gene expression may reflect the timing of sample collection rather than an underlying disease process. For this reason, it is important to assess study design factors that may cause variability in gene expression not related to what is being analyzed. Variation in the gene expression of circulating peripheral blood mononuclear cells (PBMCs) from three healthy volunteers sampled three times onemore » day each week for one month was examined for 1,176 genes printed on filter arrays. Less than 1% of the genes showed any variation in expression that was related to the time of collection, and none of the changes were noted in more than one individual. These results suggest that observed variation was due to experimental variability.« less
Developmental expression of VGF mRNA in the prenatal and postnatal rat.
Snyder, S E; Pintar, J E; Salton, S R
1998-04-27
VGF is a developmentally regulated, secretory peptide precursor that is expressed by neurons and neuroendocrine cells and that has its transcription and secretion induced rapidly by neurotrophins and by depolarization. To gain insight into the possible functions and regulation of VGF in vivo, we have characterized the distribution of VGF mRNA in the developing rat nervous system. VGF expression was first detectable at embryonic day 11.5 in the primordia of cranial, sympathetic, and dorsal root ganglia, and its distribution expanded throughout development to include significant expression throughout the brain, spinal cord, and retina of the adult rat. The earliest expression of VGF, therefore, appeared in the peripheral nervous system as developing neurons settled in their designated ganglia. In many regions of the brain, VGF mRNA levels were found to be highest during periods when axonal outgrowth and synaptogenesis predominate. Areas of the central nervous system that contain predominantly dividing cells never displayed any VGF mRNA expression, nor did the vast majority of nonneural tissues.
Tang, Shuang; Bertke, Andrea S; Patel, Amita; Wang, Kening; Cohen, Jeffrey I; Krause, Philip R
2008-08-05
Latency-associated transcript (LAT) sequences regulate herpes simplex virus (HSV) latency and reactivation from sensory neurons. We found a HSV-2 LAT-related microRNA (miRNA) designated miR-I in transfected and infected cells in vitro and in acutely and latently infected ganglia of guinea pigs in vivo. miR-I is also expressed in human sacral dorsal root ganglia latently infected with HSV-2. miR-I is expressed under the LAT promoter in vivo in infected sensory ganglia. We also predicted and identified a HSV-1 LAT exon-2 viral miRNA in a location similar to miR-I, implying a conserved mechanism in these closely related viruses. In transfected and infected cells, miR-I reduces expression of ICP34.5, a key viral neurovirulence factor. We hypothesize that miR-I may modulate the outcome of viral infection in the peripheral nervous system by functioning as a molecular switch for ICP34.5 expression.
Fong, Baley A; Wood, David W
2010-10-19
Elastin-like polypeptides (ELPs) are useful tools that can be used to non-chromatographically purify proteins. When paired with self-cleaving inteins, they can be used as economical self-cleaving purification tags. However, ELPs and ELP-tagged target proteins have been traditionally expressed using highly enriched media in shake flask cultures, which are generally not amenable to scale-up. In this work, we describe the high cell-density expression of self-cleaving ELP-tagged targets in a supplemented minimal medium at a 2.5 liter fermentation scale, with increased yields and purity compared to traditional shake flask cultures. This demonstration of ELP expression in supplemented minimal media is juxtaposed to previous expression of ELP tags in extract-based rich media. We also describe several sets of fed-batch conditions and their impact on ELP expression and growth medium cost. By using fed batch E. coli fermentation at high cell density, ELP-intein-tagged proteins can be expressed and purified at high yield with low cost. Further, the impact of media components and fermentation design can significantly impact the overall process cost, particularly at large scale. This work thus demonstrates an important advances in the scale up of self-cleaving ELP tag-mediated processes.
2010-01-01
Background Elastin-like polypeptides (ELPs) are useful tools that can be used to non-chromatographically purify proteins. When paired with self-cleaving inteins, they can be used as economical self-cleaving purification tags. However, ELPs and ELP-tagged target proteins have been traditionally expressed using highly enriched media in shake flask cultures, which are generally not amenable to scale-up. Results In this work, we describe the high cell-density expression of self-cleaving ELP-tagged targets in a supplemented minimal medium at a 2.5 liter fermentation scale, with increased yields and purity compared to traditional shake flask cultures. This demonstration of ELP expression in supplemented minimal media is juxtaposed to previous expression of ELP tags in extract-based rich media. We also describe several sets of fed-batch conditions and their impact on ELP expression and growth medium cost. Conclusions By using fed batch E. coli fermentation at high cell density, ELP-intein-tagged proteins can be expressed and purified at high yield with low cost. Further, the impact of media components and fermentation design can significantly impact the overall process cost, particularly at large scale. This work thus demonstrates an important advances in the scale up of self-cleaving ELP tag-mediated processes. PMID:20959011
Camper, Nicolas; Byrne, Teresa; Burden, Roberta E; Lowry, Jenny; Gray, Breena; Johnston, James A; Migaud, Marie E; Olwill, Shane A; Buick, Richard J; Scott, Christopher J
2011-09-30
Monoclonal antibodies and derivative formats such as Fab' fragments are used in a broad range of therapeutic, diagnostic and research applications. New systems and methodologies that can improve the production of these proteins are consequently of much interest. Here we present a novel approach for the rapid production of processed Fab' fragments in a CHO cell line that has been engineered to express the mouse cationic amino acid transporter receptor 1 (mCAT-1). This facilitated the introduction of the target antibody gene through retroviral transfection, rapidly producing stable expression. Using this system, we designed a single retroviral vector construct for the expression of a target Fab' fragment as a single polypeptide with a furin cleavage site and a FMDV 2A self-cleaving peptide introduced to bridge the light and truncated heavy chain regions. The introduction of these cleavage motifs ensured equimolar expression and processing of the heavy and light domains as exemplified by the production of an active chimeric Fab' fragment against the Fas receptor, routinely expressed in 1-2mg/L yield in spinner-flask cell cultures. These results demonstrate that this method could have application in the facile production of bioactive Fab' fragments. Copyright © 2011 Elsevier B.V. All rights reserved.
Sauge-Merle, Sandrine; Cuiné, Stéphan; Carrier, Patrick; Lecomte-Pradines, Catherine; Luu, Doan-Trung; Peltier, Gilles
2003-01-01
Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial cells expressing AtPCS were placed in the presence of heavy metals such as cadmium or the metalloid arsenic, cellular metal contents were increased 20- and 50-fold, respectively. We discuss the possibility of using genes of the PC biosynthetic pathway to design bacterial strains or higher plants with increased abilities to accumulate toxic metals, and also arsenic, for use in bioremediation and/or phytoremediation processes. PMID:12514032
Iyer, Smita S; Sabula, Michael J; Mehta, C Christina; Haddad, Lisa B; Brown, Nakita L; Amara, Rama R; Ofotokun, Igho; Sheth, Anandi N
2017-01-01
Understanding the immune profile of CD4 T cells, the primary targets for HIV, in the female genital tract (FGT) is critical for evaluating and developing effective biomedical HIV prevention strategies in women. However, longitudinal investigation of HIV susceptibility markers expressed by FGT CD4 T cells has been hindered by low cellular yield and risk of sampling-associated trauma. We investigated three minimally invasive FGT sampling methods to characterize and compare CD4 T cell yield and phenotype with the goal of establishing feasible sampling strategies for immune profiling of mucosal CD4 T cells. FGT samples were collected bimonthly from 12 healthy HIV negative women of reproductive age in the following order: 1) Cervicovaginal lavage (CVL), 2) two sequential endocervical flocked swabs (FS), and 3) two sequential endocervical cytobrushes (CB1, CB2). Cells were isolated and phentoyped via flow cytometry. CD4 T cell recovery was highest from each individual CB compared to either CVL or FS (p < 0.0001). The majority of CD4 T cells within the FGT, regardless of sampling method, expressed CCR5 relative to peripheral blood (p < 0.01). Within the CB, CCR5+ CD4 T cells expressed significantly higher levels of α4β7, CD69, and low levels of CD27 relative to CCR5- CD4 T cells (all p < 0.001). We also identified CD4 Treg lineage cells expressing CCR5 among CB samples. Using three different mucosal sampling methods collected longitudinally we demonstrate that CD4 T cells within the FGT express CCR5 and α4β7 and are highly activated, attributes which could act in concert to facilitate HIV acquisition. FS and CB sampling methods can allow for investigation of strategies to reduce HIV target cells in the FGT and could inform the design and interpretation microbicide and vaccine studies in women.
Nemoto, Yasuhiro; Kanai, Takanori; Takahara, Masahiro; Oshima, Shigeru; Nakamura, Tetsuya; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Watanabe, Mamoru
2013-01-01
Objective Interleukin (IL)-7 is mainly produced in bone marrow (BM) that forms the niche for B cells. We previously demonstrated that BM also retains pathogenic memory CD4 T cells in murine models of inflammatory bowel disease (IBD). However, it remains unknown whether BM-derived IL-7 is sufficient for the development of IBD and which cells form the niche for colitogenic memory CD4 T cells in BM. Design To address these questions, we developed mice in which IL-7 expression was specific for BM, and identified colitis-associated IL-7-expressing mesenchymal stem cells (MSC) in the BM. Results IL-7–/–×RAG-1–/– mice injected with BM cells from IL-7+/+×RAG-1–/– mice, but not from IL-7–/–×RAG-1–/– mice, expressed IL-7 in BM, but not in their colon, and developed colitis when injected with CD4+CD45RBhigh T cells. Cultured BM MSC stably expressed a higher level of IL-7 than that of primary BM cells. IL-7-sufficient, but not IL-7-deficient, BM MSC supported upregulation of Bcl-2 in, and homeostatic proliferation of, colitogenic memory CD4 T cells in vitro. Notably, IL-7–/–×RAG-1–/– mice transplanted with IL-7-sufficient, but not IL-7-deficient, BM MSC expressed IL-7 in BM, but not in their colon, and developed colitis when transplanted with CD4+CD45RBhigh T cells. Conclusions We demonstrate for the first time that BM MSC are a major source of IL-7 and play a pathological role in IBD by forming the niche for colitogenic CD4 memory T cells in BM. PMID:23144054
Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L
1994-01-01
We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151
A quantitative framework for the forward design of synthetic miRNA circuits.
Bloom, Ryan J; Winkler, Sally M; Smolke, Christina D
2014-11-01
Synthetic genetic circuits incorporating regulatory components based on RNA interference (RNAi) have been used in a variety of systems. A comprehensive understanding of the parameters that determine the relationship between microRNA (miRNA) and target expression levels is lacking. We describe a quantitative framework supporting the forward engineering of gene circuits that incorporate RNAi-based regulatory components in mammalian cells. We developed a model that captures the quantitative relationship between miRNA and target gene expression levels as a function of parameters, including mRNA half-life and miRNA target-site number. We extended the model to synthetic circuits that incorporate protein-responsive miRNA switches and designed an optimized miRNA-based protein concentration detector circuit that noninvasively measures small changes in the nuclear concentration of β-catenin owing to induction of the Wnt signaling pathway. Our results highlight the importance of methods for guiding the quantitative design of genetic circuits to achieve robust, reliable and predictable behaviors in mammalian cells.
Gerster, Anja; Wodarczyk, Claas; Reichenbächer, Britta; Köhler, Janet; Schulze, Andreas; Krause, Felix; Müller, Dethardt
2016-12-01
To establish a high-throughput method for determination of antibodies intra- and extracellular light chain (LC) to heavy chain (HC) polypeptide ratio as screening parameter during cell line development. Chinese Hamster Ovary (CHO) TurboCell pools containing different designed vectors supposed to result in different LC:HC polypeptide ratios were generated by targeted integration. Cell culture supernatants and cell lysates of a fed batch experiment were purified by combined Protein A and anti-kappa affinity batch purification in 96-well format. Capture of all antibodies and their fragments allowed the determination of the intra- and extracellular LC:HC peptide ratios by reduced SDS capillary electrophoresis. Results demonstrate that the method is suitable to show the significant impact of the vector design on the intra- and extracellular LC:HC polypeptide ratios. Determination of LC:HC polypeptide ratios can give important information in vector design optimization leading to CHO cell lines with optimized antibody assembly and preferred product quality.
Hellerstein, Michael; Xu, Yongxian; Marino, Tracie; Lu, Shan; Yi, Hong; Wright, Elizabeth R; Robinson, Harriet L
2012-11-01
Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection.
Jain, Sudhir Kumar; Jain, Hemlata; Kumar, Dharmendra; Bedekar, Megha Kadam; Pandey, Akhilesh Kumar; Sarkhel, Bikash Chandra
2015-09-01
Skeletal muscle is the major component of lean tissue that is used for consumption, and myostatin is a negative regulator of skeletal muscle growth. Downregulation of this gene therefore offers a strategy for developing superior animals with enhanced muscle growth. Knockdown of myostatin was achieved by RNA interference technology. The anti-myostatin shRNA were designed and stably transfected in caprine fibroblast cells. The reduced expression of target gene was achieved and measured in clonal fibroblast cells by real-time PCR. Two single-cell clones induced significant decrease of myostatin gene expression by 73.96 and 72.66 %, respectively (P < 0.05). To ensure the appropriate growth of transfected cell, seven media were tested. The best suited media was used for transfected fibroblast cell proliferation. The findings suggest that shRNA provides a novel potential tool for gene knockdown and these stably transfected cells can be used as the donor cells for animal cloning.
Zheng, Shiya; Song, Dan; Jin, Xiaoxiao; Zhang, Haijun; Aldarouish, Mohanad; Chen, Yan; Wang, Cailian
2018-02-01
Severe cardiac toxicity of doxorubicin and an immunosuppressive tumor micro-environment become main obstacles for the effective treatment of B-cell lymphoma. In this research, rituximab-conjugated and doxorubicin-loaded microbubbles (RDMs) were designed for exploring a combination approach of targeted microbubbles with ultrasound (US) irradiation and PD-1 inhibitor to overcome obstacles mentioned above. In vivo studies were performed on SU-DHL-4 cell-grafted mice and ex vivo studies were performed on CD20 + human SU-DHL-4 cells and human T cells. A greater therapeutic effect and higher expression of PD-L1 protein expression were obtained with RDMs with US irradiation in vivo. A significant inhibitory effect on SU-DHL-4 B-cell lymphoma cells was observed after treated by RDMs with US irradiation and PD-1 inhibitor ex vivo. Combination of RDMs with US irradiation and PD-1 inhibitor could be a promising therapeutic strategy for B-cell lymphoma.
Jochems, Caroline; Hodge, James W; Fantini, Massimo; Tsang, Kwong Y; Vandeveer, Amanda J; Gulley, James L; Schlom, Jeffrey
2017-08-01
NK-92 cells, and their derivative, designated aNK, were obtained from a patient with non-Hodgkin lymphoma. Prior clinical studies employing adoptively transferred irradiated aNK cells have provided evidence of clinical benefit and an acceptable safety profile. aNK cells have now been engineered to express IL-2 and the high affinity (ha) CD16 allele (designated haNK). Avelumab is a human IgG1 anti-PD-L1 monoclonal antibody, which has shown evidence of clinical activity in a range of human tumors. Prior in vitro studies have shown that avelumab has the ability to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) of human tumor cells when combined with NK cells. In the studies reported here, the ability of avelumab to enhance the lysis of a range of human carcinoma cells by irradiated haNK cells via the ADCC mechanism is demonstrated; this ADCC is shown to be inhibited by anti-CD16 blocking antibody and by concanamycin A, indicating the use of the granzyme/perforin pathway in tumor cell lysis. Studies also show that while NK cells have the ability to lyse aNK or haNK cells, the addition of NK cells to irradiated haNK cells does not inhibit haNK-mediated lysis of human tumor cells, with or without the addition of avelumab. Avelumab-mediated lysis of tumor cells by irradiated haNK cells is also shown to be similar to that of NK cells bearing the V/V Fc receptor high affinity allele. These studies thus provide the rationale for the clinical evaluation of the combined use of avelumab with that of irradiated adoptively transferred haNK cells. © 2017 UICC.
HTLV-1 HBZ Viral Protein: A Key Player in HTLV-1 Mediated Diseases.
Baratella, Marco; Forlani, Greta; Accolla, Roberto S
2017-01-01
Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus that has infected 10-15 million people worldwide. After a long latency, 3-5% of infected individuals will develop either a severe malignancy of CD4+ T cells, known as Adult T-cell Leukemia (ATL) or a chronic and progressive inflammatory disease of the nervous system designated Tropical Spastic Paraparesis/HTLV-1-Associated Myelopathy (HAM/TSP). The precise mechanism behind HTLV-1 pathogenesis still remains elusive. Two viral regulatory proteins, Tax-1 and HTLV-1 bZIP factor (HBZ) are thought to play a critical role in HTLV-1-associated diseases. Tax-1 is mainly involved in the onset of neoplastic transformation and in elicitation of the host's inflammatory responses; its expression may be lost during cell clonal proliferation and oncogenesis. Conversely, HBZ remains constantly expressed in all patients with ATL, playing a role in the proliferation and maintenance of leukemic cells. Recent studies have shown that the subcellular distribution of HBZ protein differs in the two pathologies: it is nuclear with a speckled-like pattern in leukemic cells and is cytoplasmic in cells from HAM/TSP patients. Thus, HBZ expression and distribution could be critical in the progression of HTLV-1 infection versus the leukemic state or the inflammatory disease. Here, we reviewed recent findings on the role of HBZ in HTLV-1 related diseases, highlighting the new perspectives open by the possibility of studying the physiologic expression of endogenous protein in primary infected cells.
Postnatal neurogenesis in the cow pineal gland: an immunohistochemical study.
Gómez Esteban, M B; Muñoz Mosqueira, M I; Arroyo, A A; Muñoz Barragán, L
2013-03-01
In the pineal gland of cows and rats structures designated rosettes have been described both during embryonic development and in adult animals. In order to investigate the possible nature of the cells comprising such structures, in the present work we studied the pineal glands from 10 cows of one- or four-years-old using conventional immunocytochemical and confocal microscopy techniques. As markers of glial cells, we used anti-vimentin (Vim) and glial fibrillary acidic protein (GFAP) and anti-S-100 sera, and the pinealocytes were labelled with β-III tubulin. As a marker of stem cells, we used an antinestin serum, while an anti-PCNA serum was employed to label proliferating cells. To explore the neuronal nature of some cells of the rosettes, we used an anti-SRIF serum. The rosettes were seen to be present throughout the glandular parenchyma and displayed a central cavity surrounded by cells, most of which expressed all or just some of the above glial labels and nestin, although there were also some rosettes with cells that expressed β-III tubulin and other cells that expressed SRIF. Likewise, in the cells of the rosettes the cell nucleus showed strong expression of PCNA. Confocal microscopy revealed that the walls of the rosettes contained cells that coexpressed Vim/S-100, Vim/GFAP and Vim/nestin. The number of rosettes was significantly greater in the animals of one year of age with respect to the four-year-old cows. The present findings allow us to suggest that rosettes are evolving structures and that most of the cells present in their walls should be considered stem cells, and hence responsible for the postnatal neurogenesis occurring in the pineal gland of cows.
