Process development for automated solar cell and module production. Task 4: Automated array assembly
NASA Technical Reports Server (NTRS)
Hagerty, J. J.
1981-01-01
Progress in the development of automated solar cell and module production is reported. The unimate robot is programmed for the final 35 cell pattern to be used in the fabrication of the deliverable modules. The mechanical construction of the automated lamination station and final assembly station phases are completed and the first operational testing is underway. The final controlling program is written and optimized. The glass reinforced concrete (GRC) panels to be used for testing and deliverables are in production. Test routines are grouped together and defined to produce the final control program.
Delliaux, Carine; Gervais, Manon; Kan, Casina; Benetollo, Claire; Pantano, Francesco; Vargas, Geoffrey; Bouazza, Lamia; Croset, Martine; Bala, Yohann; Leroy, Xavier; Rosol, Thomas J; Rieusset, Jennifer; Bellahcène, Akeila; Castronovo, Vincent; Aubin, Jane E; Clézardin, Philippe; Duterque-Coquillaud, Martine; Bonnelye, Edith
2016-01-01
Bone metastases are one of the main complications of prostate cancer and they are incurable. We investigated whether and how estrogen receptor-related receptor alpha (ERRα) is involved in bone tumor progression associated with advanced prostate cancer. By meta-analysis, we first found that ERRα expression is correlated with castration-resistant prostate cancer (CRPC), the hallmark of progressive disease. We then analyzed tumor cell progression and the associated signaling pathways in gain-of-function/loss-of-function CRPC models in vivo and in vitro. Increased levels of ERRα in tumor cells led to rapid tumor progression, with both bone destruction and formation, and direct impacts on osteoclasts and osteoblasts. VEGF-A, WNT5A and TGFβ1 were upregulated by ERRα in tumor cells and all of these factors also significantly and positively correlated with ERRα expression in CRPC patient specimens. Finally, high levels of ERRα in tumor cells stimulated the pro-metastatic factor periostin expression in the stroma, suggesting that ERRα regulates the tumor stromal cell microenvironment to enhance tumor progression. Taken together, our data demonstrate that ERRα is a regulator of CRPC cell progression in bone. Therefore, inhibiting ERRα may constitute a new therapeutic strategy for prostate cancer skeletal-related events. PMID:27776343
TGFβ lengthens the G1 phase of stem cells in aged mouse brain.
Daynac, Mathieu; Pineda, Jose R; Chicheportiche, Alexandra; Gauthier, Laurent R; Morizur, Lise; Boussin, François D; Mouthon, Marc-André
2014-12-01
Neurogenesis decreases during aging causing a progressive cognitive decline but it is still controversial whether proliferation defects in neurogenic niches result from a loss of neural stem cells or from an impairment of their progression through the cell cycle. Using an accurate fluorescence-activated cell sorting technique, we show that the pool of neural stem cells is maintained in the subventricular zone of middle-aged mice while they have a reduced proliferative potential eventually leading to the subsequent decrease of their progeny. In addition, we demonstrate that the G1 phase is lengthened during aging specifically in activated stem cells, but not in transit-amplifying cells, and directly impacts on neurogenesis. Finally, we report that inhibition of TGFβ signaling restores cell cycle progression defects in stem cells. Our data highlight the significance of cell cycle dysregulation in stem cells in the aged brain and provide an attractive foundation for the development of anti-TGFβ regenerative therapies based on stimulating endogenous neural stem cells. © 2014 AlphaMed Press.
Content addressable memory project
NASA Technical Reports Server (NTRS)
Hall, Josh; Levy, Saul; Smith, D.; Wei, S.; Miyake, K.; Murdocca, M.
1991-01-01
The progress on the Rutgers CAM (Content Addressable Memory) Project is described. The overall design of the system is completed at the architectural level and described. The machine is composed of two kinds of cells: (1) the CAM cells which include both memory and processor, and support local processing within each cell; and (2) the tree cells, which have smaller instruction set, and provide global processing over the CAM cells. A parameterized design of the basic CAM cell is completed. Progress was made on the final specification of the CPS. The machine architecture was driven by the design of algorithms whose requirements are reflected in the resulted instruction set(s). A few of these algorithms are described.
Transformational Solar Array Final Report
NASA Technical Reports Server (NTRS)
Gaddy, Edward; Ballarotto, Mihaela; Drabenstadt, Christian; Nichols, John; Douglas, Mark; Spence, Brian; Stall, Richard A.; Sulyma, Chris; Sharps, Paul
2017-01-01
We have made outstanding progress in the Base Phase towards achieving the final NASA Research Announcement (NRA) goals. Progress is better than anticipated due to the lighter than predicted mass of the IMM solar cells. We look forward to further improvements in the IMM cell performance during Option I and Option II; so, we have confidence that the first four items listed in the table will improve to better than the NRA goals. The computation of the end of life blanket efficiency is uncertain because we have extrapolated the radiation damage from room temperature measurements. The last three items listed in the Table were not intended to be accomplished during the Base Phase; they will be achieved during Option I and Option II.
Li, Juan; Pan, Qianying; Rowan, Patrick D; Trotter, Timothy N; Peker, Deniz; Regal, Kellie M; Javed, Amjad; Suva, Larry J; Yang, Yang
2016-03-08
Bone dissemination and bone disease occur in approximately 80% of patients with multiple myeloma (MM) and are a major cause of patient mortality. We previously demonstrated that MM cell-derived heparanase (HPSE) is a major driver of MM dissemination to and progression in new bone sites. However the mechanism(s) by which HPSE promotes MM progression remains unclear. In the present study, we investigated the involvement of mesenchymal features in HPSE-promoted MM progression in bone. Using a combination of molecular, biochemical, cellular, and in vivo approaches, we demonstrated that (1) HPSE enhanced the expression of mesenchymal markers in both MM and vascular endothelial cells; (2) HPSE expression in patient myeloma cells positively correlated with the expression of the mesenchymal markers vimentin and fibronectin. Additional mechanistic studies revealed that the enhanced mesenchymal-like phenotype induced by HPSE in MM cells is due, at least in part, to the stimulation of the ERK signaling pathway. Finally, knockdown of vimentin in HPSE expressing MM cells resulted in significantly attenuated MM cell dissemination and tumor growth in vivo. Collectively, these data demonstrate that the mesenchymal features induced by HPSE in MM cells contribute to enhanced tumor cell motility and bone-dissemination.
Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong
2017-02-01
The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.
Progress in linear optics, non-linear optics and surface alignment of liquid crystals
NASA Astrophysics Data System (ADS)
Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.
We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Rasnick, D
2000-01-01
Evidence continues to accumulate that aneuploidy, an imbalance in the number of chromosomes, is responsible for the characteristic phenotypes of cancer, including the abnormal cellular size and morphology of cancer cells, the appearance of tumour-associated antigens, as well as the high levels of membrane-bound and secreted proteins responsible for invasiveness and loss of contact inhibition. Aneuploidy has also been demonstrated to be the self-perpetuating source of the karyotypic instability of cancer cells. Here it is shown that the auto-catalysed progression of aneuploidy explains the kinetics of the finite lifetime of diploid cells in culture, the time course of the appearance of papillomas and carcinomas in benzo[a]pyrene-treated mice, and the age-dependence of human cancers. Modelling studies indicate that the ease of spontaneous transformation of mouse cells in culture may be due to a chaotic progression of aneuploidy. Conversely, the strong preference towards senescence and resistance to transformation of human cells in culture may be the result of a non-chaotic progression of aneuploidy. Finally, a method is proposed for quantifying the aneuploidogenic potencies of carcinogens. PMID:10839979
Rasnick, D
2000-06-15
Evidence continues to accumulate that aneuploidy, an imbalance in the number of chromosomes, is responsible for the characteristic phenotypes of cancer, including the abnormal cellular size and morphology of cancer cells, the appearance of tumour-associated antigens, as well as the high levels of membrane-bound and secreted proteins responsible for invasiveness and loss of contact inhibition. Aneuploidy has also been demonstrated to be the self-perpetuating source of the karyotypic instability of cancer cells. Here it is shown that the auto-catalysed progression of aneuploidy explains the kinetics of the finite lifetime of diploid cells in culture, the time course of the appearance of papillomas and carcinomas in benzo[a]pyrene-treated mice, and the age-dependence of human cancers. Modelling studies indicate that the ease of spontaneous transformation of mouse cells in culture may be due to a chaotic progression of aneuploidy. Conversely, the strong preference towards senescence and resistance to transformation of human cells in culture may be the result of a non-chaotic progression of aneuploidy. Finally, a method is proposed for quantifying the aneuploidogenic potencies of carcinogens.
TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, SINGLE-CELL TRANSCRIPTOME TRAJECTORIES.
Cordero, Pablo; Stuart, Joshua M
2017-01-01
The availability of gene expression data at the single cell level makes it possible to probe the molecular underpinnings of complex biological processes such as differentiation and oncogenesis. Promising new methods have emerged for reconstructing a progression 'trajectory' from static single-cell transcriptome measurements. However, it remains unclear how to adequately model the appreciable level of noise in these data to elucidate gene regulatory network rewiring. Here, we present a framework called Single Cell Inference of MorphIng Trajectories and their Associated Regulation (SCIMITAR) that infers progressions from static single-cell transcriptomes by employing a continuous parametrization of Gaussian mixtures in high-dimensional curves. SCIMITAR yields rich models from the data that highlight genes with expression and co-expression patterns that are associated with the inferred progression. Further, SCIMITAR extracts regulatory states from the implicated trajectory-evolvingco-expression networks. We benchmark the method on simulated data to show that it yields accurate cell ordering and gene network inferences. Applied to the interpretation of a single-cell human fetal neuron dataset, SCIMITAR finds progression-associated genes in cornerstone neural differentiation pathways missed by standard differential expression tests. Finally, by leveraging the rewiring of gene-gene co-expression relations across the progression, the method reveals the rise and fall of co-regulatory states and trajectory-dependent gene modules. These analyses implicate new transcription factors in neural differentiation including putative co-factors for the multi-functional NFAT pathway.
TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems.
Bhave, Neela S; Veley, Kira M; Nadeau, Jeanette A; Lucas, Jessica R; Bhave, Sanjay L; Sack, Fred D
2009-01-01
Mutations in TOO MANY MOUTHS (TMM), which encodes a receptor-like protein, cause stomatal patterning defects in Arabidopsis leaves but eliminate stomatal formation in stems. Stomatal development in wild-type and tmm stems was analyzed to define TMM function. Epidermal cells in young tmm stems underwent many asymmetric divisions characteristic of entry into the stomatal pathway. The resulting precursor cells, meristemoids, appropriately expressed cell fate markers such as pTMM:GFP. However, instead of progressing developmentally by forming a guard mother cell, the meristemoids arrested, dedifferentiated, and enlarged. Thus asymmetric divisions are necessary but not sufficient for stomatal formation in stems, and TMM promotes the fate and developmental progression of early precursor cells. Comparable developmental and mature stomatal phenotypes were also found in tmm hypocotyls and in the proximal flower stalk. TMM is also a positive regulator of meristemoid division in leaves suggesting that TMM generally promotes meristemoid activity. Our results are consistent with a model in which TMM interacts with other proteins to modulate precursor cell fate and progression in an organ and domain-specific manner. Finally, the consistent presence of a small number of dedifferentiated meristemoids in mature wild-type stems suggests that precursor cell arrest is a normal feature of Arabidopsis stem development.
Zhang, Yan; Daquinag, Alexes; Traktuev, Dmitry O.; Amaya-Manzanares, Felipe; Simmons, Paul J.; March, Keith L.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.
2010-01-01
The connection between obesity and accelerated cancer progression has been established, but the mediating mechanisms are not well understood. We have shown that stromal cells from white adipose tissue (WAT) cooperate with the endothelium to promote blood vessel formation through the secretion of soluble trophic factors. Here, we hypothesize that WAT directly mediates cancer progression by serving as a source of cells that migrate to tumors and promote neovascularization. To test this hypothesis, we have evaluated the recruitment of WAT-derived cells by tumors and the effect of their engraftment on tumor growth by integrating a transgenic mouse strain engineered for expansion of traceable cells with established allograft and xenograft cancer models. Our studies show that entry of adipose stromal and endothelial cells into systemic circulation leads to their homing to and engraftment into tumor stroma and vasculature, respectively. We show that recruitment of adipose stromal cells by tumors is sufficient to promote tumor growth. Finally, we show that migration of stromal and vascular progenitor cells from WAT grafts to tumors is also associated with acceleration of cancer progression. These results provide a biological insight for the clinical association between obesity and cancer, thus outlining potential avenues for preventive and therapeutic strategies. PMID:19491274
Agudo, Judith; Ayuso, Eduard; Jimenez, Veronica; Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Tafuro, Sabrina; Obach, Mercè; Ruzo, Albert; Moya, Marta; Pujol, Anna; Bosch, Fatima
2012-01-01
Type 2 diabetes (T2D) results from insulin resistance and inadequate insulin secretion. Insulin resistance initially causes compensatory islet hyperplasia that progresses to islet disorganization and altered vascularization, inflammation, and, finally, decreased functional β-cell mass and hyperglycemia. The precise mechanism(s) underlying β-cell failure remain to be elucidated. In this study, we show that in insulin-resistant high-fat diet-fed mice, the enhanced islet vascularization and inflammation was parallel to an increased expression of vascular endothelial growth factor A (VEGF). To elucidate the role of VEGF in these processes, we have genetically engineered β-cells to overexpress VEGF (in transgenic mice or after adeno-associated viral vector-mediated gene transfer). We found that sustained increases in β-cell VEGF levels led to disorganized, hypervascularized, and fibrotic islets, progressive macrophage infiltration, and proinflammatory cytokine production, including tumor necrosis factor-α and interleukin-1β. This resulted in impaired insulin secretion, decreased β-cell mass, and hyperglycemia with age. These results indicate that sustained VEGF upregulation may participate in the initiation of a process leading to β-cell failure and further suggest that compensatory islet hyperplasia and hypervascularization may contribute to progressive inflammation and β-cell mass loss during T2D. PMID:22961079
2012-01-01
Twenty-eight new substituted N-phenyl ureidobenzenesulfonate (PUB-SO) and 18 N-phenylureidobenzenesulfonamide (PUB-SA) derivatives were prepared. Several PUB-SOs exhibited antiproliferative activity at the micromolar level against the HT-29, M21, and MCF-7 cell lines and blocked cell cycle progression in S-phase similarly to cisplatin. In addition, PUB-SOs induced histone H2AX (γH2AX) phosphorylation, indicating that these molecules induce DNA double-strand breaks. In contrast, PUB-SAs were less active than PUB-SOs and did not block cell cycle progression in S-phase. Finally, PUB-SOs 4 and 46 exhibited potent antitumor activity in HT-1080 fibrosarcoma cells grafted onto chick chorioallantoic membranes, which was similar to cisplatin and combretastatin A-4 and without significant toxicity toward chick embryos. These new compounds are members of a promising new class of anticancer agents. PMID:22694057
Turcotte, Vanessa; Fortin, Sébastien; Vevey, Florence; Coulombe, Yan; Lacroix, Jacques; Côté, Marie-France; Masson, Jean-Yves; C-Gaudreault, René
2012-07-12
Twenty-eight new substituted N-phenyl ureidobenzenesulfonate (PUB-SO) and 18 N-phenylureidobenzenesulfonamide (PUB-SA) derivatives were prepared. Several PUB-SOs exhibited antiproliferative activity at the micromolar level against the HT-29, M21, and MCF-7 cell lines and blocked cell cycle progression in S-phase similarly to cisplatin. In addition, PUB-SOs induced histone H2AX (γH2AX) phosphorylation, indicating that these molecules induce DNA double-strand breaks. In contrast, PUB-SAs were less active than PUB-SOs and did not block cell cycle progression in S-phase. Finally, PUB-SOs 4 and 46 exhibited potent antitumor activity in HT-1080 fibrosarcoma cells grafted onto chick chorioallantoic membranes, which was similar to cisplatin and combretastatin A-4 and without significant toxicity toward chick embryos. These new compounds are members of a promising new class of anticancer agents.
Everolimus affects vasculogenic mimicry in renal carcinoma resistant to sunitinib
Serova, Maria; Tijeras-Raballand, Annemilaï; Santos, Celia Dos; Martinet, Matthieu; Neuzillet, Cindy; Lopez, Alfred; Mitchell, Dianne C.; Bryan, Brad A.; Gapihan, Guillaume; Janin, Anne; Bousquet, Guilhem; Riveiro, Maria Eugenia; Bieche, Ivan; Faivre, Sandrine
2016-01-01
Angiogenesis is hallmark of clear cell renal cell carcinogenesis. Anti-angiogenic therapies have been successful in improving disease outcome; however, most patients treated with anti-angiogenic agents will eventually progress. In this study we report that clear cell renal cell carcinoma was associated with vasculogenic mimicry in both mice and human with tumor cells expressing endothelial markers in the vicinity of tumor vessels. We show that vasculogenic mimicry was efficiently targeted by sunitinib but eventually associated with tumor resistance and a more aggressive phenotype both in vitro and in vivo. Re-challenging these resistant tumors in mice, we showed that second-line treatment with everolimus particularly affected vasculogenic mimicry and tumor cell differentiation compared to sorafenib and axitinib. Finally, our results highlighted the phenotypic and genotypic changes at the tumor cell and microenvironment levels during sunitinib response and progression and the subsequent improvement second-line therapies bring to the current renal cell carcinoma treatment paradigm. PMID:27509260
Yong, Sheila T.; Wang, Xiao-Fan
2012-01-01
Background Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis has been extensively studied. However, since the developmental defects observed in Bat3-null mouse embryos cannot be explained solely by defects in apoptosis, we investigated whether BAT3 is also involved in cell-cycle progression. Methods/Principal Findings Using a stable-inducible Bat3-knockdown cellular system, we demonstrated that reduced BAT3 protein level causes a delay in both G1/S transition and G2/M progression. Concurrent with these changes in cell-cycle progression, we observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21, which is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Our findings indicate that in Bat3-knockdown cells, p21 continues to be synthesized during cell-cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent delay in cell-cycle progression. Finally, we showed that BAT3 co-localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. Conclusion: Our study reveals a novel, non-apoptotic role for BAT3 in cell-cycle regulation. By maintaining a low p21 protein level during the G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 to S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation by cyclin A/Cdk2, an event required for G2/M progression. BAT3 modulates these pro- and anti-proliferative roles of p21 at least in part by regulating cyclin A abundance, as well as p21 translocation between the cytoplasm and the nucleus to ensure that it functions in the appropriate intracellular compartment during each phase of the cell cycle. PMID:22761665
CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis.
Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M; Hosoya, Hitomi; St John, Lisa S; Molldrem, Jeffrey J; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata
2013-12-17
Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.
Amores, Gerardo Ruiz; Guazzaroni, María-Eugenia; Arruda, Letícia Magalhães; Silva-Rocha, Rafael
2016-04-01
Filamentous fungi are remarkable organisms naturally specialized in deconstructing plant biomass and this feature has a tremendous potential for biofuel production from renewable sources. The past decades have been marked by a remarkable progress in the genetic engineering of fungi to generate industry-compatible strains needed for some biotech applications. In this sense, progress in this field has been marked by the utilization of high-throughput techniques to gain deep understanding of the molecular machinery controlling the physiology of these organisms, starting thus the Systems Biology era of fungi. Additionally, genetic engineering has been extensively applied to modify wellcharacterized promoters in order to construct new expression systems with enhanced performance under the conditions of interest. In this review, we discuss some aspects related to significant progress in the understating and engineering of fungi for biotechnological applications, with special focus on the construction of synthetic promoters and circuits in organisms relevant for industry. Different engineering approaches are shown, and their potential and limitations for the construction of complex synthetic circuits in these organisms are examined. Finally, we discuss the impact of engineered promoter architecture in the single-cell behavior of the system, an often-neglected relationship with a tremendous impact in the final performance of the process of interest. We expect to provide here some new directions to drive future research directed to the construction of high-performance, engineered fungal strains working as microbial cell factories.
Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression
Liberati, Sonia; Morelli, Maria Beatrice; Amantini, Consuelo; Farfariello, Valerio; Santoni, Matteo; Conti, Alessandro; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio
2014-01-01
Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs), in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas), induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy. PMID:24709905
Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression.
Liberati, Sonia; Morelli, Maria Beatrice; Amantini, Consuelo; Farfariello, Valerio; Santoni, Matteo; Conti, Alessandro; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio
2014-02-19
Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs), in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas), induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy.
The fundamental role of mechanical properties in the progression of cancer disease and inflammation
NASA Astrophysics Data System (ADS)
Mierke, Claudia Tanja
2014-07-01
The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.
The Tumor Microenvironment: A Pitch for Multiple Players
Schiavoni, Giovanna; Gabriele, Lucia; Mattei, Fabrizio
2013-01-01
The cancer microenvironment may be conceptually regarded as a pitch where the main players are resident and non-resident cellular components, each covering a defined role and interconnected by a complex network of soluble mediators. The crosstalk between these cells and the tumor cells within this environment crucially determines the fate of tumor progression. Immune cells that infiltrate the tumor bed are transported there by blood circulation and exert a variety of effects, either counteracting or favoring tumor outgrowth. Here, we review and discuss the multiple populations composing the tumor bed, with special focus on immune cells subsets that positively or negatively dictate neoplastic progression. In this scenario, the contribution of cancer stem cells within the tumor microenvironment will also be discussed. Finally, we illustrate recent advances on new integrated approaches to investigate the tumor microenvironment in vitro. PMID:23616948
Targeting CD8+ T-cell tolerance for cancer immunotherapy.
Jackson, Stephanie R; Yuan, Jinyun; Teague, Ryan M
2014-01-01
In the final issue of Science in 2013, the American Association of Science recognized progress in the field of cancer immunotherapy as the 'Breakthrough of the Year.' The achievements were actually twofold, owing to the early success of genetically engineered chimeric antigen receptors (CAR) and to the mounting clinical triumphs achieved with checkpoint blockade antibodies. While fundamentally very different, the common thread of these independent strategies is the ability to prevent or overcome mechanisms of CD8(+) T-cell tolerance for improved tumor immunity. Here we discuss how circumventing T-cell tolerance has provided experimental insights that have guided the field of clinical cancer immunotherapy to a place where real breakthroughs can finally be claimed.
Physical break-down of the classical view on cancer cell invasion and metastasis.
Mierke, Claudia T
2013-03-01
Eight classical hallmarks of cancer have been proposed and are well-defined by using biochemical or molecular genetic methods, but are not yet precisely defined by cellular biophysical processes. To define the malignant transformation of neoplasms and finally reveal the functional pathway, which enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific biomechanical properties of cancer cells and their microenvironment such as the extracellular matrix and embedded cells such as fibroblasts, macrophages or endothelial cells. Nonetheless a main novel ninth hallmark of cancer is still elusive in classical tumor biological reviews, which is the aspect of physics in cancer disease by the natural selection of an aggressive (highly invasive) subtype of cancer cells. The physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light and will focus on novel physical methods to investigate the aggressiveness of cancer cells from a biophysicist's point of view. This may lead to novel insights into cancer disease and will overcome classical views on cancer. In addition, this review will discuss how physics of cancer can help to reveal whether cancer cells will invade connective tissue and metastasize. In particular, this review will point out how physics can improve, break-down or support classical approaches to examine tumor growth even across primary tumor boundaries, the invasion of single or collective cancer cells, transendothelial migration of cancer cells and metastasis in targeted organs. Finally, this review will show how physical measurements can be integrated into classical tumor biological analysis approaches. The insights into physical interactions between cancer cells, the primary tumor and the microenvironment may help to solve some "old" questions in cancer disease progression and may finally lead to novel approaches for development and improvement of cancer diagnostics and therapies. Copyright © 2013 Elsevier GmbH. All rights reserved.
da Silva-Diz, Victoria; Simón-Extremera, Pilar; Bernat-Peguera, Adrià; de Sostoa, Jana; Urpí, Maria; Penín, Rosa M; Sidelnikova, Diana Pérez; Bermejo, Oriol; Viñals, Joan Maria; Rodolosse, Annie; González-Suárez, Eva; Moruno, Antonio Gómez; Pujana, Miguel Ángel; Esteller, Manel; Villanueva, Alberto; Viñals, Francesc; Muñoz, Purificación
2016-03-01
Cancer stem-like cells (CSC) play key roles in long-term tumor propagation and metastasis, but their dynamics during disease progression are not understood. Tumor relapse in patients with initially excised skin squamous cell carcinomas (SCC) is characterized by increased metastatic potential, and SCC progression is associated with an expansion of CSC. Here, we used genetically and chemically-induced mouse models of skin SCC to investigate the signaling pathways contributing to CSC function during disease progression. We found that CSC regulatory mechanisms change in advanced SCC, correlating with aggressive tumor growth and enhanced metastasis. β-Catenin and EGFR signaling, induced in early SCC CSC, were downregulated in advanced SCC. Instead, autocrine FGFR1 and PDGFRα signaling, which have not been previously associated with skin SCC CSC, were upregulated in late CSC and promoted tumor growth and metastasis, respectively. Finally, high-grade and recurrent human skin SCC recapitulated the signaling changes observed in advanced mouse SCC. Collectively, our findings suggest a stage-specific switch in CSC regulation during disease progression that could be therapeutically exploited by targeting the PDGFR and FGFR1 pathways to block relapse and metastasis of advanced human skin SCC. ©2015 American Association for Cancer Research.
Genome Writing: Current Progress and Related Applications.
Wang, Yueqiang; Shen, Yue; Gu, Ying; Zhu, Shida; Yin, Ye
2018-02-01
The ultimate goal of synthetic biology is to build customized cells or organisms to meet specific industrial or medical needs. The most important part of the customized cell is a synthetic genome. Advanced genomic writing technologies are required to build such an artificial genome. Recently, the partially-completed synthetic yeast genome project represents a milestone in this field. In this mini review, we briefly introduce the techniques for de novo genome synthesis and genome editing. Furthermore, we summarize recent research progresses and highlight several applications in the synthetic genome field. Finally, we discuss current challenges and future prospects. Copyright © 2018. Production and hosting by Elsevier B.V.
[Apoptosis of human leukemic cells induced by topoisomerase I and II inhibitors].
Solary, E; Dubrez, L; Eymin, B; Bertrand, R; Pommier, Y
1996-03-01
Comparison between five human leukemic lines (BV173, HL60, U937, K562, KCL22) suggest that the main determinant of their sensitivity to topoisomerase I (camptothecin) and II (VP-16) inhibitors is their ability to regulate cell cycle progression in response to specific DNA damage, then to die through apoptosis: the more the cells inhibit cell cycle progression, the less sensitive they are. The final pathway of apoptosis induction involves a cytoplasmic signal, active at neutral pH, needing magnesium, sensitive to various protease inhibitors and activated directly by staurosporine. Modulators of intracellular signaling (calcium chelators, calmodulin inhibitors, PKC modulators, kinase and phosphatase inhibitors) have no significant influence upon apoptosis induction. Conversely, apoptosis induction pathway is modified during monocytic differentiation of HL60 cells induced by phorbol esters. Lastly, poly(ADP-ribosyl)ation and chromatine structure should regulate apoptotic DNA fragmentation that is prevented by 3-aminobenzamide and spermine, respectively.
Prieto, Daniel; Sotelo, Natalia; Seija, Noé; Sernbo, Sandra; Abreu, Cecilia; Durán, Rosario; Gil, Magdalena; Sicco, Estefanía; Irigoin, Victoria; Oliver, Carolina; Landoni, Ana Inés; Gabus, Raúl; Dighiero, Guillermo; Oppezzo, Pablo
2017-08-10
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by accumulation of clonal B lymphocytes, resulting from a complex balance between cell proliferation and apoptotic death. Continuous crosstalk between cancer cells and local/distant host environment is required for effective tumor growth. Among the main actors of this dynamic interplay between tumoral cells and their microenvironment are the nano-sized vesicles called exosomes. Emerging evidence indicates that secretion, composition, and functional capacity of exosomes are altered as tumors progress to an aggressive phenotype. In CLL, no data exist exploring the specific changes in the proteomic profile of plasma-derived exosomes from patients during disease evolution. We hereby report for the first time different proteomic profiles of plasma exosomes, both between indolent and progressive CLLs as well as within the individual patients at the onset of disease and during its progression. Next, we focus on the changes of the exosome protein cargoes, which are found exclusively in patients with progressive CLL after disease progression. The alterations in the proteomic cargoes underline different networks specific for leukemia progression related to inflammation, oxidative stress, and NF-κB and phosphatidylinositol 3-kinase/AKT pathway activation. Finally, our results suggest a preponderant role for the protein S100-A9 as an activator of the NFκB pathway during CLL progression and suggest that the leukemic clone can generate an autoactivation loop through S100-A9 expression, NF-κB activation, and exosome secretion. Collectively, our data propose a new pathway for NF-κB activation in CLL and highlight the importance of exosomes as extracellular mediators promoting tumor progression in CLL. © 2017 by The American Society of Hematology.
Casado-Medrano, Victoria; Barrio-Real, Laura; García-Rostán, Ginesa; Baumann, Matti; Rocks, Oliver; Caloca, María J.
2016-01-01
β2-chimaerin is a Rac1-specific negative regulator and a candidate tumor suppressor in breast cancer but its precise function in mammary tumorigenesis in vivo is unknown. Here, we study for the first time the role of β2-chimaerin in breast cancer using a mouse model and describe an unforeseen role for this protein in epithelial cell-cell adhesion. We demonstrate that expression of β2-chimaerin in breast cancer epithelial cells reduces E-cadherin protein levels, thus loosening cell-cell contacts. In vivo, genetic ablation of β2-chimaerin in the MMTV-Neu/ErbB2 mice accelerates tumor onset, but delays tumor progression. Finally, analysis of clinical databases revealed an inverse correlation between β2-chimaerin and E-cadherin gene expressions in Her2+ breast tumors. Furthermore, breast cancer patients with low β2-chimaerin expression have reduced relapse free survival but develop metastasis at similar times. Overall, our data redefine the role of β2-chimaerin as tumor suppressor and provide the first in vivo evidence of a dual function in breast cancer, suppressing tumor initiation but favoring tumor progression. PMID:27058424
Gómez-Villafuertes, Rosa; Paniagua-Herranz, Lucía; Gascon, Sergio; de Agustín-Durán, David; Ferreras, María de la O; Gil-Redondo, Juan Carlos; Queipo, María José; Menendez-Mendez, Aida; Pérez-Sen, Ráquel; Delicado, Esmerilda G; Gualix, Javier; Costa, Marcos R; Schroeder, Timm; Miras-Portugal, María Teresa; Ortega, Felipe
2017-12-16
Understanding the mechanisms that control critical biological events of neural cell populations, such as proliferation, differentiation, or cell fate decisions, will be crucial to design therapeutic strategies for many diseases affecting the nervous system. Current methods to track cell populations rely on their final outcomes in still images and they generally fail to provide sufficient temporal resolution to identify behavioral features in single cells. Moreover, variations in cell death, behavioral heterogeneity within a cell population, dilution, spreading, or the low efficiency of the markers used to analyze cells are all important handicaps that will lead to incomplete or incorrect read-outs of the results. Conversely, performing live imaging and single cell tracking under appropriate conditions represents a powerful tool to monitor each of these events. Here, a time-lapse video-microscopy protocol, followed by post-processing, is described to track neural populations with single cell resolution, employing specific software. The methods described enable researchers to address essential questions regarding the cell biology and lineage progression of distinct neural populations.
CELL-WALL DEGRADING ENZYMES OF AQUATIC HYPHOMYCETES: A REVIEW. (U915444)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
CELL SURFACE DISPLAY OF ORGANOPHOSPHORUS HYDROLASE USING ICE NUCLEATION PROTEIN. (R827227)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
CELLULAR AND MOLECULAR CHARACTERISTICS OF BASAL CELLS IN AIRWAY EPITHELIUM. (R827442)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Targeting inflammation in pancreatic cancer: Clinical translation
Steele, Colin William; Kaur Gill, Nina Angharad; Jamieson, Nigel Balfour; Carter, Christopher Ross
2016-01-01
Preclinical modelling studies are beginning to aid development of therapies targeted against key regulators of pancreatic cancer progression. Pancreatic cancer is an aggressive, stromally-rich tumor, from which few people survive. Within the tumor microenvironment cellular and extracellular components exist, shielding tumor cells from immune cell clearance, and chemotherapy, enhancing progression of the disease. The cellular component of this microenvironment consists mainly of stellate cells and inflammatory cells. New findings suggest that manipulation of the cellular component of the tumor microenvironment is possible to promote immune cell killing of tumor cells. Here we explore possible immunogenic therapeutic strategies. Additionally extracellular stromal elements play a key role in protecting tumor cells from chemotherapies targeted at the pancreas. We describe the experimental findings and the pitfalls associated with translation of stromally targeted therapies to clinical trial. Finally, we discuss the key inflammatory signal transducers activated subsequent to driver mutations in oncogenic Kras in pancreatic cancer. We present the preclinical findings that have led to successful early trials of STAT3 inhibitors in pancreatic adenocarcinoma. PMID:27096033
Targeting CD8+ T-cell tolerance for cancer immunotherapy
Jackson, Stephanie R; Yuan, Jinyun; Teague, Ryan M
2014-01-01
In the final issue of Science in 2013, the American Association of Science recognized progress in the field of cancer immunotherapy as the ‘Breakthrough of the Year.’ The achievements were actually twofold, owing to the early success of genetically engineered chimeric antigen receptors (CAR) and to the mounting clinical triumphs achieved with checkpoint blockade antibodies. While fundamentally very different, the common thread of these independent strategies is the ability to prevent or overcome mechanisms of CD8+ T-cell tolerance for improved tumor immunity. Here we discuss how circumventing T-cell tolerance has provided experimental insights that have guided the field of clinical cancer immunotherapy to a place where real breakthroughs can finally be claimed. PMID:25290416
TRICHLOROETHYLENE ACTIVATES CD4+ T CELLS: POTENTIAL ROLE IN AN AUTOIMMUNE RESPONSE. (R826409)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
APOPTIC POTANCY AND CYTOTOXIC EFFECTS OF DIBROMOMOACETONITRILE IN HUMAN LEUKEMIA CELLS. (R825955)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
EXPRESSION EFFICIENCY OF A SCORPION NEUROTOXIN, AAHIT, USING BACULOVIRUS IN INSECT CELLS. (R825433)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The Biology of Cancer Exosomes: Insights and New Perspectives.
Ruivo, Carolina F; Adem, Bárbara; Silva, Miguel; Melo, Sónia A
2017-12-01
Exosomes are a subclass of extracellular vesicles involved in intercellular communication that are released by all cell types, including cancer cells. Cancer exosomes carry malignant information in the form of proteins, lipids, and nucleic acids that can reprogram recipient cells. Exosomes have emerged as putative biological mediators in cancer contributing to major steps of disease progression. A leading role exists for cancer exosomes in specific aspects of tumor progression: modulation of immune response, tumor microenvironment reprogramming, and metastasis. This review will address the functions attributed to cancer exosomes in these three aspects of cancer biology, highlighting recent advances and potential limitations. Finally, we explore alternative strategies to develop better models to study cancer exosomes biology. Cancer Res; 77(23); 6480-8. ©2017 AACR . ©2017 American Association for Cancer Research.
Yang, Zhen; Bogovic, John A; Carass, Aaron; Ye, Mao; Searson, Peter C; Prince, Jerry L
2013-03-13
With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. This method addresses several challenges through a combination of ideas. 1) It realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To deal with different defects in the fluorescence images, the cell junctions are enhanced by applying an order-statistic filter and principal curvature based image operator. 3) The final segmentation using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and gaps between neighboring cells. The automatic segmentation results are compared with manually delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.
Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity
Hernandez-Fernaud, Juan R.; Ruengeler, Elena; Casazza, Andrea; Neilson, Lisa J.; Pulleine, Ellie; Santi, Alice; Ismail, Shehab; Lilla, Sergio; Dhayade, Sandeep; MacPherson, Iain R.; McNeish, Iain; Ennis, Darren; Ali, Hala; Kugeratski, Fernanda G.; Al Khamici, Heba; van den Biggelaar, Maartje; van den Berghe, Peter V.E.; Cloix, Catherine; McDonald, Laura; Millan, David; Hoyle, Aoisha; Kuchnio, Anna; Carmeliet, Peter; Valenzuela, Stella M.; Blyth, Karen; Yin, Huabing; Mazzone, Massimiliano; Norman, Jim C.; Zanivan, Sara
2017-01-01
The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion. PMID:28198360
Does an NKT-cell-based immunotherapeutic approach have a future in multiple myeloma?
Favreau, Mérédis; Vanderkerken, Karin
2016-01-01
Natural killer T (NKT) cells constitute a unique subset of innate-like T lymphocytes which differ from conventional T cells by recognizing lipid antigens presented by the non-polymorphic major histocompatibility complex (MHC) I-like molecule CD1d. Despite being a relatively infrequent population of lymphocytes, NKT cells can respond rapidly upon activation with glycosphingolipids by production of cytokines which aim to polarize different axes of the immune system. Due to their dual effector capacities, NKT cells can play a vital role in cancer immunity, infection, inflammation and autoimmune diseases. It is believed that modulation of their activity towards immune activation can be a useful tool in anti-tumor immunotherapeutic strategies. Here we summarize the characteristics of NKT cells and discuss their involvement in immunosurveillance. Furthermore, an update is given about their role and the progress that has been made in the field of multiple myeloma (MM). Finally, some challenges are discussed that are currently hampering further progress. PMID:26895468
Nelson, Patrick; Smith, Noah; Ciupe, Stanca; Zou, Weiping; Omenn, Gilbert S.; Pietropaolo, Massimo
2015-01-01
Type 1 diabetes (T1DM) is a chronic autoimmune disease with a long prodrome, which is characterized by dysfunction and ultimately destruction of pancreatic β-cells. Because of the limited access to pancreatic tissue and pancreatic lymph nodes during the normoglycemic phase of the disease, little is known about the dynamics involved in the chain of events leading to the clinical onset of the disease in humans. In particular, during T1DM progression there is limited information about temporal fluctuations of immunologic abnormalities and their effect on pancreatic β-cell function and mass. Therefore, our understanding of the pathoetiology of T1DM relies almost entirely on studies in animal models of this disease. In an effort to elucidate important mechanisms that may play a critical role in the progression to overt disease, we propose a mathematical model that takes into account the dynamics of functional and dysfunctional β-cells, regulatory T cells, and pathogenic T cells. The model assumes that all individuals carrying susceptible HLA haplotypes will develop variable degrees of T1DM-related immunologic abnormalities. The results provide information about the concentrations and ratios of pathogenic T cells and regulatory T cells, the timing in which β-cells become dysfunctional, and how certain kinetic parameters affect the progression to T1DM. Our model is able to describe changes in the ratio of pathogenic T cells and regulatory T cells after the appearance islet antibodies in the pancreas. Finally, we discuss the robustness of the model and its ability to assist experimentalists in designing studies to test complicated theories about the disease. PMID:19835428
Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L.
Liu, Donghua; Jiang, Wusheng; Meng, Qingmin; Zou, Jin; Gu, Jiegang; Zeng, Muai
2009-04-01
Different copper concentrations, as well as different exposure times, were applied to investigate both cytogenetical and ultrastructural alterations in garlic (Allium sativum L.) meristem cells. Results showed that the mitotic index decreased progressively when either copper concentration or exposure time increased. C-mitosis, anaphase bridges, chromosome stickiness and broken nuclei were observed in the copper treated root tip cells. Some particulates containing the argyrophilic NOR-associated proteins were distributed in the nucleus of the root-tip cells and the amount of this particulate material progressively increased with increasing exposure time. Finally, the nucleolar material was extruded from the nucleus into the cytoplasm. Also, increased dictyosome vesicles in number, formation of cytoplasmic vesicles containing electron dense granules, altered mitochondrial shape, disruption of nuclear membranes, condensation of chromatin material, disintegration of organelles were observed. The mechanisms of detoxification and tolerance of copper are briefly discussed.
Sánchez-Martínez, Ruth; Álvarez-Fernández, Mónica; Vargas, Teodoro; Molina, Susana; García, Belén; Herranz, Jesús; Moreno-Rubio, Juan; Reglero, Guillermo; Pérez-Moreno, Mirna; Feliu, Jaime; Malumbres, Marcos; de Molina, Ana Ramírez
2015-01-01
The alterations in carbohydrate metabolism that fuel tumor growth have been extensively studied. However, other metabolic pathways involved in malignant progression, demand further understanding. Here we describe a metabolic acyl-CoA synthetase/stearoyl-CoA desaturase ACSL/SCD network causing an epithelial-mesenchymal transition (EMT) program that promotes migration and invasion of colon cancer cells. The mesenchymal phenotype produced upon overexpression of these enzymes is reverted through reactivation of AMPK signaling. Furthermore, this network expression correlates with poorer clinical outcome of stage-II colon cancer patients. Finally, combined treatment with chemical inhibitors of ACSL/SCD selectively decreases cancer cell viability without reducing normal cells viability. Thus, ACSL/SCD network stimulates colon cancer progression through conferring increased energetic capacity and invasive and migratory properties to cancer cells, and might represent a new therapeutic opportunity for colon cancer treatment. PMID:26451612
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
DIEL PHASING OF THE CELL-CYCLE IN THE FLORIDA RED TIDE DINOFLAGELLATE, GYMNODINIUM BREVE. (R827085)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
PROPERTIES OF THE WEIGHTING CELL ESTIMATOR UNDER A NONPARAMETRIC RESPONSE MECHANISM. (R829095C002)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
HEAVY METAL REMOVAL BY IYSING CELLS OF ACCLIMATED AND STIMULATED AEROBIC CULTURES. (R825549C018)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
MANGANESE INDUCES NEURITE OUTGROWTH IN PC12 CELLS VIA UPREGULATION OF ALPHA(V) INTEGRINS. (R826248)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, T.P.
1983-01-01
We have combined laser microbeam irradiation of mouse egg nuclei with fusion to donor cell nuclei in order to develop a new procedure for transferring nuclei into mammalian eggs. We have been using virus-treated cells injected into the perivitelline for fusion with egg cells. Binucleate cells inside the zona pellucida were often produced indicating nuclear transfer between cells had occurred. To prevent the formation of such abortive polyploidy, host nuclei were inactivated with a laser microbeam. The subsequent cleavage of the microirradiated eggs has been studied.
Ames, Kristina; Da Cunha, Dayse S; Gonzalez, Brenda; Konta, Marina; Lin, Feng; Shechter, Gabriel; Starikov, Lev; Wong, Sara; Bülow, Hannes E; Meléndez, Alicia
2017-03-20
The decision of stem cells to proliferate and differentiate is finely controlled. The Caenorhabditis elegans germline provides a tractable system for studying the mechanisms that control stem cell proliferation and homeostasis [1-4]. Autophagy is a conserved cellular recycling process crucial for cellular homeostasis in many different contexts [5], but its function in germline stem cell proliferation remains poorly understood. Here, we describe a function for autophagy in germline stem cell proliferation. We found that autophagy genes such as bec-1/BECN1/Beclin1, atg-16.2/ATG16L, atg-18/WIPI1/2, and atg-7/ATG7 are required for the late larval expansion of germline stem cell progenitors in the C. elegans gonad. We further show that BEC-1/BECN1/Beclin1 acts independently of the GLP-1/Notch or DAF-7/TGF-β pathways but together with the DAF-2/insulin IGF-1 receptor (IIR) signaling pathway to promote germline stem cell proliferation. Similar to DAF-2/IIR, BEC-1/BECN1/Beclin1, ATG-18/WIPI1/2, and ATG-16.2/ATG16L all promote cell-cycle progression and are negatively regulated by the phosphatase and tensin homolog DAF-18/PTEN. However, whereas BEC-1/BECN1/Beclin1 acts through the transcriptional regulator SKN-1/Nrf1, ATG-18/WIPI1/2 and ATG-16.2/ATG16L exert their function through the DAF-16/FOXO transcription factor. In contrast, ATG-7 functions in concert with the DAF-7/TGF-β pathway to promote germline proliferation and is not required for cell-cycle progression. Finally, we report that BEC-1/BECN1/Beclin1 functions non-cell-autonomously to facilitate cell-cycle progression and stem cell proliferation. Our findings demonstrate a novel non-autonomous role for BEC-1/BECN1/Beclin1 in the control of stem cell proliferation and cell-cycle progression, which may have implications for the understanding and development of therapies against malignant cell growth in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
In vivo imaging of the dynamics of different variants of EGFR in glioblastomas.
Shah, Khalid
2011-01-01
A number of altered pathways in cancer cells depend on growth factor receptors. The amplification/alteration of the epidermal growth factor receptor (EGFR) has been shown to play a significant role in enhancing tumor burden in a number of tumors, including malignant glioblastomas (GBM). To dissect the role of EGFR expression in tumor progression in mouse models of cancer and ultimately evaluate targeted therapies, it is necessary to visualize the dynamics of EGFR in real time in vivo. Non-invasive imaging based on quantitative and qualitative changes in light emission by fluorescent and bioluminescent markers offers a huge potential to facilitate drug development. Multiple approaches could be used to follow a molecular target or pathway with the fusion of a bioluminescent-fluorescent marker. This unit describes a protocol for simultaneously imaging EGFR activity and progression of GBM in a mouse model. Human glioma cells transduced with lentiviral vectors bearing different combinations of fluorescent and bioluminescent proteins either fused to EGFR or expressed alone can be grown as monolayers and maintained over several passages. The unit begins with a method for transducing glioma cells with lentiviral vectors for stable expression of these fluorescent and bioluminescent markers in vitro, followed by transplantation of engineered glioma cells in mice, and, finally, sequential bioluminescent imaging of EGFR expression and GBM progression in mice. The protocol details characterization of engineered glioma cells in culture, surgical preparation, craniotomy, cell implantation, animal recovery, and imaging procedures to study kinetics of EGFR expression and GBM progression.
NASA Astrophysics Data System (ADS)
Mierke, Claudia T.
There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light from a physical point of view with respect to cancer cell mechanics and the special and unique role of the endothelium on cancer cell invasion. The physical view on cancer disease may lead to novel insights into cancer disease and will help to overcome the classical views on cancer. In addition, in this review it will be discussed how physics of cancer can help to reveal and propose the functional mechanism which cancer cells use to invade connective tissue and transmigrate through the endothelium to finally metastasize. Finally, in this review it will be demonstrated how biophysical measurements can be combined with classical analysis approaches of tumor biology. The insights into physical interactions between cancer cells, the endothelium and the microenvironment may help to answer some "old," but still important questions in cancer disease progression.
NASA Astrophysics Data System (ADS)
Mierke, Claudia T.
2015-10-01
There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light from a physical point of view with respect to cancer cell mechanics and the special and unique role of the endothelium on cancer cell invasion. The physical view on cancer disease may lead to novel insights into cancer disease and will help to overcome the classical views on cancer. In addition, in this review it will be discussed how physics of cancer can help to reveal and propose the functional mechanism which cancer cells use to invade connective tissue and transmigrate through the endothelium to finally metastasize. Finally, in this review it will be demonstrated how biophysical measurements can be combined with classical analysis approaches of tumor biology. The insights into physical interactions between cancer cells, the endothelium and the microenvironment may help to answer some "old," but still important questions in cancer disease progression.
Challenges and advances in the treatment of AKI.
Kaushal, Gur P; Shah, Sudhir V
2014-05-01
Treating or preventing AKI requires treating or preventing a rise in serum creatinine as well as the immediate and remote clinical consequences associated with AKI. Because a substantial number of patients with AKI progress to ESRD, identifying patients likely to progress and halting progression are important goals for treating AKI. Many therapies for AKI are being developed, including RenalGuard Therapy, which aims to maintain high urine output; α-melanocyte-stimulating hormone, with anti-inflammatory and antiapoptotic activities; alkaline phosphatase, which detoxifies proinflammatory substances; novel, small interfering RNA, directed at p53 activation; THR-184, a peptide agonist of bone morphogenetic proteins; removal of catalytic iron, important in free-radical formation; and cell-based therapies, including mesenchymal stem cells in vivo and renal cell therapy in situ. In this review, we explore what treatment of AKI really means, discuss the emerging therapies, and examine the windows of opportunity for treating AKI. Finally, we provide suggestions for accelerating the pathways toward preventing and treating AKI, such as establishing an AKI network, implementing models of catalytic philanthropy, and directing a small percentage of the Medicare ESRD budget for developing therapies to prevent and treat AKI and halt progression of CKD. Copyright © 2014 by the American Society of Nephrology.
Challenges and Advances in the Treatment of AKI
Kaushal, Gur P.
2014-01-01
Treating or preventing AKI requires treating or preventing a rise in serum creatinine as well as the immediate and remote clinical consequences associated with AKI. Because a substantial number of patients with AKI progress to ESRD, identifying patients likely to progress and halting progression are important goals for treating AKI. Many therapies for AKI are being developed, including RenalGuard Therapy, which aims to maintain high urine output; α-melanocyte–stimulating hormone, with anti-inflammatory and antiapoptotic activities; alkaline phosphatase, which detoxifies proinflammatory substances; novel, small interfering RNA, directed at p53 activation; THR-184, a peptide agonist of bone morphogenetic proteins; removal of catalytic iron, important in free-radical formation; and cell-based therapies, including mesenchymal stem cells in vivo and renal cell therapy in situ. In this review, we explore what treatment of AKI really means, discuss the emerging therapies, and examine the windows of opportunity for treating AKI. Finally, we provide suggestions for accelerating the pathways toward preventing and treating AKI, such as establishing an AKI network, implementing models of catalytic philanthropy, and directing a small percentage of the Medicare ESRD budget for developing therapies to prevent and treat AKI and halt progression of CKD. PMID:24480828
Pharmacological or genetic inhibition of LDHA reverses tumor progression of pediatric osteosarcoma.
Gao, Shan; Tu, Dan-Na; Li, Heng; Jiang, Jian-Xin; Cao, Xin; You, Jin-Bin; Zhou, Xiao-Qin
2016-07-01
Reprogrammed energy metabolism is an emerging hallmark of cancer. Lactate dehydrogenase A (LDHA), a key enzyme involved in anaerobic glycolysis, is frequently deregulated in human malignancies. However, limited knowledge is known about its roles in the progression of osteosarcoma (OS). In this study, we found that LDHA is commonly upregulated in four OS cell lines compared with the normal osteoblast cells (hFOB1.19). Treatment with FX11, a specific inhibitor of LDHA, significantly reduced LDHA activity, and inhibited cell proliferation and invasive potential in a dose dependent manner. Genetic silencing of LDHA resulted in a decreased lactate level in the culture medium, reduced cell viability and decreased cell invasion ability. Meanwhile, silencing of LDHA also compromised tumorigenesis in vivo. Furthermore, knockdown of LDHA remarkably reduced extracellular acidification rate (ECAR) as well as glucose consumption. In the presence of 2-DG, a glycolysis inhibitor, LDHA-mediated cell proliferation and invasion were completely blocked, indicating the oncogenic activities of LDHA may dependent on Warburg effect. Finally, pharmacological inhibition of c-Myc or HIF1α significantly attenuated LDHA expression. Taken together, upregulated LDHA facilitates tumor progression of OS and might be a potential target for OS treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Cho, Seong-Jun; Kang, Hana; Kim, Min Young; Lee, Jung Eun; Kim, Sung Jin; Nam, Seon Young; Kim, Ji Young; Kim, Hee Sun; Pyo, Suhkneung; Yang, Kwang Hee
2016-04-01
To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Splenocytes and IM-9 cells were uniformly irradiated with various doses of a (137)Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylation level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast. Copyright © 2016 Elsevier Inc. All rights reserved.
Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W; Zurita, Amado J; Liu, Jie; Sikes, Charles; Multani, Asha S; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V; Prieto, Victor G; Kundra, Vikas; Vazquez, Elba S; Troncoso, Patricia; Raymond, Austin K; Logothetis, Christopher J; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M
2008-08-01
In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor-negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer-induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor-null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells.
Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W.; Zurita, Amado J.; Liu, Jie; Sikes, Charles; Multani, Asha S.; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V.; Prieto, Victor G.; Kundra, Vikas; Vazquez, Elba S.; Troncoso, Patricia; Raymond, Austin K.; Logothetis, Christopher J.; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M.
2008-01-01
In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor–negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer–induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor–null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells. PMID:18618013
AB72. Mysteries of TGF-β paradox in benign and malignant cells
Lee, Chung; Grayhack, John T.
2014-01-01
TGF-β regulates a wide range of biological functions including embryonic development, wound healing, organogenesis, immune modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells, a phenomenon known as TGF-β paradox. To date, the mechanism of this paradox still remains as a scientific mystery. In this review, we present our experience, alone with the literature, in an attempt to offer answers to this mystery. First, we observed that, upon TGF-β engagement, there is a differential activation of Erk between benign and cancer cells. Since activated Erk is a major mediator in tumor progression and metastasis, a differentially activated Erk represents the answer to this mystery. Second, we identified a key player, PP2A-B56α, which is differentially recruited by the activated type I TGF-β receptor (TBRI) in benign and tumor cells, resulting in differential Erk activation. Finally, TGF-β stimulation leads to a suppressed TBRs in tumor cells but not in benign cells. This differentially suppressed TBRs triggers differential recruitment of PP2A-B56α and, thus, differential activation of Erk. The above three events offer the explanation to the mysteries of TGF-β paradox. Understanding the mechanism of TGF-β paradox will help us to predict indolent from aggressive cancers and will help us to develop novel anti-cancer strategies.
Mysteries of TGF-β Paradox in Benign and Malignant Cells.
Zhang, Qiang; Yu, Nengwang; Lee, Chung
2014-01-01
TGF-β regulates a wide range of biological functions including embryonic development, wound healing, organogenesis, immune modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells; this phenomenon is known as TGF-β paradox. To date, the mechanism of this paradox still remains a scientific mystery. In this review, we present our experience, along with the literature, in an attempt to answer this mystery. First, we observed that, on TGF-β engagement, there is a differential activation of Erk between benign and cancer cells. Since activated Erk is a major mediator in tumor progression and metastasis, a differentially activated Erk represents the answer to this mystery. Second, we identified a key player, PP2A-B56α, which is differentially recruited by the activated type I TGF-β receptor (TBRI) in benign and tumor cells, resulting in differential Erk activation. Finally, TGF-β stimulation leads to suppressed TBRs in tumor cells but not in benign cells. This differentially suppressed TBRs triggers differential recruitment of PP2A-B56α and, thus, differential activation of Erk. The above three events explain the mysteries of TGF-β paradox. Understanding the mechanism of TGF-β paradox will help us to predict indolent from aggressive cancers and develop novel anti-cancer strategies.
Mysteries of TGF-β Paradox in Benign and Malignant Cells
Zhang, Qiang; Yu, Nengwang; Lee, Chung
2014-01-01
TGF-β regulates a wide range of biological functions including embryonic development, wound healing, organogenesis, immune modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells; this phenomenon is known as TGF-β paradox. To date, the mechanism of this paradox still remains a scientific mystery. In this review, we present our experience, along with the literature, in an attempt to answer this mystery. First, we observed that, on TGF-β engagement, there is a differential activation of Erk between benign and cancer cells. Since activated Erk is a major mediator in tumor progression and metastasis, a differentially activated Erk represents the answer to this mystery. Second, we identified a key player, PP2A-B56α, which is differentially recruited by the activated type I TGF-β receptor (TBRI) in benign and tumor cells, resulting in differential Erk activation. Finally, TGF-β stimulation leads to suppressed TBRs in tumor cells but not in benign cells. This differentially suppressed TBRs triggers differential recruitment of PP2A-B56α and, thus, differential activation of Erk. The above three events explain the mysteries of TGF-β paradox. Understanding the mechanism of TGF-β paradox will help us to predict indolent from aggressive cancers and develop novel anti-cancer strategies. PMID:24860782
Kanemitsu, H; Yamauchi, H; Komatsu, M; Yamamoto, S; Okazaki, S; Uchida, K; Nakayama, H
2009-01-01
6-Mercaptopurine (6-MP), an analogue of hypoxanthine, is used in the therapy of acute lymphoblastic leukemia and causes fetal neurotoxicity. To clarify the mechanisms of 6-MP-induced fetal neurotoxicity leading to the cell cycle arrest and apoptosis of neural progenitor cells, pregnant rats were treated with 50 mg/kg 6-MP on embryonic day (E) 13, and the fetal telencephalons were examined at 12 to 72 h (h) after treatment. Flow-cytometric analysis confirmed an accumulation of cells at G2/M, S, and sub-G1 (apoptotic cells) phases from 24 to 72 h. The number of phosphorylated histone H3-positive cells (mitotic cells) decreased from 36 to 72 h, and the phosphorylated (active) form of p53 protein, which is a mediator of apoptosis and cell cycle arrest, increased from 24 to 48 h. An executor of p53-mediated cell cycle arrest, p21, showed intense overexpression at both the mRNA and protein levels from 24 to 72 h. Cdc25A protein, which is needed for the progression of S phase, decreased at 36 and 48 h. In addition, phosphorylated cdc2 protein, which is an inactive form of cdc2 necessary for G2/M progression, increased from 24 to 48 h. These results suggest that 6-MP induced G2/M arrest, delayed S-phase progression, and finally induced apoptosis of neural progenitor cells mediated by p53 in the fetal rat telencephalon.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.
Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael
2012-07-15
Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.
Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Qing; Yu, Tao; Ren, Yao-Yao
2014-11-07
Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 ismore » down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression.« less
Single molecule microscopy in 3D cell cultures and tissues.
Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias
2014-12-15
From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Hongtao; Johnson, Jeffrey L.; Koval, Greg; Malnassy, Greg; Sher, Dorie; Damon, Lloyd E.; Hsi, Eric D.; Bucci, Donna Marie; Linker, Charles A.; Cheson, Bruce D.; Stock, Wendy
2012-01-01
Background In the present study, the prognostic impact of minimal residual disease during treatment on time to progression and overall survival was analyzed prospectively in patients with mantle cell lymphoma treated on the Cancer and Leukemia Group B 59909 clinical trial. Design and Methods Peripheral blood and bone marrow samples were collected during different phases of the Cancer and Leukemia Group B 59909 study for minimal residual disease analysis. Minimal residual disease status was determined by quantitative polymerase chain reaction of IgH and/or BCL-1/JH gene rearrangement. Correlation of minimal residual disease status with time to progression and overall survival was determined. In multivariable analysis, minimal residual disease, and other risk factors were correlated with time to progression. Results Thirty-nine patients had evaluable, sequential peripheral blood and bone marrow samples for minimal residual disease analysis. Using peripheral blood monitoring, 18 of 39 (46%) achieved molecular remission following induction therapy. The molecular remission rate increased from 46 to 74% after one course of intensification therapy. Twelve of 21 minimal residual disease positive patients (57%) progressed within three years of follow up compared to 4 of 18 (22%) molecular remission patients (P=0.049). Detection of minimal residual disease following induction therapy predicted disease progression with a hazard ratio of 3.7 (P=0.016). The 3-year probability of time to progression among those who were in molecular remission after induction chemotherapy was 82% compared to 48% in patients with detectable minimal residual disease. The prediction of time to progression by post-induction minimal residual disease was independent of other prognostic factors in multivariable analysis. Conclusions Detection of minimal residual disease following induction immunochemotherapy was an independent predictor of time to progression following immunochemotherapy and autologous stem cell transplantation for mantle cell lymphoma. The clinical trial was registered at ClinicalTrials.gov: NCT00020943. PMID:22102709
Ostrovidov, Serge; Shi, Xuetao; Sadeghian, Ramin Banan; Salehi, Sahar; Fujie, Toshinori; Bae, Hojae; Ramalingam, Murugan; Khademhosseini, Ali
2015-12-01
Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.
Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma
Ford, Catriona A.; Petrova, Sofia; Pound, John D.; Voss, Jorine J.L.P.; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L.; Gallimore, Awen M.; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E.; Dunbar, Donald R.; Murray, Paul G.; Ruckerl, Dominik; Allen, Judith E.; Hume, David A.; van Rooijen, Nico; Goodlad, John R.; Freeman, Tom C.; Gregory, Christopher D.
2015-01-01
Summary Background Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Results Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased “in situ transcriptomics” analysis—gene expression profiling of laser-captured TAMs to establish their activation signature in situ—we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. Conclusions In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. PMID:25702581
NASA Astrophysics Data System (ADS)
Bailey, Richard; Mullin, Nic; Turner, Robert; Foster, Simon; Hobbs, Jamie
2014-03-01
Staphylococcus aureus is a major cause of infection in humans, including the Methicillin resistant strain, MRSA. However, very little is known about the mechanical properties of these cells. Our investigations use AFM to examine live S. aureus cells to quantify mechanical properties. These were explored using force spectroscopy with different trigger forces, allowing the properties to be extracted at different indentation depths. A value for the cell wall stiffness has been extracted, along with a second, higher value which is found upon indenting at higher forces. This higher value drops as the cells are exposed to high salt, sugar and detergent concentrations, implying that this measurement contains a contribution from the internal turgor pressure. We have monitored these properties as the cells progress through the cell cycle. Force maps were taken over the cells at different stages of the growth process to identify changes in the mechanics throughout the progression of growth and division. The effect of Oxacillin has also been studied, to better understand its mechanism of action. Finally mutant strains of S. aureus and a second species Bacillus subtilis have been used to link the mechanical properties of the cell walls with the chain lengths and substructures involved.
Huergo-Zapico, Leticia; Parodi, Monica; Pedrazzi, Marco; Mingari, Maria Cristina; Sparatore, Bianca; Gonzalez, Segundo; Olive, Daniel; Bottino, Cristina
2016-01-01
Several evidences suggest that NK cells can patrol the body and eliminate tumors in their initial phases but may hardly control established solid tumors. Multiple factors, including the transition of tumor cells towards a proinvasive/prometastatic phenotype, the immunosuppressive effect of the tumor microenvironment, and the tumor structure complexity, may account for limited NK cell efficacy. Several putative mechanisms of NK cell suppression have been defined in these last years; conversely, the cross talk between NK cells and tumor cells undergoing different transitional phases remains poorly explored. Nevertheless, recent in vitro studies and immunohistochemical analyses on tumor biopsies suggest that NK cells could not only kill tumor cells but also influence their evolution. Indeed, NK cells may induce tumor cells to change the expression of HLA-I, PD-L1, or NKG2D-L and modulate their susceptibility to the immune response. Moreover, NK cells may be preferentially located in the borders of tumor masses, where, indeed, tumor cells can undergo Epithelial-to-Mesenchymal Transition (EMT) acquiring prometastatic phenotype. Finally, the recently highlighted role of HMGB1 both in EMT and in amplifying the recruitment of NK cells provides further hints on a possible effect of NK cells on tumor progression and fosters new studies on this issue. PMID:27294158
GPRC6A regulates prostate cancer progression
Pi, Min; Quarles, L. Darryl
2011-01-01
BACKGROUND GPRC6A is a nutrient sensing GPCR that is activated in vitro by a variety of ligands, including amino acids, calcium, zinc, osteocalcin (OC) and testosterone. The association between nutritional factors and risk of prostate cancer, the finding of increased expression of OC in prostate cancer cells and the association between GPRC6A and risk of prostate cancer in Japanese men implicates a role of GPRC6A in prostate cancer. METHODS We examined if GPRC6A is expressed in human prostate cancer cell lines and used siRNA-mediated knockdown GPRC6A expression in prostate cancer cells to explore the function of GPRC6A in vitro. To assess the role GPRC6A in prostate cancer progression in vivo we intercrossed Gprc6a−/− mice onto the TRAMP mouse prostate cancer model. RESULTS GPRC6A transcripts were markedly increased in prostate cancer cell lines 22Rv1, PC-3 and LNCaP, compared to the normal prostate RWPE-1 cell line. In addition, a panel of GPRC6A ligands, including calcium, OC, and arginine, exhibited in prostate cancer cell lines a dose-dependent stimulation of ERK activity, cell proliferation, chemotaxis, and prostate specific antigen and Runx 2 gene expression. These responses were inhibited by siRNA-mediated knockdown of GPRC6A. Finally, transfer of Gprc6a deficiency onto a TRAMP mouse model of prostate cancer significantly retarded prostate cancer progression and improved survival of compound Gprc6a−/−/TRAMP mice. CONCLUSIONS GPRC6A is a novel molecular target for regulating prostate growth and cancer progression. Increments in GPRC6A may augment the ability of prostate cancer cells to proliferate in response to dietary and bone derived ligands. PMID:21681779
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.
Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam
2014-05-01
The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients. © 2013 AlphaMed Press.
Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.
Fleisig, Helen; Wong, Judy
2012-05-22
Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key metabolic processes for each cell cycle stage are useful in blocking the progression of the cell cycle to the next stage. For example, the ribonucleotide reductase inhibitor hydroxyurea halts cells at the G1/S juncture by limiting the supply of deoxynucleotides, the building blocks of DNA. Other notable chemicals include treatment with aphidicolin, a polymerase alpha inhibitor for G1 arrest, treatment with colchicine and nocodazole, both of which interfere with mitotic spindle formation to halt cells in M phase and finally, treatment with the DNA chain terminator 5-fluorodeoxyridine to initiate S phase arrest. Treatment with these chemicals is an effective means of synchronizing an entire population of cells at a particular phase. With removal of the chemical, cells rejoin the cell cycle in unison. Treatment of the test agent following release from the cell cycle blocking chemical ensures that the drug response elicited is from a uniform, cell cycle stage-specific population. However, since many of the chemical synchronizers are known genotoxic compounds, teasing apart the participation of various response pathways (to the synchronizers vs. the test agents) is challenging. Here we describe a metabolic labeling method for following a subpopulation of actively cycling cells through their progression from the DNA replication phase, through to the division and separation of their daughter cells. Coupled with flow cytometry quantification, this protocol enables for measurement of kinetic progression of the cell cycle in the absence of either mechanically- or chemically- induced cellular stresses commonly associated with other cell cycle synchronization methodologies. In the following sections we will discuss the methodology, as well as some of its applications in biomedical research.
Dal Sasso, Eleonora; Schirone, Leonardo; Forte, Maurizio; Palmerio, Silvia; Gerosa, Gino; Sciarretta, Sebastiano
2017-01-01
Recent epidemiologic studies evidence a dramatic increase of cardiovascular diseases, especially associated with the aging of the world population. During aging, the progressive impairment of the cardiovascular functions results from the compromised tissue abilities to protect the heart against stress. At the molecular level, in fact, a gradual weakening of the cellular processes regulating cardiovascular homeostasis occurs in aging cells. Atherosclerosis and heart failure are particularly correlated with aging-related cardiovascular senescence, that is, the inability of cells to progress in the mitotic program until completion of cytokinesis. In this review, we explore the intrinsic and extrinsic causes of cellular senescence and their role in the onset of these cardiovascular pathologies. Additionally, we dissect the effects of aging on the cardiac endogenous and exogenous reservoirs of stem cells. Finally, we offer an overview on the strategies of regenerative medicine that have been advanced in the quest for heart rejuvenation. PMID:29118467
Recent progress of Spectrolab high-efficiency space solar cells
NASA Astrophysics Data System (ADS)
Law, Daniel C.; Boisvert, J. C.; Rehder, E. M.; Chiu, P. T.; Mesropian, S.; Woo, R. L.; Liu, X. Q.; Hong, W. D.; Fetzer, C. M.; Singer, S. B.; Bhusari, D. M.; Edmondson, K. M.; Zakaria, A.; Jun, B.; Krut, D. D.; King, R. R.; Sharma, S. K.; Karam, N. H.
2013-09-01
Recent progress in III-V multijunction space solar cell has led to Spectrolab's GaInP/GaAs/Ge triple-junction, XTJ, cells with average 1-sun efficiency of 29% (AM0, 28°C) for cell size ranging from 59 to 72-cm2. High-efficiency inverted metamorphic (IMM) multijunction cells are developed as the next space solar cell architecture. Spectrolab's large-area IMM3J and IMM4J cells have achieved 33% and 34% 1-sun, AM0 efficiencies, respectively. The IMM3J and the IMM4J cells have both demonstrated normalized power retention of 0.86 at 5x1014 e-/cm2 fluence and 0.83 and 0.82 at 1x1015 e-/cm2 fluence post 1-MeV electron radiation, respectively. The IMM cells were further assembled into coverglass-interconnect-cell (CIC) strings and affixed to typical rigid aluminum honeycomb panels for thermal cycling characterization. Preliminary temperature cycling data of two coupons populated with IMM cell strings showed no performance degradation. Spectrolab has also developed semiconductor bonded technology (SBT) where highperformance component subcells were grown on GaAs and InP substrates separately then bonded directly to form the final multijunction cells. Large-area SBT 5-junction cells have achieved a 35.1% efficiency under 1-sun, AM0 condition.
Schayek, Hagit; Seti, Hila; Greenberg, Norman M; Sun, Shihua; Werner, Haim; Plymate, Stephen R
2010-07-29
The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. 2010 Elsevier Ireland Ltd. All rights reserved.
Schayek, Hagit; Seti, Hila; Greenberg, Norman M.; Sun, Shihua; Werner, Haim; Plymate, Stephen R.
2010-01-01
The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. PMID:20417685
Yang, Eric V.; Kim, Seung-jae; Donovan, Elise L.; Chen, Min; Gross, Amy C.; Webster Marketon, Jeanette I.; Barsky, Sanford H.; Glaser, Ronald
2009-01-01
Studies suggest that stress can be a co-factor for the initiation and progression of cancer. The catecholamine stress hormone, norepinephrine (NE), may influence tumor progression by modulating the expression of factors implicated in angiogenesis and metastasis. The goal of this study was to examine the influence of NE on the expression of VEGF, IL-8, and IL-6 by the human melanoma cell lines, C8161, 1174MEL, and Me18105. Cells were treated with NE and levels of VEGF, IL-8, and IL-6 were measured using ELISA and real-time PCR. The expression of β-adrenergic receptors (β-ARs) mRNA and protein were also assessed. Finally, immunohistochemitry was utilized to examine the presence of β1- and β2-AR in primary and metastatic human melanoma biopsies. We show that NE treatment upregulated production of VEGF, IL-8, and IL-6 in C8161 cells and to a lesser extent 1174MEL and Me18105 cells. The upregulation was associated with induced gene expression. The effect on C8161 cells was mediated by both β1- and β2-ARs. Furthermore, 18 of 20 melanoma biopsies examined expressed β2-AR while 14 of 20 melanoma biopsies expressed β1-AR. Our data support the hypothesis that NE can stimulate the aggressive potential of melanoma tumor cells, in part, by inducing the production VEGF, IL-8, and IL-6. This line of research further suggests that interventions targeting components of the activated sympathetic-adrenal medullary (SAM) axis, or the utilization of β-AR blocking agents, may represent new strategies for slowing down the progression of malignant disease and improving cancer patients’ quality of life. PMID:18996182
Mucosa-associated invariant T cells in malignancies: a faithful friend or formidable foe?
Haeryfar, S M Mansour; Shaler, Christopher R; Rudak, Patrick T
2018-02-22
Mucosa-associated invariant T (MAIT) cells are a subset of innate-like T lymphocytes known for their ability to respond to MHC-related protein 1 (MR1)-restricted stimuli and select cytokine signals. They are abundant in humans and especially enriched in mucosal layers, common sites of neoplastic transformation. MAIT cells have been found within primary and metastatic tumors. However, whether they promote malignancy or contribute to anticancer immunity is unclear. On the one hand, MAIT cells produce IL-17A in certain locations and under certain circumstances, which could in turn facilitate neoangiogenesis, intratumoral accumulation of immunosuppressive cell populations, and cancer progression. On the other hand, they can express a potent arsenal of cytotoxic effector molecules, NKG2D and IFN-γ, all of which have established roles in cancer immune surveillance. In this review, we highlight MAIT cells' characteristics as they might pertain to cancer initiation, progression, or control. We discuss recent findings, including our own, that link MAIT cells to cancer, with a focus on colorectal carcinoma, as well as some of the outstanding questions in this active area of research. Finally, we provide a hypothetical picture in which MAIT cells constitute attractive targets in cancer immunotherapy.
Dittmar, Thomas; Zänker, Kurt S.
2015-01-01
The biological phenomenon of cell fusion in a cancer context is still a matter of controversial debates. Even though a plethora of in vitro and in vivo data have been published in the past decades the ultimate proof that tumor hybrid cells could originate in (human) cancers and could contribute to the progression of the disease is still missing, suggesting that the cell fusion hypothesis is rather fiction than fact. However, is the lack of this ultimate proof a valid argument against this hypothesis, particularly if one has to consider that appropriate markers do not (yet) exist, thus making it virtually impossible to identify a human tumor cell clearly as a tumor hybrid cell. In the present review, we will summarize the evidence supporting the cell fusion in cancer concept. Moreover, we will refine the cell fusion hypothesis by providing evidence that cell fusion is a potent inducer of aneuploidy, genomic instability and, most likely, even chromothripsis, suggesting that cell fusion, like mutations and aneuploidy, might be an inducer of a mutator phenotype. Finally, we will show that “accidental” tissue repair processes during cancer therapy could lead to the origin of therapy resistant cancer hybrid stem cells. PMID:26703575
Dittmar, Thomas; Zänker, Kurt S
2015-12-19
The biological phenomenon of cell fusion in a cancer context is still a matter of controversial debates. Even though a plethora of in vitro and in vivo data have been published in the past decades the ultimate proof that tumor hybrid cells could originate in (human) cancers and could contribute to the progression of the disease is still missing, suggesting that the cell fusion hypothesis is rather fiction than fact. However, is the lack of this ultimate proof a valid argument against this hypothesis, particularly if one has to consider that appropriate markers do not (yet) exist, thus making it virtually impossible to identify a human tumor cell clearly as a tumor hybrid cell. In the present review, we will summarize the evidence supporting the cell fusion in cancer concept. Moreover, we will refine the cell fusion hypothesis by providing evidence that cell fusion is a potent inducer of aneuploidy, genomic instability and, most likely, even chromothripsis, suggesting that cell fusion, like mutations and aneuploidy, might be an inducer of a mutator phenotype. Finally, we will show that "accidental" tissue repair processes during cancer therapy could lead to the origin of therapy resistant cancer hybrid stem cells.
2015-11-01
increased PhScN potency as a result of preventing endoproteolytic degradation. Finally, the in vivo lung extravasation and colonization data, as well as...successful colonization are late stages in breast cancer progression that are ultimately fatal. Hence, prevention of extravasation which leads to colony...Award Number: TITLE: “Targeting Alpha5 Beta1 Integrin to Prevent Metastatic Breast Cancer Cell Invasion: PhScN Target Site Definition and Plasma
Tao, Le; Qiu, Jianxin; Jiang, Ming; Song, Wenbin; Yeh, Shuyuan; Yu, Hong; Zang, Lijuan; Xia, Shujie; Chang, Chawnshang
2016-08-01
The tumor microenvironment impacts tumor progression and individual cells, including CD4(+) T cells, which have been detected in bladder cancer tissues. The detailed mechanism of how these T cells were recruited to the bladder cancer tumor and their impact on bladder cancer progression, however, remains unclear. Using a human clinical bladder cancer sample survey and in vitro coculture system, we found that bladder cancer has a greater capacity to recruit T cells than surrounding normal bladder tissues. The consequences of higher levels of recruited T cells in bladder cancer included increased bladder cancer metastasis. Mechanism dissection revealed that infiltrating T cells might function through secreting the cytokine IL1, which increases the recruitment of T cells to bladder cancer and enhances the bladder cancer androgen receptor (AR) signaling that results in increased bladder cancer cell invasion via upregulation of hypoxia-inducible factor-1α (HIF1α)/VEGFa expression. Interruption of the IL1→AR→HIF1α→VEGFa signals with inhibitors of HIF1α or VEGFa partially reversed the enhanced bladder cancer cell invasion. Finally, in vivo mouse models of xenografted bladder cancer T24 cells with CD4(+) T cells confirmed in vitro coculture studies and concluded that infiltrating CD4(+) T cells can promote bladder cancer metastasis via modulation of the IL1→AR→HIF1α→VEGFa signaling. Future clinical trials using small molecules to target this newly identified signaling pathway may facilitate the development of new therapeutic approaches to better suppress bladder cancer metastasis. Mol Cancer Ther; 15(8); 1943-51. ©2016 AACR. ©2016 American Association for Cancer Research.
Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma.
Ford, Catriona A; Petrova, Sofia; Pound, John D; Voss, Jorine J L P; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L; Gallimore, Awen M; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E; Dunbar, Donald R; Murray, Paul G; Ruckerl, Dominik; Allen, Judith E; Hume, David A; van Rooijen, Nico; Goodlad, John R; Freeman, Tom C; Gregory, Christopher D
2015-03-02
Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased "in situ transcriptomics" analysis-gene expression profiling of laser-captured TAMs to establish their activation signature in situ-we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sameni, Mansoureh; Anbalagan, Arulselvi; Olive, Mary B.; Moin, Kamiar; Mattingly, Raymond R.; Sloane, Bonnie F.
2012-01-01
We have developed 3D coculture models, which we term MAME (mammary architecture and microenvironment engineering), and used them for live-cell imaging in real-time of cell:cell interactions. Our overall goal was to develop models that recapitulate the architecture of preinvasive breast lesions to study their progression to an invasive phenotype. Specifically, we developed models to analyze interactions among pre-malignant breast epithelial cell variants and other cell types of the tumor microenvironment that have been implicated in enhancing or reducing the progression of preinvasive breast epithelial cells to invasive ductal carcinomas. Other cell types studied to date are myoepithelial cells, fibroblasts, macrophages and blood and lymphatic microvascular endothelial cells. In addition to the MAME models, which are designed to recapitulate the cellular interactions within the breast during cancer progression, we have developed comparable models for the progression of prostate cancers. Here we illustrate the procedures for establishing the 3D cocultures along with the use of live-cell imaging and a functional proteolysis assay to follow the transition of cocultures of breast ductal carcinoma in situ (DCIS) cells and fibroblasts to an invasive phenotype over time, in this case over twenty-three days in culture. The MAME cocultures consist of multiple layers. Fibroblasts are embedded in the bottom layer of type I collagen. On that is placed a layer of reconstituted basement membrane (rBM) on which DCIS cells are seeded. A final top layer of 2% rBM is included and replenished with every change of media. To image proteolysis associated with the progression to an invasive phenotype, we use dye-quenched (DQ) fluorescent matrix proteins (DQ-collagen I mixed with the layer of collagen I and DQ-collagen IV mixed with the middle layer of rBM) and observe live cultures using confocal microscopy. Optical sections are captured, processed and reconstructed in 3D with Volocity visualization software. Over the course of 23 days in MAME cocultures, the DCIS cells proliferate and coalesce into large invasive structures. Fibroblasts migrate and become incorporated into these invasive structures. Fluorescent proteolytic fragments of the collagens are found in association with the surface of DCIS structures, intracellularly, and also dispersed throughout the surrounding matrix. Drugs that target proteolytic, chemokine/cytokine and kinase pathways or modifications in the cellular composition of the cocultures can reduce the invasiveness, suggesting that MAME models can be used as preclinical screens for novel therapeutic approaches. PMID:22371028
Sameni, Mansoureh; Anbalagan, Arulselvi; Olive, Mary B; Moin, Kamiar; Mattingly, Raymond R; Sloane, Bonnie F
2012-02-17
We have developed 3D coculture models, which we term MAME (mammary architecture and microenvironment engineering), and used them for live-cell imaging in real-time of cell:cell interactions. Our overall goal was to develop models that recapitulate the architecture of preinvasive breast lesions to study their progression to an invasive phenotype. Specifically, we developed models to analyze interactions among pre-malignant breast epithelial cell variants and other cell types of the tumor microenvironment that have been implicated in enhancing or reducing the progression of preinvasive breast epithelial cells to invasive ductal carcinomas. Other cell types studied to date are myoepithelial cells, fibroblasts, macrophages and blood and lymphatic microvascular endothelial cells. In addition to the MAME models, which are designed to recapitulate the cellular interactions within the breast during cancer progression, we have developed comparable models for the progression of prostate cancers. Here we illustrate the procedures for establishing the 3D cocultures along with the use of live-cell imaging and a functional proteolysis assay to follow the transition of cocultures of breast ductal carcinoma in situ (DCIS) cells and fibroblasts to an invasive phenotype over time, in this case over twenty-three days in culture. The MAME cocultures consist of multiple layers. Fibroblasts are embedded in the bottom layer of type I collagen. On that is placed a layer of reconstituted basement membrane (rBM) on which DCIS cells are seeded. A final top layer of 2% rBM is included and replenished with every change of media. To image proteolysis associated with the progression to an invasive phenotype, we use dye-quenched (DQ) fluorescent matrix proteins (DQ-collagen I mixed with the layer of collagen I and DQ-collagen IV mixed with the middle layer of rBM) and observe live cultures using confocal microscopy. Optical sections are captured, processed and reconstructed in 3D with Volocity visualization software. Over the course of 23 days in MAME cocultures, the DCIS cells proliferate and coalesce into large invasive structures. Fibroblasts migrate and become incorporated into these invasive structures. Fluorescent proteolytic fragments of the collagens are found in association with the surface of DCIS structures, intracellularly, and also dispersed throughout the surrounding matrix. Drugs that target proteolytic, chemokine/cytokine and kinase pathways or modifications in the cellular composition of the cocultures can reduce the invasiveness, suggesting that MAME models can be used as preclinical screens for novel therapeutic approaches.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui
2015-02-01
During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.
LncRNA MEG3 repressed malignant melanoma progression via inactivating Wnt signaling pathway.
Li, Peng; Gao, Ying; Li, Jun; Zhou, Yu; Yuan, Jing; Guan, Huiwen; Yao, Peng
2018-05-21
Accumulating evidence has indicated that MEG3 can serve as a tumor suppressive lncRNA in various tumors. It is aberrantly expressed in multiple cancers. However, the biological roles of MEG3 in melanoma are poorly understood. Therefore, in our study, we concentrated on the biological mechanism of MEG3 in melanoma progression. First, we observed that MEG3 was obviously decreased in melanoma cells including A375, SK-MEL-1, B16, and A2058 cells compared to human epidermal melanocytes HEMa-LP. MEG3 was restored by transfecting LV-MEG3 in to A375 and A2058 cells. Subsequently, we found that overexpression of MEG3 was able to inhibit cell proliferation and colony formation capacity. Meanwhile, melanoma cell apoptosis was induced by up-regulation of MEG3. Overexpression of MEG3 greatly repressed melanoma cell migration and invasion ability. In addition, Wnt signaling pathway has been identified in the progression of various cancers. Here, in our study, it was indicated that Wnt signaling was highly activated in melanoma cells with β-catenin expression significantly increased and GSK-3β decreased. Interestingly, MEG restoration strongly inactivated Wnt signaling pathway by reducing β-catenin and CyclinD1, elevating GSK-3β levels in vitro. Finally, in vivo experiments were carried out to confirm the inhibitory roles of MEG3 in vivo. Taken these together, we suggested that MEG3 can inhibit melanoma development through blocking Wnt signaling pathway. © 2018 Wiley Periodicals, Inc.
23 CFR 140.609 - Progress and final vouchers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 23 Highways 1 2011-04-01 2011-04-01 false Progress and final vouchers. 140.609 Section 140.609 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PAYMENT PROCEDURES REIMBURSEMENT Reimbursement for Bond Issue Projects § 140.609 Progress and final vouchers. (a) Progress vouchers may be...
23 CFR 140.609 - Progress and final vouchers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 23 Highways 1 2013-04-01 2013-04-01 false Progress and final vouchers. 140.609 Section 140.609 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PAYMENT PROCEDURES REIMBURSEMENT Reimbursement for Bond Issue Projects § 140.609 Progress and final vouchers. (a) Progress vouchers may be...
23 CFR 140.609 - Progress and final vouchers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 23 Highways 1 2014-04-01 2014-04-01 false Progress and final vouchers. 140.609 Section 140.609 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PAYMENT PROCEDURES REIMBURSEMENT Reimbursement for Bond Issue Projects § 140.609 Progress and final vouchers. (a) Progress vouchers may be...
23 CFR 140.609 - Progress and final vouchers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Progress and final vouchers. 140.609 Section 140.609 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PAYMENT PROCEDURES REIMBURSEMENT Reimbursement for Bond Issue Projects § 140.609 Progress and final vouchers. (a) Progress vouchers may be...
Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells.
Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei; Yang, Yingping
2018-01-15
Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.
Live Imaging of Glial Cell Migration in the Drosophila Eye Imaginal Disc
Cafferty, Patrick; Xie, Xiaojun; Browne, Kristen; Auld, Vanessa J.
2009-01-01
Glial cells of both vertebrate and invertebrate organisms must migrate to final target regions in order to ensheath and support associated neurons. While recent progress has been made to describe the live migration of glial cells in the developing pupal wing (1), studies of Drosophila glial cell migration have typically involved the examination of fixed tissue. Live microscopic analysis of motile cells offers the ability to examine cellular behavior throughout the migratory process, including determining the rate of and changes in direction of growth. Paired with use of genetic tools, live imaging can be used to determine more precise roles for specific genes in the process of development. Previous work by Silies et al. (2) has described the migration of glia originating from the optic stalk, a structure that connects the developing eye and brain, into the eye imaginal disc in fixed tissue. Here we outline a protocol for examining the live migration of glial cells into the Drosophila eye imaginal disc. We take advantage of a Drosophila line that expresses GFP in developing glia to follow glial cell progression in wild type and in mutant animals. PMID:19590493
New insights of T cells in the pathogenesis of psoriasis
Cai, Yihua; Fleming, Chris; Yan, Jun
2012-01-01
Psoriasis is one of the most common immune-mediated chronic, inflammatory skin diseases characterized by hyperproliferative keratinocytes and infiltration of T cells, dendritic cells, macrophages and neutrophils. Although the pathogenesis of psoriasis is not fully understood, there is ample evidence suggesting that the dysregulation of immune cells in the skin, particularly T cells, plays a critical role in psoriasis development. In this review, we mainly focus on the pathogenic T cells and discuss how these T cells are activated and involved in the disease pathogenesis. Newly identified ‘professional' IL-17-producing dermal γδ T cells and their potential role in psoriasis will also be included. Finally, we will briefly summarize the recent progress on the T cell and its related cytokine-targeted therapy for psoriasis treatment. PMID:22705915
LSD1 is Required for Hair Cell Regeneration in Zebrafish.
He, Yingzi; Tang, Dongmei; Cai, Chengfu; Chai, Renjie; Li, Huawei
2016-05-01
Lysine-specific demethylase 1 (LSD1/KDM1A) plays an important role in complex cellular processes such as differentiation, proliferation, apoptosis, and cell cycle progression. It has recently been demonstrated that during development, downregulation of LSD1 inhibits cell proliferation, modulates the expression of cell cycle regulators, and reduces hair cell formation in the zebrafish lateral line, which suggests that LSD1-mediated epigenetic regulation plays a key role in the development of hair cells. However, the role of LSD1 in hair cell regeneration after hair cell loss remains poorly understood. Here, we demonstrate the effect of LSD1 on hair cell regeneration following neomycin-induced hair cell loss. We show that the LSD1 inhibitor trans-2-phenylcyclopropylamine (2-PCPA) significantly decreases the regeneration of hair cells in zebrafish after neomycin damage. In addition, immunofluorescent staining demonstrates that 2-PCPA administration suppresses supporting cell proliferation and alters cell cycle progression. Finally, in situ hybridization shows that 2-PCPA significantly downregulates the expression of genes related to Wnt/β-catenin and Fgf activation. Altogether, our data suggest that downregulation of LSD1 significantly decreases hair cell regeneration after neomycin-induced hair cell loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus, LSD1 plays a critical role in hair cell regeneration and might represent a novel biomarker and potential therapeutic approach for the treatment of hearing loss.
Bernardi, Maria-Pia; Ngan, Samuel Y; Michael, Michael; Lynch, A Craig; Heriot, Alexander G; Ramsay, Robert G; Phillips, Wayne A
2015-12-01
Anal squamous cell carcinoma is a human papillomavirus-related disease, in which no substantial advances in treatment have been made in over 40 years, especially for those patients who develop disease relapse and for whom no surgical options exist. HPV can evade the immune system and its role in disease progression can be exploited in novel immunotherapy platforms. Although several studies have investigated the expression and inactivation (through loss of heterozygosity) of tumour suppressor genes in the pathways to cancer, no clinically valuable biomarkers have emerged. Regulators of apoptosis, including survivin, and agents targeting the PI3K/AKT pathway, offer opportunities for targeted therapy, although robust data are scarce. Additionally, antibody therapy targeting EGFR may prove effective, although its safety profile in combination with standard chemoradiotherapy has proven to be suboptimal. Finally, progress in the treatment of anal cancer has remained stagnant due to a lack of preclinical models, including cell lines and mouse models. In this Review, we discuss the molecular biology of anal squamous cell carcinoma, clinical trials in progress, and implications for novel therapeutic targets. Future work should focus on preclinical models to provide a resource for investigation of new molecular pathways and for testing novel targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mucosal immunology of HIV infection.
Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S
2013-07-01
Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection, but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of 'symbiotic' intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high-level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4(+) T-cell responses, binding anti-bodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Furthermore, immune therapies specifically directed toward boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mucosal Immunology of HIV Infection
Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S.
2013-01-01
Summary Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of ‘symbiotic’ intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4+ T-cell responses, binding antibodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Further, immune therapies specifically directed towards boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients. PMID:23772612
Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma.
Porcu, Cristiana; Antonucci, Laura; Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara
2018-02-06
Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies.
Conserved mechanisms of tumorigenesis in the Drosophila adult midgut.
Martorell, Òscar; Merlos-Suárez, Anna; Campbell, Kyra; Barriga, Francisco M; Christov, Christo P; Miguel-Aliaga, Irene; Batlle, Eduard; Casanova, Jordi; Casali, Andreu
2014-01-01
Whereas the series of genetic events leading to colorectal cancer (CRC) have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and Drosophila's intestines share many similarities, we decided to explore the alterations induced in the Drosophila midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in Drosophila, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression.
Clearing the Dead: Apoptotic Cell Sensing, Recognition, Engulfment, and Digestion
Hochreiter-Hufford, Amelia; Ravichandran, Kodi S.
2013-01-01
Clearance of apoptotic cells is the final stage of programmed cell death. Uncleared corpses can become secondarily necrotic, promoting inflammation and autoimmunity. Remarkably, even in tissues with high cellular turnover, apoptotic cells are rarely seen because of efficient clearance mechanisms in healthy individuals. Recently, significant progress has been made in understanding the steps involved in prompt cell clearance in vivo. These include the sensing of corpses via “find me” signals, the recognition of corpses via “eat me” signals and their cognate receptors, the signaling pathways that regulate cytoskeletal rearrangement necessary for engulfment, and the responses of the phagocyte that keep cell clearance events “immunologically silent.” This study focuses on our understanding of these steps. PMID:23284042
Identification of cancer initiating cells in K-Ras driven lung adenocarcinoma.
Mainardi, Sara; Mijimolle, Nieves; Francoz, Sarah; Vicente-Dueñas, Carolina; Sánchez-García, Isidro; Barbacid, Mariano
2014-01-07
Ubiquitous expression of a resident K-Ras(G12V) oncogene in adult mice revealed that most tissues are resistant to K-Ras oncogenic signals. Indeed, K-Ras(G12V) expression only induced overt tumors in lungs. To identify these transformation-permissive cells, we induced K-Ras(G12V) expression in a very limited number of adult lung cells (0.2%) and monitored their fate by X-Gal staining, a surrogate marker coexpressed with the K-Ras(G12V) oncoprotein. Four weeks later, 30% of these cells had proliferated to form small clusters. However, only SPC(+) alveolar type II (ATII) cells were able to form hyperplastic lesions, some of which progressed to adenomas and adenocarcinomas. In contrast, induction of K-Ras(G12V) expression in lung cells by intratracheal infection with adenoviral-Cre particles generated hyperplasias in all regions except the proximal airways. Bronchiolar and bronchioalveolar duct junction hyperplasias were primarily made of CC10(+) Clara cells. Some of them progressed to form benign adenomas. However, only alveolar hyperplasias, exclusively made up of SPC(+) ATII cells, progressed to yield malignant adenocarcinomas. Adenoviral infection induced inflammatory infiltrates primarily made of T and B cells. This inflammatory response was essential for the development of K-Ras(G12V)-driven bronchiolar hyperplasias and adenomas, but not for the generation of SPC(+) ATII lesions. Finally, activation of K-Ras(G12V) during embryonic development under the control of a Sca1 promoter yielded CC10(+), but not SPC(+), hyperplasias, and adenomas. These results, taken together, illustrate that different types of lung cells can generate benign lesions in response to K-Ras oncogenic signals. However, in adult mice, only SPC(+) ATII cells were able to yield malignant adenocarcinomas.
Qu, Fei; Cao, Peilong
2018-05-18
Gastric cancer (GC) is a highly malignant cancer with poor prognosis. Long non-coding RNA (LncRNA) may play an important role in tumor progression. Our present study aimed to explore the effect of LncRNA SOX2OT on GC progression. We observed that SOX2OT was overexpressed in GC tissues and cell lines. Overexpressed SOX2OT promoted cell proliferation and metastasis of GC cells (SGC-7901, TMK-1) and the phosphorylation of AKT2 as well, while knockdown of SOX2OT reversed these effects. Besides that, miR-194-5p was predicted to be a target of SOX2OT and decreased expression of miR-194-5p was observed in GC tissues and cell lines. Overexpressed miR-194-5p counteracted the promoting role of SOX2OT on cell proliferation and invasion of GC cells. Moreover, AKT2 was predicted to be a target of miR-194-5p. The expression of AKT2 was negatively regulated by miR-194-5p while positively regulated by SOX2OT. Overexpressed AKT2 also promoted GC cell proliferation and invasion. Our in vitro experiments suggested that SOX2OT promoted cell proliferation and metastasis of GC cells via sponging miR-194-5p from AKT2. Finally, our in vivo experiments indicated that overexpressed SOX2OT promoted GC tumor growth and metastasis in nude mice. Taken together, our present study suggested that SOX2OT contributed to GC progression via sponging miR-194-5p from AKT2 both in vitro and in vivo. The SOX2OT-miR-194-5p-AKT2 axis may provide a new perspective for treatment of GC. Copyright © 2018. Published by Elsevier Inc.
Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?
Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia
2010-01-01
The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420
Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface.
Zhang, Yan; Gordon, Andrew; Qian, Weiyi; Chen, Weiqiang
2015-09-16
Biophysical cues on the extracellular matrix (ECM) have proven to be significant regulators of stem cell behavior and evolution. Understanding the interplay of these cells and their extracellular microenvironment is critical to future tissue engineering and regenerative medicine, both of which require a means of controlled differentiation. Research suggests that nanotopography, which mimics the local, nanoscale, topographic cues within the stem cell niche, could be a way to achieve large-scale proliferation and control of stem cells in vitro. This Progress Report reviews the history and contemporary advancements of this technology, and pays special attention to nanotopographic fabrication methods and the effect of different nanoscale patterns on stem cell response. Finally, it outlines potential intracellular mechanisms behind this response. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Peihe; Cai, Yuanyuan; Lin, Dongju; Jiang, Yingxiao
2017-08-07
Gamma ray can promote cancer cell apoptosis and cell cycle arrest. It is often used in the clinical treatment of tumors, including lung cancer. In this study, we aimed to explore the role of gamma ray treatment and its correlation with BTG2 in cell proliferation, apoptosis, and cell cycle arrest regulation in a lung cancer cell line. A549 cell viability, apoptosis rate, and cell cycle were investigated after gamma ray treatment. We then used siRNA for BTG2 to detect the effect of BTG2 knockdown on the progress of gamma ray-treated lung cancer cells. Finally, we investigated the signaling pathway by which gamma ray might regulate BTG2. We found that gamma ray inhibited A549 cell viability and promoted apoptosis and cell cycle arrest, while BTG2 knockdown could relieve the effect caused by gamma ray on A549 cells. Moreover, we confirmed that the effect of BTG2 partly depends on p53 expression and gamma ray-promoting BTG2 expression through the JNK/NF-κB signaling pathway. Our study assessed the possible mechanism of gamma ray in tumor treatment and also investigated the role of BTG2 in gamma ray therapy. All these findings might give a deep understanding of the effect of gamma ray on the progression of lung cancer involving BTG2.
Biobehavioral Influences on Cancer Progression
Costanzo, Erin S.; Sood, Anil K.; Lutgendorf, Susan K.
2010-01-01
Synopsis This review focuses on the contributions of stress-related behavioral factors to cancer growth and metastasis and the biobehavioral mechanisms underlying these relationships. We describe behavioral factors that are important in modulation of the stress response and the pivotal role of neuroendocrine regulation in the downstream alteration of physiological pathways relevant to cancer control, including the cellular immune response, inflammation, and tumor angiogenesis, invasion, and cell-signaling pathways. Consequences for cancer progression and metastasis, as well as quality of life, are delineated. Finally, behavioral and pharmacological interventions for cancer patients with the potential to alter these biobehavioral pathways are discussed. PMID:21094927
Direct non transcriptional role of NF-Y in DNA replication.
Benatti, Paolo; Belluti, Silvia; Miotto, Benoit; Neusiedler, Julia; Dolfini, Diletta; Drac, Marjorie; Basile, Valentina; Schwob, Etienne; Mantovani, Roberto; Blow, J Julian; Imbriano, Carol
2016-04-01
NF-Y is a heterotrimeric transcription factor, which plays a pioneer role in the transcriptional control of promoters containing the CCAAT-box, among which genes involved in cell cycle regulation, apoptosis and DNA damage response. The knock-down of the sequence-specific subunit NF-YA triggers defects in S-phase progression, which lead to apoptotic cell death. Here, we report that NF-Y has a critical function in DNA replication progression, independent from its transcriptional activity. NF-YA colocalizes with early DNA replication factories, its depletion affects the loading of replisome proteins to DNA, among which Cdc45, and delays the passage from early to middle-late S phase. Molecular combing experiments are consistent with a role for NF-Y in the control of fork progression. Finally, we unambiguously demonstrate a direct non-transcriptional role of NF-Y in the overall efficiency of DNA replication, specifically in the DNA elongation process, using a Xenopus cell-free system. Our findings broaden the activity of NF-Y on a DNA metabolism other than transcription, supporting the existence of specific TFs required for proper and efficient DNA replication. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Nordin, Noraziah; Majid, Nazia Abdul; Hashim, Najihah Mohd; Rahman, Mashitoh Abd; Hassan, Zalila; Ali, Hapipah Mohd
2015-01-01
Enicosanthellum pulchrum is a tropical plant from Malaysia and belongs to the Annonaceae family. This plant is rich in isoquinoline alkaloids. In the present study, liriodenine, an isoquinoline alkaloid, was examined as a potential anticancer agent, particularly in ovarian cancer. Liriodenine was isolated by preparative high-performance liquid chromatography. Cell viability was performed to determine the cytotoxicity, whilst the detection of morphological changes was carried out by acridine orange/propidium iodide assay. Initial and late apoptosis was examined by Annexin V-fluorescein isothiocyanate and DNA laddering assays, respectively. The involvement of pathways was detected via caspase-3, caspase-8, and caspase-9 analyses. Confirmation of pathways was further performed in mitochondria using a cytotoxicity 3 assay. Apoptosis was confirmed at the protein level, including Bax, Bcl-2, and survivin, while interruption of the cell cycle was used for final validation of apoptosis. The result showed that liriodenine inhibits proliferation of CAOV-3 cells at 37.3 μM after 24 hours of exposure. Changes in cell morphology were detected by the presence of cell membrane blebbing, chromatin condensation, and formation of apoptotic bodies. Early apoptosis was observed by Annexin V-fluorescein isothiocyanate bound to the cell membrane as early as 24 hours. Liriodenine activated the intrinsic pathway by induction of caspase-3 and caspase-9. Involvement of the intrinsic pathway in the mitochondria could be seen, with a significant increase in mitochondrial permeability and cytochrome c release, whereas the mitochondrial membrane potential was decreased. DNA fragmentation occurred at 72 hours upon exposure to liriodenine. The presence of DNA fragmentation indicates the CAOV-3 cells undergo late apoptosis or final stage of apoptosis. Confirmation of apoptosis at the protein level showed overexpression of Bax and suppression of Bcl-2 and survivin. Liriodenine inhibits progression of the CAOV-3 cell cycle in S phase. These findings indicate that liriodenine could be considered as a promising anticancer agent.
FcgammaRIIa genotype predicts progression of HIV infection.
Forthal, Donald N; Landucci, Gary; Bream, Jay; Jacobson, Lisa P; Phan, Tran B; Montoya, Benjamin
2007-12-01
Polymorphisms in FcgammaR genes are associated with susceptibility to or severity of a number of autoimmune and infectious diseases. We found that HIV-infected men in the Multicenter AIDS Cohort Study with the FcgammaRIIa RR genotype progressed to a CD4(+) cell count of <200/mm(3) at a faster rate than individuals with the RH or HH genotypes (relative hazard = 1.6; p = 0.0001). However, progression to AIDS (using the broad definition of either a CD4(+) cell count <200/mm(3) or development of an AIDS-defining illness) was less impacted by FcgammaRIIa genotype, largely because HH homozygotes had an increased risk of Pneumocystis jiroveci pneumonia as an AIDS-defining illness. We also showed that chronically infected subjects develop a substantial anti-gp120-specific IgG2 response. Moreover, HIV-1 immune complexes are more efficiently internalized by monocytes from HH subjects compared with RR subjects, likely because of the presence of IgG2 in the complexes. Finally, the FcgammaRIIIa F/V gene polymorphism was not associated with progression of HIV infection, but, as demonstrated previously, did predict the risk of Kaposi's sarcoma. These results demonstrate the importance of FcgammaRs in AIDS pathogenesis and point toward a critical role for interactions between FcgammaRs and immune complexes in disease progression.
Human a-L-fucosidase-1 attenuates the invasive properties of thyroid cancer.
Vecchio, Giancarlo; Parascandolo, Alessia; Allocca, Chiara; Ugolini, Clara; Basolo, Fulvio; Moracci, Marco; Strazzulli, Andrea; Cobucci-Ponzano, Beatrice; Laukkanen, Mikko O; Castellone, Maria Domenica; Tsuchida, Nobuo
2017-04-18
Glycans containing α-L-fucose participate in diverse interactions between cells and extracellular matrix. High glycan expression on cell surface is often associated with neoplastic progression. The lysosomal exoenzyme, α-L-fucosidase-1 (FUCA-1) removes fucose residues from glycans. The FUCA-1 gene is down-regulated in highly aggressive and metastatic human tumors. However, the role of FUCA-1 in tumor progression remains unclear. It is speculated that its inactivation perturbs glycosylation of proteins involved in cell adhesion and promotes cancer. FUCA-1 expression of various thyroid normal and cancer tissues assayed by immunohistochemical (IHC) staining was high in normal thyroids and papillary thyroid carcinomas (PTC), whereas it progressively decreased in poorly differentiated, metastatic and anaplastic thyroid carcinomas (ATC). FUCA-1 mRNA expression from tissue samples and cell lines and protein expression levels and enzyme activity in thyroid cancer cell lines paralleled those of IHC staining. Furthermore, ATC-derived 8505C cells adhesion to human E-selectin and HUVEC cells was inhibited by bovine α-L-fucosidase or Lewis antigens, thus pointing to an essential role of fucose residues in the adhesive phenotype of this cancer cell line. Finally, 8505C cells transfected with a FUCA-1 containing plasmid displayed a less invasive phenotype versus the parental 8505C. These results demonstrate that FUCA-1 is down-regulated in ATC compared to PTC and normal thyroid tissues and cell lines. As shown for other human cancers, the down-regulation of FUCA-1 correlates with increased aggressiveness of the cancer type. This is the first report indicating that the down-regulation of FUCA-1 is related to the increased aggressiveness of thyroid cancer.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells
Guo, Yongfeng; Flegel, Kerry; Kumar, Jayashree; McKay, Daniel J.
2016-01-01
ABSTRACT During development, cell proliferation and differentiation must be tightly coordinated to ensure proper tissue morphogenesis. Because steroid hormones are central regulators of developmental timing, understanding the links between steroid hormone signaling and cell proliferation is crucial to understanding the molecular basis of morphogenesis. Here we examined the mechanism by which the steroid hormone ecdysone regulates the cell cycle in Drosophila. We find that a cell cycle arrest induced by ecdysone in Drosophila cell culture is analogous to a G2 cell cycle arrest observed in the early pupa wing. We show that in the wing, ecdysone signaling at the larva-to-puparium transition induces Broad which in turn represses the cdc25c phosphatase String. The repression of String generates a temporary G2 arrest that synchronizes the cell cycle in the wing epithelium during early pupa wing elongation and flattening. As ecdysone levels decline after the larva-to-puparium pulse during early metamorphosis, Broad expression plummets, allowing String to become re-activated, which promotes rapid G2/M progression and a subsequent synchronized final cell cycle in the wing. In this manner, pulses of ecdysone can both synchronize the final cell cycle and promote the coordinated acquisition of terminal differentiation characteristics in the wing. PMID:27737823
Stem cell aging: mechanisms, regulators and therapeutic opportunities
Oh, Juhyun; Lee, Yang David; Wagers, Amy J
2014-01-01
Aging tissues experience a progressive decline in homeostatic and regenerative capacities, which has been attributed to degenerative changes in tissue-specific stem cells, stem cell niches and systemic cues that regulate stem cell activity. Understanding the molecular pathways involved in this age-dependent deterioration of stem cell function will be critical for developing new therapies for diseases of aging that target the specific causes of age-related functional decline. Here we explore key molecular pathways that are commonly perturbed as tissues and stem cells age and degenerate. We further consider experimental evidence both supporting and refuting the notion that modulation of these pathways per se can reverse aging phenotypes. Finally, we ask whether stem cell aging establishes an epigenetic ‘memory’ that is indelibly written or one that can be reset. PMID:25100532
Gonsalves, Wilson I.; Hitosugi, Taro; Ghosh, Toshi; Jevremovic, Dragan; Petterson, Xuan-Mai; Wellik, Linda; Kumar, Shaji K.; Nair, K. Sreekumaran
2018-01-01
The production of the oncometabolite 2-hydroxyglutarate (2-HG) has been associated with c-MYC overexpression. c-MYC also regulates glutamine metabolism and drives progression of asymptomatic precursor plasma cell (PC) malignancies to symptomatic multiple myeloma (MM). However, the presence of 2-HG and its clinical significance in PC malignancies is unknown. By performing 13C stable isotope resolved metabolomics (SIRM) using U[13C6]Glucose and U[13C5]Glutamine in human myeloma cell lines (HMCLs), we show that 2-HG is produced in clonal PCs and is derived predominantly from glutamine anaplerosis into the TCA cycle. Furthermore, the 13C SIRM studies in HMCLs also demonstrate that glutamine is preferentially utilized by the TCA cycle compared with glucose. Finally, measuring the levels of 2-HG in the BM supernatant and peripheral blood plasma from patients with precursor PC malignancies such as smoldering MM (SMM) demonstrates that relatively elevated levels of 2-HG are associated with higher levels of c-MYC expression in the BM clonal PCs and with a subsequent shorter time to progression (TTP) to MM. Thus, measuring 2-HG levels in BM supernatant or peripheral blood plasma of SMM patients offers potential early identification of those patients at high risk of progression to MM, who could benefit from early therapeutic intervention. PMID:29321378
Musette, P; Galelli, A; Chabre, H; Callard, P; Peumans, W; Truffa-Bachi, P; Kourilsky, P; Gachelin, G
1996-08-01
The V beta 8.3-specific superantigenic lectin Urtica dioica agglutinin (UDA) was used to delete the V beta 8.3+ T cells in MRL lpr/lpr mice. In contrast to the systemic lupus erythematosus-like pathology which progresses with age in the phosphate-buffered saline-injected MRL lpr/lpr controls, UDA-treated animals did not develop overt clinical signs of lupus and nephritis. The pathogenic T cell clones thus reside within the V beta 8.3+ T cell population, which includes an expanded T cell clone described previously. Finally, UDA alters the production of autoantibodies in a sex-dependent manner.
Prot, Jean Matthieu; Leclerc, Eric
2012-06-01
In this paper, we will consider new in vitro cell culture platforms and the progress made, based on the microfluidic liver biochips dedicated to pharmacological and toxicological studies. Particular emphasis will be given to recent developments in the microfluidic tools dedicated to cell culture (more particularly liver cell culture), in silico opportunities for Physiologically Based PharmacoKinetic (PBPK) modelling, the challenge of the mechanistic interpretations offered by the approaches resulting from "multi-omics" data (transcriptomics, proteomics, metabolomics, cytomics) and imaging microfluidic platforms. Finally, we will discuss the critical features regarding microfabrication, design and materials, and cell functionality as the key points for the future development of new microfluidic liver biochips.
Bentz, Brandon G; Hammer, Neal D; Radosevich, James A; Haines, G Kenneth
2004-01-01
Background Key steps crucial to the process of tumor progression are genomic instability and escape from apoptosis. Nitric oxide and its interrelated reactive intermediates (collectively denoted as NOX) have been implicated in DNA damage and mutational events leading to cancer development, while also being implicated in the inhibition of apoptosis through S-nitrosation of key apoptotic enzymes. The purpose of this study was to explore the interrelationship between NOX-mediated DNA strand breaks (DSBs) and apoptosis in cultured tumor cell lines. Methods Two well-characterized cell lines were exposed to increasing concentrations of exogenous NOX via donor compounds. Production of NOX was quantified by the Greiss reaction and spectrophotometery, and confirmed by nitrotyrosine immunostaining. DSBs were measured by the alkaline single-cell gel electrophoresis assay (the COMET assay), and correlated with cell viability by the MTT assay. Apoptosis was analyzed both by TUNEL staining and Annexin V/propidium iodine FACS. Finally, caspase enzymatic activity was measured using an in-vitro fluorogenic caspase assay. Results Increases in DNA strand breaks in our tumor cells, but not in control fibroblasts, correlated with the concentration as well as rate of release of exogenously administered NOX. This increase in DSBs did not correlate with an increase in cell death or apoptosis in our tumor cell line. Finally, this lack of apoptosis was found to correlate with inhibition of caspase activity upon exposure to thiol- but not NONOate-based NOX donor compounds. Conclusions Genotoxicity appears to be highly interrelated with both the concentration and kinetic delivery of NOX. Moreover, alterations in cell apoptosis can be seen as a consequence of the explicit mechanisms of NOX delivery. These findings lend credence to the hypothesis that NOX may play an important role in tumor progression, and underscores potential pitfalls which should be considered when developing NOX-based chemotherapeutic agents. PMID:15617570
Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells
Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei
2018-01-01
Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research. PMID:29342950
Logsdon, Michelle M; Aldridge, Bree B
2018-01-01
Model bacteria, such as E. coli and B. subtilis , tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.
Core exosome-independent roles for Rrp6 in cell cycle progression.
Graham, Amy C; Kiss, Daniel L; Andrulis, Erik D
2009-04-01
Exosome complexes are 3' to 5' exoribonucleases composed of subunits that are critical for numerous distinct RNA metabolic (ribonucleometabolic) pathways. Several studies have implicated the exosome subunits Rrp6 and Dis3 in chromosome segregation and cell division but the functional relevance of these findings remains unclear. Here, we report that, in Drosophila melanogaster S2 tissue culture cells, dRrp6 is required for cell proliferation and error-free mitosis, but the core exosome subunit Rrp40 is not. Micorarray analysis of dRrp6-depleted cell reveals increased levels of cell cycle- and mitosis-related transcripts. Depletion of dRrp6 elicits a decrease in the frequency of mitotic cells and in the mitotic marker phospho-histone H3 (pH3), with a concomitant increase in defects in chromosome congression, separation, and segregation. Endogenous dRrp6 dynamically redistributes during mitosis, accumulating predominantly but not exclusively on the condensed chromosomes. In contrast, core subunits localize predominantly to MTs throughout cell division. Finally, dRrp6-depleted cells treated with microtubule poisons exhibit normal kinetochore recruitment of the spindle assembly checkpoint protein BubR1 without restoring pH3 levels, suggesting that these cells undergo premature chromosome condensation. Collectively, these data support the idea that dRrp6 has a core exosome-independent role in cell cycle and mitotic progression.
RNA editing-dependent epitranscriptome diversity in cancer stem cells
Jiang, Qingfei; Crews, Leslie A.; Holm, Frida; Jamieson, Catriona H. M.
2017-01-01
Cancer stem cells (CSCs) can regenerate all facets of a tumour as a result of their stem cell-like capacity to self-renew, survive and become dormant in protective microenvironments. CSCs evolve during tumour progression in a manner that conforms to Charles Darwin’s principle of natural selection. Although somatic DNA mutations and epigenetic alterations promote evolution, post-transcriptional RNA modifications together with RNA binding protein activity (the ‘epitranscriptome’) might also contribute to clonal evolution through dynamic determination of RNA function and gene expression diversity in response to environmental stimuli. Deregulation of these epitranscriptomic events contributes to CSC generation and maintenance, which governs cancer progression and drug resistance. In this Review, we discuss the role of malignant RNA processing in CSC generation and maintenance, including mechanisms of RNA methylation, RNA editing and RNA splicing, and the functional consequences of their aberrant regulation in human malignancies. Finally, we highlight the potential of these events as novel CSC biomarkers as well as therapeutic targets. PMID:28416802
Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongguo; Lv, Haifeng; Kang, Yijin
2016-04-06
In this paper, we present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important rolemore » in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Finally, understanding how the doped elements interact with each other and/or carbon is challenging and necessary in the design of robust fuel cell catalysts.« less
Kasai, Masataka; Ishida, Reiko; Nakahara, Kazuhiko; Okumura, Ko; Aoki, Katsunori
2018-05-08
Translin and translin-associated factor X (translin/TRAX) proteins have been implicated in a variety of cellular activities central to nucleic acid metabolism. Accumulating evidence indicates that translin/TRAX complexes participate in processes ensuring the replication of DNA, as well as cell division. Significant progress has been made in understanding the roles of translin/TRAX complexes in RNA metabolism, such as through RNA-induced silencing complex activation or the microRNA depletion that occurs in Dicer deficiency. At the cellular level, translin-deficient (Tsn -/- ) mice display delayed endochondral ossification or progressive bone marrow failure with ectopic osteogenesis and adipogenesis, suggesting involvement in mesenchymal cell differentiation. In this review, we summarize the molecular and cellular functions of translin homo-octamer and translin/TRAX hetero-octamer. Finally, we discuss the multifaceted roles of translin, TRAX, and associated proteins in the healthy and disease states. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of The New York Academy of Sciences.
