Epithelial stem cells are formed by small-particles released from particle-producing cells
Kong, Wuyi; Zhu, Xiao Ping; Han, Xiu Juan; Nuo, Mu; Wang, Hong
2017-01-01
Recent spatiotemporal report demonstrated that epidermal stem cells have equal potential to divide or differentiate, with no asymmetric cell division observed. Therefore, how epithelial stem cells maintain lifelong stem-cell support still needs to be elucidated. In mouse blood and bone marrow, we found a group of large cells stained strongly for eosin and containing coiled-tubing-like structures. Many were tightly attached to each other to form large cellular clumps. After sectioning, these large cell-clumps were composed of not cells but numerous small particles, however with few small “naked” nuclei. The small particles were about 2 to 3 μm in diameter and stained dense red for eosin, so they may be rich in proteins. Besides the clumps composed of small particles, we identified clumps formed by fusion of the small particles and clumps of newly formed nucleated cells. These observations suggest that these small particles further fused and underwent cellularization. E-cadherin was expressed in particle-fusion areas, some “naked” nuclei and the newly formed nucleated cells, which suggests that these particles can form epithelial cells via fusion and nuclear remodeling. In addition, we observed similar-particle fusion before epithelial cellularization in mouse kidney ducts after kidney ischemia, which suggests that these particles can be released in the blood and carried to the target tissues for epithelial-cell regeneration. Oct4 and E-cadherin expressed in the cytoplasmic areas in cells that were rich in protein and mainly located in the center of the cellular clumps, suggesting that these newly formed cells have become tissue-specific epithelial stem cells. Our data provide evidence that these large particle-producing cells are the origin of epithelial stem cells. The epithelial stem cells are newly formed by particle fusion. PMID:28253358
Yamada, M; Koyama, T; Matsuhashi, M
1977-01-01
Micrococcus rubens, a gram-positive occus, usually forms large, cubic packets of more than 500 cells that are regularly arranged in three-dimensional cell groups. In medium with extremely low concentration of Mg2+ and phosphate, in which the cells can only grow on a agar surface, it formed small groups of 2 to 20 cells. Irregularly arraged cell groups of intermediated size were obtained in culture media containing intermediated concentrations of Mg2+ and phosphate. Mutants that formed irregular cell groups of intermediate size under normal culture conditions were also obtained. Images PMID:845123
Sedore, Stanley C.; Byers, Sarah A.; Biglione, Sebastian; Price, Jason P.; Maury, Wendy J.; Price, David H.
2007-01-01
Basal transcription of the HIV LTR is highly repressed and requires Tat to recruit the positive transcription elongation factor, P-TEFb, which functions to promote the transition of RNA polymerase II from abortive to productive elongation. P-TEFb is found in two forms in cells, a free, active form and a large, inactive complex that also contains 7SK RNA and HEXIM1 or HEXIM2. Here we show that HIV infection of cells led to the release of P-TEFb from the large form. Consistent with Tat being the cause of this effect, transfection of a FLAG-tagged Tat in 293T cells caused a dramatic shift of P-TEFb out of the large form to a smaller form containing Tat. In vitro, Tat competed with HEXIM1 for binding to 7SK, blocked the formation of the P-TEFb–HEXIM1–7SK complex, and caused the release P-TEFb from a pre-formed P-TEFb–HEXIM1–7SK complex. These findings indicate that Tat can acquire P-TEFb from the large form. In addition, we found that HEXIM1 binds tightly to the HIV 5′ UTR containing TAR and recruits and inhibits P-TEFb activity. This suggests that in the absence of Tat, HEXIM1 may bind to TAR and repress transcription elongation of the HIV LTR. PMID:17576689
Malignant histiocytic lymphoma with large lacunar cells.
Leahu, S; Dobrea, M
1997-01-01
A case of lymph node biopsy with a peculiar histological aspect is described. The clinical data suggest a malignant lymphoid disease. The histological picture is that of a malignant histiocytosis but, among the majority of small histiocytes, there are some large cells like the large lacunar cells from Hodgkin's disease. These large cells (and some small cells) contain the CD 30 antigen of Reed-Sternberg cells. It is discussed whether the appropriate diagnosis is Hodgkin's disease, malignant histiocytosis, or non-Hodgkin's malignant lymphoma. Our diagnosis is Hodgkin's disease, the nodular sclerosing form.
CLONING AND CHARACTERIZATION OF OSTEOCLAST PRECURSORS FROM THE RAW264.7 CELL LINE
Cuetara, Bethany L. V.; Crotti, Tania N.; O'Donoghue, Anthony J.
2006-01-01
SUMMARY Osteoclasts are bone-resorbing cells that differentiate from macrophage precursors in response to receptor activator of NF-κB (RANKL). In vitro models of osteoclast differentiation are principally based on primary cell culture, which are poorly suited to molecular and transgene studies due to the limitations associated with the use of primary macrophage. RAW264.7 is a transfectable macrophage cell line with the capacity to form osteoclast-like cells. In the present study we have identified osteoclast precursors among clones of RAW264.7 cells. RAW264.7 cell were cloned by limiting dilution and induced to osteoclast differentiation by treatment with recombinant RANKL. Individual RAW264.7 cell clones formed tartrate resistant acid phosphatase (TRAP) positive multinuclear cells to various degrees with RANKL treatment. All clones tested expressed the RANKL receptor RANK. Each of the clones expressed the osteoclast marker genes TRAP and cathepsin-K mRNA with RANKL treatment. However, we noted that only select clones were able to form large, well-spread, TRAP positive multinuclear cells. Clones capable of forming large TRAP positive multinuclear cells also expressed β3 integrin and calcitonin receptor mRNAs and were capable of resorbing a mineralized matrix. All clones tested activated NF-κB with RANKL treatment. cDNA expression profiling of osteoclast precursor RAW264.7 cell clones demonstrates appropriate expression of a large number of genes before and after osteoclastic differentiation. These osteoclast precursor RAW264.7 cell clones provide a valuable model for dissecting the cellular and molecular regulation of osteoclast differentiation and activation. PMID:16948499
Maltese, William A.; Overmeyer, Jean H.
2015-01-01
Apoptosis is the most widely recognized form of physiological programmed cell death. During the past three decades, various nonapoptotic forms of cell death have gained increasing attention, largely because of their potential importance in pathological processes, toxicology, and cancer therapy. A recent addition to the panoply of cell death phenotypes is methuosis. The neologism is derived from the Greek methuo (to drink to intoxication) because the hallmark of this form of cell death is displacement of the cytoplasm by large fluid-filled vacuoles derived from macropinosomes. The demise of the cell resembles many forms of necrosis, insofar as there is a loss of metabolic capacity and plasma membrane integrity, without the cell shrinkage and nuclear fragmentation associated with apoptosis. Methuosis was initially defined in glioblastoma cells after ectopic expression of activated Ras, but recent reports have described small molecules that can induce the features of methuosis in a broad spectrum of cancer cells, including those that are resistant to conventional apoptosis-inducing drugs. This review summarizes the available information about the distinguishing morphological characteristics and underlying mechanisms of methuosis. We compare and contrast methuosis with other cytopathological conditions in which accumulation of clear cytoplasmic vacuoles is a prominent feature. Finally, we highlight key questions that need to be answered to determine whether methuosis truly represents a unique form of regulated cell death. PMID:24726643
Arai, Shinpei; Ogiwara, Naoko; Mukai, Saki; Takezawa, Yuka; Sugano, Mitsutoshi; Honda, Takayuki; Okumura, Nobuo
2017-06-01
Fibrinogen storage disease (FSD) is a rare disorder that is characterized by the accumulation of fibrinogen in hepatocytes and induces liver injury. Six mutations in the γC domain (γG284R, γT314P, γD316N, the deletion of γG346-Q350, γG366S, and γR375W) have been identified for FSD. Our group previously established γ375W fibrinogen-producing Chinese hamster ovary (CHO) cells and observed aberrant large granular and fibrous forms of intracellular inclusion bodies. The aim of this study was to investigate whether fibrous intracellular inclusion bodies are specific to FSD-inducible variant fibrinogen. Thirteen expression vectors encoding the variant γ-chain were stably or transiently transfected into CHO cells expressing normal fibrinogen Aα- and Bβ-chains or HuH-7 cells, which were then immunofluorescently stained. Six CHO and HuH-7 cell lines that transiently produced FSD-inducible variant fibrinogen presented the fibrous (3.2-22.7 and 2.1-24.5%, respectively) and large granular (5.4-25.5 and 7.7-23.9%) forms of intracellular inclusion bodies. Seven CHO and HuH-7 cell lines that transiently produced FSD-non-inducible variant fibrinogen only exhibit the large granular form. These results demonstrate that transiently transfected variant fibrinogen-producing CHO cells and inclusion bodies of the fibrous form may be useful in non-invasive screening for FSD risk factors for FSD before its onset.
Magro, Cynthia M; Wang, Xuan; Subramaniyam, Shivakumar; Darras, Natasha; Mathew, Susan
2014-04-01
Diffuse large cell B-cell lymphoma of the skin is most commonly represented by diffuse large cell variants of primary cutaneous follicle center cell lymphoma and the leg-type lymphoma. In a minority of cases, the infiltrates are an expression of stage 4 disease of established extracutaneous B-cell lymphoma. We describe 3 patients with an aggressive form of B-cell lymphoma secondarily involving the skin. Two of the patients were in the ninth decade of life, whereas 1 patient was 34 years of age. In the elderly patients, there was an antecedent and/or concurrent history of follicular lymphoma, whereas in the younger patient, the tumor was a de novo presentation of this aggressive form of lymphoma. The elderly patients succumbed to their disease within less than a year from the time of diagnosis, whereas 1 patient is alive but with persistent and progressive disease despite chemotherapeutic intervention. The infiltrates in all 3 cases were diffuse and composed of large malignant hematopoietic cells that exhibited a round nucleus with a finely dispersed chromatin. Phenotypically, the tumor cells were Bcl-2 and CD10 positive, whereas Bcl-6 and Mum-1 showed variable positivity. One case showed combined Mum-1 positivity along with an acute lymphoblastic lymphoma phenotype, including the absence of CD20 expression. In each case, there was a c-MYC and BCL2/IGH rearrangement diagnostic of double-hit lymphoma. In one case, there was an additional BCL6 rearrangement, defining what is in essence triple-hit lymphoma. In conclusion, double-hit lymphoma is an aggressive form of B-cell neoplasia resistant to standard chemotherapy regimens, which in many but not all cases represents tumor progression in the setting of a lower grade B-cell malignancy.
Morphology of human embryonic kidney cells in culture after space flight
NASA Technical Reports Server (NTRS)
Todd, P.; Kunze, M. E.; Williams, K.; Morrison, D. R.; Lewis, M. L.; Barlow, G. H.
1985-01-01
The ability of human embyronic kidney cells to differentiate into small epithelioid, large epithelioid, domed, and fenestrated morphological cell types following space flight is examined. Kidney cells exposed to 1 day at 1 g, then 1 day in orbit, and a 12 minute passage through the electrophoretic separator are compared with control cultures. The data reveal that 70 percent of small epithelioid, 16 percent of large epithelioid, 9 percent of dome-forming, and 5 percent of fenestrated cells formed in the space exposed cells; the distributions correlate well with control data. The formation of domed cells from cells cultured from low electrophoretic mobility fractions and small epithelioid cells from high mobility fractions is unaffected by space flight conditions. It is concluded that storage under microgravity conditions does not influence the morphological differentiation of human embryonic kidney cells in low-passage culture.
Scanning electron microscopy study of adhesion in sea urchin blastulae. M.S. Thesis
NASA Technical Reports Server (NTRS)
Crowther, Susan D.
1988-01-01
The dissociation supernatant (DS) isolated by disaggregating Strongylocentrotus purpuratus blastulae in calcium- and magnesium-free seawater specifically promotes reaggregation of S. purpuratus blastula cells. The purpose of this study was to use scanning electron microscopy to examine the gross morphology of aggregates formed in the presence of DS to see if it resembles adhesion in partially dissociated blastulae. A new reaggregation procedure developed here, using large volumes of cell suspension and a large diameter of rotation, was utilized to obtain sufficient quantities of aggregates for scanning electron microscopy. The results indicate that aggregates formed in the presence of DS resemble partially dissociated intact embryos in terms of the direct cell-cell adhesion observed. DS did not cause aggregation to form as a result of the entrapment of cells in masses of extracellular material. These studies provide the groundwork for further studies using transmission electron microscopy to more precisely define the adhesive contacts made by cells in the presence of the putative adhesion molecules present in DS.
Merkel Cell Polyomavirus Large T Antigen Has Growth-Promoting and Inhibitory Activities
Cheng, Jingwei; Rozenblatt-Rosen, Orit; Paulson, Kelly G.; Nghiem, Paul
2013-01-01
Merkel cell carcinoma (MCC) is a rare and aggressive form of skin cancer. In at least 80% of all MCC, Merkel cell polyomavirus (MCPyV) DNA has undergone clonal integration into the host cell genome, and most tumors express the MCPyV large and small T antigens. In all cases of MCC reported to date, the integrated MCPyV genome has undergone mutations in the large T antigen. These mutations result in expression of a truncated large T antigen that retains the Rb binding or LXCXE motif but deletes the DNA binding and helicase domains. However, the transforming functions of full-length and truncated MCPyV large T antigen are unknown. We compared the transforming activities of full-length, truncated, and alternatively spliced 57kT forms of MCPyV large T antigen. MCPyV large T antigen could bind to Rb but was unable to bind to p53. Furthermore, MCPyV-truncated large T antigen was more effective than full-length and 57kT large T antigen in promoting the growth of human and mouse fibroblasts. In contrast, expression of the MCPyV large T antigen C-terminal 100 residues could inhibit the growth of several different cell types. These data imply that the deletion of the C terminus of MCPyV large T antigen found in MCC serves not only to disrupt viral replication but also results in the loss of a distinct growth-inhibitory function intrinsic to this region. PMID:23514892
Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium
Losick, Vicki P.; Fox, Donald T.; Spradling, Allan C.
2014-01-01
Summary Background Re-establishing epithelial integrity and biosynthetic capacity is critically important following tissue damage. The adult Drosophila abdominal epithelium provides an attractive new system to address how post-mitotic diploid cells contribute to repair. Results Puncture wounds to the adult Drosophila epidermis close initially by forming a melanized scab. We found that epithelial cells near the wound site fuse to form a giant syncytium, which sends lamellae under the scab to re-epithelialize the damaged site. Other large cells arise more peripherally by initiating endocycles and becoming polyploid, or by cell fusion. Rac GTPase activity is needed for syncytium formation, while the Hippo signaling effector Yorkie modulates both polyploidization and cell fusion. Large cell formation is functionally important because when both polyploidization and fusion are blocked, wounds do not re-epithelialize. Conclusions Our observations indicate that cell mass lost upon wounding can be replaced by polyploidization instead of mitotic proliferation. We propose that large cells generated by polyploidization or cell fusion are essential because they are better able than diploid cells to mechanically stabilize wounds, especially those containing permanent acellular structures, such as scar tissue. PMID:24184101
Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium.
Losick, Vicki P; Fox, Donald T; Spradling, Allan C
2013-11-18
Reestablishing epithelial integrity and biosynthetic capacity is critically important following tissue damage. The adult Drosophila abdominal epithelium provides an attractive new system to address how postmitotic diploid cells contribute to repair. Puncture wounds to the adult Drosophila epidermis close initially by forming a melanized scab. We found that epithelial cells near the wound site fuse to form a giant syncytium, which sends lamellae under the scab to re-epithelialize the damaged site. Other large cells arise more peripherally by initiating endocycles and becoming polyploid, or by cell fusion. Rac GTPase activity is needed for syncytium formation, while the Hippo signaling effector Yorkie modulates both polyploidization and cell fusion. Large cell formation is functionally important because when both polyploidization and fusion are blocked, wounds do not re-epithelialize. Our observations indicate that cell mass lost upon wounding can be replaced by polyploidization instead of mitotic proliferation. We propose that large cells generated by polyploidization or cell fusion are essential because they are better able than diploid cells to mechanically stabilize wounds, especially those containing permanent acellular structures, such as scar tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.
The new reports on life cycle of Heterosigma akashiwo (Raphidophyceae)
NASA Astrophysics Data System (ADS)
Kim, J. H.
2016-02-01
Heterosigma akashiwo (Hada) Hada (Raphidophyceae) is a noxious bloom-forming algal species that has damaged many fish farms in coastal waters during recent decades. Consequently, many studies focused on the population dynamics of H. akashiwo, while its life cycle was not well studied. In this study, we investigated veiled life cycle of H. akashiwo through culture based method. We cultured eight H. akashiwostrains originated from Korea, Japan, USA under various conditions (water temp., light intensity, salinity, pH). Morphological diversity of cells were observed via light microscopy and scanning electron microscopy. To observe nucleus of living cell, cells were stained with Hoechst and changes of cells in culture were observed through time-lapse. For observation of cysts and their germination process, cysts were isolated from sediment. Different from the previous knowledge, H. akashiwo has only vegetative cell stage and cyst stage, we discovered that H. akashiwo has extra small cell stage and large cell stage. Large cells are much bigger (20-45 µm) than vegetative cells. Large cell formation was resulted from fusion of vegetative cells. Small cells were very small (6.88 ± 0.85 µm), these cell divided from large cell or formed in germination process of cysts rarely. Small cells have lower motility than vegetative cells. These results improved the study of life stages of H. akashiwo and this fundamental investigation provide important new information and improve our understanding of the life cycle of H. akashiwo.
A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells.
Feric, Marina; Brangwynne, Clifford P
2013-10-01
The size of a typical eukaryotic cell is of the order of ∼10 μm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of organisms from humans to starfish. For example, oocytes of the frog Xenopus laevis grow to a diameter ≥1 mm. They have a correspondingly large nucleus (germinal vesicle) of ∼450 μm in diameter, which is similar to smaller somatic nuclei, but contains a significantly higher concentration of actin. The form and structure of this nuclear actin remain controversial, and its potential mechanical role within these large nuclei is unknown. Here, we use a microrheology and quantitative imaging approach to show that germinal vesicles contain an elastic F-actin scaffold that mechanically stabilizes these large nuclei against gravitational forces, which are usually considered negligible within cells. We find that on actin disruption, ribonucleoprotein droplets, including nucleoli and histone locus bodies, undergo gravitational sedimentation and fusion. We develop a model that reveals how gravity becomes an increasingly potent force as cells and their nuclei grow larger than ∼10 μm, explaining the requirement for a stabilizing nuclear F-actin scaffold in large Xenopus oocytes. All life forms are subject to gravity, and our results may have broad implications for cell growth and size control.
A nuclear F-actin scaffold stabilizes RNP droplets against gravity in large cells
Feric, Marina; Brangwynne, Clifford P.
2013-01-01
The size of a typical eukaryotic cell is on the order of ≈10 μm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of organisms from humans to starfish. For example, oocytes of the frog X. laevis grow to a diameter ≥1 mm. They contain a correspondingly large nucleus (germinal vesicle, GV) of ≈450 μm in diameter, which is similar to smaller somatic nuclei, but contains a significantly higher concentration of actin. The form and structure of this nuclear actin remain controversial, and its potential mechanical role within these large nuclei is unknown. Here, we use a microrheology and quantitative imaging approach to show that GVs contain an elastic F-actin scaffold that mechanically stabilizes these large nuclei against gravitational forces, which are usually considered negligible within cells. We find that upon actin disruption, RNA/protein droplets, including nucleoli and histone locus bodies (HLBs), undergo gravitational sedimentation and fusion. We develop a model that reveals how gravity becomes an increasingly potent force as cells and their nuclei grow larger than ≈10 μm, explaining the requirement for a stabilizing nuclear F-actin scaffold in large X. laevis ooctyes. All life forms are subject to gravity, and our results may have broad implications for cell growth and size control. PMID:23995731
Grid cells form a global representation of connected environments.
Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell
2015-05-04
The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5-8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9-11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Grid Cells Form a Global Representation of Connected Environments
Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell
2015-01-01
Summary The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5–8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9–11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. PMID:25913404
1981-06-01
numnber) Annealing Fusion Sealed Mirrors ULED Mirrors Boule Large Lightweight Mirror Core Low Expansion Glass Coremaker Mirror Blanks Forming Furnace...Experiments 34 4 10.6 Grinder Procurement 35 J 1 I GLOSSARY Alpha - Coef. of thermal expansion. Boule - The disc of glass formed in the furnace. Cell...turning over of large plates, cores or mirrors. Flowout - Method used to produce large diameter plates from small diameter boules. Glass - Used in the
Browne, Christopher; Bishop, Julius; Yang, Yunzhi
2014-01-01
The induced membrane has been widely used in the treatment of large bone defects but continues to be limited by a relatively lengthy healing process and a requisite two stage surgical procedure. Here we report the development and characterization of a synthetic biomimetic induced membrane (BIM) consisting of an inner highly pre-vascularized cell sheet and an outer osteogenic layer using cell sheet engineering. The pre-vascularized inner layer was formed by seeding human umbilical vein endothelial cells (HUVECs) on a cell sheet comprised of a layer of undifferentiated human bone marrow-derived mesenchymal stem cells (hMSCs). The outer osteogenic layer was formed by inducing osteogenic differentiation of hMSCs. In vitro results indicated the undifferentiated hMSCs cell sheet facilitated the alignment of HUVECs and significantly promoted the formation of vascular-like networks. Furthermore, seeded HUVECs rearranged the extracellular matrix produced by hMSCs sheet. After subcutaneously implantation, the composite constructs showed rapid vascularization and anastomosis with the host vascular system, forming functional blood vessels in vivo. Osteogenic potential of the BIM was evidenced by immunohistochemistry staining of osteocalcin, tartrate-resistant acid phosphatase (TRAP) staining, and alizarin red staining. In summary, the synthetic BIM showed rapid vascularization, significant anastomoses, and osteogenic potential in vivo. This synthetic BIM has the potential for treatment of large bone defects in the absence of infection. PMID:24747351
Contribution of TMEM16F to pyroptotic cell death.
Ousingsawat, Jiraporn; Wanitchakool, Podchanart; Schreiber, Rainer; Kunzelmann, Karl
2018-02-20
Pyroptosis is a highly inflammatory form of programmed cell death that is caused by infection with intracellular pathogens and activation of canonical or noncanonical inflammasomes. The purinergic receptor P2X 7 is activated by the noncanonical inflammasome and contributes essentially to pyroptotic cell death. The Ca 2+ activated phospholipid scramblase and ion channel TMEM16F has been shown earlier to control cellular effects downstream of purinergic P2X 7 receptors that ultimately lead to cell death. As pyroptotic cell death is accompanied by an increases in intracellular Ca 2+ , we asked whether TMEM16F is activated during pyroptosis. The N-terminal cleavage product of gasdermin D (GD-N) is an executioner of pyroptosis by forming large plasma membrane pores. Expression of GD-N enhanced basal Ca 2+ levels and induced cell death. We observed that GD-N induced cell death in HEK293 and HAP1 cells, which was depending on expression of endogenous TMEM16F. GD-N activated large whole cell currents that were suppressed by knockdown or inhibition of TMEM16F. The results suggest that whole cell currents induced by the pore forming domain of gasdermin-D, are at least in part due to activation of TMEM16F. Knockdown of other TMEM16 paralogues expressed in HAP1 cells suggest TMEM16F as a crucial element during pyroptosis and excluded a role of other TMEM16 proteins. Thus TMEM16F supports pyroptosis and other forms of inflammatory cell death such as ferroptosis. Its potent inhibition by tannic acid may be part of the anti-inflammatory effects of flavonoids.
The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells
NASA Astrophysics Data System (ADS)
Zheng, Yan; Zhang, Heting; Deng, Xiaojiang; Liu, Jing; Chen, Huiping
2017-01-01
Vacuole fusion is a necessary process for the establishment of a large central vacuole, which is the central location of various hydrolytic enzymes and other factors involved in death at the beginning of plant programmed cell death (PCD). In our report, the fusion of vacuoles has been presented in two ways: i) small vacuoles coalesce to form larger vacuoles through membrane fusion, and ii) larger vacuoles combine with small vacuoles when small vacuoles embed into larger vacuoles. Regardless of how fusion occurs, a large central vacuole is formed in rice (Oryza sativa) aleurone cells. Along with the development of vacuolation, the rupture of the large central vacuole leads to the loss of the intact plasma membrane and the degradation of the nucleus, resulting in cell death. Stabilizing or disrupting the structure of actin filaments (AFs) inhibits or promotes the fusion of vacuoles, which delays or induces PCD. In addition, the inhibitors of the vacuolar processing enzyme (VPE) and cathepsin B (CathB) block the occurrence of the large central vacuole and delay the progression of PCD in rice aleurone layers. Overall, our findings provide further evidence for the rupture of the large central vacuole triggering the PCD in aleruone layers.
Liang, Sitai; Mele, James; Wu, Yuehong; Buffenstein, Rochelle; Hornsby, Peter J.
2013-01-01
Summary The naked mole-rat (NMR, Heterocephalus glaber) is a long-lived mammal in which spontaneous cancer has not been observed. In order to investigate possible mechanisms for cancer resistance in this species, we studied the properties of skin fibroblasts from the NMR following transduction with oncogenes that cause cells of other mammalian species to form malignant tumors. NMR fibroblasts were transduced with a retrovirus encoding SV40 large T antigen and oncogenic RasG12V. Following transplantation of transduced cells into immunodeficient mice, cells rapidly entered crisis, as evidenced by the presence of anaphase bridges, giant cells with enlarged nuclei, multinucleated cells, and cells with large number of chromosomes or abnormal chromatin material. In contrast, similarly transduced mouse and rat fibroblasts formed tumors that grew rapidly without crisis. Crisis was also observed after >40 population doublings in SV40 TAg/Ras-expressing NMR cells in culture. Crisis in culture was prevented by additional infection of the cells with a retrovirus encoding hTERT (telomerase reverse transcriptase). SV40 TAg/Ras/hTERT-expressing NMR cells formed tumors that grew rapidly in immunodeficient mice without evidence of crisis. Crisis could also be induced in SV40 TAg/Ras-expressing NMR cells by loss of anchorage, but after hTERT transduction cells were able to proliferate normally following loss of anchorage. Thus, rapid crisis is a response of oncogene-expressing NMR cells to growth in an in vivo environment, which requires anchorage independence, and hTERT permits cells to avoid crisis and to achieve malignant tumor growth. The unique reaction of NMR cells to oncogene expression may form part of the cancer resistance of this species. PMID:20550519
Dynamic Reorganization of Metabolic Enzymes into Intracellular Bodies
O’Connell, Jeremy D.; Zhao, Alice; Ellington, Andrew D.; Marcotte, Edward M.
2013-01-01
Both focused and large-scale cell biological and biochemical studies have revealed that hundreds of metabolic enzymes across diverse organisms form large intracellular bodies. These proteinaceous bodies range in form from fibers and intracellular foci—such as those formed by enzymes of nitrogen and carbon utilization and of nucleotide biosynthesis—to high-density packings inside bacterial microcompartments and eukaryotic microbodies. Although many enzymes clearly form functional mega-assemblies, it is not yet clear for many recently discovered cases whether they represent functional entities, storage bodies, or aggregates. In this article, we survey intracellular protein bodies formed by metabolic enzymes, asking when and why such bodies form and what their formation implies for the functionality—and dysfunctionality—of the enzymes that comprise them. The panoply of intracellular protein bodies also raises interesting questions regarding their evolution and maintenance within cells. We speculate on models for how such structures form in the first place and why they may be inevitable. PMID:23057741
Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment.
Eguchi, Takanori; Sogawa, Chiharu; Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-Ichi; Okamoto, Kuniaki; Calderwood, Stuart K
2018-01-01
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression.
Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment
Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-ichi; Okamoto, Kuniaki; Calderwood, Stuart K.
2018-01-01
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression. PMID:29415026
Association of Systemic Anaplastic Large Cell Lymphoma and Active Toxoplasmosis in a Child.
Sayyahfar, Shirin; Karimi, Abdollah; Gharib, Atoosa; Fahimzad, Alireza
2015-08-01
Anaplastic large cell lymphoma is a subset of non-Hodgkin lymphoma and an unusual disease in children. Herein we have reported a 7- year- old girl with a large necrotic skin ulcer on the chest caused by systemic form of anaplastic large-cell lymphoma and simultaneous active toxoplasmosis diagnosed by PCR on lymph node specimen. There were few reports showing a role for toxoplasma infection to cause some malignancies such as lymphoma in adults. Based to our knowledge, this has been the first report of simultaneous systemic anaplastic large cell lymphoma and active toxoplasmosis, documented by positive PCR on tissue biopsy in a child. This case report has suggested more attention to the accompanying Toxoplasma gondii infection as a probable cause of some types of lymphomas.
NASA Astrophysics Data System (ADS)
Gu, Xiaodan; Zhou, Yan; Gu, Kevin; Kurosawa, Tadanori; Yan, Hongping; Wang, Cheng; Toney, Micheal; Bao, Zhenan
The challenge of continuous printing in high efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution coated all-polymer bulk heterojunction (BHJ) solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, our results showed that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. We were able to continuously roll-to-roll slot die print large area all-polymer solar cells with power conversion efficiencies of 5%, with combined cell area up to 10 cm2. This is among the highest efficiencies realized with R2R coated active layer organic materials on flexible substrate. DOE BRIDGE sunshot program. Office of Naval Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Xiaodan; Zhou, Yan; Gu, Kevin
The challenge of continuous printing in high-efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution-coated all-polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers.more » This particular methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small-scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. Large-area all-polymer solar cells are continuously roll-to-roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm 2. This is among the highest efficiencies realized with R2R-coated active layer organic materials on flexible substrate.« less
Gu, Xiaodan; Zhou, Yan; Gu, Kevin; ...
2017-03-07
The challenge of continuous printing in high-efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution-coated all-polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers.more » This particular methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small-scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. Large-area all-polymer solar cells are continuously roll-to-roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm 2. This is among the highest efficiencies realized with R2R-coated active layer organic materials on flexible substrate.« less
Fenix, Aidan M.; Taneja, Nilay; Buttler, Carmen A.; Lewis, John; Van Engelenburg, Schuyler B.; Ohi, Ryoma; Burnette, Dylan T.
2016-01-01
Cell movement and cytokinesis are facilitated by contractile forces generated by the molecular motor, nonmuscle myosin II (NMII). NMII molecules form a filament (NMII-F) through interactions of their C-terminal rod domains, positioning groups of N-terminal motor domains on opposite sides. The NMII motors then bind and pull actin filaments toward the NMII-F, thus driving contraction. Inside of crawling cells, NMIIA-Fs form large macromolecular ensembles (i.e., NMIIA-F stacks), but how this occurs is unknown. Here we show NMIIA-F stacks are formed through two non–mutually exclusive mechanisms: expansion and concatenation. During expansion, NMIIA molecules within the NMIIA-F spread out concurrent with addition of new NMIIA molecules. Concatenation occurs when multiple NMIIA-Fs/NMIIA-F stacks move together and align. We found that NMIIA-F stack formation was regulated by both motor activity and the availability of surrounding actin filaments. Furthermore, our data showed expansion and concatenation also formed the contractile ring in dividing cells. Thus interphase and mitotic cells share similar mechanisms for creating large contractile units, and these are likely to underlie how other myosin II–based contractile systems are assembled. PMID:26960797
Sunter, Jack D.; Benz, Corinna; Andre, Jane; Whipple, Sarah; McKean, Paul G.; Gull, Keith; Ginger, Michael L.; Lukeš, Julius
2015-01-01
ABSTRACT The cell shape of Trypanosoma brucei is influenced by flagellum-to-cell-body attachment through a specialised structure – the flagellum attachment zone (FAZ). T. brucei exhibits numerous morphological forms during its life cycle and, at each stage, the FAZ length varies. We have analysed FLAM3, a large protein that localises to the FAZ region within the old and new flagellum. Ablation of FLAM3 expression causes a reduction in FAZ length; however, this has remarkably different consequences in the tsetse procyclic form versus the mammalian bloodstream form. In procyclic form cells FLAM3 RNAi results in the transition to an epimastigote-like shape, whereas in bloodstream form cells a severe cytokinesis defect associated with flagellum detachment is observed. Moreover, we demonstrate that the amount of FLAM3 and its localisation is dependent on ClpGM6 expression and vice versa. This evidence demonstrates that FAZ is a key regulator of trypanosome shape, with experimental perturbations being life cycle form dependent. An evolutionary cell biology explanation suggests that these differences are a reflection of the division process, the cytoskeleton and intrinsic structural plasticity of particular life cycle forms. PMID:26148511
A biodegradable, immunoprotective, dual nanoporous capsule for cell-based therapies.
Zhang, Xulang; He, Hongyan; Yen, Chi; Ho, Wiston; Lee, L James
2008-11-01
To demonstrate the transplantation of drug-secreting cells with immunoprotection, a biodegradable delivery device combining two nanoporous capsules is developed using secretory alkaline phosphatase gene (SEAP) transfected mouse embryonic stem (mES) cells as a model system. The outer capsule is a poly (ethylene glycol) (PEG)-coated poly (epsilon-caprolactone) (PCL) chamber covered with a PEG grafted PCL nanoporous membrane made by phase inversion technique. SEAP gene transfected mES cells encapsulated in alginate-poly-L-lysine (AP) microcapsules are placed in the PCL capsule. Both nanoporous capsules showed good immunoprotection in the IgG solution. In microcapsules, mES cells could form a spheroid embryonic body (EB) and grow close to the microcapsule size. The secreted SEAP from encapsulated mES cells increased gradually to a maximum value before reaching a steady level, following the cell growth pattern in the microcapsule. Without microcapsules, mES cells only formed a monolayer in the large PCL capsule. The secreted SEAP release was very low. The integrated device showed a similar cell growth pattern to that in microcapsules alone, while the SEAP release rate could be regulated by the pore size of the large capsule. This integrated device can achieve multi-functionalities for cell-based therapy, i.e. a 3-D microenvironment provided by microcapsules for cell growth, superior immunoprotection and controllable release performance provided by the two nanoporous membranes, and good fibrosis prevention by PEG surface modification of the large capsule.
Cho, Eun-Yoon; Kim, Ki-Hyun; Kim, Won-Seog; Yoo, Keon Hee; Koo, Hong-Hoe
2008-01-01
This study is to identify the spectrum of Epstein-Barr virus (EBV)-positive lymphoproliferative diseases (LPD) and relationships between these diseases in Korea. The EBV status and clinicopathology of 764 patients, including acute EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV (CAEBV) infections, B-LPD arising in chronic latent EBV infection, T & natural killer (NK) cell non-Hodgkin's lymphomas (NHL), B-NHLs, and Hodgkin's lymphomas (HD), were analyzed. T or NK cell NHLs were the most common forms of EBV-positive NHLs (107/167, 64%); among these, nasal-type NK/T cell lymphomas were the most common (89/107, 83%). According to the age, Burkitt's lymphoma was the most common in early childhood; in teenagers, chronic (active) EBV infection-associated LPD was the most common type. The incidence of NK/T cell lymphoma began to increase from the twenties and formed the major type of EBV-associated tumor throughout life. Diffuse large B cell lymphoma formed the major type in the sixties and seventies. In conclusion, primary infections in early childhood are complicated by the development of CAEBV infections that are main predisposing factors for EBV-associated T or NK cell malignancies in young adults. In old patients, decreased immunity associated with old age and environmental cofactors may provoke the development of peripheral T cell lymphoma, unspecified, and diffuse large B cell lymphoma. PMID:18436998
Cho, Eun-Yoon; Kim, Ki-Hyun; Kim, Won-Seog; Yoo, Keon Hee; Koo, Hong-Hoe; Ko, Young-Hyeh
2008-04-01
This study is to identify the spectrum of Epstein-Barr virus (EBV)-positive lymphoproliferative diseases (LPD) and relationships between these diseases in Korea. The EBV status and clinicopathology of 764 patients, including acute EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV (CAEBV) infections, B-LPD arising in chronic latent EBV infection, T & natural killer (NK) cell non-Hodgkin's lymphomas (NHL), B-NHLs, and Hodgkin's lymphomas (HD), were analyzed. T or NK cell NHLs were the most common forms of EBV-positive NHLs (107/167, 64%); among these, nasal-type NK/T cell lymphomas were the most common (89/107, 83%). According to the age, Burkitt's lymphoma was the most common in early childhood; in teenagers, chronic (active) EBV infection-associated LPD was the most common type. The incidence of NK/T cell lymphoma began to increase from the twenties and formed the major type of EBV-associated tumor throughout life. Diffuse large B cell lymphoma formed the major type in the sixties and seventies. In conclusion, primary infections in early childhood are complicated by the development of CAEBV infections that are main predisposing factors for EBV-associated T or NK cell malignancies in young adults. In old patients, decreased immunity associated with old age and environmental cofactors may provoke the development of peripheral T cell lymphoma, unspecified, and diffuse large B cell lymphoma.