A Novel Self-Replicating Chimeric Lentivirus-Like Particle
Young, Kelly R.; Madden, Victoria J.; Johnson, Philip R.; Johnston, Robert E.
2012-01-01
Successful live attenuated vaccines mimic natural exposure to pathogens without causing disease and have been successful against several viruses. However, safety concerns prevent the development of attenuated human immunodeficiency virus (HIV) as a vaccine candidate. If a safe, replicating virus vaccine could be developed, it might have the potential to offer significant protection against HIV infection and disease. Described here is the development of a novel self-replicating chimeric virus vaccine candidate that is designed to provide natural exposure to a lentivirus-like particle and to incorporate the properties of a live attenuated virus vaccine without the inherent safety issues associated with attenuated lentiviruses. The genome from the alphavirus Venezuelan equine encephalitis virus (VEE) was modified to express SHIV89.6P genes encoding the structural proteins Gag and Env. Expression of Gag and Env from VEE RNA in primate cells led to the assembly of particles that morphologically and functionally resembled lentivirus virions and that incorporated alphavirus RNA. Infection of CD4+ cells with chimeric lentivirus-like particles was specific and productive, resulting in RNA replication, expression of Gag and Env, and generation of progeny chimeric particles. Further genome modifications designed to enhance encapsidation of the chimeric virus genome and to express an attenuated simian immunodeficiency virus (SIV) protease for particle maturation improved the ability of chimeric lentivirus-like particles to propagate in cell culture. This study provides proof of concept for the feasibility of creating chimeric virus genomes that express lentivirus structural proteins and assemble into infectious particles for presentation of lentivirus immunogens in their native and functional conformation. PMID:22013035
A novel self-replicating chimeric lentivirus-like particle.
Jurgens, Christy K; Young, Kelly R; Madden, Victoria J; Johnson, Philip R; Johnston, Robert E
2012-01-01
Successful live attenuated vaccines mimic natural exposure to pathogens without causing disease and have been successful against several viruses. However, safety concerns prevent the development of attenuated human immunodeficiency virus (HIV) as a vaccine candidate. If a safe, replicating virus vaccine could be developed, it might have the potential to offer significant protection against HIV infection and disease. Described here is the development of a novel self-replicating chimeric virus vaccine candidate that is designed to provide natural exposure to a lentivirus-like particle and to incorporate the properties of a live attenuated virus vaccine without the inherent safety issues associated with attenuated lentiviruses. The genome from the alphavirus Venezuelan equine encephalitis virus (VEE) was modified to express SHIV89.6P genes encoding the structural proteins Gag and Env. Expression of Gag and Env from VEE RNA in primate cells led to the assembly of particles that morphologically and functionally resembled lentivirus virions and that incorporated alphavirus RNA. Infection of CD4⁺ cells with chimeric lentivirus-like particles was specific and productive, resulting in RNA replication, expression of Gag and Env, and generation of progeny chimeric particles. Further genome modifications designed to enhance encapsidation of the chimeric virus genome and to express an attenuated simian immunodeficiency virus (SIV) protease for particle maturation improved the ability of chimeric lentivirus-like particles to propagate in cell culture. This study provides proof of concept for the feasibility of creating chimeric virus genomes that express lentivirus structural proteins and assemble into infectious particles for presentation of lentivirus immunogens in their native and functional conformation.
Bhatlekar, Seema; Viswanathan, Vignesh; Fields, Jeremy Z; Boman, Bruce M
2018-02-01
Because HOX genes encode master regulatory transcription factors that regulate stem cells (SCs) during development and aberrant expression of HOX genes occurs in various cancers, our goal was to determine if dysregulation of HOX genes is involved in the SC origin of colorectal cancer (CRC). We previously reported that HOXA4 and HOXD10 are expressed in the colonic SC niche and are overexpressed in CRC. HOX gene expression was studied in SCs from human colon tissue and CRC cells (CSCs) using qPCR and immunostaining. siRNA-mediated knockdown of HOX expression was used to evaluate the role of HOX genes in modulating cancer SC (CSC) phenotype at the level of proliferation, SC marker expression, and sphere formation. All-trans-retinoic-acid (ATRA), a differentiation-inducing agent was evaluated for its effects on HOX expression and CSC growth. We found that HOXA4 and HOXA9 are up-regulated in CRC SCs. siRNA knockdown of HOXA4 and HOXA9 reduced: (i) proliferation and sphere-formation and (ii) gene expression of known SC markers (ALDH1, CD166, LGR5). These results indicate that proliferation and self-renewal ability of CRC SCs are reduced in HOXA4 and HOXA9 knockdown cells. ATRA decreased HOXA4, HOXA9, and HOXD10 expression in parallel with reduction in ALDH1 expression, self-renewal, and proliferation. Overall, our findings indicate that overexpression of HOXA4 and HOXA9 contributes to self-renewal and overpopulation of SCs in CRC. Strategies designed to modulate HOX expression may provide ways to target malignant SCs and to develop more effective therapies for CRC. © 2017 Wiley Periodicals, Inc.
Ribeiro, Mariana Antunes; dos Reis, Mariana Bisarro; de Moraes, Leonardo Nazário; Briton-Jones, Christine; Rainho, Cláudia Aparecida; Scarano, Wellerson Rodrigo
2014-11-01
Quantitative real-time RT-PCR (qPCR) has proven to be a valuable molecular technique to quantify gene expression. There are few studies in the literature that describe suitable reference genes to normalize gene expression data. Studies of transcriptionally disruptive toxins, like tetrachlorodibenzo-p-dioxin (TCDD), require careful consideration of reference genes. The present study was designed to validate potential reference genes in human Sertoli cells after exposure to TCDD. 32 candidate reference genes were analyzed to determine their applicability. geNorm and NormFinder softwares were used to obtain an estimation of the expression stability of the 32 genes and to identify the most suitable genes for qPCR data normalization.
The National Cancer Institute's Surgery Branch is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize a potential cancer therapeutic based on T cells genetically engineered to express the human interleukin 12 (IL-12) cytokine only in the tumor environment.
Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells
ERIC Educational Resources Information Center
Moran, Jose M.; Gonzalez-Polo, Rosa A.; Soler, German; Fuentes, Jose M.
2006-01-01
This report describes a laboratory exercise that was incorporated into a Cell Biology and Molecular Biology advanced course. The exercise was made for a class size with eight students and was designed to reinforce the understanding of basic molecular biology techniques. Students used the techniques of reverse transcription and arginase activity…
Dual-Affinity Re-Targeting proteins direct T cell–mediated cytolysis of latently HIV-infected cells
Sung, Julia A.M.; Pickeral, Joy; Liu, Liqin; Stanfield-Oakley, Sherry A.; Lam, Chia-Ying Kao; Garrido, Carolina; Pollara, Justin; LaBranche, Celia; Bonsignori, Mattia; Moody, M. Anthony; Yang, Yinhua; Parks, Robert; Archin, Nancie; Allard, Brigitte; Kirchherr, Jennifer; Kuruc, JoAnn D.; Gay, Cynthia L.; Cohen, Myron S.; Ochsenbauer, Christina; Soderberg, Kelly; Liao, Hua-Xin; Montefiori, David; Moore, Paul; Johnson, Syd; Koenig, Scott; Haynes, Barton F.; Nordstrom, Jeffrey L.; Margolis, David M.; Ferrari, Guido
2015-01-01
Enhancement of HIV-specific immunity is likely required to eliminate latent HIV infection. Here, we have developed an immunotherapeutic modality aimed to improve T cell–mediated clearance of HIV-1–infected cells. Specifically, we employed Dual-Affinity Re-Targeting (DART) proteins, which are bispecific, antibody-based molecules that can bind 2 distinct cell-surface molecules simultaneously. We designed DARTs with a monovalent HIV-1 envelope-binding (Env-binding) arm that was derived from broadly binding, antibody-dependent cellular cytotoxicity–mediating antibodies known to bind to HIV-infected target cells coupled to a monovalent CD3 binding arm designed to engage cytolytic effector T cells (referred to as HIVxCD3 DARTs). Thus, these DARTs redirected polyclonal T cells to specifically engage with and kill Env-expressing cells, including CD4+ T cells infected with different HIV-1 subtypes, thereby obviating the requirement for HIV-specific immunity. Using lymphocytes from patients on suppressive antiretroviral therapy (ART), we demonstrated that DARTs mediate CD8+ T cell clearance of CD4+ T cells that are superinfected with the HIV-1 strain JR-CSF or infected with autologous reservoir viruses isolated from HIV-infected–patient resting CD4+ T cells. Moreover, DARTs mediated CD8+ T cell clearance of HIV from resting CD4+ T cell cultures following induction of latent virus expression. Combined with HIV latency reversing agents, HIVxCD3 DARTs have the potential to be effective immunotherapeutic agents to clear latent HIV-1 reservoirs in HIV-infected individuals. PMID:26413868
Mammalian designer cells: Engineering principles and biomedical applications.
Xie, Mingqi; Fussenegger, Martin
2015-07-01
Biotechnology is a widely interdisciplinary field focusing on the use of living cells or organisms to solve established problems in medicine, food production and agriculture. Synthetic biology, the science of engineering complex biological systems that do not exist in nature, continues to provide the biotechnology industry with tools, technologies and intellectual property leading to improved cellular performance. One key aspect of synthetic biology is the engineering of deliberately reprogrammed designer cells whose behavior can be controlled over time and space. This review discusses the most commonly used techniques to engineer mammalian designer cells; while control elements acting on the transcriptional and translational levels of target gene expression determine the kinetic and dynamic profiles, coupling them to a variety of extracellular stimuli permits their remote control with user-defined trigger signals. Designer mammalian cells with novel or improved biological functions not only directly improve the production efficiency during biopharmaceutical manufacturing but also open the door for cell-based treatment strategies in molecular and translational medicine. In the future, the rational combination of multiple sets of designer cells could permit the construction and regulation of higher-order systems with increased complexity, thereby enabling the molecular reprogramming of tissues, organisms or even populations with highest precision. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ferreira, Joshua P; Peacock, Ryan W S; Lawhorn, Ingrid E B; Wang, Clifford L
2011-12-01
The human cytomegalovirus and elongation factor 1α promoters are constitutive promoters commonly employed by mammalian expression vectors. These promoters generally produce high levels of expression in many types of cells and tissues. To generate a library of synthetic promoters capable of generating a range of low, intermediate, and high expression levels, the TATA and CAAT box elements of these promoters were mutated. Other promoter variants were also generated by random mutagenesis. Evaluation using plasmid vectors integrated at a single site in the genome revealed that these various synthetic promoters were capable of expression levels spanning a 40-fold range. Retroviral vectors were equipped with the synthetic promoters and evaluated for their ability to reproduce the graded expression demonstrated by plasmid integration. A vector with a self-inactivating long terminal repeat could neither reproduce the full range of expression levels nor produce stable expression. Using a second vector design, the different synthetic promoters enabled stable expression over a broad range of expression levels in different cell lines. The online version of this article (doi:10.1007/s11693-011-9089-0) contains supplementary material, which is available to authorized users.
Alvarez-Pérez, Marco Antonio; Narayanan, Sampath; Zeichner-David, Margarita; Rodríguez Carmona, Bruno; Arzate, Higinio
2006-03-01
Cementum is a unique mineralized connective tissue that covers the root surfaces of the teeth. The cementum is critical for appropriate maturation of the periodontium, both during development as well as that associated with regeneration of periodontal tissues, IU; however, one major impediment to understand the molecular mechanisms that regulate periodontal regeneration is the lack of cementum markers. Here we report on the identification and characterization of one such differentially human expressed gene, termed "cementum protein-23" (CP-23) that appears to be periodontal ligament and cementum-specific. We screened human cementum tumor-derived cDNA libraries by transient expression in COS-7 cells and "panning" with a rabbit polyclonal antibody against a cementoblastoma conditioned media-derived protein (CP). One isolated cDNA, CP-23, was expressed in E. coli and polyclonal antibodies against the recombinant human CP-23 were produced. Expression of CP-23 protein by cells of the periodontium was examined by Northern blot and in situ hybridization. Expression of CP-23 transcripts in human cementoblastoma-derived cells, periodontal ligament cells, human gingival fibroblasts and alveolar bone-derived cells was determined by RT-PCR. Our results show that we have isolated a 1374-bp human cDNA containing an open reading frame that encodes a polypeptide with 247 amino acid residues, with a predicted molecular mass of 25.9 kDa that represents CP species. The recombinant human CP-23 protein cross-reacted with antibodies against CP and type X collagen. Immunoscreening of human periodontal tissues revealed that CP-23 gene product is localized to the cementoid matrix of cementum and cementoblasts throughout the entire surface of the root, cell subpopulations of the periodontal ligament as well as cells located paravascularly to the blood vessels into the periodontal ligament. Furthermore, 98% of putative cementoblasts and 15% of periodontal ligament cells cultured in vitro expressed CP-23 gene product. Cementoblastoma cells and periodontal ligament cells contained a 5.0 kb CP-23 mRNA. In situ hybridization showed strong expression of CP-23 mRNA on cementoblast, cell subpopulations of the periodontal ligament and cells located around blood vessels into the periodontal ligament. Our results demonstrate that CP-23 represents a novel, tissue-specific-gene product being expressed by periodontal ligament subpopulations and cementoblasts. These findings offer the possibility to determine the cellular and molecular events that regulate the cementogenesis process during root development. Furthermore, it might provide new venues for the design of translational studies aimed at achieving predictable new cementogenesis and regeneration of the periodontal tissues.
Kaluzova, Milota; Bouras, Alexandros; Machaidze, Revaz; Hadjipanayis, Costas G.
2015-01-01
Malignant gliomas remain aggressive and lethal primary brain tumors in adults. The epidermal growth factor receptor (EGFR) is frequently overexpressed in the most common malignant glioma, glioblastoma (GBM), and represents an important therapeutic target. GBM stem-like cells (GSCs) present in tumors are felt to be highly tumorigenic and responsible for tumor recurrence. Multifunctional magnetic iron-oxide nanoparticles (IONPs) can be directly imaged by magnetic resonance imaging (MRI) and designed to therapeutically target cancer cells. The targeting effects of IONPs conjugated to the EGFR inhibitor, cetuximab (cetuximab-IONPs), were determined with EGFR- and EGFRvIII-expressing human GBM neurospheres and GSCs. Transmission electron microscopy revealed cetuximab-IONP GBM cell binding and internalization. Fluorescence microscopy and Prussian blue staining showed increased uptake of cetuximab-IONPs by EGFR- as well as EGFRvIII-expressing GSCs and neurospheres in comparison to cetuximab or free IONPs. Treatment with cetuximab-IONPs resulted in a significant antitumor effect that was greater than with cetuximab alone due to more efficient, CD133-independent cellular targeting and uptake, EGFR signaling alterations, EGFR internalization, and apoptosis induction in EGFR-expressing GSCs and neurospheres. A significant increase in survival was found after cetuximab-IONP convection-enhanced delivery treatment of 3 intracranial rodent GBM models employing human EGFR-expressing GBM xenografts. PMID:25871395
Methods and compositions for diagnosing and preventing a group B streptococcal infection
Brady, Linda Jeannine [Gainesville, FL; Seifert, Kyle N [Harrisonburg, VA; Adderson, Elisabeth E [Memphis, TN; Bohnsack, John F [Salt Lake City, UT
2009-09-15
The present invention provides a group B streptococcal (GBS) surface antigen, designated epsilon antigen, that is co-expressed with the delta antigen on a subset of serotype III GBS. Epsilon is expressed on more pathogenic Restriction Digest Pattern (RDP) III-3 GBS, but not on RDP types 1, 2, or 4. Accordingly, the present invention provides compositions and methods for detecting a group B streptococcus serotype III, RDP III-3 strain. Vaccines and methods of identifying agents which inhibit adhesion of a group B streptococcal cell to a host cell are also provided.
NASA Astrophysics Data System (ADS)
Artyomov, Maxim; Meissner, Alex; Chakraborty, Arup
2010-03-01
Most cells in an organism have the same DNA. Yet, different cell types express different proteins and carry out different functions. This is because of epigenetic differences; i.e., DNA in different cell types is packaged distinctly, making it hard to express certain genes while facilitating the expression of others. During development, upon receipt of appropriate cues, pluripotent embryonic stem cells differentiate into diverse cell types that make up the organism (e.g., a human). There has long been an effort to make this process go backward -- i.e., reprogram a differentiated cell (e.g., a skin cell) to pluripotent status. Recently, this has been achieved by transfecting certain transcription factors into differentiated cells. This method does not use embryonic material and promises the development of patient-specific regenerative medicine, but it is inefficient. The mechanisms that make reprogramming rare, or even possible, are poorly understood. We have developed the first computational model of transcription factor-induced reprogramming. Results obtained from the model are consistent with diverse observations, and identify the rare pathways that allow reprogramming to occur. If validated, our model could be further developed to design optimal strategies for reprogramming and shed light on basic questions in biology.
Leptin influences estrogen metabolism and accelerates prostate cell proliferation.
Habib, Christine N; Al-Abd, Ahmed M; Tolba, Mai F; Khalifa, Amani E; Khedr, Alaa; Mosli, Hisham A; Abdel-Naim, Ashraf B
2015-01-15
The present study was designed to investigate the effect of leptin on estrogen metabolism in prostatic cells. Malignant (PC-3) and benign (BPH-1) human prostate cells were treated with 17-β-hydroxyestradiol (1 μM) alone or in combination with leptin (0.4, 4, 40 ng/ml) for 72 h. Cell proliferation assay, immunocytochemical staining of estrogen receptor (ER), liquid chromatography-tandem mass spectrometry method (LC-MS) and semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) were used. Cell proliferation assay demonstrated that leptin caused significant growth potentiation in both cells. Immunocytochemical staining showed that leptin significantly increased the expression of ER-α and decreased that of ER-β in PC-3 cells. LC-MS method revealed that leptin increased the concentration 4-hydroxyestrone and/or decreased that of 2-methoxyestradiol, 4-methoxyestradiol and 2-methoxyestrone. Interestingly, RT-PCR showed that leptin significantly up-regulated the expression of aromatase and cytochrome P450 1B1 (CYP1B1) enzymes; however down-regulated the expression of catechol-o-methyltransferase (COMT) enzyme. These data indicate that leptin-induced proliferative effect in prostate cells might be partly attributed to estrogen metabolism. Thus, leptin might be a novel target for therapeutic intervention in prostatic disorders. Copyright © 2014 Elsevier Inc. All rights reserved.