Biophysics of cancer progression and high-throughput mechanical characterization of biomaterials
NASA Astrophysics Data System (ADS)
Osborne, Lukas Dylan
Cancer metastasis involves a series of events known as the metastatic cascade. In this complex progression, cancer cells detach from the primary tumor, invade the surrounding stromal space, transmigrate the vascular system, and establish secondary tumors at distal sites. Specific mechanical phenotypes are likely adopted to enable cells to successfully navigate the mechanical environments encountered during metastasis. To examine the role of cell mechanics in cancer progression, I employed force-consistent biophysical and biochemical assays to characterize the mechanistic links between stiffness, stiffness response and cell invasion during the epithelial to mesenchymal transition (EMT). EMT is an essential physiological process, whose abnormal reactivation has been implicated in the detachment of cancer cells from epithelial tissue and their subsequent invasion into stromal tissue. I demonstrate that epithelial-state cells respond to force by evoking a stiffening response, and that after EMT, mesenchymal-state cells have reduced stiffness but also lose the ability to increase their stiffness in response to force. Using loss and gain of function studies, two proteins are established as functional connections between attenuated stiffness and stiffness response and the increased invasion capacity acquired after EMT. To enable larger scale assays to more fully explore the connection between biomechanics and cancer, I discuss the development of an automated array high throughput (AHT) microscope. The AHT system is shown to implement passive microbead rheology to accurately characterize the mechanical properties of biomaterials. Compared to manually performed mechanical characterizations, the AHT system executes experiments in two orders of magnitude less time. Finally, I use the AHT microscope to study the effect of gain of function oncogenic molecules on cell stiffness. I find evidence that our assay can identify alterations in cell stiffness due to constitutive activation of cancer pathways.
Cytokines, IBD and colitis-associated cancer
Francescone, Ralph; Hou, Vivianty; Grivennikov, Sergei I.
2015-01-01
Inflammatory bowel diseases (IBDs) are debilitating conditions that result in intestinal damage due to chronic inflammation. In addition, the perpetual state of inflammation predisposes individuals to the development of colitis associated cancer (CAC). Because of the immense immune cell infiltration into colon, cytokines produced by immune cells are major players in the initiation and progression of IBD and CAC. In this review, we will explore the functions of many key cytokines and their roles in IBD and CAC, as well as their influences on the immune system and stromal cells. Finally, we will briefly discuss current therapies and current clinical trials targeting cytokines in IBD. PMID:25563695
Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Neal P.
The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.
Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura
2016-07-01
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. Copyright © 2016 by the Genetics Society of America.
Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura
2016-01-01
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo. However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed Drosophila, Rbf, E2F and Myb/Multi-vulva class B (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. PMID:27184390
Leve, Fernanda; Peres-Moreira, Rubem J; Binato, Renata; Abdelhay, Eliana; Morgado-Díaz, José A
2015-01-01
Lysophosphatidic acid (LPA) plays a critical role in the proliferation and migration of colon cancer cells; however, the downstream signaling events underlying these processes remain poorly characterized. The aim of this study was to investigate the signaling pathways triggered by LPA to regulate the mechanisms involved in the progression of colorectal cancer (CRC). We have used three cell line models of CRC, and initially analyzed the expression profile of LPA receptors (LPAR). Then, we treated the cells with LPA and events related to their tumorigenic potential, such as migration, invasion, anchorage-independent growth, proliferation as well as apoptosis and cell cycle were evaluated. We used the Chip array technique to analyze the global gene expression profiling that occurs after LPA treatment, and we identified cell signaling pathways related to the cell cycle. The inhibition of these pathways verified the conclusions of the transcriptomic analysis. We found that the cell lines expressed LPAR1, -2 and -3 in a differential manner and that 10 μM LPA did not affect cell migration, invasion and anchorage-independent growth, but it did induce proliferation and cell cycle progression in HCT-116 cells. Although LPA in this concentration did not induce transcriptional activity of β-catenin, it promoted the activation of Rho and STAT-3. Moreover, ROCK and STAT-3 inhibitors prevented LPA-induced proliferation, but ROCK inhibition did not prevent STAT-3 activation. Finally, we observed that LPA regulates the expression of genes related to the cell cycle and that the combined inhibition of ROCK and STAT-3 prevented cell cycle progression and increased the LPA-induced expression of cyclins E1, A2 and B1 to a greater degree than either inhibitor alone. Overall, these results demonstrate that LPA increases the proliferative potential of colon adenocarcinoma HCT-116 cells through a mechanism involving cooperation between the Rho-ROCK and STAT3 pathways involved in cell cycle control.
Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy
Sun, Cheng; Sun, Hao-yu; Xiao, Wei-hua; Zhang, Cai; Tian, Zhi-gang
2015-01-01
The mechanisms linking hepatitis B virus (HBV) and hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) remain largely unknown. Natural killer (NK) cells account for 25%–50% of the total number of liver lymphocytes, suggesting that NK cells play an important role in liver immunity. The number of NK cells in the blood and tumor tissues of HCC patients is positively correlated with their survival and prognosis. Furthermore, a group of NK cell-associated genes in HCC tissues is positively associated with the prolonged survival. These facts suggest that NK cells and HCC progression are strongly associated. In this review, we describe the abnormal NK cells and their functional impairment in patients with chronic HBV and HCV infection, which contribute to the progression of HCC. Then, we summarize the association of NK cells with HCC based on the abnormalities in the numbers and phenotypes of blood and liver NK cells in HCC patients. In particular, the exhaustion of NK cells that represents lower cytotoxicity and impaired cytokine production may serve as a predictor for the occurrence of HCC. Finally, we present the current achievements in NK cell immunotherapy conducted in mouse models of liver cancer and in clinical trials, highlighting how chemoimmunotherapy, NK cell transfer, gene therapy, cytokine therapy and mAb therapy improve NK cell function in HCC treatment. It is conceivable that NK cell-based anti-HCC therapeutic strategies alone or in combination with other therapies will be great promise for HCC treatment. PMID:26073325
Tracing cell lineages in videos of lens-free microscopy.
Rempfler, Markus; Stierle, Valentin; Ditzel, Konstantin; Kumar, Sanjeev; Paulitschke, Philipp; Andres, Bjoern; Menze, Bjoern H
2018-06-05
In vitro experiments with cultured cells are essential for studying their growth and migration pattern and thus, for gaining a better understanding of cancer progression and its treatment. Recent progress in lens-free microscopy (LFM) has rendered it an inexpensive tool for label-free, continuous live cell imaging, yet there is only little work on analysing such time-lapse image sequences. We propose (1) a cell detector for LFM images based on fully convolutional networks and residual learning, and (2) a probabilistic model based on moral lineage tracing that explicitly handles multiple detections and temporal successor hypotheses by clustering and tracking simultaneously. (3) We benchmark our method in terms of detection and tracking scores on a dataset of three annotated sequences of several hours of LFM, where we demonstrate our method to produce high quality lineages. (4) We evaluate its performance on a somewhat more challenging problem: estimating cell lineages from the LFM sequence as would be possible from a corresponding fluorescence microscopy sequence. We present experiments on 16 LFM sequences for which we acquired fluorescence microscopy in parallel and generated annotations from them. Finally, (5) we showcase our methods effectiveness for quantifying cell dynamics in an experiment with skin cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Perspectives for immunotherapy in glioblastoma treatment.
Finocchiaro, Gaetano; Pellegatta, Serena
2014-11-01
Avoiding immune destruction is one emerging hallmark of cancer, including glioblastoma. The number of immunotherapy approaches to fight glioblastoma is growing. Here, we review the recent progress in four main areas: dendritic cell immunotherapy, peptide vaccination, chimeric antigen receptors and immune checkpoints. We and others are using dendritic cells to present glioblastoma antigens (whole tumor lysate) to the immune system; our initial data indicate that clinical benefit is associated to increased presence of natural killer cells in the periphery. A pilot study loading dendritic cells with glioblastoma stem-like cells will start soon. Peptide vaccination targeting the epidermal growth factor receptor variant III (EGFRvIII) epitope, present in 25% of glioblastomas, is ongoing. Intriguing results have been obtained by vaccination with three other peptides in pediatric gliomas. Another clinical trial is targeting EGFRvIII by adoptive cell transfer of chimeric antigen receptor. This exciting technology could be suited for a number of other potential epitopes discovered through next-generation sequencing. Finally, antibodies against the immune checkpoints cytotoxic T lymphocyte antigen-4 and programmed cell death-1, which demonstrated efficacy in advanced melanomas, will be used in novel trials for recurrent glioblastoma. In all these studies attention to novel side-effects and to MRI as immunological follow-up to distinguish progression or pseudoprogression will be of critical relevance.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma
Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara
2018-01-01
Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies. PMID:29507693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Seong-Jun; Kang, Hana; Kim, Min Young
Purpose: To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Methods and Materials: Splenocytes and IM-9 cells were uniformly irradiated with various doses of a {sup 137}Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. Results: First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylationmore » level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Conclusion: Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast.« less
Concise Review: Mending a Broken Heart: The Evolution of Biological Therapeutics.
Chen, Caressa; Termglinchan, Vittavat; Karakikes, Ioannis
2017-05-01
Heart failure (HF), a common sequela of cardiovascular diseases, remains a staggering clinical problem, associated with high rates of morbidity and mortality worldwide. Advances in pharmacological, interventional, and operative management have improved patient care, but these interventions are insufficient to halt the progression of HF, particularly the end-stage irreversible loss of functional cardiomyocytes. Innovative therapies that could prevent HF progression and improve the function of the failing heart are urgently needed. Following successful preclinical studies, two main strategies have emerged as potential solutions: cardiac gene therapy and cardiac regeneration through stem and precursor cell transplantation. Many potential gene- and cell-based therapies have entered into clinical studies, intending to ameliorate cardiac dysfunction in patients with advanced HF. In this review, we focus on the recent advances in cell- and gene-based therapies in the context of cardiovascular disease, emphasizing the most advanced therapies. The principles and mechanisms of action of gene and cell therapies for HF are discussed along with the limitations of current approaches. Finally, we highlight the emerging technologies that hold promise to revolutionize the biological therapies for cardiovascular diseases. Stem Cells 2017;35:1131-1140. © 2017 AlphaMed Press.
Gkotzamanidou, M; Terpos, E; Bamia, C; Kyrtopoulos, S A; Sfikakis, P P; Dimopoulos, M A; Souliotis, V L
2014-05-01
The molecular pathways implicated in multiple myeloma (MM) development are rather unknown. We studied epigenetic and DNA damage response (DDR) signals at selected model loci (N-ras, p53, d-globin) in bone marrow plasma cells and peripheral blood mononuclear cells (PBMCs) from patients with monoclonal gammopathy of undetermined significance (MGUS; n=20), smoldering/asymptomatic MM (SMM; n=29) and MM (n=18), as well as in healthy control-derived PBMCs (n=20). In both tissues analyzed, a progressive, significant increase in the looseness of local chromatin structure, gene expression levels and DNA repair efficiency from MGUS to SMM and finally to MM was observed (all P<0.002). Following ex vivo treatment with melphalan, a gradual suppression of the apoptotic pathway occurred in samples collected at different stages of myelomagenesis, with the severity and duration of the inhibition of RNA synthesis, p53 phosphorylation at serine15 and induction of apoptosis being higher in MGUS than SMM and lowest in MM patients (all P<0.0103). Interestingly, for all endpoints analyzed, a strong correlation between plasma cells and corresponding PBMCs was observed (all P<0.0003). We conclude that progressive changes in chromatin structure, transcriptional activity and DDR pathways during myelomagenesis occur in malignant plasma cells and that these changes are also reflected in PBMCs.
Lachaud, Christian Claude; Rodriguez-Campins, Berta; Hmadcha, Abdelkrim; Soria, Bernat
2015-01-01
Tissue-engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large celomic cavities (peritoneal, pericardial, and pleural) and internal organs housed inside. Interestingly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable, and non-immunogenic) may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions.
Lachaud, Christian Claude; Rodriguez-Campins, Berta; Hmadcha, Abdelkrim; Soria, Bernat
2015-01-01
Tissue-engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large celomic cavities (peritoneal, pericardial, and pleural) and internal organs housed inside. Interestingly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable, and non-immunogenic) may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions. PMID:26347862
Díaz-Valdés, Nancy; Basagoiti, María; Dotor, Javier; Aranda, Fernando; Monreal, Iñaki; Riezu-Boj, José Ignacio; Borrás-Cuesta, Francisco; Sarobe, Pablo; Feijoó, Esperanza
2011-02-01
Melanoma progression is associated with the expression of different growth factors, cytokines, and chemokines. Because TGFβ1 is a pleiotropic cytokine involved not only in physiologic processes but also in cancer development, we analyzed in A375 human melanoma cells, the effect of TGFβ1 on monocyte chemoattractant protein-1 (MCP-1) and interleukin-10 (IL-10) expression, two known factors responsible for melanoma progression. TGFβ1 increased the expression of MCP-1 and IL-10 in A375 cells, an effect mediated by the cross-talk between Smad, PI3K (phosphoinositide 3-kinase)/AKT, and BRAF-MAPK (mitogen activated protein kinase) signaling pathways. Supernatants from TGFβ1-treated A375 cells enhanced MCP-1-dependent migration of monocytes, which, in turn, expressed high levels of TGF,β1, bFGF, and VEGF mRNA. Moreover, these supernatants also inhibited functional properties of dendritic cells through IL-10-dependent mechanisms. When using in vitro, the TGFβ1-blocking peptide P144, TGFβ1-dependent Smad3 phosphorylation, and expression of MCP-1 and IL-10 were inhibited. In vivo, treatment of A375 tumor-bearing athymic mice with P144 significantly reduced tumor growth, associated with a lower macrophage infiltrate and decreased intratumor MCP-1 and VEGF levels, as well as angiogenesis. Finally, in C57BL/6 mice with B16-OVA melanoma tumors, when administered with immunotherapy, P144 decreased tumor growth and intratumor IL-10 levels, linked to enhanced activation of dendritic cells and natural killer cells, as well as anti-OVA T-cell responses. These results show new effects of TGFβ1 on melanoma cells, which promote tumor progression and immunosuppression, strongly reinforcing the relevance of this cytokine as a molecular target in melanoma.
Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design
Kong, Leopold; Sattentau, Quentin J
2012-01-01
Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today’s rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome. PMID:23227445
A Molecular View of Kinetochore Assembly and Function
Musacchio, Andrea; Desai, Arshad
2017-01-01
Kinetochores are large protein assemblies that connect chromosomes to microtubules of the mitotic and meiotic spindles in order to distribute the replicated genome from a mother cell to its daughters. Kinetochores also control feedback mechanisms responsible for the correction of incorrect microtubule attachments, and for the coordination of chromosome attachment with cell cycle progression. Finally, kinetochores contribute to their own preservation, across generations, at the specific chromosomal loci devoted to host them, the centromeres. They achieve this in most species by exploiting an epigenetic, DNA-sequence-independent mechanism; notable exceptions are budding yeasts where a specific sequence is associated with centromere function. In the last 15 years, extensive progress in the elucidation of the composition of the kinetochore and the identification of various physical and functional modules within its substructure has led to a much deeper molecular understanding of kinetochore organization and the origins of its functional output. Here, we provide a broad summary of this progress, focusing primarily on kinetochores of humans and budding yeast, while highlighting work from other models, and present important unresolved questions for future studies. PMID:28125021
Progress in plant protoplast research.
Eeckhaut, Tom; Lakshmanan, Prabhu Shankar; Deryckere, Dieter; Van Bockstaele, Erik; Van Huylenbroeck, Johan
2013-12-01
In this review we focus on recent progress in protoplast regeneration, symmetric and asymmetric hybridization and novel technology developments. Regeneration of new species and improved culture techniques opened new horizons for practical breeding in a number of crops. The importance of protoplast sources and embedding systems is discussed. The study of reactive oxygen species effects and DNA (de)condensation, along with thorough phytohormone monitoring, are in our opinion the most promising research topics in the further strive for rationalization of protoplast regeneration. Following, fusion and fragmentation progress is summarized. Genomic, transcriptomic and proteomic studies have led to better insights in fundamental processes such as cell wall formation, cell development and chromosome rearrangements in fusion products, whether or not obtained after irradiation. Advanced molecular screening methods of both genome and cytoplasmome facilitate efficient screening of both symmetric and asymmetric fusion products. We expect that emerging technologies as GISH, high resolution melting and next generation sequencing will pay major contributions to our insights of genome creation and stabilization, mainly after asymmetric hybridization. Finally, we demonstrate agricultural valorization of somatic hybridization through enumerating recent introgression of diverse traits in a number of commercial crops.
ITGBL1 promotes migration, invasion and predicts a poor prognosis in colorectal cancer.
Qiu, Xiao; Feng, Jue-Rong; Qiu, Jun; Liu, Lan; Xie, Yang; Zhang, Yu-Peng; Liu, Jing; Zhao, Qiu
2018-05-14
Colorectal cancer (CRC) is one of the most common malignancies worldwide; its progression and prognosis are associated with oncogenes. The present study aimed to identify differentially expressed genes (DEGs) and explore the role and potential mechanism of integrin subunit β like 1 (ITGBL1) in CRC. The microarray dataset GSE41258 was used to screen DEGs involved in CRC. Survival analysis was performed to predict the prognosis of CRC patients. To validate ITGBL1 expression, immunohistochemistry, quantitative real-time PCR and western blotting were performed in CRC tissues and cells. Subsequently, the effects of ITGBL1 were evaluated through colony formation, cell proliferation, migration and invasion assays. Finally, we took advantage of Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) to explore potential function and mechanism of ITGBL1 in CRC. In our study, 182 primary CRC tissues and 54 normal colon tissues were contained in GSE41258 dataset. A total of 318 DEGs were screened, among which ITGBL1 was found to be significantly up-regulated in CRC, and its high expression was associated with shortened survival of CRC patients. Moreover, knockdown of ITGBL1 promoted CRC cell proliferation, migration and invasion. Finally, GO analysis revealed that ITGBL1 was associated with cell adhesion. GSEA indicated that ITGBL1 was enriched in ECM receptor interaction and focal adhesion. In conclusion, a novel oncogene ITGBL1 was identified and demonstrated to be associated with the progression and prognosis of CRC, which might be a potential therapeutic target and prognostic biomarker for CRC patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Ghiglione, Yanina; Falivene, Juliana; Socias, María Eugenia; Laufer, Natalia; Coloccini, Romina Soledad; Rodriguez, Ana María; Ruiz, María Julia; Pando, María Ángeles; Giavedoni, Luis David; Cahn, Pedro; Sued, Omar; Salomon, Horacio; Gherardi, María Magdalena
2013-01-01
The important role of the CD8+ T-cell response on HIV control is well established. Moreover, the acute phase of infection represents a proper scenario to delineate the antiviral cellular functions that best correlate with control. Here, multiple functional aspects (specificity, ex vivo viral inhibitory activity [VIA] and polyfunctionality) of the HIV-specific CD8+ T-cell subset arising early after infection, and their association with disease progression markers, were examined. Blood samples from 44 subjects recruited within 6 months from infection (primary HIV infection [PHI] group), 16 chronically infected subjects, 11 elite controllers (EC), and 10 healthy donors were obtained. Results indicated that, although Nef dominated the anti-HIV response during acute/early infection, a higher proportion of early anti-Gag T cells correlated with delayed progression. Polyfunctional HIV-specific CD8+ T cells were detected at early time points but did not associate with virus control. Conversely, higher CD4+ T-cell set points were observed in PHI subjects with higher HIV-specific CD8+ T-cell VIA at baseline. Importantly, VIA levels correlated with the magnitude of the anti-Gag cellular response. The advantage of Gag-specific cells may result from their enhanced ability to mediate lysis of infected cells (evidenced by a higher capacity to degranulate and to mediate VIA) and to simultaneously produce IFN-γ. Finally, Gag immunodominance was associated with elevated plasma levels of interleukin 2 (IL-2) and macrophage inflammatory protein 1β (MIP-1β). All together, this study underscores the importance of CD8+ T-cell specificity in the improved control of disease progression, which was related to the capacity of Gag-specific cells to mediate both lytic and nonlytic antiviral mechanisms at early time points postinfection. PMID:23616666
Andersen, Morten; Sajid, Zamra; Pedersen, Rasmus K; Gudmand-Hoeyer, Johanne; Ellervik, Christina; Skov, Vibe; Kjær, Lasse; Pallisgaard, Niels; Kruse, Torben A; Thomassen, Mads; Troelsen, Jesper; Hasselbalch, Hans Carl; Ottesen, Johnny T
2017-01-01
The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs in the biological continuum from early cancer stage to the advanced myelofibrosis stage, the MPNs being described as "A Human Inflammation Model for Cancer Development". This novel concept has been built upon clinical, experimental, genomic, immunological and not least epidemiological studies. Only a few studies have described the development of MPNs by mathematical models, and none have addressed the role of inflammation for clonal evolution and disease progression. Herein, we aim at using mathematical modelling to substantiate the concept of chronic inflammation as an important trigger and driver of MPNs.The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model. Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal evolution and an important driving force for MPN disease progression. Our findings support intervention at the earliest stage of cancer development to target the malignant clone and dampen concomitant inflammation.
Nam, KeeSoo; Son, Seog-Ho; Oh, Sunhwa; Jeon, Donghwan; Kim, Hyungjoo; Noh, Dong-Young; Kim, Sangmin; Shin, Incheol
2017-05-30
Galectin-1 is a β-galactoside binding protein secreted by many types of aggressive cancer cells. Although many studies have focused on the role of galectin-1 in cancer progression, relatively little attention has been paid to galectin-1 as an extracellular therapeutic target. To elucidate the molecular mechanisms underlying galectin-1-mediated cancer progression, we established galectin-1 knock-down cells via retroviral delivery of short hairpin RNA (shRNA) against galectin-1 in two triple-negative breast cancer (TNBC) cell lines, MDA-MB-231 and Hs578T. Ablation of galectin-1 expression decreased cell proliferation, migration, invasion, and doxorubicin resistance. We found that these effects were caused by decreased galectin-1-integrin β1 interactions and suppression of the downstream focal adhesion kinase (FAK)/c-Src pathway. We also found that silencing of galectin-1 inhibited extracellular signal-regulated kinase (ERK)/signal transducer and activator of transcription 3 (STAT3) signaling, thereby down-regulating survivin expression. This finding implicates STAT3 as a transcription factor for survivin. Finally, rescue of endogenous galectin-1 knock-down and recombinant galectin-1 treatment both recovered signaling through the FAK/c-Src/ERK/STAT3/survivin pathway. Taken together, these results suggest that extracellular galectin-1 contributes to cancer progression and doxorubicin resistance in TNBC cells. These effects appear to be mediated by galectin-1-induced up-regulation of the integrin β1/FAK/c-Src/ERK/STAT3/survivin pathway. Our results imply that extracellular galectin-1 has potential as a therapeutic target for triple-negative breast cancer.
FoxM1 Promotes Glioma Cells Progression by Up-Regulating Anxa1 Expression
Cheng, Shi-Xiang; Tu, Yue; Zhang, Sai
2013-01-01
Forkhead box M1 (FoxM1) is a member of the forkhead transcription factor family and is overexpression in malignant gliomas. However, the molecular mechanisms by which FoxM1lead to glioma carcinogenesis and progression are still not well known. In the present study, we show that Anxa1 was overexpression in gliomas and predicted the poor outcome. Furthermore, Anxa1 closely related to the FoxM1 expression and was a direct transcriptional target of FoxM1. Overexpression of FoxM1 up-regulated Anxa1 expression, whereas suppression of FoxM1 expression down-regulated Anxa1 expression in glioma cells. Finally, FoxM1 enhanced the proliferation, migration, and angiogenesis in Anxa1-dependent manner both in vitro and in vivo. Our findings provide both clinical and mechanistic evidences that FoxM1 contributes to glioma development by directly up-regulating Anxa1 expression. PMID:23991102
Synthetic Nanoelectronic Probes for Biological Cells and Tissue
2013-01-01
Research at the interface between nanoscience and biology has the potential to produce breakthroughs in fundamental science and lead to revolutionary technologies. In this review, we focus on nanoelectronic/biological interfaces. First, we discuss nanoscale field effect transistors (nanoFETs) as probes to study cellular systems, including the realization of nanoFET comparable in size to biological nanostructures involved in communication using synthesized nanowires. Second, we overview current progress in multiplexed extracellular sensing using planar nanoFET arrays. Third, we describe the design and implementation of three distinct nanoFETs used to realize the first intracellular electrical recording from single cells. Fourth, we present recent progress in merging electronic and biological systems at the 3D tissue level by using macroporous nanoelectronic scaffolds. Finally, we discuss future development in this research area, the unique challenges and opportunities, and the tremendous impact these nanoFET based technologies might have in advancing biology and medical sciences. PMID:23451719
Gao, F B; Raff, M
1997-09-22
We have used clonal analysis and time-lapse video recording to study the proliferative behavior of purified oligodendrocyte precursor cells isolated from the perinatal rat optic nerve growing in serum-free cultures. First, we show that the cell cycle time of precursor cells decreases with increasing concentrations of PDGF, the main mitogen for these cells, suggesting that PDGF levels may regulate the cell cycle time during development. Second, we show that precursor cells isolated from embryonic day 18 (E18) nerves differ from precursor cells isolated from postnatal day 7 (P7) or P14 nerves in a number of ways: they have a simpler morphology, and they divide faster and longer before they stop dividing and differentiate into postmitotic oligodendrocytes. Third, we show that purified E18 precursor cells proliferating in culture progressively change their properties to resemble postnatal cells, suggesting that progressive maturation is an intrinsic property of the precursors. Finally, we show that precursor cells, especially mature ones, sometimes divide unequally, such that one daughter cell is larger than the other; in each of these cases the larger daughter cell divides well before the smaller one, suggesting that the precursor cells, just like single-celled eucaryotes, have to reach a threshold size before they can divide. These and other findings raise the possibility that such stochastic unequal divisions, rather than the stochastic events occurring in G1 proposed by "transition probability" models, may explain the random variability of cell cycle times seen within clonal cell lines in culture.
Gao, Fen-Biao; Raff, Martin
1997-01-01
We have used clonal analysis and time-lapse video recording to study the proliferative behavior of purified oligodendrocyte precursor cells isolated from the perinatal rat optic nerve growing in serum-free cultures. First, we show that the cell cycle time of precursor cells decreases with increasing concentrations of PDGF, the main mitogen for these cells, suggesting that PDGF levels may regulate the cell cycle time during development. Second, we show that precursor cells isolated from embryonic day 18 (E18) nerves differ from precursor cells isolated from postnatal day 7 (P7) or P14 nerves in a number of ways: they have a simpler morphology, and they divide faster and longer before they stop dividing and differentiate into postmitotic oligodendrocytes. Third, we show that purified E18 precursor cells proliferating in culture progressively change their properties to resemble postnatal cells, suggesting that progressive maturation is an intrinsic property of the precursors. Finally, we show that precursor cells, especially mature ones, sometimes divide unequally, such that one daughter cell is larger than the other; in each of these cases the larger daughter cell divides well before the smaller one, suggesting that the precursor cells, just like single-celled eucaryotes, have to reach a threshold size before they can divide. These and other findings raise the possibility that such stochastic unequal divisions, rather than the stochastic events occurring in G1 proposed by “transition probability” models, may explain the random variability of cell cycle times seen within clonal cell lines in culture. PMID:9298991
Role and regulation of apoptotic cell death in the kidney. Y2K update.
Ortiz, A; Lorz, C; Catalan, M P; Justo, P; Egido, J
2000-08-01
Apoptosis is an active form of cell death that, in balance with mitosis, regulates cell number. Cell number abnormalities are a frequent feature of renal disease. We now review current concepts on the molecular regulation of apoptotic cell death, including the influence of survival and lethal factors from the extracellular microenvironment as well as the role of intracellular regulators of apoptosis, such as death receptors, proapoptotic and antiapoptotic bcl2-related proteins, the mitochondria and caspases. In addition the role of apoptosis in the genesis, persistence and progression and remodeling and resolution of renal injury is discussed. Information on the expression and function of apoptosis regulatory proteins in specific renal syndromes is summarized. Finally, future perspectives in research and clinical intervention are discussed.
Bianchi-Frias, Daniella; Basom, Ryan; Delrow, Jeffrey J; Coleman, Ilsa M; Dakhova, Olga; Qu, Xiaoyu; Fang, Min; Franco, Omar E.; Ericson, Nolan G.; Bielas, Jason H.; Hayward, Simon W.; True, Lawrence; Morrissey, Colm; Brown, Lisha; Bhowmick, Neil A.; Rowley, David; Ittmann, Michael; Nelson, Peter S.
2017-01-01
Prostate cancer-associated stroma (CAS) plays an active role in malignant transformation, tumor progression, and metastasis. Molecular analyses of CAS have demonstrated significant changes in gene expression; however, conflicting evidence exists on whether genomic alterations in benign cells comprising the tumor microenvironment (TME) underlie gene expression changes and oncogenic phenotypes. This study evaluates the nuclear and mitochondrial DNA integrity of prostate carcinoma cells, CAS, matched benign epithelium and benign epithelium-associated stroma by whole genome copy number analyses, targeted sequencing of TP53, and fluorescence in situ hybridization. Comparative genomic hybridization (aCGH) of CAS revealed a copy-neutral diploid genome with only rare and small somatic copy number aberrations (SCNAs). In contrast, several expected recurrent SCNAs were evident in the adjacent prostate carcinoma cells, including gains at 3q, 7p, and 8q, and losses at 8p and 10q. No somatic TP53 mutations were observed in CAS. Mitochondrial DNA (mtDNA) extracted from carcinoma cells and stroma identified 23 somatic mtDNA mutations in neoplastic epithelial cells but only one mutation in stroma. Finally, genomic analyses identified no SCNAs, no loss of heterozygosity (LOH) or copy-neutral LOH in cultured cancer-associated fibroblasts (CAFs), which are known to promote prostate cancer progression in vivo. PMID:26753621
Rethinking the bile acid/gut microbiome axis in cancer
Phelan, John P.; Reen, F. Jerry; Caparros-Martin, Jose A.; O'Connor, Rosemary; O'Gara, Fergal
2017-01-01
Dietary factors, probiotic agents, aging and antibiotics/medicines impact on gut microbiome composition leading to disturbances in localised microbial populations. The impact can be profound and underlies a plethora of human disorders, including the focus of this review; cancer. Compromised microbiome populations can alter bile acid signalling and produce distinct pathophysiological bile acid profiles. These in turn have been associated with cancer development and progression. Exposure to high levels of bile acids, combined with localised molecular/genome instability leads to the acquisition of bile mediated neoplastic alterations, generating apoptotic resistant proliferation phenotypes. However, in recent years, several studies have emerged advocating the therapeutic benefits of bile acid signalling in suppressing molecular and phenotypic hallmarks of cancer progression. These studies suggest that in some instances, bile acids may reduce cancer phenotypic effects, thereby limiting metastatic potential. In this review, we contextualise the current state of the art to propose that the bile acid/gut microbiome axis can influence cancer progression to the extent that classical in vitro cancer hallmarks of malignancy (cell invasion, cell migration, clonogenicity, and cell adhesion) are significantly reduced. We readily acknowledge the existence of a bile acid/gut microbiome axis in cancer initiation, however, in light of recent advances, we focus exclusively on the role of bile acids as potentially beneficial molecules in suppressing cancer progression. Finally, we theorise that suppressing aggressive malignant phenotypes through bile acid/gut microbiome axis modulation could uncover new and innovative disease management strategies for managing cancers in vulnerable cohorts. PMID:29383197
Xu, Jiantie; Ma, Jianmin; Fan, Qinghua; Guo, Shaojun; Dou, Shixue
2017-07-01
Recent advances and achievements in emerging Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries with promising cathode materials open up new opportunities for the development of high-performance lithium-ion battery alternatives. In this review, we focus on an overview of recent important progress in the design of advanced cathode materials and battery models for developing high-performance Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries. We start with a brief introduction to explain why Li-X batteries are important for future renewable energy devices. Then, we summarize the existing drawbacks, major progress and emerging challenges in the development of cathode materials for Li-O 2 (S) batteries. In terms of the emerging Li-X (Se, Te, I 2 , Br 2 ) batteries, we systematically summarize their advantages/disadvantages and recent progress. Specifically, we review the electrochemical performance of Li-Se (Te) batteries using carbonate-/ether-based electrolytes, made with different electrode fabrication techniques, and of Li-I 2 (Br 2 ) batteries with various cell designs (e.g., dual electrolyte, all-organic electrolyte, with/without cathode-flow mode, and fuel cell/solar cell integration). Finally, the perspective on and challenges for the development of cathode materials for the promising Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Computational approaches to substrate-based cell motility
Ziebert, Falko; Aranson, Igor S.
2016-07-15
Substrate-based crawling motility of eukaryotic cells is essential for many biological functions, both in developing and mature organisms. Motility dysfunctions are involved in several life-threatening pathologies such as cancer and metastasis. Motile cells are also a natural realization of active, self-propelled ‘particles’, a popular research topic in nonequilibrium physics. Finally, from the materials perspective, assemblies of motile cells and evolving tissues constitute a class of adaptive self-healing materials that respond to the topography, elasticity, and surface chemistry of the environment and react to external stimuli. Although a comprehensive understanding of substrate-based cell motility remains elusive, progress has been achieved recentlymore » in its modeling on the whole cell level. Furthermore we survey the most recent advances in computational approaches to cell movement and demonstrate how these models improve our understanding of complex self-organized systems such as living cells.« less
Godde, Nathan J.; Sheridan, Julie M.; Smith, Lorey K.; Pearson, Helen B.; Britt, Kara L.; Galea, Ryan C.; Yates, Laura L.; Visvader, Jane E.; Humbert, Patrick O.
2014-01-01
Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression. PMID:24852022
NASA Astrophysics Data System (ADS)
Guo, Xinyi; Bonin, Keith; Scarpinato, Karin; Guthold, Martin
2014-10-01
Using an Atomic Force Microscope (AFM) with a 5.3 μm diameter spherical probe, we determined mechanical properties of individual human mammary epithelial cells. The cells were derived from a pair of cell lines that mimic cell progression through four phases of neoplastic transformation: normal (non-transformed), immortal, tumorigenic, and metastatic. Measurements on cells in all four phases were taken over both the cytoplasmic and nuclear regions. Moreover, the measurements were made for cells in different microenvironments as related to cell-cell contacts: isolated cells; cells residing on the periphery of a contiguous cell monolayer; and cells on the inside of a contiguous cell monolayer. By fitting the AFM force versus indentation curves to a Hertz model, we determined the pseudo-elastic Young’s modulus, E. Combining all data for the cellular subregions (over nucleus and cytoplasm) and the different cell microenvironments, we obtained stiffness values for normal, immortal, tumorigenic, and metastatic cells of 870 Pa, 870 Pa, 490 Pa, and 580 Pa, respectively. That is, cells become softer as they advance to the tumorigenic phase and then stiffen somewhat in the final step to metastatic cells. We also found a distinct contrast in the influence of a cell’s microenvironment on cell stiffness. Normal mammary epithelial cells inside a monolayer are stiffer than peripheral cells, which are stiffer than isolated cells. However, the microenvironment had a slight, opposite effect on tumorigenic and little effect on immortal and metastatic cell stiffness. Thus, the stiffness of cancer cells is less sensitive to the microenvironment than normal cells. Our results show that the mechanical properties of a cell can depend on cancer progression and microenvironment (cell-cell interactions).
Sandu, Irina; Lenghel, Manuela; Băciuţ, Grigore; Dinu, Cristian; Botar-Jid, Carolina; Vasilescu, Dan; Dudea, Sorin M
2014-06-01
Ultrasonography, with its various techniques (grey-scale, color Doppler, sonoelastography) offers many signs for the differentiation between benign and malignant neck lymph nodes. In spite of recent progress, the US appearance may be misleading. We present three cases in which the ultrasonographic appearance of the lymph nodes was misleading as compared to the final diagnosis established by histopathology.
2012-01-01
Los Angeles, CA 90048 REPORT DATE: January 2012 TYPE OF REPORT...Wen-Chin Huang, Ph.D. Cedars-Sinai Medical Center Los Angeles, CA 90048 W81XWH-08-1-0321 1 May 2008 - 2 Dec 2011Final01-01-2012 Abstract on next...NUMBER Cedars-Sinai Medical Center, Los Angeles, California 90048 9. SPONSORING / MONITORING AGENCY NAME(S) AND
Ultrasensitive optofluidic-nanoplasmonic BioNEMS for life sciences and point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Yanik, Ahmet Ali
2014-03-01
Recent progress on the development of optofluidic-nanoplasmonic BioNEMS is reviewed in this proceeding. Following a brief summary of the fundamental limitations in current lab-on-chip platforms, optofluidic-nanoplasmonic BioNEMS are discussed in detail and means to overcome mass transport limitations are shown. Finally, nanofluidic approach is extended to a cross fluidic scheme for efficiently isolation of rare circulating tumor cells.
Oncogenic LINE 1 Retroelements Sustain Prostate Tumor Cells and Promote Metastatic Progression
2016-12-01
Tillotson University in Austin , Texas and provides a summer research experience for them where they learn about prostate cancer research , as well as...PRINCIPAL INVESTIGATOR: Denise S. O’Keefe, Ph.D. CONTRACTING ORGANIZATION: UNIVERSITY OF TEXAS , San Antonio SAN ANTONIO TX 78229-3901 REPORT DATE...December 2016 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012
New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries
2009-04-01
broader scientific community . Investigator: Johnny Huard - 9 - Project # 1 Progress Report The use of suramin to improve muscle healing after...black arrow ) in grey matter indicated small neuron and axon communication . Project # 5 Final Report Inhibiting cell death and promoting muscle...potential to treat muscle wasting induced by cancer. We anticipate that these results can be generalized to the treatment of other genetic and acquired
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
High Mitochondrial DNA Stability in B-Cell Chronic Lymphocytic Leukemia
Cerezo, María; Bandelt, Hans-Jürgen; Martín-Guerrero, Idoia; Ardanaz, Maite; Vega, Ana; Carracedo, Ángel; García-Orad, África; Salas, Antonio
2009-01-01
Background Chronic Lymphocytic Leukemia (CLL) leads to progressive accumulation of lymphocytes in the blood, bone marrow, and lymphatic tissues. Previous findings have suggested that the mtDNA could play an important role in CLL. Methodology/Principal Findings The mitochondrial DNA (mtDNA) control-region was analyzed in lymphocyte cell DNA extracts and compared with their granulocyte counterpart extract of 146 patients suffering from B-Cell CLL; B-CLL (all recruited from the Basque country). Major efforts were undertaken to rule out methodological artefacts that would render a high false positive rate for mtDNA instabilities and thus lead to erroneous interpretation of sequence instabilities. Only twenty instabilities were finally confirmed, most of them affecting the homopolymeric stretch located in the second hypervariable segment (HVS-II) around position 310, which is well known to constitute an extreme mutational hotspot of length polymorphism, as these mutations are frequently observed in the general human population. A critical revision of the findings in previous studies indicates a lack of proper methodological standards, which eventually led to an overinterpretation of the role of the mtDNA in CLL tumorigenesis. Conclusions/Significance Our results suggest that mtDNA instability is not the primary causal factor in B-CLL. A secondary role of mtDNA mutations cannot be fully ruled out under the hypothesis that the progressive accumulation of mtDNA instabilities could finally contribute to the tumoral process. Recommendations are given that would help to minimize erroneous interpretation of sequencing results in mtDNA studies in tumorigenesis. PMID:19924307
Grant Closeout Requirements and Reports
Requirements and reports to comply with grant closeout, including Final Federal Financial Report (FFR, SF425); Final Research Performance Progress Report (FRPPR); Interim Research Performance Progress Report (IRPPR); Final Invention Statement (FIS, HHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neft, R.E.; Tierney, L.A.; Belinsky, S.A.
Molecular and immunological techniques may enhance the usefulness of sputum cytology as a screening tool for lung cancer. These techniques may also be useful in detecting and following the early progression of disease from metaplasia to dysplasia, carcinoma in situ, and finally to invasive carcinoma. Longitudinal information on the evolution of these malignant changes in the respiratory epithelium can be gained by prospective study of populations at high risk for lung cancer. This work is significant because double-labeling of cells in sputum with p53 and cytokeratin antibodies facilitates rapid screening of p53 positive neoplastic and preneoplastic lung cells by brightfieldmore » and fluorescence microscopy.« less
Tumor microenvironment is multifaceted.
Sautès-Fridman, Catherine; Cherfils-Vicini, Julien; Damotte, Diane; Fisson, Sylvain; Fridman, Wolf Hervé; Cremer, Isabelle; Dieu-Nosjean, Marie-Caroline
2011-03-01
Cancer initiation, progression, and invasion occur in a complex and dynamic microenvironment which depends on the hosts and sites where tumors develop. Tumors arising in mucosal tissues may progress in an inflammatory context linked to local viral and/or bacterial infections. At the opposite, tumors developing in immunoprivileged sites are protected from microorganisms and grow in an immunosuppressive environment. In the present review, we summarize and present our recent data on the influence of infectious context and immune cell infiltration organization in human Non-Small Cell Lung Cancers (NSCLC) progression. We show that stimulation of tumor cells by TLR for viral ssRNA, such as TLR7/8, or bacteria, such as TLR4, promotes cell survival and induces chemoresistance. On the opposite, stimulation by TLR3, receptor for double-stranded viral RNA, decreases tumor cell viability and induces chemosensitivity in some lung tumor cell lines. Since fresh lung tumor cells exhibit a gene expression profile characteristic of TLR-stimulated lung tumor cell lines, we suspect that viral and bacterial influence may not only act on the host immune system but also directly on tumor growth and sensitivity to chemotherapy. The stroma of NSCLC contains tertiary lymphoid structures (or Tumor-induced Bronchus-Associated Lymphoid Tissues (Ti-BALT)) with mature DC, follicular DC, and T and B cells. Two subsets of immature DC, Langerhans cells (LC) and interstitial DC (intDC), were detected in the tumor nests and the stroma, respectively. Here, we show that the densities of the three DC subsets, mature DC, LC, and intDC, are highly predictive of disease-specific survival in a series of 74 early-stage NSCLC patients. We hypothesize that the mature DC may derive from local activation and migration of the immature DC--and especially LC which contact the tumor cells--to the tertiary lymphoid structures, after sampling and processing of the tumor antigens. In view of the prominent role of DC in the immune response, we suggest that the microenvironment of early-stage NSCLC may allow the in situ activation of the adaptive response. Finally, we find that the eyes or brain of mice with growing B cell lymphoma are infiltrated with T cells and that the cytokines produced ex vivo by the tumoral tissues have an impaired Th1 cytokine profile. Our work illustrates that the host and external tumor microenvironments are multifaceted and strongly influence tumor progression and anti-tumor immune responses.
Nordin, Noraziah; Majid, Nazia Abdul; Hashim, Najihah Mohd; Rahman, Mashitoh Abd; Hassan, Zalila; Ali, Hapipah Mohd
2015-01-01
Enicosanthellum pulchrum is a tropical plant from Malaysia and belongs to the Annonaceae family. This plant is rich in isoquinoline alkaloids. In the present study, liriodenine, an isoquinoline alkaloid, was examined as a potential anticancer agent, particularly in ovarian cancer. Liriodenine was isolated by preparative high-performance liquid chromatography. Cell viability was performed to determine the cytotoxicity, whilst the detection of morphological changes was carried out by acridine orange/propidium iodide assay. Initial and late apoptosis was examined by Annexin V-fluorescein isothiocyanate and DNA laddering assays, respectively. The involvement of pathways was detected via caspase-3, caspase-8, and caspase-9 analyses. Confirmation of pathways was further performed in mitochondria using a cytotoxicity 3 assay. Apoptosis was confirmed at the protein level, including Bax, Bcl-2, and survivin, while interruption of the cell cycle was used for final validation of apoptosis. The result showed that liriodenine inhibits proliferation of CAOV-3 cells at 37.3 μM after 24 hours of exposure. Changes in cell morphology were detected by the presence of cell membrane blebbing, chromatin condensation, and formation of apoptotic bodies. Early apoptosis was observed by Annexin V-fluorescein isothiocyanate bound to the cell membrane as early as 24 hours. Liriodenine activated the intrinsic pathway by induction of caspase-3 and caspase-9. Involvement of the intrinsic pathway in the mitochondria could be seen, with a significant increase in mitochondrial permeability and cytochrome c release, whereas the mitochondrial membrane potential was decreased. DNA fragmentation occurred at 72 hours upon exposure to liriodenine. The presence of DNA fragmentation indicates the CAOV-3 cells undergo late apoptosis or final stage of apoptosis. Confirmation of apoptosis at the protein level showed overexpression of Bax and suppression of Bcl-2 and survivin. Liriodenine inhibits progression of the CAOV-3 cell cycle in S phase. These findings indicate that liriodenine could be considered as a promising anticancer agent. PMID:25792804
Tilney, L G; Tilney, M S; Cotanche, D A
1988-02-01
The stereocilia on each hair cell are arranged into rows of ascending height, resulting in what we refer to as a "staircase-like" profile. At the proximal end of the cochlea the length of the tallest row of stereocilia in the staircase is 1.5 micron, with the shortest row only 0.3 micron. As one proceeds towards the distal end of the cochlea the length of the stereocilia progressively increases so that at the extreme distal end the length of the tallest row of the staircase is 5.5 micron and the shortest row is 2 micron. During development hair cells form their staircases in four phases of growth separated from each other by developmental time. First, stereocilia sprout from the apical surfaces of the hair cells (8-10-d embryos). Second (10-12-d embryos), what will be the longest row of the staircase begins to elongate. As the embryo gets older successive rows of stereocilia initiate elongation. Thus the staircase is set up by the sequential initiation of elongation of stereociliary rows located at increased distances from the row that began elongation. Third (12-17-d embryos), all the stereocilia in the newly formed staircase elongate until those located on the first step of the staircase have reached the prescribed length. In the final phase (17-d embryos to hatchlings) there is a progressive cessation of elongation beginning with the shortest step and followed by taller and taller rows with the tallest step stopping last. Thus, to obtain a pattern of stereocilia in rows of increasing height what transpires are progressive go signals followed by a period when all the stereocilia grow and ending with progressive stop signals. We discuss how such a sequence could be controlled.
In-depth characterization of the microRNA transcriptome in a leukemia progression model
Kuchenbauer, Florian; Morin, Ryan D.; Argiropoulos, Bob; Petriv, Oleh I.; Griffith, Malachi; Heuser, Michael; Yung, Eric; Piper, Jessica; Delaney, Allen; Prabhu, Anna-Liisa; Zhao, Yongjun; McDonald, Helen; Zeng, Thomas; Hirst, Martin; Hansen, Carl L.; Marra, Marco A.; Humphries, R. Keith
2008-01-01
MicroRNAs (miRNAs) have been shown to play important roles in physiological as well as multiple malignant processes, including acute myeloid leukemia (AML). In an effort to gain further insight into the role of miRNAs in AML, we have applied the Illumina massively parallel sequencing platform to carry out an in-depth analysis of the miRNA transcriptome in a murine leukemia progression model. This model simulates the stepwise conversion of a myeloid progenitor cell by an engineered overexpression of the nucleoporin 98 (NUP98)–homeobox HOXD13 fusion gene (ND13), to aggressive AML inducing cells upon transduction with the oncogenic collaborator Meis1. From this data set, we identified 307 miRNA/miRNA* species in the ND13 cells and 306 miRNA/miRNA* species in ND13+Meis1 cells, corresponding to 223 and 219 miRNA genes. Sequence counts varied between two and 136,558, indicating a remarkable expression range between the detected miRNA species. The large number of miRNAs expressed and the nature of differential expression suggest that leukemic progression as modeled here is dictated by the repertoire of shared, but differentially expressed miRNAs. Our finding of extensive sequence variations (isomiRs) for almost all miRNA and miRNA* species adds additional complexity to the miRNA transcriptome. A stringent target prediction analysis coupled with in vitro target validation revealed the potential for miRNA-mediated release of oncogenes that facilitates leukemic progression from the preleukemic to leukemia inducing state. Finally, 55 novel miRNAs species were identified in our data set, adding further complexity to the emerging world of small RNAs. PMID:18849523
Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering
NASA Astrophysics Data System (ADS)
Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke
Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.
Zou, Xianshao; Pan, Tingting; Chen, Lei; Tian, Yanqing; Zhang, Weiwen
2017-09-01
Luminescence including fluorescence and phosphorescence sensors have been demonstrated to be important for studying cell metabolism, and diagnosing diseases and cancer. Various design principles have been employed for the development of sensors in different formats, such as organic molecules, polymers, polymeric hydrogels, and nanoparticles. The integration of the sensing with fluorescence imaging provides valuable tools for biomedical research and applications at not only bulk-cell level but also at single-cell level. In this article, we critically reviewed recent progresses on pH, oxygen, and dual pH and oxygen sensors specifically for their application in microbial cells. In addition, we focused not only on sensor materials with different chemical structures, but also on design and applications of sensors for better understanding cellular metabolism of microbial cells. Finally, we also provided an outlook for future materials design and key challenges in reaching broad applications in microbial cells.
Abbasalizadeh, Saeed; Baharvand, Hossein
2013-12-01
Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing. © 2013.
Rando, Amaya; Pastor, Diego; Viso-León, Mari Carmen; Martínez, Anna; Manzano, Raquel; Navarro, Xavier; Osta, Rosario; Martínez, Salvador
2018-04-06
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive muscle weakness, paralysis and death. There is no effective treatment for ALS and stem cell therapy has arisen as a potential therapeutic approach. SOD1 mutant mice were used to study the potential neurotrophic effect of bone marrow cells grafted into quadriceps femoris muscle. Bone marrow intramuscular transplants resulted in increased longevity with improved motor function and decreased motoneuron degeneration in the spinal cord. Moreover, the increment of the glial-derived neurotrophic factor and neurotrophin 4 observed in the grafted muscles suggests that this partial neuroprotective effect is mediated by neurotrophic factor release at the neuromuscular junction level. Finally, certain neurodegeneration and muscle disease-specific markers, which are altered in the SOD1 G93A mutant mouse and may serve as molecular biomarkers for the early detection of ALS in patients, have been studied with encouraging results. This work demonstrates that stem cell transplantation in the muscle prolonged the lifespan, increased motoneuron survival and slowed disease progression, which was also assessed by genetic expression analysis.
Kwan, Suet-Ying; Chen, Limo; Chen, Jin-Hong; Ying, Zuo-Lin; Zhou, Ye; Gu, Wei; Wang, Li-Hua; Cheng, Wei-Wei; Zeng, Jianfang; Wan, Xiao-Ping; Mok, Samuel C.; Wong, Kwong-Kwok; Bao, Wei
2015-01-01
Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity. PMID:26397136
Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review.
Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao
2017-09-01
Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.
Hoijman, Esteban; Fargas, L; Blader, Patrick; Alsina, Berta
2017-01-01
Neural patterning involves regionalised cell specification. Recent studies indicate that cell dynamics play instrumental roles in neural pattern refinement and progression, but the impact of cell behaviour and morphogenesis on neural specification is not understood. Here we combine 4D analysis of cell behaviours with dynamic quantification of proneural expression to uncover the construction of the zebrafish otic neurogenic domain. We identify pioneer cells expressing neurog1 outside the otic epithelium that migrate and ingress into the epithelialising placode to become the first otic neuronal progenitors. Subsequently, neighbouring cells express neurog1 inside the placode, and apical symmetric divisions amplify the specified pool. Interestingly, pioneer cells delaminate shortly after ingression. Ablation experiments reveal that pioneer cells promote neurog1 expression in other otic cells. Finally, ingression relies on the epithelialisation timing controlled by FGF activity. We propose a novel view for otic neurogenesis integrating cell dynamics whereby ingression of pioneer cells instructs neuronal specification. DOI: http://dx.doi.org/10.7554/eLife.25543.001 PMID:28537554
Gonadoblastoma: evidence for a stepwise progression to dysgerminoma in a dysgenetic ovary.
Pauls, Katharina; Franke, Folker E; Büttner, Reinhard; Zhou, Hui
2005-09-01
Gonadoblastomas are neoplasms of dysgenetic gonads which may undergo regression or become overgrown by malignant germ cell tumors (mGCTs). Since little is known about their relationship to normal gonadal development and mGCTs, we studied the phenotype and antigenic profile of gonadoblastomas in comparison with adjacent dysgerminomas and fetal gonads. Three cases of gonadoblastomas and fetal gonads of both sexes were analyzed using oncofetal markers to M2A-antigen (M2A), germ cell alkaline phosphatase (PLAP/GCAP), receptor tyrosine kinase c-kit (c-kit), and somatic angiotensin converting enzyme (sACE) as well as the proliferation marker MIB-1. Morphologically, microfollicular pattern of gonadoblastomas showed a fetal germ cell organization reminiscent of oocytic clusters of fetal ovaries. They contained both cell types, similar to oocytes (M2A-, GCAP-, c-kit+/-, sACE-) and oogonia (M2A+, GCAP+, c-kit+, sACE+). The percentage of germ cells immunoreactive for oncofetal markers and the proliferation index increased from microfollicular over coronary patterns to adjacent dysgerminomas. Supportive cells of gonadoblastomas showed a uniform phenotype (CK18+, vimentin+, sACE+, alpha-inhibin+, M2A-) but in contrast to fetal germ cells lacked a clear equivalence to fetal tissues. Our results show that gonadoblastomas mimic female fetal ovary and exhibit a stepwise progression from follicular pattern to coronary pattern and finally to dysgerminomas.
Ascorbic acid derivatives as a new class of antiproliferative molecules.
Bordignon, Benoit; Chiron, Julien; Fontés, Michel
2013-09-28
Ascorbic acid (AA) has long been described as an antiproliferative agent. However, the molecule has to be used at a very high concentrations, which necessitates i.v. injection, and the tight regulation of in-blood and in-cell AA concentrations making it impossible to hold very high concentrations for any substantial length of time. Here we report evidence that AA derivates are antiproliferative and cytotoxic molecules at an IC50 lower than AA itself. Among these new molecules, we selected K873 that has cytotoxic and antiproliferative effects on different human tumor cells at tenth micromolar concentration. In a further step, we demonstrated that K873 selectively to kills only cancer cells without being toxic for normal non-dividing (or poorly dividing) cells. Finally, we tested the effect of treatment with K873 (5-10 mg/kg/d by i.p. route) on tumor progression in xenografted immunodeficient mice (BALB/c Nude). Our data suggest that K873 administration strongly inhibits tumor progression. In a previous study using microarrays, we demonstrated that AA decreases the expression of two genes families involved in cell cycle progression, i.e. initiation factor of translation and tRNA synthetases. Here we show that K873 treatment also decreases the expression of four of these genes in xenografted tumors, in proportions similar to that previously observed with AA. Taken together, our data suggest that AA and K873 share similar action. Our findings suggest that AA derivatives could be a promising new class of anti-cancer drugs, either alone or in combination with other molecules. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
[Research progress of mammalian synthetic biology in biomedical field].
Yang, Linfeng; Yin, Jianli; Wang, Meiyan; Ye, Haifeng
2017-03-25
Although still in its infant stage, synthetic biology has achieved remarkable development and progress during the past decade. Synthetic biology applies engineering principles to design and construct gene circuits uploaded into living cells or organisms to perform novel or improved functions, and it has been widely used in many fields. In this review, we describe the recent advances of mammalian synthetic biology for the treatment of diseases. We introduce common tools and design principles of synthetic gene circuits, and then we demonstrate open-loop gene circuits induced by different trigger molecules used in disease diagnosis and close-loop gene circuits used for biomedical applications. Finally, we discuss the perspectives and potential challenges of synthetic biology for clinical applications.
Synthetic Analog and Digital Circuits for Cellular Computation and Memory
Purcell, Oliver; Lu, Timothy K.
2014-01-01
Biological computation is a major area of focus in synthetic biology because it has the potential to enable a wide range of applications. Synthetic biologists have applied engineering concepts to biological systems in order to construct progressively more complex gene circuits capable of processing information in living cells. Here, we review the current state of computational genetic circuits and describe artificial gene circuits that perform digital and analog computation. We then discuss recent progress in designing gene circuits that exhibit memory, and how memory and computation have been integrated to yield more complex systems that can both process and record information. Finally, we suggest new directions for engineering biological circuits capable of computation. PMID:24794536
Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects.
Plank, Christian; Zelphati, Olivier; Mykhaylyk, Olga
2011-11-01
Nucleic acids carry the building plans of living systems. As such, they can be exploited to make cells produce a desired protein, or to shut down the expression of endogenous genes or even to repair defective genes. Hence, nucleic acids are unique substances for research and therapy. To exploit their potential, they need to be delivered into cells which can be a challenging task in many respects. During the last decade, nanomagnetic methods for delivering and targeting nucleic acids have been developed, methods which are often referred to as magnetofection. In this review we summarize the progress and achievements in this field of research. We discuss magnetic formulations of vectors for nucleic acid delivery and their characterization, mechanisms of magnetofection, and the application of magnetofection in viral and nonviral nucleic acid delivery in cell culture and in animal models. We summarize results that have been obtained with using magnetofection in basic research and in preclinical animal models. Finally, we describe some of our recent work and end with some conclusions and perspectives. Copyright © 2011 Elsevier B.V. All rights reserved.
The pathobiology of collagens in glioma
Payne, Leo S.; Huang, Paul H.