Zerrahn, J; Deppert, W
1993-01-01
Minimal transformants of rat F111 fibroblasts were established after infection with the large T antigen (large T)-encoding retroviral expression vector pZIPTEX (M. Brown, M. McCormack, K. Zinn, M. Farrell, I. Bikel, and D. Livingston, J. Virol. 60:290-293, 1986). Coexpression of small t antigen (small t) in these cells efficiently led to their progression toward a significantly enhanced transformed phenotype. Small t forms a complex with phosphatase 2A and thereby might influence cellular phosphorylation processes, including the phosphorylation of large T. Since phosphorylation can modulate the transforming activity of large T, we asked whether the phosphorylation status of large T in minimally transformed cells might differ from that of large T in maximally transformed FR(wt648) cells and whether it might be altered by coexpression of small t. We found the phosphate turnover on large T in minimally transformed cells significantly different from that in fully transformed cells. This resulted in underphosphorylation of large T in minimally transformed cells at phosphorylation sites previously shown to be involved in the regulation of the transforming activity of large T. However, coexpression of small t in the minimally transformed cells did not alter the phosphate turnover on large T during progression; i.e., it did not induce a change in the steady-state phosphorylation of large T. This suggests that the helper function of small t during the progression of these cells was not mediated by modulating phosphatase 2A activity toward large T. Images PMID:8382310
Large-Scale Coherent Vortex Formation in Two-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Orlov, A. V.; Brazhnikov, M. Yu.; Levchenko, A. A.
2018-04-01
The evolution of a vortex flow excited by an electromagnetic technique in a thin layer of a conducting liquid was studied experimentally. Small-scale vortices, excited at the pumping scale, merge with time due to the nonlinear interaction and produce large-scale structures—the inverse energy cascade is formed. The dependence of the energy spectrum in the developed inverse cascade is well described by the Kraichnan law k -5/3. At large scales, the inverse cascade is limited by cell sizes, and a large-scale coherent vortex flow is formed, which occupies almost the entire area of the experimental cell. The radial profile of the azimuthal velocity of the coherent vortex immediately after the pumping was switched off has been established for the first time. Inside the vortex core, the azimuthal velocity grows linearly along a radius and reaches a constant value outside the core, which agrees well with the theoretical prediction.
Differential splicing generates a nervous system-specific form of Drosophila neuroglian.
Hortsch, M; Bieber, A J; Patel, N H; Goodman, C S
1990-05-01
We recently described the characterization and cloning of Drosophila neuroglian, a member of the immunoglobulin superfamily. Neuroglian contains six immunoglobulin-like domains and five fibronectin type III domains and shows strong sequence homology to the mouse neural cell adhesion molecule L1. Here we show that the neuroglian gene generates at least two different protein products by tissue-specific alternative splicing. The two protein forms differ in their cytoplasmic domains. The long form is restricted to the surface of neurons in the CNS and neurons and some support cells in the PNS; in contrast, the short form is expressed on a wide range of other cells and tissues. Thus, whereas the mouse L1 gene appears to encode only one protein that functions largely as a neural cell adhesion molecule, its Drosophila homolog, the neuroglian gene, encodes at least two protein forms that may play two different roles, one as a neural cell adhesion molecule and the other as a more general cell adhesion molecule involved in other tissues and imaginal disc morphogenesis.
Photoswitchable red fluorescent protein with a large Stokes shift
Piatkevich, Kiryl D.; English, Brian P.; Malashkevich, Vladimir N.; Xiao, Hui; Almo, Steven C.; Singer, Robert H.; Verkhusha, Vladislav V.
2014-01-01
SUMMARY Subclass of fluorescent proteins, large Stokes shift fluorescent proteins, is characterized by their increased spread between the excitation and emission maxima. Here we report a photoswitchable variant of a red fluorescent protein with a large Stokes shift, PSLSSmKate, which initially exhibits excitation/emission at 445/622 nm, but irradiation with violet light photoswitches PSLSSmKate into a common red form with excitation/emission at 573/621 nm. We characterize spectral, photophysical and biochemical properties of PSLSSmKate in vitro and in mammalian cells, and determine its crystal structure in the large Stokes shift form. Mass-spectrometry, mutagenesis and spectroscopic analysis of PSLSSmKate allow us to propose molecular mechanisms for the large Stokes shift, pH dependence and light-induced chromophore transformation. We demonstrate applicability of PSLSSmKate to superresolution PALM microscopy and protein dynamics in live cells. Given its promising properties, we expect that PSLSSmKate-like phenotype will be further used for photoactivatable imaging and tracking multiple populations of intracellular objects. PMID:25242289
Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin
2015-09-18
With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified.
Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin
2015-01-01
With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617
Song, Wei; Kaufman, Dan S; Shen, Wei
2016-03-01
Although endothelial cells (ECs) have been derived from human pluripotent stem cells (hPSCs), large-scale generation of hPSC-ECs remains challenging and their functions are not well characterized. Here we report a simple and efficient three-stage method that allows generation of approximately 98 and 9500 ECs on day 16 and day 34, respectively, from each human embryonic stem cell (hESC) input. The functional properties of hESC-ECs derived in the presence and absence of a TGFβ-inhibitory molecule SB431542 were characterized and compared with those of human umbilical vein endothelial cells (HUVECs). Confluent monolayers formed by SB431542 + hESC-ECs, SB431542 - hESC-ECs, and HUVECs showed similar permeability to 10,000 Da dextran, but these cells exhibited striking differences in forming tube-like structures in 3D fibrin gels. The SB431542 + hESC-ECs were most potent in forming tube-like structures regardless of whether VEGF and bFGF were present in the medium; less potent SB431542 - hESC-ECs and HUVECs responded differently to VEGF and bFGF, which significantly enhanced the ability of HUVECs to form tube-like structures but had little impact on SB431542 - hESC-ECs. This study offers an efficient approach to large-scale hPSC-EC production and suggests that the phenotypes and functions of hPSC-ECs derived under different conditions need to be thoroughly examined before their use in technology development. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 678-687, 2016. © 2015 Wiley Periodicals, Inc.
Participation of blood vessel cells in human adaptive immune responses.
Pober, Jordan S; Tellides, George
2012-01-01
Circulating T cells contact blood vessels either when they extravasate across the walls of microvessels into inflamed tissues or when they enter into the walls of larger vessels in inflammatory diseases such as atherosclerosis. The blood vessel wall is largely composed of three cell types: endothelial cells lining the entire vascular tree; pericytes supporting the endothelium of microvessels; and smooth muscle cells forming the bulk of large vessel walls. Each of these cell types interacts with and alters the behavior of infiltrating T cells in different ways, making these cells active participants in the processes of immune-mediated inflammation. In this review, we compare and contrast what is known about the nature of these interactions in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.
Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals
Albright, Scot P.; Chamberlin, Rhodes R.
1996-03-26
A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.
Petit, Laetitia; Gibert, Maryse; Gourch, Abdelkader; Bens, Marcelle; Vandewalle, Alain; Popoff, Michel R
2003-03-01
Epsilon toxin is produced by Clostridium perfringens types B and D which are responsible for fatal intestinal diseases in animals. The main biological activity of epsilon toxin is the production of oedema in various organs. We have previously found that epsilon toxin forms a large membrane complex in MDCK cells which is not internalized into cell, and induces cell volume enlargement and loss of cell viability (Petit, L., Gibert, M., Gillet, D., Laurent-Winter, C., Boquet, P., Popoff, M. R. (1997) J Bacteriol 179, 6480-6487). Here, we show that epsilon toxin is very potent to decrease the trans-epithelial electrical resistance of polarized MDCK cells grown on filters without altering the organization of the junctional complexes. The dose-dependent decrease in trans-epithelial electrical resistance, more marked when the toxin was applied to the apical side than to the basal side of MDCK cells, was associated with a moderate increase of the paracellular permeability to low-molecular-weight compounds but not to macromolecules. Epsilon toxin probably acts by forming large membrane pores which permit the flux of ions and other molecules such as the entry of propidium iodide and finally to the loss of cell viability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oweis, Salah; Chagnon, Guy; Alunans, Peter
An electrochemical cell, including a jelly-roll type electrode stack, and a method for making such cell. The electrochemical cell includes folded electrode portions which form a plane recessed from the end of the electrode stack. The folded electrode portions are preferably formed by making pairs of slits in the electrode end and bending over the electrode portions between each pair of slits. The recessed plane forms a large area to which a current collection tab is subsequently connected. A coating may be applied to the folded portions of the electrode to further increase the contact area with the current collectionmore » tab by eliminating the slight variations in the recessed plane which are due to the overlap of the folded electrode portions.« less
Induction of polyclonal antibody synthesis by human allogeneic and autologous helper factors
1979-01-01
Human helper factors were obtained from supernates of 48 h unidirectional allogeneic and autologous mixed lymphocyte reactions. These supernates were shown to induce the production of large amounts of immunoglobulin by tonsillar and peripheral blood mononuclear cells. Abundant polyclonal activation to antibody production occurred in these cultures in the absence of antigenic challenge which was similar in degree to that produced by pokeweed mitogen. This was documented by quantitating plasma cells, specific plaque-forming cells, and secreted immunoglobulin. In addition, the supplementation of companion cultures with sheep erythrocytes resulted in a significant enhancement of the specific plaque-forming cell response without an appreciable change in plasma cell number of secreted Ig. PMID:156242
Automated Array Assembly, Phase 2
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1979-01-01
The Automated Array Assembly Task, Phase 2 of the Low Cost Silicon Solar Array Project is a process development task. The contract provides for the fabrication of modules from large area tandem junction cells (TJC). During this quarter, effort was focused on the design of a large area, approximately 36 sq cm, TJC and process verification runs. The large area TJC design was optimized for minimum I squared R power losses. In the TJM activity, the cell-module interfaces were defined, module substrates were formed and heat treated and clad metal interconnect strips were fabricated.
The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice.
Heilig, Rosalie; Dick, Mathias S; Sborgi, Lorenzo; Meunier, Etienne; Hiller, Sebastian; Broz, Petr
2018-04-01
The pro-inflammatory cytokine IL-1β is well known for its role in host defense and the initiation of potent inflammatory responses. It is processed from its inactive pro-form by the inflammatory caspase-1 into its mature bioactive form, which is then released from the cell via an unconventional secretion mechanism. Recently, gasdermin-D has been identified as a new target of caspase-1. After proteolytical cleavage of gasdermin-D, the N-terminal fragment induces pyroptosis, a lytic cell death, by forming large permeability pores in the plasma membrane. Here we show using the murine system that gasdermin-D is required for IL-1β secretion by macrophages, dendritic cells and partially in neutrophils, and that secretion is a cell-lysis-independent event. Liposome transport assays in vitro further demonstrate that gasdermin-D pores are large enough to allow the direct release of IL-1β. Moreover, IL-18 and other small soluble cytosolic proteins can also be released in a lysis-independent but gasdermin-D-dependent mode, suggesting that the gasdermin-D pores allow passive the release of cytosolic proteins in a size-dependent manner. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cell Spheroids with Enhanced Aggressiveness to Mimic Human Liver Cancer In Vitro and In Vivo.
Jung, Hong-Ryul; Kang, Hyun Mi; Ryu, Jea-Woon; Kim, Dae-Soo; Noh, Kyung Hee; Kim, Eun-Su; Lee, Ho-Joon; Chung, Kyung-Sook; Cho, Hyun-Soo; Kim, Nam-Soon; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok
2017-09-05
We fabricated a spheroid-forming unit (SFU) for efficient and economic production of cell spheroids. We optimized the protocol for generating large and homogenous liver cancer cell spheroids using Huh7 hepatocellular carcinoma (HCC) cells. The large Huh7 spheroids showed apoptotic and proliferative signals in the centre and at the surface, respectively. In particular, hypoxia-induced factor-1 alpha (HIF-1α) and ERK signal activation were detected in the cell spheroids. To diminish core necrosis and increase the oncogenic character, we co-cultured spheroids with 2% human umbilical vein endothelial cells (HUVECs). HUVECs promoted proliferation and gene expression of HCC-related genes and cancer stem cell markers in the Huh7 spheroidsby activating cytokine signalling, mimicking gene expression in liver cancer. HUVECs induced angiogenesis and vessel maturation in Huh7 spheroids in vivo by activating epithelial-mesenchymal transition and angiogenic pathways. The large Huh7 cell spheroids containing HUVECs survived at higher concentrations of anti-cancer drugs (doxorubicin and sorafenib) than did monolayer cells. Our large cell spheroid provides a useful in vitro HCC model to enable intuitive observation for anti-cancer drug testing.
Orbital meningioma with a granular cell component in a dog, with extracranial metastasis.
Pérez, V; Vidal, E; González, N; Benavides, J; Ferreras, M C; Villagrasa, M; Pumarola, M
2005-01-01
A meningioma with a significant component of granular cells is described in the left ocular orbit of a 5-year-old male Golden retriever dog that presented with exophthalmos. The neoplastic mass surrounded the optic nerve. Microscopically, the tumour was characterized by nests of large, round to polygonal cells, variable in size, with eccentric nuclei and abundant eosinophilic cytoplasm, containing PAS-positive granules. In focal areas, cells were smaller and occasionally formed whorl-like structures. Immunohistochemical analysis revealed that neoplastic cells reacted positively for vimentin and, with less intensity, for neuron specific enolase and S-100, whereas they were negative for glial fibrillary acidic protein and cytokeratins. Metastatic growths, formed by similar cells, were seen in the lung and heart.
Fidelity of metal insertion into hydrogenases.
Magalon, A; Blokesch, M; Zehelein, E; Böck, A
2001-06-15
The fidelity of metal incorporation into the active center of hydrogenase 3 from Escherichia coli was studied by analyzing the inhibition of the maturation pathway by zinc and other transition metals. Hydrogenase maturation of wild-type cells was significantly affected only by concentrations of zinc or cadmium higher than 200 microM, whereas a mutant with a lesion in the nickel uptake system displayed a total blockade of the proteolytic processing of the precursor form into the mature form of the large subunit after growth in the presence of 10 microM Zn(2+). The precursor could not be processed in vitro by the maturation endopeptidase even in the presence of an excess of nickel ions. Evidence is presented that zinc does not interfere with the incorporation of iron into the metal center. Precursor of the large subunit accumulated in nickel proficient cells formed a transient substrate complex with the cognate endoprotease HycI whereas that of zinc-supplemented cells did not. The results show that zinc can intrude the nickel-dependent maturation pathway only when nickel uptake is blocked. Under this condition zinc appears to be incorporated at the nickel site of the large subunit and delivers a precursor not amenable to proteolytic processing since the interaction with the endoprotease is blocked.
Bengtson, Stefan; Sallstedt, Therese; Belivanova, Veneta; Whitehouse, Martin
2017-01-01
The ~1.6 Ga Tirohan Dolomite of the Lower Vindhyan in central India contains phosphatized stromatolitic microbialites. We report from there uniquely well-preserved fossils interpreted as probable crown-group rhodophytes (red algae). The filamentous form Rafatazmia chitrakootensis n. gen, n. sp. has uniserial rows of large cells and grows through diffusely distributed septation. Each cell has a centrally suspended, conspicuous rhomboidal disk interpreted as a pyrenoid. The septa between the cells have central structures that may represent pit connections and pit plugs. Another filamentous form, Denaricion mendax n. gen., n. sp., has coin-like cells reminiscent of those in large sulfur-oxidizing bacteria but much more recalcitrant than the liquid-vacuole-filled cells of the latter. There are also resemblances with oscillatoriacean cyanobacteria, although cell volumes in the latter are much smaller. The wider affinities of Denaricion are uncertain. Ramathallus lobatus n. gen., n. sp. is a lobate sessile alga with pseudoparenchymatous thallus, “cell fountains,” and apical growth, suggesting florideophycean affinity. If these inferences are correct, Rafatazmia and Ramathallus represent crown-group multicellular rhodophytes, antedating the oldest previously accepted red alga in the fossil record by about 400 million years. PMID:28291791
Bengtson, Stefan; Sallstedt, Therese; Belivanova, Veneta; Whitehouse, Martin
2017-03-01
The ~1.6 Ga Tirohan Dolomite of the Lower Vindhyan in central India contains phosphatized stromatolitic microbialites. We report from there uniquely well-preserved fossils interpreted as probable crown-group rhodophytes (red algae). The filamentous form Rafatazmia chitrakootensis n. gen, n. sp. has uniserial rows of large cells and grows through diffusely distributed septation. Each cell has a centrally suspended, conspicuous rhomboidal disk interpreted as a pyrenoid. The septa between the cells have central structures that may represent pit connections and pit plugs. Another filamentous form, Denaricion mendax n. gen., n. sp., has coin-like cells reminiscent of those in large sulfur-oxidizing bacteria but much more recalcitrant than the liquid-vacuole-filled cells of the latter. There are also resemblances with oscillatoriacean cyanobacteria, although cell volumes in the latter are much smaller. The wider affinities of Denaricion are uncertain. Ramathallus lobatus n. gen., n. sp. is a lobate sessile alga with pseudoparenchymatous thallus, "cell fountains," and apical growth, suggesting florideophycean affinity. If these inferences are correct, Rafatazmia and Ramathallus represent crown-group multicellular rhodophytes, antedating the oldest previously accepted red alga in the fossil record by about 400 million years.
Ogasawara, Takuto; Ikehata, Yoshinori; Kato, Ryuichi; Miyao, Noriomi; Konishi, Yasuhiro; Kon, Shinichiro
2018-05-01
Intravascular large B-cell lymphoma (IVLBCL) is a rare subtype of diffuse large B-cell lymphoma (DLBCL). Furthermore, tumorigenesis is extremely rare. An 80-year-old man was admitted to our hospital with nervous symptoms. Imaging tests showed a brain tumor and mass lesions in the seminal vesicle and retroperitoneum. Transrectal biopsy of the seminal vesicle helped diagnose the patient with DLBCL. The patient's general status deteriorated rapidly, and he died on the 23rd day after admission. An autopsy was performed and the pathological diagnosis was DLBCL, specifically suspected as IVLBCL, with nodular masses in the brain and seminal vesicle.
Checa, Sara; Rausch, Manuel K; Petersen, Ansgar; Kuhl, Ellen; Duda, Georg N
2015-01-01
Physical cues play a fundamental role in a wide range of biological processes, such as embryogenesis, wound healing, tumour invasion and connective tissue morphogenesis. Although it is well known that during these processes, cells continuously interact with the local extracellular matrix (ECM) through cell traction forces, the role of these mechanical interactions on large scale cellular and matrix organization remains largely unknown. In this study, we use a simple theoretical model to investigate cellular and matrix organization as a result of mechanical feedback signals between cells and the surrounding ECM. The model includes bi-directional coupling through cellular traction forces to deform the ECM and through matrix deformation to trigger cellular migration. In addition, we incorporate the mechanical contribution of matrix fibres and their reorganization by the cells. We show that a group of contractile cells will self-polarize at a large scale, even in homogeneous environments. In addition, our simulations mimic the experimentally observed alignment of cells in the direction of maximum stiffness and the building up of tension as a consequence of cell and fibre reorganization. Moreover, we demonstrate that cellular organization is tightly linked to the mechanical feedback loop between cells and matrix. Cells with a preference for stiff environments have a tendency to form chains, while cells with a tendency for soft environments tend to form clusters. The model presented here illustrates the potential of simple physical cues and their impact on cellular self-organization. It can be used in applications where cell-matrix interactions play a key role, such as in the design of tissue engineering scaffolds and to gain a basic understanding of pattern formation in organogenesis or tissue regeneration.
Reassembly of Anterior Pituitary Organization by Hanging Drop Three-Dimensional Cell Culture
Tsukada, Takehiro; Kouki, Tom; Fujiwara, Ken; Ramadhani, Dini; Horiguchi, Kotaro; Kikuchi, Motoshi; Yashiro, Takashi
2013-01-01
The anterior pituitary gland comprises 5 types of hormone-producing cells and non-endocrine cells, such as folliculostellate (FS) cells. The cells form a lobular structure surrounded by extracellular matrix (ECM) but are not randomly distributed in each lobule; hormone-producing cells have affinities for specific cell types (topographic affinity), and FS cells form a homotypic meshwork. To determine whether this cell and ECM organization can be reproduced in vitro, we developed a 3-dimensional (3D) model that utilizes hanging drop cell culture. We found that the topographic affinities of hormone-producing cells were indeed maintained (ie, GH to ACTH cells, GH to TSH cells, PRL to LH/FSH cells). Fine structures in hormone-producing cells retained their normal appearance. In addition, FS cells displayed well-developed cytoplasmic protrusions, which interconnected with adjacent FS cells to form a 3D meshwork. In addition, reassembly of gap junctions and pseudofollicles among FS cells was observed in cell aggregates. Major ECM components—collagens and laminin—were deposited and distributed around the cells. In sum, the dissociated anterior pituitary cells largely maintained their in vivo anterior pituitary architectures. This culture system appears to be a powerful experimental tool for detailed analysis of anterior pituitary cell organization. PMID:24023396
Reassembly of anterior pituitary organization by hanging drop three-dimensional cell culture.
Tsukada, Takehiro; Kouki, Tom; Fujiwara, Ken; Ramadhani, Dini; Horiguchi, Kotaro; Kikuchi, Motoshi; Yashiro, Takashi
2013-08-29
The anterior pituitary gland comprises 5 types of hormone-producing cells and non-endocrine cells, such as folliculostellate (FS) cells. The cells form a lobular structure surrounded by extracellular matrix (ECM) but are not randomly distributed in each lobule; hormone-producing cells have affinities for specific cell types (topographic affinity), and FS cells form a homotypic meshwork. To determine whether this cell and ECM organization can be reproduced in vitro, we developed a 3-dimensional (3D) model that utilizes hanging drop cell culture. We found that the topographic affinities of hormone-producing cells were indeed maintained (ie, GH to ACTH cells, GH to TSH cells, PRL to LH/FSH cells). Fine structures in hormone-producing cells retained their normal appearance. In addition, FS cells displayed well-developed cytoplasmic protrusions, which interconnected with adjacent FS cells to form a 3D meshwork. In addition, reassembly of gap junctions and pseudofollicles among FS cells was observed in cell aggregates. Major ECM components-collagens and laminin-were deposited and distributed around the cells. In sum, the dissociated anterior pituitary cells largely maintained their in vivo anterior pituitary architectures. This culture system appears to be a powerful experimental tool for detailed analysis of anterior pituitary cell organization.
NASA Technical Reports Server (NTRS)
Reinsch, S. S.; Conway, G. C.
2003-01-01
After fertilization Zebrafish embryos undergo synchronous cleavage to form a blastula of cells sitting upon a single multinucleate yolk cell. At the beginning of gastrulation these cells undergo extensive cell migrations to form the major body axes. We have discovered a gene, G12, which is required for cell migrations and positioning of nuclei in the large syncytial yolk cell. Overexpression of a G12-GFP fusion protein is not toxic and shows that the protein localizes inside the yolk cell to the yolk nuclei, microtubules, and to the margin between the blastomeres and the large yolk cell. Morpholino (MO) injection into the 1-cell embryo or into just the yolk syncytium conipletely inhibits cell migrations, doming of the yolk cell, and positioning of nuclei around the margin. This effect can be partially rescued by injection of G12-GFP encoding RNA. Given the known role of microtubules in nuclear positioning of yolk nuclei in Zebrafish, we investigated the microtubules in morpholiiio injected and rescued embryos. We find that microtubules are sparse and disorganized in MO-injected embryos and are restored to normal organization upon G12-GFP rescue. G12 plays a pivotal role in organization of inicrotubules during early development. G12 is highly conserved in vertebrates and two homologues exist in the human genome. One of the human hoinologues is amplified in aggressive breast tumors.
Covian-Nares, J. Fernando; Smith, Robert M.; Vogel, Steven S.
2008-01-01
Eukaryotic cells have multiple forms of endocytosis which maintain cell surface homeostasis. One explanation for this apparent redundancy is to allow independent retrieval of surface membranes derived from different types of vesicles. Consistent with this hypothesis we find that sea urchin eggs have at least two types of compensatory endocytosis. One is associated with retrieving cortical vesicle membranes, and formed large endosomes by a mechanism that was inhibited by agatoxin, cadmium, staurosporine and FK506. The second type is thought to compensate for constitutive exocytosis, and formed small endosomes using a mechanism that was insensitive to the above mentioned reagents, but was inhibited by phenylarsine oxide (PAO), and by microinjection of mRNA encoding Src kinase. Both mechanisms could act concurrently, and account for all of the endocytosis occurring during early development. Inhibition of either form did not trigger compensation by the other form, and phorbol ester treatment rescued the endocytotic activity blocked by agatoxin, but not the retrieval blocked by PAO. PMID:18281031
Verification of immune response optimality through cybernetic modeling.
Batt, B C; Kompala, D S
1990-02-09
An immune response cascade that is T cell independent begins with the stimulation of virgin lymphocytes by antigen to differentiate into large lymphocytes. These immune cells can either replicate themselves or differentiate into plasma cells or memory cells. Plasma cells produce antibody at a specific rate up to two orders of magnitude greater than large lymphocytes. However, plasma cells have short life-spans and cannot replicate. Memory cells produce only surface antibody, but in the event of a subsequent infection by the same antigen, memory cells revert rapidly to large lymphocytes. Immunologic memory is maintained throughout the organism's lifetime. Many immunologists believe that the optimal response strategy calls for large lymphocytes to replicate first, then differentiate into plasma cells and when the antigen has been nearly eliminated, they form memory cells. A mathematical model incorporating the concept of cybernetics has been developed to study the optimality of the immune response. Derived from the matching law of microeconomics, cybernetic variables control the allocation of large lymphocytes to maximize the instantaneous antibody production rate at any time during the response in order to most efficiently inactivate the antigen. A mouse is selected as the model organism and bacteria as the replicating antigen. In addition to verifying the optimal switching strategy, results showing how the immune response is affected by antigen growth rate, initial antigen concentration, and the number of antibodies required to eliminate an antigen are included.
Pai, Trupti; Menon, Santosh; Deodhar, Kedar; Shet, Tanuja
2015-01-01
Large lymphoid proliferations are usually regarded as synonymous with lymphomas. However, lymphoma-like lesions. (LLLs) of the cervix are amongst the exception. We report a 46-year-old woman who complained of irregular menses and was found to have superficial erosion in cervix, which on biopsy showed clusters of large atypical appearing lymphoid cells admixed with smaller reactive lymphoid cells. On immunohistochemistry, these large cells were strongly positive for CD20 and CD30 and the background cells were reactive to CD3. Based on the superficial nature of infiltrate and absence of a mass-forming lesion, a diagnosis of LLL of cervix was made. Despite a benign diagnosis, a hysterectomy was done on patient's insistence and only a focus of lymphoid cells similar to biopsy was seen on the operated specimen. Patient is free of disease on follow-up.
Auxin acts as a local morphogenetic trigger to specify lateral root founder cells
Dubrovsky, Joseph G.; Sauer, Michael; Napsucialy-Mendivil, Selene; Ivanchenko, Maria G.; Friml, Jiří; Shishkova, Svetlana; Celenza, John; Benková, Eva
2008-01-01
Plants exhibit an exceptional adaptability to different environmental conditions. To a large extent, this adaptability depends on their ability to initiate and form new organs throughout their entire postembryonic life. Plant shoot and root systems unceasingly branch and form axillary shoots or lateral roots, respectively. The first event in the formation of a new organ is specification of founder cells. Several plant hormones, prominent among them auxin, have been implicated in the acquisition of founder cell identity by differentiated cells, but the mechanisms underlying this process are largely elusive. Here, we show that auxin and its local accumulation in root pericycle cells is a necessary and sufficient signal to respecify these cells into lateral root founder cells. Analysis of the alf4–1 mutant suggests that specification of founder cells and the subsequent activation of cell division leading to primordium formation represent two genetically separable events. Time-lapse experiments show that the activation of an auxin response is the earliest detectable event in founder cell specification. Accordingly, local activation of auxin response correlates absolutely with the acquisition of founder cell identity and precedes the actual formation of a lateral root primordium through patterned cell division. Local production and subsequent accumulation of auxin in single pericycle cells induced by Cre-Lox-based activation of auxin synthesis converts them into founder cells. Thus, auxin is the local instructive signal that is sufficient for acquisition of founder cell identity and can be considered a morphogenetic trigger in postembryonic plant organogenesis. PMID:18559858
Yu, Channing; Mannan, Aristotle M.; Yvone, Griselda Metta; Ross, Kenneth N.; Zhang, Yan-Ling; Marton, Melissa A.; Taylor, Bradley R.; Crenshaw, Andrew; Gould, Joshua Z.; Tamayo, Pablo; Weir, Barbara A.; Tsherniak, Aviad; Wong, Bang; Garraway, Levi A.; Shamji, Alykhan F.; Palmer, Michelle A.; Foley, Michael A.; Winckler, Wendy; Schreiber, Stuart L.; Kung, Andrew L.; Golub, Todd R.
2016-01-01
Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control1-4. Here, we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM displayed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo. PMID:26928769
Uhlemann, Eva-Maria E; Pierson, Hannah E; Fillingame, Robert H; Dmitriev, Oleg Y
2012-01-01
NMR structure determination of large membrane proteins is hampered by broad spectral lines, overlap, and ambiguity of signal assignment. Chemical shift and NOE assignment can be facilitated by amino acid selective isotope labeling in cell-free protein synthesis system. However, many biological detergents are incompatible with the cell-free synthesis, and membrane proteins often have to be synthesized in an insoluble form. We report cell-free synthesis of subunits a and c of the proton channel of Escherichia coli ATP synthase in a soluble form in a mixture of phosphatidylcholine derivatives. In comparison, subunit a was purified from the cell-free system and from the bacterial cell membranes. NMR spectra of both preparations were similar, indicating that our procedure for cell-free synthesis produces protein structurally similar to that prepared from the cell membranes. PMID:22162071
Structure and biochemical functions of four simian virus 40 truncated large-T antigens.
Chaudry, F; Harvey, R; Smith, A E
1982-01-01
The structure of four abnormal T antigens which are present in different simian virus 40 (SV40)-transformed mouse cell lines was studied by tryptic peptide mapping, partial proteolysis fingerprinting, immunoprecipitation with monoclonal antibodies, and in vitro translation. The results obtained allowed us to deduce that these proteins, which have apparent molecular weights of 15,000, 22,000, 33,000 and 45,000, are truncated forms of large-T antigen extending to different amounts into the amino acid sequences unique to large-T. The proteins are all phosphorylated, probably at a site between amino acids 106 and 123. The mRNAs coding for the proteins probably contain the normal large-T splice but are shorter than the normal transcripts of the SV40 early region. The truncated large-Ts were tested for the ability to bind to double-stranded DNA-cellulose. This showed that the 33,000- and 45,000-molecular-weight polypeptides contained sequences sufficient for binding under the conditions used, whereas the 15,000- and 22,000-molecular-weight forms did not. Together with published data, this allows the tentative mapping of a region of SV40 large-T between amino acids 109 and 272 that is necessary and may be sufficient for the binding to double-stranded DNA-cellulose in vitro. None of the truncated large-T species formed a stable complex with the host cell protein referred to as nonviral T-antigen or p53, suggesting that the carboxy-terminal sequences of large-T are necessary for complex formation. Images PMID:6292504
Detection of microlesions induced by heavy ions using liposomes filled with fluorescent dye
NASA Technical Reports Server (NTRS)
Koniarek, J. P.; Thomas, J. L.; Vazquez, M.
2004-01-01
In cells irradiation by heavy ions has been hypothesized to produce microlesions, regions of local damage. In cell membranes this damage is thought to manifest itself in the form of holes. The primary evidence for microlesions comes from morphological studies of cell membranes, but this evidence is still controversial, especially since holes also have been observed in membranes of normal, nonirradiated, cells. However, it is possible that damage not associated with histologically discernable disruptions may still occur. In order to resolve this issue, we developed a system for detecting microlesions based on liposomes filled with fluorescent dye. We hypothesized that if microlesions form in these liposomes as the result of irradiation, then the entrapped dye will leak out into the surrounding medium in a measurable way. Polypropylene vials containing suspensions of vesicles composed of either dipalmitoyl phosphatidylcholine, or a combination of egg phosphatidylcholine and cholesterol were irradiated at the Brookhaven National Laboratory using 56Fe ions at 1 GeV/amu. In several cases we obtained a significant loss of the entrapped dye above the background level. Our results suggest that holes may form in liposomes as the result of heavy ion irradiation, and that these holes are large enough to allow leakage of cell internal contents that are at least as large as a 1 nm diameter calcein molecule. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Low hydrostatic head electrolyte addition to fuel cell stacks
Kothmann, Richard E.
1983-01-01
A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.
Mediator and RNA polymerase II clusters associate in transcription-dependent condensates.
Cho, Won-Ki; Spille, Jan-Hendrik; Hecht, Micca; Lee, Choongman; Li, Charles; Grube, Valentin; Cisse, Ibrahim I
2018-06-21
Models of gene control have emerged from genetic and biochemical studies, with limited consideration of the spatial organization and dynamics of key components in living cells. Here we used live cell super-resolution and light sheet imaging to study the organization and dynamics of the Mediator coactivator and RNA polymerase II (Pol II) directly. Mediator and Pol II each form small transient and large stable clusters in living embryonic stem cells. Mediator and Pol II are colocalized in the stable clusters, which associate with chromatin, have properties of phase-separated condensates, and are sensitive to transcriptional inhibitors. We suggest that large clusters of Mediator, recruited by transcription factors at large or clustered enhancer elements, interact with large Pol II clusters in transcriptional condensates in vivo. Copyright © 2018, American Association for the Advancement of Science.
Rigidity-patterned polyelectrolyte films to control myoblast cell adhesion and spatial organization
Monge, Claire; Saha, Naresh; Boudou, Thomas; Pózos-Vásquez, Cuauhtemoc; Dulong, Virginie; Glinel, Karine; Picart, Catherine
2014-01-01
In vivo, cells are sensitive to the stiffness of their micro-environment and especially to the spatial organization of the stiffness. In vitro studies of this phenomenon can help to better understand the mechanisms of the cell response to spatial variations of the matrix stiffness. In this work, we design polelyelectrolyte multilayer films made of poly(L-lysine) and a photo-reactive hyaluronan derivative. These films can be photo-crosslinked through a photomask to create spatial patterns of rigidity. Quartz substrates incorporating a chromium mask are prepared to expose selectively the film to UV light (in a physiological buffer), without any direct contact between the photomask and the soft film. We show that these micropatterns are chemically homogeneous and flat, without any preferential adsorption of adhesive proteins. Three groups of pattern geometries differing by their shape (circles or lines), size (form 2 to 100 μm) or interspacing distance between the motifs are used to study the adhesion and spatial organization of myoblast cells. On large circular micropatterns, the cells form large assemblies that are confined to the stiffest parts. Conversely, when the size of the rigidity patterns is subcellular, the cells respond by forming protrusions. Finally, on linear micropatterns of rigidity, myoblasts align and their nuclei drastically elongate in specific conditions. These results pave the way for the study of the different steps of myoblast fusion in response to matrix rigidity in well-defined geometrical conditions. PMID:25100929
Bone regeneration performance of surface-treated porous titanium.
Amin Yavari, Saber; van der Stok, Johan; Chai, Yoke Chin; Wauthle, Ruben; Tahmasebi Birgani, Zeinab; Habibovic, Pamela; Mulier, Michiel; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir Abbas
2014-08-01
The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone-implant biomechanics is, however, not trivial. Copyright © 2014 Elsevier Ltd. All rights reserved.
Complex of simian virus 40 large-T antigen and host 53,000-molecular-weight protein in monkey cells.