Guo, Zhiyong; Khattar, Mithun; Schroder, Paul M; Miyahara, Yoshihiro; Wang, Guohua; He, Xiaoshung; Chen, Wenhao; Stepkowski, Stanislaw M
2013-04-01
The molecular mechanism of the extrathymic generation of adaptive, or inducible, CD4(+)Foxp3(+) regulatory T cells (iTregs) remains incompletely defined. We show that exposure of splenic CD4(+)CD25(+)Foxp3(-) cells to IL-2, but not other common γ-chain cytokines, resulted in Stat5 phosphorylation and induced Foxp3 expression in ∼10% of the cells. Thus, IL-2/Stat5 signaling may be critical for Foxp3 induction in peripheral CD4(+)CD25(+)Foxp3(-) iTreg precursors. In this study, to further define the role of IL-2 in the formation of iTreg precursors as well as their subsequent Foxp3 expression, we designed a two-step iTreg differentiation model. During the initial "conditioning" step, CD4(+)CD25(-)Foxp3(-) naive T cells were activated by TCR stimulation. Inhibition of IL-2 signaling via Jak3-Stat5 was required during this step to generate CD4(+)CD25(+)Foxp3(-) cells containing iTreg precursors. During the subsequent Foxp3-induction step driven by cytokines, IL-2 was the most potent cytokine to induce Foxp3 expression in these iTreg precursors. This two-step method generated a large number of iTregs with relatively stable expression of Foxp3, which were able to prevent CD4(+)CD45RB(high) cell-mediated colitis in Rag1(-/-) mice. In consideration of this information, whereas initial inhibition of IL-2 signaling upon T cell priming generates iTreg precursors, subsequent activation of IL-2 signaling in these precursors induces the expression of Foxp3. These findings advance the understanding of iTreg differentiation and may facilitate the therapeutic use of iTregs in immune disorders.
Wen, Yunfei; Graybill, Whitney S.; Previs, Rebecca A.; Hu, Wei; Ivan, Cristina; Mangala, Lingegowda S.; Zand, Behrouz; Nick, Alpa M.; Jennings, Nicholas B.; Dalton, Heather J.; Sehgal, Vasudha; Ram, Prahlad; Lee, Ju-Seog; Vivas-Mejia, Pablo E.; Coleman, Robert L.; Sood, Anil K.
2014-01-01
Purpose Cancer cells are highly dependent on folate metabolism, making them susceptible to drugs that inhibit folate receptor activities. Targeting overexpressed folate receptor alpha (FRα) in cancer cells offers a therapeutic opportunity. We investigated the functional mechanisms of MORAB-003 (farletuzumab), a humanized monoclonal antibody against FRα, in ovarian cancer models. Experimental Design We first examined FRα expression in an array of human ovarian cancer cell lines and then assessed the in vivo effect of MORAB-003 on tumor growth and progression in several orthotopic mouse models of ovarian cancer derived from these cell lines. Molecular mechanisms of tumor cell death induced by MORAB-003 were investigated by cDNA and protein expression profiling analysis. Mechanistic studies were performed to determine the role of autophagy in MORAB-003–induced cell death. Results MORAB-003 significantly decreased tumor growth in the high-FRα IGROV1 and SKOV3ip1 models but not in the low-FRα A2780 model. MORAB-003 reduced proliferation but had no significant effect on apoptosis. Protein expression and cDNA microarray analyses showed that MORAB-003 regulated an array of autophagy-related genes. It also significantly increased expression of LC3 isoform II and enriched autophagic vacuolization. Blocking autophagy with hydroxychloroquine or bafilomycin A1 reversed the growth inhibition induced by MORAB-003. In add, alteration of FOLR1 gene copy number significantly correlated with shorter disease-free survival in patients with ovarian serous cystadenocarcinoma. Conclusions MORAB-003 displays prominent antitumor activity in ovarian cancer models expressing FRα at high levels. Blockade of folate receptor by MORAB-003 induced sustained autophagy and suppressed cell proliferation. PMID:25416196
GLI1-mediated regulation of side population is responsible for drug resistance in gastric cancer
Yu, Beiqin; Gu, Dongsheng; Zhang, Xiaoli; Li, Jianfang; Liu, Bingya; Xie, Jingwu
2017-01-01
Gastric cancer is the third leading cause of cancer-related mortality worldwide. Chemotherapy is frequently used for gastric cancer treatment. Most patients with advanced gastric cancer eventually succumb to the disease despite some patients responded initially to chemotherapy. Thus, identifying molecular mechanisms responsible for cancer relapse following chemotherapy will help design new ways to treat gastric cancer. In this study, we revealed that the residual cancer cells following treatment with chemotherapeutic reagent cisplatin have elevated expression of hedgehog target genes GLI1, GLI2 and PTCH1, suggestive of hedgehog signaling activation. We showed that GLI1 knockdown sensitized gastric cancer cells to CDDP whereas ectopic GLI1 expression decreased the sensitivity. Further analyses indicate elevated GLI1 expression is associated with an increase in tumor sphere formation, side population and cell surface markers for putative cancer stem cells. We have evidence to support that GLI1 is critical for maintenance of putative cancer stem cells through direct regulation of ABCG2. In fact, GLI1 protein was shown to be associated with the promoter fragment of ABCG2 through a Gli-binding consensus site in gastric cancer cells. Disruption of ABCG2 function, through ectopic expression of an ABCG2 dominant negative construct or a specific ABCG2 inhibitor, increased drug sensitivity of cancer cells both in culture and in mice. The relevance of our studies to gastric cancer patient care is reflected by our discovery that high ABCG2 expression was associated with poor survival in the gastric cancer patients who underwent chemotherapy. Taken together, we have identified a molecular mechanism by which gastric cancer cells gain chemotherapy resistance. PMID:28404967
CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells.
Jain, Shweta; Chodisetti, Sathi Babu; Agrewala, Javed N
2011-01-01
Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40--molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.
Ingram, M; Techy, G B; Saroufeem, R; Yazan, O; Narayan, K S; Goodwin, T J; Spaulding, G F
1997-06-01
Growth patterns of a number of human tumor cell lines that from three-dimensional structures of various architectures when cultured without carrier beads in a NASA rotary cell culture system are described and illustrated. The culture system, which was designed to mimic microgravity, maintained cells in suspension under very low-shear stress throughout culture. Spheroid (particulate) production occurred within a few hours after culture was started, and spheroids increased in size by cell division and fusion of small spheroids, usually stabilizing at a spheroid diameter of about 0.5 mm. Architecture of spheroids varied with cell type. Cellular interactions that occurred in spheroids resulted in conformation and shape changes of cells, and some cell lines produced complex, epithelial-like architectures. Expression of the cell adhesion molecules, CD44 and E cadherin, was upregulated in the three-dimensional constructs. Coculture of fibroblast spheroids with PC3 prostate cancer cells induced tenascin expression by the fibroblasts underlying the adherent prostate epithelial cells. Invasion of the fibroblast spheroids by the malignant epithelium was also demonstrated.
Kim, Jae-Hwan; Park, Ji Sun; Yang, Han Na; Woo, Dae Gyun; Jeon, Su Yeon; Do, Hyun-Jin; Lim, Hye-Young; Kim, Jung Mo; Park, Keun-Hong
2011-01-01
In stem cell therapy, transfection of specific genes into stem cells is an important technique to induce cell differentiation. To perform gene transfection in human mesenchymal stem cells (hMSCs), we designed and fabricated a non-viral vector system for specific stem cell differentiation. Several kinds of gene carriers were evaluated with regard to their transfection efficiency and their ability to enhance hMSCs differentiation. Of these delivery vehicles, biodegradable poly (DL-lactic-co-glycolic acid) (PLGA) nanoparticles yielded the best results, as they complexed with high levels of plasmid DNA (pDNA), allowed robust gene expression in hMSCs, and induced chondrogenesis. Polyplexing with polyethylenimine (PEI) enhanced the cellular uptake of SOX9 DNA complexed with PLGA nanoparticles both in vitro and in vivo. The expression of enhanced green fluorescent protein (EGFP) and SOX9 increased up to 75% in hMSCs transfected with PEI/SOX9 complexed PLGA nanoparticles 2 days after transfection. SOX9 gene expression was evaluated by RT-PCR, real time-qPCR, glycosaminoglycan (GAG)/DNA levels, immunoblotting, histology, and immunofluorescence. Copyright © 2010 Elsevier Ltd. All rights reserved.
Whitesell, L; Rosolen, A; Neckers, L M
1991-01-01
Neuroectodermal tumors of childhood provide a unique opportunity to examine the role of genes potentially regulating neuronal growth and differentiation because many cell lines derived from these tumors are composed of at least two distinct morphologic cell types. These types display variant phenotypic characteristics and spontaneously interconvert, or transdifferentiate, in vitro. The factors that regulate transdifferentiation are unknown. Application of antisense approaches to the transdifferentiation process has allowed us to explore the precise role that N-myc may play in regulating developing systems. We now report construction of an episomally replicating expression vector designed to generate RNA antisense to part of the human N-myc gene. Such a vector is able to specifically inhibit N-myc expression in cell lines carrying both normal and amplified N-myc alleles. Inhibition of N-myc expression blocks transdifferentiation in these lines, with accumulation of cells of an intermediate phenotype. A concomitant decrease in growth rate but not loss of tumorigenicity was observed in the N-myc nonamplified cell line CHP-100. Vector-generated antisense RNA should allow identification of genes specifically regulated by the proto-oncogene N-myc. Images PMID:1996098
Convergence of the Insulin and Serotonin Programs in the Pancreatic β-Cell
Ohta, Yasuharu; Kosaka, Yasuhiro; Kishimoto, Nina; Wang, Juehu; Smith, Stuart B.; Honig, Gerard; Kim, Hail; Gasa, Rosa M.; Neubauer, Nicole; Liou, Angela; Tecott, Laurence H.; Deneris, Evan S.; German, Michael S.
2011-01-01
OBJECTIVE Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. RESEARCH DESIGN AND METHODS We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. RESULTS We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. CONCLUSIONS These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes. PMID:22013016
Puttini, Stefania; Ouvrard-Pascaud, Antoine; Palais, Gael; Beggah, Ahmed T; Gascard, Philippe; Cohen-Tannoudji, Michel; Babinet, Charles; Blot-Chabaud, Marcel; Jaisser, Frederic
2005-03-16
Functional genomic analysis is a challenging step in the so-called post-genomic field. Identification of potential targets using large-scale gene expression analysis requires functional validation to identify those that are physiologically relevant. Genetically modified cell models are often used for this purpose allowing up- or down-expression of selected targets in a well-defined and if possible highly differentiated cell type. However, the generation of such models remains time-consuming and expensive. In order to alleviate this step, we developed a strategy aimed at the rapid and efficient generation of genetically modified cell lines with conditional, inducible expression of various target genes. Efficient knock-in of various constructs, called targeted transgenesis, in a locus selected for its permissibility to the tet inducible system, was obtained through the stimulation of site-specific homologous recombination by the meganuclease I-SceI. Our results demonstrate that targeted transgenesis in a reference inducible locus greatly facilitated the functional analysis of the selected recombinant cells. The efficient screening strategy we have designed makes possible automation of the transfection and selection steps. Furthermore, this strategy could be applied to a variety of highly differentiated cells.
Cell behavior on surface modified polydimethylsiloxane (PDMS).
Stanton, Morgan M; Rankenberg, Johanna M; Park, Byung-Wook; McGimpsey, W Grant; Malcuit, Christopher; Lambert, Christopher R
2014-07-01
Designing complex tissue culture systems requires cell alignment and directed extracellular matrix (ECM) and gene expression. Here, a micro-rough, polydimethylsiloxane (PDMS) surface, that also integrates a micro-pattern of 50 µm wide lines of fibronectin (FN) separated by 60 µm wide lines of bovine serum albumin (BSA), is developed. Human fibroblasts cultured on the rough, patterned substrate have aligned growth and a significant change in morphology when compared to cells on a flat, patterned surface. The rough PDMS topography significantly decreases cell area and induces the upregulation of several ECM related genes by two-fold when compared to cells cultured on flat PDMS. This study describes a simple surface engineering procedure for creating surface architecture for scaffolds to design and control the cell-surface interface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma.
Krishnamurthy, Janani; Rabinovich, Brian A; Mi, Tiejuan; Switzer, Kirsten C; Olivares, Simon; Maiti, Sourindra N; Plummer, Joshua B; Singh, Harjeet; Kumaresan, Pappanaicken R; Huls, Helen M; Wang-Johanning, Feng; Cooper, Laurence J N
2015-07-15
The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors. ©2015 American Association for Cancer Research.
CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells.
Legut, Mateusz; Dolton, Garry; Mian, Afsar Ali; Ottmann, Oliver G; Sewell, Andrew K
2018-01-18
Adoptive transfer of T cells genetically modified to express a cancer-specific T-cell receptor (TCR) has shown significant therapeutic potential for both hematological and solid tumors. However, a major issue of transducing T cells with a transgenic TCR is the preexisting expression of TCRs in the recipient cells. These endogenous TCRs compete with the transgenic TCR for surface expression and allow mixed dimer formation. Mixed dimers, formed by mispairing between the endogenous and transgenic TCRs, may harbor autoreactive specificities. To circumvent these problems, we designed a system where the endogenous TCR-β is knocked out from the recipient cells using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) technology, simultaneously with transduction with a cancer-reactive receptor of choice. This TCR replacement strategy resulted in markedly increased surface expression of transgenic αβ and γδ TCRs, which in turn translated to a stronger, and more polyfunctional, response of engineered T cells to their target cancer cell lines. Additionally, the TCR-plus-CRISPR-modified T cells were up to a thousandfold more sensitive to antigen than standard TCR-transduced T cells or conventional model proxy systems used for studying TCR activity. Finally, transduction with a pan-cancer-reactive γδ TCR used in conjunction with CRISPR/Cas9 knockout of the endogenous αβ TCR resulted in more efficient redirection of CD4 + and CD8 + T cells against a panel of established blood cancers and primary, patient-derived B-cell acute lymphoblastic leukemia blasts compared with standard TCR transfer. Our results suggest that TCR transfer combined with genome editing could lead to new, improved generations of cancer immunotherapies. © 2018 by The American Society of Hematology.
Wang, Shihang; Liu, Chao; Liu, Xinjiang; He, Yanxin; Shen, Dongfang; Luo, Qiankun; Dong, Yuxi; Dong, Haifeng; Pang, Zhigang
2017-10-01
Gallbladder carcinoma is the most common and aggressive malignancy of the biliary tree and highly expresses CD147, which is closely related to disease prognosis in a variety of human cancers. Doxycycline exhibited anti-tumor properties in many cancer cells. CD147 antagonist peptide-9 is a polypeptide and can specifically bind to CD147. The effect of these two drugs on gallbladder cancer cells has not been studied. The aim of this study is to investigate the effect of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells and the possible mechanism of inhibition on cancer cell of doxycycline. To investigate the effects of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells (GBC-SD and SGC-996), cell proliferation, CD147 expression, and early-stage apoptosis rate were measured after treated with doxycycline. Matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were measured after treated with different concentrations of doxycycline, antagonist peptide-9, and their combination. The results demonstrated that doxycycline inhibited cell proliferation, reduced CD147 expression level, and induced an early-stage apoptosis response in GBC-SD and SGC-996 cells. The matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were inhibited by antagonist peptide-9 and doxycycline, and the inhibitory effects were enhanced by combined drugs in gallbladder carcinoma cell lines. Taken together, doxycycline showed inhibitory effects on gallbladder carcinoma cell lines and reduced the expression of CD147, and this may be the mechanism by which doxycycline inhibits cancer cells. This study provides new information and tries to implement the design of adjuvant therapy method for gallbladder carcinoma.
Jayakumar, Thanasekaran; Liu, Chao-Hong; Wu, Guan-Yi; Lee, Tzu-Yin; Manubolu, Manjunath; Hsieh, Cheng-Ying; Yang, Chih-Hao; Sheu, Joen-Rong
2018-03-22
Hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana , has been reported to have anticancer effects against various cancer cell lines. However, the detailed molecular mechanisms and the inhibiting roles of hinokitiol on adenocarcinoma A549 cells remain to be fully elucidated. Thus, the current study was designed to evaluate the effect of hinokitiol on the migration of human lung adenocarcinoma A549 cells in vitro. The data demonstrates that hinokitiol does not effectively inhibit the viability of A549 cells at up to a 10 µM concentration. When treated with non-toxic doses (1-5 µM) of hinokitiol, the cell migration is markedly suppressed at 5 µM. Hinokitiol significantly reduced p53 expression, followed by attenuation of Bax in A549 cells. A dose-dependent inhibition of activated caspase-9 and -3 was observed in the presence of hinokitiol. An observed increase in protein expression of matrix metalloproteinases (MMPs) -2/-9 in A549 cells was significantly inhibited by hinokitiol. Remarkably, when A549 cells were subjected to hinokitiol (1-5 µM), there was an increase in the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in cells. In addition, the incubation of A549 cells with hinokitiol significantly activated the cytochrome c expression, which may be triggered by activation of caspase-9 followed by caspase-3. These observations indicate that hinokitiol inhibited the migration of lung cancer A549 cells through several mechanisms, including the activation of caspases-9 and -3, induction of p53/Bax and antioxidant CAT and SOD, and reduction of MMP-2 and -9 activities. It also induces cytochrome c expression. These findings demonstrate a new therapeutic potential for hinokitiol in lung cancer chemoprevention.
Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija
2017-01-01
Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes—A model
NASA Astrophysics Data System (ADS)
Kanani, S.; Pumir, A.; Krinsky, V.
2008-01-01
One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler Reuter model, as well as with the elaborate dynamic Luo Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I channels is low enough. At too high an expression level of I channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I channels observed in ventricular myocytes, both in the Beeler Reuter and in the dynamic Luo Rudy models are too high to allow to observe oscillations. With expression levels below ˜1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.