2013-01-01
Malignant gliomas are characterised by diffuse infiltration into the surrounding brain parenchyma. Infiltrating glioma cells exist in close proximity with components of the tumour microenvironment, including the extracellular matrix (ECM). While levels of collagens in the normal adult brain are low, in glioma, collagen levels are elevated and play an important role in driving the tumor progression. In this review, we provide a comprehensive overview of the nature of collagens found in gliomas and offer insights into the mechanisms by which cancer cells interact with this ECM via receptors including the integrins, discoidin domain receptors and Endo180. We further describe the major remodelling pathways of brain tumour collagen mediated by the matrix metalloproteinases and highlight the reciprocal relationship between these enzymes and the collagen receptors. Finally, we conclude by offering a perspective on how the biophysical properties of the collagen ECM, in particular, mechanical stiffness and compliance may influence malignant outcome. Understanding the complex interactions between glioma cells and the collagen ECM may provide new avenues to combat the rampant tumor progression and chemoresistance in brain cancer patients. PMID:23861322
The Cak1p Protein Kinase Is Required at G(1)/S and G(2)/M in the Budding Yeast Cell Cycle
Sutton, A.; Freiman, R.
1997-01-01
The CAK1 gene encodes the major CDK-activating kinase (CAK) in budding yeast and is required for activation of Cdc28p for cell cycle progression from G(2) to M phase. Here we describe the isolation of a mutant allele of CAK1 in a synthetic lethal screen with the Sit4 protein phosphatase. Analysis of several different cak1 mutants shows that although the G(2) to M transition appears most sensitive to loss of Cak1p function, Cak1p is also required for activation of Cdc28p for progression from G(1) into S phase. Further characterization of these mutants suggests that, unlike the CAK identified from higher eukaryotes, Cak1p of budding yeast may not play a role in general transcription. Finally, although Cak1 protein levels and in vitro protein kinase activity do not fluctuate during the cell cycle, at least a fraction of Cak1p associates with higher molecular weight proteins, which may be important for its in vivo function. PMID:9286668
Prolyl-isomerase Pin1 controls Notch3 protein expression and regulates T-ALL progression.
Franciosa, G; Diluvio, G; Gaudio, F Del; Giuli, M V; Palermo, R; Grazioli, P; Campese, A F; Talora, C; Bellavia, D; D'Amati, G; Besharat, Z M; Nicoletti, C; Siebel, C W; Choy, L; Rustighi, A; Sal, G Del; Screpanti, I; Checquolo, S
2016-09-08
Deregulated Notch signaling is associated with T-cell Acute Lymphoblastic Leukemia (T-ALL) development and progression. Increasing evidence reveals that Notch pathway has an important role in the invasion ability of tumor cells, including leukemia, although the underlying molecular mechanisms remain mostly unclear. Here, we show that Notch3 is a novel target protein of the prolyl-isomerase Pin1, which is able to regulate Notch3 protein processing and to stabilize the cleaved product, leading to the increased expression of the intracellular domain (N3IC), finally enhancing Notch3-dependent invasiveness properties. We demonstrate that the combined inhibition of Notch3 and Pin1 in the Notch3-overexpressing human leukemic TALL-1 cells reduces their high invasive potential, by decreasing the expression of the matrix metalloprotease MMP9. Consistently, Pin1 depletion in a mouse model of Notch3-induced T-ALL, by reducing N3IC expression and signaling, impairs the expansion/invasiveness of CD4(+)CD8(+) DP cells in peripheral lymphoid and non-lymphoid organs. Notably, in in silico gene expression analysis of human T-ALL samples we observed a significant correlation between Pin1 and Notch3 expression levels, which may further suggest a key role of the newly identified Notch3-Pin1 axis in T-ALL aggressiveness and progression. Thus, combined suppression of Pin1 and Notch3 proteins may be exploited as an additional target therapy for T-ALL.
Prolyl-isomerase Pin1 controls Notch3 protein expression and regulates T-ALL progression
Franciosa, G; Diluvio, G; Gaudio, F Del; Giuli, M V; Palermo, R; Grazioli, P; Campese, A F; Talora, C; Bellavia, D; D'Amati, G; Besharat, Z M; Nicoletti, C; Siebel, C W; Choy, L; Rustighi, A; Sal, G Del; Screpanti, I; Checquolo, S
2016-01-01
Deregulated Notch signaling is associated with T-cell Acute Lymphoblastic Leukemia (T-ALL) development and progression. Increasing evidence reveals that Notch pathway has an important role in the invasion ability of tumor cells, including leukemia, although the underlying molecular mechanisms remain mostly unclear. Here, we show that Notch3 is a novel target protein of the prolyl-isomerase Pin1, which is able to regulate Notch3 protein processing and to stabilize the cleaved product, leading to the increased expression of the intracellular domain (N3IC), finally enhancing Notch3-dependent invasiveness properties. We demonstrate that the combined inhibition of Notch3 and Pin1 in the Notch3-overexpressing human leukemic TALL-1 cells reduces their high invasive potential, by decreasing the expression of the matrix metalloprotease MMP9. Consistently, Pin1 depletion in a mouse model of Notch3-induced T-ALL, by reducing N3IC expression and signaling, impairs the expansion/invasiveness of CD4+CD8+ DP cells in peripheral lymphoid and non-lymphoid organs. Notably, in in silico gene expression analysis of human T-ALL samples we observed a significant correlation between Pin1 and Notch3 expression levels, which may further suggest a key role of the newly identified Notch3-Pin1 axis in T-ALL aggressiveness and progression. Thus, combined suppression of Pin1 and Notch3 proteins may be exploited as an additional target therapy for T-ALL. PMID:26876201
Christensen, Jeppe Romme; Börnsen, Lars; Ratzer, Rikke; Piehl, Fredrik; Khademi, Mohsen; Olsson, Tomas; Sørensen, Per Soelberg; Sellebjerg, Finn
2013-01-01
Pathology studies of progressive multiple sclerosis (MS) indicate a major role of inflammation including Th17-cells and meningeal inflammation with ectopic lymphoid follicles, B-cells and plasma cells, the latter indicating a possible role of the newly identified subset of follicular T-helper (TFH) cells. Although previous studies reported increased systemic inflammation in progressive MS it remains unclear whether systemic inflammation contributes to disease progression and intrathecal inflammation. This study aimed to investigate systemic inflammation in progressive MS and its relationship with disease progression, using flow cytometry and gene expression analysis of CD4+ and CD8+T-cells, B-cells, monocytes and dendritic cells. Furthermore, gene expression of cerebrospinal fluid cells was studied. Flow cytometry studies revealed increased frequencies of ICOS+TFH-cells in peripheral blood from relapsing-remitting (RRMS) and secondary progressive (SPMS) MS patients. All MS subtypes had decreased frequencies of Th1 TFH-cells, while primary progressive (PPMS) MS patients had increased frequency of Th17 TFH-cells. The Th17-subset, interleukin-23-receptor+CD4+T-cells, was significantly increased in PPMS and SPMS. In the analysis of B-cells, we found a significant increase of plasmablasts and DC-SIGN+ and CD83+B-cells in SPMS. ICOS+TFH-cells and DC-SIGN+B-cells correlated with disease progression in SPMS patients. Gene expression analysis of peripheral blood cell subsets substantiated the flow cytometry findings by demonstrating increased expression of IL21, IL21R and ICOS in CD4+T-cells in progressive MS. Cerebrospinal fluid cells from RRMS and progressive MS (pooled SPMS and PPMS patients) had increased expression of TFH-cell and plasmablast markers. In conclusion, this study is the first to demonstrate the potential involvement of activated TFH-cells in MS. The increased frequencies of Th17-cells, activated TFH- and B-cells parallel findings from pathology studies which, along with the correlation between activated TFH- and B-cells and disease progression, suggest a pathogenic role of systemic inflammation in progressive MS. These observations may have implications for the treatment of progressive MS. PMID:23469245
Heim, Lisanne; Trump, Sonja; Mittler, Susanne; Sopel, Nina; Andreev, Katerina; Ferrazzi, Fulvia; Ekici, Arif B.; Rieker, Ralf; Springel, Rebekka; Assmann, Vera L.; Lechmann, Matthias; Koch, Sonja; Engelhardt, Marina; Trufa, Denis I.; Sirbu, Horia; Hartmann, Arndt; Finotto, Susetta
2017-01-01
ABSTRACT Genome-wide association studies (GWAS) associated Family with sequence similarity 13, member A (FAM13A) with non-small cell lung cancer (NSCLC) occurrence. Here, we found increased numbers of FAM13A protein expressing cells in the tumoral region of lung tissues from a cohort of patients with NSCLC. Moreover, FAM13A inversely correlated with CTLA4 but directly correlated with HIF1α levels in the control region of these patients. Consistently, FAM13A RhoGAP was found to be associated with T cell effector molecules like HIF1α and Tbet and was downregulated in immunosuppressive CD4+CD25+Foxp3+CTLA4+ T cells. TGFβ, a tumor suppressor factor, as well as siRNA to FAM13A, suppressed both isoforms of FAM13A and inhibited tumor cell proliferation. RNA-Seq analysis confirmed this finding. Moreover, siRNA to FAM13A induced TGFβ levels. Finally, in experimental tumor cell migration, FAM13A was induced and TGFβ accelerated this process by inducing cell migration, HIF1α, and the FAM13A RhoGAP isoform. Furthermore, siRNA to FAM13A inhibited tumor cell proliferation and induced cell migration without affecting HIF1α. In conclusion, FAM13A is involved in tumor cell proliferation and downstream of TGFβ and HIF1α, FAM13A RhoGAP is associated with Th1 gene expression and lung tumor cell migration. These findings identify FAM13A as key regulator of NSCLC growth and progression. PMID:28197372
Noh, Hyangsoon; Yan, Jun; Hong, Sungguan; Kong, Ling-Yuan; Gabrusiewicz, Konrad; Xia, Xueqing; Heimberger, Amy B; Li, Shulin
2016-11-01
Intracellular vimentin overexpression has been associated with epithelial-mesenchymal transition, metastasis, invasion, and proliferation, but cell surface vimentin (CSV) is less understood. Furthermore, it remains unknown whether CSV can serve as a therapeutic target in CSV-expressing tumor cells. We found that CSV was present on glioblastoma multiforme (GBM) cancer stem cells and that CSV expression was associated with spheroid formation in those cells. A newly developed monoclonal antibody against CSV, 86C, specifically and significantly induced apoptosis and inhibited spheroid formation in GBM cells in vitro. The addition of 86C to GBM cells in vitro also led to rapid internalization of vimentin and decreased GBM cell viability. These findings were associated with an increase in caspase-3 activity, indicating activation of apoptosis. Finally, treatment with 86C inhibited GBM progression in vivo. In conclusion, CSV-expressing GBM cells have properties of tumor initiating cells, and targeting CSV with the monoclonal antibody 86C is a promising approach in the treatment of GBM.
Bolton, Helen; Graham, Sarah J L; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena
2016-03-29
Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic.
Are cancer cells really softer than normal cells?
Alibert, Charlotte; Goud, Bruno; Manneville, Jean-Baptiste
2017-05-01
Solid tumours are often first diagnosed by palpation, suggesting that the tumour is more rigid than its surrounding environment. Paradoxically, individual cancer cells appear to be softer than their healthy counterparts. In this review, we first list the physiological reasons indicating that cancer cells may be more deformable than normal cells. Next, we describe the biophysical tools that have been developed in recent years to characterise and model cancer cell mechanics. By reviewing the experimental studies that compared the mechanics of individual normal and cancer cells, we argue that cancer cells can indeed be considered as softer than normal cells. We then focus on the intracellular elements that could be responsible for the softening of cancer cells. Finally, we ask whether the mechanical differences between normal and cancer cells can be used as diagnostic or prognostic markers of cancer progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Chowdhury, Shreya Roy; Ray, Upasana; Chatterjee, Bishnu P; Roy, Sib S
2017-05-04
Ovarian carcinoma (OC) patients encounter the severe challenge of clinical management owing to lack of screening measures, chemoresistance and finally dearth of non-toxic therapeutics. Cancer cells deploy various defense strategies to sustain the tumor microenvironment, among which deregulated apoptosis remains a versatile promoter of cancer progression. Although recent research has focused on identifying agents capable of inducing apoptosis in cancer cells, yet molecules efficiently breaching their survival advantage are yet to be classified. Here we identify lectin, Sambucus nigra agglutinin (SNA) to exhibit selectivity towards identifying OC by virtue of its specific recognition of α-2, 6-linked sialic acids. Superficial binding of SNA to the OC cells confirm the hyper-sialylated status of the disease. Further, SNA activates the signaling pathways of AKT and ERK1/2, which eventually promotes de-phosphorylation of dynamin-related protein-1 (Drp-1). Upon its translocation to the mitochondrial fission loci Drp-1 mediates the central role of switch in the mitochondrial phenotype to attain fragmented morphology. We confirmed mitochondrial outer membrane permeabilization resulting in ROS generation and cytochrome-c release into the cytosol. SNA response resulted in an allied shift of the bioenergetics profile from Warburg phenotype to elevated mitochondrial oxidative phosphorylation, altogether highlighting the involvement of mitochondrial dysfunction in restraining cancer progression. Inability to replenish the SNA-induced energy crunch of the proliferating cancer cells on the event of perturbed respiratory outcome resulted in cell cycle arrest before G2/M phase. Our findings position SNA at a crucial juncture where it proves to be a promising candidate for impeding progression of OC. Altogether we unveil the novel aspect of identifying natural molecules harboring the inherent capability of targeting mitochondrial structural dynamics, to hold the future for developing non-toxic therapeutics for treating OC.
Emergence of MET hyper-amplification at progression to MET and BRAF inhibition in colorectal cancer.
Oddo, Daniele; Siravegna, Giulia; Gloghini, Annunziata; Vernieri, Claudio; Mussolin, Benedetta; Morano, Federica; Crisafulli, Giovanni; Berenato, Rosa; Corti, Giorgio; Volpi, Chiara Costanza; Buscarino, Michela; Niger, Monica; Dunne, Philip D; Rospo, Giuseppe; Valtorta, Emanuele; Bartolini, Alice; Fucà, Giovanni; Lamba, Simona; Martinetti, Antonia; Di Bartolomeo, Maria; de Braud, Filippo; Bardelli, Alberto; Pietrantonio, Filippo; Di Nicolantonio, Federica
2017-07-25
Combined MET and BRAF inhibition showed clinical benefit in a patient with rectal cancer carrying BRAF V600E and MET amplification. However after 4 months, acquired resistance emerged and the patient deceased shortly after disease progression. The mechanism of resistance to this drug combination is unknown. We analysed plasma circulating tumour DNA obtained at progression by exome sequencing and digital PCR. MET gene and mRNA in situ hybridisation analyses in two bioptic specimens obtained at progression were used to confirm the plasma data. We identified in plasma MET gene hyper-amplification as a potential mechanism underlying therapy resistance. Increased MET gene copy and transcript levels were detected in liver and lymph node metastatic biopsies. Finally, transduction of MET in BRAF mutant colorectal cancer cells conferred refractoriness to BRAF and MET inhibition. We identified in a rectal cancer patient MET gene hyper-amplification as mechanism of resistance to dual BRAF and MET inhibition.
Liquid electrolytes for lithium and lithium-ion batteries
NASA Astrophysics Data System (ADS)
Blomgren, George E.
A number of advances in electrolytes have occurred in the past 4 years, which have contributed to increased safety, wider temperature range of operation, better cycling and other enhancements to lithium-ion batteries. The changes to basic electrolyte solutions that have occurred to accomplish these advances are discussed in detail. The solvent components that have led to better low-temperature operation are also considered. Also, additives that have resulted in better structure of the solid electrolyte interphase (SEI) are presented as well as proposed methods of operation of these additives. Other additives that have lessened the flammability of the electrolyte when exposed to air and also caused lowering of the heat of reaction with the oxidized positive electrode are discussed. Finally, additives that act to open current-interrupter devices by releasing a gas under overcharge conditions and those that act to cycle between electrodes to alleviate overcharging are presented. As a class, these new electrolytes are often called "functional electrolytes". Possibilities for further progress in this most important area are presented. Another area of active work in the recent past has been the reemergence of ambient-temperature molten salt electrolytes applied to alkali metal and lithium-ion batteries. This revival of an older field is due to the discovery of new salt types that have a higher voltage window (particularly to positive potentials) and also have greatly increased hydrolytic stability compared to previous ionic liquids. While practical batteries have not yet emerged from these studies, the increase in the number of active researchers and publications in the area demonstrates the interest and potentialities of the field. Progress in the field is briefly reviewed. Finally, recent results on the mechanisms for capacity loss on shelf and cycling in lithium-ion cells are reviewed. Progress towards further market penetration by lithium-ion cells hinges on improved understanding of the failure mechanisms of the cells, so that crucial problems can be addressed.
Ramond, Cyrille; Glaser, Nicolas; Berthault, Claire; Ameri, Jacqueline; Kirkegaard, Jeannette Schlichting; Hansson, Mattias; Honoré, Christian; Semb, Henrik; Scharfmann, Raphaël
2017-07-21
Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages. Development towards the acinar lineage is paralleled by an increase in GP2 expression. Conversely, a subset of the GP2 + population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3 , a marker of endocrine differentiation. Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated.
Macrophage Plasticity and the Role of Inflammation in Skeletal Muscle Repair
Kharraz, Yacine; Guerra, Joana; Mann, Christopher J.; Serrano, Antonio L.; Muñoz-Cánoves, Pura
2013-01-01
Effective repair of damaged tissues and organs requires the coordinated action of several cell types, including infiltrating inflammatory cells and resident cells. Recent findings have uncovered a central role for macrophages in the repair of skeletal muscle after acute damage. If damage persists, as in skeletal muscle pathologies such as Duchenne muscular dystrophy (DMD), macrophage infiltration perpetuates and leads to progressive fibrosis, thus exacerbating disease severity. Here we discuss how dynamic changes in macrophage populations and activation states in the damaged muscle tissue contribute to its efficient regeneration. We describe how ordered changes in macrophage polarization, from M1 to M2 subtypes, can differently affect muscle stem cell (satellite cell) functions. Finally, we also highlight some of the new mechanisms underlying macrophage plasticity and briefly discuss the emerging implications of lymphocytes and other inflammatory cell types in normal versus pathological muscle repair. PMID:23509419
Patterns of Progressive Ganglion Cell-Inner Plexiform Layer Thinning in Glaucoma Detected by OCT.
Shin, Joong Won; Sung, Kyung Rim; Park, Sun-Won
2018-04-25
To investigate the spatial characteristics and patterns of progressive macular ganglion cell-inner plexiform layer (GCIPL) thinning in glaucomatous eyes assessed by OCT Guided Progression Analysis (GPA). Longitudinal, retrospective, observational study. Two hundred ninety-two eyes of 192 patients with primary open-angle glaucoma with a mean follow-up of 6.0 years (range, 3.2-8.1 years) were included. Macular GCIPL imaging and visual field (VF) examination were performed at 6-month intervals for 3 years or more. Progressive GCIPL thinning was evaluated by a Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA) GPA device. Spatial characteristics of progressive GCIPL thinning were assessed by the GCIPL thickness change map. The pattern of progressive GCIPL thinning was evaluated by comparing the baseline GCIPL thickness deviation map and the final GCIPL thickness change map. Visual field progression was determined by Early Manifest Glaucoma Trial criteria and linear regression of the VF index. Spatial characteristics and patterns of progressive GCIPL thinning. Seventy-two eyes of 62 participants (24.7% [72/292]) showed progressive GCIPL thinning in the GCIPL thickness change map. Progressive GCIPL thinning was detected most frequently (25.0%) at 2.08 mm from the fovea, and it extended in an arcuate shape in the inferotemporal region (250°-339°). Compared with the baseline GCIPL defects, the progressive GCIPL thinning extended toward the fovea and optic disc. The most common pattern of progressive GCIPL thinning was widening of GCIPL defects (42 eyes [58.3%]), followed by deepening of GCIPL defects (19 eyes [26.4%]) and newly developed GCIPL defects (15 eyes [20.8%]). Visual field progression was accompanied by progressive GCIPL thinning in 41 of 72 eyes (56.9%). Progressive GCIPL thinning preceded (61.0% [25/41]) or occurred concomitantly with (21.9% [9/41]) VF progression. The use of OCT GPA maps offers an effective approach to evaluate the topographic patterns of progressive GCIPL thinning in glaucomatous eyes. Progression of GCIPL thinning occurred before apparent progression on standard automated perimetry in most glaucomatous eyes. Understanding specific patterns and sequences of macular damage may provide important insights in the monitoring of glaucomatous progression. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Luo, Renna; Zhang, Weiru; Zhao, Cheng; Zhang, Yujin; Wu, Hongyu; Jin, Jianping; Zhang, Wenzheng; Grenz, Almut; Eltzschig, Holger K; Tao, Lijian; Kellems, Rodney E; Xia, Yang
2015-07-01
Hypertensive chronic kidney disease is one of the most prevalent medical conditions with high morbidity and mortality in the United States and worldwide. However, early events initiating the progression to hypertensive chronic kidney disease are poorly understood. We hypothesized that elevated endothelial hypoxia-inducible factor-1α (HIF-1α) is a common early insult triggering initial glomerular injury leading to hypertensive chronic kidney disease. To test our hypothesis, we used an angiotensin II infusion model of hypertensive chronic kidney disease to determine the specific cell type and mechanisms responsible for elevation of HIF-1α and its role in the progression of hypertensive chronic kidney disease. Genetic studies coupled with reverse transcription polymerase chain reaction profiling revealed that elevated endothelial HIF-1α is essential to initiate glomerular injury and progression to renal fibrosis by the transcriptional activation of genes encoding multiple vasoactive proteins. Mechanistically, we found that endothelial HIF-1α gene expression was induced by angiotensin II in a nuclear factor-κB-dependent manner. Finally, we discovered reciprocal positive transcriptional regulation of endothelial Hif-1α and Nf-κb genes is a key driving force for their persistent activation and disease progression. Overall, our findings revealed that the stimulation of HIF-1α gene expression in endothelial cells is detrimental to induce kidney injury, hypertension, and disease progression. Our findings highlight early diagnostic opportunities and therapeutic approaches for hypertensive chronic kidney disease. © 2015 American Heart Association, Inc.
Bording-Jorgensen, Michael; Dijk, Stephanie
2018-01-01
Cancer is a multifaceted condition, in which a senescent cell begins dividing in an irregular manner due to various factors such as DNA damage, growth factors and inflammation. Inflammation is not typically discussed as carcinogenic; however, a significant percentage of cancers arise from chronic microbial infections and damage brought on by chronic inflammation. A hallmark cancer-inducing microbe is Helicobacter pylori and its causation of peptic ulcers and potentially gastric cancer. This review discusses the recent developments in understanding microbes in health and disease and their potential role in the progression of cancer. To date, microbes can be linked to almost every cancer, including colon, pancreatic, gastric, and even prostate. We discuss the known mechanisms by which these microbes can induce cancer growth and development and how inflammatory cells may contribute to cancer progression. We also discuss new treatments that target the chronic inflammatory conditions and their associated cancers, and the impact microbes have on treatment success. Finally, we examine common dietary misconceptions in relation to microbes and cancer and how to avoid getting caught up in the misinterpretation and over inflation of the results. PMID:29558443
Progress on alternative energy resources
NASA Astrophysics Data System (ADS)
Couch, H. T.
1982-03-01
Progress in the year 1981 toward the development of energy systems suitable for replacing petroleum products combustion and growing in use to fulfill a near term expansion in energy use is reviewed. Coal is noted to be a potentially heavy pollution source, and the presence of environmentally acceptable methods of use such as fluidized-bed combustion and gasification and liquefaction reached the prototype stage in 1981, MHD power generation was achieved in two U.S. plants, with severe corrosion problems remaining unsolved for the electrodes. Solar flat plate collectors sales amounted to 20 million sq ft in 1981, and solar thermal electric conversion systems with central receivers neared completion. Solar cells are progressing toward DOE goals of $.70/peak W by 1986, while wind energy conversion sales were 2000 machines in 1981, and the industry is regarded as maturing. Finally, geothermal, OTEC, and fusion systems are reviewed.
Hiraide, Takanori; Ikegami, Koji; Sakaguchi, Takanori; Morita, Yoshifumi; Hayasaka, Takahiro; Masaki, Noritaka; Waki, Michihiko; Sugiyama, Eiji; Shinriki, Satoru; Takeda, Makoto; Shibasaki, Yasushi; Miyazaki, Shinichiro; Kikuchi, Hirotoshi; Okuyama, Hiroaki; Inoue, Masahiro; Setou, Mitsutoshi; Konno, Hiroyuki
2016-01-01
Accumulating evidence indicates that cancer cells show specific alterations in phospholipid metabolism that contribute to tumour progression in several types of cancer, including colorectal cancer. Questions still remain as to what lipids characterize the outer edge of cancer tissues and whether those cancer outer edge-specific lipid compositions emerge autonomously in cancer cells. Cancer tissue-originated spheroids (CTOSs) that are composed of pure primary cancer cells have been developed. In this study, we aimed to seek out the cancer cell-autonomous acquisition of cancer outer edge-characterizing lipids in colorectal cancer by analysing phospholipids in CTOSs derived from colorectal cancer patients with matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS). A signal at m/z 885.5 in negative ion mode was detected specifically at the surface regions. The signal was identified as an arachidonic acid (AA)-containing phosphatidylinositol (PI), PI(18:0/20:4), by tandem mass spectrometry analysis. Quantitative analysis revealed that the amount of PI(18:0/20:4) in the surface region of CTOSs was two-fold higher than that in the medial region. Finally, PI(18:0/20:4) was enriched at the cancer cells/stromal interface in colorectal cancer patients. These data imply a possible importance of AA-containing PI for colorectal cancer progression, and suggest cells expressing AA-containing PI as potential targets for anti-cancer therapy. PMID:27435310
Shen, Jia; Ma, Hailin; Zhang, Tiancheng; Liu, Hui; Yu, Linghua; Li, Guosheng; Li, Huishuang; Hu, Meichun
2017-01-01
The tubulin/microtubule system, which is an integral component of the cytoskeleton, plays an essential role in mitosis. Targeting mitotic progression by disturbing microtubule dynamics is a rational strategy for cancer treatment. Microtubule polymerization assay was performed to examine the effect of Magnolol (a novel natural phenolic compound isolated from Magnolia obovata) on cellular microtubule polymerization in human non-small cell lung cancer (NSCLC) cells. Cell cycle analysis, mitotic index assay, cell proliferation assay, colony formation assay, western blotting analysis of cell cycle regulators, Annexin V-FITC/PI staining, and live/dead viability staining were carried out to investigate the Magnolol's inhibitory effect on proliferation and viability of NSCLS cells in vitro. Xenograft model of human A549 NSCLC tumor was used to determine the Magnolol's efficacy in vivo. Magnolol treatment effectively inhibited cell proliferation and colony formation of NSCLC cells. Further study proved that Magnolol induced the mitotic phase arrest and inhibited G2/M progression in a dose-dependent manner, which were mechanistically associated with expression alteration of a series of cell cycle regulators. Furthermore, Magnolol treatment disrupted the cellular microtubule organization via inhibiting the polymerization of microtubule. We also found treatment with NSCLC cells with Magnolol resulted in apoptosis activation through a p53-independent pathway, and autophgy induction via down-regulation of the Akt/mTOR pathway. Finally, Magnolol treatment significantly suppressed the NSCLC tumor growth in mouse xenograft model in vivo. These findings identify Magnolol as a promising candidate with anti-microtubule polymerization activity for NSCLC treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.
Li, Xiu Juan; Ren, Zhao Jun; Tang, Jin Hai; Yu, Qiao
2017-01-01
Treatment of breast cancer remains a clinical challenge. This study aims to validate exosomal microRNA-1246 (miR-1246) as a serum biomarker for breast cancer and understand the underlying mechanism in breast cancer progression. The expression levels of endogenous and exosomal miRNAs were examined by real time PCR, and the expression level of the target protein was detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study their uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-1246 was estimated by invasion assay and cell viability assay. In this study, we demonstrate that exosomes carrying microRNA can be transferred among different cell lines through direct uptake. miR-1246 is highly expressed in metastatic breast cancer MDA-MB-231 cells compared to non-metastatic breast cancer cells or non-malignant breast cells. Moreover, miR-1246 can suppress the expression level of its target gene, Cyclin-G2 (CCNG2), indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could enhance the viability, migration and chemotherapy resistance of non-malignant HMLE cells. Together, our results support an important role of exosomes and exosomal miRNAs in regulating breast tumor progression, which highlights their potential for applications in miRNA-based therapeutics. © 2017 The Author(s). Published by S. Karger AG, Basel.
MiR-564 functions as a tumor suppressor in human lung cancer by targeting ZIC3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bin; Jia, Lin; Guo, Qiaojuan
2015-11-27
Although miR-564 was reported to be dysregulated in human malignancy, the function and mechanism of miR-564 in tumorigenesis remains unknown. In the present study, we found that miR-564 frequently downregulated in lung cancer cells and significantly inhibited cell proliferation, cell cycle progression, motility, and the tumorigenicity of lung cancer cells. Moreover, we identified zic family member 3 (ZIC3) as a direct target of miR-564. ZIC3 overexpression impaired the suppressive effects of miR-564 on the capacity of lung cancer cells for proliferation and motility. Finally, we detected the expression level of miR-564 and ZIC3 protein in tissue specimens, and found amore » significant negative correlation between them. Patients with low levels of miR-564 showed a poorer overall survival. Taken together, our present study revealed the tumor suppressor role of miR-564, indicating restoration of miR-564 as a potential therapeutic strategy for the treatment of lung cancer. - Highlights: • MiR-564 inhibits cancer cell proliferation, cell cycle progression, migration, and invasion. • miR-564 suppresses the tumorigenicity of lung cancer cell in vivo. • ZIC3 is a direct and functional target of miR-564. • The expression of miR-564 was negatively correlated with ZIC3 protein in tumors. • Both low miR-564 and high ZIC3 was associated with tumor stage and prognosis.« less
Periodontal Ligament Stem Cells: Current Status, Concerns, and Future Prospects
Zhu, Wenjun; Liang, Min
2015-01-01
Periodontal ligament stem cells (PDLSCs), which reside in the perivascular space of the periodontium, possess characteristics of mesenchymal stem cells and are a promising tool for periodontal regeneration. Recently, great progress has been made in PDLSC transplantation. Investigators are attempting to maximize the proliferation and differentiation potential of PDLSCs by modifying culture conditions and applying growth factors. Nevertheless, problems remain. First, incomparability among different studies must be minimized by establishing standard guidelines for culture and identification of PDLSCs. Notably, attention should be paid to the biological safety of PDLSC transplantation. The present review updates the latest findings regarding PDLSCs and discusses standard criteria for culture and identification of PDLSCs. Finally, the review calls for careful consideration of PDLSC transplantation safety. PMID:25861283
Advances in the high performance polymer electrolyte membranes for fuel cells.
Zhang, Hongwei; Shen, Pei Kang
2012-03-21
This critical review tersely and concisely reviews the recent development of the polymer electrolyte membranes and the relationship between their properties and affecting factors like operation temperature. In the first section, the advantages and shortcomings of the corresponding polymer electrolyte membrane fuel cells are analyzed. Then, the limitations of Nafion membranes and their alternatives to large-scale commercial applications are discussed. Secondly, the concepts and approaches of the alternative proton exchange membranes for low temperature and high temperature fuel cells are described. The highlights of the current scientific achievements are given for various aspects of approaches. Thirdly, the progress of anion exchange membranes is presented. Finally, the perspectives of future trends on polymer electrolyte membranes for different applications are commented on (400 references).
Mario Gonzalez-Meljem, Jose; Haston, Scott; Carreno, Gabriela; Apps, John R; Pozzi, Sara; Stache, Christina; Kaushal, Grace; Virasami, Alex; Panousopoulos, Leonidas; Neda Mousavy-Gharavy, Seyedeh; Guerrero, Ana; Rashid, Mamunur; Jani, Nital; Goding, Colin R; Jacques, Thomas S; Adams, David J; Gil, Jesus; Andoniadou, Cynthia L; Martinez-Barbera, Juan Pedro
2017-11-28
Senescent cells may promote tumour progression through the activation of a senescence-associated secretory phenotype (SASP), whether these cells are capable of initiating tumourigenesis in vivo is not known. Expression of oncogenic β-catenin in Sox2+ young adult pituitary stem cells leads to formation of clusters of stem cells and induction of tumours resembling human adamantinomatous craniopharyngioma (ACP), derived from Sox2- cells in a paracrine manner. Here, we uncover the mechanisms underlying this paracrine tumourigenesis. We show that expression of oncogenic β-catenin in Hesx1+ embryonic precursors also results in stem cell clusters and paracrine tumours. We reveal that human and mouse clusters are analogous and share a common signature of senescence and SASP. Finally, we show that mice with reduced senescence and SASP responses exhibit decreased tumour-inducing potential. Together, we provide evidence that senescence and a stem cell-associated SASP drive cell transformation and tumour initiation in vivo in an age-dependent fashion.
Kuhn, Deborah J; Dou, Q Ping
2005-05-15
Overexpression of the interleukin-2 receptor (IL-2R) alpha chain in tumor cells is associated with tumor progression and a poor patient prognosis. IL-2Ralpha is responsible for the high affinity binding of the receptor to IL-2, leading to activation of several proliferative and anti-apoptotic intracellular signaling pathways. We have previously shown that human squamous cell carcinoma of a head-and-neck line (PCI-13) genetically engineered to overexpress IL-2Ralpha exhibit increased transforming activity, proliferation, and drug resistance, compared to the vector control cells (J Cell Biochem 2003;89:824-836). In this study, we report that IL-2Ralpha(+) cells express high levels of total and phosphorylated Jak3 protein and are more resistant to apoptosis induced by a Jak3 inhibitor than the control LacZ cells. Furthermore, we used daclizumab, a monoclonal antibody specific to IL-2Ralpha, and determined the effects of IL-2Ralpha inhibition on cell cycle and apoptosis as well as the involvement of potential cell cycle and apoptosis regulatory proteins. We found that daclizumab induces G(1) arrest, associated with down-regulation of cyclin A protein, preferentially in IL-2Ralpha(+) cells, but not in LacZ cells. In addition, daclizumab activates apoptotic death program via Bcl-2 down-regulation preferentially in IL-2Ralpha(+) cells. Finally, daclizumab also sensitizes IL-2Ralpha(+) cells to other apoptotic stimuli, although the effect is moderate. These results indicate that daclizumab inhibits the proliferative potential of IL-2Ralpha(+) cells via inhibition of cell cycle progression and induction of apoptosis.
Lysosomes in cancer-living on the edge (of the cell).
Hämälistö, Saara; Jäättelä, Marja
2016-04-01
The lysosomes have definitely polished their status inside the cell. Being discovered as the last resort of discarded cellular biomass, the steady rising of this versatile signaling organelle is currently ongoing. This review discusses the recent data on the unconventional functions of lysosomes, focusing mainly on the less studied lysosomes residing in the cellular periphery. We emphasize our discussion on the emerging paths the lysosomes have taken in promoting cancer progression to metastatic disease. Finally, we address how the altered cancerous lysosomes in metastatic cancers may be specifically targeted and what are the pending questions awaiting for elucidation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Resveratrol Enhances Self-Renewal of Mouse Embryonic Stem Cells.
Li, Na; Du, Zhaoyu; Shen, Qiaoyan; Lei, Qijing; Zhang, Ying; Zhang, Mengfei; Hua, Jinlian
2017-07-01
Resveratrol (RSV) has been shown to affect the differentiation of several types of stem cells, while the detailed mechanism is elusive. Here, we aim to investigate the function of RSV in self-renewal of mouse embryonic stem cells (ESCs) and the related mechanisms. In contrast with its reported roles, we found unexpectedly that differentiated ESCs or iPSCs treated by RSV would not show further differentiation, but regained a naïve pluripotency state with higher expressions of core transcriptional factors and with the ability to differentiate into all three germ layers when transplanted in vivo. In accordance with these findings, RSV also enhanced cell cycle progression of ESCs via regulating cell cycle-related proteins. Finally, enhanced activation of JAK/STAT3 signaling pathway and suppressed activation of mTOR were found essential in enhancing the self-renewal of ESCs by RSV. Our finding discovered a novel function of RSV in enhancing the self-renewal of ESCs, and suggested that the timing of treatment and concentration of RSV determined the final effect of it. Our work may contribute to understanding of RSV in the self-renewal maintenance of pluripotent stem cells, and may also provide help to the generation and maintenance of iPSCs in vitro. J. Cell. Biochem. 118: 1928-1935, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Immunomodulation and Anti-Inflammatory Effects of Garlic Compounds
Arreola, Rodrigo; Quintero-Fabián, Saray; López-Roa, Rocío Ivette; Flores-Gutiérrez, Enrique Octavio; Reyes-Grajeda, Juan Pablo; Carrera-Quintanar, Lucrecia; Ortuño-Sahagún, Daniel
2015-01-01
The benefits of garlic to health have been proclaimed for centuries; however, only recently have Allium sativum and its derivatives been proposed as promising candidates for maintaining the homeostasis of the immune system. The complex biochemistry of garlic makes it possible for variations in processing to yield different preparations with differences in final composition and compound proportion. In this review, we assess the most recent experimental results, which indicate that garlic appears to enhance the functioning of the immune system by stimulating certain cell types, such as macrophages, lymphocytes, natural killer (NK) cells, dendritic cells, and eosinophils, by mechanisms including modulation of cytokine secretion, immunoglobulin production, phagocytosis, and macrophage activation. Finally, because immune dysfunction plays an important role in the development and progress of several diseases, we critically examined immunoregulation by garlic extracts and compounds isolated, which can contribute to the treatment and prevention of pathologies such as obesity, metabolic syndrome, cardiovascular disorders, gastric ulcer, and even cancer. We concluded that A. sativum modulates cytokine secretion and that such modulation may provide a mechanism of action for many of their therapeutic effects. PMID:25961060
Immunomodulation and anti-inflammatory effects of garlic compounds.
Arreola, Rodrigo; Quintero-Fabián, Saray; López-Roa, Rocío Ivette; Flores-Gutiérrez, Enrique Octavio; Reyes-Grajeda, Juan Pablo; Carrera-Quintanar, Lucrecia; Ortuño-Sahagún, Daniel
2015-01-01
The benefits of garlic to health have been proclaimed for centuries; however, only recently have Allium sativum and its derivatives been proposed as promising candidates for maintaining the homeostasis of the immune system. The complex biochemistry of garlic makes it possible for variations in processing to yield different preparations with differences in final composition and compound proportion. In this review, we assess the most recent experimental results, which indicate that garlic appears to enhance the functioning of the immune system by stimulating certain cell types, such as macrophages, lymphocytes, natural killer (NK) cells, dendritic cells, and eosinophils, by mechanisms including modulation of cytokine secretion, immunoglobulin production, phagocytosis, and macrophage activation. Finally, because immune dysfunction plays an important role in the development and progress of several diseases, we critically examined immunoregulation by garlic extracts and compounds isolated, which can contribute to the treatment and prevention of pathologies such as obesity, metabolic syndrome, cardiovascular disorders, gastric ulcer, and even cancer. We concluded that A. sativum modulates cytokine secretion and that such modulation may provide a mechanism of action for many of their therapeutic effects.
Anisimov, S V
2009-01-01
Motor dysfunctions in Parkinson's disease are believed to be primarily due to the degeneration of dopaminergic neurons located in the substantia nigra pars compacta. Numerous cell replacement therapy approaches have been developed and tested, including these based on donor cell transplantation (embryonic and adult tissue-derived), adult mesenchymal stem cells (hMSCs)-, neural stem cells (hNSCs)- and finally human embryonic stem cells (hESCs)-based. Despite the progress achieved, numerous difficulties prevent wider practical application of stem cell-based therapy approaches for the treatment of Parkinson's disease. Among the latter, ethical, safety and technical issues stand out. Current series of reviews (Cell therapy for Parkinson's disease: I. Embryonic and adult donor tissue-based applications; II. Adult stem cell-based applications; III. Neonatal, fetal and embryonic stem cell-based applications; IV. Risks and future trends) aims providing a balanced and updated view on various issues associated with cell types (including stem cells) in regards to their potential in the treatment of Parkinson's disease. Essential features of the individual cell subtypes, principles of available cell handling protocols, transplantation, and safety issues are discussed extensively.
Progress and biotechnological prospects in fish transgenesis.
Tonelli, Fernanda M P; Lacerda, Samyra M S N; Tonelli, Flávia C P; Costa, Guilherme M J; de França, Luiz Renato; Resende, Rodrigo R
2017-11-01
The history of transgenesis is marked by milestones such as the development of cellular transdifferentiation, recombinant DNA, genetic modification of target cells, and finally, the generation of simpler genetically modified organisms (e.g. bacteria and mice). The first transgenic fish was developed in 1984, and since then, continuing technological advancements to improve gene transfer have led to more rapid, accurate, and efficient generation of transgenic animals. Among the established methods are microinjection, electroporation, lipofection, viral vectors, and gene targeting. Here, we review the history of animal transgenesis, with an emphasis on fish, in conjunction with major developments in genetic engineering over the past few decades. Importantly, spermatogonial stem cell modification and transplantation are two common techniques capable of revolutionizing the generation of transgenic fish. Furthermore, we discuss recent progress and future biotechnological prospects of fish transgenesis, which has strong applications for the aquaculture industry. Indeed, some transgenic fish are already available in the current market, validating continued efforts to improve economically important species with biotechnological advancements. Copyright © 2017. Published by Elsevier Inc.
An aggressive primary orbital natural killer/T-cell lymphoma case: poor response to chemotherapy.
Marchino, Tizana; Ibáñez, Núria; Prieto, Sebastián; Novelli, Silvana; Szafranska, Justyna; Mozos, Anna; Graell, Xavier; Buil, José A
2014-01-01
Natural killer/T-cell lymphoma (NKTCL) and its presentation with extranodal orbital involvement as a single lesion are extremely rare. The aim of this article was to describe the presentation, diagnosis, and systemic treatment of a primary orbital NKTCL. A 67-year-old Caucasian woman presented with left exophthalmos, pain, periorbital swelling, and limited extrinsic ocular motility. Orbital cellulitis was suspected, but finally orbital biopsy was performed due to no response to initial antibiotic and anti-inflammatory standard treatment. The pathologic diagnosis was NKTCL. Systemic evaluations were negative. CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy was initiated, but after 2 cycles of treatment, tumoral progression was observed. SMILE (dexamethasone, methotrexate, ifosfamide, L-asparaginase, etoposide) rescue chemotherapy was then administered. Lymphoma progression was inevitable. She died 10 months later. Although more nasal NKTCL cases have been described, the nonnasal primary orbital NKTCL is an uncommon neoplasm with high mortality rate, despite the recent use of more potent chemotherapy regimens.
Hasan, Salma; Lacout, Catherine; Marty, Caroline; Cuingnet, Marie; Solary, Eric; Vainchenker, William; Villeval, Jean-Luc
2013-08-22
The acquired gain-of-function V617F mutation in the Janus Kinase 2 (JAK2(V617F)) is the main mutation involved in BCR/ABL-negative myeloproliferative neoplasms (MPNs), but its effect on hematopoietic stem cells as a driver of disease emergence has been questioned. Therefore, we reinvestigated the role of endogenous expression of JAK2(V617F) on early steps of hematopoiesis as well as the effect of interferon-α (IFNα), which may target the JAK2(V617F) clone in humans by using knock-in mice with conditional expression of JAK2(V617F) in hematopoietic cells. These mice develop a MPN mimicking polycythemia vera with large amplification of myeloid mature and precursor cells, displaying erythroid endogenous growth and progressing to myelofibrosis. Interestingly, early hematopoietic compartments [Lin-, LSK, and SLAM (LSK/CD48-/CD150+)] increased with the age. Competitive repopulation assays demonstrated disease appearance and progressive overgrowth of myeloid, Lin-, LSK, and SLAM cells, but not lymphocytes, from a low number of engrafted JAK2(V617F) SLAM cells. Finally, IFNα treatment prevented disease development by specifically inhibiting JAK2(V617F) cells at an early stage of differentiation and eradicating disease-initiating cells. This study shows that JAK2(V617F) in mice amplifies not only late but also early hematopoietic cells, giving them a proliferative advantage through high cell cycling and low apoptosis that may sustain MPN emergence but is lost upon IFNα treatment.
Wang, Tao; Ma, Sicong; Qi, Xingxing; Tang, Xiaoyin; Cui, Dan; Wang, Zhi; Chi, Jiachang; Li, Ping; Zhai, Bo
2016-01-01
Many long noncoding RNAs have been reported to play pivotal roles in cancer biology. Among them, the long noncoding RNA ZNFX1-AS1 has been confirmed to function in breast cancer progression, but the role of ZNFX1-AS1 in hepatocellular carcinoma (HCC) growth and the related molecular mechanisms still remains unknown. In the present study, we first identified the expression of ZNFX1-AS1 in HCC patients' specimens and HCC cell lines through quantitative reverse transcription polymerase chain reaction. Next, the effects of ZNFX1-AS1 on HCC cell growth and apoptosis were analyzed. MTT assay was used to measure the cell numbers, and fluorescence-activated cell sorting analysis was performed to evaluate cell apoptosis. Finally, the relationship between ZNFX1-AS1 and miR-9 in HCC was studied. Our results suggest that ZNFX1-AS1 was markedly downregulated in HCC samples and cell lines. Overexpression of ZNFX1-AS1 inhibited the cell proliferation and colony formation in HCC cell lines and also induced HCC cell apoptosis. Additionally, miR-9 was lowly expressed in HCC tissues and positively correlated with ZNFX1-AS1 expression. Meanwhile, significant upregulation of miR-9 and downregulation of the methylation of miR-9 promoter CpG island were observed when ZNFX1-AS1 was overexpressed. In summary, our results indicate that ZNFX1-AS1 plays a vital role in HCC progression via regulating the methylation of miR-9 and may be a potential tumor suppressor.
[The pathogenesis and regulation of autoimmunity].
Miyake, Sachiko
2008-06-01
The pathogenesis of autoimmunity has been studied extensively using animal models and genome-wide genetic analysis. Moreover, recent advance in the therapy for the autoimmune diseases using molecular-targeted drugs has provided us a lot of information in the pathogenesis of human autoimmune diseases. In this review, we overviewed the recent progress in the study of autoimmunity including central tolerance, regulatory cells and cytokines. Finally, we discuss the relationship of innate immunity and adoptive immunity in the context of autoimmunity.
Immunology of age-related macular degeneration
Ambati, Jayakrishna; Atkinson, John P.; Gelfand, Bradley D.
2014-01-01
Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population. PMID:23702979
Immunology of age-related macular degeneration.
Ambati, Jayakrishna; Atkinson, John P; Gelfand, Bradley D
2013-06-01
Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population.
Selfish cells in altruistic cell society - a theoretical oncology.
Chigira, M
1993-09-01
In multicellular organisms, internal evolution of individual cells is strictly forbidden and 'evolutional' DNA replication should be performed only by the sexual reproduction system. Wholistic negative control system called 'homeostasis' serves all service to germ line cells. All somatic cells are altruistic to the germ line cells. However, in malignant tumors, it seems that individual cells replicate and behave 'selfishly' and evolve against the internal microenvironment. Tumor cells only express the occult selfishness which is programmed in normal cells a priori. This phenomenon is based on the failure of identical DNA replication, and results in 'autonomy' and 'anomie' of cellular society as shown in tumor cells. Genetic programs of normal cells connote this cellular autonomy and anomie introduced by the deletion of regulators on structure genes. It is rather paradoxical that the somatic cells get their freedom from wholistic negative regulation programmed internally. However, this is not a true paradox, since multicellular organisms have clearly been evolved from 'monads' in which cells proliferate without wholistic regulation. Somatic cells revolt against germ cell DNA, called 'selfish replicator' by Dawkins. It is an inevitable destiny that the 'selfishness' coded in genome should be revenged by itself. Selfish replicator in germ cell line should be revolted by its selfishness in the expansion of somatic cells, since they have an orthogenesis to get more selfishness in order to increase their genome. Tumor heterogeneity and progression can be fully explained by this self-contradictory process which produces heterogeneous gene copies different from the original clone in the tumor, although 'selfish' gene replication is the final target of being. Furthermore, we have to discard the concept of clonality of tumor cells since genetic instability is a fundamental feature of tumors. Finally, tumor cells and proto-oncogenes can be considered as the ultimate parasite to germ line cells.
Our Fat Future: Translating Adipose Stem Cell Therapy.
Nordberg, Rachel C; Loboa, Elizabeth G
2015-09-01
Human adipose stem cells (hASCs) have the potential to treat patients with a variety of clinical conditions. Recent advancements in translational research, regulatory policy, and industry have positioned hASCs on the threshold of clinical translation. We discuss the progress and challenges of bringing adipose stem cell therapy into mainstream clinical use. This article details the advances made in recent years that have helped move human adipose stem cell therapy toward mainstream clinical use from a translational research, regulatory policy, and industrial standpoint. Four recurrent themes in translational technology as they pertain to human adipose stem cells are discussed: automated closed-system operations, biosensors and real-time monitoring, biomimetics, and rapid manufacturing. In light of recent FDA guidance documents, regulatory concerns about adipose stem cell therapy are discussed. Finally, an update is provided on the current state of clinical trials and the emerging industry that uses human adipose stem cells. This article is expected to stimulate future studies in translational adipose stem cell research. ©AlphaMed Press.
Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity
Saitakis, Michael; Dogniaux, Stéphanie; Goudot, Christel; Bufi, Nathalie; Asnacios, Sophie; Maurin, Mathieu; Randriamampita, Clotilde; Asnacios, Atef; Hivroz, Claire
2017-01-01
T cells are mechanosensitive but the effect of stiffness on their functions is still debated. We characterize herein how human primary CD4+ T cell functions are affected by stiffness within the physiological Young’s modulus range of 0.5 kPa to 100 kPa. Stiffness modulates T lymphocyte migration and morphological changes induced by TCR/CD3 triggering. Stiffness also increases TCR-induced immune system, metabolism and cell-cycle-related genes. Yet, upon TCR/CD3 stimulation, while cytokine production increases within a wide range of stiffness, from hundreds of Pa to hundreds of kPa, T cell metabolic properties and cell cycle progression are only increased by the highest stiffness tested (100 kPa). Finally, mechanical properties of adherent antigen-presenting cells modulate cytokine production by T cells. Together, these results reveal that T cells discriminate between the wide range of stiffness values found in the body and adapt their responses accordingly. DOI: http://dx.doi.org/10.7554/eLife.23190.001 PMID:28594327
ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.
Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M
2015-06-01
Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.
[Cell therapy for Parkinson's disease: IV. Risks and future trends].
Anisimov, S V
2009-01-01
Motor dysfunctions in Parkinson's disease are believed to be primarily due to the degeneration of dopaminergic neurons located in the substantia nigra pars compacta. Numerous cell replacement therapy approaches have been developed and tested, including these based on donor cell transplantation (embryonic and adult tissue-derived), adult mesenchymal stem cells (hMSCs)-, neural stem cells (hNSCs)- and finally human embryonic stem cells (hESCs)-based. Despite the progress achieved, numerous difficulties prevent wider practical application of stem cell-based therapy approaches for the treatment of Parkinson's disease. Among the latter, ethical, safety and technical issues stand out. Current series of reviews (Cell therapy for Parkinson's disease: I. Embryonic and adult donor tissue-based applications; II. Adult stem cell-based applications; III. Neonatal, fetal and embryonic stem cell-based applications; IV. Risks and future trends) aims providing a balanced and updated view on various issues associated with cell types (including stem cells) in regards to their potential in the treatment of Parkinson's disease. Essential features of the individual cell subtypes, principles of available cell handling protocols, transplantation, and safety issues are discussed extensively.
Benign Fibrous Histiocytoma: An Uncommon Presentation.
Sarkar, Sagarika; Maiti, Moumita; Bhattacharyya, Palas; Sarkar, Ranu
2017-07-01
Intracranial fibrous histiocytomas are rare; Benign Fibrous Histiocytoma (BFH) being uncommon than its malignant counterpart. BFH comprises fibroblasts and histiocytes without any nuclear pleomorphism or atypia. We present a case of a 42-year-old male who had swelling over the occipital region for the past five years, which progressively increased in size. He developed headache, dizziness, and gait disturbance over the last six months. Computed tomographic scan revealed a posterior fossa space-occupying lesion. Fine-needle aspiration cytology from the swelling revealed spindled fibroblasts along with histiocytes and multinucleated giant cells. Later, histopathology showed presence of spindle-shaped cells in storiform pattern admixed with histiocytes and giant cells. The giant cells and histiocytes were immunopositive for CD68 and spindled cells were positive for vimentin, but immunonegative for CD34, epithelial membrane antigen, CD1a and S100. The final diagnosis was intracranial BFH. We present this case because of its extreme rarity and unusual location.
Nitric oxide: cancer target or anticancer agent?
Mocellin, Simone
2009-03-01
Despite the improved understanding of nitric oxide (NO) biology and the large amount of preclinical experiments testing its role in cancer development and progression, it is still debated whether NO should be considered a potential anticancer agent or instead a carcinogen. The complexity of NO effects within a cell and the variability of the final biological outcome depending upon NO levels makes it highly challenging to determine the therapeutic value of interfering with the activity of this intriguing gaseous messenger. This uncertainty has so far halted the clinical implementation of NO-based therapeutics in the field of oncology. Accordingly, only an in depth knowledge of the mechanisms leading to experimental tumor regression or progression in response to NO will allow us to exploit this molecule to fight cancer.
Synthetic analog and digital circuits for cellular computation and memory.
Purcell, Oliver; Lu, Timothy K
2014-10-01
Biological computation is a major area of focus in synthetic biology because it has the potential to enable a wide range of applications. Synthetic biologists have applied engineering concepts to biological systems in order to construct progressively more complex gene circuits capable of processing information in living cells. Here, we review the current state of computational genetic circuits and describe artificial gene circuits that perform digital and analog computation. We then discuss recent progress in designing gene networks that exhibit memory, and how memory and computation have been integrated to yield more complex systems that can both process and record information. Finally, we suggest new directions for engineering biological circuits capable of computation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Freezing Injury in Onion Bulb Cells
Palta, Jiwan P.; Levitt, Jacob; Stadelmann, Eduard J.
1977-01-01
Onion (Allium cepa L.) bulbs were subjected for 12 days to either a moderate freeze (−4 C) or a severe freeze (−11 C). They were then thawed slowly over ice. During 7 to 12 days following the thaw, the injury progressed with time in the severely frozen bulbs, but appeared completely repaired in the moderately frozen bulbs. This was shown by the following post-thawing changes. Infiltration of the intercellular spaces increased from 80 to 90% to 100% after the severe freeze, and decreased from 30 to 50% to zero after the moderate freeze. All of the cells were alive immediately after thawing whether the freeze was moderate or severe. Corresponding to the infiltration results 7 to 12 days later, many to most were dead following the severe freeze, all were alive following the moderate freeze. The conductivity of the effusate from pieces of bulb tissue increased after the severe freezing, and decreased after the moderate freezing. The concentration of K+, total solutes, and sugars in the effusate paralleled the conductivity changes. Neither the pH of the effusate nor the permeability of the cells (as long as cells were living) to water was changed following either the severe or the moderate freezes. Some treatments of the thawed tissue following the severe freeze halted the progress of injury. The above results indicate that the semipermeable properties of the cell are uninjured but that the ion and sugar transport mechanism is damaged by freezing. Most likely the primary injury is to the active transport mechanism involved in their transport. It must be concluded that the final injury following freezing and thawing cannot be evaluated from the degree of infiltration or the conductivity of the effusate immediately after thawing, since injury may progress or recede following the thawing. PMID:16660101
Almomen, Aliyah; Jarboe, Elke A.; Dodson, Mark K.; Peterson, C. Matthew; Owen, Shawn C.; Janát-Amsbury, Margit M.
2016-01-01
Purpose The increasing incidence of endometrial cancer (EC), in younger age at diagnosis, calls for new tissue-sparing treatment options. This work aims to evaluate the potential of imiquimod (IQ) in the treatment of low-grade EC. Methods Effects of IQ on the viabilities of Ishikawa and HEC-1A cells were evaluated using MTT assay. The ability of IQ to induce apoptosis was evaluated by testing changes in caspase 3/7 levels and expression of cleaved caspase-3, using luminescence assay and western blot. Apoptosis was confirmed by flow cytometry and the expression of cleaved PARP. Western blot was used to evaluate the effect of IQ on expression levels of Bcl-2, Bcl-xL, and BAX. Finally, the in vivo efficacy of IQ was tested in an EC mouse model. Results There was a decrease in EC cell viability following IQ treatment as well as increased caspase 3/7 activities, cleaved caspase-3 expression, and Annexin-V/ 7AAD positive cell population. Western blot results showed the ability of IQ in cleaving PARP, decreasing Bcl-2 and Bcl-xL expressions, but not affecting BAX expression. In vivo study demonstrated IQ’s ability to inhibit EC tumor growth and progression without significant toxicity. Conclusions IQ induces apoptosis in low-grade EC cells in vitro, probably through its direct effect on Bcl-2 family protein expression. In, vivo, IQ attenuates EC tumor growth and progression, without an obvious toxicity. Our study provides the first building block for the potential role of IQ in the non-surgical management of low-grades EC and encouraging further investigations. PMID:27245465
Extending the knowledge in histochemistry and cell biology.
Heupel, Wolfgang-Moritz; Drenckhahn, Detlev
2010-01-01
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Immune drug discovery from venoms.