Harlow, E; Pim, D C; Crawford, L V
1981-01-01
Mouse cells transformed by simian virus 40 (SV40) have been shown to contain a complex of the virus-coded large-T antigen with a host 53,000-molecular-weight (53K) protein. Initial attempts to detect a similar complex in lytically infected cells were unsuccessful, and it therefore seemed that the complex might be peculiar to transformed or abortively transformed nonpermissive cells. Immunoprecipitation of [32P]phosphate-labeled extracts of SV40-infected CV-1 African green monkey kidney cells with antibodies specific for large-T or the 53K protein revealed that the large-T-53K protein complex was formed during lytic infections. Only a minor fraction of the large-T present was associated with 53K protein, and large-T and the 53K host protein cosedimented during centrifugation through sucrose gradients. We used monospecific sera and monoclonal antibodies to study the rate of synthesis and phosphorylation of the 53K protein during lytic infections. Infection of CV-1 cells with SV40 increased the rate of synthesis of the 53K protein fivefold over that in mock-infected cells. At the same time, the rate of phosphorylation of the 53K protein increased more than 30-fold compared with control cultures. Monkey cells transformed by UV-irradiated SV40 (Gluzman et al., J. Virol. 22:256-266, 1977) also contained the large-T-53K protein complex. The formation of the complex is therefore not a peculiarity of SV40-transformed rodent cells but is a common feature of SV40 infections. Images PMID:6163871
NASA Astrophysics Data System (ADS)
Jumelle, C.; Mauclair, C.; Houzet, J.; Bernard, A.; He, Z.; Piselli, S.; Perrache, C.; Egaud, G.; Baubeau, E.; Gain, P.; Thuret, G.
2015-07-01
Corneal therapeutic molecules delivery represents a promising solution to maintain human corneal endothelial cells (HCECs) viability, but the difficulty is transport across cell membrane. A new delivery method published recently consists in ephemerally permeabilizing cell membranes using a photo-acoustic reaction produced by carbon nanoparticles (CNPs) and femtosecond laser (FsL). The aim of this work is to investigate the size of pores formed at cell membrane by this technique. To induce cell permeabilization, HCECs were put in contact with CNPs and irradiated with a 500 μm diameter Ti:Sa FsL focalized spot. Four sizes of marker molecules were delivered into HCECs to investigate pore sizes: calcein (1.2 nm), FITC-Dextran 4kDa (2.8 nm) and FITC-Dextran 70kDa (12 nm) and FITC-Dextran 2MDa (50 nm). Delivery of each molecule was assessed by flow cytometry, a technique able to measure their presence into cells. We showed that the delivery rate was dependent of their size. Calcein was delivered in 56.1±8.2% of HCECs, FITC-Dextran 4kDa in 42.2±3.5%, FITC-Dextran 70 kDa in 21.5±2.7% and finally FITC-Dextran 2MDa in 12.9±2.0%. It means that a large number of pores in the size ranging from 1.2 to 2.8 nm were formed. However, 12 nm and larger pores were almost half more infrequent. Pore sizes formed at cell membrane by the technique of cell permeabilization by FsL activated CNPs was investigated. The results indicated that the pore sizes are large enough for the efficient delivery of small, medium and big therapeutics molecules on HCECs by this technique.
MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis
Liu, Shuzhen; Liu, Hua; Johnston, Andrea; Hanna-Addams, Sarah; Reynoso, Eduardo; Xiang, Yougui
2017-01-01
Mixed-lineage kinase domain-like protein (MLKL) is essential for TNF-α–induced necroptosis. How MLKL promotes cell death is still under debate. Here we report that MLKL forms SDS-resistant, disulfide bond-dependent polymers during necroptosis in both human and mouse cells. MLKL polymers are independent of receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) fibers. Large MLKL polymers are more than 2 million Da and are resistant to proteinase K digestion. MLKL polymers are fibers 5 nm in diameter under electron microscopy. Furthermore, the recombinant N-terminal domain of MLKL forms amyloid-like fibers and binds Congo red dye. MLKL mutants that cannot form polymers also fail to induce necroptosis efficiently. Finally, the compound necrosulfonamide conjugates cysteine 86 of human MLKL and blocks MLKL polymer formation and subsequent cell death. These results demonstrate that disulfide bond-dependent, amyloid-like MLKL polymers are necessary and sufficient to induce necroptosis. PMID:28827318
MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis.
Liu, Shuzhen; Liu, Hua; Johnston, Andrea; Hanna-Addams, Sarah; Reynoso, Eduardo; Xiang, Yougui; Wang, Zhigao
2017-09-05
Mixed-lineage kinase domain-like protein (MLKL) is essential for TNF-α-induced necroptosis. How MLKL promotes cell death is still under debate. Here we report that MLKL forms SDS-resistant, disulfide bond-dependent polymers during necroptosis in both human and mouse cells. MLKL polymers are independent of receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) fibers. Large MLKL polymers are more than 2 million Da and are resistant to proteinase K digestion. MLKL polymers are fibers 5 nm in diameter under electron microscopy. Furthermore, the recombinant N-terminal domain of MLKL forms amyloid-like fibers and binds Congo red dye. MLKL mutants that cannot form polymers also fail to induce necroptosis efficiently. Finally, the compound necrosulfonamide conjugates cysteine 86 of human MLKL and blocks MLKL polymer formation and subsequent cell death. These results demonstrate that disulfide bond-dependent, amyloid-like MLKL polymers are necessary and sufficient to induce necroptosis.
Thomas, Michael; Suwa, Tetsuya; Yang, Lianqing; Zhao, Lifang; Hawks, Christina L; Hornsby, Peter J
2002-01-01
Abstract Expression of TERT, the reverse transcriptase component of telomerase, is necessary to convert normal human cells to cancer cells. Despite this, “telomerization” by hTERT does not appear to alter the normal properties of cells. In a cell transplantation model in which bovine adrenocortical cells form vascularized tissue structures beneath the kidney capsule in scid mice, telomerization does not perturb the functional tissue-forming capacity of the cells. This cell transplantation model was used to study the cooperation of hTERT with SV40 T antigen (SV40 TAg) and oncogenic Ras in tumorigenesis. Only cells expressing all three genes were tumorigenic; this required large T, but not small t, antigen. These cells produced a continuously expanding tissue mass; they were invasive with respect to adjacent organs and eventually destroyed the kidney. Cells expressing only hTERT or only Ras produced minimally altered tissues. In contrast, SV40 TAg alone produced noninvasive nodules beneath the kidney capsule that had high proliferation rates balanced by high rates of apoptosis. The use of cell transplantation techniques in a cell type that is able to form tissue structures with or without full neoplastic conversion allows the phenotypes produced by individual cooperating oncogenes to be observed. PMID:12407443
Giant morphea-form basal cell carcinoma of the umbilicus: Successful debulking with vismodegib.
Orduz Robledo, Mariana; Lebas, Eve; Reginster, Marie-Annick; Baghaie, Mahmoud; Groves, Sabine; Nikkels, Arjen F
2018-01-01
Basal cell carcinoma of the umbilicus is very rare. The nodular subtype is the main representative. Giant basal cell carcinomas represent around 1% of all basal cell carcinomas. The hedgehog pathway inhibitor vismodegib is indicated for advanced basal cell carcinoma and CD56-negative immunostaining seems indicative for successful treatment. A 54-year-old man presented a 10 cm × 14 cm large and 4.5 cm deep morphea-form basal cell carcinoma with faint immunohistochemical CD56 expression arising from the umbilicus. A sequential treatment was initiated with debulking using vismodegib 150 mg per day for 4 months, followed by reconstructive surgery. To the best of our knowledge, this is the first report of a giant basal cell carcinoma of the morphea-form type of the umbilicus. The sequential treatment plan reduces the duration of vismodegib inherent adverse effects and significantly reduces the tumor mass prior to surgery. Besides increasing adherence to vismodegib treatment, this approach facilitates the surgical technique and improves cosmetic outcome.
Metz, C N; Thomas, P; Davitz, M A
1992-06-01
A large number of eukaryotic proteins have been shown to be anchored to the cell membrane by glycosylphosphatidylinositol (GPI). This glycolipid anchor can serve as a substrate for anchor-specific phospholipases that convert the GPI-anchored membrane proteins into soluble forms. Soluble forms of many GPI anchored proteins have been identified in vivo in connective tissue, plasma, and urine. The authors have discovered that mammalian plasma contains a GPI-specific phospholipase D (GPI-PLD). Because it recognizes a portion of the conserved glycan core structure, all GPI-anchored proteins are potential substrates. The authors report the development of a murine monoclonal antibody specific for one form of the human GPI-PLD and the immunohistochemical localization of this enzyme to mast cells.
Fuel cell with electrolyte feed system
Feigenbaum, Haim
1984-01-01
A fuel cell having a pair of electrodes at the sites of electrochemical reactions of hydrogen and oxygen and a phosphoric acid electrolyte provided with an electrolyte supporting structure in the form of a laminated matrix assembly disposed between the electrodes. The matrix assembly is formed of a central layer disposed between two outer layers, each being permeable to the flow of the electrolyte. The central layer is provided with relatively large pores while the outer layers are provided with relatively small pores. An external reservoir supplies electrolyte via a feed means to the central layer to compensate for changes in electrolyte volume in the matrix assembly during the operation of fuel cell.
Aggregate formation affects ultrasonic disruption of microalgal cells.
Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih
2015-12-01
Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R
2018-02-27
Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.
Davenport, A. J.; Cross, R. S.; Watson, K. A.; Liao, Y.; Shi, W.; Prince, H. M.; Beavis, P. A.; Trapani, J. A.; Kershaw, M. H.; Ritchie, D. S.; Darcy, P. K.; Jenkins, M. R.
2018-01-01
Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. PMID:29440406
Taniguchi, Kan; Matsuura, Kimio; Matsuoka, Takanori; Nakatani, Hajime; Nakano, Takumi; Furuya, Yasuo; Sugimoto, Takeki; Kobayashi, Michiya; Araki, Keijiro
2005-06-01
Hirschsprung's disease is a congenital aganglionic neural disorder of the segmental distal intestine characterized by unsettled pathogenesis. The relationship between Hirschsprung's disease and pacemaker cells (PMC), which almost corresponds to that of the interstitial cells of Cajal (ICC), was morphologically observed at the level of the intermuscular layer corresponding to Auerbach's plexus using ls/ls mice. These mice are an ideal model because of their large intestinal aganglionosis and gene abnormalities, which are similar to the human form of the disease. Immunostaining using anti-c-kit receptor antibody (ACK2), a marker of PMC, applied to whole-mount muscle-layer specimens, revealed the presence of c-kit immunopositive multipolar cells with many cytoplasmic processes in normal mice. For ls/ls mice, however, there were significantly fewer processes. The average number of processes per positive cell of 2.5 for the aganglionic large intestine was fewer than 3.5 for the large and small intestine of normal mice, indicating the inability to form connections between nerves and PMC in the aganglionic intestine. For normal mice with an Auerbach's plexus, the process attachment of ICC to the Auerbach's plexus was observed by scanning electron microscopy. However, for ls/ls mice no attachment to the intermuscular nerve without Auerbach's plexus was found, although transmission electron microscopy showed no difference in the cell structure and organelles of the c-kit immunopositive cells between the normal and ls/ls mice. These findings suggest that in the aganglionic intestine of Hirschsprung's disease, aplasia of enteric ganglia induces secondary disturbances during the normal development of intestinal PMC.
McMenamin, P G; Loeffler, K U
1990-06-01
The subretinal spaces (SRS) in 17 human foetal eyes were investigated by light microscopy and scanning and transmission electron microscopy. A hitherto undocumented group of pleomorphic cells was detected on the apical surface of the retinal pigment epithelium (RPE) and on the undersurface of the neural retina. These cells formed a regularly spaced array in the peripheral SRS, particularly in the most anterior portion nearest the ciliary body anlage. The morphology of the SRS cells ranged from a small round or ovoid form with a few short basal pseudopodia to an extremely flattened dendritic form. Ultrastructural features, such as large melanophagolysosomes, consistent with a phagocytic function, were observed in some cells. These SRS cells bore remarkable resemblance to epiplexus and supraependymal cells, considered to be the resident population of macrophages on the ventricular surfaces of the brain. This morphological parallelism, together with the anatomically homologous location, is strong evidence that SRS cells represent a normal population of macrophages in the developing human eye. No features consistent with an RPE or neuronal origin were observed. The possible role of these cells as transient phagocytes in the SRS with a possible destiny as retinal microglia is discussed.
Kitayama, Midori; Mizutani, Kiyohito; Maruoka, Masahiro; Mandai, Kenji; Sakakibara, Shotaro; Ueda, Yuki; Komori, Takahide; Shimono, Yohei; Takai, Yoshimi
2016-01-01
Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development. PMID:26757815
Adhesion of leukocytes under oscillating stagnation point conditions: a numerical study.
Walker, P G; Alshorman, A A; Westwood, S; David, T
2002-01-01
Leukocyte recruitment from blood to the endothelium plays an important role in atherosclerotic plaque formation. Cells show a primary and secondary adhesive process with primary bonds responsible for capture and rolling and secondary bonds for arrest. Our objective was to investigate the role played by this process on the adhesion of leukocytes in complex flow. Cells were modelled as rigid spheres with spring like adhesion molecules which formed bonds with endothelial receptors. Models of bond kinetics and Newton's laws of motion were solved numerically to determine cell motion. Fluid force was obtained from the local shear rate obtained from a CFD simulation of the flow over a backward facing step.In stagnation point flow the shear rate near the stagnation point has a large gradient such that adherent cells in this region roll to a high shear region preventing permanent adhesion. This is enhanced if a small time dependent perturbation is imposed upon the stagnation point. For lower shear rates the cell rolling velocity may be such that secondary bonds have time to form. These bonds resist the lower fluid forces and consequently there is a relatively large permanent adhesion region.
Landry, Aaron P.; Duan, Xuewu; Huang, Hao; Ding, Huangen
2011-01-01
Protein-bound dinitrosyl iron complexes (DNICs) have been observed in prokaryotic and eukaryotic cells under nitric oxide (NO) stress. The identity of proteins that bind DNICs, however, still remains elusive. Here we demonstrate that iron-sulfur proteins are the major source of protein-bound DNICs formed in Escherichia coli cells under NO stress. Expression of recombinant iron-sulfur proteins, but not the proteins without iron-sulfur clusters, almost doubles the amount of protein-bound DNICs formed in E. coli cells after NO exposure. Purification of recombinant proteins from the NO-exposed E. coli cells further confirms that iron-sulfur proteins, but not the proteins without iron-sulfur clusters, are modified forming protein-bound DINCs. Deletion of the iron-sulfur cluster assembly proteins IscA and SufA to block the [4Fe-4S] cluster biogenesis in E. coli cells largely eliminates the NO-mediated formation of protein-bound DNICs, suggesting that iron-sulfur clusters are mainly responsible for the NO-mediated formation of protein-bound DNICs in cells. Furthermore, depletion of “chelatable iron pool” in the wild-type E. coli cells effectively removes iron-sulfur clusters from proteins and concomitantly diminishes the NO-mediated formation of protein-bound DNICs, indicating that iron-sulfur clusters in proteins constitute at least part of “chelatable iron pool” in cells. PMID:21420489
Blastocyst-like structures generated solely from stem cells.
Rivron, Nicolas C; Frias-Aldeguer, Javier; Vrij, Erik J; Boisset, Jean-Charles; Korving, Jeroen; Vivié, Judith; Truckenmüller, Roman K; van Oudenaarden, Alexander; van Blitterswijk, Clemens A; Geijsen, Niels
2018-05-01
The blastocyst (the early mammalian embryo) forms all embryonic and extra-embryonic tissues, including the placenta. It consists of a spherical thin-walled layer, known as the trophectoderm, that surrounds a fluid-filled cavity sheltering the embryonic cells 1 . From mouse blastocysts, it is possible to derive both trophoblast 2 and embryonic stem-cell lines 3 , which are in vitro analogues of the trophectoderm and embryonic compartments, respectively. Here we report that trophoblast and embryonic stem cells cooperate in vitro to form structures that morphologically and transcriptionally resemble embryonic day 3.5 blastocysts, termed blastoids. Like blastocysts, blastoids form from inductive signals that originate from the inner embryonic cells and drive the development of the outer trophectoderm. The nature and function of these signals have been largely unexplored. Genetically and physically uncoupling the embryonic and trophectoderm compartments, along with single-cell transcriptomics, reveals the extensive inventory of embryonic inductions. We specifically show that the embryonic cells maintain trophoblast proliferation and self-renewal, while fine-tuning trophoblast epithelial morphogenesis in part via a BMP4/Nodal-KLF6 axis. Although blastoids do not support the development of bona fide embryos, we demonstrate that embryonic inductions are crucial to form a trophectoderm state that robustly implants and triggers decidualization in utero. Thus, at this stage, the nascent embryo fuels trophectoderm development and implantation.
3D Printing of Lotus Root-Like Biomimetic Materials for Cell Delivery and Tissue Regeneration.
Feng, Chun; Zhang, Wenjie; Deng, Cuijun; Li, Guanglong; Chang, Jiang; Zhang, Zhiyuan; Jiang, Xinquan; Wu, Chengtie
2017-12-01
Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large bone defect repair. However, these traditional 3D scaffolds have low porosity and nonchannel structure, which impede angiogenesis and osteogenesis. In this study, inspired by the microstructure of natural plant lotus root, biomimetic materials with lotus root-like structures are successfully prepared via a modified 3D printing strategy. Compared with traditional 3D materials, these biomimetic materials can significantly improve in vitro cell attachment and proliferation as well as promote in vivo osteogenesis, indicating potential application for cell delivery and bone regeneration.
3D Printing of Lotus Root‐Like Biomimetic Materials for Cell Delivery and Tissue Regeneration
Feng, Chun; Zhang, Wenjie; Deng, Cuijun; Li, Guanglong; Chang, Jiang; Zhang, Zhiyuan
2017-01-01
Abstract Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large bone defect repair. However, these traditional 3D scaffolds have low porosity and nonchannel structure, which impede angiogenesis and osteogenesis. In this study, inspired by the microstructure of natural plant lotus root, biomimetic materials with lotus root‐like structures are successfully prepared via a modified 3D printing strategy. Compared with traditional 3D materials, these biomimetic materials can significantly improve in vitro cell attachment and proliferation as well as promote in vivo osteogenesis, indicating potential application for cell delivery and bone regeneration. PMID:29270348
NMR study of methane + ethane structure I hydrate decomposition.
Dec, Steven F; Bowler, Kristen E; Stadterman, Laura L; Koh, Carolyn A; Sloan, E Dendy
2007-05-24
The thermally activated decomposition of methane + ethane structure I hydrate was studied with use of 13C magic-angle spinning (MAS) NMR as a function of composition and temperature. The observed higher decomposition rate of large sI cages initially filled with ethane gas can be described in terms of a model where a distribution of sI unit cells exists such that a particular unit cell contains zero, one, or two methane molecules in the unit cell; this distribution of unit cells is combined to form the observed equilibrium composition. In this model, unit cells with zero methane molecules are the least stable and decompose more rapidly than those populated with one or two methane molecules leading to the observed overall faster decomposition rate of the large cages containing ethane molecules.
Analysis of nuclear accumulation of influenza NP antigen in von Magnus virus-infected cells.
Maeno, K; Aoki, H; Hamaguchi, M; Iinuma, M; Nagai, Y; Matsumoto, T; Takeura, S; Shibata, M
1981-01-01
When 1-5C-4 cells were infected with von Magnus virus derived from influenza A/RI/5+ virus by successive undiluted passages in chick embryos, virus-specific proteins were synthesized but production of infectious virus was inhibited. In these cells the synthesis of viral RNA was suppressed and the nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to standard virus-infected cells in which the antigen was distributed throughout the whole cell. The intracellular location and migration of NP were determined by isotope labeling and sucrose gradient centrifugation of subcellular fractions. In standard virus-infected cell NP polypeptide was present predominantly in the cytoplasm in the form of viral ribonucleoprotein (RNP) and intranuclear RNP was detected in reduced amounts. In contrast, in von Magnus virus-infected cells NP polypeptide was present predominantly in the nucleus in a nonassembled, soluble from and the amount of cytoplasmic RNP was considerably reduced. After short-pulse labeling NP was detected exclusively in the cytoplasm in a soluble form and after a chase a large proportion of such soluble NP was seen in the nucleus. It is suggested that a large proportion of the NP synthesized in von Magnus virus-infected cells in not assembled into cytoplasmic RNP because of the lack of available RNA and the NP migrated into the nucleus and remained there.
Roles of HNF1α and HNF4α in pancreatic β-cells: lessons from a monogenic form of diabetes (MODY).
Yamagata, Kazuya
2014-01-01
Mutations in the genes encoding hepatocyte nuclear factor (HNF)1α and HNF4α cause a monogenic form of diabetes mellitus known as maturity-onset diabetes of the young (MODY). The primary cause of MODY is an impairment of glucose-stimulated insulin secretion by pancreatic β-cells, indicating the important roles of HNF1α and HNF4α in β-cells. Large-scale genetic studies have clarified that the common variants of HNF1α and HNF4α genes are also associated with type 2 diabetes, suggesting that they are involved in the pathogenesis of both diseases. Recent experimental studies revealed that HNF1α controls both β-cell function and growth by regulating target genes such as glucose transporter 2, pyruvate kinase, collectrin, hepatocyte growth factor activator, and HNF4α. In contrast, HNF4α mainly regulates the function of β-cells. Although direct target genes of HNF4α in β-cells are largely unknown, we recently identified Anks4b as a novel target of HNF4α that regulates β-cell susceptibility to endoplasmic reticulum stress. Studies of MODY have led to a better understanding of the molecular mechanism of glucose-stimulated insulin secretion by pancreatic β-cells. © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Patra, Bishnubrata; Peng, Chien-Chung; Liao, Wei-Hao; Lee, Chau-Hwang; Tung, Yi-Chung
2016-02-01
Three-dimensional (3D) tumor spheroid possesses great potential as an in vitro model to improve predictive capacity for pre-clinical drug testing. In this paper, we combine advantages of flow cytometry and microfluidics to perform drug testing and analysis on a large number (5000) of uniform sized tumor spheroids. The spheroids are formed, cultured, and treated with drugs inside a microfluidic device. The spheroids can then be harvested from the device without tedious operation. Due to the ample cell numbers, the spheroids can be dissociated into single cells for flow cytometry analysis. Flow cytometry provides statistical information in single cell resolution that makes it feasible to better investigate drug functions on the cells in more in vivo-like 3D formation. In the experiments, human hepatocellular carcinoma cells (HepG2) are exploited to form tumor spheroids within the microfluidic device, and three anti-cancer drugs: Cisplatin, Resveratrol, and Tirapazamine (TPZ), and their combinations are tested on the tumor spheroids with two different sizes. The experimental results suggest the cell culture format (2D monolayer vs. 3D spheroid) and spheroid size play critical roles in drug responses, and also demonstrate the advantages of bridging the two techniques in pharmaceutical drug screening applications.
A case of gas-forming liver abscess with diabetes mellitus.
Tatsuta, Tetsuya; Wada, Toyohito; Chinda, Daisuke; Tsushima, Kiyoto; Sasaki, Yoshio; Shimoyama, Tadashi; Fukuda, Shinsaku
2011-01-01
A 43-year-old man was admitted to our hospital with right hypochondriac and epigastric pain. An abdominal radiograph showed a large niveau in the right subphrenic space. An abdominal CT scan demonstrated a large liver abscess (diameter, 13 cm) with gas formation. Klebsiella pneumoniae cells were isolated from the abscess, and the patient was treated with antibiotics and percutaneous drainage. It is very important to treat gas-forming liver abscess immediately, because subsequent bacteremia and septic shock are frequently noted, and the associated mortality rate is high.
Endogenous Sheet-Averaged Tension Within a Large Epithelial Cell Colony.
Dumbali, Sandeep P; Mei, Lanju; Qian, Shizhi; Maruthamuthu, Venkat
2017-10-01
Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell-cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation-the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.
Multiphase transport in polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Gauthier, Eric D.
Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the flow channel. We have compared the role of GDL materials in liquid drop and gas bubble formation and movement within fuel cells.
Maiborodin, I V; Yakimova, N V; Matveyeva, V A; Pekarev, O G; Maiborodina, E I; Pekareva, E O
2011-04-01
Results of injection of autologous bone marrow mesenchymal stem cells with transfected GFP gene into the rat uterine horn cicatrix were studied by light microscopy. Large groups of blood vessels with blood cells inside were seen after injection of autologous bone marrow cells into the cicatrix on the right horn, formed 2 months after its ligation; no groups of vessels of this kind were found in the cicatrix in the contralateral horn. Examination of unstained sections in reflected UV light showed sufficiently bright fluorescence in the endothelium and outer vascular membrane in the uterine horn cicatrix only on the side of injection. Hence, autologous mesenchymal stem cells injected into the cicatrix formed the blood vessels due to differentiation into endotheliocytes and pericytes. The expression of GFP gene not only in the vascular endothelium, but also in vascular outer membranes indicated that autologous mesenchymal stem cells differentiated in the endothelial and pericytic directions.
Fang, Shenglin; Yu, Xiaonan; Ding, Haoxuan; Han, Jianan; Feng, Jie
2018-06-11
Iron overload causes many diseases, while the underlying etiologies of these diseases are unclear. Cell death processes including apoptosis, necroptosis, cyclophilin D-(CypD)-dependent necrosis and a recently described additional form of regulated cell death called ferroptosis, are dependent on iron or iron-dependent reactive oxygen species (ROS). However, whether the accumulation of intracellular iron itself induces ferroptosis or other forms of cell death is largely elusive. In present study, we study the role of intracellular iron overload itself-induced cell death mechanisms by using ferric ammonium citrate (FAC) and a membrane-permeable Ferric 8-hydroxyquinoline complex (Fe-8HQ) respectively. We show that FAC-induced intracellular iron overload causes ferroptosis. We also identify 3-phosphoinositide-dependent kinase 1 (PDK1) inhibitor GSK2334470 as a potent ferroptosis inhibitor. Whereas, Fe-8HQ-induced intracellular iron overload causes unregulated necrosis, but partially activates PARP-1 dependent parthanatos. Interestingly, we identify many phenolic compounds as potent inhibitors of Fe-8HQ-induced cell death. In conclusion, intracellular iron overload-induced cell death form might be dependent on the intracellular iron accumulation rate, newly identified cell death inhibitors in our study that target ferroptosis and unregulated oxidative cell death represent potential therapeutic strategies against iron overload related diseases. Copyright © 2018 Elsevier Inc. All rights reserved.
Dynamic Assembly of Brambleberry Mediates Nuclear Envelope Fusion during Early Development
Abrams, Elliott W.; Zhang, Hong; Marlow, Florence L.; Kapp, Lee; Lu, Sumei; Mullins, Mary C.
2012-01-01
Summary To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, a mitotic intermediate wherein individual chromatin masses are surrounded by nuclear envelope, which then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion resulting in formation of multiple micronuclei. brambleberry is a previously unannotated gene homologous to Kar5p, which participates in nuclear fusion in yeast. We demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. As karyomeres form, Brambleberry localizes to the nuclear envelope with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. Our studies identify the first factor acting in karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres. PMID:22863006
NASA Technical Reports Server (NTRS)
Cotton, W. R.; George, R. L.; Knupp, K. R.
1982-01-01
The evolution of mesoscale systems that eventually lead to the formation of large quasi-steady storm systems is investigated. The morphological and turbulent structure of the quasi-steady storm is described. Data obtained during the South Park Area Cumulus Experiment from surface meteorological stations, rawinsondes and tethered balloons, conventional and Doppler radars, powered aircraft, and satellites, indicate that on July 19, 1977, a north-south oriented line of intense convective cells formed and remained within South Park. Elevated surface heating created a region of low-level convergence, importing Pacific moisture from west of the Rockies. The mesoscale thunderstorm line formed over this convergence zone, and a single large convective cell was observed to grow on the southern end of the mesoscale line, exhibiting supercell characteristics and substantial modifications of the environmental flow.
Amorphous areas in the cytoplasm of Dendrobium tepal cells
van Doorn, Wouter G.; Kirasak, Kanjana; Ketsa, Saichol
2013-01-01
In Dendrobium flowers some tepal mesophyll cells showed cytoplasmic areas devoid of large organelles. Such amorphous areas comprised up to about 40% of the cross-section of a cell. The areas were not bound by a membrane. The origin of these areas is not known. We show data suggesting that they can be formed from vesicle-like organelles. The data imply that these organelles and other material become degraded inside the cytoplasm. This can be regarded as a form of autophagy. The amorphous areas became surrounded by small vacuoles, vesicles or double membranes. These seemed to merge and thereby sequester the areas. Degradation of the amorphous areas therefore seemed to involve macroautophagy. PMID:23823702
Sandh, Gustaf; Ramström, Margareta; Stensjö, Karin
2014-12-04
In the filamentous cyanobacterium Nostoc punctiforme ATCC 29133, removal of combined nitrogen induces the differentiation of heterocysts, a cell-type specialized in N2 fixation. The differentiation involves genomic, structural and metabolic adaptations. In cyanobacteria, changes in the availability of carbon and nitrogen have also been linked to redox regulated posttranslational modifications of protein bound thiol groups. We have here employed a thiol targeting strategy to relatively quantify the putative redox proteome in heterocysts as compared to N2-fixing filaments, 24 hours after combined nitrogen depletion. The aim of the study was to expand the coverage of the cell-type specific proteome and metabolic landscape of heterocysts. Here we report the first cell-type specific proteome of newly formed heterocysts, compared to N2-fixing filaments, using the cysteine-specific selective ICAT methodology. The data set defined a good quantitative accuracy of the ICAT reagent in complex protein samples. The relative abundance levels of 511 proteins were determined and 74% showed a cell-type specific differential abundance. The majority of the identified proteins have not previously been quantified at the cell-type specific level. We have in addition analyzed the cell-type specific differential abundance of a large section of proteins quantified in both newly formed and steady-state diazotrophic cultures in N. punctiforme. The results describe a wide distribution of members of the putative redox regulated Cys-proteome in the central metabolism of both vegetative cells and heterocysts of N. punctiforme. The data set broadens our understanding of heterocysts and describes novel proteins involved in heterocyst physiology, including signaling and regulatory proteins as well as a large number of proteins with unknown function. Significant differences in cell-type specific abundance levels were present in the cell-type specific proteomes of newly formed diazotrophic filaments as compared to steady-state cultures. Therefore we conclude that by using our approach we are able to analyze a synchronized fraction of newly formed heterocysts, which enabled a better detection of proteins involved in the heterocyst specific physiology.
Cheng, Lei; Wu, Cheng Hao; Jarry, Angelique; Chen, Wei; Ye, Yifan; Zhu, Junfa; Kostecki, Robert; Persson, Kristin; Guo, Jinghua; Salmeron, Miquel; Chen, Guoying; Doeff, Marca
2015-08-19
The interfacial resistances of symmetrical lithium cells containing Al-substituted Li7La3Zr2O12 (LLZO) solid electrolytes are sensitive to their microstructures and histories of exposure to air. Air exposure of LLZO samples with large grain sizes (∼150 μm) results in dramatically increased interfacial impedances in cells containing them, compared to those with pristine large-grained samples. In contrast, a much smaller difference is seen between cells with small-grained (∼20 μm) pristine and air-exposed LLZO samples. A combination of soft X-ray absorption (sXAS) and Raman spectroscopy, with probing depths ranging from nanometer to micrometer scales, revealed that the small-grained LLZO pellets are more air-stable than large-grained ones, forming far less surface Li2CO3 under both short- and long-term exposure conditions. Surface sensitive X-ray photoelectron spectroscopy (XPS) indicates that the better chemical stability of the small-grained LLZO is related to differences in the distribution of Al and Li at sample surfaces. Density functional theory calculations show that LLZO can react via two different pathways to form Li2CO3. The first, more rapid, pathway involves a reaction with moisture in air to form LiOH, which subsequently absorbs CO2 to form Li2CO3. The second, slower, pathway involves direct reaction with CO2 and is favored when surface lithium contents are lower, as with the small-grained samples. These observations have important implications for the operation of solid-state lithium batteries containing LLZO because the results suggest that the interfacial impedances of these devices is critically dependent upon specific characteristics of the solid electrolyte and how it is prepared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, G. H.; Pesaran, A.; Spotnitz, R.
To understand further the thermal abuse behavior of large format Li-ion batteries for automotive applications, the one-dimensional modeling approach formulated by Hatchard et al. was reproduced. Then it was extended to three dimensions so we could consider the geometrical features, which are critical in large cells for automotive applications. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, and is used to simulate oven tests, and to determine how a local hot spot can propagate through the cell. In simulations of oven abuse testing of cells with cobalt oxide cathodemore » and graphite anode with standard LiPF6 electrolyte, the three-dimensional model predicts that thermal runaway will occur sooner or later than the lumped model, depending on the size of the cell. The model results showed that smaller cells reject heat faster than larger cells; this may prevent them from going into thermal runaway under identical abuse conditions. In simulations of local hot spots inside a large cylindrical cell, the three-dimensional model predicts that the reactions initially propagate in the azimuthal and longitudinal directions to form a hollow cylinder-shaped reaction zone.« less
Isimbaldi, G; Sironi, M; Taccagni, G; Declich, P; Dell'Antonio, A; Galli, C
1993-06-01
We report a case of primary cutaneous neuroendocrine carcinoma (PCNEC) with squamous, glandular, and melanocytic differentiation and associated Bowen disease. The paranuclear globular positivity of low-molecular-weight cytokeratins agrees with the ultrastructural observations of paranuclear fibrous bodies in the small neuroendocrine cells, while the diffuse cytoplasmic positivity corresponds to the sparse intermediate filaments in large cells with squamous differentiation. "Transitional forms" are characterized by both diffuse and globular cytoplasmic positivity for cytokeratins and by the ultrastructural evidence of neuroendocrine and squamous features. Therefore the ultrastructural demonstration of intracytoplasmic tonofibrils and tonofilaments, intercellular glandular lumina, lined by well-formed microvilli, and immature premelanosomes in the neurosecretory cells supports the proposed tripartite differentiation of neuroendocrine cells of this case of PCNEC.
Rodriguez, L; Lampen, J O; MacKay, V L
1981-01-01
Saccharomyces cerevisiae revertant strain D10-ER1 has been shown to contain thermosensitive forms of the large (glycoprotein) and small (carbohydrate-free) invertases and a very low level of the small enzyme, along with a wild-type level of the large form (T. Mizunaga et al., Mol. Cell. Biol. 1:460-468, 1981). These characteristics cosegregated in crosses of the revertant strain with wild-type sucrose-fermenting (SUC1) or nonfermenting (suc0) strains. In addition, there is tight linkage between sucrose and maltose fermentation in revertant D10-ER1 (characteristic of the SUC1 and MAL1 genes). From this we infer that a single reversion event is responsible for the several changes observed in D10-ER1, and that this mutation maps within or very close to the SUC1 gene present in the ancestor strain 4059-358D. The revertant SUC1 allele in D10-ER1 (termed SUC1-R1) was expressed independently of the wild-type SUC1 gene when both were present in diploid cells. Diploids carrying only the wild-type or the mutant genes synthesized invertases with the characteristics of the parental Suc+ haploids. The possibility that a modifier gene was responsible for the alterations in the invertases of revertant D10-ER1 was ruled out by appropriate crosses. We conclude that SUC1 is a structural gene that codes for both the large and the small forms of invertase and suggest that SUC2 through SUC5 are structural genes as well. PMID:6765604
Cholinergic neurons and fibres in the rat visual cortex.
Parnavelas, J G; Kelly, W; Franke, E; Eckenstein, F
1986-06-01
Choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, was localized immunocytochemically in neurons and fibres in the rat visual cortex using a monoclonal antibody. ChAT-labelled cells were non-pyramidal neurons, primarily of the bipolar form, distributed in layers II through VI but concentrated in layers II & III. Their perikarya contained a large nucleus and a small amount of perinuclear cytoplasm. The somata and dendrites of all labelled cells received Gray's type I and type II synapses. ChAT-stained axons formed a dense and diffuse network throughout the visual cortex and particularly in layer V. Electron microscopy revealed that the great majority formed type II synaptic contacts with dendrites of various sizes, unlabelled non-pyramidal somata and, on a few occasions, with ChAT-labelled cells. However, a very small number of terminals appeared to form type I synaptic contacts. This study describes the morphological organization of the cholinergic system in the visual cortex, the function of which has been under extensive investigation.