Scanlon, K J; Jiao, L; Funato, T; Wang, W; Tone, T; Rossi, J J; Kashani-Sabet, M
1991-01-01
The c-fos gene product Fos has been implicated in many cellular processes, including signal transduction, DNA synthesis, and resistance to antineoplastic agents. A fos ribozyme (catalytic RNA) was designed to evaluate the effects of suppressing Fos protein synthesis on expression of enzymes involved in DNA synthesis, DNA repair, and drug resistance. DNA encoding the fos ribozyme (fosRb) was cloned into the pMAMneo expression plasmid, and the resultant vector was transfected into A2780DDP cells resistant to the chemotherapeutic agent cisplatin. The parental drug-sensitive A2780S cells were transfected with the pMMV vector containing the c-fos gene. Morphological alterations were accompanied by significant changes in pharmacological sensitivity in both c-fos- and fosRb-transfected cells. pMAMneo fosRb transfectants revealed decreased c-fos gene expression, concomitant with reduced thymidylate (dTMP) synthase, DNA polymerase beta, topoisomerase I, and metallothionein IIA mRNAs. In contrast, c-myc expression was elevated after fos ribozyme action. Insertion of a mutant ribozyme, mainly capable of antisense activity, into A2780DDP cells resulted in smaller reductions in c-fos gene expression and in cisplatin resistance than the active ribozyme. These studies establish a role for c-fos in drug resistance and in mediating DNA synthesis and repair processes by modulating expression of genes such as dTMP synthase, DNA polymerase beta, and topoisomerase I. These studies also suggest the utility of ribozymes in the analysis of cellular gene expression. Images PMID:1660142
Gerits, Annelies; Vancraeyenest, Pascaline; Vreysen, Samme; Laramée, Marie-Eve; Michiels, Annelies; Gijsbers, Rik; Van den Haute, Chris; Moons, Lieve; Debyser, Zeger; Baekelandt, Veerle; Arckens, Lutgarde; Vanduffel, Wim
2015-01-01
Abstract. Viral vector-mediated expression of genes (e.g., coding for opsins and designer receptors) has grown increasingly popular. Cell-type specific expression is achieved by altering viral vector tropism through crosspackaging or by cell-specific promoters driving gene expression. Detailed information about transduction properties of most recombinant adeno-associated viral vector (rAAV) serotypes in macaque cortex is gradually becoming available. Here, we compare transduction efficiencies and expression patterns of reporter genes in two macaque neocortical areas employing different rAAV serotypes and promoters. A short version of the calmodulin-kinase-II (CaMKIIα0.4) promoter resulted in reporter gene expression in cortical neurons for all tested rAAVs, albeit with different efficiencies for spread: rAAV2/5>>rAAV2/7>rAAV2/8>rAAV2/9>>rAAV2/1 and proportion of transduced cells: rAAV2/1>rAAV2/5>rAAV2/7=rAAV2/9>rAAV2/8. In contrast to rodent studies, the cytomegalovirus (CMV) promoter appeared least efficient in macaque cortex. The human synapsin-1 promoter preceded by the CMV enhancer (enhSyn1) produced homogeneous reporter gene expression across all layers, while two variants of the CaMKIIα promoter resulted in different laminar transduction patterns and cell specificities. Finally, differences in expression patterns were observed when the same viral vector was injected in two neocortical areas. Our results corroborate previous findings that reporter-gene expression patterns and efficiency of rAAV transduction depend on serotype, promoter, cortical layer, and area. PMID:26839901
Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells
Said, Harun M; Polat, Buelent; Stein, Susanne; Guckenberger, Mathias; Hagemann, Carsten; Staab, Adrian; Katzer, Astrid; Anacker, Jelena; Flentje, Michael; Vordermark, Dirk
2012-01-01
AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation. METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 × 107 cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5’-GCATTATTGGCATGGGAAC-3’ and 5’-ATGCAGAGTAACGTGGAAG-3’. reverse transcription polymerase chain reaction was performed using primers designed using published information on β-actin and hypoxia-inducible factor (HIF)-1α mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant). RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human glioblastoma. The siRNA method can represent an elegant alternative to modulate the expression of the hypoxia induced NDRG1 gene and can help to monitor the development of the cancer disease treatment outcome through monitoring the expression of this gene in the patients undergoing the different therapeutic treatment alternatives available nowadays. PMID:22787578
Human Monoclonal Antibodies as a Countermeasure Against Botulinum Toxins
2012-11-30
official Department of the Army position, policy or decision, unless so designated by other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT...cell origin. 1710 designates B cells of PBMC origin (plates 1‐100 rabbit 74, 101‐200 rabbit 81), 1714 splenic origin (plates 1‐200 rabbit 74, 201‐400...domains are designated as A, B, or E with a bracket. 2.1.1 Characterization of E. coli expressed constructs and their refolding for BoNT reactivity
Bonner, Caroline; Bacon, Siobhán; Concannon, Caoimhín G.; Rizvi, Syed R.; Baquié, Mathurin; Farrelly, Angela M.; Kilbride, Seán M.; Dussmann, Heiko; Ward, Manus W.; Boulanger, Chantal M.; Wollheim, Claes B.; Graf, Rolf; Byrne, Maria M.; Prehn, Jochen H.M.
2010-01-01
OBJECTIVE In diabetes, β-cell mass is not static but in a constant process of cell death and renewal. Inactivating mutations in transcription factor 1 (tcf-1)/hepatocyte nuclear factor1a (hnf1a) result in decreased β-cell mass and HNF1A–maturity onset diabetes of the young (HNF1A-MODY). Here, we investigated the effect of a dominant-negative HNF1A mutant (DN-HNF1A) induced apoptosis on the regenerative capacity of INS-1 cells. RESEARCH DESIGN AND METHODS DN-HNF1A was expressed in INS-1 cells using a reverse tetracycline-dependent transactivator system. Gene(s)/protein(s) involved in β-cell regeneration were investigated by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. Pancreatic stone protein/regenerating protein (PSP/reg) serum levels in human subjects were detected by enzyme-linked immunosorbent assay. RESULTS We detected a prominent induction of PSP/reg at the gene and protein level during DN-HNF1A–induced apoptosis. Elevated PSP/reg levels were also detected in islets of transgenic HNF1A-MODY mice and in the serum of HNF1A-MODY patients. The induction of PSP/reg was glucose dependent and mediated by caspase activation during apoptosis. Interestingly, the supernatant from DN-HNF1A–expressing cells, but not DN-HNF1A–expressing cells treated with zVAD.fmk, was sufficient to induce PSP/reg gene expression and increase cell proliferation in naïve, untreated INS-1 cells. Further experiments demonstrated that annexin-V–positive microparticles originating from apoptosing INS-1 cells mediated the induction of PSP/reg. Treatment with recombinant PSP/reg reversed the phenotype of DN-HNF1A–induced cells by stimulating cell proliferation and increasing insulin gene expression. CONCLUSIONS Our results suggest that apoptosing INS-1 cells shed microparticles that may stimulate PSP/reg induction in neighboring cells, a mechanism that may facilitate the recovery of β-cell mass in HNF1A-MODY. PMID:20682686
Jia, Xiao-Qin; Cheng, Hai-Qing; Li, Hong; Zhu, Yan; Li, Yu-Hua; Feng, Zhen-Qing; Zhang, Jian-Ping
2011-11-01
We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer. Here, we examined expression of CTGF in human hepatocellular carcinoma (HCC) cells and its effect on cell growth. Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2, SMMC-7721, MHCC-97H and LO2. siRNA for the CTGF gene was designed, synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF. CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect, and a colony formation assay was used for observing clonogenic growth. In vivo, tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation. Statistical significance was determined by t test for comparison between two groups, or analysis of variance (ANOVA) for multiple groups. Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%). CTGF was overexpressed 5-fold in 20 HCC tissues, compared with surrounding non-tumor liver tissue. CTGF mRNA level was 5 - 8-fold higher in HepG2, SMMC-7721 and MHCC-97H than in LO2 cells. This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P < 0.05). Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P < 0.05). The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P < 0.05). CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo. Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.
Wijesundara, Danushka K; Jackson, Ronald J; Tscharke, David C; Ranasinghe, Charani
2013-09-23
We have shown that mucosal HIV-1 recombinant pox viral vaccination can induce high, avidity HIV-specific CD8(+) T cells with reduced interleukin (IL)-4 and IL-13 expression compared to, systemic vaccine delivery. In the current study how these cytokines act to regulate anti-viral CD8(+) T, cell avidity following HIV-1 recombinant pox viral prime-boost vaccination was investigated. Out of a panel of T cell avidity markers tested, only CD8 expression levels were found to be enhanced on, KdGag197-205 (HIV)-specific CD8(+) T cells obtained from IL-13(-/-), IL-4(-/-) and signal transducer and, activator of transcription of 6 (STAT6)(-/-) mice compared to wild-type (WT) controls following, vaccination. Elevated CD8 expression levels in this instance also correlated with polyfunctionality, (interferon (IFN)-γ, tumour necorsis factor (TNF)-α and IL-2 production) and the avidity of HIVspecific CD8(+) T cells. Furthermore, mucosal vaccination and vaccination with the novel adjuvanted IL-13 inhibitor (i.e. IL-13Rα2) vaccines significantly enhanced CD8 expression levels on HIV-specific CD8(+), T cells, which correlated with avidity. Using anti-CD8 antibodies that blocked CD8 availability on CD8(+), T cells, it was established that CD8 played an important role in increasing HIV-specific CD8(+) T cell avidity and polyfunctionality in IL-4(-/-), IL-13(-/-) and STAT6(-/-) mice compared to WT controls, following vaccination. Collectively, our data demonstrate that IL-4 and IL-13 dampen CD8 expression levels on anti-viral CD8(+) T cells, which can down-regulate anti-viral CD8(+) T cell avidity and, polyfunctionality following HIV-1 recombinant pox viral vaccination. These findings can be exploited to, design more efficacious vaccines not only against HIV-1, but many chronic infections where high, avidity CD8(+) T cells help protection. Copyright © 2013 Elsevier Ltd. All rights reserved.
SEA: a super-enhancer archive.
Wei, Yanjun; Zhang, Shumei; Shang, Shipeng; Zhang, Bin; Li, Song; Wang, Xinyu; Wang, Fang; Su, Jianzhong; Wu, Qiong; Liu, Hongbo; Zhang, Yan
2016-01-04
Super-enhancers are large clusters of transcriptional enhancers regarded as having essential roles in driving the expression of genes that control cell identity during development and tumorigenesis. The construction of a genome-wide super-enhancer database is urgently needed to better understand super-enhancer-directed gene expression regulation for a given biology process. Here, we present a specifically designed web-accessible database, Super-Enhancer Archive (SEA, http://sea.edbc.org). SEA focuses on integrating super-enhancers in multiple species and annotating their potential roles in the regulation of cell identity gene expression. The current release of SEA incorporates 83 996 super-enhancers computationally or experimentally identified in 134 cell types/tissues/diseases, including human (75 439, three of which were experimentally identified), mouse (5879, five of which were experimentally identified), Drosophila melanogaster (1774) and Caenorhabditis elegans (904). To facilitate data extraction, SEA supports multiple search options, including species, genome location, gene name, cell type/tissue and super-enhancer name. The response provides detailed (epi)genetic information, incorporating cell type specificity, nearby genes, transcriptional factor binding sites, CRISPR/Cas9 target sites, evolutionary conservation, SNPs, H3K27ac, DNA methylation, gene expression and TF ChIP-seq data. Moreover, analytical tools and a genome browser were developed for users to explore super-enhancers and their roles in defining cell identity and disease processes in depth. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity.
Bellance, N; Benard, G; Furt, F; Begueret, H; Smolková, K; Passerieux, E; Delage, J P; Baste, J M; Moreau, P; Rossignol, R
2009-12-01
Little is known on the metabolic profile of lung tumors and the reminiscence of embryonic features. Herein, we determined the bioenergetic profiles of human fibroblasts taken from lung epidermoid carcinoma (HLF-a) and fetal lung (MRC5). We also analysed human lung tumors and their surrounding healthy tissue from four patients with adenocarcinoma. On these different models, we measured functional parameters (cell growth rates in oxidative and glycolytic media, respiration, ATP synthesis and PDH activity) as well as compositional features (expression level of various energy proteins and upstream transcription factors). The results demonstrate that both the lung fetal and cancer cell lines produced their ATP predominantly by glycolysis, while oxidative phosphorylation was only capable of poor ATP delivery. This was explained by a decreased mitochondrial biogenesis caused by a lowered expression of PGC1alpha (as shown by RT-PCR and Western blot) and mtTFA. Consequently, the relative expression of glycolytic versus OXPHOS markers was high in these cells. Moreover, the re-activation of mitochondrial biogenesis with resveratrol induced cell death specifically in cancer cells. A consistent reduction of mitochondrial biogenesis and the subsequent alteration of respiratory capacity was also observed in lung tumors, associated with a lower expression level of bcl2. Our data give a better characterization of lung cancer cells' metabolic alterations which are essential for growth and survival. They designate mitochondrial biogenesis as a possible target for anti-cancer therapy.
Tang, Chunlei; Wei, Jinping; Han, Qingmei; Liu, Rui; Duan, Xiaoyuan; Fu, Yanping; Huang, Xueling; Wang, Xiaojie; Kang, Zhensheng
2015-01-01
Adenine nucleotide translocase (ANT) is a constitutive mitochondrial component that is involved in ADP/ATP exchange and mitochondrion-mediated apoptosis in yeast and mammals. However, little is known about the function of ANT in pathogenic fungi. In this study, we identified an ANT gene of Puccinia striiformis f. sp. tritici (Pst), designated PsANT. The PsANT protein contains three typical conserved mitochondrion-carrier-protein (mito-carr) domains and shares more than 70% identity with its orthologs from other fungi, suggesting that ANT is conserved in fungi. Immuno-cytochemical localization confirmed the mitochondrial localization of PsANT in normal Pst hyphal cells or collapsed cells. Over-expression of PsANT indicated that PsANT promotes cell death in tobacco, wheat and fission yeast cells. Further study showed that the three mito-carr domains are all needed to induce cell death. qRT-PCR analyses revealed an in-planta induced expression of PsANT during infection. Knockdown of PsANT using a host-induced gene silencing system (HIGS) attenuated the growth and development of virulent Pst at the early infection stage but not enough to alter its pathogenicity. These results provide new insight into the function of PsANT in fungal cell death and growth and might be useful in the search for and design of novel disease control strategies. PMID:26058921
La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W
2000-01-01
We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-α production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-α expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-α is concerned, CC-3052 significantly reduced TNF-α mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-α production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-α is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-α may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-α and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents. PMID:10606973
La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W
2000-01-01
We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-alpha production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-alpha expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-alpha is concerned, CC-3052 significantly reduced TNF-alpha mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-alpha production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-alpha is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-alpha may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-alpha and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents.
Yoon, Hyo-Eun; Ahn, Mee-Young; Kwon, Seong-Min; Kim, Dong-Jae; Lee, Jun; Yoon, Jung-Hoon
2016-04-01
Microbial Pattern-recognition receptors (PRRs), such as nucleotide-binding oligomerization domains (NODs), are essential for mammalian innate immune response. This study was designed to determine the effect of NOD1 and NOD2 agonist on innate immune responses and antitumor activity in oral squamous cell carcinoma (OSCC) cells. NODs expression was examined by RT-PCR, and IL-8 production by NODs agonist was examined by ELISA. Western blot analysis was performed to determine the MAPK activation in response to their agonist. Cell proliferation was determined by MTT assay. Flow cytometry and Western blot analysis were performed to determine the MDP-induced cell death. The levels of NODs were apparently expressed in OSCC cells. NODs agonist, Tri-DAP and MDP, led to the production of IL-8 and MAPK activation. NOD2 agonist, MDP, inhibited the proliferation of YD-10B cells in a dose-dependent manner. Also, the ratio of Annexin V-positive cells and cleaved PARP was increased by MDP treatment in YD-10B cells, suggesting that MDP-induced cell death in YD-10B cells may be owing to apoptosis. Our results indicate that NODs are functionally expressed in OSCC cells and can trigger innate immune responses. In addition, NOD2 agonist inhibited cell proliferation and induced apoptosis. These findings provide the potential value of MDP as novel candidates for antitumor agents of OSCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells
NASA Astrophysics Data System (ADS)
Kwon, Ohwon; Sartor, Maureen; Tomlinson, Craig R.; Millard, Ronald W.; Olah, Mark E.; Sankovic, John M.; Banerjee, Rupak K.
2006-01-01
Oxygen utilization by and oxygen dependence of cellular processes may be different in biological systems that are exposed to microgravity (micro-g). A baseline in which cellular changes in oxygen sensitive molecular processes occur during micro-g conditions would be important to pursue this question. The objective of this research is to analyze oxidation-sensitive gene expression in a model cell line [rat pheochromocytoma (PC12)] under simulated micro-g conditions. The PC12 cell line is well characterized in its response to oxygen, and is widely recognized as a sensitive model for studying the responses of oxygen-sensitive molecular and cellular processes. This study uses the rotating wall vessel bioreactor (RWV) designed at NASA to simulate micro-g. Gene expression in PC12 cells in response to micro-g was analyzed by DNA microarray technology. The microarray analysis of PC12 cells cultured for 4 days under simulated micro-g under standardized oxygen environment conditions revealed more than 100 genes whose expression levels were changed at least twofold (up-regulation of 65 genes and down-regulation of 39 genes) compared with those from cells in the unit gravity (unit-g) control. This study observed that genes involved in the oxidoreductase activity category were most significantly differentially expressed under micro-g conditions. Also, known oxidation-sensitive transcription factors such as hypoxia-inducible factor-2α, c-myc, and the peroxisome proliferator-activated receptor-γ were changed significantly. Our initial results from the gene expression microarray studies may provide a context in which to evaluate the effect of varying oxygen environments on the background of differential gene regulation of biological processes under variable gravity conditions.
Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells
Kwon, Ohwon; Sartor, Maureen; Tomlinson, Craig R.; Millard, Ronald W.; Olah, Mark E.; Sankovic, John M.; Banerjee, Rupak K.
2008-01-01
Oxygen utilization by and oxygen dependence of cellular processes may be different in biological systems that are exposed to microgravity (micro-g). A baseline in which cellular changes in oxygen sensitive molecular processes occur during micro-g conditions would be important to pursue this question. The objective of this research is to analyze oxidation-sensitive gene expression in a model cell line [rat pheochromocytoma (PC12)] under simulated micro-g conditions. The PC12 cell line is well characterized in its response to oxygen, and is widely recognized as a sensitive model for studying the responses of oxygen-sensitive molecular and cellular processes. This study uses the rotating wall vessel bioreactor (RWV) designed at NASA to simulate micro-g. Gene expression in PC12 cells in response to micro-g was analyzed by DNA microarray technology. The microarray analysis of PC12 cells cultured for 4 days under simulated micro-g under standardized oxygen environment conditions revealed more than 100 genes whose expression levels were changed at least twofold (up-regulation of 65 genes and down-regulation of 39 genes) compared with those from cells in the unit gravity (unit-g) control. This study observed that genes involved in the oxidoreductase activity category were most significantly differentially expressed under micro-g conditions. Also, known oxidation-sensitive transcription factors such as hypoxia-inducible factor-2α, c-myc, and the peroxisome proliferator-activated receptor-γ were changed significantly. Our initial results from the gene expression microarray studies may provide a context in which to evaluate the effect of varying oxygen environments on the background of differential gene regulation of biological processes under variable gravity conditions. PMID:19081771
Yamamura, Shohei; Yamada, Eriko; Kimura, Fukiko; Miyajima, Kumiko; Shigeto, Hajime
2017-10-21
A new single-cell microarray chip was designed and developed to separate and analyze single adherent and non-adherent cancer cells. The single-cell microarray chip is made of polystyrene with over 60,000 microchambers of 10 different size patterns (31-40 µm upper diameter, 11-20 µm lower diameter). A drop of suspension of adherent carcinoma (NCI-H1650) and non-adherent leukocyte (CCRF-CEM) cells was placed onto the chip, and single-cell occupancy of NCI-H1650 and CCRF-CEM was determined to be 79% and 84%, respectively. This was achieved by controlling the chip design and surface treatment. Analysis of protein expression in single NCI-H1650 and CCRF-CEM cells was performed on the single-cell microarray chip by multi-antibody staining. Additionally, with this system, we retrieved positive single cells from the microchambers by a micromanipulator. Thus, this system demonstrates the potential for easy and accurate separation and analysis of various types of single cells.