Jimenez, Rocio; Ikonomopoulou, Maria P; Lopez, J Alejandro; Miles, John J
2018-01-01
This review catalogues recent advances in knowledge on venoms as standalone therapeutic agents or as blueprints for drug design, with an emphasis on venom-derived compounds that affects the immune system. We discuss venoms and venom-derived compounds that affect total immune cell numbers, immune cell proliferation, immune cell migration, immune cell phenotype and cytokine secretion. Identifying novel compounds that 'tune' the system, up-regulating the immune response during infectious disease and cancer and down-regulating the immune response during autoimmunity, will greatly expand the tool kit of human immunotherapeutics. Targeting these pathways may also open therapeutic options that alleviate symptoms of envenomation. Finally, combining recent advances in venomics with progress in low cost, high-throughput screening platforms will no doubt yield hundreds of prototype immune modulating compounds in the coming years. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bazzani, Lorenzo; Donnini, Sandra; Finetti, Federica; Christofori, Gerhard; Ziche, Marina
2017-01-01
Prostaglandin E2 (PGE2) interacts with tyrosine kinases receptor signaling in both tumor and stromal cells supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, A549 and GLC82, PGE2 promotes nuclear translocation of epidermal growth factor receptor (nEGFR), affects gene expression and induces cell growth. Indeed, cyclin D1, COX-2, iNOS and c-Myc mRNA levels are upregulated following PGE2 treatment. The nuclear localization sequence (NLS) of EGFR as well as its tyrosine kinase activity are required for the effect of PGE2 on nEGFR and downstream signaling activities. PGE2 binds its bona fide receptor EP3 which by activating SRC family kinases, induces ADAMs activation which, in turn, releases EGFR-ligands from the cell membrane and promotes nEGFR. Amphiregulin (AREG) and Epiregulin (EREG) appear to be involved in nEGFR promoted by the PGE2/EP3-SRC axis. Pharmacological inhibition or silencing of the PGE2/EP3/SRC-ADAMs signaling axis or EGFR ligands i.e. AREG and EREG expression abolishes nEGFR induced by PGE2. In conclusion, PGE2 induces NSCLC cell proliferation by EP3 receptor, SRC-ADAMs activation, EGFR ligands shedding and finally, phosphorylation and nEGFR. Since nuclear EGFR is a hallmark of cancer aggressiveness, our findings reveal a novel mechanism for the contribution of PGE2 to tumor progression. PMID:28415726
Zhao, Dewei; Yu, Yue; Wang, Changlei; ...
2017-03-01
Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dewei; Yu, Yue; Wang, Changlei
Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less
Atg7-Mediated Autophagy Is Involved in the Neural Crest Cell Generation in Chick Embryo.
Wang, Guang; Chen, En-Ni; Liang, Chang; Liang, Jianxin; Gao, Lin-Rui; Chuai, Manli; Münsterberg, Andrea; Bao, Yongping; Cao, Liu; Yang, Xuesong
2018-04-01
Autophagy plays a very important role in numerous physiological and pathological events. However, it still remains unclear whether Atg7-induced autophagy is involved in the regulation of neural crest cell production. In this study, we found the co-location of Atg7 and Pax7 + neural crest cells in early chick embryo development. Upregulation of Atg7 with unilateral transfection of full-length Atg7 increased Pax7 + and HNK-1 + cephalic and trunk neural crest cell numbers compared to either Control-GFP transfection or opposite neural tubes, suggesting that Atg7 over-expression in neural tubes could enhance the production of neural crest cells. BMP4 in situ hybridization and p-Smad1/5/8 immunofluorescent staining demonstrated that upregulation of Atg7 in neural tubes suppressed the BMP4/Smad signaling, which is considered to promote the delamination of neural crest cells. Interestingly, upregulation of Atg7 in neural tubes could significantly accelerate cell progression into the S phase, implying that Atg7 modulates cell cycle progression. However, β-catenin expression was not significantly altered. Finally, we demonstrated that upregulation of the Atg7 gene could activate autophagy as did Atg8. We have also observed that similar phenotypes, such as more HNK-1 + neural crest cells in the unilateral Atg8 transfection side of neural tubes, and the transfection with full-length Atg8-GFP certainly promote the numbers of BrdU + neural crest cells in comparison to the GFP control. Taken together, we reveal that Atg7-induced autophagy is involved in regulating the production of neural crest cells in early chick embryos through the modification of the cell cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Eun-Ju; Kim, Hong-Hee; Huh, Jung-Eun
2005-02-01
The hydrophobic (HPB) nature of most polymeric biomaterials has been a major obstacle in using those materials in vivo due to low compatibility with cells. However, there is little knowledge of the molecular detail to explain how surface hydrophobicity affects cell responses. In this study, we compared the proliferation and apoptosis of human osteoblastic MG63 cells adhered to hydrophilic (HPL) and hydrophobic surfaces. On the hydrophobic surface, less formation of focal contacts and actin stress fibers, a delay in cell cycle progression, and an increase in apoptosis were observed. By using fibroblast growth factor 1 (FGF1) as a model growthmore » factor, we also investigated intracellular signaling pathways on hydrophilic and hydrophobic surfaces. The activation of Ras, Akt, and ERK by FGF1 was impaired in MG63 cells on the hydrophobic surface. The overexpression of constitutively active form of Ras and Akt rescued those cells from apoptosis and recovered cell cycle progression. Furthermore, their overexpression also restored the actin cytoskeletal organization on the hydrophobic surface. Finally, the proliferative, antiapoptotic, and cytoskeletal effects of constitutively active Ras in MG63 cells on the hydrophobic surface were blocked by wortmannin and PD98059 that inhibit Akt and ERK activation, respectively. Therefore, our results suggest that the activation of Ras and its downstream molecules Akt and ERK to an appropriate level is one of crucial elements in the determination of osteoblast cell responses. The Ras pathway may represent a cell biological target that should be considered for successful surface modification of biomaterials to induce adequate cell responses in the bone tissue.« less
Gore, M E; Szczylik, C; Porta, C; Bracarda, S; Bjarnason, G A; Oudard, S; Lee, S-H; Haanen, J; Castellano, D; Vrdoljak, E; Schöffski, P; Mainwaring, P; Hawkins, R E; Crinò, L; Kim, T M; Carteni, G; Eberhardt, W E E; Zhang, K; Fly, K; Matczak, E; Lechuga, M J; Hariharan, S; Bukowski, R
2015-06-30
We report final results with extended follow-up from a global, expanded-access trial that pre-regulatory approval provided sunitinib to metastatic renal cell carcinoma (mRCC) patients, ineligible for registration-directed trials. Patients ⩾18 years received oral sunitinib 50 mg per day on a 4-weeks-on-2-weeks-off schedule. Safety was assessed regularly. Tumour measurements were scheduled per local practice. A total of 4543 patients received sunitinib. Median treatment duration and follow-up were 7.5 and 13.6 months. Objective response rate was 16% (95% confidence interval (CI): 15-17). Median progression-free survival (PFS) and overall survival (OS) were 9.4 months (95% CI: 8.8-10.0) and 18.7 months (95% CI: 17.5-19.5). Median PFS in subgroups of interest: aged ⩾65 years (33%), 10.1 months; Eastern Cooperative Oncology Group performance status ⩾2 (14%), 3.5 months; non-clear cell histology (12%), 6.0 months; and brain metastases (7%), 5.3 months. OS was strongly associated with the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model (n=4065). The most common grade 3/4 treatment-related adverse events were thrombocytopenia (10%), fatigue (9%), and asthenia, neutropenia, and hand-foot syndrome (each 7%). Final analysis of the sunitinib expanded-access trial provided a good opportunity to evaluate the long-term side effects of a tyrosine kinase inhibitor used worldwide in mRCC. Efficacy and safety findings were consistent with previous results.
Cathcart, Mary-Clare; Lysaght, Joanne; Pidgeon, Graham P
2011-12-01
Arachidonic acid metabolism through cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P-450 epoxygenase (EPOX) pathways leads to the generation of biologically active eicosanoids, including prostanoids, leukotrienes, hydroxyeicosatetraenoic acid, epoxyeicosatrienoic acid and hydroperoxyeicosatetraenoic acids. Eicosanoid expression levels vary during tumor development and progression of a range of malignancies, including colorectal cancer. The actions of these autocoids are also directly influenced by diet, as demonstrated by recent evidence for omega-3 fatty acids in colorectal cancer (CRC) prevention and/or treatment. Eicosanoids regulate CRC development and progression, while inhibition of these pathways has generally been shown to inhibit tumor growth/progression. A progressive sequence of colorectal cancer development has been identified, ranging from normal colon, to colitis, dysplasia, and carcinoma. While both COX and LOX inhibition are both promising candidates for colorectal cancer prevention and/or treatment, there is an urgent need to understand the mechanisms through which these signalling pathways mediate their effects on tumorigenesis. This will allow identification of safer, more effective strategies for colorectal cancer prevention and/or treatment. In particular, binding to/signalling through prostanoid receptors have recently been the subject of considerable interest in this area. In this review, we discuss the role of the eicosanoid signalling pathways in the development and progression of colorectal cancer. We discuss the effects of the eicosanoids on tumor cell proliferation, their roles in cell death induction, effects on angiogenesis, migration, invasion and their regulation of the immune response. Signal transduction pathways involved in these processes are also discussed. Finally, novel approaches targeting these arachidonic acid-derived eicosanoids (using pharmacological or natural agents) for chemoprevention and/or treatment of colorectal cancer are outlined.
From quiescence to proliferation: Cdk oscillations drive the mammalian cell cycle
Gérard, Claude; Goldbeter, Albert
2012-01-01
We recently proposed a detailed model describing the dynamics of the network of cyclin-dependent kinases (Cdks) driving the mammalian cell cycle (Gérard and Goldbeter, 2009). The model contains four modules, each centered around one cyclin/Cdk complex. Cyclin D/Cdk4–6 and cyclin E/Cdk2 promote progression in G1 and elicit the G1/S transition, respectively; cyclin A/Cdk2 ensures progression in S and the transition S/G2, while the activity of cyclin B/Cdk1 brings about the G2/M transition. This model shows that in the presence of sufficient amounts of growth factor the Cdk network is capable of temporal self-organization in the form of sustained oscillations, which correspond to the ordered, sequential activation of the various cyclin/Cdk complexes that control the successive phases of the cell cycle. The results suggest that the switch from cellular quiescence to cell proliferation corresponds to the transition from a stable steady state to sustained oscillations in the Cdk network. The transition depends on a finely tuned balance between factors that promote or hinder progression in the cell cycle. We show that the transition from quiescence to proliferation can occur in multiple ways that alter this balance. By resorting to bifurcation diagrams, we analyze the mechanism of oscillations in the Cdk network. Finally, we show that the complexity of the detailed model can be greatly reduced, without losing its key dynamical properties, by considering a skeleton model for the Cdk network. Using such a skeleton model for the mammalian cell cycle we show that positive feedback (PF) loops enhance the amplitude and the robustness of Cdk oscillations with respect to molecular noise. We compare the relative merits of the detailed and skeleton versions of the model for the Cdk network driving the mammalian cell cycle. PMID:23130001
Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi.
Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu
2017-11-18
Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan.
Intersections of lung progenitor cells, lung disease and lung cancer.
Kim, Carla F
2017-06-30
The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.
The promise of human embryonic stem cells in aging-associated diseases
Yabut, Odessa; Bernstein, Harold S.
2011-01-01
Aging-associated diseases are often caused by progressive loss or dysfunction of cells that ultimately affect the overall function of tissues and organs. Successful treatment of these diseases could benefit from cell-based therapy that would regenerate lost cells or otherwise restore tissue function. Human embryonic stem cells (hESCs) promise to be an important therapeutic candidate in treating aging-associated diseases due to their unique capacity for self-renewal and pluripotency. To date, there are numerous hESC lines that have been developed and characterized. We will discuss how hESC lines are derived, their molecular and cellular properties, and how their ability to differentiate into all three embryonic germ layers is determined. We will also outline the methods currently employed to direct their differentiation into populations of tissue-specific, functional cells. Finally, we will highlight the general challenges that must be overcome and the strategies being developed to generate highly-purified hESC-derived cell populations that can safely be used for clinical applications. PMID:21566262
Regulation of pulmonary inflammation by mesenchymal cells.
Alkhouri, Hatem; Poppinga, Wilfred Jelco; Tania, Navessa Padma; Ammit, Alaina; Schuliga, Michael
2014-12-01
Pulmonary inflammation and tissue remodelling are common elements of chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and pulmonary hypertension (PH). In disease, pulmonary mesenchymal cells not only contribute to tissue remodelling, but also have an important role in pulmonary inflammation. This review will describe the immunomodulatory functions of pulmonary mesenchymal cells, such as airway smooth muscle (ASM) cells and lung fibroblasts, in chronic respiratory disease. An important theme of the review is that pulmonary mesenchymal cells not only respond to inflammatory mediators, but also produce their own mediators, whether pro-inflammatory or pro-resolving, which influence the quantity and quality of the lung immune response. The notion that defective pro-inflammatory or pro-resolving signalling in these cells potentially contributes to disease progression is also discussed. Finally, the concept of specifically targeting pulmonary mesenchymal cell immunomodulatory function to improve therapeutic control of chronic respiratory disease is considered. Copyright © 2014 Elsevier Ltd. All rights reserved.
Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals.
Prochazka, Radek; Blaha, Milan
2015-01-01
In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell compartment and the oocyte itself. Over the last decade, essential progress has been made in the identification of molecular events associated with the final maturation and ovulation of mammalian oocytes. All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.
Advancing colloidal quantum dot photovoltaic technology
NASA Astrophysics Data System (ADS)
Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.
2016-06-01
Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.
Immunopathology of leishmaniasis: an update.
Mansueto, P; Vitale, G; Di Lorenzo, G; Rini, G B; Mansueto, S; Cillari, E
2007-01-01
Leishmaniasis represents a severe, increasing, public health problem. The perspective of its control is highly dependent on research progress, on therapeutic manipulations of the immune system, and on vaccine development. There is a correlation between the clinical outcome of Leishmania infection and the cytokine response profile. While a protective immune response against Leishmania has been clearly identified to be related to the influence of a type-1 response and IFN-gamma production, the precise role of T helper (TH) 2 cytokines in non-healing infections requires further exploration. IL-4 and IL-13 (TH2 cytokines) can promote disease progression in cutaneous leishmaniasis, whereas IL-4 would appear to enhance protective type-1 responses in visceral leishmaniasis. Thus, the TH1/TH2 paradigm of resistance/susceptibility to intracellular parasites is probably an oversimplification of a more complicated network of regulatory/counter regulatory interactions. Moreover, the presence of antigen specific regulatory T cell subsets may provide an environment that contributes to the balance between TH1 and TH2 cells. Finally, the involvement of CD8 positive T cells has been described, but the modality of their function in this kind of infection has not been so far elucidated.
Basophils and allergic inflammation
Siracusa, Mark C.; Kim, Brian S.; Spergel, Jonathan M.; Artis, David
2013-01-01
Basophils were discovered by Paul Ehrlich in 1879 and represent the least abundant granulocyte population in mammals. The relative rarity of basophils and their phenotypic similarities with mast cells resulted in this cell lineage being historically overlooked, both clinically and experimentally. However, recent studies in humans and murine systems have shown that basophils perform non-redundant effector functions and significantly contribute to the development and progression of TH2 cytokine-mediated inflammation. Although the potential functions of murine and human basophils have provoked some controversy, recent genetic approaches indicate that basophils can migrate into lymphoid tissues and, in some circumstances, cooperate with other immune cells to promote optimal TH2 cytokine responses in vivo. This article provides a brief historical perspective on basophil-related research and discusses recent studies that have identified previously unappreciated molecules and pathways that regulate basophil development, activation and function in the context of allergic inflammation. Further, we highlight the unique effector functions of basophils and discuss their contributions to the development and pathogenesis of allergic inflammation in human disease. Finally, we discuss the therapeutic potential of targeting basophils in preventing or alleviating the development and progression of allergic inflammation. PMID:24075190
Aging, metabolism and stem cells: Spotlight on muscle stem cells.
García-Prat, Laura; Muñoz-Cánoves, Pura
2017-04-15
All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2013-05-01
different magnifications (objective lenses of ×10, ×20, ×40 and ×100). To verify metastatic disease, multiple organs were also used for histological...indicate the influence of metastasis in the distant organs or cancer recurrence in the pri- mary tumor site. Although the animal model was used in... ORGANIZATION : University of Arkansas Little Rock AR 72205-7101 REPORT DATE: 2013 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical
2016-10-01
progress in subaim 1a, substantially improving the design of our proposed transgenic animal, the “deletion reporter mouse”, and are finalizing cloning...of necessary components. We expect to submit embryonic stem cells to the transgenic facility within the next few months. Furthermore, subaim 1b is...different mammary epithelial subpopulations. We will breed the reporter mouse created in aim 1 (or the CAG/UBC-GFP mouse) with BRCA1+/- and ATM+/- mutant
LipidII: Just Another Brick in the Wall?
Scheffers, Dirk-Jan; Tol, Menno B.
2015-01-01
Nearly all bacteria contain a peptidoglycan cell wall. The peptidoglycan precursor molecule is LipidII, containing the basic peptidoglycan building block attached to a lipid. Although the suitability of LipidII as an antibacterial target has long been recognized, progress on elucidating the role(s) of LipidII in bacterial cell biology has been slow. The focus of this review is on exciting new developments, both with respect to antibacterials targeting LipidII as well as the emerging role of LipidII in organizing the membrane and cell wall synthesis. It appears that on both sides of the membrane, LipidII plays crucial roles in organizing cytoskeletal proteins and peptidoglycan synthesis machineries. Finally, the recent discovery of no less than three different categories of LipidII flippases will be discussed. PMID:26679002
Recapitulating Human Gastric Cancer Pathogenesis: Experimental Models of Gastric Cancer
Ding, Lin; El Zaatari, Mohamad
2017-01-01
Overview Gastric cancer has been traditionally defined by the Correa paradigm as a progression of sequential pathological events that begins with chronic inflammation [1]. Infection with Helicobacter pylori (H. pylori) is the typical explanation for why the stomach becomes chronically inflamed. Acute gastric inflammation then leads to chronic gastritis, atrophy particularly of acid-secreting parietal cells, metaplasia due to mucous neck cell expansion from trans-differentiation of zymogenic cells to dysplasia and eventually carcinoma [2]. The chapter contains an overview of gastric anatomy and physiology to set the stage for signaling pathways that play a role in gastric tumorigenesis. Finally, the major known mouse models of gastric transformation are critiqued in terms of the rationale behind their generation and contribution to our understanding of human cancer subtypes. PMID:27573785
Performance, size, mass, and cost estimates for projected 1kW EOL Si, InP, and GaAs arrays
NASA Technical Reports Server (NTRS)
Slifer, Luther W., Jr.
1991-01-01
One method of evaluating the potential of emerging solar cell and array technologies is to compare their projected capabilities in space flight applications to those of established Si solar cells and arrays. Such an application-oriented comparison provides an integrated view of the elemental comparisons of efficiency, radiation resistance, temperature sensitivity, size, mass, and cost in combination. In addition, the assumptions necessary to make the comparisons provide insights helpful toward determining necessary areas of development or evaluation. Finally, as developments and evaluations progress, the results can be used in more precisely defining the overall potential of the new technologies in comparison to existing technologies. The projected capabilities of Si, InP, and GaAs cells and arrays are compared.
Zhang, L-H; Yin, A-A; Cheng, J-X; Huang, H-Y; Li, X-M; Zhang, Y-Q; Han, N; Zhang, X
2015-01-29
The tripartite motif protein TRIM24 (tripartite motif-containing 24) has been found to play distinct roles in tumor development and progression, according to different tumor contexts. However, it remains elusive whether TRIM24 plays a role in malignant gliomas that are the most common and deadly primary brain tumors in adults. We report here that TRIM24 expression is positively correlated with glioma malignancy and is negatively associated with prognosis of patients with newly diagnosed glioblastoma, which is the most malignant form of gliomas but displays highly heterogeneous clinical outcome. The multivariate Cox regression analysis demonstrates the independent predictive value of TRIM24 expression level for overall and progression-free survival. Knockdown of TRIM24 suppresses cell proliferation, cell cycle progression, clone formation and in vivo tumor development, whereas overexpression of TRIM24 promotes cell growth. Chromatin immunoprecipitation, real-time reverse transcription-PCR and mutation analyses demonstrate that TRIM24 binds to the PIK3CA promoter via its PHD-Bromo domain to activate the transcription of PIK3CA gene, thus enhancing phosphatidylinositide 3-kinase (PI3K)/Akt signaling. The pan-PI3K inhibitor LY294002 and small interfering RNA targeting PIK3CA both abrogate the growth-promoting effect of TRIM24. Moreover, TRIM24 regulates the expression of DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) through PI3K/Akt/nuclear factor-κB signaling transduction and enhances resistance to temozolomide, the standard chemotherapeutic agent for glioblastoma. Finally, glioblastoma patients with low TRIM24 expression benefit from chemotherapy, whereas those with high TRIM24 expression do not have such benefit. Our results suggest that TRIM24 might serve as a potential prognostic marker and therapeutic target for the management of malignant gliomas.
Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression.
Nozaki, M.; Tada, M.; Kobayashi, H.; Zhang, C. L.; Sawamura, Y.; Abe, H.; Ishii, N.; Van Meir, E. G.
1999-01-01
Loss of function of the p53 tumor suppressor gene due to mutation occurs early in astrocytoma tumorigenesis in about 30-40% of cases. This is believed to confer a growth advantage to the cells, allowing them to clonally expand due to loss of the p53-controlled G1 checkpoint and apoptosis. Genetic instability due to the impaired ability of p53 to mediate DNA damage repair further facilitates the acquisition of new genetic abnormalities, leading to malignant progression of an astrocytoma into anaplastic astrocytoma. This is reflected by a high rate of p53 mutation (60-70%) in anaplastic astrocytomas. The cell cycle control gets further compromised in astrocytoma by alterations in one of the G1/S transition control genes, either loss of the p16/CDKN2 or RB genes or amplification of the cyclin D gene. The final progression process leading to glioblastoma multiforme seems to need additional genetic abnormalities in the long arm of chromosome 10; one of which is deletion and/or functional loss of the PTEN/MMAC1 gene. Glioblastomas also occur as primary (de novo) lesions in patients of older age, without p53 gene loss but with amplification of the epidermal growth factor receptor (EGFR) genes. In contrast to the secondary glioblastomas that evolve from astrocytoma cells with p53 mutations in younger patients, primary glioblastomas seem to be resistant to radiation therapy and thus show a poorer prognosis. The evaluation and design of therapeutic modalities aimed at preventing malignant progression of astrocytomas and glioblastomas should now be based on stratifying patients with astrocytic tumors according to their genetic diagnosis. PMID:11550308
Tricking the balance: NK cells in anti-cancer immunity.
Pahl, Jens; Cerwenka, Adelheid
2017-01-01
Natural Killer (NK) cells are classically considered innate immune effector cells involved in the first line of defense against infected and malignant cells. More recently, NK cells have emerged to acquire properties of adaptive immunity in response to certain viral infections such as expansion of specific NK cell subsets and long-lasting virus-specific responses to secondary challenges. NK cells distinguish healthy cells from abnormal cells by measuring the net input of activating and inhibitory signals perceived from target cells through NK cell surface receptors. Acquisition of activating ligands in combination with reduced expression of MHC class I molecules on virus-infected and cancer cells activates NK cell cytotoxicity and release of immunostimulatory cytokines like IFN-γ. In the cancer microenvironment however, NK cells become functionally impaired by inhibitory factors produced by immunosuppressive immune cells and cancer cells. Here we review recent progress on the role of NK cells in cancer immunity. We describe regulatory factors of the tumor microenvironment on NK cell function which determine cancer cell destruction or escape from immune recognition. Finally, recent strategies that focus on exploiting NK cell anti-cancer responses for immunotherapeutic approaches are outlined. Copyright © 2015 Elsevier GmbH. All rights reserved.
Dynamic interactions between cells and their extracellular matrix mediate embryonic development.
Goody, Michelle F; Henry, Clarissa A
2010-06-01
Cells and their surrounding extracellular matrix microenvironment interact throughout all stages of life. Understanding the continuously changing scope of cell-matrix interactions in vivo is crucial to garner insights into both congenital birth defects and disease progression. A current challenge in the field of developmental biology is to adapt in vitro tools and rapidly evolving imaging technology to study cell-matrix interactions in a complex 4-D environment. In this review, we highlight the dynamic modulation of cell-matrix interactions during development. We propose that individual cell-matrix adhesion proteins are best considered as complex proteins that can play multiple, often seemingly contradictory roles, depending upon the context of the microenvironment. In addition, cell-matrix proteins can also exert different short versus long term effects. It is thus important to consider cell behavior in light of the microenvironment because of the constant and dynamic reciprocal interactions occurring between them. Finally, we suggest that analysis of cell-matrix interactions at multiple levels (molecules, cells, tissues) in vivo is critical for an integrated understanding because different information can be acquired from all size scales. Copyright 2010 Wiley-Liss, Inc.
Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer.
Rodríguez, Marta; Silva, Javier; Herrera, Alberto; Herrera, Mercedes; Peña, Cristina; Martín, Paloma; Gil-Calderón, Beatriz; Larriba, María Jesús; Coronado, M Josés; Soldevilla, Beatriz; Turrión, Víctor S; Provencio, Mariano; Sánchez, Antonio; Bonilla, Félix; García-Barberán, Vanesa
2015-12-01
Cancer cells efficiently transfer exosome contents (essentially mRNAs and microRNAs) to other cell types, modifying immune responses, cell growth, angiogenesis and metastasis. Here we analyzed the exosomes release by breast tumor cells with different capacities of stemness/metastasis based on CXCR4 expression, and evaluated their capacity to generate oncogenic features in recipient cells. Breast cancer cells overexpressing CXCR4 showed an increase in stemness-related markers, and in proliferation, migration and invasion capacities. Furthermore, recipient cells treated with exosomes from CXCR4-cells showed increased in the same abilities. Moreover, inoculation of CXCR4-cell-derived exosomes in immunocompromised mice stimulated primary tumor growth and metastatic potential. Comparison of nucleic acids contained into exosomes isolated from patients revealed a "stemness and metastatic" signature in exosomes of patients with worse prognosis. Finally, our data supported the view that cancer cells with stem-like properties show concomitant metastatic behavior, and their exosomes stimulate tumor progression and metastasis. Exosomes-derived nucleic acids from plasma of breast cancer patients are suitable markers in the prognosis of such patients.
Bitter Melon Reduces Head and Neck Squamous Cell Carcinoma Growth by Targeting c-Met Signaling
Nerurkar, Pratibha; Gonzalez, Juan G.; Crawford, Susan; Varvares, Mark; Ray, Ratna B.
2013-01-01
Head and neck squamous cell carcinoma (HNSCC) remains difficult to treat, and despite of advances in treatment, the overall survival rate has only modestly improved over the past several years. Thus, there is an urgent need for additional therapeutic modalities. We hypothesized that treatment of HNSCC cells with a dietary product such as bitter melon extract (BME) modulates multiple signaling pathways and regresses HNSCC tumor growth in a preclinical model. We observed a reduced cell proliferation in HNSCC cell lines. The mechanistic studies reveal that treatment of BME in HNSCC cells inhibited c-Met signaling pathway. We also observed that BME treatment in HNSCC reduced phosphoStat3, c-myc and Mcl-1 expression, downstream signaling molecules of c-Met. Furthermore, BME treatment in HNSCC cells modulated the expression of key cell cycle progression molecules leading to halted cell growth. Finally, BME feeding in mice bearing HNSCC xenograft tumor resulted in an inhibition of tumor growth and c-Met expression. Together, our results suggested that BME treatment in HNSCC cells modulates multiple signaling pathways and may have therapeutic potential for treating HNSCC. PMID:24147107
Olguín, Jonadab E.; Medina-Andrade, Itzel; Molina, Emmanuel; Vázquez, Armando; Pacheco-Fernández, Thalia; Saavedra, Rafael; Pérez-Plasencia, Carlos; Chirino, Yolanda I.; Vaca-Paniagua, Felipe; Arias-Romero, Luis E.; Gutierrez-Cirlos, Emma B.; León-Cabrera, Sonia A.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.
2018-01-01
Colorectal cancer (CRC) is the second most commonly diagnosed cancer in women and the third in men in North America and Europe. CRC is associated with inflammatory responses in which intestinal pathology is caused by different cell populations including a T cell dysregulation that concludes in an imbalance between activated T (Tact) and regulatory T (Treg) cells. Treg cells are CD4+Foxp3+ cells that actively suppress pathological and physiological immune responses, contributing to the maintenance of immune homeostasis. A tumor-promoting function for Treg cells has been suggested in CRC, but the kinetics of Treg cells during CRC development are poorly known. Therefore, using a mouse model of colitis-associated colon cancer (CAC) induced by azoxymethane and dextran sodium sulfate, we observed the dynamic and differential kinetics of Treg cells in blood, spleen and mesenteric lymph nodes (MLNs) as CAC progresses, highlighting a significant reduction in Treg cells in blood and spleen during early CAC development, whereas increasing percentages of Treg cells were detected in late stages in MLNs. Interestingly, when Treg cells were decreased, Tact cells were increased and vice versa. Treg cells from late stages of CAC displayed an activated phenotype by expressing PD1, CD127 and Tim-3, suggesting an increased suppressive capacity. Suppression assays showed that T-CD4+ and T-CD8+ cells were suppressed more efficiently by MLN Treg cells from CAC animals. Finally, an antibody-mediated reduction in Treg cells during early CAC development resulted in a better prognostic value, because animals showed a reduction in tumor progression associated with an increased percentage of activated CD4+CD25+Foxp3- and CD8+CD25+ T cells in MLNs, suggesting that Treg cells suppress T cell activation at early steps during CAC development. PMID:29344269
Nicotine Promotes Cholangiocarcinoma Growth in Xenograft Mice.
Martínez, Allyson K; Jensen, Kendal; Hall, Chad; O'Brien, April; Ehrlich, Laurent; White, Tori; Meng, Fanyin; Zhou, Tianhao; Greene, John; Bernuzzi, Francesca; Invernizzi, Pietro; Dostal, David E; Lairmore, Terry; Alpini, Gianfranco; Glaser, Shannon S
2017-05-01
Nicotine, the main addictive substance in tobacco, is known to play a role in the development and/or progression of a number of malignant tumors. However, nicotine's involvement in the pathogenesis of cholangiocarcinoma is controversial. Therefore, we studied the effects of nicotine on the growth of cholangiocarcinoma cells in vitro and the progression of cholangiocarcinoma in a mouse xenograft model. The predominant subunit responsible for nicotine-mediated proliferation in normal and cancer cells, the α7 nicotinic acetylcholine receptor (α7-nAChR), was more highly expressed in human cholangiocarcinoma cell lines compared with normal human cholangiocytes. Nicotine also stimulated the proliferation of cholangiocarcinoma cell lines and promoted α7-nAChR-dependent activation of proliferation and phosphorylation of extracellular-regulated kinase in Mz-ChA-1 cells. In addition, nicotine and PNU282987 (α7-nAChR agonist) accelerated the growth of the cholangiocarcinoma tumors in our xenograft mouse model and increased fibrosis, proliferation of the tumor cells, and phosphorylation of extracellular-regulated kinase activation. Finally, α7-nAChR was expressed at significantly higher levels in human cholangiocarcinoma compared with normal human control liver samples. Taken together, results of this study suggest that nicotine acts through α7-nAChR and plays a novel role in the pathogenesis of cholangiocarcinoma. Furthermore, nicotine may act as a mitogen in cholestatic liver disease processes, thereby facilitating malignant transformation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Suppression of SIK1 by miR-141 in human ovarian cancer cell lines and tissues.
Chen, Jin-Long; Chen, Fang; Zhang, Ting-Ting; Liu, Nai-Fu
2016-06-01
Epithelial ovarian cancer (EOC), the sixth most common cancer in women worldwide, is the most commonly fatal gynecologic malignancy in developed countries. One of the main reasons for this is that relatively little was known about the molecular events responsible for the development of this highly aggressive disease. In the present study, we demonstrated that salt‑inducible kinase 1 (SIK1; which is also known as MSK/SIK/SNF1LK) was downregulated in ovarian cancer tissue samples. Using HEY ovarian cancer cells, we noted that SIK1 overexpression inhibited proliferation as well as cancer stem cell-associated traits. Silencing SIK1 promoted the proliferation of the EG ovarian cancer cell line. We performed an analysis of potential microRNAs (miRNAs or miRs) target sites using three commonly used prediction algorithms: miRanda, TargetScan and PicTar. All three algorithms predicted that miR-141 targets the 3'UTR of SIK1. Subsequent experiments not only confirmed this prediction, but also showed that miR-141 was associated with the progression of this disease. Finally, we found that miR-141 promoted proliferation of EG cells, whereas silencing miR-141 restored SIK1 expression and inhibited the proliferation of the HEY cells. Elucidating the molecular mechanism of ovarian cancer not only enables us to further understand the pathogenesis and progression of the disease, but also provides new targets for effective therapies.
1988-01-01
The stereocilia on each hair cell are arranged into rows of ascending height, resulting in what we refer to as a "staircase-like" profile. At the proximal end of the cochlea the length of the tallest row of stereocilia in the staircase is 1.5 micron, with the shortest row only 0.3 micron. As one proceeds towards the distal end of the cochlea the length of the stereocilia progressively increases so that at the extreme distal end the length of the tallest row of the staircase is 5.5 micron and the shortest row is 2 micron. During development hair cells form their staircases in four phases of growth separated from each other by developmental time. First, stereocilia sprout from the apical surfaces of the hair cells (8-10-d embryos). Second (10-12-d embryos), what will be the longest row of the staircase begins to elongate. As the embryo gets older successive rows of stereocilia initiate elongation. Thus the staircase is set up by the sequential initiation of elongation of stereociliary rows located at increased distances from the row that began elongation. Third (12-17-d embryos), all the stereocilia in the newly formed staircase elongate until those located on the first step of the staircase have reached the prescribed length. In the final phase (17-d embryos to hatchlings) there is a progressive cessation of elongation beginning with the shortest step and followed by taller and taller rows with the tallest step stopping last. Thus, to obtain a pattern of stereocilia in rows of increasing height what transpires are progressive go signals followed by a period when all the stereocilia grow and ending with progressive stop signals. We discuss how such a sequence could be controlled. PMID:3339095
Yang, Huan; Luo, Jinwen; Liu, Zhiguang; Zhou, Rui; Luo, Hong
2015-04-01
Lung cancer is the leading cause of cancer death worldwide and small cell lung cancer (SCLC) accounts for a significant proportion of all lung cancer cases. Even so, the underlying mechanism governing SCLC development remains poorly understood and SCLC related cancer death stands high despite decades of intensive investigation. We noted that both miR-138 and H2AX have been implicated in development of various malignancies. Also, there is a recent report showing the role of miR-138 in mediating DNA damage response by targeting H2AX. In light of these data, we sought to characterize the role of miR-138 for SCLC cell growth and cell-cycle progression by regulating H2AX expression. Results showed that miR-138 is significantly down-regulated in SCLC tumor tissues as well as in three SCLC cell lines. After successfully engineering miR-138 overexpression in one of the SCLC cell lines, NCI-H2081, we observed a remarkable reduction of cell growth and a significant inhibition on cell-cycle progression. Moreover, we were able to show that miR-138 potently inhibits H2AX expression, which suggests that H2AX may serve as a downstream executor for miR-138. Consistent with this hypothesis, we found that engineered H2AX knockdown achieves a similar effect as observed for miR-138 overexpression in terms of SCLC growth and cell cycle regulation. We also showed that H2AX overexpression largely abolished miR-138-mediated SCLC cancer cell growth and cell-cycle progression inhibition, which strongly suggests, at least in vitro, that miR-138 potently regulates SCLC development by targeting H2AX. In addition, we found lower miR-138 expression confers SCLC cells with greater DNA damage repair capacity. Finally, we were able to show miR-138 overexpression inhibits DNA damage repair in SCLC cells while miR-138 knockdown further facilitates DNA damage repair in these cells after IR. To date, there has been no study showing the role of miR-138/H2AX machinery in SCLC development. Our results may shed a light to development of new lines of SCLC diagnosis and treatment approaches.
Principles for system level electrochemistry
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1986-01-01
The higher power and higher voltage levels anticipated for future space missions have required a careful review of the techniques currently in use to preclude battery problems that are related to the dispersion characteristics of the individual cells. Not only are the out-of-balance problems accentuated in these larger systems, but the thermal management considerations also require a greater degree of accurate design. Newer concepts which employ active cooling techniques are being developed which permit higher rates of discharge and tighter packing densities for the electrochemical components. This paper will put forward six semi-independent principles relating to battery systems. These principles will progressively address cell, battery and finally system related aspects of large electrochemical storage systems.
Progress in Cochlear Physiology after Békésy
Guinan, John J.; Salt, Alec; Cheatham, Mary Ann
2012-01-01
In the fifty years since Békésy was awarded the Nobel Prize, cochlear physiology has blossomed. Many topics that are now current are things Békésy could not have imagined. In this review we start by describing progress in understanding the origin of cochlear gross potentials, particularly the cochlear microphonic, an area in which Békésy had extensive experience. We then review progress in areas of cochlear physiology that were mostly unknown to Békésy, including: (1) stereocilia mechano-electrical transduction, force production, and response amplification, (2) outer hair cell (OHC) somatic motility and its molecular basis in prestin, (3) cochlear amplification and related micromechanics, including the evidence that prestin is the main motor for cochlear amplification, (4) the influence of the tectorial membrane, (5) cochlear micromechanics and the mechanical drives to inner hair cell stereocilia, (6) otoacoustic emissions, and (7) olivocochlear efferents and their influence on cochlear physiology. We then return to a subject that Békésy knew well: cochlear fluids and standing currents, as well as our present understanding of energy dependence on the lateral wall of the cochlea. Finally, we touch on cochlear pathologies including noise damage and aging, with an emphasis on where the field might go in the future. PMID:22633944
Qin, Zilin; Chen, Jibing; Zeng, Jianying; Niu, Lizhi; Xie, Silun; Wang, Xiaohua; Liang, Yingqing; Wu, Zhenyi; Zhang, Mingjie
2017-01-01
ABSTRACT We investigated the effectiveness of adoptive transfer of KIR ligand-mismatched highly activated nature killer (HANK) cells in patients with hepatic carcinoma. Peripheral blood mononuclear cells were obtained and cultured in vitro to induce expansion and activation of HANK cells. After 12 d of culture, the cells were divided into 3 parts and infused intravenously on days 13 to 15. The patients (n = 16) were given one to 6 courses of immunotherapy. No side effects were observed. The lymphocyte subsets and cytokine, thymidine kinase 1 (TK1) and circulating tumor cell (CTC) levels were measured 1 day before treatment and 1 month after the final infusion: the absolute number of total T cells and NK cells and the IL-2 and TNF-β levels were significantly higher, and the TK1 and CTC levels were significantly lower at 1 month after treatment. The percentage of patients who experienced partial response, disease stabilization, and disease progression at 3 months after treatment was 18.8%, 50.0% and 31.2%, respectively. The total follow-up period was 2–12 months. The median progression-free survival from treatment was 7.5 months. This is the first study on the benefits of HANK cell immunotherapy for hepatic carcinoma These encouraging preliminary observations imply that HANK cell immunotherapy is safe, can improve the immune function of patients with liver cancer, and may even reduce the rate of tumor metastasis and recurrence. However, further studies on larger samples of patients with a longer follow-up period are required to confirm these findings. PMID:28353401
Zhang, Yulu; Ye, Lin; Tan, Yuxia; Sun, Pinghui; Ji, Ke; Jiang, Wen G
2014-03-01
Breast cancer metastasis suppressor-1 (BRMS1) is a candidate metastasis-suppressing gene and has been shown to potentially inhibit tumor progression without blocking the growth of orthotopic tumors, in different tumor types including non-small cell lung cancer, ovarian, melanoma and breast cancers. BRMS-1 gene transcript was quantified in breast cancer sample tissues and analyzed against histological and clinical patient outcome. Human breast cancer cell lines, MDA MB-231 and MCF-7 were used to genetically-modify the expression of BRMS-1 and test for biological responses following BRMS-1 modifications. Key candidate signal pathways, influenced by BRMS-1 were also explored. BRMS1 was present in MDA MB-231 and MCF-7 cell lines. Using anti-BRMS1 transgenes, we knocked-down the transcripts of BRMS1 in both cells at the mRNA and protein levels. Knockdown of BRMS1 gave both cells a faster cell growth rate, rapid pace of cellular migration and invasion, compared to respective wild-type and control cells (p<0.05). Blocking phospholipase-Cγ (PLCγ) had a significant influence on the BRMS-1-induced cell migration. Finally, significantly low levels of BRMS1 were observed in patients with high-grade tumors (p=0.12), in patients with distant metastasis (p=0.05) and those who died of breast cancer (p=0.0037). In addition, patients with low levels of BRMS1 had a significantly shorter overall survival (p=0.035). BRMS-1 is aberrantly expressed in human breast cancer and is inversely-correlated with disease progression and patient survival. This is likely to be occurring via its influence on invasion and migration of breast cancer cells.
Griffin, Daniel; Liu, Xiufang; Pru, Cindy; Pru, James K.; Peluso, John J.
2014-01-01
ABSTRACT Progesterone receptor membrane component 2 (Pgrmc2) mRNA was detected in the immature rat ovary. By 48 h after eCG, Pgrmc2 mRNA levels decreased by 40% and were maintained at 48 h post-hCG. Immunohistochemical studies detected PGRMC2 in oocytes and ovarian surface epithelial, interstitial, thecal, granulosa, and luteal cells. PGRMC2 was also present in spontaneously immortalized granulosa cells, localizing to the cytoplasm of interphase cells and apparently to the mitotic spindle of cells in metaphase. Interestingly, PGRMC2 levels appeared to decrease during the G1 stage of the cell cycle. Moreover, overexpression of PGRMC2 suppressed entry into the cell cycle, possibly by binding the p58 form of cyclin dependent kinase 11b. Conversely, Pgrmc2 small interfering RNA (siRNA) treatment increased the percentage of cells in G1 and M stage but did not increase the number of cells, which was likely due to an increase in apoptosis. Depleting PGRMC2 did not inhibit cellular 3H-progesterone binding, but attenuated the ability of progesterone to suppress mitosis and apoptosis. Taken together these studies suggest that PGRMC2 affects granulosa cell mitosis by acting at two specific stages of the cell cycle. First, PGRMC2 regulates the progression from the G0 into the G1 stage of the cell cycle. Second, PGRMC2 appears to localize to the mitotic spindle, where it likely promotes the final stages of mitosis. Finally, siRNA knockdown studies indicate that PGRMC2 is required for progesterone to slow the rate of granulosa cell mitosis and apoptosis. These findings support a role for PGRMC2 in ovarian follicle development. PMID:24990806
Ramond, Cyrille; Glaser, Nicolas; Berthault, Claire; Ameri, Jacqueline; Kirkegaard, Jeannette Schlichting; Hansson, Mattias; Honoré, Christian; Semb, Henrik; Scharfmann, Raphaël
2017-01-01
Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages. Development towards the acinar lineage is paralleled by an increase in GP2 expression. Conversely, a subset of the GP2+ population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3, a marker of endocrine differentiation. Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated. DOI: http://dx.doi.org/10.7554/eLife.27564.001 PMID:28731406
SOCE and cancer: Recent progress and new perspectives.
Xie, Jiansheng; Pan, Hongming; Yao, Junlin; Zhou, Yubin; Han, Weidong
2016-05-01
Ca(2+) acts as a universal and versatile second messenger in the regulation of a myriad of biological processes, including cell proliferation, differentiation, migration and apoptosis. Store-operated Ca(2+) entry (SOCE) mediated by ORAI and the stromal interaction molecule (STIM) constitutes one of the major routes of calcium entry in nonexcitable cells, in which the depletion of intracellular Ca(2+) stores triggers activation of the endoplasmic reticulum (ER)-resident Ca(2+) sensor protein STIM to gate and open the ORAI Ca(2+) channels in the plasma membrane (PM). Accumulating evidence indicates that SOCE plays critical roles in cancer cell proliferation, metastasis and tumor neovascularization, as well as in antitumor immunity. We summarize herein the recent advances in our understanding of the function of SOCE in various types of tumor cells, vascular endothelial cells and cells of the immune system. Finally, the therapeutic potential of SOCE inhibitors in the treatment of cancer is also discussed. © 2015 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.
PITX2 Enhances the Regenerative Potential of Dystrophic Skeletal Muscle Stem Cells.
Vallejo, Daniel; Hernández-Torres, Francisco; Lozano-Velasco, Estefanía; Rodriguez-Outeiriño, Lara; Carvajal, Alejandra; Creus, Carlota; Franco, Diego; Aránega, Amelia Eva
2018-04-10
Duchenne muscular dystrophy (DMD), one of the most lethal genetic disorders, involves progressive muscle degeneration resulting from the absence of DYSTROPHIN. Lack of DYSTROPHIN expression in DMD has critical consequences in muscle satellite stem cells including a reduced capacity to generate myogenic precursors. Here, we demonstrate that the c-isoform of PITX2 transcription factor modifies the myogenic potential of dystrophic-deficient satellite cells. We further show that PITX2c enhances the regenerative capability of mouse DYSTROPHIN-deficient satellite cells by increasing cell proliferation and the number of myogenic committed cells, but importantly also increasing dystrophin-positive (revertant) myofibers by regulating miR-31. These PITX2-mediated effects finally lead to improved muscle function in dystrophic (DMD/mdx) mice. Our studies reveal a critical role for PITX2 in skeletal muscle repair and may help to develop therapeutic strategies for muscular disorders. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Aryal, Binod; Rotllan, Noemi; Araldi, Elisa; Ramírez, Cristina M.; He, Shun; Chousterman, Benjamin G.; Fenn, Ashley M.; Wanschel, Amarylis; Madrigal-Matute, Julio; Warrier, Nikhil; Martín-Ventura, Jose L.; Swirski, Filip K.; Suárez, Yajaira; Fernández-Hernando, Carlos
2016-07-01
Lipid accumulation in macrophages has profound effects on macrophage gene expression and contributes to the development of atherosclerosis. Here, we report that angiopoietin-like protein 4 (ANGPTL4) is the most highly upregulated gene in foamy macrophages and it's absence in haematopoietic cells results in larger atherosclerotic plaques, characterized by bigger necrotic core areas and increased macrophage apoptosis. Furthermore, hyperlipidemic mice deficient in haematopoietic ANGPTL4 have higher blood leukocyte counts, which is associated with an increase in the common myeloid progenitor (CMP) population. ANGPTL4-deficient CMPs have higher lipid raft content, are more proliferative and less apoptotic compared with the wild-type (WT) CMPs. Finally, we observe that ANGPTL4 deficiency in macrophages promotes foam cell formation by enhancing CD36 expression and reducing ABCA1 localization in the cell surface. Altogether, these findings demonstrate that haematopoietic ANGPTL4 deficiency increases atherogenesis through regulating myeloid progenitor cell expansion and differentiation, foam cell formation and vascular inflammation.
NMDAR antagonists for the treatment of diabetes mellitus-Current status and future directions.
Welters, Alena; Klüppel, Carina; Mrugala, Jessica; Wörmeyer, Laura; Meissner, Thomas; Mayatepek, Ertan; Heiss, Christian; Eberhard, Daniel; Lammert, Eckhard
2017-09-01
Diabetes mellitus is characterized by chronically elevated blood glucose levels accelerated by a progressive decline of insulin-producing β-cells in the pancreatic islets. Although medications are available to transiently adjust blood glucose to normal levels, the effects of current drugs are limited when it comes to preservation of a critical mass of functional β-cells to sustainably maintain normoglycemia. In this review, we recapitulate recent evidence on the role of pancreatic N-methyl-D-aspartate receptors (NMDARs) in β-cell physiology, and summarize effects of morphinan-based NMDAR antagonists that are beneficial for insulin secretion, glucose tolerance and islet cell survival. We further discuss NMDAR-mediated molecular pathways relevant for neuronal cell survival, which may also be important for the preservation of β-cell function and mass. Finally, we summarize the literature for evidence on the role of NMDARs in the development of diabetic long-term complications, and highlight beneficial pharmacologic aspects of NMDAR antagonists in diabetic nephropathy, retinopathy as well as neuropathy. © 2017 John Wiley & Sons Ltd.
Technology Pathway Partnership Final Scientific Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, John C. Dr.; Godby, Larry A.
2012-04-26
This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at themore » photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.« less
YAP controls retinal stem cell DNA replication timing and genomic stability
Cabochette, Pauline; Vega-Lopez, Guillermo; Bitard, Juliette; Parain, Karine; Chemouny, Romain; Masson, Christel; Borday, Caroline; Hedderich, Marie; Henningfeld, Kristine A; Locker, Morgane; Bronchain, Odile; Perron, Muriel
2015-01-01
The adult frog retina retains a reservoir of active neural stem cells that contribute to continuous eye growth throughout life. We found that Yap, a downstream effector of the Hippo pathway, is specifically expressed in these stem cells. Yap knock-down leads to an accelerated S-phase and an abnormal progression of DNA replication, a phenotype likely mediated by upregulation of c-Myc. This is associated with an increased occurrence of DNA damage and eventually p53-p21 pathway-mediated cell death. Finally, we identified PKNOX1, a transcription factor involved in the maintenance of genomic stability, as a functional and physical interactant of YAP. Altogether, we propose that YAP is required in adult retinal stem cells to regulate the temporal firing of replication origins and quality control of replicated DNA. Our data reinforce the view that specific mechanisms dedicated to S-phase control are at work in stem cells to protect them from genomic instability. DOI: http://dx.doi.org/10.7554/eLife.08488.001 PMID:26393999
P21 and p27: roles in carcinogenesis and drug resistance.
Abukhdeir, Abde M; Park, Ben Ho
2008-07-01
Human cancers arise from an imbalance of cell growth and cell death. Key proteins that govern this balance are those that mediate the cell cycle. Several different molecular effectors have been identified that tightly regulate specific phases of the cell cycle, including cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors. Notably, loss of expression or function of two G1-checkpoint CDK inhibitors - p21 (CDKN1A) and p27 (CDKN1B) - has been implicated in the genesis or progression of many human malignancies. Additionally, there is a growing body of evidence suggesting that functional loss of p21 or p27 can mediate a drug-resistance phenotype. However, reports in the literature have also suggested p21 and p27 can promote tumours, indicating a paradoxical effect. Here, we review historic and recent studies of these two CDK inhibitors, including their identification, function, importance to carcinogenesis and finally their roles in drug resistance.
InAlAs photovoltaic cell design for high device efficiency
Smith, Brittany L.; Bittner, Zachary S.; Hellstroem, Staffan D.; ...
2017-04-17
This study presents a new design for a single-junction InAlAs solar cell, which reduces parasitic absorption losses from the low band-gap contact layer while maintaining a functional window layer by integrating a selective etch stop. The etch stop is then removed prior to depositing an anti-reflective coating. The final cell had a 17.9% efficiency under 1-sun AM1.5 with an anti-reflective coating. Minority carrier diffusion lengths were extracted from external quantum efficiency data using physics-based device simulation software yielding 170 nm in the n-type emitter and 4.6 um in the p-type base, which is more than four times the diffusion lengthmore » previously reported for a p-type InAlAs base. In conclusion, this report represents significant progress towards a high-performance InAlAs top cell for a triple-junction design lattice-matched to InP.« less
Lipidomics in vascular health: current perspectives.
Kolovou, Genovefa; Kolovou, Vana; Mavrogeni, Sophie
2015-01-01
Identifying the mechanisms that convert a healthy vascular wall to an atherosclerotic wall is of major importance since the consequences may lead to a shortened lifespan. Classical risk factors (age, smoking, obesity, diabetes mellitus, hypertension, and dyslipidemia) may result in the progression of atherosclerotic lesions by processes including inflammation and lipid accumulation. Thus, the evaluation of blood lipids and the full lipid complement produced by cells, organisms, or tissues (lipidomics) is an issue of importance. In this review, we shall describe the recent progress in vascular health research using lipidomic advances. We will begin with an overview of vascular wall biology and lipids, followed by a short analysis of lipidomics. Finally, we shall focus on the clinical implications of lipidomics and studies that have examined lipidomic approaches and vascular health.
Yamashita, Tadahiro; Kollmannsberger, Philip; Mawatari, Kazuma; Kitamori, Takehiko; Vogel, Viola
2016-11-01
Despite of the progress made to engineer structured microtissues such as BioMEMS and 3D bioprinting, little control exists how microtissues transform as they mature, as the misbalance between cell-generated forces and the strength of cell-cell and cell-substrate contacts can result in unintended tissue deformations and ruptures. To develop a quantitative perspective on how cellular contractility, scaffold curvature and cell-substrate adhesion control such rupture processes, human aortic smooth muscle cells were grown on glass substrates with submillimeter semichannels. We quantified cell sheet detachment from 3D confocal image stacks as a function of channel curvature and cell sheet tension by adding different amounts of Blebbistatin and TGF-β to inhibit or enhance cell contractility, respectively. We found that both higher curvature and higher contractility increased the detachment probability. Variations of the adhesive strength of the protein coating on the substrate revealed that the rupture plane was localized along the substrate-extracellular matrix interface for non-covalently adsorbed adhesion proteins, while the collagen-integrin interface ruptured when collagen I was covalently crosslinked to the substrate. Finally, a simple mechanical model is introduced that quantitatively explains how the tuning of substrate curvature, cell sheet contractility and adhesive strength can be used as tunable parameters as summarized in a first semi-quantitative phase diagram. These parameters can thus be exploited to either inhibit or purposefully induce a collective detachment of sheet-like microtissues for the use in tissue engineering and regenerative therapies. Despite of the significant progress in 3D tissue fabrication technologies at the microscale, there is still no quantitative model that can predict if cells seeded on a 3D structure maintain the imposed geometry while they form a continuous microtissue. Especially, detachment or loss of shape control of growing tissue is a major concern when designing 3D-structured scaffolds. Utilizing semi-cylindrical channels and vascular smooth muscle cells, we characterized how geometrical and mechanical parameters such as curvature of the substrate, cellular contractility, or protein-substrate adhesion strength tune the catastrophic detachment of microtissue. Observed results were rationalized by a theoretical model. The phase diagram showing how unintended tissue detachment progresses would help in designing of mechanically-balanced 3D scaffolds in future tissue engineering applications. Copyright © 2016. Published by Elsevier Ltd.
Hu, Dongxiao; Zhou, Jiansong; Wang, Fenfen; Shi, Haiyan; Li, Yang; Li, Baohua
2015-12-01
Cadherin switch, as a key hallmark of epithelial-mesenchymal transition (EMT), is characterized by reduced E-cadherin expression and increased N-cadherin or P-cadherin expression, and has been implicated in many aggressive tumors, but the importance and regulatory mechanism of cadherin switch in cervical cancer have not been investigated. Our study aimed to explore the role of cadherin switch by regulation of HPV-16 E6/E7 in progression and metastasis of cervical cancer. The expressions of E-cadherin and P-cadherin were examined by immunohistochemical staining in 40 cases of high-grade cervical lesions with HPV-16 infection only in which HPV-16 E6 and E7 expression had been detected using qRT-PCR method. Through modulating E6 and E7 expression using HPV-16 E6/E7 promoter-targeting siRNAs or expressed vector in vitro, cell growth, migration, and invasion were separately tested by MTT, wound-healing and transwell invasion assays, as well as the expressions of these cadherins by western blot analyses. Finally, the expressions of these cadherins in cancerous tissues of BALB/c-nu mouse model inoculated with the stable HPV-16 E6/E7 gene silencing Siha and Caski cells were also measured by immunohistochemical staining. Pearson correlation coefficient analyses showed the strongly inverse correlation of E-cadherin expression and strongly positive correlation of P-cadherin expression with E6/E7 level in 40 cases of high-grade cervical lesions. Furthermore, the modulation of HPV-16 E6/E7 expression remarkably influenced cell proliferation, migration, and invasion, as well as the protein levels of E-cadherin and P-cadherin in cervical cell lines. Finally, the reduction of HPV-16 E6/E7 expression led to up-regulated expression of E-cadherin and down-regulated expression of P-cadherin in BALB/c-nu mouse model in vivo assay. Our results unraveled the possibility that HPV-16 E6/E7 could promote cell invasive potential via regulating cadherin switching, and consequently contribute to progression and metastasis of cervical cancer.
Prehn, Richmond T
2007-05-04
TUMOR PROGRESSION: In many (perhaps in all) tumor systems, a malignant cancer is preceded by a benign lesion. Most benign lesions do not transform to malignancy and many regress. The final transformative step to malignancy differs from the preceding steps in, among other things, that it often occurs in the absence of the original carcinogenic stimulus. Relatively low titers of specific immune reactants are known to stimulate, but cell-to-cell or cell-to-matrix interactions appear to be major inhibitors of tumor-growth. Therefore, it seems reasonable to hypothesize that the mechanism of immunostimulation may be an interference with cell-to-cell or cell-to-matrix communication by a sub-lethal immune-reaction. While the above hypothesis remains unproven, some evidence suggests that immunity may have a major facilitating effect on tumor growth especially at the time of malignant transformation. There is even some evidence suggesting that transformation in vivo may seldom occur in the absence of immunostimulation of the premalignant lesion. Positive selection by the immune reaction may be the reason that tumors are immunogenic.
Emanuele, Michael J; Ciccia, Alberto; Elia, Andrew E H; Elledge, Stephen J
2011-06-14
The anaphase-promoting complex/cyclosome (APC/C) is a cell cycle-regulated E3 ubiquitin ligase that controls the degradation of substrate proteins at mitotic exit and throughout the G1 phase. We have identified an APC/C substrate and cell cycle-regulated protein, KIAA0101/PAF15. PAF15 protein levels peak in the G2/M phase of the cell cycle and drop rapidly at mitotic exit in an APC/C- and KEN-box-dependent fashion. PAF15 associates with proliferating cell nuclear antigen (PCNA), and depletion of PAF15 decreases the number of cells in S phase, suggesting a role for it in cell cycle regulation. Following irradiation, PAF15 colocalized with γH2AX foci at sites of DNA damage through its interaction with PCNA. Finally, PAF15 depletion led to an increase in homologous recombination-mediated DNA repair, and overexpression caused sensitivity to UV-induced DNA damage. We conclude that PAF15 is an APC/C-regulated protein involved in both cell cycle progression and the DNA damage response.