Mançanares, Celina A F; Leiser, Rudolf; Favaron, Phelipe O; Carvalho, Ana F; Oliveira, Vanessa C De; Santos, José M Dos; Ambrósio, Carlos E; Miglino, Maria A
2013-07-01
The yolk sac (YS) is the main source of embryonic nutrition during the period when the placenta has not yet formed. It is also responsible for hematopoiesis because the blood cells develop from it as part of the primitive embryonic circulation. The objective of this study was to characterize the transitional area between the YS and primitive gut using the techniques of light microscopy, transmission electron microscopy, and immunohistochemistry to detect populations of pluripotent cells by labeling with Oct4 antibody. In all investigated embryos, serial sections were made to permit the identification of this small, restricted area. We identified the YS connection with the primitive intestine and found that it is composed of many blood islands, which correspond to the vessels covered by vitelline and mesenchymal cells. We identified large numbers of hemangioblasts inside the vessels. The mesenchymal layer was thin and composed of elongated cells, and the vitelline endodermal membrane was composed of large, mono- or binucleated cells. The epithelium of the primitive intestine comprised stratified columnar cells and undifferentiated mesenchymal cells. The transitional area between the YS and the primitive intestine was very thin and composed of cells with irregular shapes, which formed a delicate lumen containing hemangioblasts. In the mesenchyme of the transitional area, there were a considerable number of small vessels containing hemangioblasts. Using Oct4 as a primary antibody, we identified positive cells in the metanephros, primordial gonad, and hepatic parenchyma as well as in YS cells, suggesting that these regions contain populations of pluripotent cells. Copyright © 2013 Wiley Periodicals, Inc.
Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import
Buchanan, Susan K; Lukacik, Petra; Grizot, Sylvestre; Ghirlando, Rodolfo; Ali, Maruf M U; Barnard, Travis J; Jakes, Karen S; Kienker, Paul K; Esser, Lothar
2007-01-01
Colicin Ia is a 69 kDa protein that kills susceptible Escherichia coli cells by binding to a specific receptor in the outer membrane, colicin I receptor (70 kDa), and subsequently translocating its channel forming domain across the periplasmic space, where it inserts into the inner membrane and forms a voltage-dependent ion channel. We determined crystal structures of colicin I receptor alone and in complex with the receptor binding domain of colicin Ia. The receptor undergoes large and unusual conformational changes upon colicin binding, opening at the cell surface and positioning the receptor binding domain of colicin Ia directly above it. We modelled the interaction with full-length colicin Ia to show that the channel forming domain is initially positioned 150 Å above the cell surface. Functional data using full-length colicin Ia show that colicin I receptor is necessary for cell surface binding, and suggest that the receptor participates in translocation of colicin Ia across the outer membrane. PMID:17464289
Morović-Vergles, Jadranka; Puksić, Silva; Gracanin, Ana Gudelj
2013-01-01
Large vessel vasculitis includes Giant cell arteritis and Takayasu arteritis. Giant cell arteritis is the most common form of vasculitis affect patients aged 50 years or over. The diagnosis should be considered in older patients who present with new onset of headache, visual disturbance, polymyalgia rheumatica and/or fever unknown cause. Glucocorticoides remain the cornerstone of therapy. Takayasu arteritis is a chronic panarteritis of the aorta ant its major branches presenting commonly in young ages. Although all large arteries can be affected, the aorta, subclavian and carotid arteries are most commonly involved. The most common symptoms included upper extremity claudication, hypertension, pain over the carotid arteries (carotidynia), dizziness and visual disturbances. Early diagnosis and treatment has improved the outcome in patients with TA.
Płachno, Bartosz J; Swiątek, Piotr
2011-04-01
The syncytium formed by Utricularia is extremely unusual and perhaps unique among angiosperm syncytia. All typical plant syncytia (articulated laticifers, amoeboid tapetum, the nucellar plasmodium of river weeds) are formed only by fusion of sporophytic cells which possess the same genetic material, unlike Utricularia in which the syncytium possesses nuclei from two different sources: cells of maternal sporophytic nutritive tissue and endosperm haustorium (both maternal and paternal genetic material). How is this kind of syncytium formed and organized and is it similar to other plant syncytial structures? We used light and electron microscopy to reconstruct the step-by-step development of the Utricularia syncytia. The syncytia of Utricularia developed through heterotypic cell fusion involving the digestion of the cell wall, and finally, heterokaryotic multinucleate structures were formed, which possessed different-sized nuclei that were not regularly arranged in the cytoplasm. We showed that these syncytia were characterized by hypertrophy of nuclei, abundant endoplasmic reticulum and organelles, and the occurrence of wall ingrowths. All these characters testify to high activity and may confirm the nutritive and transport functions of the syncytium for the developing embryo. In Utricularia, the formation of the syncytium provides an economical way to redistribute cell components and release nutrients from the digested cell walls, which can now be used for the embryo, and finally to create a large surface for the exchange of nutrients between the placenta and endosperm.
Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.
Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y
2010-11-01
The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.
Giant Syncytia and Virus-Like Particles in Ovarian Carcinoma Cells Isolated from Ascites Fluid
Rakowicz-Szulczynska, Eva M.; McIntosh, David G.; Smith, McClure L.
1999-01-01
Ovarian cancer cells were isolated from ascites fluid of 30 different patients diagnosed with cystadenocarcinoma of ovaries. Large colonies of malignant ASC cells were observed during the first week of cell growth in vitro. Colony formation was followed by fusion of cells and formation of large multinucleated and highly vacuolated syncytia. In contrast, cells isolated from the ascites fluid produced by patients with benign mucinous cystadenoma of ovaries did not form syncytia. Nonmalignant Brenner tumor cells, isolated from the ascites fluid, also did not form syncytia. Syncytia, but not the nonmalignant tumor cells, were immunofluorescence stained with an anti-human immunodeficiency virus type 1 (HIV-1) gp120 monoclonal antibody (MAb) and MAb RAK-BrI. Both MAbs recognized cancer-associated antigens RAK (for Rakowicz markers) p120, p42, and p25. Exposure of ASC cells to either the anti-HIV-1 gp120 MAb or MAb RAK-BrI inhibited syncytium formation. PCR with HIV-1 Env-derived primers revealed DNA sequences with over 90% homology to HIV-1 gp41 in syncytia and in ovarian cancer cells but not in normal ovary cells. Electron microscopic analysis revealed viral particles, hexagonal in shape (90 nm in diameter), with a dense central core surrounded by an inner translucent capsid and dense outer shell with projections. Negative staining detected membrane-covered particles (100 to 110 nm in diameter) in the cell culture medium. Incubation of normal breast cells with viral particles resulted in drastic morphological changes and syncytium formation by the transformed breast cells. The cytopathic effects of the identified virus resembled those of spumaviruses, which, in addition to their epitopic and genetic homology to HIV-1, might suggest a common phylogeny. PMID:9874674
Giant syncytia and virus-like particles in ovarian carcinoma cells isolated from ascites fluid.
Rakowicz-Szulczynska, E M; McIntosh, D G; Smith, M L
1999-01-01
Ovarian cancer cells were isolated from ascites fluid of 30 different patients diagnosed with cystadenocarcinoma of ovaries. Large colonies of malignant ASC cells were observed during the first week of cell growth in vitro. Colony formation was followed by fusion of cells and formation of large multinucleated and highly vacuolated syncytia. In contrast, cells isolated from the ascites fluid produced by patients with benign mucinous cystadenoma of ovaries did not form syncytia. Nonmalignant Brenner tumor cells, isolated from the ascites fluid, also did not form syncytia. Syncytia, but not the nonmalignant tumor cells, were immunofluorescence stained with an anti-human immunodeficiency virus type 1 (HIV-1) gp120 monoclonal antibody (MAb) and MAb RAK-BrI. Both MAbs recognized cancer-associated antigens RAK (for Rakowicz markers) p120, p42, and p25. Exposure of ASC cells to either the anti-HIV-1 gp120 MAb or MAb RAK-BrI inhibited syncytium formation. PCR with HIV-1 Env-derived primers revealed DNA sequences with over 90% homology to HIV-1 gp41 in syncytia and in ovarian cancer cells but not in normal ovary cells. Electron microscopic analysis revealed viral particles, hexagonal in shape (90 nm in diameter), with a dense central core surrounded by an inner translucent capsid and dense outer shell with projections. Negative staining detected membrane-covered particles (100 to 110 nm in diameter) in the cell culture medium. Incubation of normal breast cells with viral particles resulted in drastic morphological changes and syncytium formation by the transformed breast cells. The cytopathic effects of the identified virus resembled those of spumaviruses, which, in addition to their epitopic and genetic homology to HIV-1, might suggest a common phylogeny.
Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells
NASA Astrophysics Data System (ADS)
Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony
2014-03-01
Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.
Porntharukcharoen, Saneerat; Rutnin, Suthinee; Rajatanavin, Natta
2017-01-01
Mycosis fungoides is the most common form of cutaneous T-cell lymphoma. Both large-cell transformed mycosis fungoides and mycosis fungoides bullosa are rare presentations and predict unfavorable prognosis. We report the case of a 61-year-old woman who presented with generalized erythematous scaly annular plaques, and histopathology confirmed the diagnosis of mycosis fungoides. She was treated with various conventional therapies but only achieved partial response and always relapsed after discontinuation of treatment. Her last treatment was combined chemotherapy (CHOP regimen) followed by romidepsin. However, 1 month after the last cycle of romidepsin, she developed multiple ulcerative masses and nodules. Skin biopsy was compatible with CD30+ large cell transformation, and she was treated with a new combination of chemotherapy (ifosfamide, carboplatin, etoposide). One day after receiving chemotherapy, multiple tense bullae on normal-appearing skin and mycosis fungoid plaques erupted. A histological study demonstrated subepidermal blistering with epidermotropism of atypical lymphocytes. Direct immunofluorescence study was negative. The results confirmed the diagnosis of mycosis fungoides bullosa. We present the first reported case of large-cell transformed mycosis fungoides coexisting with mycosis fungoides bullosa. PMID:29515392
Navigating the plant cell: intracellular transport logistics in the green kingdom
Geitmann, Anja; Nebenführ, Andreas
2015-01-01
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. PMID:26416952
Screening and characterization of plant cell walls using carbohydrate microarrays.
Sørensen, Iben; Willats, William G T
2011-01-01
Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.
BRANCHING PATTERNS OF INDIVIDUAL SYMPATHETIC NEURONS IN CULTURE
Bray, D.
1973-01-01
The growth of single sympathetic neurons in tissue culture was examined with particular regard to the way in which the patterns of axonal or dendritic processes (here called nerve fibers), were formed. The tips of the fibers were seen to advance in straight lines and to grow at rates that did not vary appreciably with time, with their position in the cell outgrowth, or with the fiber diameter. Most of the branch points were formed by the bifurcation of a fiber tip (growth cone), apparently at random, and thereafter remained at about the same distance from the cell body. It seemed that the final shape of a neuron was the result of the reiterated and largely autonomous activities of the growth cones. The other parts of the cell played a supportive role but, apart from this, had no obvious influence on the final pattern of branches formed. PMID:4687915
Fitzgibbon, Jessica; Beck, Martina; Zhou, Ji; Faulkner, Christine; Robatzek, Silke; Oparka, Karl
2013-01-01
Plasmodesmata (PD) form tubular connections that function as intercellular communication channels. They are essential for transporting nutrients and for coordinating development. During cytokinesis, simple PDs are inserted into the developing cell plate, while during wall extension, more complex (branched) forms of PD are laid down. We show that complex PDs are derived from existing simple PDs in a pattern that is accelerated when leaves undergo the sink–source transition. Complex PDs are inserted initially at the three-way junctions between epidermal cells but develop most rapidly in the anisocytic complexes around stomata. For a quantitative analysis of complex PD formation, we established a high-throughput imaging platform and constructed PDQUANT, a custom algorithm that detected cell boundaries and PD numbers in different wall faces. For anticlinal walls, the number of complex PDs increased with increasing cell size, while for periclinal walls, the number of PDs decreased. Complex PD insertion was accelerated by up to threefold in response to salicylic acid treatment and challenges with mannitol. In a single 30-min run, we could derive data for up to 11k PDs from 3k epidermal cells. This facile approach opens the door to a large-scale analysis of the endogenous and exogenous factors that influence PD formation. PMID:23371949
The structural bases of long-term anabiosis in non-spore-forming bacteria
NASA Astrophysics Data System (ADS)
Suzina, Natalia E.; Mulyukin, Andrey L.; Dmitriev, Vladimir V.; Nikolaev, Yury A.; Shorokhova, Anna P.; Bobkova, Yulia S.; Barinova, Ekaterina S.; Plakunov, Vladimir K.; El-Registan, Galina I.; Duda, Vitalii I.
2006-01-01
Peculiarities of the structural organization in non-spore-forming bacteria associated with long-term anabiosis were revealed both in laboratory cultures and in natural populations isolated from 1 3-Myr-old Eastern Siberian permafrost and tundra soil. Different advanced methods were used, including (a) high-resolution electron microscopy; (b) simulation of in situ conditions in the laboratory by varying the composition of growth medium and cultivation conditions; (c) low-temperature fractionation to isolate and concentrate microbial cells from natural soils; (d) comparative morphological analysis of microbial cells in model cultures and natural soils (in situ). Under laboratory conditions, the intense formation of resting cells by representatives of various taxa of eubacteria and halophilic archaea occurred in 2 9-month-old cultures grown in carbon-, nitrogen-, or phosphorus-limited media, in starved cell suspensions in the presence of sodium silicate, or on soil agar. Among resting cells, we revealed cystlike forms having a complicated structure and common features. These included a thick capsule; a thickened and multiprofile cell wall; the presence of large intramembrane particles on PF- and EF-fracture surfaces; fine-grained or lumpy cytoplasm; and a condensed nucleoid. The general morphological properties, ultrastructural organization, physiological features of cystlike cells, and their ability to germinate under the appropriate conditions suggest the existence of constitutive dormancy in non-spore-forming bacteria. It was found that the majority of microorganisms in permafrost and tundra soil are cystlike cells, very similar to those in laboratory cultures. Anabiotic (resting) cystlike cells are responsible for the survival of non-spore-formers in extreme Earth habitats and may be regarded as possible analogs of extraterrestrial forms of microbial life.
Lin, Yang; Gil, Chang-Hyun; Yoder, Mervin C
2017-11-01
The emergence of induced pluripotent stem cell (iPSC) technology paves the way to generate large numbers of patient-specific endothelial cells (ECs) that can be potentially delivered for regenerative medicine in patients with cardiovascular disease. In the last decade, numerous protocols that differentiate EC from iPSC have been developed by many groups. In this review, we will discuss several common strategies that have been optimized for human iPSC-EC differentiation and subsequent studies that have evaluated the potential of human iPSC-EC as a cell therapy or as a tool in disease modeling. In addition, we will emphasize the importance of using in vivo vessel-forming ability and in vitro clonogenic colony-forming potential as a gold standard with which to evaluate the quality of human iPSC-EC derived from various protocols. © 2017 American Heart Association, Inc.
Nearest-cell: a fast and easy tool for locating crystal matches in the PDB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramraj, V., E-mail: varun@strubi.ox.ac.uk; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE; Evans, G.
2012-12-01
A fast and easy tool to locate unit-cell matches in the PDB is described. When embarking upon X-ray diffraction data collection from a potentially novel macromolecular crystal form, it can be useful to ascertain whether the measured data reflect a crystal form that is already recorded in the Protein Data Bank and, if so, whether it is part of a large family of related structures. Providing such information to crystallographers conveniently and quickly, as soon as the first images have been recorded and the unit cell characterized at an X-ray beamline, has the potential to save time and effort asmore » well as pointing to possible search models for molecular replacement. Given an input unit cell, and optionally a space group, Nearest-cell rapidly scans the Protein Data Bank and retrieves near-matches.« less
T-cell lymphomas in South america and europe.
Bellei, Monica; Chiattone, Carlos Sergio; Luminari, Stefano; Pesce, Emanuela Anna; Cabrera, Maria Elena; de Souza, Carmino Antonio; Gabús, Raul; Zoppegno, Lucia; Zoppegno, Lucia; Milone, Jorge; Pavlovsky, Astrid; Connors, Joseph Michael; Foss, Francine Mary; Horwitz, Steven Michael; Liang, Raymond; Montoto, Silvia; Pileri, Stefano Aldo; Polliack, Aaron; Vose, Julie Marie; Zinzani, Pier Luigi; Zucca, Emanuele; Federico, Massimo
2012-01-01
Peripheral T-cell lymphomas are a group of rare neoplasms originating from clonal proliferation of mature post-thymic lymphocytes with different entities having specific biological characteristics and clinical features. As natural killer cells are closely related to T-cells, natural killer-cell lymphomas are also part of the group. The current World Health Organization classification recognizes four categories of T/natural killer-cell lymphomas with respect to their presentation: disseminated (leukemic), nodal, extranodal and cutaneous. Geographic variations in the distribution of these diseases are well documented: nodal subtypes are more frequent in Europe and North America, while extranodal forms, including natural killer-cell lymphomas, occur almost exclusively in Asia and South America. On the whole, T-cell lymphomas are more common in Asia than in western countries, usually affect adults, with a higher tendency in men, and, excluding a few subtypes, usually have an aggressive course and poor prognosis. Apart from anaplastic lymphoma kinase-positive anaplastic large cell lymphoma, that have a good outcome, other nodal and extranodal forms have a 5-year overall survival of about 30%. According to the principal prognostic indexes, the majority of patients are allocated to the unfavorable subset. In the past, the rarity of these diseases prevented progress in the understanding of their biology and improvements in the efficaciousness of therapy. Recently, international projects devoted to these diseases created networks promoting investigations on T-cell lymphomas. These projects are the basis of forthcoming cooperative, large scale trials to detail biologic characteristics of each sub-entity and to possibly individuate targets for new therapies.
T-Cell Lymphomas in South America and Europe
Bellei, Monica; Chiattone, Carlos Sergio; Luminari, Stefano; Pesce, Emanuela Anna; Cabrera, Maria Elena; de Souza, Carmino Antonio; Gabús, Raul; Zoppegno, Lucia; Zoppegno, Lucia; Milone, Jorge; Pavlovsky, Astrid; Connors, Joseph Michael; Foss, Francine Mary; Horwitz, Steven Michael; Liang, Raymond; Montoto, Silvia; Pileri, Stefano Aldo; Polliack, Aaron; Vose, Julie Marie; Zinzani, Pier Luigi; Zucca, Emanuele; Federico, Massimo
2012-01-01
Peripheral T-cell lymphomas are a group of rare neoplasms originating from clonal proliferation of mature post-thymic lymphocytes with different entities having specific biological characteristics and clinical features. As natural killer cells are closely related to T-cells, natural killer-cell lymphomas are also part of the group. The current World Health Organization classification recognizes four categories of T/natural killer-cell lymphomas with respect to their presentation: disseminated (leukemic), nodal, extranodal and cutaneous. Geographic variations in the distribution of these diseases are well documented: nodal subtypes are more frequent in Europe and North America, while extranodal forms, including natural killer-cell lymphomas, occur almost exclusively in Asia and South America. On the whole, T-cell lymphomas are more common in Asia than in western countries, usually affect adults, with a higher tendency in men, and, excluding a few subtypes, usually have an aggressive course and poor prognosis. Apart from anaplastic lymphoma kinase-positive anaplastic large cell lymphoma, that have a good outcome, other nodal and extranodal forms have a 5-year overall survival of about 30%. According to the principal prognostic indexes, the majority of patients are allocated to the unfavorable subset. In the past, the rarity of these diseases prevented progress in the understanding of their biology and improvements in the efficaciousness of therapy. Recently, international projects devoted to these diseases created networks promoting investigations on T-cell lymphomas. These projects are the basis of forthcoming cooperative, large scale trials to detail biologic characteristics of each sub-entity and to possibly individuate targets for new therapies. PMID:23049383
García-Bayona, Leonor; Guo, Monica S; Laub, Michael T
2017-03-21
Most bacteria are in fierce competition with other species for limited nutrients. Some bacteria can kill nearby cells by secreting bacteriocins, a diverse group of proteinaceous antimicrobials. However, bacteriocins are typically freely diffusible, and so of little value to planktonic cells in aqueous environments. Here, we identify an atypical two-protein bacteriocin in the α-proteobacterium Caulobacter crescentus that is retained on the surface of producer cells where it mediates cell contact-dependent killing. The bacteriocin-like proteins CdzC and CdzD harbor glycine-zipper motifs, often found in amyloids, and CdzC forms large, insoluble aggregates on the surface of producer cells. These aggregates can drive contact-dependent killing of other organisms, or Caulobacter cells not producing the CdzI immunity protein. The Cdz system uses a type I secretion system and is unrelated to previously described contact-dependent inhibition systems. However, Cdz-like systems are found in many bacteria, suggesting that this form of contact-dependent inhibition is common.
Bharadwaj, Shantaram; Liu, Guihua; Shi, Yingai; Wu, Rongpei; Yang, Bin; He, Tongchuan; Fan, Yuxin; Lu, Xinyan; Zhou, Xiaobo; Liu, Hong; Atala, Anthony; Rohozinski, Jan; Zhang, Yuanyuan
2013-09-01
We sought to biologically characterize and identify a subpopulation of urine-derived stem cells (USCs) with the capacity for multipotent differentiation. We demonstrated that single USCs can expand to a large population with 60-70 population doublings. Nine of 15 individual USC clones expressed detectable levels of telomerase and have long telomeres. These cells expressed pericyte and mesenchymal stem cell markers. Upon induction with appropriate media in vitro, USCs differentiated into bladder-associated cell types, including functional urothelial and smooth muscle cell lineages. When the differentiated USCs were seeded onto a scaffold and subcutaneously implanted into nude mice, multilayered tissue-like structures formed consisting of urothelium and smooth muscle. Additionally, USCs were able to differentiate into endothelial, osteogenic, chondrogenic, adipogenic, skeletal myogenic, and neurogenic lineages but did not form teratomas during the 1-month study despite telomerase activity. USCs may be useful in cell-based therapies and tissue engineering applications, including urogenital reconstruction. © AlphaMed Press.
Shatrov, Andrew B
2015-07-01
The prosomal salivary glands of the unfed larvae Leptotrombidium orientale (Schluger) were investigated using transmission electron microscopy. In total, four pairs of the prosomal glands were identified--three pairs, the lateral, the medial and the anterior, belong to the podocephalic system, and one pair, the posterior, is separate having an own excretory duct. All glands are simple alveolar/acinous with prismatic cells arranged around a relatively small intra-alveolar lumen with the duct base. The cells of all glands besides the lateral ones contain practically mature electron-dense secretory granules ready to be discharged from the cells. The secretory granules in the lateral glands undergo formation and maturation due to the Golgi body activity. The cells of all gland types contain a large basally located nucleus and variously expressed rough endoplasmic reticulum. Specialized duct-forming cells filled with numerous freely scattered microtubules are situated in the middle zone of each gland's acinus and form the intra-alveolar lumen and the duct base. Both the acinar (secretory) and the duct-forming cells contact each other via gap junctions and septate desmosomes. Axons of nerve cells come close to the basal extensions of the duct-forming cells where they form the bulb-shaped synaptic terminations. The process of secretion is under the control of the nerve system that provides contraction of the duct-forming cells and discharge of secretion from the secretory cells into the intra-alveolar lumen and further to the exterior. Unfed larvae of L. orientale, the potential vector of tsutsugamushi disease agents, contain the most simply organized salivary secretory granules among known trombiculid larvae, and this secretion, besides the lateral glands, does not undergo significant additional maturation. Thus, the larvae are apparently ready to feed on the appropriate host just nearly after hatching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawata, Shigehisa; Suzuki, Jun; Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871
2006-11-10
Osteoclast precursor cells (OPCs) have previously been established from bone marrow cells of SV40 temperature-sensitive T antigen-expressing transgenic mice. Here, we use retrovirus-mediated gene transfer to conditionally immortalize OPCs by expressing temperature-sensitive large T antigen (tsLT) from wild type bone marrow cells. The immortalized OPCs proliferated at the permissive temperature of 33.5 deg. C, but stopped growing at the non-permissive temperature of 39 deg. C. In the presence of receptor activator of NF{kappa}B ligand (RANKL), the OPCs differentiated into tartrate-resistant acid phosphatase (TRAP)-positive cells and formed multinucleate osteoclasts at 33.5 deg. C. From these OPCs, we cloned two types ofmore » cell lines. Both differentiated into TRAP-positive cells, but one formed multinucleate osteoclasts while the other remained unfused in the presence of RANKL. These results indicate that the established cell lines are useful for analyzing mechanisms of differentiation, particularly multinucleate osteoclast formation. Retrovirus-mediated conditional immortalization should be a useful method to immortalize OPCs from primary bone marrow cells.« less
Zhu, Xiaofei; Liu, Jie; Yu, Zongdong; Chen, Chao-An; Aksel, Hacer; Azim, Adham A; Huang, George T-J
2018-02-01
The goal of this study was to establish mini-swine as a large animal model for stem cell-based pulp regeneration studies. Swine dental pulp stem cells (sDPSCs) were isolated from mini-swine and characterized in vitro. For in vivo studies, we first employed both ectopic and semi-orthotopic study models using severe combined immunodeficiency mice. One is hydroxyapatite-tricalcium phosphate (HA/TCP) model for pulp-dentin complex formation, and the other is tooth fragment model for complete pulp regeneration with new dentin depositing along the canal walls. We found that sDPSCs are similar to their human counterparts exhibiting mesenchymal stem cell characteristics with ability to form colony forming unit-fibroblastic and odontogenic differentiation potential. sDPSCs formed pulp-dentin complex in the HA/TCP model and showed pulp regeneration capacity in the tooth fragment model. We then tested orthotopic pulp regeneration on mini-swine including the use of multi-rooted teeth. Using autologous sDPSCs carried by hydrogel and transplanted into the mini-swine root canal space, we observed regeneration of vascularized pulp-like tissue with a layer of newly deposited dentin-like (rD) tissue or osteodentin along the canal walls. In some cases, dentin bridge-like structure was observed. Immunohistochemical analysis detected the expression of nestin, dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein in odontoblast-like cells lining against the produced rD. We also tested the use of allogeneic sDPSCs for the same procedures. Similar findings were observed in allogeneic transplantation. This study is the first to show an establishment of mini-swine as a suitable large animal model utilizing multi-rooted teeth for further cell-based pulp regeneration studies.
Diagnosis and classification of hematologic malignancies on the basis of genetics
2017-01-01
Genomic analysis has greatly influenced the diagnosis and clinical management of patients affected by diverse forms of hematologic malignancies. Here, we review how genetic alterations define subclasses of patients with acute leukemias, myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPNs), non-Hodgkin lymphomas, and classical Hodgkin lymphoma. These include new subtypes of acute myeloid leukemia defined by mutations in RUNX1 or BCR-ABL1 translocations as well as a constellation of somatic structural DNA alterations in acute lymphoblastic leukemia. Among patients with MDS, detection of mutations in SF3B1 define a subgroup of patients with the ring sideroblast form of MDS and a favorable prognosis. For patients with MPNs, detection of the BCR-ABL1 fusion delineates chronic myeloid leukemia from classic BCR-ABL1− MPNs, which are largely defined by mutations in JAK2, CALR, or MPL. In the B-cell lymphomas, detection of characteristic rearrangements involving MYC in Burkitt lymphoma, BCL2 in follicular lymphoma, and MYC/BCL2/BCL6 in high-grade B-cell lymphomas are essential for diagnosis. In T-cell lymphomas, anaplastic large-cell lymphoma is defined by mutually exclusive rearrangements of ALK, DUSP22/IRF4, and TP63. Genetic alterations affecting TP53 and the mutational status of the immunoglobulin heavy-chain variable region are important in clinical management of chronic lymphocytic leukemia. Additionally, detection of BRAFV600E mutations is helpful in the diagnosis of classical hairy cell leukemia and a number of histiocytic neoplasms. Numerous additional examples provided here demonstrate how clinical evaluation of genomic alterations have refined classification of myeloid neoplasms and major forms of lymphomas arising from B, T, or natural killer cells. PMID:28600336
Zhu, Cheng; Beck, Matthew V; Griffith, Jack D; Deshmukh, Mohanish; Dokholyan, Nikolay V
2018-05-01
Aberrant accumulation of misfolded Cu, Zn superoxide dismutase (SOD1) is a hallmark of SOD1-associated amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disease. While recent discovery of nonnative trimeric SOD1-associated neurotoxicity has suggested a potential pathway for motor neuron impairment, it is yet unknown whether large, insoluble aggregates are cytotoxic. Here we designed SOD1 mutations that specifically stabilize either the fibrillar form or the trimeric state of SOD1. The designed mutants display elevated populations of fibrils or trimers correspondingly, as demonstrated by gel filtration chromatography and electron microscopy. The trimer-stabilizing mutant, G147P, promoted cell death, even more potently in comparison with the aggressive ALS-associated mutants A4V and G93A. In contrast, the fibril-stabilizing mutants, N53I and D101I, positively impacted the survival of motor neuron-like cells. Hence, we conclude the SOD1 oligomer and not the mature form of aggregated fibril is critical for the neurotoxic effects in the model of ALS. The formation of large aggregates is in competition with trimer formation, suggesting that aggregation may be a protective mechanism against formation of toxic oligomeric intermediates.
Dynamic assembly of brambleberry mediates nuclear envelope fusion during early development.
Abrams, Elliott W; Zhang, Hong; Marlow, Florence L; Kapp, Lee; Lu, Sumei; Mullins, Mary C
2012-08-03
To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, mitotic intermediates wherein individual chromatin masses are surrounded by nuclear envelope; the karyomeres then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion, resulting in formation of multiple micronuclei. As karyomeres form, Brambleberry protein localizes to the nuclear envelope, with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. brambleberry corresponds to an unannotated gene with similarity to Kar5p, a protein that participates in nuclear fusion in yeast. We also demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. Our studies provide insight into the machinery required for karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres. Copyright © 2012 Elsevier Inc. All rights reserved.
Bourcy, Marie; Brocard, Lysiane; Pislariu, Catalina I; Cosson, Viviane; Mergaert, Peter; Tadege, Millon; Mysore, Kirankumar S; Udvardi, Michael K; Gourion, Benjamin; Ratet, Pascal
2013-03-01
Medicago truncatula and Sinorhizobium meliloti form a symbiotic association resulting in the formation of nitrogen-fixing nodules. Nodule cells contain large numbers of bacteroids which are differentiated, nitrogen-fixing forms of the symbiotic bacteria. In the nodules, symbiotic plant cells home and maintain hundreds of viable bacteria. In order to better understand the molecular mechanism sustaining the phenomenon, we searched for new plant genes required for effective symbiosis. We used a combination of forward and reverse genetics approaches to identify a gene required for nitrogen fixation, and we used cell and molecular biology to characterize the mutant phenotype and to gain an insight into gene function. The symbiotic gene DNF2 encodes a putative phosphatidylinositol phospholipase C-like protein. Nodules formed by the mutant contain a zone of infected cells reduced to a few cell layers. In this zone, bacteria do not differentiate properly into bacteroids. Furthermore, mutant nodules senesce rapidly and exhibit defense-like reactions. This atypical phenotype amongst Fix(-) mutants unravels dnf2 as a new actor of bacteroid persistence inside symbiotic plant cells. © 2012 CNRS. New Phytologist © 2012 New Phytologist Trust.
Zhao, Along; Yang, Leilei; Ma, Kui; Sun, Mengli; Li, Lei; Huang, Jin; Li, Yang; Zhang, Cuiping; Li, Haihong; Fu, Xiaobing
2016-01-01
It has been reported that Wnt/β-catenin is critical for dedifferentiation of differentiated epidermal cells. Cyclin D1 (CCND1) is a β-catenin target gene. In this study, we provide evidence that overexpression of CCND1 induces reprogramming of epidermal cells into stem cell-like cells. After introducing CCND1 gene into differentiated epidermal cells, we found that the large flat-shaped cells with a small nuclear-cytoplasmic ratio changed into small round-shaped cells with a large nuclear-cytoplasmic ratio. The expressions of CK10, β1-integrin, Oct4 and Nanog in CCND1 induced cells were remarkably higher than those in the control group (P < 0.01). In addition, the induced cells exhibited a high colony-forming ability and a long-term proliferative potential. When the induced cells were implanted into a wound of laboratory animal model, the wound healing was accelerated. These results suggested that overexpression of CCND1 induced the reprogramming of differentiated epidermal cells into stem cell-like cells. This study may also offer a new approach to yield epidermal stem cells for wound repair and regeneration.
Time-dependent grid adaptation for meshes of triangles and tetrahedra
NASA Technical Reports Server (NTRS)
Rausch, Russ D.
1993-01-01
This paper presents in viewgraph form a method of optimizing grid generation for unsteady CFD flow calculations that distributes the numerical error evenly throughout the mesh. Adaptive meshing is used to locally enrich in regions of relatively large errors and to locally coarsen in regions of relatively small errors. The enrichment/coarsening procedures are robust for isotropic cells; however, enrichment of high aspect ratio cells may fail near boundary surfaces with relatively large curvature. The enrichment indicator worked well for the cases shown, but in general requires user supervision for a more efficient solution.
Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira
2016-01-01
Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.
Environmental factors that shape biofilm formation.
Toyofuku, Masanori; Inaba, Tomohiro; Kiyokawa, Tatsunori; Obana, Nozomu; Yawata, Yutaka; Nomura, Nobuhiko
2016-01-01
Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell's decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.
Protein gradients in single cells induced by their coupling to "morphogen"-like diffusion
NASA Astrophysics Data System (ADS)
Nandi, Saroj Kumar; Safran, Sam A.
2018-05-01
One of the many ways cells transmit information within their volume is through steady spatial gradients of different proteins. However, the mechanism through which proteins without any sources or sinks form such single-cell gradients is not yet fully understood. One of the models for such gradient formation, based on differential diffusion, is limited to proteins with large ratios of their diffusion constants or to specific protein-large molecule interactions. We introduce a novel mechanism for gradient formation via the coupling of the proteins within a single cell with a molecule, that we call a "pronogen," whose action is similar to that of morphogens in multi-cell assemblies; the pronogen is produced with a fixed flux at one side of the cell. This coupling results in an effectively non-linear diffusion degradation model for the pronogen dynamics within the cell, which leads to a steady-state gradient of the protein concentration. We use stability analysis to show that these gradients are linearly stable with respect to perturbations.
Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.
2016-01-01
Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658
Celedón, Gloria; González, Gustavo; Gulppi, Felipe; Pazos, Fabiola; Lanio, María E; Alvarez, Carlos; Calderón, Cristian; Montecinos, Rodrigo; Lissi, Eduardo
2013-12-01
Sticholysin II (St II) is a haemolytic toxin isolated from the sea anemone Stichodactyla helianthus. The high haemolytic activity of this toxin is strongly dependent on the red cell status and the macromolecule conformation. In the present communication we evaluate the effect of human serum albumin on St II haemolytic activity and its capacity to form pores in the bilayer of synthetic liposomes. St II retains its pore forming capacity in the presence of large concentrations (up to 500 μM) of human serum albumin. This effect is observed both in its capacity to produce red blood cells haemolysis and to generate functional pores in liposomes. In particular, the capacity of the toxin to lyse red blood cells increases in the presence of human serum albumin (HSA). Regarding the rate of the pore forming process, it is moderately decreased in liposomes and in red blood cells, in spite of an almost total coverage of the interface by albumin. All the data obtained in red cells and model membranes show that St II remains lytically active even in the presence of high HSA concentrations. This stubbornness can explain why the toxin is able to exert its haemolytic activity on membranes immersed in complex plasma matrixes such as those present in living organisms.
Microglia immunophenotyping in gliomas
Annovazzi, Laura; Mellai, Marta; Bovio, Enrica; Mazzetti, Samanta; Pollo, Bianca; Schiffer, Davide
2018-01-01
Microglia, once assimilated to peripheral macrophages, in gliomas has long been discussed and currently it is hypothesized to play a pro-tumor role in tumor progression. Uncertain between M1 and M2 polarization, it exchanges signals with glioma cells to create an immunosuppressive microenvironment and stimulates cell proliferation and migration. Four antibodies are currently used for microglia/macrophage identification in tissues that exhibit different cell forms and cell localization. The aim of the present work was to describe the distribution of the different cell forms and to deduce their significance on the basis of what is known on their function from the literature. Normal resting microglia, reactive microglia, intermediate and bumpy forms and macrophage-like cells can be distinguished by Iba1, CD68, CD16 and CD163 and further categorized by CD11b, CD45, c-MAF and CD98. The number of microglia/macrophages strongly increased from normal cortex and white matter to infiltrating and solid tumors. The ramified microglia accumulated in infiltration areas of both high- and low-grade gliomas, when hypertrophy and hyperplasia occur. In solid tumors, intermediate and bumpy forms prevailed and there is a large increase of macrophage-like cells in glioblastoma. The total number of microglia cells did not vary among the three grades of malignancy, but macrophage-like cells definitely prevailed in high-grade gliomas and frequently expressed CD45 and c-MAF. CD98+ cells were present. Microglia favors tumor progression, but many aspects suggest that the phagocytosing function is maintained. CD98+ cells can be the product of fusion, but also of phagocytosis. Microglia correlated with poorer survival in glioblastoma, when considering CD163+ cells, whereas it did not change prognosis in isocitrate dehydrogenase-mutant low grade gliomas. PMID:29399160
USDA-ARS?s Scientific Manuscript database
Biofilms formed by human enteric pathogens on plants are a great concern to the produce industry. Salmonella enterica has the ability to form biofilms and large aggregates on leaf surfaces, including on cilantro leaves. Aggregates that remained attached after rigorous washing of cilantro leaves and ...