Hafizi, Maryam; Hajarizadeh, Atena; Atashi, Amir; Kalanaky, Somayeh; Fakharzadeh, Saideh; Masoumi, Zahra; Nazaran, Mohammad Hassan; Soleimani, Masoud
2015-11-23
Human mesenchymal stem cells (hMSCs) have been approved for therapeutic applications. Despite the advances in this field, in vitro approaches are still required to improve the essential indices that would pave the way to a bright horizon for an efficient transplantation in the future. Nanotechnology could help to improve these approaches. Studies signified the important role of iron in stem cell metabolism and efficiency of copper chelation application for stem cell expansion For the first time, based on novel Nanochelating technology, we design an iron containing copper chelator nano complex, GFc7 and examined on hMSCs during in vitro expansion. In this study, the hMSCs were isolated, characterized and expanded in vitro in two media (with or without GFc7). Then proliferation, cell viability, cell cycle analysis, surface markers, HLADR, pluripotency genes expression, homing and antioxidative defense at genes and protein expression were investigated. Also we analyzed the spontaneous differentiation and examined osteogenic and lipogenic differentiation. GFc7 affected the expression of key genes, improving both the stemness and fitness of the cells in a precise and balanced manner. We observed significant increases in cell proliferation, enhanced expression of pluripotency genes and homing markers, improved antioxidative defense, repression of genes involved in spontaneous differentiation and exposing the hMSCs to differentiation medium indicated that pretreatment with GFc7 increased the quality and rate of differentiation. Thus, GFc7 appears to be a potential new supplement for cell culture medium for increasing the efficiency of transplantation.
Targeting Aldehyde Dehydrogenase: a Potential Approach for Cell labeling
Vaidyanathan, Ganesan; Song, Haijing; Affleck, Donna; McDougald, Darryl L.; Storms, Robert W.; Zalutksy, Michael R.; Chin, Bennett B.
2009-01-01
Introduction To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative, and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods We developed schemes for the synthesis of two 3radioiodinated aldehdyes—N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)—at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results The average radiochemical yields for the synthesis [125I]FMIC and [125I]DEIBA were 70 ± 5% and 47 ± 14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells. PMID:19875048
Hwang, Jae-Ho; Parton, Angela; Czechanski, Anne; Ballatori, Nazzareno; Barnes, David
2008-01-01
The organic solute and steroid transporter (OST/Ost) is a unique membrane transport protein heterodimer composed of subunits designated alpha and beta, that transports conjugated steroids and prostaglandin E2 across the plasma membrane. Ost was first identified in the liver of the cartilaginous fish Leucoraja erinacea, the little skate, and subsequently was found in many other species, including humans and rodents. The present study describes the isolation of a new cell line, LEE-1, derived from an early embryo of L. erinacea, and characterizes the expression of Ost in these cells. The mRNA size and amino acid sequence of Ost-beta in LEE-1 was identical to that previously reported for Ost-beta from skate liver, and the primary structure was identical to that of the spiny dogfish shark (Squalus acanthias) with the exception of a single amino acid. Ost-beta was found both on the plasma membrane and intracellularly in LEE-1 cells, consistent with its localization in other cell types. Interestingly, arachidonic acid, the precursor to eiconsanoids, strongly induced Ost-beta expression in LEE-1 cells and a lipid mixture containing arachidonic acid also induced Ost-alpha. Overall, the present study describes the isolation of a novel marine cell line, and shows that this cell line expresses relatively high levels of Ost when cultured in the presence of arachidonic acid. Although the function of this transport protein in embryo-derived cells is unknown, it may play a role in the disposition of eicosanoids or steroid-derived molecules. PMID:18407792
2011-01-01
Background Bioluminescent tumor cell lines are experimental tools of major importance for cancer investigation, especially imaging of tumors in xenografted animals. Stable expression of exogenous luciferase in tumor cells combined to systemic injection of luciferin provides an excellent signal/background ratio for external optical imaging. Therefore, there is a need to rationalize and speed up the production of luciferase-positive tumor cell lines representative of multiple tumor phenotypes. For this aim we have designed a fusion gene linking the luciferase 2 protein to the c-terminus of a truncated form of the rat CD2 protein (tCD2-luc2). To allow simultaneous assessment of the wild-type luciferase 2 in a context of tCD2 co-expression, we have made a bicistronic construct for concomitant but separate expression of these two proteins (luc2-IRES-tCD2). Both the mono- and bi-cistronic constructs were transduced in lymphoid and epithelial cells using lentiviral vectors. Results The tCD2-luc2 chimera behaves as a type I membrane protein with surface presentation of CD2 epitopes. One of these epitopes reacts with the OX34, a widely spread, high affinity monoclonal antibody. Stably transfected cells are sorted by flow cytometry on the basis of OX34 staining. In vitro and, moreover, in xenografted tumors, the tCD2-luc2 chimera retains a substantial and stable luciferase activity, although not as high as the wild-type luciferase expressed from the luc2-IRES-tCD2 construct. Expression of the tCD2-luc2 chimera does not harm cell and tumor growth. Conclusion Lentiviral transduction of the chimeric tCD2-luc2 fusion gene allows selection of cell clones with stable luciferase expression in less than seven days without antibiotic selection. We believe that it will be helpful to increase the number of tumor cell lines available for in vivo imaging and assessment of novel therapeutic modalities. On a longer term, the tCD2-luc2 chimera has the potential to be expressed from multi-cassette vectors in combination with various inserts of interest. PMID:21435248
Shannon, Casey P.; Balshaw, Robert; Ng, Raymond T.; Wilson-McManus, Janet E.; Keown, Paul; McMaster, Robert; McManus, Bruce M.; Landsberg, David; Isbel, Nicole M.; Knoll, Greg; Tebbutt, Scott J.
2014-01-01
Acute rejection is a major complication of solid organ transplantation that prevents the long-term assimilation of the allograft. Various populations of lymphocytes are principal mediators of this process, infiltrating graft tissues and driving cell-mediated cytotoxicity. Understanding the lymphocyte-specific biology associated with rejection is therefore critical. Measuring genome-wide changes in transcript abundance in peripheral whole blood cells can deliver a comprehensive view of the status of the immune system. The heterogeneous nature of the tissue significantly affects the sensitivity and interpretability of traditional analyses, however. Experimental separation of cell types is an obvious solution, but is often impractical and, more worrying, may affect expression, leading to spurious results. Statistical deconvolution of the cell type-specific signal is an attractive alternative, but existing approaches still present some challenges, particularly in a clinical research setting. Obtaining time-matched sample composition to biologically interesting, phenotypically homogeneous cell sub-populations is costly and adds significant complexity to study design. We used a two-stage, in silico deconvolution approach that first predicts sample composition to biologically meaningful and homogeneous leukocyte sub-populations, and then performs cell type-specific differential expression analysis in these same sub-populations, from peripheral whole blood expression data. We applied this approach to a peripheral whole blood expression study of kidney allograft rejection. The patterns of differential composition uncovered are consistent with previous studies carried out using flow cytometry and provide a relevant biological context when interpreting cell type-specific differential expression results. We identified cell type-specific differential expression in a variety of leukocyte sub-populations at the time of rejection. The tissue-specificity of these differentially expressed probe-set lists is consistent with the originating tissue and their functional enrichment consistent with allograft rejection. Finally, we demonstrate that the strategy described here can be used to derive useful hypotheses by validating a cell type-specific ratio in an independent cohort using the nanoString nCounter assay. PMID:24733377
Mechanical strain induces involution-associated events in mammary epithelial cells
Quaglino, Ana; Salierno, Marcelo; Pellegrotti, Jesica; Rubinstein, Natalia; Kordon, Edith C
2009-01-01
Background Shortly after weaning, a complex multi-step process that leads to massive epithelial apoptosis is triggered by tissue local factors in the mouse mammary gland. Several reports have demonstrated the relevance of mechanical stress to induce adaptive responses in different cell types. Interestingly, these signaling pathways also participate in mammary gland involution. Then, it has been suggested that cell stretching caused by milk accumulation after weaning might be the first stimulus that initiates the complete remodeling of the mammary gland. However, no previous report has demonstrated the impact of mechanical stress on mammary cell physiology. To address this issue, we have designed a new practical device that allowed us to evaluate the effects of radial stretching on mammary epithelial cells in culture. Results We have designed and built a new device to analyze the biological consequences of applying mechanical stress to cells cultured on flexible silicone membranes. Subsequently, a geometrical model that predicted the percentage of radial strain applied to the elastic substrate was developed. By microscopic image analysis, the adjustment of these calculations to the actual strain exerted on the attached cells was verified. The studies described herein were all performed in the HC11 non-tumorigenic mammary epithelial cell line, which was originated from a pregnant BALB/c mouse. In these cells, as previously observed in other tissue types, mechanical stress induced ERK1/2 phosphorylation and c-Fos mRNA and protein expression. In addition, we found that mammary cell stretching triggered involution associated cellular events as Leukemia Inhibitory Factor (LIF) expression induction, STAT3 activation and AKT phosphorylation inhibition. Conclusion Here, we show for the first time, that mechanical strain is able to induce weaning-associated events in cultured mammary epithelial cells. These results were obtained using a new practical and affordable device specifically designed for such a purpose. We believe that our results indicate the relevance of mechanical stress among the early post-lactation events that lead to mammary gland involution. PMID:19615079
Li, Yiwei; VandenBoom, Timothy G.; Kong, Dejuan; Wang, Zhiwei; Ali, Shadan; Philip, Philip A.; Sarkar, Fazlul H.
2009-01-01
Pancreatic cancer (PC) is the fourth most common cause of cancer death in the United States and the aggressiveness of PC is in part due to its intrinsic and extrinsic drug resistance characteristics, which is also associated with the acquisition of epithelial-to-mesenchymal transition (EMT). Emerging evidence also suggest that the processes of EMT is regulated by the expression status of many microRNAs (miRNAs), which are believed to function as key regulators of various biological and pathological processes during tumor development and progression. In the present study, we compared the expression of miRNAs between gemcitabine-sensitive and gemcitabine-resistant PC cells, and investigated whether the treatment of cells with “natural agents” [3,3′-diinodolylmethane (DIM) or isoflavone] could affect the expression of miRNAs. We found that the expression of miR-200b, miR-200c, let-7b, let-7c, let-7d, and let-7e was significantly down-regulated in gemcitabine-resistant cells that showed EMT characteristics such as elongated fibroblastoid morphology, lower expression of epithelial marker E-cadherin, and higher expression of mesenchymal markers such as vimentin and ZEB1. Moreover, we found that re-expression of miR-200 by transfection studies or treatment of gemcitabine-resistant cells with either DIM or isoflavone resulted in the down-regulation of ZEB1, slug, and vimentin, which was consistent with morphological reversal of EMT phenotype leading to epithelial morphology. These results provide experimental evidence, for the first time, that DIM and isoflavone could function as miRNA regulators leading to the reversal of EMT phenotype, which is likely to be important for designing novel therapies for PC. PMID:19654291
Funamizu, Naotake; Hu, Chaoxin; Lacy, Curtis; Schetter, Aaron; Zhang, Geng; He, Peijun; Gaedcke, Jochen; Ghadimi, Michael B; Ried, Thomas; Yfantis, Harris G; Lee, Dong H; Subleski, Jeffrey; Chan, Tim; Weiss, Jonathan M; Back, Timothy C; Yanaga, Katsuhiko; Hanna, Nader; Alexander, H Richard; Maitra, Anirban; Hussain, S Perwez
2013-02-15
MIF is a proinflammatory cytokine and is implicated in cancer. A higher MIF level is found in many human cancer and cancer-prone inflammatory diseases, including chronic pancreatitis and pancreatic cancer. We tested the hypothesis that MIF contributes to pancreatic cancer aggressiveness and predicts disease outcome in resected cases. Consistent with our hypothesis we found that an elevated MIF mRNA expression in tumors was significantly associated with poor outcome in resected cases. Multivariate Cox-regression analysis further showed that MIF is independently associated with patients' survival (HR = 2.26, 95% CI = 1.17-4.37, p = 0.015). Mechanistic analyses revealed that MIF overexpression decreased E-cadherin and increased vimentin mRNA and protein levels in pancreatic cancer cell lines, consistent with the features of epithelial-to-mesenchymal transition (EMT). Furthermore, MIF-overexpression significantly increased ZEB1/2 and decreased miR-200b expression, while shRNA-mediated inhibition of MIF increased E-cadherin and miR-200b expression, and reduced the expression of ZEB1/2 in Panc1 cells. Re-expression of miR-200b in MIF overexpressing cells restored the epithelial characteristics, as indicated by an increase in E-cadherin and decrease in ZEB1/2 and vimentin expression. A reduced sensitivity to the chemotherapeutic drug, gemcitabine, occurred in MIF-overexpressing cells. Indicative of an increased malignant potential, MIF over-expressing cells showed significant increase in their invasion ability in vitro, and tumor growth and metastasis in an orthotopic xenograft mouse model. These results support a role of MIF in disease aggressiveness, indicating its potential usefulness as a candidate target for designing improved treatment in pancreatic cancer. Copyright © 2012 UICC.
He, Chengyong; Jiang, Shengwei; Jin, Haijing; Chen, Shuzhen; Lin, Gan; Yao, Huan; Wang, Xiaoyong; Mi, Peng; Ji, Zhiliang; Lin, Yuchun; Lin, Zhongning; Liu, Gang
2016-03-01
Superparamagnetic iron oxide nanoparticles (SPIONs) are highly cytotoxic and target cancer cells with high specificity; however, the mechanism by which SPIONs induce cancer cell-specific cytotoxicity remains unclear. Herein, the molecular mechanism of SPION-induced cancer cell-specific cytotoxicity to cancer cells is clarified through DNA microarray and bioinformatics analyses. SPIONs can interference with the mitochondrial electron transport chain (METC) in cancer cells, which further affects the production of ATP, mitochondrial membrane potential, and microdistribution of calcium, and induces cell apoptosis. Additionally, SPIONs induce the formation of reactive oxygen species in mitochondria; these reactive oxygen species trigger cancer-specific cytotoxicity due to the lower antioxidative capacity of cancer cells. Moreover, the DNA microarray and gene ontology analyses revealed that SPIONs elevate the expression of metallothioneins in both normal and cancer cells but decrease the expression of METC genes in cancer cells. Overall, these results suggest that SPIONs induce cancer cell death by targeting the METC, which is helpful for designing anti-cancer nanotheranostics and evaluating the safety of future nanomedicines. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design and construction of functional AAV vectors.
Gray, John T; Zolotukhin, Serge
2011-01-01
Using the basic principles of molecular biology and laboratory techniques presented in this chapter, researchers should be able to create a wide variety of AAV vectors for both clinical and basic research applications. Basic vector design concepts are covered for both protein coding gene expression and small non-coding RNA gene expression cassettes. AAV plasmid vector backbones (available via AddGene) are described, along with critical sequence details for a variety of modular expression components that can be inserted as needed for specific applications. Protocols are provided for assembling the various DNA components into AAV vector plasmids in Escherichia coli, as well as for transferring these vector sequences into baculovirus genomes for large-scale production of AAV in the insect cell production system.
[Effect of DOT1L gene silence on proliferation of acute monocytic leukemia cell line THP-1].
Zhang, Yu-Juan; Li, Hua-Wen; Chang, Guo-Qiang; Zhang, Hong-Ju; Wang, Jian; Lin, Ya-Ni; Zhou, Jia-Xi; Li, Qing-Hua; Pang, Tian-Xiang
2013-08-01
This study was aimed to investigate the influence of short hairpin RNA (shRNA) on proliferation of human leukemia cell line THP-1. The shRNA targeting the site 732-752 of DOT1L mRNA was designed and chemically synthesized, then a single-vector lentiviral, tet-inducible shRNA-DOT1L system (Plko-Tet-On) was generated. Thereafter, the THP-1 cells with lentivirus were infected to create stable cell line with regulatable shRNA expression. The expression of DOT1L in the THP-1 cell line was assayed by RT-PCR. Effect of shRNA-DOT1L on the proliferation of THP-1 cells was detected with MTT method,and the change of colony forming potential of THP-1 cells was analyzed by colony forming unit test. Cell cycle distribution was tested by flow cytometry. The results indicated that the expression of DOT1L was statistically lower than that in the control groups. The proliferation and colony forming capacity of THP-1 cells were significantly inhibited. The percentage of cells at G0/G1 phase increased in THP-1/shRNA cells treated with Dox while the percentage of cells at S phase significantly decreased as compared with that in the control group. It is concluded that the shRNA targeting DOT1L can effectively inhibit the proliferation of acute monocytic leukemia cell line THP-1.
Bock, Stephanie; Mullins, Christina S; Klar, Ernst; Pérot, Philippe; Maletzki, Claudia; Linnebacher, Michael
2018-01-01
Endogenous retroviruses are remnants of retroviral infections. In contrast to their human counterparts, murine endogenous retroviruses (mERV) still can synthesize infectious particles and retrotranspose. Xenotransplanted human cells have occasionally been described to be mERV infected. With genetic engineered mice and patient-derived xenografts (PDXs) on the rise as eminent research tools, we here systematically investigated, if different tumor models harbor mERV infections. Relevant mERV candidates were first preselected by next generation sequencing (NGS) analysis of spontaneous lymphomas triggered by colorectal cancer (CRC) PDX tissue. Two primer systems were designed for each of these candidates (AblMLV, EcoMLV, EndoPP, MLV, and preXMRV) and implemented in an quantitative real-time (RT-qPCR) screen using murine tissues ( n = 11), PDX-tissues ( n = 22), PDX-derived cell lines ( n = 13), and patient-derived tumor cell lines ( n = 14). The expression levels of mERV varied largely both in the PDX samples and in the mouse tissues. No mERV signal was, however, obtained from cDNA or genomic DNA of CRC cell lines. Expression of EcoMLV was higher in PDX than in murine tissues; for EndoPP it was the opposite. These two were thus further investigated in 40 additional PDX. In addition, four patient-derived cell lines free of any mERV expression were subcutaneously injected into immunodeficient mice. Outgrowing cell-derived xenografts barely expressed EndoPP. In contrast, the expression of EcoMLV was even higher than in surrounding mouse tissues. This expression gradually vanished within few passages of re-cultivated cells. In summary, these results strongly imply that: (i) PDX and murine tissues in general are likely to be contaminated by mERV, (ii) mERV are expressed transiently and at low level in fresh PDX-derived cell cultures, and (iii) mERV integration into the genome of human cells is unlikely or at least a very rare event. Thus, mERVs are stowaways present in murine cells, in PDX tissues and early thereof-derived cell cultures. We conclude that further analysis is needed concerning their impact on results obtained from studies performed with PDX but also with murine tumor models.