Transplantation of spinal cord-derived neural stem cells for ALS: Analysis of phase 1 and 2 trials.
Glass, Jonathan D; Hertzberg, Vicki S; Boulis, Nicholas M; Riley, Jonathan; Federici, Thais; Polak, Meraida; Bordeau, Jane; Fournier, Christina; Johe, Karl; Hazel, Tom; Cudkowicz, Merit; Atassi, Nazem; Borges, Lawrence F; Rutkove, Seward B; Duell, Jayna; Patil, Parag G; Goutman, Stephen A; Feldman, Eva L
2016-07-26
To test the safety of spinal cord transplantation of human stem cells in patients with amyotrophic lateral sclerosis (ALS) with escalating doses and expansion of the trial to multiple clinical centers. This open-label trial included 15 participants at 3 academic centers divided into 5 treatment groups receiving increasing doses of stem cells by increasing numbers of cells/injection and increasing numbers of injections. All participants received bilateral injections into the cervical spinal cord (C3-C5). The final group received injections into both the lumbar (L2-L4) and cervical cord through 2 separate surgical procedures. Participants were assessed for adverse events and progression of disease, as measured by the ALS Functional Rating Scale-Revised, forced vital capacity, and quantitative measures of strength. Statistical analysis focused on the slopes of decline of these phase 2 trial participants alone or in combination with the phase 1 participants (previously reported), comparing these groups to 3 separate historical control groups. Adverse events were mostly related to transient pain associated with surgery and to side effects of immunosuppressant medications. There was one incident of acute postoperative deterioration in neurologic function and another incident of a central pain syndrome. We could not discern differences in surgical outcomes between surgeons. Comparisons of the slopes of decline with the 3 separate historical control groups showed no differences in mean rates of progression. Intraspinal transplantation of human spinal cord-derived neural stem cells can be safely accomplished at high doses, including successive lumbar and cervical procedures. The procedure can be expanded safely to multiple surgical centers. This study provides Class IV evidence that for patients with ALS, spinal cord transplantation of human stem cells can be safely accomplished and does not accelerate the progression of the disease. This study lacks the precision to exclude important benefit or safety issues. © 2016 American Academy of Neurology.
Baba, Yuko; Funakoshi, T; Mori, M; Emoto, K; Masugi, Y; Ekmekcioglu, S; Amagai, M; Tanese, K
2017-12-01
Accumulating evidence suggests that the lipid lytic enzyme monoacylglycerol lipase (MAGL) promotes tumour invasion and metastasis through up-regulation of pro-tumorigenic signalling lipids in several tumour cell lines. However, the expression status of MAGL in clinical melanoma tissues and its clinicopathological significance remain unclear. To correlate the tumour expression status of MAGL with the clinicopathological information of patients with malignant melanoma. Polymerase chain reaction (PCR) array screening was performed, and the results were validated using immunocytochemical analysis of tumour and non-tumour melanocytic cell lines. Immunohistochemical staining for MAGL was performed for 74 melanoma samples, including 48 primary and 26 metastatic tumours, in which the expression of MAGL was determined by evaluating the percentage of MAGL-positive tumour cells and the MAGL staining intensity. Finally, we analysed the association of MAGL expression status with tumour progression, tumour thickness and vascular invasion of the primary lesion. Immunocytochemical analysis revealed that MAGL was expressed in all 12 melanoma cell lines, but not in normal human epidermal melanocytes. In the immunohistochemical analysis, positive staining for MAGL was noted in 32 of 48 (64.5%) primary lesions, 14 of 17 (82.4%) lymph node metastatic lesions and 7 of 9 (77.8%) skin metastatic lesions. Metastatic tumours had a significantly higher staining intensity (P = 0.033 for lymph node, P = 0.010 for skin). In the analysis of primary lesions, higher MAGL expression correlated with greater tumour thickness (P = 0.015) and the presence of vascular invasion (P = 0.017). On further evaluation of MAGL-positive primary lesions, staining intensity of MAGL tended to be higher in deeper areas of the tumour mass. The expression of MAGL in tumour cells reflects the aggressiveness of melanoma cells and may serve as a marker of tumour progression. © 2017 European Academy of Dermatology and Venereology.
Gomis, J; Cuello, C; Sanchez-Osorio, J; Gil, M A; Parrilla, I; Angel, M A; Vazquez, J M; Roca, J; Martinez, E A
2013-04-01
This study was aimed to determine the effect of forskolin on the viability of in vivo-derived porcine embryos vitrified by the superfine open pulled straw (SOPS) or solid surface vitrification (SSV) methods at the 2-cell, 4-cell, and blastocyst stages. Zygotes, 2- to 4-cell embryos, and morulae were obtained from superovulated sows. After collection, embryos were cultured for 24h with 0 or 10 μM forskolin and then vitrified using the SOPS and SSV method, or not vitrified (fresh controls). Fresh and vitrified-warmed 2-cells, 4-cells, and blastocysts were cultured for additional 96 h, 72 h and 24 h, respectively. At the end of the culture, embryos were evaluated for progression to the blastocyst stage and total cell number. The vitrification method did not affect any of the parameters evaluated for any embryo stage. Forskolin increased (P<0.01) the blastocyst formation and the final developmental stage of vitrified 2- and 4-cell embryos. However, these embryos exhibited lower (P<0.003) blastocyst formation rates than their fresh counterparts. The total cell number and hatching rate were similar in both groups (vitrified and fresh) of 2- and 4-cell embryos. Vitrified blastocysts exhibited viabilities, final developmental stages, hatching rates, and total cell numbers that were similar to those of their fresh counterparts, regardless of the addition of forskolin. In conclusion, the SOPS and SSV methods are suitable for the cryopreservation of in vivo-derived 2- to 4-cell porcine embryos. Pre-treatment with forskolin for 24h before vitrification improves the cryotolerance of 2- and 4-cell porcine embryos. Copyright © 2013 Elsevier Inc. All rights reserved.
Endothelial necrosis at 1h post-burn predicts progression of tissue injury
Hirth, Douglas; McClain, Steve A.; Singer, Adam J.; Clark, Richard A.F.
2013-01-01
Burn injury progression has not been well characterized at the cellular level. To define burn injury progression in terms of cell death, histopathologic spatiotemporal relationships of cellular necrosis and apoptosis were investigated in a validated porcine model of vertical burn injury progression. Cell necrosis was identified by High Mobility Group Box 1 protein and apoptosis by Caspase 3a staining of tissue samples taken 1h, 24h and 7 days post-burn. Level of endothelial cell necrosis at 1h was predictive of level of apoptosis at 24h (Pearson's r=0.87) and of level of tissue necrosis at 7 days (Pearson's r=0.87). Furthermore, endothelial cell necrosis was deeper than interstitial cell necrosis at 1h (p<0.001). Endothelial cell necrosis at 1h divided the zone of injury progression (Jackson's zone of stasis) into an upper subzone with necrotic endothelial cells and initially viable adnexal and interstitial cells at 1h that progressed to necrosis by 24h, and a lower zone with initially viable endothelial cells at 1h, but necrosis and apoptosis of all cell types by 24h. Importantly, this spatiotemporal series of events and rapid progression resembles myocardial infarction and stroke, and implicates mechanisms of these injuries, ischemia, ischemia reperfusion, and programmed cell death, in burn progression. PMID:23627744
Lenarduzzi, Michelle; Hui, Angela B. Y.; Yue, Shijun; Ito, Emma; Shi, Wei; Williams, Justin; Bruce, Jeff; Sakemura-Nakatsugawa, Noriko; Xu, Wei; Schimmer, Aaron; Liu, Fei-Fei
2013-01-01
Introduction Despite improvements in treatment strategies for head and neck squamous cell carcinoma (HNSCC), outcomes have not significantly improved; highlighting the importance of identifying novel therapeutic approaches to target this disease. To address this challenge, we proceeded to evaluate the role of iron in HNSCC. Experimental Design Expression levels of iron-related genes were evaluated in HNSCC cell lines using quantitative RT-PCR. Cellular phenotypic effects were assessed using viability (MTS), clonogenic survival, BrdU, and tumor formation assays. The prognostic significance of iron-related proteins was determined using immunohistochemistry. Results In a panel of HNSCC cell lines, hemochromatosis (HFE) was one of the most overexpressed genes involved in iron regulation. In vitro knockdown of HFE in HNSCC cell lines significantly decreased hepcidin (HAMP) expression and intracellular iron level. This in turn, resulted in a significant decrease in HNSCC cell viability, clonogenicity, DNA synthesis, and Wnt signalling. These cellular changes were reversed by re-introducing iron back into HNSCC cells after HFE knockdown, indicating that iron was mediating this phenotype. Concordantly, treating HNSCC cells with an iron chelator, ciclopirox olamine (CPX), significantly reduced viability and clonogenic survival. Finally, patients with high HFE expression experienced a reduced survival compared to patients with low HFE expression. Conclusions Our data identify HFE as potentially novel prognostic marker in HNSCC that promotes tumour progression via HAMP and elevated intracellular iron levels, leading to increased cellular proliferation and tumour formation. Hence, these findings suggest that iron chelators might have a therapeutic role in HNSCC management. PMID:23991213
Sittivarakul, Wantanee; Aui-aree, Nipat
2009-03-01
To study the demographics, clinical features, treatment, and visual outcomes of progressive outer retinal necrosis (PORN) in a group of Thai patients. All cases of AIDS with a clinical diagnosis of PORN in a major tertiary referral hospital in southern Thailand between January 2003 and June 2007 were retrospectively reviewed. Demographic data, clinical features, treatment regimens, and visual outcomes were analyzed. Seven patients (11 eyes) were studied. The mean age was 44.7 years. The median CD4 count was 12 cells/mm3. A known history of cutaneous zoster was documented in 57% of cases. The median follow-up period was 17 weeks. Fifty-seven percent of the patients had bilateral disease. A majority of eyes (45.4%) had initial visual acuity of less than 20/50 to equal to or better than 20/200. About two-thirds of the eyes had anterior chamber cells. Vitritis and retinal lesions scattered throughout both posterior pole and peripheral retina were found in 72.7%. Either intravenous acyclovir in combination with intravitreal ganciclovir injections or intravenous aclyclovir alone was used for initial treatment. Retinal detachment occurred in 54.5%. Final visual acuity worsened (loss of 3 lines on the ETDRS chart or more) in 60%. Visual acuity was no light perception in 45.5% at the final recorded follow-up. Demographics, clinical features and treatment outcomes of PORN in this group of Thai patients were comparable with studies from other countries. Visual prognosis is still poor with current treatment regimens.
3D Cell Printed Tissue Analogues: A New Platform for Theranostics
Choi, Yeong-Jin; Yi, Hee-Gyeong; Kim, Seok-Won; Cho, Dong-Woo
2017-01-01
Stem cell theranostics has received much attention for noninvasively monitoring and tracing transplanted therapeutic stem cells through imaging agents and imaging modalities. Despite the excellent regenerative capability of stem cells, their efficacy has been limited due to low cellular retention, low survival rate, and low engraftment after implantation. Three-dimensional (3D) cell printing provides stem cells with the similar architecture and microenvironment of the native tissue and facilitates the generation of a 3D tissue-like construct that exhibits remarkable regenerative capacity and functionality as well as enhanced cell viability. Thus, 3D cell printing can overcome the current concerns of stem cell therapy by delivering the 3D construct to the damaged site. Despite the advantages of 3D cell printing, the in vivo and in vitro tracking and monitoring of the performance of 3D cell printed tissue in a noninvasive and real-time manner have not been thoroughly studied. In this review, we explore the recent progress in 3D cell technology and its applications. Finally, we investigate their potential limitations and suggest future perspectives on 3D cell printing and stem cell theranostics. PMID:28839468
Chen, Xiancheng; Lin, Xiaojuan; Li, Meng
2012-10-01
Progressive tumor-bearing patients deserve to benefit from more realistic approaches. Here, a study revealed the impact of modified periodic fasting and refeeding regimen on tumor progression or regression with little or no loss of food intake and body weight. Human A549 lung, HepG-2 liver, and SKOV-3 ovary progressive tumor-bearing mice were established and subjected to 4 wk of periodic fasting/refeeding cycles (PFRC), including periodic 1-d fasting/6-d refeeding weekly (protocol 1) and periodic 2-d fasting/5-d refeeding weekly (P2DF/5DR, protocol 2), with ad libitum (AL)-fed hosts as controls. Afterwards, PFRC groups exhibited tumor growth arrest with some tendency towards regression; especially, complete regression of progressive tumors and metastases comprised between 43.75 and 56.25% of tumor-challenged hosts in P2DF/5DR group (P < 0.05). AL controls, in contrast, showed continuous tumor progression and metastasis. Finally, 100% hosts in P2DF/5DR and 62.5-68.75% in periodic 1-d fasting/6-d refeeding weekly groups survived a 4-month study period vs. only 31.25-37.5% in AL control group. Immunological assays and Luminex microarray revealed that tumor growth remission is mainly via natural killer cell (NK) reactivity and cross-regulation of IGF-binding protein-3, IGF/IGF-receptor, and megakaryocyte growth and development factor autocrine and paracrine loops. In vivo cellular and humoral assays indicated that tumor-regressive induction by PFRC protocols could be partly terminated by NK cell and IGF-binding protein-3 blockade or replenishment of IGF-I/-II and megakaryocyte growth and development factor. These findings offer a better understanding of comprehensive modulation of periodic fasting/refeeding strategy on the balance between tumor progression and regression.
Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities
Kerr, Emma; Gaude, Edoardo; Turrell, Frances; Frezza, Christian; Martins, Carla P
2016-01-01
Summary The RAS/MAPK-signalling pathway is frequently deregulated in non-small cell lung cancer (NSCLC), often through KRAS activating mutations1-3. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations4-7. We recently showed that advanced lung tumours from KrasG12D/+;p53-null mice frequently exhibit KrasG12D allelic enrichment (KrasG12D/Kraswild-type>1)7, implying that mutant Kras copy gains are positively selected during progression. Through a comprehensive analysis of mutant Kras homozygous and heterozygous MEFs and lung cancer cells we now show that these genotypes are phenotypically distinct. In particular, KrasG12D/G12D cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the TCA cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous NSCLC cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of KrasG12D copy gain), but not in the corresponding early tumours (KrasG12D heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprised of two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated based on their relative mutant allelic content. We also provide the first in vivo evidence of metabolic rewiring during lung cancer malignant progression. PMID:26909577
2014-01-01
Background Hyaluronic acid is a prognostic factor in ovarian cancers. It is also a component of Hyaluronic Acid-Carboxymethyl Cellulose (HA-CMC) barrier, an anti-adhesion membrane widely used during abdominal surgeries in particular for ovarian carcinosis. 70% of patients who undergo ovarian surgery will relapse due to the persistence of cancer cells. This study’s objective was to determine the oncological risk from use of this material, in the presence of residual disease, despite the benefit gained by it decreasing post-surgical adhesions in order to provide an unambiguous assessment of its appropriateness for use in ovarian surgical management. Methods We assessed the effects of HA-CMC barrier on the in vitro proliferation of human ovarian tumor cell lines (OVCAR-3, IGROV-1 and SKOV-3). We next evaluated, in vivo in nude mice, the capacity of this biomaterial to regulate the tumor progression of subcutaneous and intraperitoneal models of ovarian tumor xenografts. Results We showed that HA-CMC barrier does not increase in vitro proliferation of ovarian cancer cell lines compared to control. In vivo, HA-CMC barrier presence with subcutaneous xenografts induced neither an increase in tumor volume nor cell proliferation (Ki67 and mitotic index). With the exception of an increased murine carcinosis score in peritoneum, the presence of HA-CMC barrier with intraperitoneal xenografts modified neither macro nor microscopic tumor growth. Finally, protein analysis of survival (Akt), proliferation (ERK) and adhesion (FAK) pathways highlighted no activation on the xenografts imputable to HA-CMC barrier. Conclusions For the most part, our results support the lack of tumor progression activation due to HA-CMC barrier. We conclude that the benefits gained from using HA-CMC barrier membrane during ovarian cancer surgeries seem to outweigh the potential oncological risks. PMID:24739440
Turner, Emma L; Malo, Mackenzie E; Pisclevich, Marnie G; Dash, Megan D; Davies, Gerald F; Arnason, Terra G; Harkness, Troy A A
2010-10-01
The anaphase-promoting complex (APC), a large evolutionarily conserved ubiquitin ligase complex, regulates cell cycle progression through mitosis and G(1). Here, we present data suggesting that APC-dependent cell cycle progression relies on a specific set of posttranslational histone-modifying enzymes. Multiple APC subunit mutants were impaired in total and modified histone H3 protein content. Acetylated H3K56 (H3K56(Ac)) levels were as reduced as those of total H3, indicating that loading histones with H3K56(Ac) is unaffected in APC mutants. However, under restrictive conditions, H3K9(Ac) and dimethylated H3K79 (H3K79(me2)) levels were more greatly reduced than those of total H3. In a screen for histone acetyltransferase (HAT) and histone deacetylase (HDAC) mutants that genetically interact with the apc5(CA) (chromatin assembly) mutant, we found that deletion of GCN5 or ELP3 severely hampered apc5(CA) temperature-sensitive (ts) growth. Further analyses showed that (i) the elp3Δ gcn5Δ double mutant ts defect was epistatic to that observed in apc5(CA) cells; (ii) gcn5Δ and elp3Δ mutants accumulate in mitosis; and (iii) turnover of the APC substrate Clb2 is not impaired in elp3Δ gcn5Δ cells. Increased expression of ELP3 and GCN5, as well as genes encoding the HAT Rtt109 and the chromatin assembly factors Msi1 and Asf1, suppressed apc5(CA) defects, while increased APC5 expression partially suppressed elp3Δ gcn5Δ growth defects. Finally, we demonstrate that Gcn5 is unstable during G(1) and following G(1) arrest and is stabilized in APC mutants. We present our working model in which Elp3/Gcn5 and the APC work together to facilitate passage through mitosis and G(1). To progress into S, we propose that at least Gcn5 must then be targeted for degradation in an APC-dependent fashion.
Tumorigenicity studies for human pluripotent stem cell-derived products.
Kuroda, Takuya; Yasuda, Satoshi; Sato, Yoji
2013-01-01
Human pluripotent stem cells (hPSCs), i.e. human embryonic stem cells and human induced pluripotent stem cells, are able to self-renew and differentiate into multiple cell types. Because of these abilities, numerous attempts have been made to utilize hPSCs in regenerative medicine/cell therapy. hPSCs are, however, also tumorigenic, that is, they can give rise to the progressive growth of tumor nodules in immunologically unresponsive animals. Therefore, assessing and managing the tumorigenicity of all final products is essential in order to prevent ectopic tissue formation, tumor development, and/or malignant transformation elicited by residual pluripotent stem cells after implantation. No detailed guideline for the tumorigenicity testing of hPSC-derived products has yet been issued for regenerative medicine/cell therapy, despite the urgent necessity. Here, we describe the current situations and issues related to the tumorigenicity testing of hPSC-derived products and we review the advantages and disadvantages of several types of tumorigenicity-associated tests. We also refer to important considerations in the execution and design of specific studies to monitor the tumorigenicity of hPSC-derived products.
ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion
Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M
2015-01-01
Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression. DOI: http://dx.doi.org/10.7554/eLife.07270.001 PMID:26030852
Verheyen, A; Vanparijs, O; Borgers, M; Thienpont, D
1978-06-01
The time-related topographical changes in mature cysticerci of Taenia taeniaformis induced after medication of infected mice with 250 ppm of mebendazole are described. The changes included the gradual disappearance of microtriches and progressive degeneration of the tegment resulting in an irregular surface with grooves, holes, and craterlike structures. Host cells adhered to the altered areas and the number of these cells increased when more severe changes became apparent. Finally the necrotized cysticerci, which lost their tegument completely, were almost entirely covered with adhesive host cells. A difference in the time sequence of the reported changes occurred between the scolex, the pseudoproglottids, and the bladder. This difference in susceptibility towards the drug between the three parts of the parasite in relation to the morphology of their microtrichous covering is discussed.
Kritikou, Eva; van Puijvelde, Gijs H M; van der Heijden, Thomas; van Santbrink, Peter J; Swart, Maarten; Schaftenaar, Frank H; Kröner, Mara J; Kuiper, Johan; Bot, Ilze
2016-11-24
Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA 1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA 1/3 antagonism using the small molecule Ki16425. We show that LPA 1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA 1/3 blockade enhanced the percentage of non-inflammatory, Ly6C low monocytes and CD4 + CD25 + FoxP3 + T-regulatory cells. Finally, we demonstrate that LPA 1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA 1/3 receptors may prove a promising approach to diminish atherosclerosis development.
WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation
Kim, Jung Jin; Lee, Seung Baek; Yi, Sang-Yeop; Han, Sang-Ah; Kim, Sun-Hyun; Lee, Jong-Min; Tong, Seo-Yun; Yin, Ping; Gao, Bowen; Zhang, Jun; Lou, Zhenkun
2017-01-01
Oncogene-induced senescence (OIS) or apoptosis through the DNA-damage response is an important barrier of tumorigenesis. Overcoming this barrier leads to abnormal cell proliferation, genomic instability, and cellular transformation, and finally allows cancers to develop. However, it remains unclear how the OIS barrier is overcome. Here, we show that the E3 ubiquitin ligase WD repeat and SOCS box-containing protein 1 (WSB1) plays a role in overcoming OIS. WSB1 expression in primary cells helps the bypass of OIS, leading to abnormal proliferation and cellular transformation. Mechanistically, WSB1 promotes ATM ubiquitination, resulting in ATM degradation and the escape from OIS. Furthermore, we identify CDKs as the upstream kinase of WSB1. CDK-mediated phosphorylation activates WSB1 by promoting its monomerization. In human cancer tissue and in vitro models, WSB1-induced ATM degradation is an early event during tumorigenic progression. We suggest that WSB1 is one of the key players of early oncogenic events through ATM degradation and destruction of the tumorigenesis barrier. Our work establishes an important mechanism of cancer development and progression in premalignant lesions. PMID:27958289
[Progress in stem cells and regenerative medicine].
Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi
2015-06-01
Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.
Masson, Jesse J. R.; Cherry, Catherine L.; Murphy, Nicholas M.; Sada-Ovalle, Isabel; Hussain, Tabinda; Palchaudhuri, Riya; Martinson, Jeffrey; Landay, Alan L.; Billah, Baki; Crowe, Suzanne M.; Palmer, Clovis S.
2018-01-01
Untreated HIV infection is associated with progressive CD4+ T cell depletion, which is generally recovered with combination antiretroviral therapy (cART). However, a significant proportion of cART-treated individuals have poor CD4+ T cell reconstitution. We investigated associations between HIV disease progression and CD4+ T cell glucose transporter-1 (Glut1) expression. We also investigated the association between these variables and specific single nucleotide polymorphisms (SNPs) within the Glut1 regulatory gene AKT (rs1130214, rs2494732, rs1130233, and rs3730358) and in the Glut1-expressing gene SLC2A1 (rs1385129 and rs841853) and antisense RNA 1 region SLC2A1-AS1 (rs710218). High CD4+Glut1+ T cell percentage is associated with rapid CD4+ T cell decline in HIV-positive treatment-naïve individuals and poor T cell recovery in HIV-positive individuals on cART. Evidence suggests that poor CD4+ T cell recovery in treated HIV-positive individuals is linked to the homozygous genotype (GG) associated with SLC2A1 SNP rs1385129 when compared to those with a recessive allele (GA/AA) (odds ratio = 4.67; P = 0.04). Furthermore, poor response to therapy is less likely among Australian participants when compared against American participants (odds ratio: 0.12; P = 0.01) despite there being no difference in prevalence of a specific genotype for any of the SNPs analyzed between nationalities. Finally, CD4+Glut1+ T cell percentage is elevated among those with a homozygous dominant genotype for SNPs rs1385129 (GG) and rs710218 (AA) when compared to those with a recessive allele (GA/AA and AT/TT respectively) (P < 0.04). The heterozygous genotype associated with AKT SNP 1130214 (GT) had a higher CD4+Glut1+ T cell percentage when compared to the dominant homozygous genotype (GG) (P = 0.0068). The frequency of circulating CD4+Glut1+ T cells and the rs1385129 SLC2A1 SNP may predict the rate of HIV disease progression and CD4+ T cell recovery in untreated and treated infection, respectively. PMID:29867928
Yi, Feng; DeCan, Evan; Stoll, Kurt; Marceau, Eric; Deisseroth, Karl; Lawrence, J. Josh
2014-01-01
SUMMARY Objective A common rodent model in epilepsy research employs the muscarinic acetylcholine receptor (mAChR) agonist pilocarpine, yet the mechanisms underlying the induction of pilocarpine-induced seizures (PISs) remain unclear. Global M1 mAChR (M1R) knockout mice are resistant to PISs, implying that M1R activation disrupts excitation/inhibition balance. Parvalbumin-positive (PV) inhibitory neurons express M1 mAChRs, participate in cholinergically-induced oscillations, and can enter a state of depolarization block (DB) during epileptiform activity. Here, we test the hypothesis that pilocarpine activation of M1Rs expressed on PV cells contributes to PISs. Methods CA1 PV cells in PV-CRE mice were visualized with a floxed YFP or hM3Dq-mCherry adeno-associated virus, or by crossing PV-CRE mice with the RosaYFP reporter line. To eliminate M1Rs from PV cells, we generated PV-M1KO mice by crossing PV-CRE and floxed M1 mice. Action potential (AP) frequency was monitored during application of pilocarpine (200 µM). In behavioral experiments, locomotion and seizure symptoms were recorded in WT or PV-M1KO mice during PISs. Results Pilocarpine significantly increased AP frequency in CA1 PV cells into the gamma range. In the continued presence of pilocarpine, a subset (5/7) of PV cells progressed to DB, which was mimicked by hM3Dq activation of Gq-receptor signaling. Pilocarpine-induced depolarization, AP firing at gamma frequency, and progression to DB were prevented in CA1 PV cells of PV-M1KO mice. Finally, compared to WT mice, PV-M1KO mice were associated with reduced severity of PISs. Significance Pilocarpine can directly depolarize PV+ cells via M1R activation but a subset of these cells progress to DB. Our electrophysiological and behavioral results suggest that this mechanism is active during PISs, contributing to a collapse of PV-mediated GABAergic inhibition, dysregulation of excitation/inhibition balance, and increased susceptibility to PISs. PMID:25495999
Herrero-Ruiz, Joaquín; Mora-Santos, Mar; Giráldez, Servando; Sáez, Carmen; Japón, Miguel A; Tortolero, Maria; Romero, Francisco
2014-09-15
In mammals, cell cycle progression is controlled by cyclin-dependent kinases, among which CDK1 plays important roles in the regulation of the G2/M transition, G1 progression and G1/S transition. CDK1 is highly regulated by its association to cyclins, phosphorylation and dephosphorylation, changes in subcellular localization, and by direct binding of CDK inhibitor proteins. CDK1 steady-state protein levels are held constant throughout the cell cycle by a coordinated regulation of protein synthesis and degradation. We show that CDK1 is ubiquitinated by the E3 ubiquitin ligase SCFβTrCP and degraded by the lysosome. Furthermore, we found that DNA damage not only triggers the stabilization of inhibitory phosphorylation sites on CDK1 and repression of CDK1 gene expression, but also regulates βTrCP-induced CDK1 degradation in a cell type-dependent manner. Specifically, treatment with the chemotherapeutic agent doxorubicin in certain cell lines provokes CDK1 degradation and induces apoptosis, whereas in others it inhibits destruction of the protein. These observations raise the possibility that different tumor types, depending on their pathogenic spectrum mutations, may display different sensitivity to βTrCP-induced CDK1 degradation after DNA damage. Finally, we found that CDK1 accumulation in patients' tumors shows a negative correlation with βTrCP and a positive correlation with the degree of tumor malignancy.
Fanale, Michelle A; Horwitz, Steven M; Forero-Torres, Andres; Bartlett, Nancy L; Advani, Ranjana H; Pro, Barbara; Chen, Robert W; Davies, Andrew; Illidge, Tim; Uttarwar, Mayur; Lee, Shih-Yuan; Ren, Hong; Kennedy, Dana A; Shustov, Andrei R
2018-05-10
This phase 1 study evaluated frontline brentuximab vedotin in combination with cyclophosphamide, doxorubicin, and prednisone (BV+CHP; 6 cycles, then up to 10 cycles of brentuximab vedotin monotherapy) in 26 patients with CD30 + peripheral T-cell lymphoma, including 19 with systemic anaplastic large cell lymphoma. All patients (100%) achieved an objective response, with a complete remission (CR) rate of 92%; none received a consolidative stem cell transplant. After a median observation period of 59.6 months (range, 4.6-66.0) from first dose, neither the median progression-free survival (PFS) nor the median overall survival (OS) was reached. No progression or death was observed beyond 35 months. The estimated 5-year PFS and OS rates were 52% and 80%, respectively. Eighteen of 19 patients (95%) with treatment-emergent peripheral neuropathy (PN) reported resolution or improvement of symptoms. Thirteen patients (50%) remained in remission at the end of the study, with PFS ranging from 37.8+ to 66.0+ months. Eight of these 13 patients received the maximum 16 cycles of study treatment. These final results demonstrate durable remissions in 50% of patients treated with frontline BV+CHP, suggesting a potentially curative treatment option for some patients. This trial was registered at www.clinicaltrials.gov as #NCT01309789. © 2018 by The American Society of Hematology.
A premeiotic function for boule in the planarian Schmidtea mediterranea.
Iyer, Harini; Issigonis, Melanie; Sharma, Prashant P; Extavour, Cassandra G; Newmark, Phillip A
2016-06-21
Mutations in Deleted in Azoospermia (DAZ), a Y chromosome gene, are an important cause of human male infertility. DAZ is found exclusively in primates, limiting functional studies of this gene to its homologs: boule, required for meiotic progression of germ cells in invertebrate model systems, and Daz-like (Dazl), required for early germ cell maintenance in vertebrates. Dazl is believed to have acquired its premeiotic role in a vertebrate ancestor following the duplication and functional divergence of the single-copy gene boule. However, multiple homologs of boule have been identified in some invertebrates, raising the possibility that some of these genes may play other roles, including a premeiotic function. Here we identify two boule paralogs in the freshwater planarian Schmidtea mediterranea Smed-boule1 is necessary for meiotic progression of male germ cells, similar to the known function of boule in invertebrates. By contrast, Smed-boule2 is required for the maintenance of early male germ cells, similar to vertebrate Dazl To examine if Boule2 may be functionally similar to vertebrate Dazl, we identify and functionally characterize planarian homologs of human DAZL/DAZ-interacting partners and DAZ family mRNA targets. Finally, our phylogenetic analyses indicate that premeiotic functions of planarian boule2 and vertebrate Dazl evolved independently. Our study uncovers a premeiotic role for an invertebrate boule homolog and offers a tractable invertebrate model system for studying the premeiotic functions of the DAZ protein family.
Host and Viral Factors in HIV-Mediated Bystander Apoptosis
Garg, Himanshu; Joshi, Anjali
2017-01-01
Human immunodeficiency virus (HIV) infections lead to a progressive loss of CD4 T cells primarily via the process of apoptosis. With a limited number of infected cells and vastly disproportionate apoptosis in HIV infected patients, it is believed that apoptosis of uninfected bystander cells plays a significant role in this process. Disease progression in HIV infected individuals is highly variable suggesting that both host and viral factors may influence HIV mediated apoptosis. Amongst the viral factors, the role of Envelope (Env) glycoprotein in bystander apoptosis is well documented. Recent evidence on the variability in apoptosis induction by primary patient derived Envs underscores the role of Env glycoprotein in HIV disease. Amongst the host factors, the role of C-C Chemokine Receptor type 5 (CCR5), a coreceptor for HIV Env, is also becoming increasingly evident. Polymorphisms in the CCR5 gene and promoter affect CCR5 cell surface expression and correlate with both apoptosis and CD4 loss. Finally, chronic immune activation in HIV infections induces multiple defects in the immune system and has recently been shown to accelerate HIV Env mediated CD4 apoptosis. Consequently, those factors that affect CCR5 expression and/or immune activation in turn indirectly regulate HIV mediated apoptosis making this phenomenon both complex and multifactorial. This review explores the complex role of various host and viral factors in determining HIV mediated bystander apoptosis. PMID:28829402
Immune response in pemphigus and beyond: progresses and emerging concepts.
Di Zenzo, Giovanni; Amber, Kyle T; Sayar, Beyza S; Müller, Eliane J; Borradori, Luca
2016-01-01
Pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are two severe autoimmune bullous diseases of the mucosae and/or skin associated with autoantibodies directed against desmoglein (Dsg) 3 and/or Dsg1. These two desmosomal cadherins, typifying stratified epithelia, are components of cell adhesion complexes called desmosomes and represent extra-desmosomal adhesion receptors. We herein review the advances in our understanding of the immune response underlying pemphigus, including human leucocyte antigen (HLA) class II-associated genetic susceptibility, characteristics of pathogenic anti-Dsg antibodies, antigenic mapping studies as well as findings about Dsg-specific B and T cells. The pathogenicity of anti-Dsg autoantibodies has been convincingly demonstrated. Disease activity and clinical phenotype correlate with anti-Dsg antibody titers and profile while passive transfer of anti-Dsg IgG from pemphigus patients' results in pemphigus-like lesions in neonatal and adult mice. Finally, adoptive transfer of splenocytes from Dsg3-knockout mice immunized with murine Dsg3 into immunodeficient mice phenotypically recapitulates PV. Although the exact pathogenic mechanisms leading to blister formation have not been fully elucidated, intracellular signaling following antibody binding has been found to be necessary for inducing cell-cell dissociation, at least for PV. These new insights not only highlight the key role of Dsgs in maintenance of tissue homeostasis but are expected to progressively change pemphigus management, paving the way for novel targeted immunologic and pharmacologic therapies.
Urbanska, Marta; Winzi, Maria; Neumann, Katrin; Abuhattum, Shada; Rosendahl, Philipp; Müller, Paul; Taubenberger, Anna; Anastassiadis, Konstantinos; Guck, Jochen
2017-12-01
Cellular reprogramming is a dedifferentiation process during which cells continuously undergo phenotypical remodeling. Although the genetic and biochemical details of this remodeling are fairly well understood, little is known about the change in cell mechanical properties during the process. In this study, we investigated changes in the mechanical phenotype of murine fetal neural progenitor cells (fNPCs) during reprogramming to induced pluripotent stem cells (iPSCs). We find that fNPCs become progressively stiffer en route to pluripotency, and that this stiffening is mirrored by iPSCs becoming more compliant during differentiation towards the neural lineage. Furthermore, we show that the mechanical phenotype of iPSCs is comparable with that of embryonic stem cells. These results suggest that mechanical properties of cells are inherent to their developmental stage. They also reveal that pluripotent cells can differentiate towards a more compliant phenotype, which challenges the view that pluripotent stem cells are less stiff than any cells more advanced developmentally. Finally, our study indicates that the cell mechanical phenotype might be utilized as an inherent biophysical marker of pluripotent stem cells. © 2017. Published by The Company of Biologists Ltd.
del Nogal, María; Luengo, Alicia; Olmos, Gemma; Lasa, Marina; Rodriguez-Puyol, Diego; Rodriguez-Puyol, Manuel; Calleros, Laura
2012-12-01
Renal fibrosis is the final outcome of many clinical conditions that lead to chronic renal failure, characterized by a progressive substitution of cellular elements by extracellular-matrix proteins, in particular collagen type I. The aim of this study was to identify the mechanisms responsible for human mesangial cell survival, conditioned by changes in extracellular-matrix composition. Our results indicate that collagen I induces apoptosis in cells but only after inactivation of the pro-survival factor NFκB by either the super-repressor IκBα or the PDTC inhibitor. Collagen I activates a death pathway, through ILK/GSK-3β-dependent Bim expression. Moreover, collagen I significantly increases NFκB-dependent transcription, IκBα degradation and p65/NFκB translocation to the nucleus; it activates β1 integrin and this is accompanied by increased activity of ILK which leads to AKT activation. Knockdown of ILK or AKT with small interfering RNA suppresses the increase in NFκB activity. NFκB mediates cell survival through the antiapoptotic protein Bcl-xL. Our data suggest that human mesangial cells exposed to abnormal collagen I are protected against apoptosis by a complex mechanism involving integrin β1/ILK/AKT-dependent NFκB activation with consequent Bcl-xL overexpression, that opposes a simultaneously activated ILK/GSK-3β-dependent Bim expression and this dual mechanism may play a role in the progression of glomerular dysfunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernaez, Bruno; Escribano, Jose M.; Alonso, Covadonga
2006-06-20
Many stages of African swine fever virus infection have not yet been studied in detail. To track the behavior of African swine fever virus (ASFV) in the infected cells in real time, we produced an infectious recombinant ASFV (B54GFP-2) that expresses and incorporates into the virus particle a chimera of the p54 envelope protein fused to the enhanced green fluorescent protein (EGFP). The incorporation of the fusion protein into the virus particle was confirmed immunologically and it was determined that p54-EGFP was fully functional by confirmation that the recombinant virus made normal-sized plaques and presented similar growth curves to themore » wild-type virus. The tagged virus was visualized as individual fluorescent particles during the first stages of infection and allowed to visualize the infection progression in living cells through the viral life cycle by confocal microscopy. In this work, diverse potential applications of B54GFP-2 to study different aspects of ASFV infection are shown. By using this recombinant virus it was possible to determine the trajectory and speed of intracellular virus movement. Additionally, we have been able to visualize for first time the ASFV factory formation dynamics and the cytophatic effect of the virus in live infected cells. Finally, we have analyzed virus progression along the infection cycle and infected cell death as time-lapse animations.« less
Jiang, L; Dong, P; Zhang, Z; Li, C; Li, Y; Liao, Y; Li, X; Wu, Z; Guo, S; Mai, S; Xie, D; Liu, Z; Zhou, F
2015-01-01
Bladder cancer (BC) is very common and associated with significant morbidity and mortality, though the molecular underpinnings of its origination and progression remain poorly understood. In this study, we demonstrate that Prohibitin 1 (PHB) was overexpressed in human BC tissues and that PHB upregulation was associated with poor prognosis. We also found that PHB was necessary and sufficient for BC cell proliferation. Interestingly, the overexpressed PHB was primarily found within mitochondria, and we provide the first direct evidence that phosphorylation by Akt at Thr258 of PHB induces this mitochondrial localization. Inhibiton of Akt reverses these effects and inhibited the proliferation of BC cells. Finally, the phosphorylation of PHB was required for BC cell proliferation, further implicating the importance of the Akt in BC. Taken together, these findings identify the Akt/PHB signaling cascade as a novel mechanism of cancer cell proliferation and provide the scientific basis for the establishment of PHB as a new prognostic marker and treatment target for BC. PMID:25719244
Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier
2013-05-01
PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ER(T) under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors.
Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier
2013-01-01
SUMMARY PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ERT under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors. PMID:23471917
Sakuma, Keiichiro; Sasaki, Eiichi; Kimura, Kenya; Komori, Koji; Shimizu, Yasuhiro; Yatabe, Yasushi; Aoki, Masahiro
2018-06-05
HNRNPLL (heterogeneous nuclear ribonucleoprotein L-like), an RNA-binding protein that regulates alternative splicing of pre-mRNAs, has been shown to regulate differentiation of lymphocytes, as well as metastasis of colorectal cancer cells. Here we show that HNRNPLL promotes cell cycle progression and hence proliferation of colorectal cancer cells. Functional annotation analysis of those genes whose expression levels were changed by three-fold or more in RNA sequencing analysis between SW480 cells overexpressing HNRNPLL and those knocked down for HNRNPLL revealed enrichment of DNA replication-related genes by HNRNPLL overexpression. Among 13 genes detected in the DNA replication pathway, PCNA, RFC3, and FEN1 showed reproducible upregulation by HNRNPLL overexpression both at mRNA and protein levels in SW480 and HT29 cells. Importantly, knockdown of any of these genes alone suppressed the proliferation promoting effect induced by HNRNPLL overexpression. RNA-immunoprecipitation assay presented a binding of FLAG-tagged HNRNPLL to mRNA of these genes, and HNRNPLL overexpression significantly suppressed the downregulation of these genes during 12 hours of actinomycin D treatment, suggesting a role of HNRNPLL in mRNA stability. Finally, analysis of a public RNA sequencing dataset of clinical samples suggested a link between overexpression of HNRNPLL and that of PCNA, RFC3, and FEN1. This link was further supported by immunohistochemistry of colorectal cancer clinical samples, whereas expression of CDKN1A, which is known to inhibit the cooperative function of PCNA, RFC3, and FEN1, was negatively associated with HNRNPLL expression. These results indicate that HNRNPLL stabilizes mRNAs encoding regulators of DNA replication and promotes colorectal cancer cell proliferation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Noyan, Kajsa; Nguyen, Son; Betts, Michael R; Sönnerborg, Anders; Buggert, Marcus
2018-01-01
Human immunodeficiency virus type-1 (HIV-1) elite controllers (ELCs) represent a unique population that control viral replication in the absence of antiretroviral therapy (cART). It is well established that expression of multiple inhibitory receptors on CD8+ T cells is associated with HIV-1 disease progression. However, whether reduced co-expression of inhibitory receptors on CD4+ T cells is linked to natural viral control and slow HIV-1 disease progression remains undefined. Here, we report on the expression pattern of numerous measurable inhibitory receptors, associated with T cell exhaustion (programmed cell death-1, CTLA-4, and TIGIT), on different CD4+ T cell memory populations in ELCs and HIV-infected subjects with or without long-term cART. We found that the co-expression pattern of inhibitory receptors was significantly reduced in ELCs compared with HIV-1 cART-treated and viremic subjects, and similar to healthy controls. Markers associated with T cell exhaustion varied among different memory CD4+ T cell subsets and highest levels were found mainly on transitional memory T cells. CD4+ T cells co-expressing all inhibitory markers were positively correlated to T cell activation (CD38+ HLA-DR+) as well as the transcription factors Helios and FoxP3. Finally, clinical parameters such as CD4 count, HIV-1 viral load, and the CD4/CD8 ratio all showed significant associations with CD4+ T cell exhaustion. We demonstrate that ELCs are able to maintain lower levels of CD4+ T cell exhaustion despite years of ongoing viral replication compared with successfully cART-treated subjects. Our findings suggest that ELCs harbor a "healthy" state of inhibitory receptor expression on CD4+ T cells that might play part in maintenance of their control status.
NASA Technical Reports Server (NTRS)
Holman, H. Y.; Martin, M. C.; Blakely, E. A.; Bjornstad, K.; McKinney, W. R.
2000-01-01
Synchrotron radiation based Fourier transform IR (SR-FTIR) spectromicroscopy allows the study of individual living cells with a high signal to noise ratio. Here we report the use of the SR-FTIR technique to investigate changes in IR spectral features from individual human lung fibroblast (IMR-90) cells in vitro at different points in their cell cycle. Clear changes are observed in the spectral regions corresponding to proteins, DNA, and RNA as a cell changes from the G(1)-phase to the S-phase and finally into mitosis. These spectral changes include markers for the changing secondary structure of proteins in the cell, as well as variations in DNA/RNA content and packing as the cell cycle progresses. We also observe spectral features that indicate that occasional cells are undergoing various steps in the process of cell death. The dying or dead cell has a shift in the protein amide I and II bands corresponding to changing protein morphologies, and a significant increase in the intensity of an ester carbonyl C===O peak at 1743 cm(-1) is observed. Copyright John Wiley & Sons, Inc. Biopolymers (Biospectroscopy) 57: 329-335, 2000.
Jab1 regulates Schwann cell proliferation and axonal sorting through p27
Porrello, Emanuela; Rivellini, Cristina; Dina, Giorgia; Triolo, Daniela; Del Carro, Ubaldo; Ungaro, Daniela; Panattoni, Martina; Feltri, Maria Laura; Wrabetz, Lawrence; Pardi, Ruggero; Quattrini, Angelo
2014-01-01
Axonal sorting is a crucial event in nerve formation and requires proper Schwann cell proliferation, differentiation, and contact with axons. Any defect in axonal sorting results in dysmyelinating peripheral neuropathies. Evidence from mouse models shows that axonal sorting is regulated by laminin211– and, possibly, neuregulin 1 (Nrg1)–derived signals. However, how these signals are integrated in Schwann cells is largely unknown. We now report that the nuclear Jun activation domain–binding protein 1 (Jab1) may transduce laminin211 signals to regulate Schwann cell number and differentiation during axonal sorting. Mice with inactivation of Jab1 in Schwann cells develop a dysmyelinating neuropathy with axonal sorting defects. Loss of Jab1 increases p27 levels in Schwann cells, which causes defective cell cycle progression and aberrant differentiation. Genetic down-regulation of p27 levels in Jab1-null mice restores Schwann cell number, differentiation, and axonal sorting and rescues the dysmyelinating neuropathy. Thus, Jab1 constitutes a regulatory molecule that integrates laminin211 signals in Schwann cells to govern cell cycle, cell number, and differentiation. Finally, Jab1 may constitute a key molecule in the pathogenesis of dysmyelinating neuropathies. PMID:24344238
Bot, Martine; de Jager, Saskia C. A.; MacAleese, Luke; Lagraauw, H. Maxime; van Berkel, Theo J. C.; Quax, Paul H. A.; Kuiper, Johan; Heeren, Ron M. A.; Biessen, Erik A. L.; Bot, Ilze
2013-01-01
Lysophosphatidic acid (LPA), a bioactive lysophospholipid, accumulates in the atherosclerotic plaque. It has the capacity to activate mast cells, which potentially exacerbates plaque progression. In this study, we thus aimed to investigate whether LPA contributes to plaque destabilization by modulating mast cell function. We here show by an imaging mass spectrometry approach that several LPA species are present in atherosclerotic plaques. Subsequently, we demonstrate that LPA is a potent mast cell activator which, unlike other triggers, favors release of tryptase. Local perivascular administration of LPA to an atherosclerotic carotid artery segment increases the activation status of perivascular mast cells and promotes intraplaque hemorrhage and macrophage recruitment without impacting plaque cell apoptosis. The mast cell stabilizer cromolyn could prevent intraplaque hemorrhage elicited by LPA-mediated mast cell activation. Finally, the involvement of mast cells in these events was further emphasized by the lack of effect of perivascular LPA administration in mast cell deficient animals. We demonstrate that increased accumulation of LPA in plaques induces perivascular mast cell activation and in this way contributes to plaque destabilization in vivo. This study points to local LPA availability as an important factor in atherosclerotic plaque stability. PMID:23396975
Bot, Martine; de Jager, Saskia C A; MacAleese, Luke; Lagraauw, H Maxime; van Berkel, Theo J C; Quax, Paul H A; Kuiper, Johan; Heeren, Ron M A; Biessen, Erik A L; Bot, Ilze
2013-05-01
Lysophosphatidic acid (LPA), a bioactive lysophospholipid, accumulates in the atherosclerotic plaque. It has the capacity to activate mast cells, which potentially exacerbates plaque progression. In this study, we thus aimed to investigate whether LPA contributes to plaque destabilization by modulating mast cell function. We here show by an imaging mass spectrometry approach that several LPA species are present in atherosclerotic plaques. Subsequently, we demonstrate that LPA is a potent mast cell activator which, unlike other triggers, favors release of tryptase. Local perivascular administration of LPA to an atherosclerotic carotid artery segment increases the activation status of perivascular mast cells and promotes intraplaque hemorrhage and macrophage recruitment without impacting plaque cell apoptosis. The mast cell stabilizer cromolyn could prevent intraplaque hemorrhage elicited by LPA-mediated mast cell activation. Finally, the involvement of mast cells in these events was further emphasized by the lack of effect of perivascular LPA administration in mast cell deficient animals. We demonstrate that increased accumulation of LPA in plaques induces perivascular mast cell activation and in this way contributes to plaque destabilization in vivo. This study points to local LPA availability as an important factor in atherosclerotic plaque stability.
Final Progress Report for Ionospheric Dusty Plasma In the Laboratory [Smokey Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Scott
2010-07-31
“Ionospheric Dusty Plasma in the Laboratory” is a research project with the purpose of finding and reproducing the characteristics of plasma in the polar mesosphere that is unusually cold (down to 140 K) and contains nanometer-sized dust particles. This final progress report summarizes results from four years of effort that include a final year with a no-cost extension.
Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi
Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu
2017-01-01
Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan. PMID:29371579
Visual Snapshots of Intracellular Kinase Activity At The Onset of Mitosis
Dai, Zhaohua; Dulyaninova, Natalya G.; Kumar, Sanjai; Bresnick, Anne R.; Lawrence, David S.
2007-01-01
Summary Visual snapshots of intracellular kinase activity can be acquired with exquisite temporal control using a light-activatable (caged) sensor, thereby providing a means to interrogate enzymatic activity at any point during the cell division cycle. Robust protein kinase activity transpires just prior to, but not immediately following, nuclear envelope breakdown (NEB). Furthermore, kinase activity is required for progression from prophase into metaphase. Finally, the application of selective protein kinase C (PKC) inhibitors, in combination with the caged sensor, correlates the action of the PKC β isoform with subsequent NEB. PMID:18022564
Marchi, S; Bonora, M; Patergnani, S; Giorgi, C; Pinton, P
2017-01-01
It is widely acknowledged that mitochondria are highly active structures that rapidly respond to cellular and environmental perturbations by changing their shape, number, and distribution. Mitochondrial remodeling is a key component of diverse biological processes, ranging from cell cycle progression to autophagy. In this chapter, we describe different methodologies for the morphological study of the mitochondrial network. Instructions are given for the preparation of samples for fluorescent microscopy, based on genetically encoded strategies or the employment of synthetic fluorescent dyes. We also propose detailed protocols to analyze mitochondrial morphometric parameters from both three-dimensional and bidimensional datasets. Finally, we describe a protocol for the visualization and quantification of mitochondrial structures through electron microscopy. © 2017 Elsevier Inc. All rights reserved.
Mechanisms of fibrosis: therapeutic translation for fibrotic disease
Wynn, Thomas A; Ramalingam, Thirumalai R
2012-01-01
Fibrosis is a pathological feature of most chronic inflammatory diseases. Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix components. If highly progressive, the fibrotic process eventually leads to organ malfunction and death. Fibrosis affects nearly every tissue in the body. Here we discuss how key components of the innate and adaptive immune response contribute to the pathogenesis of fibrosis. We also describe how cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix–producing myofibroblasts. Finally, we highlight some of the key mechanisms and pathways of fibrosis that are being targeted as potential therapies for a variety of important human diseases. PMID:22772564
Morphological changes in cysticerci of Taenia taeniaeformis after mebendazole treatment.
Borgers, M; De Nollin, S; Verheyen, A; Vanparijs, O; Thienpont, D
1975-10-01
The progressive micromorphological changes in Taenia taeniaeformis cysticerci, induced by a single parenteral treatment of the infected mice with mebendazole, are described. The time-related alterations concerned the tegument and tegumental cells and were successively: disappearance of microtubules, accumulation of secretory substances in the Golgi areas, decrease in number to complete loss of microtriches, "ballooning" of all tegumental cells with subsequent burst, vacuolization and degeneration of the tegument, and finally necrosis of the pseudoproglottids. Similar but less pronounced injuries were seen in the scolices, although microtubules disappeared as early as in the pseudoproglottids. Microtubules from the host tissues remained intact. The meaning of the apparent primary interference of mebendazole with the microtubular system in relation to the subsequently observed death of the cysticercoids is discussed.
Mendel, T A; Wierzba-Bobrowicz, T; Lewandowska, E; Stępień, T; Szpak, G M
2013-12-01
The process of β-amyloid accumulation in cerebral vessels is presented. Cerebral amyloid angiopathy (CAA) was confirmed during an autopsy. It was diagnosed according to the Boston criteria. Cerebral amyloid angiopathy can involve all kinds of cerebral vessels (cortical and leptomeningeal arterioles, capillaries and veins). The development of CAA is a progressive process. β-amyloid appears first in the tunica media, surrounding smooth muscle cells, and in the adventitia. β-amyloid is progressively accumulated, causing a gradual loss of smooth muscle cells in the vessel wall and finally replacing them. Then, the detachment and delamination of the outer part of the tunica media results in the "double barrel" appearance, fibrinoid necrosis, and microaneurysm formation. Microbleeding with perivascular deposition of erythrocytes and blood breakdown products can also occur. β-amyloid can also be deposited in the surrounding of the affected vessels of the brain parenchyma, known as "dysphoric CAA". Ultrastructurally, when deposits of amyloid fibers were localized in or outside the arteriolar wall, the degenerating vascular smooth muscle cells were observed. In the Institute of Psychiatry and Neurology the study was carried out in a group of 48 patients who died due to intracerebral hemorrhage caused by sporadic CAA.
DNA Damage and Pulmonary Hypertension
Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien
2016-01-01
Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373
Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts
Wang, Jianghua; Cai, Yi; Yu, Wendong; Ren, Chengxi; Spencer, David M.; Ittmann, Michael
2008-01-01
TMPRSS2/ERG gene fusions are found in the majority of prostate cancers; however, there is significant heterogeneity in the 5′ region of the alternatively spliced fusion gene transcripts. We have found that there is also significant heterogeneity within the coding exons as well. There is variable inclusion of a 72-bp exon and other novel alternatively spliced isoforms. To assess the biological significance of these alternatively spliced transcripts, we expressed various transcripts in primary prostatic epithelial cells and in an immortalized prostatic epithelial cell line, PNT1a. The fusion gene transcripts promoted proliferation, invasion and motility with variable activities that depended on the structure of the 5′ region encoding the TMPRSS2/ERG fusion and the presence of the 72-bp exon. Cotransfection of different isoforms further enhanced biological activity, mimicking the situation in vivo, in which multiple isoforms are expressed. Finally, knockdown of the fusion gene in VCaP cells resulted in inhibition of proliferation in vitro and tumor progression in an in vivo orthotopic mice model. Our results indicate that TMPRSS2/ERG fusion isoforms have variable biological activities promoting tumor initiation and progression and are consistent with our previous clinical observations indicating that certain TMPRSS2/ERG fusion isoforms are significantly correlated with more aggressive disease. PMID:18922926
Regulatory Oversight of Cell and Gene Therapy Products in Canada.
Ridgway, Anthony; Agbanyo, Francisca; Wang, Jian; Rosu-Myles, Michael
2015-01-01
Health Canada regulates gene therapy products and many cell therapy products as biological drugs under the Canadian Food and Drugs Act and its attendant regulations. Cellular products that meet certain criteria, including minimal manipulation and homologous use, may be subjected to a standards-based approach under the Safety of Human Cells, Tissues and Organs for Transplantation Regulations. The manufacture and clinical testing of cell and gene therapy products (CGTPs) presents many challenges beyond those for protein biologics. Cells cannot be subjected to pathogen removal or inactivation procedures and must frequently be administered shortly after final formulation. Viral vector design and manufacturing control are critically important to overall product quality and linked to safety and efficacy in patients through concerns such as replication competence, vector integration, and vector shedding. In addition, for many CGTPs, the value of nonclinical studies is largely limited to providing proof of concept, and the first meaningful data relating to appropriate dosing, safety parameters, and validity of surrogate or true determinants of efficacy must come from carefully designed clinical trials in patients. Addressing these numerous challenges requires application of various risk mitigation strategies and meeting regulatory expectations specifically adapted to the product types. Regulatory cooperation and harmonisation at an international level are essential for progress in the development and commercialisation of these products. However, particularly in the area of cell therapy, new regulatory paradigms may be needed to harness the benefits of clinical progress in situations where the resources and motivation to pursue a typical drug product approval pathway may be lacking.
Shi, X Y; Long, F; Liang, B; Su, L L; Li, H C; Jiang, S J
2016-10-12
Objective: To analyze the pathogenesis, clinical features, diagnosis and differential diagnosis of primary perivascular epithelioid cell tumor(PEComa). Methods: The clinical features, auxiliary examinations and diagnosis of a case with rapidly progressive pulmonary malignant PEComa were reported and the related literatures were reviewed.The literature review was carried out respectively in Wanfang Data, CNKI and PubMed from Jan. 1975 to Jul. 2015 with "pulmonary malignant perivascular epithelioid cell tumor" and "PEComa" being the search terms. Results: A 50 year-old female patient was admitted to the hospital on September 4, 2014 because of cough and dyspnea for 60 days, hemoptysis for 40 days and fever for 7 days.Chest CT scan showed diffuse small nodules with infiltrative border and multiple pure and mixed ground-glass opacity. Transbronchial lung biopsy (TBLB) was performed and the pathological study confirmed the diagnosis of primary pulmonary malignant PEComa. The patient declined further specific therapy, but followed by rapidly progressive respiratory failure, and died two weeks after the diagnosis. A total of 8 literatures were retrieved from Wanfang Data, CNKI and PubMed and all of them were case reports.There were 3 male and 5 female patients, aging from 50 to 79 years.Radiographically, the previously reported cases presented as round and well-circumscribed masses with or without multiple nodules in both lungs. The symptoms had no specificity. Conclusions: Pulmonary malignant PEComa is a rare disease.It is easily misdiagnosed because of non-specific clinical and imaging manifestations.The final diagnosis depends on pathological biopsy.TBLB is an effective diagnostic method.