Rezek, Bohuslav; Ukraintsev, Egor; Krátká, Marie; Taylor, Andrew; Fendrych, Frantisek; Mandys, Vaclav
2014-09-01
The authors show that nanocrystalline diamond (NCD) thin films prepared by microwave plasma enhanced chemical vapor deposition apparatus with a linear antenna delivery system are well compatible with epithelial cells (5637 human bladder carcinoma) and significantly improve the cell adhesion compared to reference glass substrates. This is attributed to better adhesion of adsorbed layers to diamond as observed by atomic force microscopy (AFM) beneath the cells. Moreover, the cell morphology can be adjusted by appropriate surface treatment of diamond by using hydrogen and oxygen plasma. Cell bodies, cytoplasmic rims, and filopodia were characterized by Peakforce AFM. Oxidized NCD films perform better than other substrates under all conditions (96% of cells adhered well). A thin adsorbed layer formed from culture medium and supplemented with fetal bovine serum (FBS) covered the diamond surface and played an important role in the cell adhesion. Nevertheless, 50-100 nm large aggregates formed from the RPMI medium without FBS facilitated cell adhesion also on hydrophobic hydrogenated NCD (increase from 23% to 61%). The authors discuss applicability for biomedical uses.
NASA Technical Reports Server (NTRS)
Wolf, M.
1981-01-01
The effect of solar cell metallization pattern design on solar cell performance and the costs and performance effects of different metallization processes are discussed. Definitive design rules for the front metallization pattern for large area solar cells are presented. Chemical and physical deposition processes for metallization are described and compared. An economic evaluation of the 6 principal metallization options is presented. Instructions for preparing Format A cost data for solar cell manufacturing processes from UPPC forms for input into the SAMIC computer program are presented.
Dynamic positional fate map of the primary heart-forming region.
Cui, Cheng; Cheuvront, Tracey J; Lansford, Rusty D; Moreno-Rodriguez, Ricardo A; Schultheiss, Thomas M; Rongish, Brenda J
2009-08-15
Here we show the temporal-spatial orchestration of early heart morphogenesis at cellular level resolution, in vivo, and reconcile conflicting positional fate mapping data regarding the primary heart-forming field(s). We determined the positional fates of precardiac cells using a precision electroporation approach in combination with wide-field time-lapse microscopy in the quail embryo, a warm-blooded vertebrate (HH Stages 4 through 10). Contrary to previous studies, the results demonstrate the existence of a "continuous" circle-shaped heart field that spans the midline, appearing at HH Stage 4, which then expands to form a wide arc of progenitors at HH Stages 5-7. Our time-resolved image data show that a subset of these cardiac progenitor cells do not overlap with the expression of common cardiogenic factors, Nkx-2.5 and Bmp-2, until HH Stage 10, when a tubular heart has formed, calling into question when cardiac fate is specified and by which key factors. Sub-groups and anatomical bands (cohorts) of heart precursor cells dramatically change their relative positions in a process largely driven by endodermal folding and other large-scale tissue deformations. Thus, our novel dynamic positional fate maps resolve the origin of cardiac progenitor cells in amniotes. The data also establish the concept that tissue motion contributes significantly to cellular position fate - i.e., much of the cellular displacement that occurs during assembly of a midline heart tube (HH Stage 9) is NOT due to "migration" (autonomous motility), a commonly held belief. Computational analysis of our time-resolved data lays the foundation for more precise analyses of how cardiac gene regulatory networks correlate with early heart tissue morphogenesis in birds and mammals.
Direct-to-Consumer Stem Cell Marketing and Regulatory Responses
2013-01-01
Summary There is a large, poorly regulated international market of putative stem cell products, including transplants of processed autologous stem cells from various tissues, cell processing devices, cosmetics, and nutritional supplements. Despite the absence of rigorous scientific research in the form of randomized clinical trials to support the routine use of such products, the market appears to be growing and diversifying. Very few stem cell biologics have passed regulatory scrutiny, and authorities in many countries, including the United States, have begun to step up their enforcement activities to protect patients and the integrity of health care markets. PMID:23934911
Direct-to-consumer stem cell marketing and regulatory responses.
Sipp, Douglas
2013-09-01
There is a large, poorly regulated international market of putative stem cell products, including transplants of processed autologous stem cells from various tissues, cell processing devices, cosmetics, and nutritional supplements. Despite the absence of rigorous scientific research in the form of randomized clinical trials to support the routine use of such products, the market appears to be growing and diversifying. Very few stem cell biologics have passed regulatory scrutiny, and authorities in many countries, including the United States, have begun to step up their enforcement activities to protect patients and the integrity of health care markets.
Fetal-maternal interface: a chronicle of allogeneic coexistence.
Pujal, Josep-Maria; Roura, Santiago; Muñoz-Marmol, Ana M; Mate, Jose-Luis; Bayes-Genis, Antoni
2012-01-01
The existence of allogeneic cells within an individual has been demonstrated in multiple fields such as hematopoietic stem cell or solid organ transplantation, non-depleted blood transfusions and the most common form which is bidirectional maternal-fetal cell trafficking, whereby cells from the fetus pass through the placental barrier. In order to graphically illustrate this early natural phenomenon that initiates the journey of a child's cells within the mother's blood and other tissues, we used a new procedure in microscopy imaging generating Large Scale Panoramic Pictures (LSPP). This technique can also be extended to explore a broad diversity of experimental models.
Dual membrane hollow fiber fuel cell and method of operating same
NASA Technical Reports Server (NTRS)
Ingham, J. D.; Lawson, D. D. (Inventor)
1978-01-01
A gaseous fuel cell is described which includes a pair of electrodes formed by open-ended, ion-exchange hollow fibers, each having a layer of metal catalyst deposited on the inner surface and large surface area current collectors such as braided metal mesh in contact with the metal catalyst layer. A fuel cell results when the electrodes are immersed in electrolytes and electrically connected. As hydrogen and oxygen flow through the bore of the fibers, oxidation and reduction reactions develop an electrical potential. Since the hollow fiber configuration provides large electrode area per unit volume and intimate contact between fuel and oxidizer at the interface, and due to the low internal resistance of the electrolyte, high power densities can be obtained.
[Microtubules suppress blebbing and stimulate lamellae extension in spreading fibroblasts].
Tvorogova, A V; Vorob'ev, I A
2012-01-01
We compared spreading of Vero fibroblasts when microtubules were depolymerized or stabilized. After initial attachment cells start blebbing that continues for different time and abruptly transfers into spreading. After spreading initiation, most cells spread in an anisotropic manner through stochastic formation of lamellipodia. A second mode was rapid, isotropic spreading via formation of circular lamellum that occurs in 15% of cells. The rate of spreading was maximal at the beginning and decreased during the first hour according to logarithmic law. After 60 min many cells formed stable efges and started migrating on the substrate. However, cell area slowly continued to increase. Actin bundles are formed 20 min after cell attachment and they first run along cell boundary. This system disassembles within 20-40 min and is substituted with stress fibers crossing the cell. In the isotropically spread cells no actin bunbles are seen. Microtubules in the spreading cells enter into large blebs and all nascent lamella and later form radial array. When MTs has been depolymerized or stabilized blebbing started before cells attached to the substrate and continue much longer than in control cells. In both cases the initial rate of spreading decrease several fold, and remains constant for many hours. After 24 h the mean area occupied by cells with altered MT system was the same as in control. Alteration of MT system had moderate effect on actin system--formation of actin cables started at the same time as in control (within 20 min upon cell attachment), however, they grew even in cells undergoing prolonged blebbing. Actin cables running along cell margin were similar to tat in control cells, but they did not disappear up to 1 h. When stabilized, microtubules form chaotic array: they do not enter blebs and in spread cells run parallel to the cell margin at a distance of 3-5 microm. We conclude that dynamic microtubules speed up completion of blebbing and promote early stages of fibroblasts spreading.
Eskola, M; Bäckman, S; Möttönen, S; Kekomäki, R
2015-04-01
Total colony-forming cells from thawed cord blood units (CBUs) include megakaryocytic colony-forming units (CFU-Mks), which survive the freezing process. The aim of this study was to evaluate whether different megakaryocytic progenitors from unseparated CBUs survive the freezing process and a short-term liquid culture. Thawed samples of CBUs were cultured in liquid medium. During the cultures, serial samples were drawn to assess the growth of different megakaryocytic progenitors in a semisolid collagen medium with identical cytokines as in the liquid medium. Megakaryocytic cells were detected using immunohistochemistry and flow cytometry. In suspension culture, the megakaryocytic progenitors almost completely lost the ability to generate large (burst-forming unit-like, BFU-like) megakaryocytic colonies in semisolid cultures (large colonies, median count per chamber d0: 7.25 vs. d7: 1.5; P < 0.0001), whereas the number of small colonies (median count per chamber d0: 7.25 vs. d7: 16.0; P = 0.0505) peaked at day seven. Further 7-day culture in suspension resulted in the decline of small colonies as well (d7: 16.0 vs. d14: 5.75; P = 0.0088). Total CFU-Mk count declined from 23.3 (range 12.5-34.0) at d0 to 7.25 (range 1.0-13.5) at d14 (P < 0.0001). Immediately post-thaw, CBUs possess an ability to generate large BFU-like megakaryocytic colonies, whereas the colonies were not detectable in most CBUs in semisolid culture after a short suspension culture. Small CFU-Mks were observed throughout the cultures. It may be that the BFU-Mk colonies matured and acquired CFU-Mk behaviour. © 2014 International Society of Blood Transfusion.
Janetzko, A; Zimmermann, H; Volknandt, W
1987-03-01
The electromotor system of the electric catfish (Malapterurus electricus) consists of two large ganglion cells situated in the spinal cord, two single axons containing electric nerves and two large electric organs with several million electroplaque cells. The small, irregularly stacked electroplaque cells possess at their center a crater-like indentation from which a stalk like protrusion arises. Many synaptic contacts derived from a single axon collateral are carried on lobe-like protrusions at the terminal knob of this stalk. The electric nerve consists of a large myelinated axon (diameter: 25 micron) surrounded by many layers of connective tissue cells. The two ganglion cells (200 micron in diameter) are rich in elements of the rough endoplasmic reticulum, Golgi apparatus and lysosomal structures. The cytoplasm of the soma changes its appearance towards the voluminous axon hillock (50 micron in diameter) which these organelles do not enter. The cell soma is perforated in a tunnel-like manner by blood capillaries, axons and processes of glial cells. The cell soma and dendrites are covered with two types of synapse. One type forms mixed chemical and electrical (gap junctions) contacts with intermediate attachment plaques. The other type is only chemical in nature. This system may be useful in the study of an identified vertebrate giant neuron.
Target seedling strategies for intensively managed plantations in the Oregon Coast Range
Mark Wall
2011-01-01
The target Douglas-fir seedling for outplanting on Roseburg Resources Company timberlands is a least-cost, large [stem] caliper 1- to 2-year old bareroot (>8 mm) or container (>6 mm) seedling with good form, high root growth potential, and the ability to withstand browse without the use of browse deterrents. This target is achieved through the use of large cell...
Magnetic assembly of 3D cell clusters: visualizing the formation of an engineered tissue.
Ghosh, S; Kumar, S R P; Puri, I K; Elankumaran, S
2016-02-01
Contactless magnetic assembly of cells into 3D clusters has been proposed as a novel means for 3D tissue culture that eliminates the need for artificial scaffolds. However, thus far its efficacy has only been studied by comparing expression levels of generic proteins. Here, it has been evaluated by visualizing the evolution of cell clusters assembled by magnetic forces, to examine their resemblance to in vivo tissues. Cells were labeled with magnetic nanoparticles, then assembled into 3D clusters using magnetic force. Scanning electron microscopy was used to image intercellular interactions and morphological features of the clusters. When cells were held together by magnetic forces for a single day, they formed intercellular contacts through extracellular fibers. These kept the clusters intact once the magnetic forces were removed, thus serving the primary function of scaffolds. The cells self-organized into constructs consistent with the corresponding tissues in vivo. Epithelial cells formed sheets while fibroblasts formed spheroids and exhibited position-dependent morphological heterogeneity. Cells on the periphery of a cluster were flattened while those within were spheroidal, a well-known characteristic of connective tissues in vivo. Cells assembled by magnetic forces presented visual features representative of their in vivo states but largely absent in monolayers. This established the efficacy of contactless assembly as a means to fabricate in vitro tissue models. © 2016 John Wiley & Sons Ltd.
Silicon micro-fabricated miniature polymer electrolyte fuel cells
NASA Astrophysics Data System (ADS)
Kelley, Shawn Christopher
2000-10-01
The present thesis relates the design, fabrication, and testing of a unique type of silicon-based, miniature fuel cell. The fuel cell electrodes were constructed using standard silicon micro-fabrication techniques, and were used to construct miniature polymer electrolyte fuel cells (PEFCs) using NafionRTM. During testing, methanol and oxygen were the common reactants, but hydrogen and oxygen could be used as well. A novel form of an electrodeposited Pt:Ru alloy was developed for use as a methanol electrooxidation catalyst in the mini-PEFCs. An optimized mini-PEFC design was developed, tested, and compared with large PEFCs on the basis of performance. Mini-PEFC performance was equivalent to that of large PEFCs when scaled for active-area, but was limited by the function of the oxygen electrode. The rate of methanol crossover in a methanol/oxygen mini-PEFC was predicted using Fick's first law and the electrode chip feed-hole area. It was shown that the present mini-PEFC design could function as a fuel cell material test structure. Additionally, the mini-PEFCs were tested as two-cell stacks and as methanol sensors. The miniature, silicon-based PEFCs developed here successfully incorporate the essential aspects of a large PEFC in a smaller, simpler design.
Growth of Foot-and-Mouth Disease Virus in Dispersed Tissue Cells
Patty, R. E.; Tozzini, F.; Seibold, H. R.; Callis, J. J.
1962-01-01
Methods are described for rapid and economical production of large quantities of foot-and-mouth disease virus in stationary cultures of trypsin-dispersed bovine kidney cells in a simple medium. Yields of between 107 and 108 plaque-forming units per milliliter were obtained from serum-free cultures containing approximately a million and a half viable trypsin-dispersed cells per milliliter. Some of the advantages and disadvantages of these methods of virus production are discussed. ImagesFig. 1Fig. 2Fig. 3 PMID:17649388
Shen, Yajing; Wu, Congyu; Uyeda, Taro Q P; Plaza, Gustavo R; Liu, Bin; Han, Yu; Lesniak, Maciej S; Cheng, Yu
2017-01-01
Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells.
Shen, Yajing; Wu, Congyu; Uyeda, Taro Q. P.; Plaza, Gustavo R.; Liu, Bin; Han, Yu; Lesniak, Maciej S.; Cheng, Yu
2017-01-01
Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells. PMID:28529648
Palmer, M; Harris, R; Freytag, C; Kehoe, M; Tranum-Jensen, J; Bhakdi, S
1998-03-16
Streptolysin O (SLO) is a bacterial exotoxin that binds to cell membranes containing cholesterol and then oligomerizes to form large pores. Along with rings, arc-shaped oligomers form on membranes. It has been suggested that each arc represents an incompletely assembled oligomer and constitutes a functional pore, faced on the opposite side by a free edge of the lipid membrane. We sought functional evidence in support of this idea by using an oligomerization-deficient, non-lytic mutant of SLO. This protein, which was created by chemical modification of a single mutant cysteine (T250C) with N-(iodoacetaminoethyl)-1-naphthylamine-5-sulfonic acid, formed hybrid oligomers with active SLO on membranes. However, incorporation of the modified T250C mutant inhibited subsequent oligomerization, so that the hybrid oligomers were reduced in size. These appeared as typical arc lesions in the electron microscope. They formed pores that permitted passage of NaCl and calcein but restricted permeation of large dextran molecules. The data indicate that the SLO pore is formed gradually during oligomerization, implying that pores lined by protein on one side and an edge of free lipid on the other may be created in the plasma membrane. Intentional manipulation of the pore size may extend the utility of SLO as a tool in cell biological experiments.
Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks
Kang, Tae-Yun; Hong, Jung Min; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo
2016-01-01
We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture. PMID:27228079
ctDNA DLBCL Detection Lancet Oncology
Measurement of circulating tumor DNA in blood can be used to detect disease recurrence in patients with a curable form of cancer known as diffuse large B-cell lymphoma (DLBCL). In most patients, measurement of ctDNA enabled detection of microscopic diseas
Overview of processing activities aimed at higher efficiencies and economical production
NASA Technical Reports Server (NTRS)
Bickler, D. B.
1985-01-01
An overview of processing activities aimed at higher efficiencies and economical production were presented. Present focus is on low-cost process technology for higher-efficiency cells of up to 18% or higher. Process development concerns center on the use of less than optimum silicon sheet, the control of production yields, and making uniformly efficient large-area cells. High-efficiency cell factors that require process development are bulk material perfection, very shallow junction formation, front-surface passivation, and finely detailed metallization. Better bulk properties of the silicon sheet and the keeping of those qualities throughout large areas during cell processing are required so that minority carrier lifetimes are maintained and cell performance is not degraded by high doping levels. When very shallow junctions are formed, the process must be sensitive to metallizatin punch-through, series resisitance in the cell, and control of dopant leaching during surface passivation. There is a need to determine the sensitivity to processing by mathematical modeling and experimental activities.
Kim, D N; Schmee, J; Lee, K T; Thomas, W A
1985-05-01
The normal subendothelial intima of large arteries in man, swine and most other species is a variegated structure from birth onwards. In some regions it contains only a few scattered cells; in others there may be a continuous single layer of cells; and in still others the cells pile up to form what we have called intimal cell masses (ICM). The cells in the normal ICM are mostly smooth muscle cells although there is also a small resident population of monocyte-like cells. We have been studying the ICM in swine with emphasis on the abdominal aorta. We have found that atherosclerotic lesions in the abdominal aorta of swine induced by high-fat high-cholesterol diets begin by a hyperplastic reaction of the smooth muscle cells in the ICM and progress to form large lesions characterized by extensive regions of lipid-rich calcific necrotic debris similar to advanced lesions in man. Because of the putative key role of the ICM in atherogenesis we think that it is important to learn as much as possible about their natural history under conditions as normal as possible. In this report we present data on ICM in the abdominal aortas of 34 male and female Hormel miniature swine maintained on a low-fat low-cholesterol diet for up to 12 years of age. The ICM grow slowly with aging and in the distal portion of the aorta account for an average of 9% in the male and 15% in the female of the total cells in the aortic wall (intima + media).(ABSTRACT TRUNCATED AT 250 WORDS)
Guo, Lu; Tian, Shuang; Chen, Yuguo; Mao, Yun; Cui, Sumei; Hu, Aihua; Zhang, Jianliang; Xia, Shen-Ling; Su, Yunchao; Du, Jie; Block, Edward R; Wang, Xing Li; Cui, Zhaoqiang
2015-10-01
Interendothelial junctions play an important role in the maintenance of endothelial integrity and the regulation of vascular functions. We report here that cationic amino acid transporter-1 (CAT-1) is a novel interendothelial cell adhesion molecule (CAM). We identified that CAT-1 protein localized at cell-cell adhesive junctions, similar to the classic CAM of VE-cadherin, and knockdown of CAT-1 with siRNA led to an increase in endothelial permeability. In addition, CAT-1 formed a cis-homo-dimer and showed Ca(2+)-dependent trans-homo-interaction to cause homophilic cell-cell adhesion. Co-immunoprecipitation assays showed that CAT-1 can associate with β-catenin. Furthermore, we found that the sub-cellular localization and function of CAT-1 are associated with cell confluency, in sub-confluent ECs CAT-1 proteins distribute on the entire surface and function as L-Arg transporters, but most of the CAT-1 in the confluent ECs are localized at interendothelial junctions and serve as CAMs. Further functional characterization has disclosed that extracellular L-Arg exposure stabilizes endothelial integrity via abating the cell junction disassembly of CAT-1 and blocking the cellular membrane CAT-1 internalization, which provides the new mechanisms for L-Arg paradox and trans-stimulation of cationic amino acid transport system (CAAT). These results suggest that CAT-1 is a novel CAM that directly regulates endothelial integrity and mediates the protective actions of L-Arg to endothelium via a NO-independent mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Czerny, J.; Ramos, J. Barcelos E.; Riebesell, U.
2009-09-01
The surface ocean absorbs large quantities of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts to form carbonic acid. While this phenomenon, called ocean acidification, has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing) in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium) and heterocystous (Nodularia) cyanobacteria.
Chwil, Mirosława; Chwil, Stanisław
2012-10-01
The Polemoniaceae family forms flowers diverse in the terms of pollination methods and nectar types. The micromorphology of the nectary surface and the tissue structures as well as the ultrastructure of the cells of the floral nectaries in Polemonium caeruleum L. were examined using light, scanning and transmission electron microscopy. A bowl-shaped nectary, detached from the ovary, grows at its base. Its contour shows folds with depressions in the places where the stamens grow, forming five-lobed disc (synapomorphic character). Nectar is secreted through modified anomocytic stomata, which are formed in the epidermis covering the tip and the lateral wall of the projection located between the staminal filaments. The undulate nectary consists of a single-layered epidermis and three to nine layers of parenchymal cells. The cells of the nectary contain a dense cytoplasm, numerous plastids with an osmophilic stroma and starch grains, well-developed endoplasmic reticulum, as well as a large number of mitochondria interacting with the Golgi bodies. The ultrastructure of nectary cells indicates the granulocrine secretion mechanism and diversified transport of nectar.
Pettinato, Giuseppe; Vanden Berg-Foels, Wendy S; Zhang, Ning; Wen, Xuejun
2014-01-01
We report a technology to form human embryoid bodies (hEBs) from singularized human embryonic stem cells (hESCs) without the use of the p160 rho-associated coiled-coil kinase inhibitor (ROCKi) or centrifugation (spin). hEB formation was tested under four conditions: +ROCKi/+spin, +ROCKi/-spin, -ROCKi/+spin, and -ROCKi/-spin. Cell suspensions of BG01V/hOG and H9 hESC lines were pipetted into non-adherent hydrogel substrates containing defined microwell arrays. hEBs of consistent size and spherical geometry can be formed in each of the four conditions, including the -ROCKi/-spin condition. The hEBs formed under the -ROCKi/-spin condition differentiated to develop the three embryonic germ layers and tissues derived from each of the germ layers. This simplified hEB production technique offers homogeneity in hEB size and shape to support synchronous differentiation, elimination of the ROCKi xeno-factor and rate-limiting centrifugation treatment, and low-cost scalability, which will directly support automated, large-scale production of hEBs and hESC-derived cells needed for clinical, research, or therapeutic applications.
Schneider, Katharina S; Groß, Christina J; Dreier, Roland F; Saller, Benedikt S; Mishra, Ritu; Gorka, Oliver; Heilig, Rosalie; Meunier, Etienne; Dick, Mathias S; Ćiković, Tamara; Sodenkamp, Jan; Médard, Guillaume; Naumann, Ronald; Ruland, Jürgen; Kuster, Bernhard; Broz, Petr; Groß, Olaf
2017-12-26
Inflammasomes activate the protease caspase-1, which cleaves interleukin-1β and interleukin-18 to generate the mature cytokines and controls their secretion and a form of inflammatory cell death called pyroptosis. By generating mice expressing enzymatically inactive caspase-1 C284A , we provide genetic evidence that caspase-1 protease activity is required for canonical IL-1 secretion, pyroptosis, and inflammasome-mediated immunity. In caspase-1-deficient cells, caspase-8 can be activated at the inflammasome. Using mice either lacking the pyroptosis effector gasdermin D (GSDMD) or expressing caspase-1 C284A , we found that GSDMD-dependent pyroptosis prevented caspase-8 activation at the inflammasome. In the absence of GSDMD-dependent pyroptosis, the inflammasome engaged a delayed, alternative form of lytic cell death that was accompanied by the release of large amounts of mature IL-1 and contributed to host protection. Features of this cell death modality distinguished it from apoptosis, suggesting it may represent a distinct form of pro-inflammatory regulated necrosis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Aligned fibers direct collective cell migration to engineer closing and nonclosing wound gaps
Sharma, Puja; Ng, Colin; Jana, Aniket; Padhi, Abinash; Szymanski, Paige; Lee, Jerry S. H.; Behkam, Bahareh; Nain, Amrinder S.
2017-01-01
Cell emergence onto damaged or organized fibrous extracellular matrix (ECM) is a crucial precursor to collective cell migration in wound closure and cancer metastasis, respectively. However, there is a fundamental gap in our quantitative understanding of the role of local ECM size and arrangement in cell emergence–based migration and local gap closure. Here, using ECM-mimicking nanofibers bridging cell monolayers, we describe a method to recapitulate and quantitatively describe these in vivo behaviors over multispatial (single cell to cell sheets) and temporal (minutes to weeks) scales. On fiber arrays with large interfiber spacing, cells emerge (invade) either singularly by breaking cell–cell junctions analogous to release of a stretched rubber band (recoil), or in groups of few cells (chains), whereas on closely spaced fibers, multiple chains emerge collectively. Advancing cells on fibers form cell streams, which support suspended cell sheets (SCS) of various sizes and curvatures. SCS converge to form local gaps that close based on both the gap size and shape. We document that cell stream spacing of 375 µm and larger hinders SCS advancement, thus providing abilities to engineer closing and nonclosing gaps. Altogether we highlight the importance of studying cell-fiber interactions and matrix structural remodeling in fundamental and translational cell biology. PMID:28747440
Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector
Angel, Roger P
2013-01-08
The invention is a generator for photovoltaic conversion of concentrated sunlight into electricity. A generator according to the invention incorporates a plurality of photovoltaic cells and is intended for operation near the focus of a large paraboloidal reflector pointed at the sun. Within the generator, the entering concentrated light is relayed by secondary optics to the cells arranged in a compact, concave array. The light is delivered to the cells at high concentration, consistent with high photovoltaic conversion efficiency and low cell cost per unit power output. Light enters the generator, preferably first through a sealing window, and passes through a field lens, preferably in the form of a full sphere or ball lens centered on the paraboloid focus. This lens forms a concentric, concave and wide-angle image of the primary reflector, where the intensity of the concentrated light is stabilized against changes in the position of concentrated light entering the generator. Receiving the stabilized light are flat photovoltaic cells made in different shapes and sizes and configured in a concave array corresponding to the concave image of a given primary reflector. Photovoltaic cells in a generator are also sized and interconnected so as to provide a single electrical output that remains high and stable, despite aberrations in the light delivered to the generator caused by, for example, mispointing or bending of the primary reflector. In some embodiments, the cells are set back from the image formed by the ball lens, and part of the light is reflected onto each cell small secondary reflectors in the form of mirrors set around its perimeter.
Tenan, Mirna; Ferrari, Paolo; Sappino, André‐Pascal
2016-01-01
Aluminium salts, present in many industrial products of frequent use like antiperspirants, anti‐acid drugs, food additives and vaccines, have been incriminated in contributing to the rise in breast cancer incidence in Western societies. However, current experimental evidence supporting this hypothesis is limited. For example, no experimental evidence that aluminium promotes tumorigenesis in cultured mammary epithelial cells exists. We report here that long‐term exposure to concentrations of aluminium—in the form of aluminium chloride (AlCl3)—in the range of those measured in the human breast, transform normal murine mammary gland (NMuMG) epithelial cells in vitro as revealed by the soft agar assay. Subcutaneous injections into three different mouse strains with decreasing immunodeficiency, namely, NOD SCID gamma (NSG), NOD SCID or nude mice, revealed that untreated NMuMG cells form tumors and metastasize, to a limited extent, in the highly immunodeficient and natural killer (NK) cell deficient NSG strain, but not in the less permissive and NK cell competent NOD SCID or nude strains. In contrast, NMuMG cells transformed in vitro by AlCl3 form large tumors and metastasize in all three mouse models. These effects correlate with a mutagenic activity of AlCl3. Our findings demonstrate for the first time that concentrations of aluminium in the range of those measured in the human breast fully transform cultured mammary epithelial cells, thus enabling them to form tumors and metastasize in well‐established mouse cancer models. Our observations provide experimental evidence that aluminium salts could be environmental breast carcinogens. PMID:27541736
Actin filaments as tension sensors.
Galkin, Vitold E; Orlova, Albina; Egelman, Edward H
2012-02-07
The field of mechanobiology has witnessed an explosive growth over the past several years as interest has greatly increased in understanding how mechanical forces are transduced by cells and how cells migrate, adhere and generate traction. Actin, a highly abundant and anomalously conserved protein, plays a large role in forming the dynamic cytoskeleton that is so essential for cell form, motility and mechanosensitivity. While the actin filament (F-actin) has been viewed as dynamic in terms of polymerization and depolymerization, new results suggest that F-actin itself may function as a highly dynamic tension sensor. This property may help explain the unusual conservation of actin's sequence, as well as shed further light on actin's essential role in structures from sarcomeres to stress fibers. Copyright © 2012 Elsevier Ltd. All rights reserved.
Enhanced methanol utilization in direct methanol fuel cell
Ren, Xiaoming; Gottesfeld, Shimshon
2001-10-02
The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.
Nardi, James B; Pilas, Barbara; Bee, Charles Mark; Zhuang, Shufei; Garsha, Karl; Kanost, Michael R
2006-01-01
Observations of hemocyte aggregation on abiotic surfaces suggested that certain plasmatocytes from larvae of Manduca sexta act as foci for hemocyte aggregation. To establish how these particular plasmatocytes form initial attachments to foreign surfaces, they were cultured separately from other selected populations of hemocytes. While all circulating plasmatocytes immunolabel with anti-beta-integrin monoclonal antibody (MAb), only these larger plasmatocytes immunolabel with a MAb to the adhesion protein neuroglian. Neuroglian-negative plasmatocytes and granular cells that have been magnetically segregated from the majority of granular cells adhere to each other but fail to adhere to foreign substrata; by contrast, neuroglian-positive plasmatocytes that segregate with most granular cells adhere firmly to a substratum. Hemocytes form stable aggregates around the large, neuroglian-positive plasmatocytes. However, if neuroglian-positive plasmatocytes are separated from most granular cells, attachment of these plasmatocytes to foreign surfaces is suppressed.
Z-membranes: artificial organelles for overexpressing recombinant integral membrane proteins.
Gong, F C; Giddings, T H; Meehl, J B; Staehelin, L A; Galbraith, D W
1996-01-01
We have expressed a fusion protein formed between the avian infectious bronchitis virus M protein and the bacterial enzyme beta-glucuronidase in transgenic tobacco cells. Electron microscope images of such cells demonstrate that overexpression of this fusion protein gives rise to a type of endoplasmic reticulum membrane domain in which adjacent membranes become zippered together apparently as a consequence of the oligomerizing action of beta-glucuronidase. These zippered (Z-) membranes lack markers of the endoplasmic reticulum (NADH cytochrome c reductase and ribosomes) and accumulate in the cells in the form of multilayered scroll-like structures (up to 2 micrometers in diameter; 20-50 per cell) without affecting plant growth. The discovery of Z-membranes has broad implications for biology and biotechnology in that they provide a means for accumulating large quantities of recombinant membrane proteins within discrete domains of native membranes. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8700911
Monolithic solid electrolyte oxygen pump
Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.
1989-01-01
A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.
Helical flow couplets in submarine gravity underflows
NASA Astrophysics Data System (ADS)
Imran, Jasim; Ashraful Islam, Mohammad; Huang, Heqing; Kassem, Ahmed; Dickerson, John; Pirmez, Carlos; Parker, Gary
2007-07-01
Active and relic meandering channels are common on the seafloor adjacent to continental margins. These channels and their associated submarine fan deposits are products of the density-driven gravity flows known as turbidity currents. The tie between channel curvature and its effects on these gravity flows has been an enigma. This paper records the results of both large-scale laboratory measurements and a numerical simulation that captures the three-dimensional flow field of a gravity underflow at a channel bend. These findings reveal that channel curvature drives two helical flow cells, one stacked upon the other. The lower cell forms near the channel bed surface and has a circulation pattern similar to that observed in fluvial channels, i.e., with a near-bed flow directed inward. The other circulation cell forms in the upper part of the gravity flow and has a streamwise vorticity with the opposite sense of the lower cell.
Madoff, D H; Lenard, J
1982-04-01
The intracellular transport and certain posttranslational modifications of the large glycoprotein (G1) of LaCrosse virus (LAC) in BHK cells have been studied. G1 from released LAC virus was characterized by complex oligosaccharides (endo H-resistant) and covalently attached fatty acid. Only a small fraction of total cellular G1 was present on the baby hamster kidney cell surface. Cell-surface G1 contained complex oligosaccharides, while total G1 in infected cells contained largely unprocessed (endo H-sensitive) oligosaccharides. In addition, cell G1 contained significantly less fatty acid than virion-associated G1. Pulse-chase experiments showed that the oligosaccharides of G1 were processed to the complex from much more slowly than the oligosaccharides of the vesicular stomatitis virus (VSV) glycoprotein (G). In addition, transit of LAC G1 to the cell surface and into extracellular virions was two to three fold slower than the transit of VSV G. Thus LAC G1 accumulates intracellularly and is only slowly processed by intracellular processing enzymes. Treatment with monensin caused accumulation in the cell of a form of G1 with partial sensitivity toward endo H, suggesting that monensin may act to inhibit the glycosylation process directly.
Radiation and stress-induced apoptosis: A role for Fas/Fas ligand interactions
Reap, Elizabeth A.; Roof, Kevin; Maynor, Kenrick; Borrero, Michelle; Booker, Jessica; Cohen, Philip L.
1997-01-01
The lpr gene encodes a defective form of Fas, a cell surface protein that mediates apoptosis. This defect blocks apoptotic deletion of autoreactive T and B cells, leading to lymphoproliferation and lupus-like autoantibody production. The effects of the lpr Fas mutation on other kinds of physiologically relevant apoptosis are largely undocumented. To assess whether some of the apoptosis known to occur after ionizing radiation might be mediated by Fas/Fas ligand (FasL) interactions, we quantitated in vitro apoptosis by flow cytometry measurement of DNA content in splenic T and B cells from irradiated 5- to 8-month-old B6/lpr mice. Total apoptosis of both lpr and control cells was substantial after treatment; however there was a significant difference between B6 (73%) and lpr (25%) lymphocyte apoptosis. Thy1, CD4, CD8, and IgM cells from lpr showed much lower levels of apoptosis than control cells after irradiation. Apoptosis induced by heat shock was also impaired in lpr. The finding that γ-irradiation increased Fas expression on B6 cells and that irradiation-induced apoptosis could be blocked with a Fas–Fc fusion protein further supported the possible involvement of Fas in this form of apoptosis. Fas/FasL interactions may thus play an important role in identifying and eliminating damaged cells after γ-irradiation and other forms of injury. PMID:9159145
Modulation of Human Plasma Fibronectin Levels Following Exercise,
1988-01-01
forms of this large molecular weight (440 kilodaltons) glycoprotein,(17. While the tissue type is cell-associated and important to cell adhesion and...increased under conditions of pathology, such as in obesity (6). cancer (3). proteinuria (4). diabetic retinopathy (5). and preeclampsia (27). in the absence...Res. 1977: 22:709-716. 27. Stubbs. T.M.. Lazarchick. J.. and Horger. E.O. Plasma fibronectin levels in preeclampsia : A possible biochemical marker
NASA Astrophysics Data System (ADS)
Lee, C. H.; Yang, D. Y.; Lee, S. R.; Chang, I. G.; Lee, T. W.
2011-08-01
The shielded slot plate, which has a sheared corrugated trapezoidal pattern, is a component of the metallic bipolar plate for the molten carbonate fuel cell (MCFC). In order to increase the efficiency of the fuel cell, the unit cell of the shielded slot plate should have a relatively large upper area. Additionally, defects from the forming process should be minimized. In order to simulate the slitting process, whereby sheared corrugated patterns are formed, ductile fracture criteria based on the histories of stress and strain are employed. The user material subroutine VUMAT is employed for implementation of the material and ductile fracture criteria in the commercial FEM software ABAQUS. The variables of the ductile fracture criteria were determined by comparing the simulation results and the experimental results of the tension test and the shearing test. Parametric studies were conducted to determine the critical value of the ductile fracture criterion. Employing these ductile fracture criteria, the three dimensional forming process of the shielded slot plate was numerically simulated. The effects of the slitting process in the forming process of the shielded slot plate were analyzed through a FEM simulation and experimental studies. Finally, experiments involving microscopic and macroscopic observations were conducted to verify the numerical simulations of the 3-step forming process.