Kitamura, Sachiko; Abiko, Kaoru; Matsumura, Noriomi; Nakai, Hidekatsu; Akimoto, Yumiko; Tanimoto, Hirotoshi; Konishi, Ikuo
2017-07-01
Some, but not all, granulosa cell tumors are characterized by estrogen production. This study was designed to determine whether there are clinical or pathological variations in granulosa cell tumors in relation to the expression of sex steroid synthesis enzymes. Clinical symptoms, serum hormonal values, and histology of 30 granulosa cell tumor patients who underwent surgery between 2002 and 2014 were retrospectively reviewed. Most patients presented with abnormal genital bleeding including abnormal menstrual cycles. Eight of 16 patients older than 50 years had endometrial hyperplasia and one had endometrial cancer. Serum 17β-estradiol (E₂) levels tended to be higher in patients over 50 years of age (p=0.081). Serum follicle-stimulating hormone (FSH) levels were low in all patients irrespective of serum E₂ levels. Magnetic resonance imaging revealed a thicker endometrium in older as compared to younger patients (p<0.05). Tumor cells in the majority of cases were positive for inhibin α and P450 aromatase, irrespective of age and serum E₂ levels. P450 17α-hydroxylase (P450c17) expression varied among cases. P450c17 was strongly positive in luteinized tumor cells and weakly positive in theca cells and fibroblasts. High E₂ levels were associated with P450c17-positive cells in the tumor (p<0.05). The expression of hormone-synthesizing enzymes divides granulosa cell tumors into 2 distinct types; tumors with P450c17-positive cells show elevated serum E₂ and related clinical symptoms, while tumors without these cells show symptoms related to FSH suppression by inhibin. Copyright © 2017. Asian Society of Gynecologic Oncology, Korean Society of Gynecologic Oncology
A combined gene and cell therapy approach for restoration of conduction.
Hofshi, Anat; Itzhaki, Ilanit; Gepstein, Amira; Arbel, Gil; Gross, Gil J; Gepstein, Lior
2011-01-01
Abnormal conduction underlies both bradyarrhythmias and re-entrant tachyarrhythmias. However, no practical way exists for restoring or improving conduction in areas of conduction slowing or block. This study sought to test the feasibility of a novel strategy for conduction repair using genetically engineered cells designed to form biological "conducting cables." An in vitro model of conduction block was established using spatially separated, spontaneously contracting, nonsynchronized human embryonic stem cell-derived cardiomyocytes clusters. Immunostaining, dye transfer, intracellular recordings, and multielectrode array (MEA) studies were performed to evaluate the ability of genetically engineered HEK293 cells, expressing the SCN5A-encoded Na(+) channel, to couple with cultured cardiomyocytes and to synchronize their electrical activity. Connexin-43 immunostaining and calcein dye-transfer experiments confirmed the formation of functional gap junctions between the engineered cells and neighboring cardiomyocytes. MEA and intracellular recordings were performed to assess the ability of the engineered cells to restore conduction in the co-cultures. Synchronization was defined by establishment of fixed local activation time differences between the cardiomyocytes clusters and convergence of their activation cycle lengths. Nontransfected control cells were able to induce synchronization between cardiomyocytes clusters separated by distances up to 300 μm (n = 21). In contrast, the Na(+) channel-expressing cells synchronized contractions between clusters separated by up to 1,050 μm, the longest distance studied (n = 23). Finally, engineered cells expressing the voltage-sensitive K(v)1.3 potassium channel prevented synchronization at any distance. Genetically engineered cells, transfected to express Na(+) channels, can form biological conducting cables bridging and coupling spatially separated cardiomyocytes. This novel cell therapy approach might be useful for the development of therapeutic strategies for both bradyarrhythmias and tachyarrhythmias. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Graser, R T; DiLorenzo, T P; Wang, F; Christianson, G J; Chapman, H D; Roopenian, D C; Nathenson, S G; Serreze, D V
2000-04-01
Previous work has indicated that an important component for the initiation of autoimmune insulin-dependent diabetes mellitus (IDDM) in the NOD mouse model entails MHC class I-restricted CD8 T cell responses against pancreatic beta cell Ags. However, unless previously activated in vitro, such CD8 T cells have previously been thought to require helper functions provided by MHC class II-restricted CD4 T cells to exert their full diabetogenic effects. In this study, we show that IDDM development is greatly accelerated in a stock of NOD mice expressing TCR transgenes derived from a MHC class I-restricted CD8 T cell clone (designated AI4) previously found to contribute to the earliest preclinical stages of pancreatic beta cell destruction. Importantly, these TCR transgenic NOD mice (designated NOD.AI4alphabeta Tg) continued to develop IDDM at a greatly accelerated rate when residual CD4 helper T cells were eliminated by introduction of the scid mutation or a functionally inactivated CD4 allele. In a previously described stock of NOD mice expressing TCR transgenes derived from another MHC class I-restricted beta cell autoreactive T cell clone, IDDM development was retarded by elimination of residual CD4 T cells. Hence, there is variability in the helper dependence of CD8 T cells contributing to the development of autoimmune IDDM. The AI4 clonotype represents the first CD8 T cell with a demonstrated ability to progress from a naive to functionally activated state and rapidly mediate autoimmune IDDM development in the complete absence of CD4 T cell helper functions.
Eguchi, Asuka; Lee, Garrett O.; Wan, Fang; Erwin, Graham S.; Ansari, Aseem Z.
2014-01-01
Transcription factors control the fate of a cell by regulating the expression of genes and regulatory networks. Recent successes in inducing pluripotency in terminally differentiated cells as well as directing differentiation with natural transcription factors has lent credence to the efforts that aim to direct cell fate with rationally designed transcription factors. Because DNA-binding factors are modular in design, they can be engineered to target specific genomic sequences and perform pre-programmed regulatory functions upon binding. Such precision-tailored factors can serve as molecular tools to reprogramme or differentiate cells in a targeted manner. Using different types of engineered DNA binders, both regulatory transcriptional controls of gene networks, as well as permanent alteration of genomic content, can be implemented to study cell fate decisions. In the present review, we describe the current state of the art in artificial transcription factor design and the exciting prospect of employing artificial DNA-binding factors to manipulate the transcriptional networks as well as epigenetic landscapes that govern cell fate. PMID:25145439
Elastin-like polypeptides: the power of design for smart cell encapsulation.
Bandiera, Antonella
2017-01-01
Cell encapsulation technology is still a challenging issue. Innovative methodologies such as additive manufacturing, and alternative bioprocesses, such as cell therapeutic delivery, where cell encapsulation is a key tool are rapidly gaining importance for their potential in regenerative medicine. Responsive materials such as elastin-based recombinant expression products have features that are particularly attractive for cell encapsulation. They can be designed and tailored to meet desired requirements. Thus, they represent promising candidates for the development of new concept-based materials that can be employed in this field. Areas covered: An overview of the design and employment of elastin-like polypeptides for cell encapsulation is given to outline the state of the art. Special attention is paid to the design of the macromolecule employed as well as to the method of matrix formation and the biological system involved. Expert opinion: As a result of recent progress in regenerative medicine there is a compelling need for materials that provide specific properties and demonstrate defined functional features. Rationally designed materials that may adapt according to applied external stimuli and that are responsive to biological systems, such as elastin-like polypeptides, belong to this class of smart material. A run through the components described to date represents a good starting point for further advancement in this area. Employment of these components in cell encapsulation application will promote its advance toward 'smart cell encapsulation technology'.
Expression profiling of lymph node cells from deer mice infected with Andes virus.
Schountz, Tony; Shaw, Timothy I; Glenn, Travis C; Feldmann, Heinz; Prescott, Joseph
2013-04-09
Deer mice (Peromyscus maniculatus) are the principal reservoir hosts of Sin Nombre virus (SNV), the cause of the great majority of hantavirus cardiopulmonary syndrome (HCPS) cases in North America. SNV, like all hantaviruses with their reservoirs, causes persistent infection without pathology in deer mice and appear to elicit a regulatory T cell response. Deer mice are also susceptible to Andes virus (ANDV), which causes the great majority of HCPS cases in South America, but they clear infection by 56 days post infection without signs of disease. We examined lymph node cell responses of deer mice infected with ANDV to determine expression profiles upon in vitro recall challenge with viral antigen. Because the deer mouse genome is currently unannotated, we developed a bioinformatics pipeline to use known lab mouse (Mus musculus) cDNAs to predict genes within the deer mouse genome and design primers for quantitative PCR (http://dna.publichealth.uga.edu/BlastPrimer/BlastPrimer.php). Of 94 genes examined, 20 were elevated, the plurality of which were Th2-specific, whereas 12 were downregulated. Other expressed genes represented Th1, regulatory T cells and follicular helper T cells, and B cells, but not Th17 cells, indicating that many cellular phenotypes participate in the host response to Andes virus. The ability to examine expression levels of nearly any gene from deer mice should allow direct comparison of infection with SNV or ANDV to determine the immunological pathways used for clearance of hantavirus infection in a reservoir host species.
Zhu, Guidong; Su, Wei; Jin, Guishan; Xu, Fujian; Hao, Shuyu; Guan, Fangxia; Jia, William; Liu, Fusheng
2011-05-16
The development of the cancer stem cell (CSCs) niche theory has provided a new target for the treatment of gliomas. Gene therapy using oncolytic viral vectors has shown great potential for the therapeutic targeting of CSCs. To explore whether a viral vector carrying an exogenous Endo-Angio fusion gene (VAE) can infect and kill glioma stem cells (GSCs), as well as inhibit their vascular niche in vitro, we have collected surgical specimens of human high-grade glioma (world health organization, WHO Classes III-VI) from which we isolated and cultured GSCs under conditions originally designed for the selective expansion of neural stem cells. Our results demonstrate the following: (1) Four lines of GSCs (isolated from 20 surgical specimens) could grow in suspension, were multipotent, had the ability to self-renew and expressed the neural stem cell markers, CD133 and nestin. (2) VAE could infect GSCs and significantly inhibit their viability. (3) The Endo-Angio fusion gene was expressed in GSCs 48 h after VAE infection and could inhibit the proliferation of human brain microvascular endothelial cells (HBMEC). (4) Residual viable cells lose the ability of self-renewal and adherent differentiation. In conclusion, VAE can significantly inhibit the activity of GSCs in vitro and the expression of exogenous Endo-Angio fusion gene can inhibit HBMEC proliferation. VAE can be used as a novel virus-gene therapy strategy for glioma. Copyright © 2011 Elsevier B.V. All rights reserved.
Dasgupta, Santanu; Menezes, Mitchell E.; Das, Swadesh K.; Emdad, Luni; Janjic, Aleksandar; Bhatia, Shilpa; Mukhopadhyay, Nitai D; Shao, Chunbo; Sarkar, Devanand; Fisher, Paul B.
2013-01-01
Purpose Urothelial cell carcinoma (UCC) rapidly progresses from superficial to muscle-invasive tumors. The key molecules involved in metastatic progression and its early detection require clarification. The present study defines a seminal role of the metastasis-associated gene MDA-9/Syntenin in UCC progression. Experimental Design Expression pattern of MDA-9/Syntenin was examined in 44 primary UCC and the impact of its overexpression and knock down was examined in multiple cells lines and key findings were validated in primary tumors. Results Significantly higher (p= 0.002–0.003) expression of MDA-9/Syntenin was observed in 64% (28/44) of primary tumors and an association was evident with stage (p=0.01), grade (p=0.03) and invasion status (p=0.02). MDA-9/Syntenin overexpression in non-tumorigenic HUC-1 cells increased proliferation (p=0.0012), invasion (p=0.0001) and EGFR, AKT, PI3K and c-Src expression. Alteration of Beta-catenin, E-Cadherin, Vimentin, Claudin-1, ZO-1 and TCF4 expression were also observed. MDA-9/Syntenin knock down in 3 UCC cell lines reversed phenotypic and molecular changes observed in the HUC-1 cells and reduced in vivo metastasis. Key molecular changes observed in the cell lines were confirmed in primary tumors. A physical interaction and co-localization of MDA-9/Syntenin and EGFR was evident in UCC cell lines and primary tumors. A logistic regression model analysis revealed a significant correlation between MDA-9/Syntenin:EGFR and MDA-9/Syntenin: AKT expressions with stage (p=0.04, EGFR), (p=0.01, AKT). A correlation between MDA-9/Syntenin: β-catenin co-expression with stage (p=0.03) and invasion (p=0.04) was also evident. Conclusions Our findings indicate that MDA-9/Syntenin might provide an attractive target for developing detection, monitoring and therapeutic strategies for managing UCC. PMID:23873690
MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants1[OPEN
Siligato, Riccardo; Wang, Xin; Yadav, Shri Ram; Lehesranta, Satu; Ma, Guojie; Ursache, Robertas; Sevilem, Iris; Zhang, Jing; Gorte, Maartje; Prasad, Kalika; Heidstra, Renze
2016-01-01
A powerful method to study gene function is expression or overexpression in an inducible, cell type-specific system followed by observation of consequent phenotypic changes and visualization of linked reporters in the target tissue. Multiple inducible gene overexpression systems have been developed for plants, but very few of these combine plant selection markers, control of expression domains, access to multiple promoters and protein fusion reporters, chemical induction, and high-throughput cloning capabilities. Here, we introduce a MultiSite Gateway-compatible inducible system for Arabidopsis (Arabidopsis thaliana) plants that provides the capability to generate such constructs in a single cloning step. The system is based on the tightly controlled, estrogen-inducible XVE system. We demonstrate that the transformants generated with this system exhibit the expected cell type-specific expression, similar to what is observed with constitutively expressed native promoters. With this new system, cloning of inducible constructs is no longer limited to a few special cases but can be used as a standard approach when gene function is studied. In addition, we present a set of entry clones consisting of histochemical and fluorescent reporter variants designed for gene and promoter expression studies. PMID:26644504
Expression and purification of the matrix protein of Nipah virus in baculovirus insect cell system.
Masoomi Dezfooli, Seyedehsara; Tan, Wen Siang; Tey, Beng Ti; Ooi, Chien Wei; Hussain, Siti Aslina
2016-01-01
Nipah virus (NiV) causes fatal respiratory illness and encephalitis in humans and animals. The matrix (M) protein of NiV plays an important role in the viral assembly and budding process. Thus, an access to the NiV M protein is vital to the design of viral antigens as diagnostic reagents. In this study, recombinant DNA technology was successfully adopted in the cloning and expression of NiV M protein. A recombinant expression cassette (baculovirus expression vector) was used to encode an N-terminally His-tagged NiV M protein in insect cells. A time-course study demonstrated that the highest yield of recombinant M protein (400-500 μg) was expressed from 107 infected cells 3 days after infection. A single-step purification method based on metal ion affinity chromatography was established to purify the NiV M protein, which successfully yielded a purity level of 95.67% and a purification factor of 3.39. The Western blotting and enzyme-linked immunosorbent assay (ELISA) showed that the purified recombinant M protein (48 kDa) was antigenic and reacted strongly with the serum of a NiV infected pig. © 2015 American Institute of Chemical Engineers.
LaPointe, Vanessa L. S.; Verpoorte, Amanda; Stevens, Molly M.
2013-01-01
Many cartilage tissue engineering approaches aim to differentiate human mesenchymal stem cells (hMSCs) into chondrocytes and develop cartilage in vitro by targeting cell-matrix interactions. We sought to better inform the design of cartilage tissue engineering scaffolds by understanding how integrin expression changes during chondrogenic differentiation. In three models of in vitro chondrogenesis, we studied the temporal change of cartilage phenotype markers and integrin subunits during the differentiation of hMSCs. We found that transcript expression of most subunits was conserved across the chondrogenesis models, but was significantly affected by the time-course of differentiation. In particular, ITGB8 was up-regulated and its importance in chondrogenesis was further established by a knockdown of integrin β8, which resulted in a non-hyaline cartilage phenotype, with no COL2A1 expression detected. In conclusion, we performed a systematic study of the temporal changes of integrin expression during chondrogenic differentiation in multiple chondrogenesis models, and revealed a role for integrin β8 in chondrogenesis. This work enhances our understanding of the changing adhesion requirements of hMSCs during chondrogenic differentiation and underlines the importance of integrins in establishing a cartilage phenotype. PMID:24312400
Mathew, Smitha C; Ghosh, Nandita; By, Youlet; Berthault, Aurélie; Virolleaud, Marie-Alice; Carrega, Louis; Chouraqui, Gaëlle; Commeiras, Laurent; Condo, Jocelyne; Attolini, Mireille; Gaudel-Siri, Anouk; Ruf, Jean; Parrain, Jean-Luc; Rodriguez, Jean; Guieu, Régis
2009-12-01
The cross talk between different membrane receptors is the source of increasing research. We designed and synthesized a new hetero-bivalent ligand that has antagonist properties on both A(1) adenosine and mu opiate receptors with a K(i) of 0.8+/-0.05 and 0.7+/-0.03 microM, respectively. This hybrid molecule increases cAMP production in cells that over express the mu receptor as well as those over expressing the A(1) adenosine receptor and reverses the antalgic effects of mu and A(1) adenosine receptor agonists in animals.
Dennison, Jennifer B.; Shahmoradgoli, Maria; Liu, Wenbin; Ju, Zhenlin; Meric-Bernstam, Funda; Perou, Charles M.; Sahin, Aysegul A.; Welm, Alana; Oesterreich, Steffi; Sikora, Matthew J.; Brown, Robert E.; Mills, Gordon B.
2016-01-01
Purpose The current study evaluated associative effects of breast cancer cells with the tumor microenvironment and its influence on tumor behavior. Experimental design Formalin-fixed paraffin embedded tissue and matched protein lysates were evaluated from two independent breast cancer patient data sets (TCGA and MD Anderson). Reverse-phase protein arrays (RPPA) were utilized to create a proteomics signature to define breast tumor subtypes. Expression patterns of cell lines and normal breast tissues were utilized to determine markers that were differentially expressed in stroma and cancer cells. Protein localization and stromal contents were evaluated for matched cases by imaging. Results A subtype of breast cancers designated “Reactive,” previously identified by RPPA that was not predicted by mRNA profiling, was extensively characterized. These tumors were primarily estrogen receptor (ER)-positive/human epidermal growth factor receptor (HER)2-negative, low-risk cancers as determined by enrichment of low-grade nuclei, lobular or tubular histopathology, and the luminal A subtype by PAM50. Reactive breast cancers contained high numbers of stromal cells and the highest extracellular matrix content typically without infiltration of immune cells. For ER-positive/HER2-negative cancers, the Reactive classification predicted favorable clinical outcomes in the TCGA cohort (HR = 0.36, P < 0.05). Conclusions A protein stromal signature in breast cancers is associated with a highly differentiated phenotype. The stromal compartment content and proteins are an extended phenotype not predicted by mRNA expression that could be utilized to sub-classify ER-positive/HER2-negative breast cancers. PMID:27172895
Akyuva, Yener; Kaplan, Necati; Yilmaz, Ibrahim; Ozbek, Hanefi; Sirin, Duygu Yasar; Karaaslan, Numan; Guler, Olcay; Ateş, Özkan
2018-04-09
The aim of this in vitro experimental study was to design a novel, polyvinyl alcohol(PVA)-basedpolymericscaffold that permits the controlled release of insulin-likegrowthfactor1(IGF-1)/bonemorphogenetic protein-2(BMP-2) following intervertebral disc administration. The drug delivery system was composed of two different solutions that formed a scaffold within seconds after coming into contact with each other. We performed swelling,pH,temperature tests and analysis of the controlled release of growth factors from this system.The release kinetics of the growth factors was determined through enzyme linked immunosorbent assay(ELISA). Cell proliferation and viability was monitored with microscopy and analyzed using an MTT assay and acridine orange/propidium iodide(AO/PI) staining. Chondroadherin(CHAD), hypoxiainduciblefactor-1alpha(HIF-1α),collagentypeII(COL2A1) gene expressions were determined with quantitative real-timepolymerasechainreaction(qRT-PCR) analysis to show the effects of IGF-1/BMP-2 administration on annulus fibrosus cell(AFC)/nucleus pulposus cell(NPC) cultures. The scaffold allowed for the controlled release of IGF-1 and BMP-2 in different time intervals. It was observed that as the application time increased, the number of cells and the degree of extracellular matrix development increased in AFC/NPC cultures. AO/PI staining and an MTT analysis showed that cells retained their specific morphology and continued to proliferate. It was observed that HIF-1α and CHAD expression increased in a time-dependent manner, and there wasn't any COL2A1 expression in the AFC/NPC cultures. The designed scaffold may be used as an alternative method for intervertebral disc administration of growth factors after further in vivo studies. We believe that such prototype scaffolds may be an innovative technology in targeted drug therapies after reconstructive neurosurgeries.