Mungun, Harr-Keshauve; Li, Shuzhen; Zhang, Yue; Huang, Songming; Jia, Zhanjun; Ding, Guixia; Zhang, Aihua
2018-01-01
Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin and has been used as an antimalarial drug. Recently, roles of artemisinin and its derivatives in treating diseases besides antimalarial effect were documented. Thus, this study was undertaken to investigate the role of DHA in indoxyl sulfate (IS)-promoted cell cycle progression in glomerular mesangial cells, as well as the potential mechanisms. Under the basal condition, DHA significantly retarded the cell cycle progression as shown by decreased cell percentage in S phase and increased cell percentage in G1/G0 phases in line with reduced cell cycle proteins cyclin A2 and cyclin D1. Interestingly, DHA also inactivated the COX-2/mPGES-1/PGE 2 cascade which has been shown to play a critical role in promoting the mesangial cell cycle progression by our previous studies. Next, we investigated the role of DHA in IS-triggered cell cycle progression in this mesangial cell line. As expected, DHA treatment significantly retarded IS-induced cell cycle progression and inhibited the activation of COX-2/mPGES-1/PGE 2 cascade induced by IS. In summary, these data indicated that DHA inhibited the cell cycle progression in glomerular mesangial cells under normal condition or IS challenge possibly through the inhibition of COX-2/mPGES-1/PGE 2 cascade, suggesting a potential of DHA in treating glomerular diseases with mesangial cell proliferation.
Kim, Jae-Yong; Lee, Eun-Young; Choi, Inho; Kim, Jihoe; Cho, Kyung-Hyun
2015-12-01
Particulate matter2.5 (PM2.5) is notorious for its strong toxic effects on the cardiovascular, skin, nervous, and reproduction systems. However, the molecular mechanism by which PM2.5 aggravates disease progression is poorly understood, especially in a water-soluble state. In the current study, we investigated the putative physiological effects of aqueous PM2.5 solution on lipoprotein metabolism. Collected PM2.5 from Seoul, Korea was dissolved in water, and the water extract (final 3 and 30 ppm) was treated to human serum lipoproteins, macrophages, and dermal cells. PM2.5 extract resulted in degradation and aggregation of high-density lipoprotein (HDL) as well as low-density lipoprotein (LDL); apoA-I in HDL aggregated and apo-B in LDL disappeared. PM2.5 treatment (final 30 ppm) also induced cellular uptake of oxidized LDL (oxLDL) into macrophages, especially in the presence of fructose (final 50 mM). Uptake of oxLDL along with production of reactive oxygen species was accelerated by PM2.5 solution in a dose-dependent manner. Further, PM2.5 solution caused cellular senescence in human dermal fibroblast cells. Microinjection of PM2.5 solution into zebrafish embryos induced severe mortality accompanied by impairment of skeletal development. In conclusion, water extract of PM2.5 induced oxidative stress as a precursor to cardiovascular toxicity, skin cell senescence, and embryonic toxicity via aggregation and proteolytic degradation of serum lipoproteins.
Kim, Jae-Yong; Lee, Eun-Young; Choi, Inho; Kim, Jihoe; Cho, Kyung-Hyun
2015-01-01
Particulate matter2.5 (PM2.5) is notorious for its strong toxic effects on the cardiovascular, skin, nervous, and reproduction systems. However, the molecular mechanism by which PM2.5 aggravates disease progression is poorly understood, especially in a water-soluble state. In the current study, we investigated the putative physiological effects of aqueous PM2.5 solution on lipoprotein metabolism. Collected PM2.5 from Seoul, Korea was dissolved in water, and the water extract (final 3 and 30 ppm) was treated to human serum lipoproteins, macrophages, and dermal cells. PM2.5 extract resulted in degradation and aggregation of high-density lipoprotein (HDL) as well as low-density lipoprotein (LDL); apoA-I in HDL aggregated and apo-B in LDL disappeared. PM2.5 treatment (final 30 ppm) also induced cellular uptake of oxidized LDL (oxLDL) into macrophages, especially in the presence of fructose (final 50 mM). Uptake of oxLDL along with production of reactive oxygen species was accelerated by PM2.5 solution in a dose-dependent manner. Further, PM2.5 solution caused cellular senescence in human dermal fibroblast cells. Microinjection of PM2.5 solution into zebrafish embryos induced severe mortality accompanied by impairment of skeletal development. In conclusion, water extract of PM2.5 induced oxidative stress as a precursor to cardiovascular toxicity, skin cell senescence, and embryonic toxicity via aggregation and proteolytic degradation of serum lipoproteins. PMID:26615830
Gasdermin-B promotes invasion and metastasis in breast cancer cells.
Hergueta-Redondo, Marta; Sarrió, David; Molina-Crespo, Ángela; Megias, Diego; Mota, Alba; Rojo-Sebastian, Alejandro; García-Sanz, Pablo; Morales, Saleta; Abril, Sandra; Cano, Amparo; Peinado, Héctor; Moreno-Bueno, Gema
2014-01-01
Gasdermin B (GSDMB) belongs to the Gasdermin protein family that comprises four members (GSDMA-D). Gasdermin B expression has been detected in some tumor types such as hepatocarcinomas, gastric and cervix cancers; and its over-expression has been related to tumor progression. At least four splicing isoforms of GSDMB have been identified, which may play differential roles in cancer. However, the implication of GSDMB in carcinogenesis and tumor progression is not well understood. Here, we uncover for the first time the functional implication of GSDMB in breast cancer. Our data shows that high levels of GSDMB expression is correlated with reduced survival and increased metastasis in breast cancer patients included in an expression dataset (>1,000 cases). We demonstrate that GSDMB is upregulated in breast carcinomas compared to normal breast tissue, being the isoform 2 (GSDMB-2) the most differentially expressed. In order to evaluate the functional role of GSDMB in breast cancer two GSDMB isoforms were studied (GSDMB-1 and GSDMB-2). The overexpression of both isoforms in the MCF7 breast carcinoma cell line promotes cell motility and invasion, while its silencing in HCC1954 breast carcinoma cells decreases the migratory and invasive phenotype. Importantly, we demonstrate that both isoforms have a differential role on the activation of Rac-1 and Cdc-42 Rho-GTPases. Moreover, our data support that GSMDB-2 induces a pro-tumorigenic and pro-metastatic behavior in mouse xenograft models as compared to GSDMB-1. Finally, we observed that although both GSDMB isoforms interact in vitro with the chaperone Hsp90, only the GSDMB-2 isoform relies on this chaperone for its stability. Taken together, our results provide for the first time evidences that GSDMB-2 induces invasion, tumor progression and metastasis in MCF7 cells and that GSDMB can be considered as a new potential prognostic marker in breast cancer.
Gasdermin-B Promotes Invasion and Metastasis in Breast Cancer Cells
Hergueta-Redondo, Marta; Sarrió, David; Molina-Crespo, Ángela; Megias, Diego; Mota, Alba; Rojo-Sebastian, Alejandro; García-Sanz, Pablo; Morales, Saleta; Abril, Sandra; Cano, Amparo; Peinado, Héctor; Moreno-Bueno, Gema
2014-01-01
Gasdermin B (GSDMB) belongs to the Gasdermin protein family that comprises four members (GSDMA-D). Gasdermin B expression has been detected in some tumor types such as hepatocarcinomas, gastric and cervix cancers; and its over-expression has been related to tumor progression. At least four splicing isoforms of GSDMB have been identified, which may play differential roles in cancer. However, the implication of GSDMB in carcinogenesis and tumor progression is not well understood. Here, we uncover for the first time the functional implication of GSDMB in breast cancer. Our data shows that high levels of GSDMB expression is correlated with reduced survival and increased metastasis in breast cancer patients included in an expression dataset (>1,000 cases). We demonstrate that GSDMB is upregulated in breast carcinomas compared to normal breast tissue, being the isoform 2 (GSDMB-2) the most differentially expressed. In order to evaluate the functional role of GSDMB in breast cancer two GSDMB isoforms were studied (GSDMB-1 and GSDMB-2). The overexpression of both isoforms in the MCF7 breast carcinoma cell line promotes cell motility and invasion, while its silencing in HCC1954 breast carcinoma cells decreases the migratory and invasive phenotype. Importantly, we demonstrate that both isoforms have a differential role on the activation of Rac-1 and Cdc-42 Rho-GTPases. Moreover, our data support that GSMDB-2 induces a pro-tumorigenic and pro-metastatic behavior in mouse xenograft models as compared to GSDMB-1. Finally, we observed that although both GSDMB isoforms interact in vitro with the chaperone Hsp90, only the GSDMB-2 isoform relies on this chaperone for its stability. Taken together, our results provide for the first time evidences that GSDMB-2 induces invasion, tumor progression and metastasis in MCF7 cells and that GSDMB can be considered as a new potential prognostic marker in breast cancer. PMID:24675552
The versatile landscape of haematopoiesis: are leukaemia stem cells as versatile?
Brown, Geoffrey; Hughes, Philip J; Ceredig, Rhodri
2012-01-01
Since the early 1980s, developing haematopoietic cells have been categorised into three well-defined compartments: multi-potent haematopoietic stem cells (HSC), which are able to self-renew, followed by haematopoietic progenitor cells (HPC), which undergo decision-making and age as they divide rather than self-renew, and the final compartment of functional blood and immune cells. The classic model of haematopoiesis divides cells into two families, myeloid and lymphoid, and dictates a route to a particular cell fate. New discoveries question these long-held principles, including: (i) the identification of lineage-biased cells that self-renew; (ii) a strict myeloid/lymphoid dichotomy is refuted by the existence of progenitors with lymphoid potential and an incomplete set of myeloid potentials; (iii) there are multiple routes to some end cell types; and (iv) thymocyte progenitor cells that have progressed some way along this pathway retain clandestine myeloid options. In essence, the progeny of HSC are more versatile and the process of haematopoiesis is more flexible than previously thought. Here we examine this new way of viewing haematopoiesis and the impact of rewriting an account of haematopoiesis on our understanding of what goes awry in leukaemia.
Cao, Bo; Chen, Hong; Gao, Ying; Niu, Cong; Zhang, Yuan; Li, Ling
2015-03-01
The need to overcome cancer multidrug resistance (MDR) has fueled considerable interest in the development of novel synthetic antitumor agents with cytotoxicity against cancer cell lines with MDR. In this study, we aimed to investigate CIP-36, a novel podophyllotoxin derivative, for its inhibitory effects on human cancer cells from multiple sources, particularly cells with MDR in vitro. The human leukemia cell line, K562, and the adriamycin-resistant subline, K562/A02, were exposed to CIP-36 or anticancer agents, and various morphological and biochemical properties were assessed by Hoechst 33342 staining under a fluorescence microscope. Subsequently, cytotoxicity, cell growth curves and the cell cycle were analyzed. Finally, the effects of CIP-36 on topoisomerase IIα (Topo IIα) activity were determined. Treatment with CIP-36 significantly inhibited the growth of the K562 and MDR K562/A02 cells. Our data demonstrated that CIP-36 induced apoptosis, inhibited cell cycle progression and inhibited Topo IIα activity. These findings suggest that CIP-36 has the potential to overcome the multidrug resistance of K562/A02 cells by mediating Topo IIα activity.
Kristinsson, Sigurdur Y.
2011-01-01
Monoclonal gammopathy of unknown significance (MGUS) and smoldering multiple myeloma (SMM) are asymptomatic plasma cell dyscrasias, with a propensity to progress to symptomatic MM. In recent years there have been improvements in risk stratification models (involving molecular markers) of both disorders, which have led to better understanding of the biology and probability of progression of MGUS and SMM. In the context of numerous molecular events and heterogeneous risk of progression, developing individualized risk profiles for patients with MGUS and SMM represents an ongoing challenge that has to be addressed by prospective clinical monitoring and extensive correlative science. In this review we discuss the current standard of care of patients with MGUS and SMM, the use of risk models, including flow cytometry and free-light chain analyses, for predicting risk of progression. Emerging evidence from molecular studies on MGUS and SMM, involving cytogenetics, gene-expression profiling, and microRNA as well as molecular imaging is described. Finally, future directions for improving individualized management of MGUS and SMM patients, as well as the potential for developing early treatment strategies designed to delay and prevent development of MM are discussed. PMID:21441462
Korde, Neha; Kristinsson, Sigurdur Y; Landgren, Ola
2011-05-26
Monoclonal gammopathy of unknown significance (MGUS) and smoldering multiple myeloma (SMM) are asymptomatic plasma cell dyscrasias, with a propensity to progress to symptomatic MM. In recent years there have been improvements in risk stratification models (involving molecular markers) of both disorders, which have led to better understanding of the biology and probability of progression of MGUS and SMM. In the context of numerous molecular events and heterogeneous risk of progression, developing individualized risk profiles for patients with MGUS and SMM represents an ongoing challenge that has to be addressed by prospective clinical monitoring and extensive correlative science. In this review we discuss the current standard of care of patients with MGUS and SMM, the use of risk models, including flow cytometry and free-light chain analyses, for predicting risk of progression. Emerging evidence from molecular studies on MGUS and SMM, involving cytogenetics, gene-expression profiling, and microRNA as well as molecular imaging is described. Finally, future directions for improving individualized management of MGUS and SMM patients, as well as the potential for developing early treatment strategies designed to delay and prevent development of MM are discussed.
Reprogramming of human cancer cells to pluripotency for models of cancer progression
Kim, Jungsun; Zaret, Kenneth S
2015-01-01
The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. PMID:25712212
Van Kampen, Jackalina M.; Baranowski, David C.; Robertson, Harold A.; Shaw, Christopher A.; Kay, Denis G.
2015-01-01
The development of effective neuroprotective therapies for Parkinson's disease (PD) has been severely hindered by the notable lack of an appropriate animal model for preclinical screening. Indeed, most models currently available are either acute in nature or fail to recapitulate all characteristic features of the disease. Here, we present a novel progressive model of PD, with behavioural and cellular features that closely approximate those observed in patients. Chronic exposure to dietary phytosterol glucosides has been found to be neurotoxic. When fed to rats, β-sitosterol β-d-glucoside (BSSG) triggers the progressive development of parkinsonism, with clinical signs and histopathology beginning to appear following cessation of exposure to the neurotoxic insult and continuing to develop over several months. Here, we characterize the progressive nature of this model, its non-motor features, the anatomical spread of synucleinopathy, and response to levodopa administration. In Sprague Dawley rats, chronic BSSG feeding for 4 months triggered the progressive development of a parkinsonian phenotype and pathological events that evolved slowly over time, with neuronal loss beginning only after toxin exposure was terminated. At approximately 3 months following initiation of BSSG exposure, animals displayed the early emergence of an olfactory deficit, in the absence of significant dopaminergic nigral cell loss or locomotor deficits. Locomotor deficits developed gradually over time, initially appearing as locomotor asymmetry and developing into akinesia/bradykinesia, which was reversed by levodopa treatment. Late-stage cognitive impairment was observed in the form of spatial working memory deficits, as assessed by the radial arm maze. In addition to the progressive loss of TH+ cells in the substantia nigra, the appearance of proteinase K-resistant intracellular α-synuclein aggregates was also observed to develop progressively, appearing first in the olfactory bulb, then the striatum, the substantia nigra and, finally, hippocampal and cortical regions. The slowly progressive nature of this model, together with its construct, face and predictive validity, make it ideal for the screening of potential neuroprotective therapies for the treatment of PD. PMID:26439489
Kim, MunJu; Reed, Damon; Rejniak, Katarzyna A.
2014-01-01
Cyclin-dependent kinases (CDKs) are vital in regulating cell cycle progression, and, thus, in highly proliferating tumor cells CDK inhibitors are gaining interest as potential anticancer agents. Clonogenic assay experiments are frequently used to determine drug efficacy against the survival and proliferation of cancer cells. While the anticancer mechanisms of drugs are usually described at the intracellular single-cell level, the experimental measurements are sampled from the entire cancer cell population. This approach may lead to discrepancies between the experimental observations and theoretical explanations of anticipated drug mechanisms. To determine how individual cell responses to drugs that inhibit CDKs affect the growth of cancer cell populations, we developed a spatially explicit hybrid agent-based model. In this model, each cell is equipped with internal cell cycle regulation mechanisms, but it is also able to interact physically with its neighbors. We model cell cycle progression, focusing on the G1 and G2/M cell cycle checkpoints, as well as on related essential components, such as CDK1, CDK2, cell size, and DNA damage. We present detailed studies of how the emergent properties (e.g., cluster formation) of an entire cell population depend on altered physical and physiological parameters. We analyze the effects of CDK1 and CKD2 inhibitors on population growth, time-dependent changes in cell cycle distributions, and the dynamic evolution of spatial cell patterns. We show that cell cycle inhibitors that cause cell arrest at different cell cycle phases are not necessarily synergistically super-additive. Finally, we demonstrate that the physical aspects of cell population growth, such as the formation of tight cell clusters versus dispersed colonies, alter the efficacy of cell cycle inhibitors, both in 2D and 3D simulations. This finding may have implications for interpreting the treatment efficacy results of in vitro experiments, in which treatment is applied before the cells can grow to produce clusters, especially because in vivo tumors, in contrast, form large masses before they are detected and treated. PMID:24607745
PSI-Center Final Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarboe, Thomas R.; Shumlak, Uri; Sovinec, Carl
This is the Final Progress Report of the Plasma Science and Innovation Center (PSI-Center) covering March 2014 through February 2017. The Center has accomplished a great deal during this period. The PSI-Center is organized into four groups: Edge and Dynamic Neutrals; Transport and Kinetic Effects; Equilibrium, Stability, and Kinetic Effects in 3D Topologies; and Interface for Validation. Each group has made good progress and the results from each group are given in detail.
Cromer, Laurence; Heyman, Jefri; Touati, Sandra; Harashima, Hirofumi; Araou, Emilie; Girard, Chloe; Horlow, Christine; Wassmann, Katja; Schnittger, Arp; De Veylder, Lieven; Mercier, Raphael
2012-01-01
Cell cycle control is modified at meiosis compared to mitosis, because two divisions follow a single DNA replication event. Cyclin-dependent kinases (CDKs) promote progression through both meiosis and mitosis, and a central regulator of their activity is the APC/C (Anaphase Promoting Complex/Cyclosome) that is especially required for exit from mitosis. We have shown previously that OSD1 is involved in entry into both meiosis I and meiosis II in Arabidopsis thaliana; however, the molecular mechanism by which OSD1 controls these transitions has remained unclear. Here we show that OSD1 promotes meiotic progression through APC/C inhibition. Next, we explored the functional relationships between OSD1 and the genes known to control meiotic cell cycle transitions in Arabidopsis. Like osd1, cyca1;2/tam mutation leads to a premature exit from meiosis after the first division, while tdm mutants perform an aberrant third meiotic division after normal meiosis I and II. Remarkably, while tdm is epistatic to tam, osd1 is epistatic to tdm. We further show that the expression of a non-destructible CYCA1;2/TAM provokes, like tdm, the entry into a third meiotic division. Finally, we show that CYCA1;2/TAM forms an active complex with CDKA;1 that can phosphorylate OSD1 in vitro. We thus propose that a functional network composed of OSD1, CYCA1;2/TAM, and TDM controls three key steps of meiotic progression, in which OSD1 is a meiotic APC/C inhibitor.
Clinical and prognostic role of annexin A2 in adamantinomatous craniopharyngioma.
Wang, Yuelong; Deng, Jiaojiao; Guo, Gang; Tong, Aiping; Peng, Xirui; Chen, Haifeng; Xu, Jianguo; Liu, Yi; You, Chao; Zhou, Liangxue
2017-01-01
Annexin A2 (AnxA2) is a highly conserved Ca2 + -regulated membrane binding protein, which affects cell mobility and tumor progression. Adamantinomatous craniopharyngioma (AdaCP) are a kind of epithelial tumors of the sellar region with high tendency to recur. Robust biomarkers are required to predict tumor behavior and to establish follow-up individualized treatment approaches. In this study, we firstly compared four surgical AdaCP samples with normal brain by two-dimensional gel electrophoresis (2DE) proteomic analysis. Potential prognostic biomarkers were further validated in a large cohort of 65 AdaCPs by immunohistochemistry. The effects of AnxA2 on AdaCP cells proliferation and migration were analyzed in vitro with isolated primary AdaCP cells as well as SV40T-immortalized cells. Finally, the gefitinib sensitivity of AdaCPs with differentially expressed AnxA2 and the potential molecular mechanisms were examined by flow cytometric analysis, Real-time PCR and immunoblot assays. Proteomic analysis indicated that AnxA2 was the protein spot with the most elevated expression in AdaCP samples. Immunohistochemistry assays indicated the expression level of AnxA2 was significantly higher in recurrent AdaCPs compared with primary ones. Moreover, AnxA2 + AdaCP cells exhibited enhanced proliferation and migration ability compared with AnxA2 - AdaCP cells in vitro. Further, we show that AnxA2 + AdaCP cells exhibited elevated expression of EGFR and downstream p-AKT (S308) and p-AKT (S473), and were more sensitive to tyrosine kinase inhibitor gefitinib. Our data suggest that AnxA2 may serve as a promising biomarker for AdaCP progression, recurrence and drug susceptibility. Our data support potential clinical implications for the follow-up treatment of AdaCP patients with high AnxA2 expression.
Annamalai, Balasubramaniam; Liu, Xueguang; Gopal, Udhayakumar; Isaacs, Jennifer
2011-01-01
A subset of Eph receptors and their corresponding ligands are commonly expressed in tumor cells, where they mediate biological processes such as cell migration and adhesion, while their expression in endothelial cells promotes angiogenesis. In particular, the tumor-specific upregulation of EphA2 confers properties of increased cellular motility, invasiveness, tumor angiogenesis, and tumor progression, and its overexpression correlates with poor prognosis in several cancer types. The cellular chaperone Hsp90 also plays a significant role in regulating cell migration and angiogenesis, although the full repertoire of motility driving proteins dependent upon Hsp90 function remain poorly defined. We explored the hypothesis that Hsp90 may regulate the activity of EphA2 and examined the potential relationship between EphA2 receptor signaling and chaperone function. We demonstrate that geldanamycin (GA), an Hsp90 antagonist, dramatically destabilizes newly synthesized EphA2 protein and diminishes receptor levels in a proteasome-dependent pathway. In addition, GA treatment impairs EphA2 signaling, as evidenced by a decrease in ligand-dependent receptor phosphorylation and subsequent cell rounding. Therefore, Hsp90 exerts a dual role in regulating the stability of nascent EphA2 protein, and maintaining the signaling capacity of the mature receptor. Our findings also suggest that the GA-dependent mitigation of EphA2 signaling in receptor-overexpressing cancer cells may be sufficient to recapitulate the anti-motility effects of this drug. Finally, the identification of a pharmacologic approach to suppress EphA2 expression and signaling highlights the attractive possibility that Hsp90 inhibitors may have clinical utility in antagonizing EphA2-dependent tumorigenic progression. PMID:19567782
Cathcart, Mary-Clare; Reynolds, John V; O'Byrne, Kenneth J; Pidgeon, Graham P
2010-04-01
Prostacyclin synthase and thromboxane synthase signaling via arachidonic acid metabolism affects a number of tumor cell survival pathways such as cell proliferation, apoptosis, tumor cell invasion and metastasis, and angiogenesis. However, the effects of these respective synthases differ considerably with respect to the pathways described. While prostacyclin synthase is generally believed to be anti-tumor, a pro-carcinogenic role for thromboxane synthase has been demonstrated in a variety of cancers. The balance of oppositely-acting COX-derived prostanoids influences many processes throughout the body, such as blood pressure regulation, clotting, and inflammation. The PGI(2)/TXA(2) ratio is of particular interest in-vivo, with the corresponding synthases shown to be differentially regulated in a variety of disease states. Pharmacological inhibition of thromboxane synthase has been shown to significantly inhibit tumor cell growth, invasion, metastasis and angiogenesis in a range of experimental models. In direct contrast, prostacyclin synthase overexpression has been shown to be chemopreventive in a murine model of the disease, suggesting that the expression and activity of this enzyme may protect against tumor development. In this review, we discuss the aberrant expression and known functions of both prostacyclin synthase and thromboxane synthase in cancer. We discuss the effects of these enzymes on a range of tumor cell survival pathways, such as tumor cell proliferation, induction of apoptosis, invasion and metastasis, and tumor cell angiogenesis. As downstream signaling pathways of these enzymes have also been implicated in cancer states, we examine the role of downstream effectors of PGIS and TXS activity in tumor growth and progression. Finally, we discuss current therapeutic strategies aimed at targeting these enzymes for the prevention/treatment of cancer.
An in vitro correlation of mechanical forces and metastatic capacity
NASA Astrophysics Data System (ADS)
Indra, Indrajyoti; Undyala, Vishnu; Kandow, Casey; Thirumurthi, Umadevi; Dembo, Micah; Beningo, Karen A.
2011-02-01
Mechanical forces have a major influence on cell migration and are predicted to significantly impact cancer metastasis, yet this idea is currently poorly defined. In this study we have asked if changes in traction stress and migratory properties correlate with the metastatic progression of tumor cells. For this purpose, four murine breast cancer cell lines derived from the same primary tumor, but possessing increasing metastatic capacity, were tested for adhesion strength, traction stress, focal adhesion organization and for differential migration rates in two-dimensional and three-dimensional environments. Using traction force microscopy (TFM), we were surprised to find an inverse relationship between traction stress and metastatic capacity, such that force production decreased as the metastatic capacity increased. Consistent with this observation, adhesion strength exhibited an identical profile to the traction data. A count of adhesions indicated a general reduction in the number as metastatic capacity increased but no difference in the maturation as determined by the ratio of nascent to mature adhesions. These changes correlated well with a reduction in active beta-1 integrin with increasing metastatic ability. Finally, in two dimensions, wound healing, migration and persistence were relatively low in the entire panel, maintaining a downward trend with increasing metastatic capacity. Why metastatic cells would migrate so poorly prompted us to ask if the loss of adhesive parameters in the most metastatic cells indicated a switch to a less adhesive mode of migration that would only be detected in a three-dimensional environment. Indeed, in three-dimensional migration assays, the most metastatic cells now showed the greatest linear speed. We conclude that traction stress, adhesion strength and rate of migration do indeed change as tumor cells progress in metastatic capacity and do so in a dimension-sensitive manner.
Sheng, Zhixin; Zhu, Xu; Sun, Yanhua; Zhang, Yanxia
2017-08-22
To better understand the efficacy and safety of anti-PD-1/PD-L1 therapy (atezolizumab, pembrolizumab, nivolumab) in patients with previously treated advanced non-small-cell lung cancer (NSCLC). The Cochrane Controlled Trial Register, Embase, Medline, and the Science Citation Index were searched for prospective published reports of atezolizumab, pembrolizumab, nivolumab in previously treated patients with advanced NSCLC. Finally, we identified 14 prospective published reports including four trials of atezolizumab covering 542 subjects, three trials of pembrolizumab covering 1566 subjects, seven trials of nivolumab covering 1678 subjects. When compared to docetaxel, anti-PD-1/PD-L1 therapy could significantly improve overall survival (hazard ratio [HR] 0.67, P<0.001) and progression-free survival (HR 0.83, P=0.002) for previously treated patients with advanced NSCLC. Anti-PD-1/PD-L1 therapy produced an overall response rate of 19% in the 2374 evaluable patients. When using docetaxel as the common comparator, indirect comparison of anti-PD-1/PD-L1 therapy versus EGFR-TKIs showed progression-free survival benefit (HR 0.62, P<0.001) and overall survival benefit (HR 0.60, P<0.001) for those patients with EGFR wild-type. Meanwhile, for those EGFR mutant patients, indirect comparison indicated that anti-PD-1/PD-L1 therapy was inferior to EGFR-TKIs therapy in terms of progression-free survival (HR 3.20, P<0.001), but no survival difference (HR 1.30, P=0.18). Anti-PD-1/PD-L1 therapy could produce progression-free survival and overall survival improvement over docetaxel for patients with previously treated NSCLC. For EGFR wild-type patients, anti-PD-1/PD-L1 therapy seemed to prolong progression-free survival and overall survival when compared to EGFR-TKIs. Meanwhile, for these EGFR mutant patients, anti-PD-1/PD-L1 therapy was inferior to EGFR-TKIs therapy in terms of progression-free survival.
Checkpoints couple transcription network oscillator dynamics to cell-cycle progression.
Bristow, Sara L; Leman, Adam R; Simmons Kovacs, Laura A; Deckard, Anastasia; Harer, John; Haase, Steven B
2014-09-05
The coupling of cyclin dependent kinases (CDKs) to an intrinsically oscillating network of transcription factors has been proposed to control progression through the cell cycle in budding yeast, Saccharomyces cerevisiae. The transcription network regulates the temporal expression of many genes, including cyclins, and drives cell-cycle progression, in part, by generating successive waves of distinct CDK activities that trigger the ordered program of cell-cycle events. Network oscillations continue autonomously in mutant cells arrested by depletion of CDK activities, suggesting the oscillator can be uncoupled from cell-cycle progression. It is not clear what mechanisms, if any, ensure that the network oscillator is restrained when progression in normal cells is delayed or arrested. A recent proposal suggests CDK acts as a master regulator of cell-cycle processes that have the potential for autonomous oscillatory behavior. Here we find that mitotic CDK is not sufficient for fully inhibiting transcript oscillations in arrested cells. We do find that activation of the DNA replication and spindle assembly checkpoints can fully arrest the network oscillator via overlapping but distinct mechanisms. Further, we demonstrate that the DNA replication checkpoint effector protein, Rad53, acts to arrest a portion of transcript oscillations in addition to its role in halting cell-cycle progression. Our findings indicate that checkpoint mechanisms, likely via phosphorylation of network transcription factors, maintain coupling of the network oscillator to progression during cell-cycle arrest.
Prehn, Richmond T
2007-01-01
Tumor progression In many (perhaps in all) tumor systems, a malignant cancer is preceded by a benign lesion. Most benign lesions do not transform to malignancy and many regress. The final transformative step to malignancy differs from the preceding steps in, among other things, that it often occurs in the absence of the original carcinogenic stimulus. Mechanism of immunostimulation Relatively low titers of specific immune reactants are known to stimulate, but cell-to-cell or cell-to-matrix interactions appear to be major inhibitors of tumor-growth. Therefore, it seems reasonable to hypothesize that the mechanism of immunostimulation may be an interference with cell-to-cell or cell-to-matrix communication by a sub-lethal immune-reaction. Discussion While the above hypothesis remains unproven, some evidence suggests that immunity may have a major facilitating effect on tumor growth especially at the time of malignant transformation. There is even some evidence suggesting that transformation in vivo may seldom occur in the absence of immunostimulation of the premalignant lesion. Positive selection by the immune reaction may be the reason that tumors are immunogenic. PMID:17480231
Toward precision manufacturing of immunogene T-cell therapies.
Xu, Jun; Melenhorst, J Joseph; Fraietta, Joseph A
2018-05-01
Cancer can be effectively targeted using a patient's own T cells equipped with synthetic receptors, including chimeric antigen receptors (CARs) that redirect and reprogram these lymphocytes to mediate tumor rejection. Over the past two decades, several strategies to manufacture genetically engineered T cells have been proposed, with the goal of generating optimally functional cellular products for adoptive transfer. Based on this work, protocols for manufacturing clinical-grade CAR T cells have been established, but these complex methods have been used to treat only a few hundred individuals. As CAR T-cell therapy progresses into later-phase clinical trials and becomes an option for more patients, a major consideration for academic institutions and industry is developing robust manufacturing processes that will permit scaling-out production of immunogene T-cell therapies in a reproducible and efficient manner. In this review, we will discuss the steps involved in cell processing, the major obstacles surrounding T-cell manufacturing platforms and the approaches for improving cellular product potency. Finally, we will address the challenges of expanding CAR T-cell therapy to a global patient population. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Evidence for a potential tumor suppressor role for the Na,K-ATPase ß1-subunit
Inge, Landon J.; Rajasekaran, Sigrid A.; Yoshimoto, Koji; Mischel, Paul S.; McBride, William; Landaw, Elliot; Rajasekaran, Ayyappan K.
2009-01-01
Summary The Na,K-ATPase, consisting of two essential subunits (α, ß), plays a critical role in the regulation of ion homeostasis in mammalian cells. Recent studies indicate that reduced expression of the ß1 isoform (NaK-ß1) is commonly observed in carcinoma and is associated with events involved in cancer progression. In this study, we present evidence that repletion of NaK-ß1 in Moloney sarcoma virus-transformed Madin-Darby canine kidney cells (MSV-MDCK), a highly tumorigenic cell line, inhibits anchorage independent growth and suppresses tumor formation in immunocompromised mice. Additionally, using an in vitro cell-cell aggregation assay, we showed that cell aggregates of NaK-ß1 subunit expressing MSV-MDCK cells have reduced extracellular regulated kinase (ERK) 1/2 activity compared with parental MSV-MDCK cells. Finally, using immunohistochemistry and fully quantitative image analysis approaches, we showed that the levels of phosphorylated ERK 1/2 are inversely correlated to the NaK-ß1 levels in the tumors. These findings reveal for the first time that NaK-ß1 has a potential tumor-suppressor function in epithelial cells. PMID:18228203
How to make spinal motor neurons.
Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin
2014-02-01
All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.
Krafft, Christoph; Schmitt, Michael; Schie, Iwan W; Cialla-May, Dana; Matthäus, Christian; Bocklitz, Thomas; Popp, Jürgen
2017-04-10
Raman spectroscopy is an emerging technique in bioanalysis and imaging of biomaterials owing to its unique capability of generating spectroscopic fingerprints. Imaging cells and tissues by Raman microspectroscopy represents a nondestructive and label-free approach. All components of cells or tissues contribute to the Raman signals, giving rise to complex spectral signatures. Resonance Raman scattering and surface-enhanced Raman scattering can be used to enhance the signals and reduce the spectral complexity. Raman-active labels can be introduced to increase specificity and multimodality. In addition, nonlinear coherent Raman scattering methods offer higher sensitivities, which enable the rapid imaging of larger sampling areas. Finally, fiber-based imaging techniques pave the way towards in vivo applications of Raman spectroscopy. This Review summarizes the basic principles behind medical Raman imaging and its progress since 2012. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The pro-differentiating role of miR-124: indicating the road to become a neuron.
Maiorano, Nicola Antonio; Mallamaci, Antonello
2010-01-01
miRNAs are essential post-transcriptional modulators affecting cell identity and fate, with a central role in cellular and developmental processes. The brain-enriched neuronal specific miRNAs-124 has been identified as a promoter of neuronogenesis in various conditions, in vitro and in vivo, with a potential role in regulating also activities of post-mitotic neurons, such as synaptic plasticity and memory formation. In this point of view, we recapitulate the main experimental findings substantiating the positive correlation between miR-124 expression and neuronogenesis progression. Then, we describe the impact of miR-124 on the molecular network driving the profound changes which take place in differentiating neuronal cells. Finally, we consider the possibility of a post-transcriptional modulation of miR-124 biogenesis, which may finely regulate--in turn--the activities of miR-124 in neural precursor cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Fujun; Zheng, Jianjian; Mao, Yuqing
In this study, we aimed at assessing a role of Alu-mediated p21 transcriptional regulator (APTR) in hepatofibrogenesis. APTR was upregulated in fibrotic liver samples and activated hepatic stellate cells (HSCs). Knockdown of APTR inhibited the activation of HSCs in vitro and mitigated the accumulation of collagen in vivo. Importantly, APTR silencing could abrogate TGF-β{sub 1}-induced upregulation of α-SMA in HSCs. In addition, inhibition of cell cycle and cell proliferation by APTR knockdown was attenuated by p21 siRNA1 in primary HSCs. Finally, serum APTR levels were increased in patients with liver cirrhosis, indicating a potential biomarker for liver cirrhosis. Collectively, evidence is proposedmore » for a new biological role of APTR in hepatofibrogenesis. - Highlights: • APTR is upregulated in fibrotic liver tissues and activated HSCs. • APTR silencing inhibits HSC activation and the progression of liver fibrosis. • Antifibrotic effect of APTR silencing is achieved by increasing p21.« less
Orchestration of intestinal homeostasis and tolerance by group 3 innate lymphoid cells.
Penny, Hugo A; Hodge, Suzanne H; Hepworth, Matthew R
2018-05-08
The gastrointestinal tract is the primary site of exposure to a multitude of microbial, environmental, and dietary challenges. As a result, immune responses in the intestine need to be tightly regulated in order to prevent inappropriate inflammatory responses to exogenous stimuli. Intestinal homeostasis and tolerance are mediated through a multitude of immune mechanisms that act to reinforce barrier integrity, maintain the segregation and balance of commensal microbes, and ensure tissue health and regeneration. Here, we discuss the role of group 3 innate lymphoid cells (ILC3) as key regulators of intestinal health and highlight how increasing evidence implicates dysregulation of this innate immune cell population in the onset or progression of a broad range of clinically relevant pathologies. Finally, we discuss how the next generation of immunotherapeutics may be utilized to target ILC3 in disease and restore gastrointestinal tolerance and tissue health.
Sharma, Vinamra; Chaudhary, Anand Kumar
2014-01-01
To maintain health and to cure diseases through Rasayana (rejuvenation) therapy along with main treatment is the unique approach of Ayurveda. The basic constituent unit of a living being is always a functional cell. Question arises from where it is generated? How it attains its final specific differentiation form? As age progresses, various changes occur at every cell level and cell undergoes to adaptation accordingly. Microenvironment for cell nourishment diminishes with age or as disease condition persists. In this context, Acharyas had contributed and documented various facts and theories through their insight wisdom. Hidden secretes in the basic principles of any medical system are needed to be explained in terms of contemporary knowledge. Contemporary research areas should be opened to include various explanations of different fields of ancient thoughts to support these new doctrines, if any. This review may be helpful to open the door of future research area in the field of reverse scientific approach of Ayurveda in the context of Dhatu Siddhanta (theory of tissues formation and differentiation) and theory of stem cell.
Modelling human disease with pluripotent stem cells.
Siller, Richard; Greenhough, Sebastian; Park, In-Hyun; Sullivan, Gareth J
2013-04-01
Recent progress in the field of cellular reprogramming has opened up the doors to a new era of disease modelling, as pluripotent stem cells representing a myriad of genetic diseases can now be produced from patient tissue. These cells can be expanded and differentiated to produce a potentially limitless supply of the affected cell type, which can then be used as a tool to improve understanding of disease mechanisms and test therapeutic interventions. This process requires high levels of scrutiny and validation at every stage, but international standards for the characterisation of pluripotent cells and their progeny have yet to be established. Here we discuss the current state of the art with regard to modelling diseases affecting the ectodermal, mesodermal and endodermal lineages, focussing on studies which have demonstrated a disease phenotype in the tissue of interest. We also discuss the utility of pluripotent cell technology for the modelling of cancer and infectious disease. Finally, we spell out the technical and scientific challenges which must be addressed if the field is to deliver on its potential and produce improved patient outcomes in the clinic.
Huang, Lin; Chen, Keng; Cai, Zhao-Peng; Chen, Fu-Chao; Shen, Hui-Yong; Zhao, Wei-Hua; Yang, Song-Jie; Chen, Xu-Biao; Tang, Guo-Xue; Lin, Xi
2017-08-26
DEP domain containing 1 (DEPDC1) is recently reported to be overexpressed in several types of human cancer; however the role of DEPDC1 in prostate cancer remains to be investigated. Herein, we identified that the DEPDC1 mRNA and protein expression levels were dramatically increased in prostate cancer tissues and cell lines. Overexpression of DEPDC1 promoted, but depletion of DEPDC1 inhibited cell proliferation by regulating the G1-S phase cell cycle transition. Importantly, we found that DEPDC1 was essential for the tumor growth and formation of bone metastases of prostate cancer cells in vivo. Finally, we demonstrated that DEPDC1 interacted with E2F1 and increased its transcriptional activity, leading to hyper-activation of E2F signaling in prostate cancer cells. Our findings reveal an oncogenic role of DEPDC1 in prostate cancer progression via activation of E2F signaling, and suggest DEPDC1 might be a potential therapeutic target against the disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Stress-mediated translational control in cancer cells.
Leprivier, Gabriel; Rotblat, Barak; Khan, Debjit; Jan, Eric; Sorensen, Poul H
2015-07-01
Tumor cells are continually subjected to diverse stress conditions of the tumor microenvironment, including hypoxia, nutrient deprivation, and oxidative or genotoxic stress. Tumor cells must evolve adaptive mechanisms to survive these conditions to ultimately drive tumor progression. Tight control of mRNA translation is critical for this response and the adaptation of tumor cells to such stress forms. This proceeds though a translational reprogramming process which restrains overall translation activity to preserve energy and nutrients, but which also stimulates the selective synthesis of major stress adaptor proteins. Here we present the different regulatory signaling pathways which coordinate mRNA translation in the response to different stress forms, including those regulating eIF2α, mTORC1 and eEF2K, and we explain how tumor cells hijack these pathways for survival under stress. Finally, mechanisms for selective mRNA translation under stress, including the utilization of upstream open reading frames (uORFs) and internal ribosome entry sites (IRESes) are discussed in the context of cell stress. This article is part of a Special Issue entitled: Translation and Cancer. Copyright © 2014 Elsevier B.V. All rights reserved.
Capture of nonmagnetic particles and living cells using a microelectromagnetic system
NASA Astrophysics Data System (ADS)
Aki, Atsushi; Ito, Osamu; Morimoto, Hisao; Nagaoka, Yutaka; Nakajima, Yoshikata; Mizuki, Toru; Hanajiri, Tatsuro; Usami, Ron; Maekawa, Toru
2008-11-01
We develop a microelectromagnetic system to trap nonmagnetic materials such as micropolystyrene particles and yeast cells in particular areas. We fabricate gold films, the width of the central narrow part is 22 μm, and flow an electric current through the films. We then apply an external uniform dc magnetic field to weaken the local magnetic field at the narrow part so that a nonuniform magnetic field is produced. We demonstrate that the particles, which are dispersed in magnetic fluid, are successfully trapped at the narrow part of the film. We evaluate the driving force acting on a microparticle in the nonuniform magnetic field and carry out a Stokesian dynamics simulation of the motion of the particles. We show that yeast cells are also trapped at the narrow part of the film. Finally, we fabricate multichannel microelectromagnets so that yeast cells are trapped at multiple points in the microelectromagnetic system. The present system may be applied to cell transfection on a cell microarray and, therefore, eventually contribute to progress in the identification and determination technologies of different drug targets and the functions of genes and proteins.
Kim, Ji Hyun; Ki, Soo Mi; Joung, Je-Gun; Scott, Eric; Heynen-Genel, Susanne; Aza-Blanc, Pedro; Kwon, Chang Hyuk; Kim, Joon; Gleeson, Joseph G.; Lee, Ji Eun
2016-01-01
Biogenesis of the primary cilium, a cellular organelle mediating various signaling pathways, is generally coordinated with cell cycle exit/re-entry. Although the dynamic cell cycle-associated profile of the primary cilium has been largely accepted, the mechanism governing the link between ciliogenesis and cell cycle progression has been poorly understood. Using a human genome-wide RNAi screen, we identify genes encoding subunits of the spliceosome and proteasome as novel regulators of ciliogenesis. We demonstrate that 1) the mRNA processing-related hits are essential for RNA expression of molecules acting in cilia disassembly, such as AURKA and PLK1, and 2) the ubiquitin-proteasome systems (UPS)-involved hits are necessary for proteolysis of molecules acting in cilia assembly, such as IFT88 and CPAP. In particular, we show that these screen hit-associated mechanisms are crucial for both cilia assembly and cell cycle arrest in response to serum withdrawal. Finally, our data suggest that the mRNA processing mechanism may modulate the UPS-dependent decay of cilia assembly regulators to control ciliary resorption-coupled cell cycle re-entry. PMID:27033521
Sharma, Vinamra; Chaudhary, Anand Kumar
2014-01-01
To maintain health and to cure diseases through Rasayana (rejuvenation) therapy along with main treatment is the unique approach of Ayurveda. The basic constituent unit of a living being is always a functional cell. Question arises from where it is generated? How it attains its final specific differentiation form? As age progresses, various changes occur at every cell level and cell undergoes to adaptation accordingly. Microenvironment for cell nourishment diminishes with age or as disease condition persists. In this context, Acharyas had contributed and documented various facts and theories through their insight wisdom. Hidden secretes in the basic principles of any medical system are needed to be explained in terms of contemporary knowledge. Contemporary research areas should be opened to include various explanations of different fields of ancient thoughts to support these new doctrines, if any. This review may be helpful to open the door of future research area in the field of reverse scientific approach of Ayurveda in the context of Dhatu Siddhanta (theory of tissues formation and differentiation) and theory of stem cell. PMID:26664231
Tc17 cells in patients with uterine cervical cancer.
Zhang, Yan; Hou, Fei; Liu, Xin; Ma, Daoxin; Zhang, Youzhong; Kong, Beihua; Cui, Baoxia
2014-01-01
The existence of Tc17 cells was recently shown in several types of infectious and autoimmune diseases, but their distribution and functions in uterine cervical cancer (UCC) have not been fully elucidated. The frequency of Tc17 cells in peripheral blood samples obtained from UCC patients, cervical intraepithelial neoplasia (CIN) patients and healthy controls was determined by flow cytometry. Besides, the prevalence of Tc17 cells and their relationships to Th17 cells and Foxp3-expressing T cells as well as microvessels in tissue samples of the patients were assessed by immunohistochemistry staining. Compared to controls, patients with UCC or CIN had a higher proportion of Tc17 cells in both peripheral blood and cervical tissues, but the level of Tc17 cells in UCC tissues was significantly higher than that in CIN tissues. Besides, the increased level of Tc17 in UCC patients was associated with the status of pelvic lymph node metastases and increased microvessel density. Finally, significant correlations of infiltration between Tc17 cells and Th17 cells or Foxp3-expressing T cells were observed in UCC and CIN tissues. This study indicates that Tc17 cell infiltration in cervical cancers is associated with cancer progression accompanied by increased infiltrations of Th17 cells and regulatory T cells as well as promoted tumor vasculogenesis.
46 CFR 172.195 - Survival conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... assumed damage if it meets the following conditions in the final stage of flooding: (a) Final waterline... of an opening through which progressive flooding may take place, such as an air pipe, or an opening... least 3.94 inches (10 cm). (3) Each submerged opening must be weathertight. (d) Progressive flooding. If...
46 CFR 172.195 - Survival conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... assumed damage if it meets the following conditions in the final stage of flooding: (a) Final waterline... of an opening through which progressive flooding may take place, such as an air pipe, or an opening... least 3.94 inches (10 cm). (3) Each submerged opening must be weathertight. (d) Progressive flooding. If...
46 CFR 172.195 - Survival conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... assumed damage if it meets the following conditions in the final stage of flooding: (a) Final waterline... of an opening through which progressive flooding may take place, such as an air pipe, or an opening... least 3.94 inches (10 cm). (3) Each submerged opening must be weathertight. (d) Progressive flooding. If...
Inhibition of E2F1 activity and cell cycle progression by arsenic via retinoblastoma protein.
Sheldon, Lynn A
2017-01-01
The regulation of cell cycle progression by steroid hormones and growth factors is important for maintaining normal cellular processes including development and cell proliferation. Deregulated progression through the G1/S and G2/M cell cycle transitions can lead to uncontrolled cell proliferation and cancer. The transcription factor E2F1, a key cell cycle regulator, targets genes encoding proteins that regulate cell cycle progression through the G1/S transition as well as proteins important in DNA repair and apoptosis. E2F1 expression and activity is inhibited by inorganic arsenic (iAs) that has a dual role as a cancer therapeutic and as a toxin that leads to diseases including cancer. An understanding of what underlies this dichotomy will contribute to understanding how to use iAs as a more effective therapeutic and also how to treat cancers that iAs promotes. Here, we show that quiescent breast adenocarcinoma MCF-7 cells treated with 17-β estradiol (E2) progress through the cell cycle, but few cells treated with E2 + iAs progress from G1 into S-phase due to a block in cell cycle progression. Our data support a model in which iAs inhibits the dissociation of E2F1 from the tumor suppressor, retinoblastoma protein (pRB) due to changes in pRB phosphorylation which leads to decreased E2F1 transcriptional activity. These findings present an explanation for how iAs can disrupt cell cycle progression through E2F1-pRB and has implications for how iAs acts as a cancer therapeutic as well as how it may promote tumorigenesis through decreased DNA repair.
Motzer, Robert J.; Hutson, Thomas E.; Tomczak, Piotr; Michaelson, M. Dror; Bukowski, Ronald M.; Oudard, Stéphane; Negrier, Sylvie; Szczylik, Cezary; Pili, Roberto; Bjarnason, Georg A.; Garcia-del-Muro, Xavier; Sosman, Jeffrey A.; Solska, Ewa; Wilding, George; Thompson, John A.; Kim, Sindy T.; Chen, Isan; Huang, Xin; Figlin, Robert A.
2009-01-01
Purpose A randomized, phase III trial demonstrated superiority of sunitinib over interferon alfa (IFN-α) in progression-free survival (primary end point) as first-line treatment for metastatic renal cell carcinoma (RCC). Final survival analyses and updated results are reported. Patients and Methods Seven hundred fifty treatment-naïve patients with metastatic clear cell RCC were randomly assigned to sunitinib 50 mg orally once daily on a 4 weeks on, 2 weeks off dosing schedule or to IFN-α 9 MU subcutaneously thrice weekly. Overall survival was compared by two-sided log-rank and Wilcoxon tests. Progression-free survival, response, and safety end points were assessed with updated follow-up. Results Median overall survival was greater in the sunitinib group than in the IFN-α group (26.4 v 21.8 months, respectively; hazard ratio [HR] = 0.821; 95% CI, 0.673 to 1.001; P = .051) per the primary analysis of unstratified log-rank test (P = .013 per unstratified Wilcoxon test). By stratified log-rank test, the HR was 0.818 (95% CI, 0.669 to 0.999; P = .049). Within the IFN-α group, 33% of patients received sunitinib, and 32% received other vascular endothelial growth factor–signaling inhibitors after discontinuation from the trial. Median progression-free survival was 11 months for sunitinib compared with 5 months for IFN-α (P < .001). Objective response rate was 47% for sunitinib compared with 12% for IFN-α (P < .001). The most commonly reported sunitinib-related grade 3 adverse events included hypertension (12%), fatigue (11%), diarrhea (9%), and hand-foot syndrome (9%). Conclusion Sunitinib demonstrates longer overall survival compared with IFN-α plus improvement in response and progression-free survival in the first-line treatment of patients with metastatic RCC. The overall survival highlights an improved prognosis in patients with RCC in the era of targeted therapy. PMID:19487381
Three-dimensional nano-biointerface as a new platform for guiding cell fate.
Liu, Xueli; Wang, Shutao
2014-04-21
Three-dimensional nano-biointerface has been emerging as an important topic for chemistry, nanotechnology, and life sciences in recent years. Understanding the exchanges of materials, signals, and energy at biological interfaces has inspired and helped the serial design of three-dimensional nano-biointerfaces. The intimate interactions between cells and nanostructures bring many novel properties, making three-dimensional nano-biointerfaces a powerful platform to guide cell fate in a controllable and accurate way. These advantages and capabilities endow three-dimensional nano-biointerfaces with an indispensable role in developing advanced biological science and technology. This tutorial review is mainly focused on the recent progress of three-dimensional nano-biointerfaces and highlights the new explorations and unique phenomena of three-dimensional nano-biointerfaces for cell-related fundamental studies and biomedical applications. Some basic bio-inspired principles for the design and creation of three-dimensional nano-biointerfaces are also delivered in this review. Current and further challenges of three-dimensional nano-biointerfaces are finally addressed and proposed.
NASA Astrophysics Data System (ADS)
Shaigan, Nima; Qu, Wei; Ivey, Douglas G.; Chen, Weixing
Ferritic stainless steels have become the standard material for solid oxide fuel cell (SOFC) interconnect applications. The use of commercially available ferritic stainless steels, not specifically designed for interconnect application, however, presents serious issues leading to premature degradation of the fuel cell stack, particularly on the cathode side. These problems include rapidly increasing contact resistance and volatilization of Cr from the oxide scales, resulting in cathode chromium poisoning and cell malfunction. To overcome these issues, a variety of conductive/protective coatings, surface treatments and modifications as well as alloy development have been suggested and studied over the past several years. This paper critically reviews the attempts performed thus far to mitigate the issues associated with the use of ferritic stainless steels on the cathode side. Different approaches are categorized and summarized and examples for each case are provided. Finally, directions and recommendations for the future studies are presented.
Research progress in photolectric materials of CuFeS2
NASA Astrophysics Data System (ADS)
Jing, Mingxing; Li, Jing; Liu, Kegao
2018-03-01
CuFeS2 as a photoelectric material, there are many advantages, such as high optical absorption coefficient, direct gap semiconductor, thermal stability, no photo-recession effect and so on. Because of its low price, abundant reserves and non-toxic, CuFeS2 has attracted extensive attention of scientists.Preparation method of thin film solar cells are included that Electrodeposition, sputtering, thermal evaporation, thermal spraying method, co-reduction method.In this paper, the development of CuFeS2 thin films prepared by co-reduction method and co-reduction method is introduced.In this paper, the structure and development of solar cells, advantages of CuFeS2 as solar cell material, the structure and photoelectric properties and magnetic properties of CuFeS2, preparation process analysis of CuFeS2 thin film, research and development of CuFeS2 in solar cells is included herein. Finally, the development trend of CuFeS2 optoelectronic materials is analyzed and further research directions are proposed.
Pathogenesis of liver cirrhosis.
Zhou, Wen-Ce; Zhang, Quan-Bao; Qiao, Liang
2014-06-21
Liver cirrhosis is the final pathological result of various chronic liver diseases, and fibrosis is the precursor of cirrhosis. Many types of cells, cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis. Activation of hepatic stellate cells (HSCs) is a pivotal event in fibrosis. Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis. Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs. Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis. At the molecular level, many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis. Recently, miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis. Robust animal models of liver fibrosis and cirrhosis, as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions.
Pathogenesis of liver cirrhosis
Zhou, Wen-Ce; Zhang, Quan-Bao; Qiao, Liang
2014-01-01
Liver cirrhosis is the final pathological result of various chronic liver diseases, and fibrosis is the precursor of cirrhosis. Many types of cells, cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis. Activation of hepatic stellate cells (HSCs) is a pivotal event in fibrosis. Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis. Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs. Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis. At the molecular level, many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis. Recently, miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis. Robust animal models of liver fibrosis and cirrhosis, as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions. PMID:24966602
Visualization and quantification of three-dimensional distribution of yeast in bread dough.
Maeda, Tatsuro; DO, Gab-Soo; Sugiyama, Junichi; Araki, Tetsuya; Tsuta, Mizuki; Shiraga, Seizaburo; Ueda, Mitsuyoshi; Yamada, Masaharu; Takeya, Koji; Sagara, Yasuyuki
2009-07-01
A three-dimensional (3-D) bio-imaging technique was developed for visualizing and quantifying the 3-D distribution of yeast in frozen bread dough samples in accordance with the progress of the mixing process of the samples, applying cell-surface engineering to the surfaces of the yeast cells. The fluorescent yeast was recognized as bright spots at the wavelength of 520 nm. Frozen dough samples were sliced at intervals of 1 microm by an micro-slicer image processing system (MSIPS) equipped with a fluorescence microscope for acquiring cross-sectional images of the samples. A set of successive two-dimensional images was reconstructed to analyze the 3-D distribution of the yeast. The average shortest distance between centroids of enhanced green fluorescent protein (EGFP) yeasts was 10.7 microm at the pick-up stage, 9.7 microm at the clean-up stage, 9.0 microm at the final stage, and 10.2 microm at the over-mixing stage. The results indicated that the distribution of the yeast cells was the most uniform in the dough of white bread at the final stage, while the heterogeneous distribution at the over-mixing stage was possibly due to the destruction of the gluten network structure within the samples.
Andergassen, Ulrich; Kölbl, Alexandra C; Mahner, Sven; Jeschke, Udo
2016-04-01
Cells, which detach from a primary epithelial tumour and migrate through lymphatic vessels and blood stream are called 'circulating tumour cells'. These cells are considered to be the main root of remote metastasis and are correlated to a worse prognosis concerning progression-free and overall survival of the patients. Therefore, the detection of the minimal residual disease is of great importance regarding therapeutic decisions. Many different detection strategies are already available, but only one method, the CellSearch® system, reached FDA approval. The present review focusses on the detection of circulating tumour cells by means of real-time PCR, a highly sensitive method based on differences in gene expression between normal and malignant cells. Strategies for an enrichment of tumour cells are mentioned, as well as a large panel of potential marker genes. Drawbacks and advantages of the technique are elucidated, whereas, the greatest advantage might be, that by selection of appropriate marker genes, also tumour cells, which have already undergone epithelial to mesenchymal transition can be detected. Finally, the application of real-time PCR in different gynaecological malignancies is described, with breast cancer being the most studied cancer entity.