Characterization of the novel mitochondrial protein import component, Tom34, in mammalian cells.
Chewawiwat, N; Yano, M; Terada, K; Hoogenraad, N J; Mori, M
1999-04-01
Tom34 is a newly-found component of the mitochondrial protein import machinery in mammalian cells with no apparent counterpart in fungi. RNA blot and immunoblot analyses showed that the expression of Tom34 varies among tissues and differs from that of the core translocase component Tom20. In contrast to a previous report [Nuttal, S.D. et al. (1997) DNA Cell Biol. 16, 1067-1074], the present study using a newly-prepared anti-Tom34 antibody with a high titer showed that Tom34 is present largely in the cytosolic fraction and partly in the mitochondrial and membrane fractions after fractionation of tissues and cells, and that the membrane-associated form is largely extractable with 0.1 M sodium carbonate. The in vitro import of preproteins into isolated rat mitochondria was strongly inhibited by DeltahTom34 which lacks the NH2-terminal hydrophobic region of human Tom34 (hTom34). Import was also strongly inhibited by anti-hTom34. In pulse-chase experiments using COS-7 cells, pre-ornithine transcarbamylase (pOTC) was rapidly processed to the mature form. Coexpression of hTom34 resulted in a stimulation of pOTC processing, whereas the coexpression of hTom34 antisense RNA caused inhibition. The results confirm that Tom34 plays a role in mitochondrial protein import in mammals, and suggest it to be an ancillary component of the translocation machinery in mammalian cells.
Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.
Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam
2016-07-01
Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.
The growth and differentiation of transitional epithelium in vitro.
Chlapowski, F J; Haynes, L
1979-12-01
The development of rat transitional epithelial cells grown on conventional non-permeable surfaces was compared with development on permeable collagen supports. On glass or plastic surfaces, cells grew as expanding nomolayer sheets. Once confluent, growth continued with a bilayer being formed in most areas and apical cells being continuously sloughed off. Although most cells were interconnected by desmosomes, and junctional complexes were formed, no other indications of differentiation were observed. After 2-3 wk of growth, division stopped and cel death ensued. In contrast, single-cell suspensions plated on collagen-coated nylon disks reassociated into multicellular islands and commenced growth. Mitoses were confined to the basal cells in contact with the permeable substrate. The islands developed into epithelial trilayers, tapering to monolayers along spreading edges. Once the islands were confluent, stratification was completed and appeared similar to that observed in vivo. Germinal cells formed a basal lamina, and the upper layer was composed of large, flattened cells with an unusually thick asymmetrical plasma membrane on the apical surface. Electron microscopic and radioactive tracers demonstrated "leaky" zonulae occludentes with a restricted permeability to small molecules. The movement of urea was retarded in comparison to water. Unlike the slow turnover of adult epithelium in vivo, maturation and sloughing of apical cells were measurable. Transfer of cells could be effected and growth maintained for up to 4 mo. These results may indicate the necessity of a nutrient-permeable growth surface for the polarized differentiation of adult transitional epithelium.
The growth and differentiation of transitional epithelium in vitro
1979-01-01
The development of rat transitional epithelial cells grown on conventional non-permeable surfaces was compared with development on permeable collagen supports. On glass or plastic surfaces, cells grew as expanding nomolayer sheets. Once confluent, growth continued with a bilayer being formed in most areas and apical cells being continuously sloughed off. Although most cells were interconnected by desmosomes, and junctional complexes were formed, no other indications of differentiation were observed. After 2-3 wk of growth, division stopped and cel death ensued. In contrast, single-cell suspensions plated on collagen-coated nylon disks reassociated into multicellular islands and commenced growth. Mitoses were confined to the basal cells in contact with the permeable substrate. The islands developed into epithelial trilayers, tapering to monolayers along spreading edges. Once the islands were confluent, stratification was completed and appeared similar to that observed in vivo. Germinal cells formed a basal lamina, and the upper layer was composed of large, flattened cells with an unusually thick asymmetrical plasma membrane on the apical surface. Electron microscopic and radioactive tracers demonstrated "leaky" zonulae occludentes with a restricted permeability to small molecules. The movement of urea was retarded in comparison to water. Unlike the slow turnover of adult epithelium in vivo, maturation and sloughing of apical cells were measurable. Transfer of cells could be effected and growth maintained for up to 4 mo. These results may indicate the necessity of a nutrient-permeable growth surface for the polarized differentiation of adult transitional epithelium. PMID:574872
How and why does the immunological synapse form? Physical chemistry meets cell biology.
Chakraborty, Arup K
2002-03-05
During T lymphocyte (T cell) recognition of an antigen, a highly organized and specific pattern of membrane proteins forms in the junction between the T cell and the antigen-presenting cell (APC). This specialized cell-cell junction is called the immunological synapse. It is several micrometers large and forms over many minutes. A plethora of experiments are being performed to study the mechanisms that underlie synapse formation and the way in which information transfer occurs across the synapse. The wealth of experimental data that is beginning to emerge must be understood within a mechanistic framework if it is to prove useful in developing modalities to control the immune response. Quantitative models can complement experiments in the quest for such a mechanistic understanding by suggesting experimentally testable hypotheses. Here, a quantitative synapse assembly model is described. The model uses concepts developed in physical chemistry and cell biology and is able to predict the spatiotemporal evolution of cell shape and receptor protein patterns observed during synapse formation. Attention is directed to how the juxtaposition of model predictions and experimental data has led to intriguing hypotheses regarding the role of null and self peptides during synapse assembly, as well as correlations between T cell effector functions and the robustness of synapse assembly. We remark on some ways in which synergistic experiments and modeling studies can improve current models, and we take steps toward a better understanding of information transfer across the T cell-APC junction.
Albert, Philipp J.; Schwarz, Ulrich S.
2016-01-01
The collective dynamics of multicellular systems arise from the interplay of a few fundamental elements: growth, division and apoptosis of single cells; their mechanical and adhesive interactions with neighboring cells and the extracellular matrix; and the tendency of polarized cells to move. Micropatterned substrates are increasingly used to dissect the relative roles of these fundamental processes and to control the resulting dynamics. Here we show that a unifying computational framework based on the cellular Potts model can describe the experimentally observed cell dynamics over all relevant length scales. For single cells, the model correctly predicts the statistical distribution of the orientation of the cell division axis as well as the final organisation of the two daughters on a large range of micropatterns, including those situations in which a stable configuration is not achieved and rotation ensues. Large ensembles migrating in heterogeneous environments form non-adhesive regions of inward-curved arcs like in epithelial bridge formation. Collective migration leads to swirl formation with variations in cell area as observed experimentally. In each case, we also use our model to predict cell dynamics on patterns that have not been studied before. PMID:27054883
β-Cell-Specific Mafk Overexpression Impairs Pancreatic Endocrine Cell Development
Abdellatif, Ahmed M.; Oishi, Hisashi; Itagaki, Takahiro; Jung, Yunshin; Shawki, Hossam H.; Okita, Yukari; Hasegawa, Yoshikazu; Suzuki, Hiroyuki; El-Morsy, Salah E.; El-Sayed, Mesbah A.; Shoaib, Mahmoud B.; Sugiyama, Fumihiro; Takahashi, Satoru
2016-01-01
The MAF family transcription factors are homologs of v-Maf, the oncogenic component of the avian retrovirus AS42. They are subdivided into 2 groups, small and large MAF proteins, according to their structure, function, and molecular size. MAFK is a member of the small MAF family and acts as a dominant negative form of large MAFs. In previous research we generated transgenic mice that overexpress MAFK in order to suppress the function of large MAF proteins in pancreatic β-cells. These mice developed hyperglycemia in adulthood due to impairment of glucose-stimulated insulin secretion. The aim of the current study is to examine the effects of β-cell-specific Mafk overexpression in endocrine cell development. The developing islets of Mafk-transgenic embryos appeared to be disorganized with an inversion of total numbers of insulin+ and glucagon+ cells due to reduced β-cell proliferation. Gene expression analysis by quantitative RT-PCR revealed decreased levels of β-cell-related genes whose expressions are known to be controlled by large MAF proteins. Additionally, these changes were accompanied with a significant increase in key β-cell transcription factors likely due to compensatory mechanisms that might have been activated in response to the β-cell loss. Finally, microarray comparison of gene expression profiles between wild-type and transgenic pancreata revealed alteration of some uncharacterized genes including Pcbd1, Fam132a, Cryba2, and Npy, which might play important roles during pancreatic endocrine development. Taken together, these results suggest that Mafk overexpression impairs endocrine development through a regulation of numerous β-cell-related genes. The microarray analysis provided a unique data set of differentially expressed genes that might contribute to a better understanding of the molecular basis that governs the development and function of endocrine pancreas. PMID:26901059
García-Bayona, Leonor; Guo, Monica S; Laub, Michael T
2017-01-01
Most bacteria are in fierce competition with other species for limited nutrients. Some bacteria can kill nearby cells by secreting bacteriocins, a diverse group of proteinaceous antimicrobials. However, bacteriocins are typically freely diffusible, and so of little value to planktonic cells in aqueous environments. Here, we identify an atypical two-protein bacteriocin in the α-proteobacterium Caulobacter crescentus that is retained on the surface of producer cells where it mediates cell contact-dependent killing. The bacteriocin-like proteins CdzC and CdzD harbor glycine-zipper motifs, often found in amyloids, and CdzC forms large, insoluble aggregates on the surface of producer cells. These aggregates can drive contact-dependent killing of other organisms, or Caulobacter cells not producing the CdzI immunity protein. The Cdz system uses a type I secretion system and is unrelated to previously described contact-dependent inhibition systems. However, Cdz-like systems are found in many bacteria, suggesting that this form of contact-dependent inhibition is common. DOI: http://dx.doi.org/10.7554/eLife.24869.001 PMID:28323618
Plant nuclei can contain extensive grooves and invaginations
NASA Technical Reports Server (NTRS)
Collings, D. A.; Carter, C. N.; Rink, J. C.; Scott, A. C.; Wyatt, S. E.; Allen, N. S.; Brown, C. S. (Principal Investigator)
2000-01-01
Plant cells can exhibit highly complex nuclear organization. Through dye-labeling experiments in untransformed onion epidermal and tobacco culture cells and through the expression of green fluorescent protein targeted to either the nucleus or the lumen of the endoplasmic reticulum/nuclear envelope in these cells, we have visualized deep grooves and invaginations into the large nuclei of these cells. In onion, these structures, which are similar to invaginations seen in some animal cells, form tubular or planelike infoldings of the nuclear envelope. Both grooves and invaginations are stable structures, and both have cytoplasmic cores containing actin bundles that can support cytoplasmic streaming. In dividing tobacco cells, invaginations seem to form during cell division, possibly from strands of the endoplasmic reticulum trapped in the reforming nucleus. The substantial increase in nuclear surface area resulting from these grooves and invaginations, their apparent preference for association with nucleoli, and the presence in them of actin bundles that support vesicle motility suggest that the structures might function both in mRNA export from the nucleus and in protein import from the cytoplasm to the nucleus.
Plant Nuclei Can Contain Extensive Grooves and InvaginationsW⃞W⃞
Collings, David A.; Carter, Crystal N.; Rink, Jochen C.; Scott, Amie C.; Wyatt, Sarah E.; Allen, Nina Strömgren
2000-01-01
Plant cells can exhibit highly complex nuclear organization. Through dye-labeling experiments in untransformed onion epidermal and tobacco culture cells and through the expression of green fluorescent protein targeted to either the nucleus or the lumen of the endoplasmic reticulum/nuclear envelope in these cells, we have visualized deep grooves and invaginations into the large nuclei of these cells. In onion, these structures, which are similar to invaginations seen in some animal cells, form tubular or planelike infoldings of the nuclear envelope. Both grooves and invaginations are stable structures, and both have cytoplasmic cores containing actin bundles that can support cytoplasmic streaming. In dividing tobacco cells, invaginations seem to form during cell division, possibly from strands of the endoplasmic reticulum trapped in the reforming nucleus. The substantial increase in nuclear surface area resulting from these grooves and invaginations, their apparent preference for association with nucleoli, and the presence in them of actin bundles that support vesicle motility suggest that the structures might function both in mRNA export from the nucleus and in protein import from the cytoplasm to the nucleus. PMID:11148288
In Situ Gelation-Induced Death of Cancer Cells Based on Proteinosomes.
Zhou, Yuting; Song, Jianmin; Wang, Lei; Xue, Xuting; Liu, Xiaoman; Xie, Hui; Huang, Xin
2017-08-14
Hydrogels are an excellent type of material that can be utilized as a platform for cell culture. However, when a bulky hydrogel forms on the inside of cancer cells, the result would be different. In this study, we demonstrate a method for in situ gelation inside cancer cells that can efficiently induce cell death. Glutathione-responsive proteinosomes with good biocompatibility were prepared as carriers for sodium alginate to be endocytosed by cancer cells, where the chelation between sodium alginate and free calcium ions in the culture medium occurs during the diffusion process. The uptake of the hydrogel-loaded proteinosomes into the cancer cells, and then the triggered release of hydrogel with concomitant aggregation, was well-confirmed by monitoring the change of the Young's modulus of the cells based on AFM force measurements. Accordingly, when a large amount of hydrogel formed in cells, the cell viability would be inhibited by ∼90% by MTT assay at a concentration of 5.0 μM of hydrogel-loaded proteinosomes after 48 h incubation, which clearly proves the feasibility of the demonstrated method for killing cancer cells. Although more details regarding the mechanism of cell death should be conducted in the near future, such a demonstrated method of in situ gelation inside cells provides another choice for killing cancer cells.
Optimal degrees of synaptic connectivity
Litwin-Kumar, Ashok; Harris, Kameron Decker; Axel, Richard; Sompolinsky, Haim; Abbott, L. F.
2017-01-01
Summary Synaptic connectivity varies widely across neuronal types. Cerebellar granule cells receive five orders of magnitude fewer inputs than the Purkinje cells they innervate, and cerebellum-like circuits including the insect mushroom body also exhibit large divergences in connectivity. In contrast, the number of inputs per neuron in cerebral cortex is more uniform and large. We investigate how the dimension of a representation formed by a population of neurons depends on how many inputs they each receive and what this implies for learning associations. Our theory predicts that the dimensions of the cerebellar granule-cell and Drosophila Kenyon-cell representations are maximized at degrees of synaptic connectivity that match those observed anatomically, showing that sparse connectivity is sometimes superior to dense connectivity. When input synapses are subject to supervised plasticity, however, dense wiring becomes advantageous, suggesting that the type of plasticity exhibited by a set of synapses is a major determinant of connection density. PMID:28215558
Duangsuwan, Pornsawan; Phoungpetchara, Ittipon; Tinikul, Yotsawan; Poljaroen, Jaruwan; Wanichanon, Chaitip; Sobhon, Prasert
2008-04-01
The normal lymphoid organ of Penaeus monodon (which tested negative for WSSV and YHV) was composed of two parts: lymphoid tubules and interstitial spaces, which were permeated with haemal sinuses filled with large numbers of haemocytes. There were three permanent types of cells present in the wall of lymphoid tubules: endothelial, stromal and capsular cells. Haemocytes penetrated the endothelium of the lymphoid tubule's wall to reside among the fixed cells. The outermost layer of the lymphoid tubule was covered by a network of fibers embedded in a PAS-positive extracellular matrix, which corresponded to a basket-like network that covered all the lymphoid tubules as visualized by a scanning electron microscope (SEM). Argyrophilic reticular fibers surrounded haemal sinuses and lymphoid tubules. Together they formed the scaffold that supported the lymphoid tubule. Using vascular cast and SEM, the three dimensional structure of the subgastric artery that supplies each lobe of the lymphoid organ was reconstructed. This artery branched into highly convoluted and blind-ending terminal capillaries, each forming the lumen of a lymphoid tubule around which haemocytes and other cells aggregated to form a cuff-like wall. Stromal cells which form part of the tubular scaffold were immunostained for vimentin. Examination of the whole-mounted lymphoid organ, immunostained for vimentin, by confocal microscopy exhibited the highly branching and convoluted lymphoid tubules matching the pattern of the vascular cast observed in SEM.
Burger, C; Fanning, E
1983-04-15
Large tumor antigen (T antigen) occurs in at least three different oligomeric subclasses in cells infected or transformed by simian virus 40 (SV40): 5-7 S, 14-16 S, and 23-25 S. The 23-25 S form is complexed with a host phosphoprotein (p53). The DNA binding properties of these three subclasses of T antigen from nine different cell lines and free p53 protein were compared using an immunoprecipitation assay. All three subclasses of T antigen bound specifically to SV40 DNA sequences near the origin of replication. However, the DNA binding activity varied between different cell lines over a 40- to 50-fold range. The 23-25 S and 14-16 S forms from most of the cell lines tested bound much less SV40 origin DNA than 5-7 S T antigen. The free p53 phosphoprotein did not bind specifically to any SV40 DNA sequences.
Architectural transitions in Vibrio cholerae biofilms at single-cell resolution
Drescher, Knut; Dunkel, Jörn; Nadell, Carey D.; van Teeffelen, Sven; Grnja, Ivan; Wingreen, Ned S.; Stone, Howard A.; Bassler, Bonnie L.
2016-01-01
Many bacterial species colonize surfaces and form dense 3D structures, known as biofilms, which are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in Vibrio cholerae biofilms at different stages of development, including colonies that range in size from 2 to 4,500 cells. From these data, we extracted the precise 3D cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth on submerged glass substrates under flow. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of V. cholerae biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm formation that will prove invaluable to understanding the mechanics underlying biofilm development. PMID:26933214
Reticulamoeba Is a Long-Branched Granofilosean (Cercozoa) That Is Missing from Sequence Databases
Bass, David; Yabuki, Akinori; Santini, Sébastien; Romac, Sarah; Berney, Cédric
2012-01-01
We sequenced the 18S ribosomal RNA gene of seven isolates of the enigmatic marine amoeboflagellate Reticulamoeba Grell, which resolved into four genetically distinct Reticulamoeba lineages, two of which correspond to R. gemmipara Grell and R. minor Grell, another with a relatively large cell body forming lacunae, and another that has similarities to both R. minor and R. gemmipara but with a greater propensity to form cell clusters. These lineages together form a long-branched clade that branches within the cercozoan class Granofilosea (phylum Cercozoa), showing phylogenetic affinities with the genus Mesofila. The basic morphology of Reticulamoeba is a roundish or ovoid cell with a more or less irregular outline. Long and branched reticulopodia radiate from the cell. The reticulopodia bear granules that are bidirectionally motile. There is also a biflagellate dispersal stage. Reticulamoeba is frequently observed in coastal marine environmental samples. PCR primers specific to the Reticulamoeba clade confirm that it is a frequent member of benthic marine microbial communities, and is also found in brackish water sediments and freshwater biofilm. However, so far it has not been found in large molecular datasets such as the nucleotide database in NCBI GenBank, metagenomic datasets in Camera, and the marine microbial eukaryote sampling and sequencing consortium BioMarKs, although closely related lineages can be found in some of these datasets using a highly targeted approach. Therefore, although such datasets are very powerful tools in microbial ecology, they may, for several methodological reasons, fail to detect ecologically and evolutionary key lineages. PMID:23226495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakanishi-Matsui, Mayumi, E-mail: nakanim@iwate-med.ac.jp; Yano, Shio; Futai, Masamitsu
2013-11-01
Highlights: •LPS induces multinuclear cells from murine macrophage-derived RAW264.7 cells. •Large beads are internalized by cells actively fusing to become multinuclear. •The multinuclear cell formation is inhibited by anti-inflammatory cytokine, IL10. •Signal transduction for cell fusion is different from that for inflammation. -- Abstract: A murine macrophage-derived line, RAW264.7, becomes multinuclear on stimulation with lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria. These multinuclear cells internalized more polystyrene beads than mononuclear cells or osteoclasts (Nakanishi-Matsui, M., Yano, S., Matsumoto, N., and Futai, M., 2012). In this study, we analyzed the time courses of cell fusion in the presence ofmore » large beads. They were internalized into cells actively fusing to become multinuclear. However, the multinuclear cells once formed showed only low phagocytosis activity. These results suggest that formation of the multinuclear cells and bead internalization took place simultaneously. The formation of multinuclear cells was blocked by inhibitors for phosphoinositide 3-kinase, phospholipase C, calcineurin, and c-Jun N-terminal kinase. In addition, interleukin 6 and 10 also exhibited inhibitory effects. These signaling molecules and cytokines may play a crucial role in the LPS-induced multinuclear cell formation.« less
Freitas, M A R; Segatto, N; Tischler, N; de Oliveira, E C; Brehmer, A; da Silveira, A B M
2017-03-01
Chagas' disease is still reaching about 10 million people in the world. In South America, one of the most severe forms of this disease is the megacolon, characterized by severe constipation, dilated sigmoid colon and rectum and severe malnutrition. Previous data suggested that mast cells and serotonin (5-hydroxytryptamine [5-HT]) expression could be involved in intestinal homeostasis control, avoiding the chagasic megacolon development. The aim at this study was to characterize the presence of mast cells and expression of serotonin in chagasic patients with and without megacolon and evaluate the relation between mast cells, serotonin and megacolon development. Our results demonstrated that patients without megacolon feature a large amount of serotonin and few mast cells, while patients with megacolon feature low serotonin expression and a lot of mast cells. We believe that serotonin may be involved in the inflammatory process control, triggered by mast cells, and the presence of this substance in large quantities of the intestine could represent a mechanism of megacolon prevention. © 2017 John Wiley & Sons Ltd.
Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs
Matsunari, Hitomi; Nagashima, Hiroshi; Watanabe, Masahito; Umeyama, Kazuhiro; Nakano, Kazuaki; Nagaya, Masaki; Kobayashi, Toshihiro; Yamaguchi, Tomoyuki; Sumazaki, Ryo; Herzenberg, Leonard A.; Nakauchi, Hiromitsu
2013-01-01
In the field of regenerative medicine, one of the ultimate goals is to generate functioning organs from pluripotent cells, such as ES cells or induced pluripotent stem cells (PSCs). We have recently generated functional pancreas and kidney from PSCs in pancreatogenesis- or nephrogenesis-disabled mice, providing proof of principle for organogenesis from PSCs in an embryo unable to form a specific organ. Key when applying the principles of in vivo generation to human organs is compensation for an empty developmental niche in large nonrodent mammals. Here, we show that the blastocyst complementation system can be applied in the pig using somatic cell cloning technology. Transgenic approaches permitted generation of porcine somatic cell cloned embryos with an apancreatic phenotype. Complementation of these embryos with allogenic blastomeres then created functioning pancreata in the vacant niches. These results clearly indicate that a missing organ can be generated from exogenous cells when functionally normal pluripotent cells chimerize a cloned dysorganogenetic embryo. The feasibility of blastocyst complementation using cloned porcine embryos allows experimentation toward the in vivo generation of functional organs from xenogenic PSCs in large animals. PMID:23431169
Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs.
Matsunari, Hitomi; Nagashima, Hiroshi; Watanabe, Masahito; Umeyama, Kazuhiro; Nakano, Kazuaki; Nagaya, Masaki; Kobayashi, Toshihiro; Yamaguchi, Tomoyuki; Sumazaki, Ryo; Herzenberg, Leonard A; Nakauchi, Hiromitsu
2013-03-19
In the field of regenerative medicine, one of the ultimate goals is to generate functioning organs from pluripotent cells, such as ES cells or induced pluripotent stem cells (PSCs). We have recently generated functional pancreas and kidney from PSCs in pancreatogenesis- or nephrogenesis-disabled mice, providing proof of principle for organogenesis from PSCs in an embryo unable to form a specific organ. Key when applying the principles of in vivo generation to human organs is compensation for an empty developmental niche in large nonrodent mammals. Here, we show that the blastocyst complementation system can be applied in the pig using somatic cell cloning technology. Transgenic approaches permitted generation of porcine somatic cell cloned embryos with an apancreatic phenotype. Complementation of these embryos with allogenic blastomeres then created functioning pancreata in the vacant niches. These results clearly indicate that a missing organ can be generated from exogenous cells when functionally normal pluripotent cells chimerize a cloned dysorganogenetic embryo. The feasibility of blastocyst complementation using cloned porcine embryos allows experimentation toward the in vivo generation of functional organs from xenogenic PSCs in large animals.
Clathrate hydrates in the solar system
NASA Technical Reports Server (NTRS)
Miller, S. L.
1985-01-01
Clathrate hydrates are crystalline compounds in which an expanded ice lattice forms cages that contain gas molecules. There are two principal hydrate structures. Structure I, with a 12 A cubic unit cell, contains 46 water molecules and 8 cages of two types, giving an ideal formula (for CH4) of CH4.5.75H2O. The actual formula contains somewhat more water as the cages are not completely filled. Other examples that form Structure I hydrates are C2H6, C2H4, C2H2, CO2, SO2, OCS, Xe, H2S. Structure II, with a 17 A cubic unit cell, contains 136 water molecules, and 8 large and 16 small cages. The ideal formula for CHCl3 is CHCL3.17H2O. Other examples of Structure II hydrates include C3H8, C2H5Cl, acetone, and tetrahydrofuran. Small molecules such as Ar, Kr and probably N2 and O2 also form a Structure II hydrate. The small molecules occupy both the large and small cages, giving an ideal formula of Ar.5.67H2O. The conditions of pressure and temperature for hydrate formation are discussed.
The organization of plasticity in the cerebellar cortex: from synapses to control.
D'Angelo, Egidio
2014-01-01
The cerebellum is thought to play a critical role in procedural learning, but the relationship between this function and the underlying cellular and synaptic mechanisms remains largely speculative. At present, at least nine forms of long-term synaptic and nonsynaptic plasticity (some of which are bidirectional) have been reported in the cerebellar cortex and deep cerebellar nuclei. These include long-term potentiation (LTP) and long-term depression at the mossy fiber-granule cell synapse, at the synapses formed by parallel fibers, climbing fibers, and molecular layer interneurons on Purkinje cells, and at the synapses formed by mossy fibers and Purkinje cells on deep cerebellar nuclear cells, as well as LTP of intrinsic excitability in granule cells, Purkinje cells, and deep cerebellar nuclear cells. It is suggested that the complex properties of cerebellar learning would emerge from the distribution of plasticity in the network and from its dynamic remodeling during the different phases of learning. Intrinsic and extrinsic factors may hold the key to explain how the different forms of plasticity cooperate to select specific transmission channels and to regulate the signal-to-noise ratio through the cerebellar cortex. These factors include regulation of neuronal excitation by local inhibitory networks, engagement of specific molecular mechanisms by spike bursts and theta-frequency oscillations, and gating by external neuromodulators. Therefore, a new and more complex view of cerebellar plasticity is emerging with respect to that predicted by the original "Motor Learning Theory," opening issues that will require experimental and computational testing. © 2014 Elsevier B.V. All rights reserved.
Manek, Aditya K.; Ferrari, Maud C. O.; Pollock, Robyn J.; Vicente, Daniel; Weber, Lynn P.; Chivers, Douglas P.
2013-01-01
Many prey fishes possess large club cells in their epidermis. The role of these cells has garnered considerable attention from evolutionary ecologists. These cells likely form part of the innate immune system of fishes, however, they also have an alarm function, releasing chemical cues that serve to warn nearby conspecifics of danger. Experiments aimed at understanding the selection pressures leading to the evolution of these cells have been hampered by a surprisingly large intraspecific variation in epidermal club cell (ECC) investment. The goal of our current work was to explore the magnitude and nature of this variation in ECC investment. In a field survey, we documented large differences in ECC investment both within and between several populations of minnows. We then tested whether we could experimentally reduce variation in mean ECC number by raising fish under standard laboratory conditions for 4 weeks. Fish from different populations responded very differently to being held under standard laboratory conditions; some populations showed an increase in ECC investment while others remained unchanged. More importantly, we found some evidence that we could reduce within population variation in ECC investment through time, but could not reduce among-population variation in mean ECC investment. Given the large variation we observed in wild fish and our limited ability to converge mean cell number by holding the fish under standard conditions, we caution that future studies may be hard pressed to find subtle effects of various experimental manipulations; this will make elucidating the selection pressures leading to the evolution of the cells challenging. PMID:23469175
Photoswitchable red fluorescent protein with a large Stokes shift.
Piatkevich, Kiryl D; English, Brian P; Malashkevich, Vladimir N; Xiao, Hui; Almo, Steven C; Singer, Robert H; Verkhusha, Vladislav V
2014-10-23
A subclass of fluorescent proteins (FPs), large Stokes shift (LSS) FP, are characterized by increased spread between excitation and emission maxima. We report a photoswitchable variant of a red FP with an LSS, PSLSSmKate, which initially exhibits excitation and emission at 445 and 622 nm, but violet irradiation photoswitches PSLSSmKate into a common red form with excitation and emission at 573 and 621 nm. We characterize spectral, photophysical, and biochemical properties of PSLSSmKate in vitro and in mammalian cells and determine its crystal structure in the LSS form. Mass spectrometry, mutagenesis, and spectroscopy of PSLSSmKate allow us to propose molecular mechanisms for the LSS, pH dependence, and light-induced chromophore transformation. We demonstrate the applicability of PSLSSmKate to superresolution photoactivated localization microscopy and protein dynamics in live cells. Given its promising properties, we expect that PSLSSmKate-like phenotype will be further used for photoactivatable imaging and tracking multiple populations of intracellular objects.
Hummer, Blake H.; de Leeuw, Noah F.; Burns, Christian; Chen, Lan; Joens, Matthew S.; Hosford, Bethany; Fitzpatrick, James A. J.; Asensio, Cedric S.
2017-01-01
Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN. PMID:29074564
Technique for Low Amperage Potline Operation for Electricity Grid Storage
NASA Astrophysics Data System (ADS)
Taylor, Mark P.; Chen, John J. J.
2015-03-01
Following a critical review and analysis of steady-state energy balance windows for large modern cell technologies [ Taylor et al ., Met. Mat. Transactions E, 9th Sept. 2014], the issue of a substantial reduction in energy input and heat output to a specific cell technology is addressed in this paper. To investigate the feasibility of such a reduction, the dynamic response to substantial changes in cell amperage and energy input must be quantified. If large amperage reductions can be shown to be feasible and to have no major detrimental affects, a flexible amperage operating philosophy would allow the use of smelting cells as an energy reservoir in the following way: in times of high electricity demand the cells would operate at reduced amperage, releasing electricity to the grid, while in times of low demand or an over-supply of electricity on the grid, the cells would store the surplus electricity in the form of additional aluminum metal. However, to take the above concept out of the realms of the theoretical, it will first be necessary to demonstrate an ability to predict and control the response of the cell to such changes in energy input through regulating the heat losses from the cell. The process of regulation of cell heat loss is quite foreign to operators of aluminum smelters, because the technology to regulate heat loss from smelting cells has not existed previously. This technology does now exist in the form of patented heat exchangers [ Taylor et al ., US Patent 7,901,617 B2, Mar. 8, 2011], but its impact on smelter cell walls must be examined in a dynamic analysis to determine the effect on the molten bath temperature and liquid mass within the cell. The objective of this paper therefore is to perform a first-order analysis of this problem, and to identify the key scientific issues in regulating cell heat loss and in the operating philosophy of heat loss regulation.
Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma.
Reddy, Anupama; Zhang, Jenny; Davis, Nicholas S; Moffitt, Andrea B; Love, Cassandra L; Waldrop, Alexander; Leppa, Sirpa; Pasanen, Annika; Meriranta, Leo; Karjalainen-Lindsberg, Marja-Liisa; Nørgaard, Peter; Pedersen, Mette; Gang, Anne O; Høgdall, Estrid; Heavican, Tayla B; Lone, Waseem; Iqbal, Javeed; Qin, Qiu; Li, Guojie; Kim, So Young; Healy, Jane; Richards, Kristy L; Fedoriw, Yuri; Bernal-Mizrachi, Leon; Koff, Jean L; Staton, Ashley D; Flowers, Christopher R; Paltiel, Ora; Goldschmidt, Neta; Calaminici, Maria; Clear, Andrew; Gribben, John; Nguyen, Evelyn; Czader, Magdalena B; Ondrejka, Sarah L; Collie, Angela; Hsi, Eric D; Tse, Eric; Au-Yeung, Rex K H; Kwong, Yok-Lam; Srivastava, Gopesh; Choi, William W L; Evens, Andrew M; Pilichowska, Monika; Sengar, Manju; Reddy, Nishitha; Li, Shaoying; Chadburn, Amy; Gordon, Leo I; Jaffe, Elaine S; Levy, Shawn; Rempel, Rachel; Tzeng, Tiffany; Happ, Lanie E; Dave, Tushar; Rajagopalan, Deepthi; Datta, Jyotishka; Dunson, David B; Dave, Sandeep S
2017-10-05
Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 1,001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Origins of chemoreceptor curvature sorting in Escherichia coli
Draper, Will; Liphardt, Jan
2017-01-01
Bacterial chemoreceptors organize into large clusters at the cell poles. Despite a wealth of structural and biochemical information on the system's components, it is not clear how chemoreceptor clusters are reliably targeted to the cell pole. Here, we quantify the curvature-dependent localization of chemoreceptors in live cells by artificially deforming growing cells of Escherichia coli in curved agar microchambers, and find that chemoreceptor cluster localization is highly sensitive to membrane curvature. Through analysis of multiple mutants, we conclude that curvature sensitivity is intrinsic to chemoreceptor trimers-of-dimers, and results from conformational entropy within the trimer-of-dimers geometry. We use the principles of the conformational entropy model to engineer curvature sensitivity into a series of multi-component synthetic protein complexes. When expressed in E. coli, the synthetic complexes form large polar clusters, and a complex with inverted geometry avoids the cell poles. This demonstrates the successful rational design of both polar and anti-polar clustering, and provides a synthetic platform on which to build new systems. PMID:28322223
Bertolini, F; Battaglia, M; Zibera, C; Baroni, G; Soro, V; Perotti, C; Salvaneschi, L; Robustelli della Cuna, G
1996-10-01
We describe a new procedure for large-scale CB processing in the collection bag, thus minimizing the risk of CB contamination. A solution of 6% hydroxyethyl starch (HES) was added directly to the CB containing bag. After RBC sedimentation at 4 degrees C, the WBC-rich supernatant was collected in a satellite bag and centrifuged. After supernatant removal, the cell pellet was resuspended and the percent recovery of total WBC, CD34+ progenitor cells, CFU-GM and cobblestone area-forming cells (CAFC) evaluated. Results obtained with three different types of CB collection bags (300, 600 and 1000 ml) were analyzed and compared with those of an open system in 50 ml tubes. CB processing procedures in 300 and 1000 ml bags were associated with better WBC, CFU, CD34+ cell and CAFC recovery (83-93%). This novel CB processing procedure appears to be easy, effective and particularly suitable for large-scale banking under GMP conditions.
Singh, Prafull Kumar; Roukounakis, Aristomenis; Frank, Daniel O.; Kirschnek, Susanne; Das, Kushal Kumar; Neumann, Simon; Madl, Josef; Römer, Winfried; Zorzin, Carina; Borner, Christoph; Haimovici, Aladin; Garcia-Saez, Ana; Weber, Arnim; Häcker, Georg
2017-01-01
The Bcl-2 family protein Bim triggers mitochondrial apoptosis. Bim is expressed in nonapoptotic cells at the mitochondrial outer membrane, where it is activated by largely unknown mechanisms. We found that Bim is regulated by formation of large protein complexes containing dynein light chain 1 (DLC1). Bim rapidly inserted into cardiolipin-containing membranes in vitro and recruited DLC1 to the membrane. Bim binding to DLC1 induced the formation of large Bim complexes on lipid vesicles, on isolated mitochondria, and in intact cells. Native gel electrophoresis and gel filtration showed Bim-containing mitochondrial complexes of several hundred kilodaltons in all cells tested. Bim unable to form complexes was consistently more active than complexed Bim, which correlated with its substantially reduced binding to anti-apoptotic Bcl-2 proteins. At endogenous levels, Bim surprisingly bound only anti-apoptotic Mcl-1 but not Bcl-2 or Bcl-XL, recruiting only Mcl-1 into large complexes. Targeting of DLC1 by RNAi in human cell lines induced disassembly of Bim–Mcl-1 complexes and the proteasomal degradation of Mcl-1 and sensitized the cells to the Bcl-2/Bcl-XL inhibitor ABT-737. Regulation of apoptosis at mitochondria thus extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members but involves more complex structures of proteins at the mitochondrial outer membrane, and targeting complexes may be a novel therapeutic strategy. PMID:28982759
Programmable Liquid Crystal Elastomers Prepared by Thiol-Ene Photopolymerization (Postprint)
2015-08-17
defect forms a 2D wrinkling pattern that leads to an areal contraction (Figure 4c,d). Both of these films return to a largely flat state on cooling...photopolymerization. ■ MATERIALS AND METHODS RM82 (1,4-bis-[4-(6-acryloyloxyhexyloxy)benzoyloxy]-2-methylben- zene) was purchased from Synthon Chemicals. 1,2...noted. Liquid crystal cells were prepared using methods described elsewhere.10 Briefly for cells patterned using rubbed surfaces, Elvamide was
Fransz, Paul F; de Jong, J Hans
2002-12-01
Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large network of interactions that control the nuclear programming of cell identity. New insight into how chromatin conformations are regulated in plants sheds light on the relationships between chromosome function, cell differentiation and developmental patterns.