Weinstein-Oppenheimer, Caroline R; Brown, Donald I; Coloma, Rodrigo; Morales, Patricio; Reyna-Jeldes, Mauricio; Díaz, María J; Sánchez, Elizabeth; Acevedo, Cristian A
2017-10-01
Biologically active biomaterials as biopolymers and hydrogels have been used in medical applications providing favorable results in tissue engineering. In this research, a wound dressing device was designed by integration of an autologous clot hydrogel carrying mesenchymal stem-cells onto a biopolymeric scaffold. This hybrid biomaterial was tested in-vitro and in-vivo, and used in a human clinical case. The biopolymeric scaffold was made with gelatin, chitosan and hyaluronic acid, using a freeze-drying method. The scaffold was a porous material which was designed evaluating both physical properties (glass transition, melting temperature and pore size) and biological properties (cell viability and fibronectin expression). Two types of chitosan (120 and 300kDa) were used to manufacture the scaffold, being the high molecular weight the most biologically active and stable after sterilization with gamma irradiation (25kGy). A clot hydrogel was formulated with autologous plasma and calcium chloride, using an approach based on design of experiments. The optimum hydrogel was used to incorporate cells onto the porous scaffold, forming a wound dressing biomaterial. The wound dressing device was firstly tested in-vitro using human cells, and then, its biosecurity was evaluated in-vivo using a rabbit model. The in-vitro results showed high cell viability after one week (99.5%), high mitotic index (19.8%) and high fibronectin expression. The in-vivo application to rabbits showed adequate biodegradability capacity (between 1 and 2weeks), and the histological evaluation confirmed absence of rejection signs and reepithelization on the wound zone. Finally, the wound dressing biomaterial was used in a single human case to implant autologous cells on a skin surgery. The medical examination indicated high biocompatibility, partial biodegradation at one week, early regeneration capacity at 4weeks and absence of rejection signs. Copyright © 2017 Elsevier B.V. All rights reserved.
Robustness of synthetic oscillators in growing and dividing cells
NASA Astrophysics Data System (ADS)
Paijmans, Joris; Lubensky, David K.; Rein ten Wolde, Pieter
2017-05-01
Synthetic biology sets out to implement new functions in cells, and to develop a deeper understanding of biological design principles. Elowitz and Leibler [Nature (London) 403, 335 (2000), 10.1038/35002125] showed that by rational design of the reaction network, and using existing biological components, they could create a network that exhibits periodic gene expression, dubbed the repressilator. More recently, Stricker et al. [Nature (London) 456, 516 (2008), 10.1038/nature07389] presented another synthetic oscillator, called the dual-feedback oscillator, which is more stable. Detailed studies have been carried out to determine how the stability of these oscillators is affected by the intrinsic noise of the interactions between the components and the stochastic expression of their genes. However, as all biological oscillators reside in growing and dividing cells, an important question is how these oscillators are perturbed by the cell cycle. In previous work we showed that the periodic doubling of the gene copy numbers due to DNA replication can couple not only natural, circadian oscillators to the cell cycle [Paijmans et al., Proc. Natl. Acad. Sci. (USA) 113, 4063 (2016), 10.1073/pnas.1507291113], but also these synthetic oscillators. Here we expand this study. We find that the strength of the locking between oscillators depends not only on the positions of the genes on the chromosome, but also on the noise in the timing of gene replication: noise tends to weaken the coupling. Yet, even in the limit of high levels of noise in the replication times of the genes, both synthetic oscillators show clear signatures of locking to the cell cycle. This work enhances our understanding of the design of robust biological oscillators inside growing and diving cells.
RNA-seq mixology: designing realistic control experiments to compare protocols and analysis methods
Holik, Aliaksei Z.; Law, Charity W.; Liu, Ruijie; Wang, Zeya; Wang, Wenyi; Ahn, Jaeil; Asselin-Labat, Marie-Liesse; Smyth, Gordon K.
2017-01-01
Abstract Carefully designed control experiments provide a gold standard for benchmarking different genomics research tools. A shortcoming of many gene expression control studies is that replication involves profiling the same reference RNA sample multiple times. This leads to low, pure technical noise that is atypical of regular studies. To achieve a more realistic noise structure, we generated a RNA-sequencing mixture experiment using two cell lines of the same cancer type. Variability was added by extracting RNA from independent cell cultures and degrading particular samples. The systematic gene expression changes induced by this design allowed benchmarking of different library preparation kits (standard poly-A versus total RNA with Ribozero depletion) and analysis pipelines. Data generated using the total RNA kit had more signal for introns and various RNA classes (ncRNA, snRNA, snoRNA) and less variability after degradation. For differential expression analysis, voom with quality weights marginally outperformed other popular methods, while for differential splicing, DEXSeq was simultaneously the most sensitive and the most inconsistent method. For sample deconvolution analysis, DeMix outperformed IsoPure convincingly. Our RNA-sequencing data set provides a valuable resource for benchmarking different protocols and data pre-processing workflows. The extra noise mimics routine lab experiments more closely, ensuring any conclusions are widely applicable. PMID:27899618
Non-immune cells equipped with T cell receptor-like signaling for cancer cell ablation
Kojima, Ryosuke; Scheller, Leo; Fussenegger, Martin
2017-01-01
The ability to engineer custom cell-contact-sensing output devices into human non-immune cells would be useful for extending the applicability of cell-based cancer therapies and avoiding risks associated with engineered immune cells. Here, we have developed a new class of synthetic T-cell receptor-like signal-transduction device that functions efficiently in human non-immune cells and triggers release of output molecules specifically upon sensing contact with a target cell. This device employs an interleukin signaling cascade, whose OFF/ON switching is controlled by biophysical segregation of a transmembrane signal-inhibitory protein from the sensor cell/target cell interface. We further showed that designer non-immune cells equipped with this device driving expression of a membrane-penetrator/prodrug-activating enzyme construct could specifically kill target cells in the presence of the prodrug, indicating its potential usefulness for target-cell-specific, cell-based enzyme-prodrug cancer therapy. Our study also contributes to advancement of synthetic biology by extending available design principles to transmit extracellular information to cells. PMID:29131143
Metazoan tRNA introns generate stable circular RNAs in vivo.
Lu, Zhipeng; Filonov, Grigory S; Noto, John J; Schmidt, Casey A; Hatkevich, Talia L; Wen, Ying; Jaffrey, Samie R; Matera, A Gregory
2015-09-01
We report the discovery of a class of abundant circular noncoding RNAs that are produced during metazoan tRNA splicing. These transcripts, termed tRNA intronic circular (tric)RNAs, are conserved features of animal transcriptomes. Biogenesis of tricRNAs requires anciently conserved tRNA sequence motifs and processing enzymes, and their expression is regulated in an age-dependent and tissue-specific manner. Furthermore, we exploited this biogenesis pathway to develop an in vivo expression system for generating "designer" circular RNAs in human cells. Reporter constructs expressing RNA aptamers such as Spinach and Broccoli can be used to follow the transcription and subcellular localization of tricRNAs in living cells. Owing to the superior stability of circular vs. linear RNA isoforms, this expression system has a wide range of potential applications, from basic research to pharmaceutical science. © 2015 Lu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Microfluidic devices for cell culture and handling in organ-on-a-chip applications
NASA Astrophysics Data System (ADS)
Becker, Holger; Schulz, Ingo; Mosig, Alexander; Jahn, Tobias; Gärtner, Claudia
2014-03-01
For many problems in system biology or pharmacology, in-vivo-like models of cell-cell interactions or organ functions are highly sought after. Conventional stationary cell culture in 2D plates quickly reaches its limitations with respect to an in-vivo like expression and function of individual cell types. Microfabrication technologies and microfluidics offer an attractive solution to these problems. The ability to generate flow as well as geometrical conditions for cell culture and manipulation close to the in-vivo situation allows for an improved design of experiments and the modeling of organ-like functionalities. Furthermore, reduced internal volumes lead to a reduction in reagent volumes necessary as well as an increased assay sensitivity. In this paper we present a range of microfluidic devices designed for the co-culturing of a variety of cells. The influence of substrate materials and surface chemistry on the cell morphology and viability for long-term cell culture has been investigated as well as strategies and medium supply for on-chip cell cultivation.
Zhang, Linlin; Guo, Shang; Schwab, Joseph H; Nielsen, G Petur; Choy, Edwin; Ye, Shunan; Zhang, Zhan; Mankin, Henry; Hornicek, Francis J; Duan, Zhenfeng
2013-01-01
Brachyury is a marker for notochord-derived tissues and neoplasms, such as chordoma. However, the prognostic relevance of brachyury expression in chordoma is still unknown. The improvement of tissue microarray technology has provided the opportunity to perform analyses of tumor tissues on a large scale in a uniform and consistent manner. This study was designed with the use of tissue microarray to determine the expression of brachyury. Brachyury expression in chordoma tissues from 78 chordoma patients was analyzed by immunohistochemical staining of tissue microarray. The clinicopathologic parameters, including gender, age, location of tumor and metastatic status were evaluated. Fifty-nine of 78 (75.64%) tumors showed nuclear staining for brachyury, and among them, 29 tumors (49.15%) showed 1+ (<30% positive cells) staining, 15 tumors (25.42%) had 2+ (31% to 60% positive cells) staining, and 15 tumors (25.42%) demonstrated 3+ (61% to 100% positive cells) staining. Brachyury nuclear staining was detected more frequently in sacral chordomas than in chordomas of the mobile spine. However, there was no significant relationship between brachyury expression and other clinical variables. By Kaplan-Meier analysis, brachyury expression failed to produce any significant relationship with the overall survival rate. In conclusion, brachyury expression is not a prognostic indicator in chordoma.
[Study of the role of miRNA in mesenchymal stem cells isolated from osteoarthritis patients].
Tornero-Esteban, P; Hoyas, J A; Villafuertes, E; Garcia-Bullón, I; Moro, E; Fernández-Gutiérrez, B; Marco, F
2014-01-01
MiRNAs act as gene silencers that are involved in the regulation of essential cell functions. miR-335 is involved in regulating cell differentiation processes in progenitor cells. Mesenchymal stem cells (MSCs) are progenitor cells of chondrocytes and osteoblasts responsible for homeostatic maintenance of cartilage and bone. The aim of this study was to determine a possible relationship between the expression of miR-335 and osteoarthritis. MSCs obtained from the bone marrow of 3 osteoarthritic patients and 3 controls with no clinical signs of osteoarthritis or osteoporosis were cultured and phenotypically and functionally characterised in a 3-step culture. Expression levels of miR-335 and the mesoderm-specific transcript gene -MEST- that controls its expression were determined by quantitative PCR. Differences in the expression levels of miR-335 and MEST (median [interquartile range]: 1.69 [0.85-1.74], and 3.85 [3.20-5.67] were detected between MSCs isolated from patients with osteoarthritis and controls. Although the differences detected did not reach statistical significance (P=.1), a clear trend towards lower expression of miR-335 in osteoarthritis MSCs was observed. Given that miR-335 has the different genes involved in the Wnt signalling pathway as potential targets, the observed trend may help to ascertain, at least partially, some of the alterations which determine the onset or progression of osteoarthritis, and can therefore serve for the design of future therapeutic targets for the treatment of this disease. Copyright © 2013 SECOT. Published by Elsevier Espana. All rights reserved.
Ng, Valerie Y.; Morisseau, Christophe; Falck, John R.; Hammock, Bruce D.; Kroetz, Deanna L.
2007-01-01
Objective Proliferation of smooth muscle cells is implicated in cardiovascular complications. Previously, a urea-based soluble epoxide hydrolase inhibitor was shown to attenuate smooth muscle cell proliferation. We examined the possibility that urea-based alkanoic acids activate the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and the role of PPARα in smooth muscle cell proliferation. Methods and Results Alkanoic acids transactivated PPARα, induced binding of PPARα to its response element, and significantly induced the expression of PPARα-responsive genes, showing their function as PPARα agonists. Furthermore, the alkanoic acids attenuated platelet-derived growth factor–induced smooth muscle cell proliferation via repression of cyclin D1 expression. Using small interfering RNA to decrease endogenous PPARα expression, it was determined that PPARα was partially involved in the cyclin D1 repression. The antiproliferative effects of alkanoic acids may also be attributed to their inhibitory effects on soluble epoxide hydrolase, because epoxyeicosatrienoic acids alone inhibited smooth muscle cell proliferation. Conclusions These results show that attenuation of smooth muscle cell proliferation by urea-based alkanoic acids is mediated, in part, by the activation of PPARα. These acids may be useful for designing therapeutics to treat diseases characterized by excessive smooth muscle cell proliferation. PMID:16917105
Snapp, Karen R.; Craig, Ron; Herron, Michael; Nelson, Robert D.; Stoolman, Lloyd M.; Kansas, Geoffrey S.
1998-01-01
Interactions between P-selectin, expressed on endothelial cells and activated platelets, and its leukocyte ligand, a homodimer termed P-selectin glycoprotein ligand-1 (PSGL-1), mediate the earliest adhesive events during an inflammatory response. To investigate whether dimerization of PSGL-1 is essential for functional interactions with P-selectin, a mutant form of PSGL-1 was generated in which the conserved membrane proximal cysteine was mutated to alanine (designated C320A). Western blotting under both denaturing and native conditions of the C320A PSGL-1 mutant isolated from stably transfected cells revealed expression of only a monomeric form of PSGL-1. In contrast to cells cotransfected with α1-3 fucosyltransferase-VII (FucT-VII) plus PSGL-1, K562 cells expressing FucT-VII plus C320A failed to bind COS cells transfected with P-selectin in a low shear adhesion assay, or to roll on CHO cells transfected with P-selectin under conditions of physiologic flow. In addition, C320A transfectants failed to bind chimeric P-selectin fusion proteins. Both PSGL-1 and C320A were uniformly distributed on the surface of transfected K562 cells. Thus, dimerization of PSGL-1 through the single, conserved, extracellular cysteine is essential for functional recognition of P-selectin. PMID:9660879
Takizawa, Hajime
2013-01-01
Objective and design: The histone acetylation processes, which are believed to play a critical role in the regulation of many inflammatory genes, are reversible and regulated by histone acetyltransferases (HATs), which promote acetylation, and histone deacetylases (HDACs), which promote deacetylation. We studied the effects of lipopolysaccharide (LPS) on histone acetylation and its role in the regulation of interleukin (IL)-8 expression. Material: A human alveolar epithelial cell line A549 was used in vitro. Methods: Histone H4 acetylation at the IL-8 promoter region was assessed by a chromatin immunoprecipitation (ChIP) assay. The expression and production of IL-8 were evaluated by quantitative polymerase chain reaction and specific immunoassay. Effects of a HDAC inhibitor, trichostatin A (TSA), and a HAT inhibitor, anacardic acid, were assessed. Results: Escherichia coli-derived LPS showed a dose- and time-dependent stimulatory effect on IL-8 protein production and mRNA expression in A549 cells in vitro. LPS showed a significant stimulatory effect on histone H4 acetylation at the IL-8 promoter region by ChIP assay. Pretreatment with TSA showed a dose-dependent stimulatory effect on IL-8 release from A549 cells as compared to LPS alone. Conversely, pretreatment with anacardic acid inhibited IL-8 production and expression in A549 cells. Conclusion: These data suggest that LPS-mediated proinflammatory responses in the lungs might be modulated via changing chromatin remodeling by HAT inhibition. PMID:24627774
He, M; Taussig, M J
2001-08-01
We describe a format for production of protein arrays termed 'protein in situ array' (PISA). A PISA is rapidly generated in one step directly from PCR-generated DNA fragments by cell-free protein expression and in situ immobilisation at a surface. The template for expression is DNA encoding individual proteins or domains, which is produced by PCR using primers designed from information in DNA databases. Coupled transcription and translation is carried out on a surface to which the tagged protein adheres as soon as it is synthesised. Because proteins generated by cell-free synthesis are usually soluble and functional, this method can overcome problems of insolubility or degradation associated with bacterial expression of recombinant proteins. Moreover, the use of PCR-generated DNA enables rapid production of proteins or domains based on genome information alone and will be particularly useful where cloned material is not available. Here we show that human single-chain antibody fragments (three domain, V(H)/K form) and an enzyme (luciferase) can be functionally arrayed by the PISA method.
N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression.
Wang, Zhenyu; Leng, Jiali; Zhao, Yuguang; Yu, Dehai; Xu, Feng; Song, Qingxu; Qu, Zhigang; Zhuang, Xinming; Liu, Yi
2017-01-01
Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression. © 2017 The Author(s). Published by S. Karger AG, Basel.
Kang, Fenghua; Ai, Yong; Zhang, Yihua; Huang, Zhangjian
2018-04-10
To search for new drugs for intervention of drug-resistant lung cancer, a series of hybrids 4-15 from 2-cyano-3,12-dioxooleana-9-dien-28-oic acid (CDDO) and O 2 -(2,4-dinitrophenyl) diazeniumdiolate were designed, synthesized and biologically evaluated. The most active compound 7 produced relatively high levels of nitric oxide (NO) and reactive oxygen species (ROS) in drug-resistant lung cancer A549/Taxol cells which over-express glutathione S-transferase π (GSTπ), and significantly inhibited the cells' proliferation (IC 50 = 0.349 ± 0.051 μM), superior to the positive controls CDDO-Me, JS-K and Taxol. The inhibitory activity of 7 could be attenuated by an NO scavenger, ROS scavenger or GSTπ inhibitor. In addition, 7 suppressed the Lon protease expression as well as induced cell apoptosis and cycle arrest in A549/Taxol cells more strongly than CDDO-Me or JS-K. Together, our findings suggest that 7 may be worth studying further for intervention of drug-resistant lung cancer. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Raisin, Sophie; Morille, Marie; Bony, Claire; Noël, Danièle; Devoisselle, Jean-Marie; Belamie, Emmanuel
2017-08-22
In the context of regenerative medicine, the use of RNA interference mechanisms has already proven its efficiency in targeting specific gene expression with the aim of enhancing, accelerating or, more generally, directing stem cell differentiation. However, achievement of good transfection levels requires the use of a gene vector. For in vivo applications, synthetic vectors are an interesting option to avoid possible issues associated with viral vectors (safety, production costs, etc.). Herein, we report on the design of tripartite polyionic complex micelles as original non-viral polymeric vectors suited for mesenchymal stem cell transfection with siRNA. Three micelle formulations were designed to exhibit pH-triggered disassembly in an acidic pH range comparable to that of endosomes. One formulation was selected as the most promising with the highest siRNA loading capacity while clearly maintaining pH-triggered disassembly properties. A thorough investigation of the internalization pathway of micelles into cells with tagged siRNA was made before showing an efficient inhibition of Runx2 expression in primary bone marrow-derived stem cells. This work evidenced PIC micelles as promising synthetic vectors that allow efficient MSC transfection and control over their behavior, from the perspective of their clinical use.
TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells.
Bartucci, M; Dattilo, R; Moriconi, C; Pagliuca, A; Mottolese, M; Federici, G; Benedetto, A Di; Todaro, M; Stassi, G; Sperati, F; Amabile, M I; Pilozzi, E; Patrizii, M; Biffoni, M; Maugeri-Saccà, M; Piccolo, S; De Maria, R
2015-02-05
Metastatic growth in breast cancer (BC) has been proposed as an exclusive property of cancer stem cells (CSCs). However, formal proof of their identity as cells of origin of recurrences at distant sites and the molecular events that may contribute to tumor cell dissemination and metastasis development are yet to be elucidated. In this study, we analyzed a set of patient-derived breast cancer stem cell (BCSC) lines. We found that in vitro BCSCs exhibit a higher chemoresistance and migratory potential when compared with differentiated, nontumorigenic, breast cancer cells (dBCCs). By developing an in vivo metastatic model simulating the disease of patients with early BC, we observed that BCSCs is the only cell population endowed with metastatic potential. Gene-expression profile studies comparing metastagenic and non-metastagenic cells identified TAZ, a transducer of the Hippo pathway and biomechanical cues, as a central mediator of BCSCs metastatic ability involved in their chemoresistance and tumorigenic potential. Overexpression of TAZ in low-expressing dBCCs induced cell transformation and conferred tumorigenicity and migratory activity. Conversely, loss of TAZ in BCSCs severely impaired metastatic colonization and chemoresistance. In clinical data from 99 BC patients, high expression levels of TAZ were associated with shorter disease-free survival in multivariate analysis, thus indicating that TAZ may represent a novel independent negative prognostic factor. Overall, this study designates TAZ as a novel biomarker and a possible therapeutic target for BC.
McLucas, E; Moran, M T; Rochev, Y; Carroll, W M; Smith, T J
2006-01-01
The surface properties of vascular devices dictate the initial postimplantation reactions that occur and thus the efficacy of the implantation procedure. Over the last number of years, a number of different stent designs have emerged and stents are generally polished to a mirror finish during the manufacturing procedure. This study sought to investigate the effect of stainless steel surface roughness on endothelial cell gene expression using an appropriate cell culture in vitro assay system. Stainless steel discs were roughened by shot blasting or polished by mechanical polishing. The surface roughness of the treated and untreated discs was determined by atomic force microscopy (AFM). Cells were seeded on collagen type 1 gels and left to attach for 24 h. Stainless steel discs of varying roughness were then placed in contact with the cells and incubated for 24 h. RNA extractions and quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was then performed to determine the expression levels of candidate genes in the treated cells compared to suitable control cells. E-selectin and vascular cellular adhesion molecule (VCAM-1) were found to be significantly up-regulated in cells incubated with polished and roughened samples, indicating endothelial cell activation and inflammation. This study indicates that the surface roughness of stainless steel is an important surface property in the development of vascular stents.
Sánchez-Muñoz, Laura; Teodósio, Cristina; Morgado, José M; Escribano, Luis
2011-01-01
Mastocytosis is a term used to designate a heterogeneous group of disorders characterized by an abnormal proliferation and accumulation of mast cells (MCs) in one or multiple tissues including skin, bone marrow (BM), liver, spleen, and lymph nodes, among others. Recent advances in our understanding of mast cell biology and disease resulted in the identification of important differences in the expression of mast cell surface antigens between normal and neoplastic mast cells. Most notably, detection of aberrant expression of CD25 and CD2 on the surface of neoplastic mast cells but not on their normal counterparts lead to the inclusion of this immunophenotypic abnormality in the World Health Organization diagnostic criteria for systemic mastocytosis. Aberrant mast cell surface marker expression can be detected in the bone marrow aspirate by flow cytometry, even in patients lacking histopathologically detectable aggregates of mast cells in bone marrow biopsy sections. These aberrant immunophenotypic features are of great relevance for the assessment of tissue involvement in mastocytosis with consequences in the diagnosis, classification, and follow-up of the disease and in its differential diagnosis with other entities. In this chapter, we provide the reader with information for the objective and reproducible identification of pathologic MCs by using quantitative multiparametric flow cytometry, for their phenotypic characterization, and the criteria currently used for correct interpretation of the immunophenotypic results obtained. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy; Chatterjee, A. (Principal Investigator)
2002-01-01
Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in DSB repair in human cells. However, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We demonstrated previously that overexpression of BCL-2 or BCL-x(L) enhanced the frequency of X-ray-induced TK1 mutations, including loss of heterozygosity events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells and to determine whether ectopic expression of BCL-x(L) affects HDR. Using TK6-neo cells, we find that a single DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold, demonstrating efficient DSB repair by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3-4-fold more frequent in TK6 cells that stably overexpress the antiapoptotic protein BCL-X(L). Thus, HDR plays an important role in maintaining genomic integrity in human cells, and ectopic expression of BCL-x(L) enhances HDR of DSBs. This is the first study to highlight a function for BCL-x(L) in modulating DSB repair in human cells.
Florin, Lore; Lipske, Carolin; Becker, Eric; Kaufmann, Hitto
2011-04-10
DHFR-deficient CHO cells are the most commonly used host cells in the biopharmaceutical industry and over the years, individual substrains have evolved, some have been engineered with improved properties and platform technologies have been designed around them. Unexpectedly, we have observed that different DHFR-deficient CHO cells show only poor growth in fed-batch cultures even in HT supplemented medium, whereas antibody producer cells derived from these hosts achieved least 2-3 fold higher peak cell densities. Using a set of different expression vectors, we were able to show that this impaired growth performance was not due to the selection procedure possibly favouring fast growing clones, but a direct consequence of DHFR deficiency. Re-introduction of the DHFR gene reproducibly restored the growth phenotype to the level of wild-type CHO cells or even beyond which seemed to be dose-dependent. The requirement for a functional DHFR gene to achieve optimal growth under production conditions has direct implications for cell line generation since it suggests that changing to a selection system other than DHFR would require another CHO host which - especially for transgenic CHO strains and tailor-suited process platforms - this could mean significant investments and potential changes in product quality. In these cases, DHFR engineering of the current CHO-DG44 or DuxB11-based host could be an attractive alternative. Copyright © 2011 Elsevier B.V. All rights reserved.
Holen, Elisabeth; He, Juyun; Espe, Marit; Chen, Liqiou; Araujo, Pedro
2015-08-01
Future feed for farmed fish are based on untraditional feed ingredients, which will change nutrient profiles compared to traditional feed based on marine ingredients. To understand the impact of oils from different sources on fish health, n-6 and n-3 polyunsaturated fatty acids (PUFAs) were added to salmon head kidney cells, in a fully crossed design, to monitor their individual and combined effects on gene expression. Exposing salmon head kidney cells to single fatty acids, arachidonic acid (AA) or decosahexaenoic acid (DHA), resulted in down-regulation of cell signaling pathway genes and specific fatty acid metabolism genes as well as reduced prostaglandin E2 (PGE2) secretion. Eicosapentaenoic acid (EPA) had no impact on gene transcription in this study, but reduced the cell secretion of PGE2. The combined effect of AA + EPA resulted in up-regulation of eicosanoid pathway genes and the pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-α), Bclx (an inducer of apoptosis) and fatty acid translocase (CD36) as well as increased cell secretion of PGE2 into the media. Adding single fatty acids to salmon head kidney cells decreased inflammation markers in this model. The combination AA + EPA acted differently than the rest of the fatty acid combinations by increasing the inflammation markers in these cells. The concentration of fatty acid used in this experiment did not induce any lipid peroxidation responses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Doñate, Fernando; Raitano, Arthur; Morrison, Kendall; An, Zili; Capo, Linnette; Aviña, Hector; Karki, Sher; Morrison, Karen; Yang, Peng; Ou, Jimmy; Moriya, Ryuichi; Shostak, Yuriy; Malik, Faisal; Nadell, Rossana; Liu, Wendy; Satpayev, Daulet; Atkinson, John; Joseph, Ingrid B J; Pereira, Daniel S; Challita-Eid, Pia M; Stover, David R
2016-04-15
New cancer-specific antigens are required for the design of novel antibody-drug conjugates (ADC) that deliver tumor-specific and highly potent cytotoxic therapy. Suppression subtractive hybridization identified ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3 or CD203c) as a potential human cancer-specific antigen. Antibodies targeting the extracellular domain of human ENPP3 were produced and selected for specific binding to ENPP3. Expression of ENPP3 in normal and cancer tissue specimens was evaluated by immunohistochemistry (IHC). ADCs comprising anti-ENPP3 Ab conjugated with maleimidocaproyl monomethyl auristatin F via a noncleavable linker (mcMMAF) were selected for therapeutic potential using binding and internalization assays, cytotoxicity assays, and tumor growth inhibition in mouse xenograft models. Pharmacodynamic markers were evaluated by IHC in tissues and ELISA in blood. ENPP3 was highly expressed in clear cell renal cell carcinoma: 92.3% of samples were positive and 83.9% showed high expression. By contrast, expression was negligible in normal tissues examined, with the exception of the kidney. High expression was less frequent in papillary renal cell carcinoma and hepatocellular carcinoma samples. AGS16F, an anti-ENPP3 antibody-mcMMAF conjugate, inhibited tumor growth in three different renal cell carcinoma (RCC) xenograft models. AGS16F localized to tumors, formed the active metabolite Cys-mcMMAF, induced cell-cycle arrest and apoptosis, and increased blood levels of caspase-cleaved cytokeratin-18, a marker of epithelial cell death. AGS16F is a promising new therapeutic option for patients with RCC and is currently being evaluated in a phase I clinical trial. ©2015 American Association for Cancer Research.
Metabolic engineering of Chinese hamster ovary cells: Towards a bioengineered heparin
Baik, Jong Youn; Gasimli, Leyla; Yang, Bo; Datta, Payel; Zhang, Fuming; Glass, Charles A.; Esko, Jeffrey D.; Linhardt, Robert J.; Sharfstein, Susan T.
2012-01-01
Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Chinese hamster ovary (CHO) cells, commonly used mammalian host cells for production of foreign pharmaceutical proteins in the biopharmaceutical industry, are capable of producing heparan sulfate (HS), a related polysaccharide naturally. Since heparin and HS share the same biosynthetic pathway, we hypothesized that heparin could be produced in CHO cells by metabolic engineering. Based on the expression of endogenous enzymes in the HS / heparin pathways of CHO-S cells, human N-deacetylase/N-sulfotransferase (NDST2) and mouse heparan sulfate 3-O-sulfotransferase 1 (Hs3st1) genes were transfected sequentially into CHO host cells growing in suspension culture. Transfectants were screened using quantitative RT-PCR and Western blotting. Out of 120 clones expressing NDST2 and Hs3st1, 2 clones, Dual-3 and Dual-29, were selected for further analysis. An antithrombin III (ATIII) binding assay using flow cytometry, designed to recognize a key sugar structure characteristic of heparin, indicated that Hs3st1 transfection was capable of increasing ATIII binding. An anti-factor Xa assay, which affords a measure of anticoagulant activity, showed a significant increase in activity in the dual-expressing cell lines. Disaccharide analysis of the engineered HS showed a substantial increase in N-sulfo groups, but did not show a pattern consistent with pharmacological heparin, suggesting that further balancing the expression of transgenes with the expression levels of endogenous enzymes involved in HS / heparin biosynthesis might be necessary. PMID:22326251
Mihaylova, Ivana; DeRuyter, Marcel; Rummens, Jean-Luc; Bosmans, Eugene; Maes, Michael
2007-08-01
There is some evidence that patients with chronic fatigue syndrome (CFS) suffer from immune abnormalities, such as immune activation and decreased immune cell responsivity upon polyclonal stimili. This study was designed to evaluate lymphocyte activation in CFS by using a CD69 expression assay. CD69 acts as a costimulatory molecule for T- and natural killer (NK) cell activation. We collected whole blood from CFS patients, who met CDC criteria, and healthy volunteers. The blood samples were stimulated with mitogens during 18 h and the levels of activated T and NK cells expressing CD69 were measured on a Coulter Epics flow cytometer using a three color immunofluorescence staining protocol. The expression of the CD69 activation marker on T cells (CD3+, CD3+CD4+, and CD3+CD8+) and on NK cells (CD45+CD56+) was significantly lower in CFS patients than in healthy subjects. These differences were significant to the extent that a significant diagnostic performance was obtained, i.e. the area under the ROC curve was around 89%. No differences either in the number of leukocytes or in the number or percentage of lymphocytes, i.e. CD3, CD4, CD8 and CD19, could be found between CFS patients and the controls. Patients with CFS show defects in T- and NK cell activation. Since induction of CD69 surface expression is dependent on the activation of the protein kinase C (PKC) activation pathway, it is suggested that in CFS there is a disorder in the early activation of the immune system involving PKC.
Melaiu, Ombretta; Mina, Marco; Chierici, Marco; Boldrini, Renata; Jurman, Giuseppe; Romania, Paolo; D'Alicandro, Valerio; Benedetti, Maria C; Castellano, Aurora; Liu, Tao; Furlanello, Cesare; Locatelli, Franco; Fruci, Doriana
2017-08-01
Purpose: This study sought to evaluate the expression of programmed cell death-ligand-1 (PD-L1) and HLA class I on neuroblastoma cells and programmed cell death-1 (PD-1) and lymphocyte activation gene 3 (LAG3) on tumor-infiltrating lymphocytes to better define patient risk stratification and understand whether this tumor may benefit from therapies targeting immune checkpoint molecules. Experimental Design: In situ IHC staining for PD-L1, HLA class I, PD-1, and LAG3 was assessed in 77 neuroblastoma specimens, previously characterized for tumor-infiltrating T-cell density and correlated with clinical outcome. Surface expression of PD-L1 was evaluated by flow cytometry and IHC in neuroblastoma cell lines and tumors genetically and/or pharmacologically inhibited for MYC and MYCN. A dataset of 477 human primary neuroblastomas from GEO and ArrayExpress databases was explored for PD-L1, MYC, and MYCN correlation. Results: Multivariate Cox regression analysis demonstrated that the combination of PD-L1 and HLA class I tumor cell density is a prognostic biomarker for predicting overall survival in neuroblastoma patients ( P = 0.0448). MYC and MYCN control the expression of PD-L1 in neuroblastoma cells both in vitro and in vivo Consistently, abundance of PD-L1 transcript correlates with MYC expression in primary neuroblastoma. Conclusions: The combination of PD-L1 and HLA class I represents a novel prognostic biomarker for neuroblastoma. Pharmacologic inhibition of MYCN and MYC may be exploited to target PD-L1 and restore an efficient antitumor immunity in high-risk neuroblastoma. Clin Cancer Res; 23(15); 4462-72. ©2017 AACR . ©2017 American Association for Cancer Research.
Burns, William R.; Zhao, Yangbing; Frankel, Timothy L.; Hinrichs, Christian S.; Zheng, Zhili; Xu, Hui; Feldman, Steven A.; Ferrone, Soldano; Rosenberg, Steven A.; Morgan, Richard A.
2011-01-01
Immunotherapy, particularly the adoptive cell transfer (ACT) of tumor infiltrating lymphocytes (TIL), is a very promising therapy for metastatic melanoma. Some patients unable to receive TIL have been successfully treated with autologous peripheral blood lymphocytes (PBL), genetically modified to express HLA class I antigen restricted, melanoma antigen-reactive T-cell receptors; however, substantial numbers of patients remain ineligible due to the lack of expression of the restricting HLA class I allele. We sought to overcome this limitation by designing a non-MHC-restricted, chimeric antigen receptor (CAR) targeting the high molecular weight-melanoma associated antigen (HMW-MAA), which is highly expressed on over 90% of human melanomas but has a restricted distribution in normal tissues. HMW-MAA-specific CARs containing an antigen recognition domain based on variations of the HMW-MAA-specific monoclonal antibody (mAb) 225.28S and a T-cell activation domain based on combinations of CD28, 4-1BB, and CD3ζ activation motifs were constructed within a retroviral vector to allow stable gene transfer into cells and their progeny. Following optimization of the HMW-MAA-specific CAR for expression and function in human PBL, these gene-modified T cells secreted cytokines, were cytolytic, and proliferated in response to HMW-MAA expressing cell lines. Furthermore, the receptor functioned in both CD4+ and CD8+ cells, was non-MHC-restricted, and reacted against explanted human melanomas. To evaluate this HMW-MAA-specific CAR in patients with metastatic melanoma, we developed a clinical-grade retroviral packaging line. This may represent a novel means to treat the majority of patients with advanced melanoma, most notably those unable to receive current ACT therapies. PMID:20395199
Metabolic engineering of Chinese hamster ovary cells: towards a bioengineered heparin.
Baik, Jong Youn; Gasimli, Leyla; Yang, Bo; Datta, Payel; Zhang, Fuming; Glass, Charles A; Esko, Jeffrey D; Linhardt, Robert J; Sharfstein, Susan T
2012-03-01
Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Chinese hamster ovary (CHO) cells, commonly used mammalian host cells for production of foreign pharmaceutical proteins in the biopharmaceutical industry, are capable of producing heparan sulfate (HS), a related polysaccharide naturally. Since heparin and HS share the same biosynthetic pathway, we hypothesized that heparin could be produced in CHO cells by metabolic engineering. Based on the expression of endogenous enzymes in the HS/heparin pathways of CHO-S cells, human N-deacetylase/N-sulfotransferase (NDST2) and mouse heparan sulfate 3-O-sulfotransferase 1 (Hs3st1) genes were transfected sequentially into CHO host cells growing in suspension culture. Transfectants were screened using quantitative RT-PCR and Western blotting. Out of 120 clones expressing NDST2 and Hs3st1, 2 clones, Dual-3 and Dual-29, were selected for further analysis. An antithrombin III (ATIII) binding assay using flow cytometry, designed to recognize a key sugar structure characteristic of heparin, indicated that Hs3st1 transfection was capable of increasing ATIII binding. An anti-factor Xa assay, which affords a measure of anticoagulant activity, showed a significant increase in activity in the dual-expressing cell lines. Disaccharide analysis of the engineered HS showed a substantial increase in N-sulfo groups, but did not show a pattern consistent with pharmacological heparin, suggesting that further balancing the expression of transgenes with the expression levels of endogenous enzymes involved in HS/heparin biosynthesis might be necessary. Copyright © 2012 Elsevier Inc. All rights reserved.