Kim, Dong Hwan; Sung, Bokyung; Kang, Yong Jung; Hwang, Seong Yeon; Kim, Min Jeong; Yoon, Jeong-Hyun; Im, Eunok; Kim, Nam Deuk
2015-12-01
The effects of sulforaphane (a natural product commonly found in broccoli) was investigated on hypoxia inducible factor-1α (HIF-1α) expression in HCT116 human colon cancer cells and AGS human gastric cancer cells. We found that hypoxia-induced HIF-1α protein expression in HCT116 and AGS cells, while treatment with sulforaphane markedly and concentration-dependently inhibited HIF-1α expression in both cell lines. Treatment with sulforaphane inhibited hypoxia-induced vascular endothelial growth factor (VEGF) expression in HCT116 cells. Treatment with sulforaphane modulated the effect of hypoxia on HIF-1α stability. However, degradation of HIF-1α by sulforaphane was not mediated through the 26S proteasome pathway. We also found that the inhibition of HIF-1α by sulforaphane was not mediated through AKT and extracellular signal-regulated kinase phosphorylation under hypoxic conditions. Finally, hypoxia-induced HCT116 cell migration was inhibited by sulforaphane. These data suggest that sulforaphane may inhibit human colon cancer progression and cancer cell angiogenesis by inhibiting HIF-1α and VEGF expression. Taken together, these results indicate that sulforaphane is a new and potent chemopreventive drug candidate for treating patients with human colon cancer.
GATA-3 is required for early T lineage progenitor development
Hosoya, Tomonori; Kuroha, Takashi; Moriguchi, Takashi; Cummings, Dustin; Maillard, Ivan; Lim, Kim-Chew
2009-01-01
Most T lymphocytes appear to arise from very rare early T lineage progenitors (ETPs) in the thymus, but the transcriptional programs that specify ETP generation are not completely known. The transcription factor GATA-3 is required for the development of T lymphocytes at multiple late differentiation steps as well as for the development of thymic natural killer cells. However, a role for GATA-3 before the double-negative (DN) 3 stage of T cell development has to date been obscured both by the developmental heterogeneity of DN1 thymocytes and the paucity of ETPs. We provide multiple lines of in vivo evidence through the analysis of T cell development in Gata3 hypomorphic mutant embryos, in irradiated mice reconstituted with Gata3 mutant hematopoietic cells, and in mice conditionally ablated for the Gata3 gene to show that GATA-3 is required for ETP generation. We further show that Gata3 loss does not affect hematopoietic stem cells or multipotent hematopoietic progenitors. Finally, we demonstrate that Gata3 mutant lymphoid progenitors exhibit neither increased apoptosis nor diminished cell-cycle progression. Thus, GATA-3 is required for the cell-autonomous development of the earliest characterized thymic T cell progenitors. PMID:19934022
1996-01-01
Expression of the bcl-2 gene has been shown to effectively confer resistance to programmed cell death under a variety of circumstances. However, despite a wealth of literature describing this phenomenon, very little is known about the mechanism of resistance. In the experiments described here, we show that bcl-2 gene expression can result in an inhibition of cell division cycle progression. These findings are based upon the analysis of cell cycle distribution, cell cycle kinetics, and relative phosphorylation of the retinoblastoma tumor suppressor protein, using primary tissues in vivo, ex vivo, and in vitro, as well as continuous cell lines. The effects of bcl-2 expression on cell cycle progression appear to be focused at the G1 to S phase transition, which is a critical control point in the decision between continued cell cycle progression or the induction programmed cell death. In all systems tested, bcl-2 expression resulted in a substantial 30-60% increase in the length of G1 phase; such an increase is very substantial in the context of other regulators of cell cycle progression. Based upon our findings, and the related findings of others, we propose a mechanism by which bcl-2 expression might exert its well known inhibition of programmed cell death by regulating the kinetics of cell cycle progression at a critical control point. PMID:8642331
Griffin, Daniel; Liu, Xiufang; Pru, Cindy; Pru, James K; Peluso, John J
2014-08-01
Progesterone receptor membrane component 2 (Pgrmc2) mRNA was detected in the immature rat ovary. By 48 h after eCG, Pgrmc2 mRNA levels decreased by 40% and were maintained at 48 h post-hCG. Immunohistochemical studies detected PGRMC2 in oocytes and ovarian surface epithelial, interstitial, thecal, granulosa, and luteal cells. PGRMC2 was also present in spontaneously immortalized granulosa cells, localizing to the cytoplasm of interphase cells and apparently to the mitotic spindle of cells in metaphase. Interestingly, PGRMC2 levels appeared to decrease during the G1 stage of the cell cycle. Moreover, overexpression of PGRMC2 suppressed entry into the cell cycle, possibly by binding the p58 form of cyclin dependent kinase 11b. Conversely, Pgrmc2 small interfering RNA (siRNA) treatment increased the percentage of cells in G1 and M stage but did not increase the number of cells, which was likely due to an increase in apoptosis. Depleting PGRMC2 did not inhibit cellular (3)H-progesterone binding, but attenuated the ability of progesterone to suppress mitosis and apoptosis. Taken together these studies suggest that PGRMC2 affects granulosa cell mitosis by acting at two specific stages of the cell cycle. First, PGRMC2 regulates the progression from the G0 into the G1 stage of the cell cycle. Second, PGRMC2 appears to localize to the mitotic spindle, where it likely promotes the final stages of mitosis. Finally, siRNA knockdown studies indicate that PGRMC2 is required for progesterone to slow the rate of granulosa cell mitosis and apoptosis. These findings support a role for PGRMC2 in ovarian follicle development. © 2014 by the Society for the Study of Reproduction, Inc.
Mechanical control of mitotic progression in single animal cells
Cattin, Cedric J.; Düggelin, Marcel; Martinez-Martin, David; Gerber, Christoph; Müller, Daniel J.; Stewart, Martin P.
2015-01-01
Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback–controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50–100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement. PMID:26305930
Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun
2013-01-01
The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351
Kuznetsova, Alexandra; Yu, Yue; Hollister-Lock, Jennifer; Opare-Addo, Lynn; Rozzo, Aldo; Sadagurski, Marianna; Norquay, Lisa; Reed, Jessica E.; El Khattabi, Ilham; Bonner-Weir, Susan; Weir, Gordon C.; Sharma, Arun
2016-01-01
The capacity of pancreatic β cells to maintain glucose homeostasis during chronic physiologic and immunologic stress is important for cellular and metabolic homeostasis. Insulin receptor substrate 2 (IRS2) is a regulated adapter protein that links the insulin and IGF1 receptors to downstream signaling cascades. Since strategies to maintain or increase IRS2 expression can promote β cell growth, function, and survival, we conducted a screen to find small molecules that can increase IRS2 mRNA in isolated human pancreatic islets. We identified 77 compounds, including 15 that contained a tricyclic core. To establish the efficacy of our approach, one of the tricyclic compounds, trimeprazine tartrate, was investigated in isolated human islets and in mouse models. Trimeprazine is a first-generation antihistamine that acts as a partial agonist against the histamine H1 receptor (H1R) and other GPCRs, some of which are expressed on human islets. Trimeprazine promoted CREB phosphorylation and increased the concentration of IRS2 in islets. IRS2 was required for trimeprazine to increase nuclear Pdx1, islet mass, β cell replication and function, and glucose tolerance in mice. Moreover, trimeprazine synergized with anti-CD3 Abs to reduce the progression of diabetes in NOD mice. Finally, it increased the function of human islet transplants in streptozotocin-induced (STZ-induced) diabetic mice. Thus, trimeprazine, its analogs, or possibly other compounds that increase IRS2 in islets and β cells without adverse systemic effects might provide mechanism-based strategies to prevent the progression of diabetes. PMID:27152363
Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods
Shi, Zhengqi; Jayatissa, Ahalapitiya H.
2018-01-01
With the rapid increase of efficiency up to 22.1% during the past few years, hybrid organic-inorganic metal halide perovskite solar cells (PSCs) have become a research “hot spot” for many solar cell researchers. The perovskite materials show various advantages such as long carrier diffusion lengths, widely-tunable band gap with great light absorption potential. The low-cost fabrication techniques together with the high efficiency makes PSCs comparable with Si-based solar cells. But the drawbacks such as device instability, J-V hysteresis and lead toxicity reduce the further improvement and the future commercialization of PSCs. This review begins with the discussion of crystal and electronic structures of perovskite based on recent research findings. An evolution of PSCs is also analyzed with a greater detail of each component, device structures, major device fabrication methods and the performance of PSCs acquired by each method. The following part of this review is the discussion of major barriers on the pathway for the commercialization of PSCs. The effects of crystal structure, fabrication temperature, moisture, oxygen and UV towards the stability of PSCs are discussed. The stability of other components in the PSCs are also discussed. The lead toxicity and updated research progress on lead replacement are reviewed to understand the sustainability issues of PSCs. The origin of J-V hysteresis is also briefly discussed. Finally, this review provides a roadmap on the current needs and future research directions to address the main issues of PSCs. PMID:29734667
Herrero-Ruiz, Joaquín; Mora-Santos, Mar; Giráldez, Servando; Sáez, Carmen; Japón, Miguel Á.; Tortolero, Maria; Romero, Francisco
2014-01-01
In mammals, cell cycle progression is controlled by cyclin-dependent kinases, among which CDK1 plays important roles in the regulation of the G2/M transition, G1 progression and G1/S transition. CDK1 is highly regulated by its association to cyclins, phosphorylation and dephosphorylation, changes in subcellular localization, and by direct binding of CDK inhibitor proteins. CDK1 steady-state protein levels are held constant throughout the cell cycle by a coordinated regulation of protein synthesis and degradation. We show that CDK1 is ubiquitinated by the E3 ubiquitin ligase SCFβTrCP and degraded by the lysosome. Furthermore, we found that DNA damage not only triggers the stabilization of inhibitory phosphorylation sites on CDK1 and repression of CDK1 gene expression, but also regulates βTrCP-induced CDK1 degradation in a cell type-dependent manner. Specifically, treatment with the chemotherapeutic agent doxorubicin in certain cell lines provokes CDK1 degradation and induces apoptosis, whereas in others it inhibits destruction of the protein. These observations raise the possibility that different tumor types, depending on their pathogenic spectrum mutations, may display different sensitivity to βTrCP-induced CDK1 degradation after DNA damage. Finally, we found that CDK1 accumulation in patients’ tumors shows a negative correlation with βTrCP and a positive correlation with the degree of tumor malignancy. PMID:25149538
Yu, X; Zhen, Y; Yang, H; Wang, H; Zhou, Y; Wang, E; Marincola, F M; Mai, C; Chen, Y; Wei, H; Song, Y; Lyu, X; Ye, Y; Cai, L; Wu, Q; Zhao, M; Hua, S; Fu, Q; Zhang, Y; Yao, K; Liu, Z; Li, X; Fang, W
2013-05-16
Connective tissue growth factor (CTGF) has different roles in different types of cancer. However, the involvement and molecular basis of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC) have almost never been reported. In this study, we observed that downregulated CTGF expression was significantly associated with NPC progression and poor prognosis. Knockdown of CTGF markedly elevated the ability of cell proliferation in vivo and in vitro. Subsequently, we discovered that the reduction of CTGF increased the expression of miR-18b, an oncomir-promoting cell proliferation. Further, we discovered that attenuated CTGF-mediated upregulation of miR-18b was dependent on the increased binding of transcription factors Jun proto-oncogene (C-Jun) and v-Myc myelocytomatosis viral oncogene homolog (C-Myc) to miR-18b promoter region via phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we further found that miR-18b directly suppressed the expression of CTGF in NPC. In clinical fresh specimens, miR-18b was widely overexpressed and inversely correlated with CTGF expression in NPC. Our studies are the first to demonstrate that reduced CTGF as an unfavorable prognosis factor mediates the activation of miR-18b, an oncomir directly suppresses CTGF expression, by PI3K/AKT/C-Jun and C-Myc and promotes cell growth of NPC.
Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes
2018-02-01
One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A premeiotic function for boule in the planarian Schmidtea mediterranea
Iyer, Harini; Issigonis, Melanie; Sharma, Prashant P.; Extavour, Cassandra G.; Newmark, Phillip A.
2016-01-01
Mutations in Deleted in Azoospermia (DAZ), a Y chromosome gene, are an important cause of human male infertility. DAZ is found exclusively in primates, limiting functional studies of this gene to its homologs: boule, required for meiotic progression of germ cells in invertebrate model systems, and Daz-like (Dazl), required for early germ cell maintenance in vertebrates. Dazl is believed to have acquired its premeiotic role in a vertebrate ancestor following the duplication and functional divergence of the single-copy gene boule. However, multiple homologs of boule have been identified in some invertebrates, raising the possibility that some of these genes may play other roles, including a premeiotic function. Here we identify two boule paralogs in the freshwater planarian Schmidtea mediterranea. Smed-boule1 is necessary for meiotic progression of male germ cells, similar to the known function of boule in invertebrates. By contrast, Smed-boule2 is required for the maintenance of early male germ cells, similar to vertebrate Dazl. To examine if Boule2 may be functionally similar to vertebrate Dazl, we identify and functionally characterize planarian homologs of human DAZL/DAZ-interacting partners and DAZ family mRNA targets. Finally, our phylogenetic analyses indicate that premeiotic functions of planarian boule2 and vertebrate Dazl evolved independently. Our study uncovers a premeiotic role for an invertebrate boule homolog and offers a tractable invertebrate model system for studying the premeiotic functions of the DAZ protein family. PMID:27330085
A small molecule mitigates hearing loss in a mouse model of Usher syndrome III.
Alagramam, Kumar N; Gopal, Suhasini R; Geng, Ruishuang; Chen, Daniel H-C; Nemet, Ina; Lee, Richard; Tian, Guilian; Miyagi, Masaru; Malagu, Karine F; Lock, Christopher J; Esmieu, William R K; Owens, Andrew P; Lindsay, Nicola A; Ouwehand, Krista; Albertus, Faywell; Fischer, David F; Bürli, Roland W; MacLeod, Angus M; Harte, William E; Palczewski, Krzysztof; Imanishi, Yoshikazu
2016-06-01
Usher syndrome type III (USH3), characterized by progressive deafness, variable balance disorder and blindness, is caused by destabilizing mutations in the gene encoding the clarin-1 (CLRN1) protein. Here we report a new strategy to mitigate hearing loss associated with a common USH3 mutation CLRN1(N48K) that involves cell-based high-throughput screening of small molecules capable of stabilizing CLRN1(N48K), followed by a secondary screening to eliminate general proteasome inhibitors, and finally an iterative process to optimize structure-activity relationships. This resulted in the identification of BioFocus 844 (BF844). To test the efficacy of BF844, we developed a mouse model that mimicked the progressive hearing loss associated with USH3. BF844 effectively attenuated progressive hearing loss and prevented deafness in this model. Because the CLRN1(N48K) mutation causes both hearing and vision loss, BF844 could in principle prevent both sensory deficiencies in patients with USH3. Moreover, the strategy described here could help identify drugs for other protein-destabilizing monogenic disorders.
Cho, In K; Wang, Silun; Mao, Hui; Chan, Anthony WS
2016-01-01
Recent advances in stem cell-based regenerative medicine, cell replacement therapy, and genome editing technologies (i.e. CRISPR-Cas 9) have sparked great interest in in vivo cell monitoring. Molecular imaging promises a unique approach to noninvasively monitor cellular and molecular phenomena, including cell survival, migration, proliferation, and even differentiation at the whole organismal level. Several imaging modalities and strategies have been explored for monitoring cell grafts in vivo. We begin this review with an introduction describing the progress in stem cell technology, with a perspective toward cell replacement therapy. The importance of molecular imaging in reporting and assessing the status of cell grafts and their relation to the local microenvironment is highlighted since the current knowledge gap is one of the major obstacles in clinical translation of stem cell therapy. Based on currently available imaging techniques, we provide a brief discussion on the pros and cons of each imaging modality used for monitoring cell grafts with particular emphasis on magnetic resonance imaging (MRI) and the reporter gene approach. Finally, we conclude with a comprehensive discussion of future directions of applying molecular imaging in regenerative medicine to emphasize further the importance of correlating cell graft conditions and clinical outcomes to advance regenerative medicine. PMID:27766183
Mechanical Properties of Human Cells Change during Neoplastic Processes
NASA Astrophysics Data System (ADS)
Guthold, Martin; Guo, Xinyi; Bonin, Keith; Scarpinato, Karin
2014-03-01
Using an AFM with a spherical probe of 5.3 μm, we determined mechanical properties of individual human mammary epithelial cells that have progressed through four stages of neoplastic transformation: normal, immortal, tumorigenic, and metastatic. Measurements on cells in all four stages were taken over both the nucleus and the cytoplasm. Moreover, the measurements were made for cells outside of a colony (isolated), on the periphery of a colony, and inside a colony. By fitting the AFM force vs. indentation curves to a Hertz model, we determined the Young's modulus, E. We found a distinct contrast in the influence a cell's colony environment has on its stiffness depending on whether the cells are normal or cancer cells. We also found that cells become softer as they advance to the tumorigenic stage and then stiffen somewhat in the final step to metastatic cells. For cells averaged over all locations the stiffness values of the nuclear region for normal, immortal, tumorigenic, and metastatic cells were (mean +/- sem) 880 +/- 50, 940+/-50, 400 +/- 20, and 600 +/-20 Pa respectively. Cytoplasmic regions followed a similar trend. These results point to a complex picture of the mechanical changes that occur as cells undergo neoplastic transformation. This work is supported by NSF Materials and Surface Engineering grant CMMI-1152781.
Guaranteed Time Observations Support for Goddard High Resolution Spectrograph (GHRS) on HST
NASA Technical Reports Server (NTRS)
Beaver, Edward
1998-01-01
We assemble this final grant report by combining our previously submitted progress reports with the last year's progress report. Section 2 is the progress report for the June 1, 1991 to Nov. 14, 1995 period. Section 4 is the progress report for the Nov. 14, 1996 to Dec. 31, 1996 period. Section 5 is the progress report for the Nov. 14 to Aug. 31, 1997 period. Section 6 is the new progress report for the Sept. 15, 1997 to Nov. 14, 1998 final period. Section 3 is a summary of our spare detector high voltage transient tests activity in 1992 in support of the renewed safe operation of the GHRS HST D1 detector. Note that we have left the format of each progress report the same as originally sent out. The slight differences in format presentation are thus intended.
[Research advances of fluid bio-mechanics in bone].
Chen, Zebin; Huo, Bo
2017-04-01
It has been found for more than one century that when experiencing mechanical loading, the structure of bone will adapt to the changing mechanical environment, which is called bone remodeling. Bone remodeling is charaterized as two processes of bone formation and bone resorption. A large number of studies have confirmed that the shear stress is resulted from interstitial fluid flow within bone cavities under mechanical loading and it is the key factor of stimulating the biological responses of bone cells. This review summarizes the major research progress during the past years, including the biological response of bone cells under fluid flow, the pressure within bone cavities, the theoretical modeling, numerical simulation and experiments about fluid flow within bone, and finally analyzes and predicts the possible tendency in this field in the future.
Solomon, Lauren A; Podder, Shreya; He, Jessica; Jackson-Chornenki, Nicholas L; Gibson, Kristen; Ziliotto, Rachel G; Rhee, Jess; DeKoter, Rodney P
2017-05-15
During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1 , an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism. Copyright © 2017 American Society for Microbiology.
Webinar May 17: Fuel Cell Electric Bus Progress Toward Meeting Technical
Targets | News | NREL Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets Webinar May 17: Fuel Cell Electric Bus Progress toward Meeting Technical Targets May 14, 2018 The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office will present a live webinar titled
Chen, Amanda X.; Hoffman, Michael D.; Chen, Caressa S.; Shubin, Andrew D.; Reynolds, Daniel S.; Benoit, Danielle S. W.
2015-01-01
Cell-cell contact-mediated Notch signaling is essential for mesenchymal stem cell (MSC) chondrogenesis during development. However, subsequent deactivation of Notch signaling is also required to allow for stem cell chondrogenic progression. Recent literature has shown that Notch signaling can also influence Wnt/β-catenin signaling, critical for MSC differentiation, through perturbations in cell-cell contacts. Traditionally, abundant cell-cell contacts, consistent with development, are emulated in vitro using pellet cultures for chondrogenesis. However, cells are often encapsulated within biomaterials-based scaffolds, such as hydrogels, to improve therapeutic cell localization in vivo. To explore the role of Notch and Wnt/β-catenin signaling in the context of hydrogel-encapsulated MSC chondrogenesis, we compared signaling and differentiation capacity of MSCs in both hydrogels and traditional pellet cultures. We demonstrate that encapsulation within poly(ethylene glycol) (PEG) hydrogels reduces cell-cell contacts, and both Notch (7.5-fold) and Wnt/β-catenin (84.7-fold) pathway activation. Finally, we demonstrate that following establishment of cell-cell contacts and transient Notch signaling in pellet cultures, followed by Notch signaling deactivation, resulted in a 1.5-fold increase in MSC chondrogenesis. Taken together, these findings support that cellular condensation, and the establishment of initial cell-cell contacts is critical for MSC chondrogenesis, and this process is inhibited by hydrogel encapsulation. PMID:25504509
Biton, Jérôme; Ouakrim, Hanane; Dechartres, Agnès; Alifano, Marco; Mansuet-Lupo, Audrey; Si, Han; Halpin, Rebecca; Creasy, Todd; Bantsimba-Malanda, Claudie; Arrondeau, Jennifer; Goldwasser, François; Boudou-Rouquette, Pascaline; Fournel, Ludovic; Roche, Nicolas; Burgel, Pierre-Régis; Goc, Jeremy; Devi-Marulkar, Priyanka; Germain, Claire; Dieu-Nosjean, Marie-Caroline; Cremer, Isabelle; Herbst, Ronald; Damotte, Diane
2018-03-08
Patients with chronic obstructive pulmonary disease (COPD) have a higher prevalence of lung cancer. The chronic inflammation associated with COPD probably promotes the earliest stages of carcinogenesis. However, once tumors have progressed to malignancy, the impact of COPD on the tumor immune microenvironment remains poorly defined, and its effects on immune-checkpoint blockers' efficacy are still unknown. To study the impact of COPD on the immune contexture of non-small cell lung cancer (NSCLC). We performed in depth immune profiling of lung tumors by immunohistochemistry and we determined its impact on patients' survival (n=435). Tumor-infiltrating T lymphocyte (TILs) exhaustion by flow cytometry (n=50) was also investigated. The effectiveness of an anti-PD-1 treatment (nivolumab) was evaluated in 39 advanced-stage NSCLC patients. All data were analyzed according to patients' COPD status. Measurments and Main Results: Remarkably, COPD severity is positively correlated with the coexpression of PD-1/TIM-3 by CD8 T cells. In agreement, we observed a loss of CD8 T cell-associated favorable clinical outcome in COPD+ patients. Interestingly, a negative prognostic value of PD-L1 expression by tumor cells was observed only in highly CD8 T cell-infiltrated tumors of COPD+ patients. Finally, data obtained on 39 advanced-stage NSCLC patients treated by an anti-PD-1 antibody showed longer progression free survival in COPD+ patients, and also that the association between the severity of smoking and the response to nivolumab was preferentially observed in COPD+ patients. COPD is associated with an increased sensitivity of CD8 TILs to immune escape mechanisms developed by tumors, thus suggesting a higher sensitivity to PD-1 blockade in patients with COPD.
Choi, Euno; Kim, Won; Joo, Sae Kyung; Park, Sunyoung; Park, Jeong Hwan; Kang, Yun Kyung; Jin, So-Young; Chang, Mee Soo
2018-04-03
Hepatic steatosis renders hepatocytes vulnerable to injury, resulting in the progression of preexisting liver disease. Previous animal and cell culture studies implicated mammalian target of rapamycin (mTOR), signal transducer and activator of transcription-3 (STAT3), extracellular signal-regulated kinase (ERK) and estrogen-receptor α in the pathogenesis of hepatic steatosis and disease progression. However, to date there have been few studies performed using human liver tissue to study hepatic steatosis. We examined the expression patterns of mTOR, STAT3, ERK and estrogen-receptor α in liver tissues from patients diagnosed with hepatic steatosis. We reviewed the clinical and histomorphological features of 29 patients diagnosed with hepatic steatosis: 18 with non-alcoholic fatty liver disease (NAFLD), 11 with alcoholic fatty acid disease (AFLD), and a control group (16 biliary cysts and 22 hepatolithiasis). Immunohistochemistry was performed on liver tissue using an automated immunostainer. The histologic severity of hepatic steatosis was evaluated by assessing four key histomorphologic parameters common to NAFLD and AFLD: steatosis, lobular inflammation, ballooning degeneration and fibrosis. mTOR, phosphorylated STAT3, phosphorylated pERK, estrogen-receptor α were found to be more frequently expressed in the hepatic steatosis group than in the control group. Specifically, mTOR was expressed in 78% of hepatocytes, and ERK in 100% of hepatic stellate cells, respectively, in patients with NAFLD. Interestingly, estrogen-receptor α was diffusely expressed in hepatocytes in all NALFD cases. Phosphorylated (active) STAT3 was expressed in 73% of hepatocytes and 45% of hepatic stellate cells in patients with AFLD, and phosphorylated (active) ERK was expressed in hepatic stellate cells in all AFLD cases. Estrogen-receptor α was expressed in all AFLD cases (focally in 64% of AFLD cases, and diffusely in 36%). Phosphorylated STAT3 expression in hepatocytes and hepatic stellate cells correlated with severe lobular inflammation, severe ballooning degeneration and advanced fibrosis, whereas diffusely expressed estrogen-receptor α correlated with a mild stage of fibrosis. Our data indicate ERK activation and estrogen-receptor α may be relevant in the development of hepatic steatosis. However, diffuse expression of estrogen-receptor α would appear to impede disease progression, including hepatic fibrosis. Finally, phosphorylated STAT3 may also contribute to disease progression.
Reaction-diffusion processes at the nano- and microscales
NASA Astrophysics Data System (ADS)
Epstein, Irving R.; Xu, Bing
2016-04-01
The bottom-up fabrication of nano- and microscale structures from primary building blocks (molecules, colloidal particles) has made remarkable progress over the past two decades, but most research has focused on structural aspects, leaving our understanding of the dynamic and spatiotemporal aspects at a relatively primitive stage. In this Review, we draw inspiration from living cells to argue that it is now time to move beyond the generation of structures and explore dynamic processes at the nanoscale. We first introduce nanoscale self-assembly, self-organization and reaction-diffusion processes as essential features of cells. Then, we highlight recent progress towards designing and controlling these fundamental features of life in abiological systems. Specifically, we discuss examples of reaction-diffusion processes that lead to such outcomes as self-assembly, self-organization, unique nanostructures, chemical waves and dynamic order to illustrate their ubiquity within a unifying context of dynamic oscillations and energy dissipation. Finally, we suggest future directions for research on reaction-diffusion processes at the nano- and microscales that we find hold particular promise for a new understanding of science at the nanoscale and the development of new kinds of nanotechnologies for chemical transport, chemical communication and integration with living systems.
Qi, Zihao; Liu, Mingming; Liu, Yang; Zhang, Meiqin; Yang, Gong
2014-01-01
In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3',4',5'- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer.
Liu, Yang; Zhang, Meiqin; Yang, Gong
2014-01-01
In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3′,4′,5′- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer. PMID:25180593
Advances in tissue engineering through stem cell-based co-culture.
Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A
2015-05-01
Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.
Paggetti, Jerome; Haderk, Franziska; Seiffert, Martina; Janji, Bassam; Distler, Ute; Ammerlaan, Wim; Kim, Yeoun Jin; Adam, Julien; Lichter, Peter; Solary, Eric; Berchem, Guy
2015-01-01
Exosomes derived from solid tumor cells are involved in immune suppression, angiogenesis, and metastasis, but the role of leukemia-derived exosomes has been less investigated. The pathogenesis of chronic lymphocytic leukemia (CLL) is stringently associated with a tumor-supportive microenvironment and a dysfunctional immune system. Here, we explore the role of CLL-derived exosomes in the cellular and molecular mechanisms by which malignant cells create this favorable surrounding. We show that CLL-derived exosomes are actively incorporated by endothelial and mesenchymal stem cells ex vivo and in vivo and that the transfer of exosomal protein and microRNA induces an inflammatory phenotype in the target cells, which resembles the phenotype of cancer-associated fibroblasts (CAFs). As a result, stromal cells show enhanced proliferation, migration, and secretion of inflammatory cytokines, contributing to a tumor-supportive microenvironment. Exosome uptake by endothelial cells increased angiogenesis ex vivo and in vivo, and coinjection of CLL-derived exosomes and CLL cells promoted tumor growth in immunodeficient mice. Finally, we detected α-smooth actin–positive stromal cells in lymph nodes of CLL patients. These findings demonstrate that CLL-derived exosomes actively promote disease progression by modulating several functions of surrounding stromal cells that acquire features of cancer-associated fibroblasts. PMID:26100252
Methods to Study the Role of Progranulin in the Tumor Microenvironment.
Elkabets, Moshe; Brook, Samuel
2018-01-01
Accurate measurement of progranulin (PGRN) in the circulation and in the tumor microenvironment is essential for understanding its role in cancer progression and metastasis. This chapter describes a number of approaches to measure the transcription level of the GRN gene and to detect and analyze PGRN expression in cancer cells and in the local environment of the tumor, in mouse and human samples. These validated protocols are utilized to investigate the functional role of PGRN in cancer. Finally, we discuss strategies to investigate the functions of PGRN in tumors using genetically modified mouse models and gene silencing techniques.
Recurrent Bilateral Focal Myositis.
Nagafuchi, Hiroko; Nakano, Hiromasa; Ooka, Seido; Takakuwa, Yukiko; Yamada, Hidehiro; Tadokoro, Mamoru; Shimojo, Sadatomo; Ozaki, Shoichi
This report describes a rare case of recurrent bilateral focal myositis and its successful treatment via methotrexate. A 38-year-old man presented myalgia of the right gastrocnemius in May 2005. Magnetic resonance imaging showed very high signal intensity in the right gastrocnemius on short-tau inversion recovery images. A muscle biopsy revealed inflammatory CD4+ cell-dominant myogenic change. Focal myositis was diagnosed. The first steroid treatment was effective. Tapering of prednisolone, however, repeatedly induced myositis relapse, which progressed to multiple muscle lesions of both lower limbs. Initiation of methotrexate finally allowed successful tapering of prednisolone, with no relapse in the past 4 years.
Recurrent Bilateral Focal Myositis
Nagafuchi, Hiroko; Nakano, Hiromasa; Ooka, Seido; Takakuwa, Yukiko; Yamada, Hidehiro; Tadokoro, Mamoru; Shimojo, Sadatomo; Ozaki, Shoichi
2016-01-01
This report describes a rare case of recurrent bilateral focal myositis and its successful treatment via methotrexate. A 38-year-old man presented myalgia of the right gastrocnemius in May 2005. Magnetic resonance imaging showed very high signal intensity in the right gastrocnemius on short-tau inversion recovery images. A muscle biopsy revealed inflammatory CD4+ cell-dominant myogenic change. Focal myositis was diagnosed. The first steroid treatment was effective. Tapering of prednisolone, however, repeatedly induced myositis relapse, which progressed to multiple muscle lesions of both lower limbs. Initiation of methotrexate finally allowed successful tapering of prednisolone, with no relapse in the past 4 years. PMID:27853086
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinbach, Andrew
2017-05-31
The primary project objective was development of improved polymer electrolyte membrane fuel cell (PEMFC) membrane electrode assemblies (MEAs) which address the key DOE barriers of performance, durability and cost. Additional project objectives were to address commercialization barriers specific to MEAs comprising 3M nanostructured thin film (NSTF) electrodes, including a larger-than-acceptable sensitivity to operating conditions, an unexplained loss of rated power capability with operating time, and slow break-in conditioning. Significant progress was made against each of these barriers, and most DOE 2020 targets were met or substantially approached.
Review of the GAS3 Family of Proteins and their Relevance to Cancer
Ashki, Negin; Gordon, Lynn; Wadehra, Madhuri
2017-01-01
The GAS3 family of tetraspan proteins has recently been implicated in the progression of cancer. Currently, six members of the GAS3 family have been identified in humans and mice, and while their expressions in disease vary, data suggest that they play a role in epithelial cell structure and function. In this review, we highlight the studies implicating four of the members in disease pathogenesis as well as probe the structural similarities between the family members. Finally, the impact of targeting select members of the family such as PMP22 and EMP2 is discussed. PMID:27279240
Review of the GAS3 Family of Proteins and their Relevance to Cancer.
Ashki, Negin; Gordon, Lynn; Wadehra, Madhuri
2015-01-01
The GAS3 family of tetraspan proteins has recently been implicated in the progression of cancer. Currently, six members of the GAS3 family have been identified in humans and mice, and while their expressions in disease vary, data suggest that they play a role in epithelial cell structure and function. In this review, we highlight the studies implicating four of the members in disease pathogenesis as well as probe the structural similarities between the family members. Finally, the impact of targeting select members of the family such as PMP22 and EMP2 is discussed.
Lithium-Sulfur Batteries: from Liquid to Solid Cells?
Lin, Zhan; Liang, Chengdu
2014-11-11
Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and themore » electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.« less
Ndj1, a telomere-associated protein, regulates centrosome separation in budding yeast meiosis.
Li, Ping; Shao, Yize; Jin, Hui; Yu, Hong-Guo
2015-04-27
Yeast centrosomes (called spindle pole bodies [SPBs]) remain cohesive for hours during meiotic G2 when recombination takes place. In contrast, SPBs separate within minutes after duplication in vegetative cells. We report here that Ndj1, a previously known meiosis-specific telomere-associated protein, is required for protecting SPB cohesion. Ndj1 localizes to the SPB but dissociates from it ∼16 min before SPB separation. Without Ndj1, meiotic SPBs lost cohesion prematurely, whereas overproduction of Ndj1 delayed SPB separation. When produced ectopically in vegetative cells, Ndj1 caused SPB separation defects and cell lethality. Localization of Ndj1 to the SPB depended on the SUN domain protein Mps3, and removal of the N terminus of Mps3 allowed SPB separation and suppressed the lethality of NDJ1-expressing vegetative cells. Finally, we show that Ndj1 forms oligomeric complexes with Mps3, and that the Polo-like kinase Cdc5 regulates Ndj1 protein stability and SPB separation. These findings reveal the underlying mechanism that coordinates yeast centrosome dynamics with meiotic telomere movement and cell cycle progression. © 2015 Li et al.
Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; ...
2018-03-04
Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency thanmore » those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.« less
Ndj1, a telomere-associated protein, regulates centrosome separation in budding yeast meiosis
Li, Ping; Shao, Yize; Jin, Hui
2015-01-01
Yeast centrosomes (called spindle pole bodies [SPBs]) remain cohesive for hours during meiotic G2 when recombination takes place. In contrast, SPBs separate within minutes after duplication in vegetative cells. We report here that Ndj1, a previously known meiosis-specific telomere-associated protein, is required for protecting SPB cohesion. Ndj1 localizes to the SPB but dissociates from it ∼16 min before SPB separation. Without Ndj1, meiotic SPBs lost cohesion prematurely, whereas overproduction of Ndj1 delayed SPB separation. When produced ectopically in vegetative cells, Ndj1 caused SPB separation defects and cell lethality. Localization of Ndj1 to the SPB depended on the SUN domain protein Mps3, and removal of the N terminus of Mps3 allowed SPB separation and suppressed the lethality of NDJ1-expressing vegetative cells. Finally, we show that Ndj1 forms oligomeric complexes with Mps3, and that the Polo-like kinase Cdc5 regulates Ndj1 protein stability and SPB separation. These findings reveal the underlying mechanism that coordinates yeast centrosome dynamics with meiotic telomere movement and cell cycle progression. PMID:25897084
Figlia, Gianluca; Gerber, Daniel
2017-01-01
Abstract Myelinating cells surround axons to accelerate the propagation of action potentials, to support axonal health, and to refine neural circuits. Myelination is metabolically demanding and, consistent with this notion, mTORC1—a signaling hub coordinating cell metabolism—has been implicated as a key signal for myelination. Here, we will discuss metabolic aspects of myelination, illustrate the main metabolic processes regulated by mTORC1, and review advances on the role of mTORC1 in myelination of the central nervous system and the peripheral nervous system. Recent progress has revealed a complex role of mTORC1 in myelinating cells that includes, besides positive regulation of myelin growth, additional critical functions in the stages preceding active myelination. Based on the available evidence, we will also highlight potential nonoverlapping roles between mTORC1 and its known main upstream pathways PI3K‐Akt, Mek‐Erk1/2, and AMPK in myelinating cells. Finally, we will discuss signals that are already known or hypothesized to be responsible for the regulation of mTORC1 activity in myelinating cells. PMID:29210103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.
Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency thanmore » those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.« less
αB-crystallin: Portrait of a malignant chaperone as a cancer therapeutic target
Malin, Dmitry; Petrovic, Vladimir; Strekalova, Elena; Sharma, Bhawna; Cryns, Vincent L.
2016-01-01
αB-crystallin is a widely expressed member of the small heat shock protein family that protects cells from stress by its dual function as a molecular chaperone to preserve proteostasis and as a cell death antagonist that negatively regulates components of the conserved apoptotic cell death machinery. Deregulated expression of αB-crystallin occurs in a broad array of solid tumors and has been linked to tumor progression and poor clinical outcomes. This review will focus on new insights into the molecular mechanisms by which oncogenes, oxidative stress, matrix detachment and other tumor microenvironmental stressors deregulate αB-crystallin expression. We will also review accumulating evidence pointing to an essential role for αB-crystallin in the multi-step metastatic cascade whereby tumor cells colonize distant organs by circumventing a multitude of barriers to cell migration and survival. Finally, we will evaluate emerging strategies to therapeutically target αB-crystallin and/or interacting proteins to selectively activate apoptosis and/or derail the metastatic cascade in an effort to improve outcomes for patients with metastatic disease. PMID:26820756
αB-crystallin: Portrait of a malignant chaperone as a cancer therapeutic target.
Malin, Dmitry; Petrovic, Vladimir; Strekalova, Elena; Sharma, Bhawna; Cryns, Vincent L
2016-04-01
αB-crystallin is a widely expressed member of the small heat shock protein family that protects cells from stress by its dual function as a molecular chaperone to preserve proteostasis and as a cell death antagonist that negatively regulates components of the conserved apoptotic cell death machinery. Deregulated expression of αB-crystallin occurs in a broad array of solid tumors and has been linked to tumor progression and poor clinical outcomes. This review will focus on new insights into the molecular mechanisms by which oncogenes, oxidative stress, matrix detachment and other tumor microenvironmental stressors deregulate αB-crystallin expression. We will also review accumulating evidence pointing to an essential role for αB-crystallin in the multi-step metastatic cascade whereby tumor cells colonize distant organs by circumventing a multitude of barriers to cell migration and survival. Finally, we will evaluate emerging strategies to therapeutically target αB-crystallin and/or interacting proteins to selectively activate apoptosis and/or derail the metastatic cascade in an effort to improve outcomes for patients with metastatic disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Badenes, Sara M; Fernandes, Tiago G; Rodrigues, Carlos A V; Diogo, Maria Margarida; Cabral, Joaquim M S
2016-09-20
Human pluripotent stem cells (hPSC) have attracted a great attention as an unlimited source of cells for cell therapies and other in vitro biomedical applications such as drug screening, toxicology assays and disease modeling. The implementation of scalable culture platforms for the large-scale production of hPSC and their derivatives is mandatory to fulfill the requirement of obtaining large numbers of cells for these applications. Microcarrier technology has been emerging as an effective approach for the large scale ex vivo hPSC expansion and differentiation. This review presents recent achievements in hPSC microcarrier-based culture systems and discusses the crucial aspects that influence the performance of these culture platforms. Recent progress includes addressing chemically-defined culture conditions for manufacturing of hPSC and their derivatives, with the development of xeno-free media and microcarrier coatings to meet good manufacturing practice (GMP) quality requirements. Finally, examples of integrated platforms including hPSC expansion and directed differentiation to specific lineages are also presented in this review. Copyright © 2016 Elsevier B.V. All rights reserved.
Hall, Claire E; Yao, Zhi; Choi, Minee; Tyzack, Giulia E; Serio, Andrea; Luisier, Raphaelle; Harley, Jasmine; Preza, Elisavet; Arber, Charlie; Crisp, Sarah J; Watson, P Marc D; Kullmann, Dimitri M; Abramov, Andrey Y; Wray, Selina; Burley, Russell; Loh, Samantha H Y; Martins, L Miguel; Stevens, Molly M; Luscombe, Nicholas M; Sibley, Christopher R; Lakatos, Andras; Ule, Jernej; Gandhi, Sonia; Patani, Rickie
2017-05-30
Motor neurons (MNs) and astrocytes (ACs) are implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but their interaction and the sequence of molecular events leading to MN death remain unresolved. Here, we optimized directed differentiation of induced pluripotent stem cells (iPSCs) into highly enriched (> 85%) functional populations of spinal cord MNs and ACs. We identify significantly increased cytoplasmic TDP-43 and ER stress as primary pathogenic events in patient-specific valosin-containing protein (VCP)-mutant MNs, with secondary mitochondrial dysfunction and oxidative stress. Cumulatively, these cellular stresses result in synaptic pathology and cell death in VCP-mutant MNs. We additionally identify a cell-autonomous VCP-mutant AC survival phenotype, which is not attributable to the same molecular pathology occurring in VCP-mutant MNs. Finally, through iterative co-culture experiments, we uncover non-cell-autonomous effects of VCP-mutant ACs on both control and mutant MNs. This work elucidates molecular events and cellular interplay that could guide future therapeutic strategies in ALS. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Translating Stem Cell Research to Cardiac Disease Therapies: Pitfalls and Prospects for Improvement
Rosen, Michael R.; Myerburg, Robert J.; Francis, Darrel P.; Cole, Graham D.; Marbán, Eduardo
2014-01-01
Over the past 2 decades, there have been numerous stem cell studies focused on cardiac diseases, ranging from proof-of-concept to phase 2 trials. This series of articles focuses on the legacy of these studies and the outlook for future treatment of cardiac diseases with stem cell therapies. The first section by Rosen and Myerburg is an independent review that analyzes the basic science and translational strategies supporting the rapid advance of stem cell technology to the clinic, the philosophies behind them, trial designs, and means for going forward that may impact favorably on progress. The second and third sections were collected in response to the initial section of this review. The commentary by Francis and Cole discusses the Rosen and Myerburg review and details how trial outcomes can be affected by noise, poor trial design (particularly the absence of blinding), and normal human tendencies toward optimism and denial. The final, independent article by Marbán takes a different perspective concerning the potential for positive impact of stem cell research applied to heart disease and future prospects for its clinical application. PMID:25169179
Pathogenesis of Gastric Cancer: Genetics and Molecular Classification.
Figueiredo, Ceu; Camargo, M C; Leite, Marina; Fuentes-Pananá, Ezequiel M; Rabkin, Charles S; Machado, José C
Gastric cancer is the fifth most incident and the third most common cause of cancer-related death in the world. Infection with Helicobacter pylori is the major risk factor for this disease. Gastric cancer is the final outcome of a cascade of events that takes decades to occur and results from the accumulation of multiple genetic and epigenetic alterations. These changes are crucial for tumor cells to expedite and sustain the array of pathways involved in the cancer development, such as cell cycle, DNA repair, metabolism, cell-to-cell and cell-to-matrix interactions, apoptosis, angiogenesis, and immune surveillance. Comprehensive molecular analyses of gastric cancer have disclosed the complex heterogeneity of this disease. In particular, these analyses have confirmed that Epstein-Barr virus (EBV)-positive gastric cancer is a distinct entity. The identification of gastric cancer subtypes characterized by recognizable molecular profiles may pave the way for a more personalized clinical management and to the identification of novel therapeutic targets and biomarkers for screening, prognosis, prediction of response to treatment, and monitoring of gastric cancer progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Weijie, E-mail: 459586768@qq.com; Liu, Yuxi, E-mail: 924013616@qq.com; Wang, Youhua, E-mail: wyouhua1516@163.com
Sam68 (Src-associated in mitosis of 68 kD), a KH domain RNA-binding protein, is not only important in signaling transduction cascades, but crucial in a variety of cellular processes. Sam68 is reported to be involved in the phospoinositide3-kinase (PI3K) and nuclear factor-kappa B (NF-κB) signaling pathways, and it is closely associated with cell proliferation, RNA metabolism, and tumor progression. However, we know little about the role of Sam68 during peripheral nervous system injury and regeneration. In this study, we investigated the expression of Sam68 and its biological significances in sciatic nerve crush. Interestingly, we found Sam68 had a co-localization with S100 (Schwannmore » cell marker). Moreover, after crush, Sam68 had a spatiotemporal protein expression, which was in parallel with proliferation cell nuclear antigen (PCNA). In vitro, we also observed increased expression of Sam68 during the process of TNF-α-induced Schwann cell proliferation model. Besides, flow cytometry analyses, CCK-8, and EDU were all performed with the purpose of investigating the role of Sam68 in the regulation of Schwann cell proliferation. Even more importantly, we discovered that Sam68 could enhance the phosphorylation of Akt while LY294002 (a PI3K inhibitor) obviously reversed Sam68-induced cell proliferation. Finally, we detected the variance during regeneration progress through the rat walk footprint test. In summary, all these evidences demonstrated that Sam68 might participate in Schwann cell proliferation partially via PI3K/Akt pathway and also regulate regeneration after sciatic nerve crush. -- Highlights: •The dynamic changes and location of Sam68 after sciatic nerve crush. •Sam68 promoted Schwann cell proliferation via PI3K/Akt pathway. •Sam68 modulated functional recovery after sciatic nerve crush.« less
Alefantis, Timothy; Flaig, Katherine E; Wigdahl, Brian; Jain, Pooja
2007-05-01
Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 transcriptional transactivator protein Tax plays an integral role in virus replication and disease progression. Traditionally, Tax is described as a nuclear protein where it performs its primary role as a transcriptional transactivator. However, recent studies have clearly shown that Tax can also be localized to the cytoplasm where it has been shown to interact with a number of host transcription factors most notably NF-kappaB, constitutive expression of which is directly related to the T cell transforming properties of Tax in ATL patients. The presence of a functional nuclear export signal (NES) within Tax and the secretion of full-length Tax have also been demonstrated previously. Additionally, release of Tax from HTLV-1-infected cells and the presence of cell-free Tax was demonstrated in the CSF of HAM/TSP patients suggesting that the progression to HAM/TSP might be mediated by the ability of Tax to function as an extracellular cytokine. Therefore, in both ATL and HAM/TSP Tax nuclear export and nucleocytoplasmic shuttling may play a critical role, the mechanism of which remains unknown. In this study, we have demonstrated that the calcium binding protein calreticulin interacts with Tax by co-immunoprecipitation. This interaction was found to localize to a region at or near the nuclear membrane. In addition, differential expression of calreticulin was demonstrated in various cell types that correlated with their ability to retain cytoplasmic Tax, particularly in astrocytes. Finally, a comparison of a number of HTLV-1-infected T cell lines to non-infected T cells revealed higher expression of calreticulin in infected cells implicating a direct role for this protein in HTLV-1 infection.
Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis
Palmer, Clovis S.; Cherry, Catherine L.; Sada-Ovalle, Isabel; Singh, Amit; Crowe, Suzanne M.
2016-01-01
Activation of the immune system occurs in response to the recognition of foreign antigens and receipt of optimal stimulatory signals by immune cells, a process that requires energy. Energy is also needed to support cellular growth, differentiation, proliferation, and effector functions of immune cells. In HIV-infected individuals, persistent viral replication, together with inflammatory stimuli contributes to chronic immune activation and oxidative stress. These conditions remain even in subjects with sustained virologic suppression on antiretroviral therapy. Here we highlight recent studies demonstrating the importance of metabolic pathways, particularly those involving glucose metabolism, in differentiation and maintenance of the activation states of T cells and monocytes. We also discuss how changes in the metabolic status of these cells may contribute to ongoing immune activation and inflammation in HIV- infected persons and how this may contribute to disease progression, establishment and persistence of the HIV reservoir, and the development of co-morbidities. We provide evidence that other viruses such as Epstein–Barr and Flu virus also disrupt the metabolic machinery of their host cells. Finally, we discuss how redox signaling mediated by oxidative stress may regulate metabolic responses in T cells and monocytes during HIV infection. PMID:27211546
Asefa, Benyam; Dermott, Jonathan M; Kaldis, Philipp; Stefanisko, Karen; Garfinkel, David J; Keller, Jonathan R
2006-02-20
p205 is a member of the interferon-inducible p200 family of proteins that regulate cell proliferation. Over-expression of p205 inhibits cell growth, although its mechanism of action is currently unknown. Therefore, we evaluated the effect of p205 on the p53 and Rb-dependent pathways of cell cycle regulation. p205 expression results in elevated levels of p21, and activates the p21 promoter in vitro in a p53-dependent manner. In addition, p205 induces increased expression of Rb, and binds directly to Rb and p53. Interestingly, p205 also induces growth inhibition independent of p53 and Rb by delaying G2/M progression in proliferating cells, and is a substrate for Cdk2 kinase activity. Finally, we have identified other binding partners of p205 by a yeast two-hybrid screen, including the paired homeodomain protein HoxB2. Taken together, our results indicate that p205 induces growth arrest by interaction with multiple transcription factors that regulate the cell cycle, including but not entirely dependent on the Rb- and p53-mediated pathways of growth inhibition.
Telltale tumor infiltrating lymphocytes (TIL) in oral, head & neck cancer.
Lei, Yu; Xie, Yuying; Tan, Yee Sun; Prince, Mark E; Moyer, Jeffrey S; Nör, Jacques; Wolf, Gregory T
2016-10-01
Evidence gleaned from recent studies on the role of tumor-infiltrating lymphocytes (TILs) suggests that cancer is not only a genetic disease but also an immunologic disease. Head and Neck Squamous Cell Carcinoma (HNSCC) has been a significant model to study cancer cell-immune cell interactions. First, immune cell infiltration is an important feature of these tumors. Second, HNSCC frequently develops resistance to immunogenic cytotoxicity, which provides a window to decipher how tumors engage the immune system to establish immune tolerance. Finally, chemoradiation therapy, as a central modality for HNSCC treatment, has been shown to elicit immune activation. The presence of effector immune cells in the tumor microenvironment is often associated with superior clinical response to adjuvant therapy. On the other hand, an activated immune system, in addition to limiting tumor initiation and progression, could also exert selective pressure to promote the growth of less immunogenic tumors, as a pivotal immunoediting process. But it remains unclear how cancer cell signaling regulates tumor immunogenicity and how to mitigate HNSCC-potentiated TIL suppression. In this review, we will revisit the prognostic role of TILs in HNSCC, and collectively discuss how cancer cell machinery impacts upon the plasticity of TILs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pleiotrophin antagonizes Brd2 during neuronal differentiation
Garcia-Gutierrez, Pablo; Juarez-Vicente, Francisco; Wolgemuth, Debra J.; Garcia-Dominguez, Mario
2014-01-01
ABSTRACT Bromodomain-containing protein 2 (Brd2) is a BET family chromatin adaptor required for expression of cell-cycle-associated genes and therefore involved in cell cycle progression. Brd2 is expressed in proliferating neuronal progenitors, displays cell-cycle-stimulating activity and, when overexpressed, impairs neuronal differentiation. Paradoxically, Brd2 is also detected in differentiating neurons. To shed light on the role of Brd2 in the transition from cell proliferation to differentiation, we had previously looked for proteins that interacted with Brd2 upon induction of neuronal differentiation. Surprisingly, we identified the growth factor pleiotrophin (Ptn). Here, we show that Ptn antagonized the cell-cycle-stimulating activity associated with Brd2, thus enhancing induced neuronal differentiation. Moreover, Ptn knockdown reduced neuronal differentiation. We analyzed Ptn-mediated antagonism of Brd2 in a cell differentiation model and in two embryonic processes associated with the neural tube: spinal cord neurogenesis and neural crest migration. Finally, we investigated the mechanisms of Ptn-mediated antagonism and determined that Ptn destabilizes the association of Brd2 with chromatin. Thus, Ptn-mediated Brd2 antagonism emerges as a modulation system accounting for the balance between cell proliferation and differentiation in the vertebrate nervous system. PMID:24695857
Wang, Yunling; Yang, Mingzi; Gao, Jianchao; Wei, Xiaofan; Fang, Weigang; Zhan, Jun; Zhang, Hongquan
2016-01-01
Kindlin-1, an integrin-interacting protein, has been implicated in TGF-β/Smad3 signaling. However, the molecular mechanism underlying Kindlin-1 regulation of TGF-β/Smad3 signaling remains elusive. Here, we reported that Kindlin-1 is an important mediator of TGF-β/Smad3 signaling by showing that Kindlin-1 physically interacts with TGF-β receptor I (TβRI), Smad anchor for receptor activation (SARA) and Smad3. Kindlin-1 is required for the interaction of Smad3 with TβRI, Smad3 phosphorylation, nuclear translocation, and finally the activation of TGF-β/Smad3 signaling pathway. Functionally, Kindlin-1 promoted colorectal cancer (CRC) cell proliferation in vitro and tumor growth in vivo, and was also required for CRC cell migration and invasion via an epithelial to mesenchymal transition. Kindlin-1 was found to be increased with the CRC progression from stages I to IV. Importantly, raised expression level of Kindlin-1 correlates with poor outcome in CRC patients. Taken together, we demonstrated that Kindlin-1 promotes CRC progression by recruiting SARA and Smad3 to TβRI and thereby activates TGF-β/Smad3 signaling. Thus, Kindlin-1 is a novel regulator of TGF-β/Smad3 signaling and may also be a potential target for CRC therapeutics. PMID:27776350
Deregulation of HEF1 Impairs M-Phase Progression by Disrupting the RhoA Activation Cycle
Dadke, Disha; Jarnik, Michael; Pugacheva, Elena N.; Singh, Mahendra K.; Golemis, Erica A.
2006-01-01
The focal adhesion-associated signaling protein HEF1 undergoes a striking relocalization to the spindle at mitosis, but a function for HEF1 in mitotic signaling has not been demonstrated. We here report that overexpression of HEF1 leads to failure of cells to progress through cytokinesis, whereas depletion of HEF1 by small interfering RNA (siRNA) leads to defects earlier in M phase before cleavage furrow formation. These defects can be explained mechanistically by our determination that HEF1 regulates the activation cycle of RhoA. Inactivation of RhoA has long been known to be required for cytokinesis, whereas it has recently been determined that activation of RhoA at the entry to M phase is required for cellular rounding. We find that increased HEF1 sustains RhoA activation, whereas depleted HEF1 by siRNA reduces RhoA activation. Furthermore, we demonstrate that chemical inhibition of RhoA is sufficient to reverse HEF1-dependent cellular arrest at cytokinesis. Finally, we demonstrate that HEF1 associates with the RhoA-GTP exchange factor ECT2, an orthologue of the Drosophila cytokinetic regulator Pebble, providing a direct means for HEF1 control of RhoA. We conclude that HEF1 is a novel component of the cell division control machinery and that HEF1 activity impacts division as well as cell attachment signaling events. PMID:16394104
Harajly, Mohamad; Zalzali, Hasan; Nawaz, Zafar; Ghayad, Sandra E.; Ghamloush, Farah; Basma, Hussein; Zainedin, Samiha; Rabeh, Wissam; Jabbour, Mark; Tawil, Ayman; Badro, Danielle A.; Evan, Gerard I.
2015-01-01
The restoration of p53 has been suggested as a therapeutic approach in tumors. However, the timing of p53 restoration in relation to its efficacy during tumor progression still is unclear. We now show that the restoration of p53 in murine premalignant proliferating pineal lesions resulted in cellular senescence, while p53 restoration in invasive pineal tumors did not. The effectiveness of p53 restoration was not dependent on p19Arf expression but showed an inverse correlation with Mdm2 expression. In tumor cells, p53 restoration became effective when paired with either DNA-damaging therapy or with nutlin, an inhibitor of p53-Mdm2 interaction. Interestingly, the inactivation of p53 after senescence resulted in reentry into the cell cycle and rapid tumor progression. The evaluation of a panel of human supratentorial primitive neuroectodermal tumors (sPNET) showed low activity of the p53 pathway. Together, these data suggest that the restoration of the p53 pathway has different effects in premalignant versus invasive pineal tumors, and that p53 activation needs to be continually sustained, as reversion from senescence occurs rapidly with aggressive tumor growth when p53 is lost again. Finally, p53 restoration approaches may be worth exploring in sPNET, where the p53 gene is intact but the pathway is inactive in the majority of examined tumors. PMID:26598601
Roles of O-GlcNAc in chronic diseases of aging.
Banerjee, Partha S; Lagerlöf, Olof; Hart, Gerald W
2016-10-01
O-GlcNAcylation, a dynamic nutrient and stress sensitive post-translational modification, occurs on myriad proteins in the cell nucleus, cytoplasm and mitochondria. O-GlcNAcylation serves as a nutrient sensor to regulate signaling, transcription, translation, cell division, metabolism, and stress sensitivity in all cells. Aberrant protein O-GlcNAcylation plays a critical role both in the development, as well as in the progression of a variety of age related diseases. O-GlcNAcylation underlies the etiology of diabetes, and changes in specific protein O-GlcNAc levels and sites are responsible for insulin expression and sensitivity and glucose toxicity. Abnormal O-GlcNAcylation contributes directly to diabetes related dysfunction of the heart, kidney and eyes and affects progression of cardiomyopathy, nephropathy and retinopathy. O-GlcNAcylation is a critical modification in the brain and plays a role in both plaque and tangle formation, thus making its study important in neurodegenerative disorders. O-GlcNAcylation also affects cellular growth and metabolism during the development and metastasis of cancer. Finally, alterations in O-GlcNAcylation of transcription factors in macrophages and lymphocytes affect inflammation and cytokine production. Thus, O-GlcNAcylation plays key roles in many of the major diseases associated with aging. Elucidation of its specific functions in both normal and diseased tissues is likely to uncover totally novel avenues for therapeutic intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.