Large Screen Display Technology Survey.
1984-07-01
gadolinium gallium garnet ). The film is etched to form small light sensitive cells. The area between the cells is covered with a metal film to block the light...Failures MTTR - Mean-Time-To-Repair Nd:YAG - Noedymium: Yttrium Aluminum Garnet Nematic - A term used to describe one of the states of certain liquid...valve within a display, projection or optical processing system. It uses garnet films grown on non-magnetic substrates (Figure 10). The garnet films can
Jorge-Peñas, Alvaro; Bové, Hannelore; Sanen, Kathleen; Vaeyens, Marie-Mo; Steuwe, Christian; Roeffaers, Maarten; Ameloot, Marcel; Van Oosterwyck, Hans
2017-08-01
To advance our current understanding of cell-matrix mechanics and its importance for biomaterials development, advanced three-dimensional (3D) measurement techniques are necessary. Cell-induced deformations of the surrounding matrix are commonly derived from the displacement of embedded fiducial markers, as part of traction force microscopy (TFM) procedures. However, these fluorescent markers may alter the mechanical properties of the matrix or can be taken up by the embedded cells, and therefore influence cellular behavior and fate. In addition, the currently developed methods for calculating cell-induced deformations are generally limited to relatively small deformations, with displacement magnitudes and strains typically of the order of a few microns and less than 10% respectively. Yet, large, complex deformation fields can be expected from cells exerting tractions in fibrillar biomaterials, like collagen. To circumvent these hurdles, we present a technique for the 3D full-field quantification of large cell-generated deformations in collagen, without the need of fiducial markers. We applied non-rigid, Free Form Deformation (FFD)-based image registration to compute full-field displacements induced by MRC-5 human lung fibroblasts in a collagen type I hydrogel by solely relying on second harmonic generation (SHG) from the collagen fibrils. By executing comparative experiments, we show that comparable displacement fields can be derived from both fibrils and fluorescent beads. SHG-based fibril imaging can circumvent all described disadvantages of using fiducial markers. This approach allows measuring 3D full-field deformations under large displacement (of the order of 10 μm) and strain regimes (up to 40%). As such, it holds great promise for the study of large cell-induced deformations as an inherent component of cell-biomaterial interactions and cell-mediated biomaterial remodeling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Paraspeckles: nuclear bodies built on long noncoding RNA
Bond, Charles S.
2009-01-01
Paraspeckles are ribonucleoprotein bodies found in the interchromatin space of mammalian cell nuclei. These structures play a role in regulating the expression of certain genes in differentiated cells by nuclear retention of RNA. The core paraspeckle proteins (PSF/SFPQ, P54NRB/NONO, and PSPC1 [paraspeckle protein 1]) are members of the DBHS (Drosophila melanogaster behavior, human splicing) family. These proteins, together with the long nonprotein-coding RNA NEAT1 (MEN-ϵ/β), associate to form paraspeckles and maintain their integrity. Given the large numbers of long noncoding transcripts currently being discovered through whole transcriptome analysis, paraspeckles may be a paradigm for a class of subnuclear bodies formed around long noncoding RNA. PMID:19720872
Complete in vitro oogenesis: retrospects and prospects.
Wang, Jun-Jie; Ge, Wei; Liu, Jing-Cai; Klinger, Francesca Gioia; Dyce, Paul W; De Felici, Massimo; Shen, Wei
2017-11-01
Precise control of mammalian oogenesis has been a traditional focus of reproductive and developmental biology research. Recently, new reports have introduced the possibility of obtaining functional gametes derived in vitro from stem cells. The potential to produce functional gametes from stem cells has exciting applications for regenerative medicine though still remains challenging. In mammalian females ovulation and fertilization is a privilege reserved for a small number of oocytes. In reality the vast majority of oocytes formed from primordial germ cells (PGCs) will undergo apoptosis, or other forms of cell death. Removal occurs during germ cell cyst breakdown and the establishment of the primordial follicle (PF) pool, during the long dormancy at the PF stage, or through follicular atresia prior to reaching the ovulatory stage. A way to solve this limitation could be to produce large numbers of oocytes, in vitro, from stem cells. However, to recapitulate mammalian oogenesis and produce fertilizable oocytes in vitro is a complex process involving several different cell types, precise follicular cell-oocyte reciprocal interactions, a variety of nutrients and combinations of cytokines, and precise growth factors and hormones depending on the developmental stage. In 2016, two papers published by Morohaku et al. and Hikabe et al. reported in vitro procedures that appear to reproduce efficiently these conditions allowing for the production, completely in a dish, of a relatively large number of oocytes that are fertilizable and capable of giving rise to viable offspring in the mouse. The present article offers a critical overview of these results as well as other previous work performed mainly in mouse attempting to reproduce oogenesis completely in vitro and considers some perspectives for the potential to adapt the methods to produce functional human oocytes.
Recent progress of Spectrolab high-efficiency space solar cells
NASA Astrophysics Data System (ADS)
Law, Daniel C.; Boisvert, J. C.; Rehder, E. M.; Chiu, P. T.; Mesropian, S.; Woo, R. L.; Liu, X. Q.; Hong, W. D.; Fetzer, C. M.; Singer, S. B.; Bhusari, D. M.; Edmondson, K. M.; Zakaria, A.; Jun, B.; Krut, D. D.; King, R. R.; Sharma, S. K.; Karam, N. H.
2013-09-01
Recent progress in III-V multijunction space solar cell has led to Spectrolab's GaInP/GaAs/Ge triple-junction, XTJ, cells with average 1-sun efficiency of 29% (AM0, 28°C) for cell size ranging from 59 to 72-cm2. High-efficiency inverted metamorphic (IMM) multijunction cells are developed as the next space solar cell architecture. Spectrolab's large-area IMM3J and IMM4J cells have achieved 33% and 34% 1-sun, AM0 efficiencies, respectively. The IMM3J and the IMM4J cells have both demonstrated normalized power retention of 0.86 at 5x1014 e-/cm2 fluence and 0.83 and 0.82 at 1x1015 e-/cm2 fluence post 1-MeV electron radiation, respectively. The IMM cells were further assembled into coverglass-interconnect-cell (CIC) strings and affixed to typical rigid aluminum honeycomb panels for thermal cycling characterization. Preliminary temperature cycling data of two coupons populated with IMM cell strings showed no performance degradation. Spectrolab has also developed semiconductor bonded technology (SBT) where highperformance component subcells were grown on GaAs and InP substrates separately then bonded directly to form the final multijunction cells. Large-area SBT 5-junction cells have achieved a 35.1% efficiency under 1-sun, AM0 condition.
Kasprowicz, Richard; Rand, Emma; O'Toole, Peter J; Signoret, Nathalie
2018-05-22
Cell-to-cell communication engages signaling and spatiotemporal reorganization events driven by highly context-dependent and dynamic intercellular interactions, which are difficult to capture within heterogeneous primary cell cultures. Here, we present a straightforward correlative imaging approach utilizing commonly available instrumentation to sample large numbers of cell-cell interaction events, allowing qualitative and quantitative characterization of rare functioning cell-conjugates based on calcium signals. We applied this approach to examine a previously uncharacterized immunological synapse, investigating autologous human blood CD4 + T cells and monocyte-derived macrophages (MDMs) forming functional conjugates in vitro. Populations of signaling conjugates were visualized, tracked and analyzed by combining live imaging, calcium recording and multivariate statistical analysis. Correlative immunofluorescence was added to quantify endogenous molecular recruitments at the cell-cell junction. By analyzing a large number of rare conjugates, we were able to define calcium signatures associated with different states of CD4 + T cell-MDM interactions. Quantitative image analysis of immunostained conjugates detected the propensity of endogenous T cell surface markers and intracellular organelles to polarize towards cell-cell junctions with high and sustained calcium signaling profiles, hence defining immunological synapses. Overall, we developed a broadly applicable approach enabling detailed single cell- and population-based investigations of rare cell-cell communication events with primary cells.
Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.
Domínguez-Escobar, Julia; Chastanet, Arnaud; Crevenna, Alvaro H; Fromion, Vincent; Wedlich-Söldner, Roland; Carballido-López, Rut
2011-07-08
The peptidoglycan cell wall and the actin-like MreB cytoskeleton are major determinants of cell shape in rod-shaped bacteria. The prevailing model postulates that helical, membrane-associated MreB filaments organize elongation-specific peptidoglycan-synthesizing complexes along sidewalls. We used total internal reflection fluorescence microscopy to visualize the dynamic relation between MreB isoforms and cell wall synthesis in live Bacillus subtilis cells. During exponential growth, MreB proteins did not form helical structures. Instead, together with other morphogenetic factors, they assembled into discrete patches that moved processively along peripheral tracks perpendicular to the cell axis. Patch motility was largely powered by cell wall synthesis, and MreB polymers restricted diffusion of patch components in the membrane and oriented patch motion.
Autophagic activity in BC3H1 cells exposed to yessotoxin.
Korsnes, Mónica Suárez; Kolstad, Hilde; Kleiveland, Charlotte Ramstad; Korsnes, Reinert; Ørmen, Elin
2016-04-01
The marine toxin yessotoxin (YTX) can induce programmed cell death through both caspase-dependent and -independent pathways in various cellular systems. It appears to stimulate different forms of cellular stress causing instability among cell death mechanisms and making them overlap and cross-talk. Autophagy is one of the key pathways that can be stimulated by multiple forms of cellular stress which may determine cell survival or death. The present work evaluates a plausible link between ribotoxic stress and autophagic activity in BC3H1 cells treated with YTX. Such treatment produces massive cytoplasmic compartments as well as double-membrane vesicles termed autophagosomes which are typically observed in cells undergoing autophagy. The observed autophagosomes contain a large amount of ribosomes associated with the endoplasmic reticulum (ER). Western blotting analysis of Atg proteins and detection of the autophagic markers LC3-II and SQSTM1/p62 by flow cytometry and immunofluorescence verified autophagic activity during YTX-treatment. The present work supports the idea that autophagic activity upon YTX exposure may represent a response to ribotoxic stress. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Lapotko, Dmitri; Lukianova-Hleb, Ekaterina; Zhdanok, Sergei; Rostro, Betty; Simonette, Rebecca; Hafner, Jason; Konopleva, Marina; Andreeff, Michael; Conjusteau, Andre; Oraevsky, Alexander
2008-02-01
In an effort of developing clinical LANTCET (laser-activated nano-thermolysis as cell elimination technology) we achieved selective destruction of individual tumor cells through laser generation of vapor microbubbles around clusters of light absorbing gold nanorods (GNR) selectively formed in target tumor cells. Among all gold nanoparticles, nanorods offer the highest optical absorption in the near-infrared. We applied covalent conjugates of gold nanorods with targeting vectors such as monoclonal antibodies CD33 (specific for Acute Myeloid Leukemia), while GNR conjugates with polyethylene-glycol (PEG) were used as nonspecific targeting control. GNR clusters were formed inside the tumor cells at 37 °C due to endocytosis of large concentration of nanorods accumulated on the surface of tumor cells targeted at 4 °C. Formation of GNR clusters significantly reduces the threshold of tumor cell damage making LANTCET safe for normal cells. Appearance of GNR clusters was verified directly with optical resonance scattering microscopy. LANTCET was performed in vitro with living cells of (1) model myeloid K562 cells (CD33 positive), (2) primary human bone marrow CD33-positive blast cells from patients diagnosed with acute myeloid leukemia. Laser-induced microbubbles were generated and detected with a photothermal microscope equipped with a tunable Ti-Sa pulsed laser. GNT cluster formation caused a 100-fold decrease in the threshold optical fluence for laser microbubble generation in tumor cells compared with that in normal cells under the same targeting and irradiation conditions. Combining imaging based on resonance optical scattering with photothermal imaging of microbubbles, we developed a method for detection, image-guided treatment and monitoring of LANTCET. Pilot experiments were performed in flow mode bringing LANTCET closer to reality of clinical procedure of purging tumor cells from bone marrow grafts.
Teebor, G W; Frenkel, K; Goldstein, M S
1984-01-01
HeLa cells grown in the presence of [methyl-3H]thymidine contained large amounts of 5-hydroxymethyl-2'-deoxyuridine (HMdU) in their DNA. When the cells were grown in [6-3H]thymidine and their DNA was labeled to the same specific activity, no HMdU was present. When such [6-3H]thymidine-labeled cells were exposed to increasing amounts of gamma-radiation, small but increasing amounts of HMdU were formed in their DNA. This indicates that HMdU can be formed in DNA by two distinct mechanisms. The first is the result of the transmutation of 3H to 3He (beta decay) in the methyl group of thymidine, leading to formation of a carbocation. This short-lived ion reacts with hydroxide ions of water, yielding the hydroxymethyl group. HMdU that is formed by this mechanism is formed at the rate of beta decay of 3H. It appears only in [methyl-3H]thymidine residues and is present in the DNA of both nonirradiated and gamma-irradiated cells. The second mechanism is the result of the radiolysis of water caused by ionizing radiation. The resultant radical species, particularly hydroxyl radicals, may react with many sites on DNA. When the methyl group of thymine is attacked by hydroxyl radicals, the hydroxymethyl group is formed. The formation of HMdU by this mechanism was detected only when [6-3H]thymidine-labeled cells were used, since transmutation of 3H in position 6 of thymine cannot yield HMdU. PMID:6582490
Teebor, G W; Frenkel, K; Goldstein, M S
1984-01-01
HeLa cells grown in the presence of [methyl-3H]thymidine contained large amounts of 5-hydroxymethyl-2'-deoxyuridine (HMdU) in their DNA. When the cells were grown in [6-3H]thymidine and their DNA was labeled to the same specific activity, no HMdU was present. When such [6-3H]thymidine-labeled cells were exposed to increasing amounts of gamma-radiation, small but increasing amounts of HMdU were formed in their DNA. This indicates that HMdU can be formed in DNA by two distinct mechanisms. The first is the result of the transmutation of 3H to 3He (beta decay) in the methyl group of thymidine, leading to formation of a carbocation. This short-lived ion reacts with hydroxide ions of water, yielding the hydroxymethyl group. HMdU that is formed by this mechanism is formed at the rate of beta decay of 3H. It appears only in [methyl-3H]thymidine residues and is present in the DNA of both nonirradiated and gamma-irradiated cells. The second mechanism is the result of the radiolysis of water caused by ionizing radiation. The resultant radical species, particularly hydroxyl radicals, may react with many sites on DNA. When the methyl group of thymine is attacked by hydroxyl radicals, the hydroxymethyl group is formed. The formation of HMdU by this mechanism was detected only when [6-3H]thymidine-labeled cells were used, since transmutation of 3H in position 6 of thymine cannot yield HMdU.
Tedesco, D; Fischer-Fantuzzi, L; Vesco, C
1993-03-01
Multiple amino acid substitutions were introduced into the SV40 large T region that harbors the retinoblastoma protein (Rb) binding site and the nuclear transport signal, changing either one or both of these determinants. Mutant activities were examined in a set of assays allowing different levels of transforming potential to be distinguished; phenotypic changes in established and pre-crisis rat embryo fibroblasts (REFs) were detected under isogenic cell conditions, and comparisons made with other established rodent cells. The limit of the transforming ability of mutants with important substitutions in the Rb binding site fell between two transformation levels of the same established rat cells. Such cells could be induced to form dense foci but not agar colonies (their parental pre-crises REFs, as expected, were untransformed either way). Nonetheless, agar colony induction was possible in other cell lines, such as mouse NIH3T3 and (for one of the mutants) rat F2408. All these mutants efficiently immortalized pre-crisis REFs. The transforming ability of cytoplasmic mutants appeared to depend on the integrity of the Rb-binding sequence to approximately the same extent as that of the wild-type large T, although evidence of in vivo Rb-cytoplasmic large T complexes was not found. The presence or absence of small t was critical when the transforming task of mutants was near the limit of their abilities.
Ettensohn, Charles A; Illies, Michele R; Oliveri, Paola; De Jong, Deborah L
2003-07-01
In the sea urchin embryo, the large micromeres and their progeny function as a critical signaling center and execute a complex morphogenetic program. We have identified a new and essential component of the gene network that controls large micromere specification, the homeodomain protein Alx1. Alx1 is expressed exclusively by cells of the large micromere lineage beginning in the first interphase after the large micromeres are born. Morpholino studies demonstrate that Alx1 is essential at an early stage of specification and controls downstream genes required for epithelial-mesenchymal transition and biomineralization. Expression of Alx1 is cell autonomous and regulated maternally through beta-catenin and its downstream effector, Pmar1. Alx1 expression can be activated in other cell lineages at much later stages of development, however, through a regulative pathway of skeletogenesis that is responsive to cell signaling. The Alx1 protein is highly conserved among euechinoid sea urchins and is closely related to the Cart1/Alx3/Alx4 family of vertebrate homeodomain proteins. In vertebrates, these proteins regulate the formation of skeletal elements of the limbs, face and neck. Our findings suggest that the ancestral deuterostome had a population of biomineral-forming mesenchyme cells that expressed an Alx1-like protein.
Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utsumi, H.; Elkind, M.M.
1983-11-01
A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of thesemore » cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal.« less
Zhang, Zhifang; Shively, John E
2010-11-15
Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin), which recruits circulating monocytes during injury, may play a role in bone repair. Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM). In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC) lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC), osteonectin (ON), bone sialoprotein II (BSP II), osteopontin (OP), RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP), and cathepsin K (CK). Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte derived lineage and their bone forming phenotype. These cells may have wide ranging implications in the clinic including repair of broken bones and treatment of osteoporosis.
Anonymous sources: where do adult β cells come from?
German, Michael S.
2013-01-01
Evidence that the pool of insulin-producing β cells in the pancreas is reduced in both major forms of diabetes mellitus has led to efforts to understand β cell turnover in the adult pancreas. Unfortunately, previous studies have reached opposing conclusions regarding the source of new β cells during regeneration in the adult pancreas. In this issue of the JCI, Xiao et al. use a novel mouse model for detecting new β cells derived from non–β cells to demonstrate the absence of β cell neogenesis from non–β cells during normal postnatal growth and in models of β cell regeneration. This work adds to mounting evidence that in most physiological and pathological conditions, β cell neogenesis may not make large contributions to the postnatal β cell pool — at least not in rodents. PMID:23619356
Pathobiology of Anaplastic Large Cell Lymphoma
Piccaluga, Pier Paolo; Gazzola, Anna; Mannu, Claudia; Agostinelli, Claudio; Bacci, Francesco; Sabattini, Elena; Sagramoso, Carlo; Piva, Roberto; Roncolato, Fernando; Inghirami, Giorgio; Pileri, Stefano A.
2010-01-01
The authors revise the concept of anaplastic large cell lymphoma (ALCL) in the light of the recently updated WHO classification of Tumors of Hematopoietic and Lymphoid Tissues both on biological and clinical grounds. The main histological findings are illustrated with special reference to the cytological spectrum that is indeed characteristic of the tumor. The phenotype is reported in detail: the expression of the ALK protein as well as the chromosomal abnormalities is discussed with their potential pathogenetic implications. The clinical features of ALCL are presented by underlining the difference in terms of response to therapy and survival between the ALK-positive and ALK-negative forms. Finally, the biological rationale for potential innovative targeted therapies is presented. PMID:21331150
Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor.
Lambrechts, Toon; Papantoniou, Ioannis; Rice, Brent; Schrooten, Jan; Luyten, Frank P; Aerts, Jean-Marie
2016-09-01
With the increasing scale in stem cell production, a robust and controlled cell expansion process becomes essential for the clinical application of cell-based therapies. The objective of this work was the assessment of a hollow fiber bioreactor (Quantum Cell Expansion System from Terumo BCT) as a cell production unit for the clinical-scale production of human periosteum derived stem cells (hPDCs). We aimed to demonstrate comparability of bioreactor production to standard culture flask production based on a product characterization in line with the International Society of Cell Therapy in vitro benchmarks and supplemented with a compelling quantitative in vivo bone-forming potency assay. Multiple process read-outs were implemented to track process performance and deal with donor-to-donor-related variation in nutrient needs and harvest timing. The data show that the hollow fiber bioreactor is capable of robustly expanding autologous hPDCs on a clinical scale (yield between 316 million and 444 million cells starting from 20 million after ± 8 days of culture) while maintaining their in vitro quality attributes compared with the standard flask-based culture. The in vivo bone-forming assay on average resulted in 10.3 ± 3.7% and 11.0 ± 3.8% newly formed bone for the bioreactor and standard culture flask respectively. The analysis showed that the Quantum system provides a reproducible cell expansion process in terms of yields and culture conditions for multiple donors. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Diatom-Based Material Production Demonstration
2016-03-14
Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 Final Report W911NF-15-2-0012 66671-CH-DRP.5 808-212-4509 a. REPORT 14. ABSTRACT 16...diatomaceous earth. Diatomaceous earth consists of fossilized diatom cell walls, which have non uniform size with a lot of debris and a large...PROGRAM ELEMENT NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER Form Approved OMB NO. 0704-0188 3. DATES COVERED (From - To) - Approved for Public Release
Roudsari, Laila C.; Jeffs, Sydney E.; Witt, Amber S.; Gill, Bartley J.; West, Jennifer L.
2016-01-01
Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm2, circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization. PMID:27596933
NASA Astrophysics Data System (ADS)
Roudsari, Laila C.; Jeffs, Sydney E.; Witt, Amber S.; Gill, Bartley J.; West, Jennifer L.
2016-09-01
Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm2, circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization.
Liberton, Michelle; Austin, Jotham R; Berg, R Howard; Pakrasi, Himadri B
2011-04-01
Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.
1992-01-01
Antigen-presenting, major histocompatibility complex (MHC) class II- rich dendritic cells are known to arise from bone marrow. However, marrow lacks mature dendritic cells, and substantial numbers of proliferating less-mature cells have yet to be identified. The methodology for inducing dendritic cell growth that was recently described for mouse blood now has been modified to MHC class II- negative precursors in marrow. A key step is to remove the majority of nonadherent, newly formed granulocytes by gentle washes during the first 2-4 d of culture. This leaves behind proliferating clusters that are loosely attached to a more firmly adherent "stroma." At days 4-6 the clusters can be dislodged, isolated by 1-g sedimentation, and upon reculture, large numbers of dendritic cells are released. The latter are readily identified on the basis of their distinct cell shape, ultrastructure, and repertoire of antigens, as detected with a panel of monoclonal antibodies. The dendritic cells express high levels of MHC class II products and act as powerful accessory cells for initiating the mixed leukocyte reaction. Neither the clusters nor mature dendritic cells are generated if macrophage colony-stimulating factor rather than granulocyte/macrophage colony-stimulating factor (GM-CSF) is applied. Therefore, GM-CSF generates all three lineages of myeloid cells (granulocytes, macrophages, and dendritic cells). Since > 5 x 10(6) dendritic cells develop in 1 wk from precursors within the large hind limb bones of a single animal, marrow progenitors can act as a major source of dendritic cells. This feature should prove useful for future molecular and clinical studies of this otherwise trace cell type. PMID:1460426
Melt-processed polymeric cellular dosage forms for immediate drug release.
Blaesi, Aron H; Saka, Nannaji
2015-12-28
The present immediate-release solid dosage forms, such as the oral tablets and capsules, comprise granular matrices. While effective in releasing the drug rapidly, they are fraught with difficulties inherent in processing particulate matter. By contrast, liquid-based processes would be far more predictable; but the standard cast microstructures are unsuited for immediate-release because they resist fluid percolation and penetration. In this article, we introduce cellular dosage forms that can be readily prepared from polymeric melts by incorporating the nucleation, growth, and coalescence of microscopic gas bubbles in a molding process. We show that the cell topology and formulation of such cellular structures can be engineered to reduce the length-scale of the mass-transfer step, which determines the time of drug release, from as large as the dosage form itself to as small as the thickness of the cell wall. This allows the cellular dosage forms to achieve drug release rates over an order of magnitude faster compared with those of cast matrices, spanning the entire spectrum of immediate-release and beyond. The melt-processed polymeric cellular dosage forms enable predictive design of immediate-release solid dosage forms by tailoring microstructures, and could be manufactured efficiently in a single step.
Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy.
Gaipl, Udo S; Multhoff, Gabriele; Scheithauer, Heike; Lauber, Kirsten; Hehlgans, Stefanie; Frey, Benjamin; Rödel, Franz
2014-01-01
Besides the direct, targeted effects of ionizing irradiation (x-ray) on cancer cells, namely DNA damage and cell death induction, indirect, nontargeted ones exist, which are mediated in large part by the immune system. Immunogenic forms of tumor cell death induced by x-ray, including immune modulating danger signals like the heat shock protein 70, adenosine triphosphate, and high-mobility group box 1 protein are presented. Further, antitumor effects exerted by cells of the innate (natural killer cells) as well as adaptive immune system (T cells activated by dendritic cells) are outlined. Tumor cell death inhibiting molecules such as survivin are introduced as suitable target for molecularly tailored therapies in combination with x-ray. Finally, reasonable combinations of immune therapies with radiotherapy are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiao-xi; Liu, Chang; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049
2013-08-15
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and often forms metastases, which are the most important prognostic factors. For further elucidation of the mechanism underlying the progression and metastasis of HCC, a culture system mimicking the in vivo tumor microenvironment is needed. In this study, we investigated the metastatic ability of HCC cells cultured within alginate gel (ALG) beads. In the culture system, HCC cells formed spheroids by proliferation and maintained in nuclear abnormalities. The gene and protein expression of metastasis-related molecules was increased in ALG beads, compared with the traditional adhesion culture. Furthermore, several gene expressionmore » levels in ALG bead culture system were even closer to liver cancer tissues. More importantly, in vitro invasion assay showed that the invasion cells derived from ALG beads was 7.8-fold higher than adhesion cells. Our results indicated that the in vitro three-dimensional (3D) model based on ALG beads increased metastatic ability compared with adhesion culture, even partly mimicked the in vivo tumor tissues. Moreover, due to the controllable preparation conditions, steady characteristics and production at large-scale, the 3D ALG bead model would become an important tool used in the high-throughput screening of anti-metastasis drugs and the metastatic mechanism research. -- Highlights: •We established a 3D metastasis model mimicking the metastatic ability in vivo. •The invasion ability of cells derived from our model was increased significantly. •The model is easy to reproduce, convenient to handle, and amenable for large-scale.« less
High-temperature-measuring device
Not Available
1981-01-27
A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.
High temperature measuring device
Tokarz, Richard D.
1983-01-01
A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.
Distinctive properties of metastasis-initiating cells
Celià-Terrassa, Toni; Kang, Yibin
2016-01-01
Primary tumors are known to constantly shed a large number of cancer cells into systemic dissemination, yet only a tiny fraction of these cells is capable of forming overt metastases. The tremendous rate of attrition during the process of metastasis implicates the existence of a rare and unique population of metastasis-initiating cells (MICs). MICs possess advantageous traits that may originate in the primary tumor but continue to evolve during dissemination and colonization, including cellular plasticity, metabolic reprogramming, the ability to enter and exit dormancy, resistance to apoptosis, immune evasion, and co-option of other tumor and stromal cells. Better understanding of the molecular and cellular hallmarks of MICs will facilitate the development and deployment of novel therapeutic strategies. PMID:27083997
A glial palisade delineates the ipsilateral optic projection in Monodelphis.
MacLaren, R E
1998-01-01
In developing marsupials, the path taken through the optic chiasm by ipsilaterally projecting retinal ganglion cells is complicated. Just prior to entry into the chiasm, ganglion cells destined for the ipsilateral optic tract separate from the remainder of axons by turning abruptly downwards to take a position in the ventral part of the optic nerve. In this report, it is shown that a discrete population of about 10-15 large glial cells transiently form a linear array across the prechiasmatic part of the optic nerve, precisely at this axon turning point. The distinct morphology of these cells and their novel location may reflect a specialized role in axon guidance.
Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species
NASA Technical Reports Server (NTRS)
Hei, T. K.; Liu, S. X.; Waldren, C.
1998-01-01
Arsenite, the trivalent form of arsenic present in the environment, is a known human carcinogen that lacked mutagenic activity in bacterial and standard mammalian cell mutation assays. We show herein that when evaluated in an assay (AL cell assay), in which both intragenic and multilocus mutations are detectable, that arsenite is in fact a strong dose-dependent mutagen and that it induces mostly large deletion mutations. Cotreatment of cells with the oxygen radical scavenger dimethyl sulfoxide significantly reduces the mutagenicity of arsenite. Thus, the carcinogenicity of arsenite can be explained at least in part by it being a mutagen that depends on reactive oxygen species for its activity.
Lü, Shuanghong; Liu, Sheng; He, Wenjun; Duan, Cuimi; Li, Yanmin; Liu, Zhiqiang; Zhang, Ye; Hao, Tong; Wang, Yanmeng; Li, Dexue; Wang, Changyong; Gao, Shaorong
2008-09-01
Autogenic embryonic stem cells established from somatic cell nuclear transfer (SCNT) embryos have been proposed as unlimited cell sources for cell transplantation-based treatment of many genetic and degenerative diseases, which can eliminate the immune rejection that occurs after transplantation. In the present study, pluripotent nuclear transfer ES (NTES) cell lines were successfully established from different strains of mice. One NTES cell line, NT1, with capacity of germline transmission, was used to investigate in vitro differentiation into cardiomyocytes. To optimize differentiation conditions for mass production of embryoid bodies (NTEBs) from NTES cells, a slow-turning lateral vessel (STLV) rotating bioreactor was used for culturing the NTES cells to produce NTEBs compared with a conventional static cultivation method. Our results demonstrated that the NTEBs formed in STLV bioreactor were more uniform in size, and no large necrotic centers with most of the cells in NTEBs were viable. Differentiation of the NTEBs formed in both the STLV bioreactor and static culture into cardiomyocytes was induced by ascorbic acid, and the results demonstrated that STLV-produced NTEBs differentiated into cardiomyocytes more efficiently. Taken together, our results suggested that STLV bioreactor provided a more ideal culture condition, which can facilitate the formation of better quality NTEBs and differentiation into cardiomyocytes more efficiently in vitro.
Integrating photonic crystals in thin film silicon photovoltaics
NASA Astrophysics Data System (ADS)
O'Brien, P. G.; Chutinan, A.; Ozin, G. A.; Kherani, N. P.; Zukotynski, S.
2010-06-01
Wave-optics analysis is performed to investigate the benefits of integrating photonic crystals into micromorph cells. Specifically, we theoretically investigate two novel micromorph cells which integrate photonic crystals and compare their optical performance with that of conventional micromorph cells. In the first innovative micromorph cell configuration the intermediate reflector is a selectively transparent and conducting photonic crystal (STCPC). In the second micromorph cell its bottom μc-Si:H cell is structured in the form of an inverted opal. Our results show that with the AM1.5 solar spectrum at normal incidence the current generated in a conventional micromorph cell is increased from 12.1 mA/cm2 to 13.0 mA/cm2 when the bottom μc-Si:H cell is structured in the form of an inverted opal. However, the current generated in the micromorph cell can be increased to as much as 13.7 mA/cm2 when an STCPC is utilized as the intermediate reflector. Furthermore, the thickness of the μc-Si:H opal must be relatively large in order to absorb a sufficient amount of the solar irradiance, which is expected to degrade the electrical performance of the device. In contrast, our results suggest that STCPC intermediate reflectors are a viable technology that could potentially enhance the performance of micromorph cells.
A simple 2D biofilm model yields a variety of morphological features.
Hermanowicz, S W
2001-01-01
A two-dimensional biofilm model was developed based on the concept of cellular automata. Three simple, generic processes were included in the model: cell growth, internal and external mass transport and cell detachment (erosion). The model generated a diverse range of biofilm morphologies (from dense layers to open, mushroom-like forms) similar to those observed in real biofilm systems. Bulk nutrient concentration and external mass transfer resistance had a large influence on the biofilm structure.
Metallization of Large Silicon Wafers
NASA Technical Reports Server (NTRS)
Pryor, R. A.
1978-01-01
A metallization scheme was developed which allows selective plating of silicon solar cell surfaces. The system is comprised of three layers. Palladium, through the formation of palladium silicide at 300 C in nitrogen, makes ohmic contact to the silicon surface. Nickel, plated on top of the palladium silicide layer, forms a solderable interface. Lead-tin solder on the nickel provides conductivity and allows a convenient means for interconnection of cells. To apply this metallization, three chemical plating baths are employed.
Graber, P; Gretener, D; Herren, S; Aubry, J P; Elson, G; Poudrier, J; Lecoanet-Henchoz, S; Alouani, S; Losberger, C; Bonnefoy, J Y; Kosco-Vilbois, M H; Gauchat, J F
1998-12-01
To study the expression of IL-13 receptor alpha1 (IL-13Ralpha1), specific monoclonal antibodies (mAb) were generated. Surface expression of the IL-13Ralpha1 on B cells, monocytes and T cells was assessed by flow cytometry using these specific mAb. Among tonsillar B cells, the expression was the highest on the IgD+ CD38- B cell subpopulation which is believed to represent naive B cells. Expression was also detectable on a large fraction of the IgD-CD38- B cells but not on CD38+ B cells. Activation under conditions which promote B cell Ig class switching up-regulated the expression of the receptor. However, the same stimuli had an opposite effect for IL-13Ralpha1 expression levels on monocytes. While IL-13Ralpha1 mRNA was clearly detectable in T cell preparations, no surface expression was detected. However, permeabilization of the T cells showed a clear intracellular expression of the receptor. A soluble form of the receptor was immunoprecipitated from the supernatant of activated peripheral T cells, suggesting that T cell IL-13Ralpha1 might have functions unrelated to the capacity to form a type II IL-4/IL-13R with IL-4Ralpha.
Zwerger, Monika; Kolb, Thorsten; Richter, Karsten; Karakesisoglou, Iakowos; Herrmann, Harald
2010-01-15
Lamin B receptor (LBR) is an inner nuclear membrane protein involved in tethering the nuclear lamina and the underlying chromatin to the nuclear envelope. In addition, LBR exhibits sterol reductase activity. Mutations in the LBR gene cause two different human diseases: Pelger-Huët anomaly and Greenberg skeletal dysplasia, a severe chrondrodystrophy causing embryonic death. Our study aimed at investigating the effect of five LBR disease mutants on human cultured cells. Three of the tested LBR mutants caused a massive compaction of chromatin coincidental with the formation of a large nucleus-associated vacuole (NAV) in several human cultured cell lines. Live cell imaging and electron microscopy revealed that this structure was generated by the separation of the inner and outer nuclear membrane. During NAV formation, nuclear pore complexes and components of the linker of nucleoskeleton and cytoskeleton complex were lost in areas of membrane separation. Concomitantly, a large number of smaller vacuoles formed throughout the cytoplasm. Notably, forced expression of the two structurally related sterol reductases transmembrane 7 superfamily member 2 and 7-dehydrocholesterol reductase caused, even in their wild-type form, a comparable phenotype in susceptible cell lines. Hence, LBR mutant variants and sterol reductases can severely interfere with the regular organization of the nuclear envelope and the endoplasmic reticulum.
Hashimoto thyroiditis: clinical and diagnostic criteria.
Caturegli, P; De Remigis, A; Rose, N R
2014-01-01
Hashimoto thyroiditis (HT), now considered the most common autoimmune disease, was described over a century ago as a pronounced lymphoid goiter affecting predominantly women. In addition to this classic form, several other clinico-pathologic entities are now included under the term HT: fibrous variant, IgG4-related variant, juvenile form, Hashitoxicosis, and painless thyroiditis (sporadic or post-partum). All forms are characterized pathologically by the infiltration of hematopoietic mononuclear cells, mainly lymphocytes, in the interstitium among the thyroid follicles, although specific features can be recognized in each variant. Thyroid cells undergo atrophy or transform into a bolder type of follicular cell rich in mitochondria called Hürthle cell. Most HT forms ultimately evolve into hypothyroidism, although at presentation patients can be euthyroid or even hyperthyroid. The diagnosis of HT relies on the demonstration of circulating antibodies to thyroid antigens (mainly thyroperoxidase and thyroglobulin) and reduced echogenicity on thyroid sonogram in a patient with proper clinical features. The treatment remains symptomatic and based on the administration of synthetic thyroid hormones to correct the hypothyroidism as needed. Surgery is performed when the goiter is large enough to cause significant compression of the surrounding cervical structures, or when some areas of the thyroid gland mimic the features of a nodule whose cytology cannot be ascertained as benign. HT remains a complex and ever expanding disease of unknown pathogenesis that awaits prevention or novel forms of treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Tropomodulins are negative regulators of neurite outgrowth
Fath, Thomas; Fischer, Robert S.; Dehmelt, Leif; Halpain, Shelley; Fowler, Velia M.
2010-01-01
Regulation of the actin cytoskeleton is critical for neurite formation. Tropomodulins (Tmods) regulate polymerization at actin filament pointed ends. Previous experiments using a mouse model deficient for the neuron specific isoform Tmod2 suggested a role for Tmods in neuronal function by impacting processes underlying learning and memory. However, the role of Tmods in neuronal function on the cellular level remains unknown. Immunofluorescence localization of the neuronal isoforms Tmod1 and Tmod2 in cultured rat primary hippocampal neurons revealed that Tmod1 is enriched along the proximal part of F-actin bundles in lamellipodia of spreading cells and in growth cones of extending neurites, while Tmod2 appears largely cytoplasmic. Functional analysis of these Tmod isoforms in a mouse neuroblastoma N2a cell line showed that knockdown of Tmod2 resulted in a significant increase in number of neurite-forming cells and in neurite length. While N2a cells compensated for Tmod2 knockdown by increasing Tmod1 levels, over-expression of exogenous Tmod1 had no effect on neurite outgrowth. Moreover, knockdown of Tmod1 increased the number of neurites formed per cell, without effect on number of neurite-forming cells or neurite length. Taken together, these results indicate that Tmod1 and Tmod2 have mechanistically distinct inhibitory roles in neurite formation, likely mediated via different effects on F-actin dynamics and via differential localizations during early neuritogenesis. PMID:21146252
Lei, Ming; Li, Kun; Li, Bei; Gao, Li-Na; Chen, Fa-Ming; Jin, Yan
2014-08-01
Mesenchymal stem cells (MSCs) isolated from human postnatal dental pulp and periodontal ligament (PDL) tissues can give rise to multilineage differentiation in vitro and generate related dental tissues in vivo. However, the cell properties of human dental pulp stem cells (DPSCs) and PDL stem cells (PDLSCs) after in vivo implantation remain largely unidentified. In this study, cells were re-isolated from in vivo-generated dental pulp-like and PDL-like tissues (termed re-DPCs and re-PDLCs, respectively) as a result of ectopic transplantation of human DPSC and PDLSC sheets. The cell characteristics in terms of colony-forming ability, cell surface antigens and multi-differentiation potentials were all evaluated before and after implantation. It was found that re-DPCs and re-PDLCs were of human and mesenchymal origin and positive for MSC markers such as STRO-1, CD146, CD29, CD90 and CD105; and, to some extent, re-DPCs could maintain their colony forming abilities. Moreover, both cell types were able to form mineral deposits and differentiate into adipocytes and chondrocytes; however, quantitative analysis and related gene expression determination showed that the osteo-/chondro-differentiation capabilities of re-DPCs and re-PDLCs were significantly reduced compared to those of DPSCs and PDLSCs, respectively (P < 0.05); re-PDLCs showed a greater reduction potential than re-DPCs. We conclude that DPSCs and PDLSCs may maintain their MSC characteristics after in vivo implantation and, compared to PDLSCs, DPSCs appear much more stable under in vivo conditions. These findings provide additional cellular and molecular evidence that supports expanding the use of dental tissue-derived stem cells in cell therapy and tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pasricha, Shivani; MacRae, James I.; Chua, Hwa H.; Chambers, Jenny; Boyce, Kylie J.; McConville, Malcolm J.; Andrianopoulos, Alex
2017-01-01
Fungal infections are an increasing public health problem, particularly in immunocompromised individuals. While these pathogenic fungi show polyphyletic origins with closely related non-pathogenic species, many undergo morphological transitions to produce pathogenic cell types that are associated with increased virulence. However, the characteristics of these pathogenic cells that contribute to virulence are poorly defined. Talaromyces marneffei grows as a non-pathogenic hyphal form at 25°C but undergoes a dimorphic transition to a pathogenic yeast form at 37°C in vitro and following inhalation of asexual conidia by a host. Here we show that this transition is associated with major changes in central carbon metabolism, and that these changes are correlated with increased virulence of the yeast form. Comprehensive metabolite profiling and 13C-labeling studies showed that hyphal cells exhibited very active glycolytic metabolism and contain low levels of internal carbohydrate reserves. In contrast, yeast cells fully catabolized glucose in the mitochondrial TCA cycle, and store excess glucose in large intracellular pools of trehalose and mannitol. Inhibition of the yeast TCA cycle inhibited replication in culture and in host cells. Yeast, but not hyphae, were also able to use myo-inositol and amino acids as secondary carbon sources, which may support their survival in host macrophages. These analyses suggest that T. marneffei yeast cells exhibit a more efficient oxidative metabolism and are capable of utilizing a diverse range of carbon sources, which contributes to their virulence in animal tissues, highlighting the importance of dimorphic switching in pathogenic yeast. PMID:28861398
Pasricha, Shivani; MacRae, James I; Chua, Hwa H; Chambers, Jenny; Boyce, Kylie J; McConville, Malcolm J; Andrianopoulos, Alex
2017-01-01
Fungal infections are an increasing public health problem, particularly in immunocompromised individuals. While these pathogenic fungi show polyphyletic origins with closely related non-pathogenic species, many undergo morphological transitions to produce pathogenic cell types that are associated with increased virulence. However, the characteristics of these pathogenic cells that contribute to virulence are poorly defined. Talaromyces marneffei grows as a non-pathogenic hyphal form at 25°C but undergoes a dimorphic transition to a pathogenic yeast form at 37°C in vitro and following inhalation of asexual conidia by a host. Here we show that this transition is associated with major changes in central carbon metabolism, and that these changes are correlated with increased virulence of the yeast form. Comprehensive metabolite profiling and 13 C-labeling studies showed that hyphal cells exhibited very active glycolytic metabolism and contain low levels of internal carbohydrate reserves. In contrast, yeast cells fully catabolized glucose in the mitochondrial TCA cycle, and store excess glucose in large intracellular pools of trehalose and mannitol. Inhibition of the yeast TCA cycle inhibited replication in culture and in host cells. Yeast, but not hyphae, were also able to use myo -inositol and amino acids as secondary carbon sources, which may support their survival in host macrophages. These analyses suggest that T. marneffei yeast cells exhibit a more efficient oxidative metabolism and are capable of utilizing a diverse range of carbon sources, which contributes to their virulence in animal tissues, highlighting the importance of dimorphic switching in pathogenic yeast.
Engineering Vascularized Bone Grafts by Integrating a Biomimetic Periosteum and β-TCP Scaffold
2015-01-01
Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell sheet and human umbilical vascular endothelial cells (HUVECs) were then seeded on the undifferentiated hMSCs sheet to form vascularized cell sheet for mimicking the fibrous layer of native periosteum. A mineralized hMSCs sheet was cultured to mimic the cambium layer of native periosteum. This mineralized hMSCs sheet was first wrapped onto a cylindrical β-TCP scaffold followed by wrapping the vascularized HUVEC/hMSC sheet, thus generating a biomimetic CSEP on the β-TCP scaffold. A nonperiosteum structural cell sheets-covered β-TCP and plain β-TCP were used as controls. In vitro studies indicate that the undifferentiated hMSCs sheet facilitated HUVECs to form rich capillary-like networks. In vivo studies indicate that the biomimetic CSEP enhanced angiogenesis and functional anastomosis between the in vitro preformed human capillary networks and the mouse host vasculature. MicroCT analysis and osteocalcin staining show that the biomimetic CSEP/β-TCP graft formed more bone matrix compared to the other groups. These results suggest that the CSEP that mimics the cellular components and spatial configuration of periosteum plays a critical role in vascularization and osteogenesis. Our studies suggest that a biomimetic periosteum-covered β-TCP graft is a promising approach for bone regeneration. PMID:24858072
Photoelectrocyclization as an activation mechanism for organelle-specific live-cell imaging probes.
Tran, Mai N; Chenoweth, David M
2015-05-26
Photoactivatable fluorophores are useful tools in live-cell imaging owing to their potential for precise spatial and temporal control. In this report, a new photoactivatable organelle-specific live-cell imaging probe based on a 6π electrocyclization/oxidation mechanism is described. It is shown that this new probe is water-soluble, non-cytotoxic, cell-permeable, and useful for mitochondrial imaging. The probe displays large Stokes shifts in both pre-activated and activated forms, allowing simultaneous use with common dyes and fluorescent proteins. Sequential single-cell activation experiments in dense cellular environments demonstrate high spatial precision and utility in single- or multi-cell labeling experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the exfoliating polymeric cellular dosage forms for immediate drug release.
Blaesi, Aron H; Saka, Nannaji
2016-06-01
The most prevalent pharmaceutical dosage forms at present-the oral immediate-release tablets and capsules-are granular solids. Though effective in releasing drug rapidly, development and manufacture of such dosage forms are fraught with difficulties inherent to particulate processing. Predictable dosage form manufacture could be achieved by liquid-based processing, but cast solid dosage forms are not suitable for immediate drug release due to their resistance to fluid percolation. To overcome this limitation, we have recently introduced cellular dosage forms that can be readily prepared from polymeric melts. It has been shown that open-cell structures comprising polyethylene glycol 8000 (PEG 8k) excipient and a drug exfoliate upon immersion in a dissolution medium. The drug is then released rapidly due to the large specific surface area of the exfoliations. In this work, we vary the molecular weight of the PEG excipient and investigate its effect on the drug release kinetics of structures with predominantly open-cell topology. We demonstrate that the exfoliation rate decreases substantially if the excipient molecular weight is increased from 12 to 100kg/mol, which causes the drug dissolution time to increase by more than a factor of ten. A model is then developed to elucidate the exfoliation behavior of cellular structures. Diverse transport processes are considered: percolation due to capillarity, diffusion of dissolution medium through the cell walls, and viscous flow of the saturated excipient. It is found that the lower exfoliation rate and the longer dissolution time of the dosage forms with higher excipient molecular weight are primarily due to the greater viscosity of the cell walls after fluid penetration. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guarnieri, Daniela; Sabella, Stefania; Muscetti, Ornella; Belli, Valentina; Malvindi, Maria Ada; Fusco, Sabato; de Luca, Elisa; Pompa, Pier Paolo; Netti, Paolo A.
2014-08-01
The toxicity of metallic nanoparticles (MNPs) has been fully ascertained, but the mechanisms underlying their cytotoxicity remain still largely unclear. Here we demonstrate that the cytotoxicity of MNPs is strictly reliant on the pathway of cellular internalization. In particular, if otherwise toxic gold, silver, and iron oxide NPs are forced through the cell membrane bypassing any form of active mechanism (e.g., endocytosis), no significant cytotoxic effect is registered. Pneumatically driven NPs across the cell membrane show a different distribution within the cytosol compared to NPs entering the cell by active endocytosis. Specifically, they exhibit free random Brownian motions within the cytosol and do not accumulate in lysosomes. Results suggest that intracellular accumulation of metallic nanoparticles into endo-lysosomal compartments is the leading cause of nanotoxicity, due to consequent nanoparticle degradation and in situ release of metal ions.The toxicity of metallic nanoparticles (MNPs) has been fully ascertained, but the mechanisms underlying their cytotoxicity remain still largely unclear. Here we demonstrate that the cytotoxicity of MNPs is strictly reliant on the pathway of cellular internalization. In particular, if otherwise toxic gold, silver, and iron oxide NPs are forced through the cell membrane bypassing any form of active mechanism (e.g., endocytosis), no significant cytotoxic effect is registered. Pneumatically driven NPs across the cell membrane show a different distribution within the cytosol compared to NPs entering the cell by active endocytosis. Specifically, they exhibit free random Brownian motions within the cytosol and do not accumulate in lysosomes. Results suggest that intracellular accumulation of metallic nanoparticles into endo-lysosomal compartments is the leading cause of nanotoxicity, due to consequent nanoparticle degradation and in situ release of metal ions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02008a
Evolutionary cell biology: functional insight from "endless forms most beautiful".
Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B
2015-12-15
In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. © 2015 Richardson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Mechanistic insights of the Min oscillator via cell-free reconstitution and imaging
NASA Astrophysics Data System (ADS)
Mizuuchi, Kiyoshi; Vecchiarelli, Anthony G.
2018-05-01
The MinD and MinE proteins of Escherichia coli self-organize into a standing-wave oscillator on the membrane to help align division at mid-cell. When unleashed from cellular confines, MinD and MinE form a spectrum of patterns on artificial bilayers—static amoebas, traveling waves, traveling mushrooms, and bursts with standing-wave dynamics. We recently focused our cell-free studies on bursts because their dynamics recapitulate many features of Min oscillation observed in vivo. The data unveiled a patterning mechanism largely governed by MinE regulation of MinD interaction with membrane. We proposed that the MinD to MinE ratio on the membrane acts as a toggle switch between MinE-stimulated recruitment and release of MinD from the membrane. In this review, we summarize cell-free data on the Min system and expand upon a molecular mechanism that provides a biochemical explanation as to how these two ‘simple’ proteins can form the remarkable spectrum of patterns.
ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity
Badoual, Mathilde; Asmussen, Hannelore; Patel, Heather; Whitmore, Leanna; Horwitz, Alan Rick
2015-01-01
RhoGTPases organize the actin cytoskeleton to generate diverse polarities, from front–back polarity in migrating cells to dendritic spine morphology in neurons. For example, RhoA through its effector kinase, RhoA kinase (ROCK), activates myosin II to form actomyosin filament bundles and large adhesions that locally inhibit and thereby polarize Rac1-driven actin polymerization to the protrusions of migratory fibroblasts and the head of dendritic spines. We have found that the two ROCK isoforms, ROCK1 and ROCK2, differentially regulate distinct molecular pathways downstream of RhoA, and their coordinated activities drive polarity in both cell migration and synapse formation. In particular, ROCK1 forms the stable actomyosin filament bundles that initiate front–back and dendritic spine polarity. In contrast, ROCK2 regulates contractile force and Rac1 activity at the leading edge of migratory cells and the spine head of neurons; it also specifically regulates cofilin-mediated actin remodeling that underlies the maturation of adhesions and the postsynaptic density of dendritic spines. PMID:26169356
Yoshioka, Tomokazu; Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa
2013-10-01
The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells. Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow-derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O'Driscoll score). The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O'Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated.
Numerical simulation of multi-layered textile composite reinforcement forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, P.; Hamila, N.; Boisse, P.
2011-05-04
One important perspective in aeronautics is to produce large, thick or/and complex structural composite parts. The forming stage presents an important role during the whole manufacturing process, especially for LCM processes (Liquid Composites Moulding) or CFRTP (Continuous Fibre Reinforcements and Thermoplastic resin). Numerical simulations corresponding to multi-layered composite forming allow the prediction for a successful process to produce the thick parts, and importantly, the positions of the fibres after forming to be known. This paper details a set of simulation examples carried out by using a semi-discrete shell finite element made up of unit woven cells. The internal virtual workmore » is applied on all woven cells of the element taking into account tensions, in-plane shear and bending effects. As one key problem, the contact behaviours of tool/ply and ply/ply are described in the numerical model. The simulation results not only improve our understanding of the multi-layered composite forming process but also point out the importance of the fibre orientation and inter-ply friction during formability.« less
Pujol, Rémy; Pickett, Sarah B; Nguyen, Tot Bui; Stone, Jennifer S
2014-10-01
Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates. © 2014 Wiley Periodicals, Inc.
The structural bases of long-term anabiosis in non-spore-forming bacteria
NASA Astrophysics Data System (ADS)
Suzina, N. E.; Mulyukin, A. L.; Dmitriev, V. V.; Nikolaev, Yu. A.; Plakunov, V. K.; El-Registan, G. I.; Duda, V. I.
Peculiarities of the structural and functional organization related to extended and long-term anabiosis were revealed for non-spore-forming bacteria both in stored laboratory cultures and natural substrates: (1) 1-3-Myr-old Eastern Siberian permafrost, (2) tundra soils, and (3) oil slurry. Different advanced or specially designed methods were used such as (a) high-resolution electron microscopy; (b) simulation of in situ conditions in laboratory by varying of growth composition media and cultivation conditions; (c) low-temperature fractionation to isolate and concentrate microbial cells from natural substrates; (d) specimen selection and preparation; (e) comparative ultrastructural and morphometric analysis of microbial cells in model cultures and natural substrates (in situ). Under laboratory conditions, the intense formation of anabiotic (resting) cells by representatives of various taxa of eubacteria and halophilic archaea were observed in 2-9-month-old cultures grown in carbon-, nitrogen-, or phosphorus-deficient media, in starved cell suspensions in the presence of sodium silicate at environmentally occurring concentrations, or on soil agar. Among resting cells were revealed cyst-like forms possessing the complicated structure. The most common peculiarities of cyst-like resting cells were thick and distinguishable capsule; thickened and multilamellar cell wall with 1 to 3 de novo synthesized murein layers; large intramembrane particles on PF- and EF-fractures; finely granulated or coarse textured cytoplasm; condensed nucleoid. The data of morphological and ultrastructural analyses of cyst-like cells, as well as their experimentally proved resistance to prolonged desiccation, heat shock, etc. and the ability to germinate under the effect of lysozyme, gives an evidence for constitutive dormancy in the studied non-spore-forming bacteria at least. Noteworthy, it was found that the majority of microorganisms in permafrost, tundra soils, and oil slurry was presented by cyst-like cells, very similar to those in laboratory cultures and encrusted with organomineral particles. Anabiotic (resting) cyst-like cells are responsible for survival of non-spore-formers in extreme Earth habitats and may be regarded as possible analogs of extraterrestrial forms of microbial life.
T-dependent activation of resting B cells mediated by concanavalin A.
Ratcliffe, M J; Julius, M H
1984-03-01
In cultures containing long-term cultured lines of antigen-specific helper T (Th) cells, normal unprimed B cells and concanavalin A (Con A), induction of B cells to immunoglobulin secretion and DNA synthesis was observed. The plaque-forming cell (PFC) response was large (frequently greater than 75 000 PFC/10(6) input B cells) demonstrating the polyspecific nature of the response. Con A-mediated maturation and induction to DNA synthesis of responding B cells was completely Th cell dependent and inhibited with methyl-alpha-D-mannoside. Both resting and blasted B cells, separated by Percoll density centrifugation, were induced to DNA synthesis and immunoglobulin secretion. Responses were completely unrestricted by the B cell major histocompatibility complex, even at the level of the resting B cell. The polyclonal nature of the response taken together with the Con A-mediated bypassing of T cell specificity and restricting haplotype indicates that this response is analogous to lectin-mediated cytotoxicity.
Rouabhia, Mahmoud; Park, Hyun Jin; Semlali, Abdelhabib; Zakrzewski, Andrew; Chmielewski, Witold; Chakir, Jamila
2017-06-01
Electronic cigarettes represent an increasingly significant proportion of today's consumable tobacco products. E-cigarettes contain several chemicals which may promote oral diseases. The aim of this study was to investigate the effect of e-cigarette vapor on human gingival epithelial cells. Results show that e-cigarette vapor altered the morphology of cells from small cuboidal form to large undefined shapes. Both single and multiple exposures to e-cigarette vapor led to a bulky morphology with large faint nuclei and an enlarged cytoplasm. E-cigarette vapor also increased L-lactate dehydrogenase (LDH) activity in the targeted cells. This activity was greater with repeated exposures. Furthermore, e-cigarette vapor increased apoptotic/necrotic epithelial cell percentages compared to that observed in the control. Epithelial cell apoptosis was confirmed by TUNEL assay showing that exposure to e-cigarette vapor increased apoptotic cell numbers, particularly after two and three exposures. This negative effect involved the caspase-3 pathway, the activity of which was greater with repeated exposure and which decreased following the use of caspase-3 inhibitor. The adverse effects of e-cigarette vapor on gingival epithelial cells may lead to dysregulated gingival cell function and result in oral disease. J. Cell. Physiol. 232: 1539-1547, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chen, Lie; Bi, Danlei; Tian, Lijun; McClafferty, Heather; Steeb, Franziska; Ruth, Peter; Knaus, Hans Guenther; Shipston, Michael J.
2013-01-01
Regulatory β-subunits of large conductance calcium- and voltage-activated potassium (BK) channels play an important role in generating functional diversity and control of cell surface expression of the pore forming α-subunits. However, in contrast to α-subunits, the role of reversible post-translational modification of intracellular residues on β-subunit function is largely unknown. Here we demonstrate that the human β4-subunit is S-acylated (palmitoylated) on a juxtamembrane cysteine residue (Cys-193) in the intracellular C terminus of the regulatory β-subunit. β4-Subunit palmitoylation is important for cell surface expression and endoplasmic reticulum (ER) exit of the β4-subunit alone. Importantly, palmitoylated β4-subunits promote the ER exit and surface expression of the pore-forming α-subunit, whereas β4-subunits that cannot be palmitoylated do not increase ER exit or surface expression of α-subunits. Strikingly, however, this palmitoylation- and β4-dependent enhancement of α-subunit surface expression was only observed in α-subunits that contain a putative trafficking motif (… REVEDEC) at the very C terminus of the α-subunit. Engineering this trafficking motif to other C-terminal α-subunit splice variants results in α-subunits with reduced surface expression that can be rescued by palmitoylated, but not depalmitoylated, β4-subunits. Our data reveal a novel mechanism by which palmitoylated β4-subunit controls surface expression of BK channels through masking of a trafficking motif in the C terminus of the α-subunit. As palmitoylation is dynamic, this mechanism would allow precise control of specific splice variants to the cell surface. Our data provide new insights into how complex interplay between the repertoire of post-transcriptional and post-translational mechanisms controls cell surface expression of BK channels. PMID:23504458
Large scale spontaneous synchronization of cell cycles in amoebae
NASA Astrophysics Data System (ADS)
Segota, Igor; Boulet, Laurent; Franck, Carl
2014-03-01
Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. We show that substrate-growtn cell populations spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state and provide opportunities for synchronization theories beyond classic Kuramoto models.
Spontaneous emergence of large-scale cell cycle synchronization in amoeba colonies
NASA Astrophysics Data System (ADS)
Segota, Igor; Boulet, Laurent; Franck, David; Franck, Carl
2014-06-01
Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. Here we show that cell populations grown on a substrate spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state.
Makarova, Alena V.; Burgers, Peter M.
2015-01-01
This review focuses on eukaryotic DNA polymerase ζ (Pol ζ), the enzyme responsible for the bulk of mutagenesis in eukaryotic cells in response to DNA damage. Pol ζ is also responsible for a large portion of mutagenesis during normal cell growth, in response to spontaneous damage or to certain DNA structures and other blocks that stall DNA replication forks. Novel insights in mutagenesis have been derived from recent advances in the elucidation of the subunit structure of Pol ζ. The lagging strand DNA polymerase δ shares the small Pol31 and Pol32 subunits with the Rev3-Rev7 core assembly giving a four subunit Pol ζ complex that is the active form in mutagenesis. Furthermore, Pol ζ forms essential interactions with the mutasome assembly factor Rev1 and with proliferating cell nuclear antigen (PCNA). These interactions are modulated by posttranslational modifications such as ubiquitination and phosphorylation that enhance translesion synthesis (TLS) and mutagenesis. PMID:25737057
Clustering of brain tumor cells: a first step for understanding tumor recurrence
NASA Astrophysics Data System (ADS)
Khain, Evgeniy; Nowicki, M. O.; Chiocca, E. A.; Lawler, S. E.; Schneider-Mizell, C. M.; Sander, L. M.
2012-02-01
Glioblastoma tumors are highly invasive; therefore the overall prognosis of patients remains poor, despite major improvements in treatment techniques. Cancer cells detach from the inner tumor core and actively migrate away [1]; eventually these invasive cells might form clusters, which can develop to recurrent tumors. In vitro experiments in collagen gel [1] followed the clustering dynamics of different glioma cell lines. Based on the experimental data, we formulated a stochastic model for cell dynamics, which identified two mechanisms of clustering. First, there is a critical value of the strength of adhesion; above the threshold, large clusters grow from a homogeneous suspension of cells; below it, the system remains homogeneous, similarly to the ordinary phase separation. Second, when cells form a cluster, there is evidence that their proliferation rate increases. We confirmed the theoretical predictions in a separate cell migration experiment on a substrate and found that both mechanisms are crucial for cluster formation and growth [2]. In addition to their medical importance, these phenomena present exciting examples of pattern formation and collective cell behavior in intrinsically non-equilibrium systems [3]. [4pt] [1] A. M. Stein et al, Biophys. J., 92, 356 (2007). [0pt] [2] E. Khain et al, EPL 88, 28006 (2009). [0pt] [3] E. Khain et al, Phys. Rev. E. 83, 031920 (2011).
Gómez, Fernando; Richlen, Mindy L; Anderson, Donald M
2017-03-01
Photosynthetic species of the dinoflagellate genus Cochlodinium such as C. polykrikoides, one of the most harmful bloom-forming dinoflagellates, have been extensively investigated. Little is known about the heterotrophic forms of Cochlodinium, such as its type species, Cochlodinium strangulatum. This is an uncommon, large (∼200μm long), solitary, and phagotrophic species, with numerous refractile bodies, a central nucleus enclosed in a distinct perinuclear capsule, and a cell surface with fine longitudinal striae and a circular apical groove. The morphology of C. polykrikoides and allied species is different from the generic type. It is a bloom-forming species with single, two or four-celled chains, small cell size (25-40μm long) with elongated chloroplasts arranged longitudinally and in parallel, anterior nucleus, eye-spot in the anterior dorsal side, and a cell surface smooth with U-shaped apical groove. Phylogenetic analysis based on LSU rDNA sequences revealed that C. strangulatum and C. polykrikoides/C. fulvescens formed two distally related, independent lineages. Based on morphological and phylogenetic analyses, the diagnosis of Cochlodinium is emended and C. miniatum is proposed as synonym of C. strangulatum. The new genus Margalefidinium gen. nov., and new combinations for C. catenatum, C. citron, C. flavum, C. fulvescens and C. polykrikoides are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.
Martin, Stephen W.; Douglas, Lois M.; Konopka, James B.
2005-01-01
The regulation of morphogenesis in the human fungal pathogen Candida albicans is under investigation to better understand how the switch between budding and hyphal growth is linked to virulence. Therefore, in this study we examined the ability of C. albicans to undergo a distinct type of morphogenesis to form large thick-walled chlamydospores whose role in infection is unclear, but they act as a resting form in other species. During chlamydospore morphogenesis, cells switch to filamentous growth and then develop elongated suspensor cells that give rise to chlamydospores. These filamentous cells were distinct from true hyphae in that they were wider and were not inhibited by the quorum-sensing factor farnesol. Instead, farnesol increased chlamydospore production, indicating that quorum sensing can also have a positive role. Nuclear division did not occur across the necks of chlamydospores, as it does in budding. Interestingly, nuclei divided within the suspensor cells, and then one daughter nucleus subsequently migrated into the chlamydospore. Septins were not detected near mitotic nuclei but were localized at chlamydospore necks. At later stages, septins localized throughout the chlamydospore plasma membrane and appeared to form long filamentous structures. Deletion of the CDC10 or CDC11 septins caused greater curvature of cells growing in a filamentous manner and morphological defects in suspensor cells and chlamydospores. These studies identify aspects of chlamydospore morphogenesis that are distinct from bud and hyphal morphogenesis. PMID:16002645
Wiegand, Cornelia; Springer, Steffen; Abel, Martin; Wesarg, Falko; Ruth, Peter; Hipler, Uta-Christina
2013-01-01
Negative-pressure wound therapy (NPWT) is an advantageous treatment option in wound management to promote healing and reduce the risk of complications. NPWT is mainly carried out using open-cell polyurethane (PU) foams that stimulate granulation tissue formation. However, growth of wound bed tissue into foam material, leading to disruption of newly formed tissue upon dressing removal, has been observed. Consequently, it would be of clinical interest to preserve the positive effects of open-cell PU foams while avoiding cellular ingrowth. The study presented analyzed effects of NPWT using large-pored PU foam, fine-pored PU foam, and the combination of large-pored foam with drainage film on human dermal fibroblasts grown in a collagen matrix. The results showed no difference between the dressings in stimulating cellular migration during NPWT. However, when NPWT was applied using a large-pored PU foam, the fibroblasts continued to migrate into the dressing. This led to significant breaches in the cell layers upon removal of the samples after vacuum treatment. In contrast, cell migration stopped at the collagen matrix edge when fine-pored PU foam was used, as well as with the combination of PU foam and drainage film. In conclusion, placing a drainage film between collagen matrix and the large-pored PU foam dressing reduced the ingrowth of cells into the foam significantly. Moreover, positive effects on cellular migration were not affected, and the effect of the foam on tissue surface roughness in vitro was also reduced. © 2013 by the Wound Healing Society.
Singh, Prafull Kumar; Roukounakis, Aristomenis; Frank, Daniel O; Kirschnek, Susanne; Das, Kushal Kumar; Neumann, Simon; Madl, Josef; Römer, Winfried; Zorzin, Carina; Borner, Christoph; Haimovici, Aladin; Garcia-Saez, Ana; Weber, Arnim; Häcker, Georg
2017-09-01
The Bcl-2 family protein Bim triggers mitochondrial apoptosis. Bim is expressed in nonapoptotic cells at the mitochondrial outer membrane, where it is activated by largely unknown mechanisms. We found that Bim is regulated by formation of large protein complexes containing dynein light chain 1 (DLC1). Bim rapidly inserted into cardiolipin-containing membranes in vitro and recruited DLC1 to the membrane. Bim binding to DLC1 induced the formation of large Bim complexes on lipid vesicles, on isolated mitochondria, and in intact cells. Native gel electrophoresis and gel filtration showed Bim-containing mitochondrial complexes of several hundred kilodaltons in all cells tested. Bim unable to form complexes was consistently more active than complexed Bim, which correlated with its substantially reduced binding to anti-apoptotic Bcl-2 proteins. At endogenous levels, Bim surprisingly bound only anti-apoptotic Mcl-1 but not Bcl-2 or Bcl-X L , recruiting only Mcl-1 into large complexes. Targeting of DLC1 by RNAi in human cell lines induced disassembly of Bim-Mcl-1 complexes and the proteasomal degradation of Mcl-1 and sensitized the cells to the Bcl-2/Bcl-X L inhibitor ABT-737. Regulation of apoptosis at mitochondria thus extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members but involves more complex structures of proteins at the mitochondrial outer membrane, and targeting complexes may be a novel therapeutic strategy. © 2017 Singh et al.; Published by Cold Spring Harbor Laboratory Press.
Gao, Ge; Johnson, Sarah H; Vasmatzis, George; Pauley, Christina E; Tombers, Nicole M; Kasperbauer, Jan L; Smith, David I
2017-01-01
Common fragile sites (CFS) are chromosome regions that are prone to form gaps or breaks in response to DNA replication stress. They are often found as hotspots for sister chromatid exchanges, deletions, and amplifications in different cancers. Many of the CFS regions are found to span genes whose genomic sequence is greater than 1 Mb, some of which have been demonstrated to function as important tumor suppressors. CFS regions are also hotspots for human papillomavirus (HPV) integrations in cervical cancer. We used mate-pair sequencing to examine HPV integration events and chromosomal structural variations in 34 oropharyngeal squamous cell carcinoma (OPSCC). We used endpoint PCR and Sanger sequencing to validate each HPV integration event and found HPV integrations preferentially occurred within CFS regions similar to what is observed in cervical cancer. We also found that many of the chromosomal alterations detected also occurred at or near the cytogenetic location of CFSs. Several large genes were also found to be recurrent targets of rearrangements, independent of HPV integrations, including CSMD1 (2.1Mb), LRP1B (1.9Mb), and LARGE1 (0.7Mb). Sanger sequencing revealed that the nucleotide sequences near to identified junction sites contained repetitive and AT-rich sequences that were shown to have the potential to form stem-loop DNA secondary structures that might stall DNA replication fork progression during replication stress. This could then cause increased instability in these regions which could lead to cancer development in human cells. Our findings suggest that CFSs and some specific large genes appear to play important roles in OPSCC. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Tornow, J; Polvino-Bodnar, M; Santangelo, G; Cole, C N
1985-01-01
The carboxyl-terminal portion of simian virus 40 large T antigen is essential for productive infection of CV-1 and CV-1p green monkey kidney cells. Mutant dlA2459, lacking 14 base pairs at 0.193 map units, was positive for viral DNA replication, but unable to form plaques in CV-1p cells (J. Tornow and C.N. Cole, J. Virol. 47:487-494, 1983). In this report, the defect of dlA2459 is further defined. Simian virus 40 late mRNAs were transcribed, polyadenylated, spliced, and transported in dlA2459-infected cells, but the level of capsid proteins produced in infected CV-1 green monkey kidney cells was extremely low. dlA2459 large T antigen lacks those residues known to be required for adenovirus helper function, and the block to productive infection by dlA2459 occurs at the same stage of infection as the block to productive adenovirus infection of CV-1 cells. These results suggest that the adenovirus helper function is required for productive infection by simian virus 40. Mutant dlA2459 was able to grow on the Vero and BSC-1 lines of African green monkey kidney cells. Additional mutants affecting the carboxyl-terminal portion of large T were prepared. Mutant inv2408 contains an inversion of the DNA between the BamHI and BclI sites (0.144 to 0.189 map units). This inversion causes transposition of the carboxyl-terminal 26 amino acids of large T antigen and the carboxyl-terminal 18 amino acids of VP1. This mutant was viable, even though the essential information absent from dlA2459 large T antigen has been transferred to the carboxyl terminus of VP1 of inv2408. The VP1 polypeptide carrying this carboxyl-terminal portion of large T could overcome the defect of dlA2459. This indicates that the carboxyl terminus of large T antigen is a separate and separable functional domain. Images PMID:2982029
Moore, J G; Bocklage, T
1998-07-01
Primary undifferentiated carcinoma of the salivary glands is a rare, high-grade neoplasm which accounts for a very small number (1-5.5%) of malignant salivary gland tumors. The large-cell variant (LCU) is less well-characterized than the small-cell form. We report on the fine-needle aspiration (FNA) biopsy findings of 2 cases of LCU, one arising in the parotid gland, and the other in a buccal mucosa accessory salivary gland. The 2 cases were similar in composition: isolated and loosely cohesive large cells with abundant cytoplasm, and variability pleomorphic nuclei with prominent nucleoli. One case also featured multinucleated tumor giant cells and macrophage polykaryons; the latter has not previously been described in FNA biopsies of LCU. There was no evidence of squamous, myoepithelial, or widespread mucinous differentiation by morphological, cytochemical, or immunohistochemical analyses (focal rare mucin production identified on special stains in one case). The differential diagnosis is lengthy and consists of other high-grade primary salivary gland malignancies as well as metastatic lesions, including melanoma. The pattern of immunohistochemical reactivity (positive keratin, negative S-100, and HMB-45 antigens), and lack of conspicuous mucin production of significant lymphoidinfiltrate, were useful in establishing the correct diagnosis.
Transcriptional regulation of metabolism in disease: From transcription factors to epigenetics
2018-01-01
Every cell in an individual has largely the same genomic sequence and yet cells in different tissues can present widely different phenotypes. This variation arises because each cell expresses a specific subset of genomic instructions. Control over which instructions, or genes, are expressed is largely controlled by transcriptional regulatory pathways. Each cell must assimilate a huge amount of environmental input, and thus it is of no surprise that transcription is regulated by many intertwining mechanisms. This large regulatory landscape means there are ample possibilities for problems to arise, which in a medical context means the development of disease states. Metabolism within the cell, and more broadly, affects and is affected by transcriptional regulation. Metabolism can therefore contribute to improper transcriptional programming, or pathogenic metabolism can be the result of transcriptional dysregulation. Here, we discuss the established and emerging mechanisms for controling transcription and how they affect metabolism in the context of pathogenesis. Cis- and trans-regulatory elements, microRNA and epigenetic mechanisms such as DNA and histone methylation, all have input into what genes are transcribed. Each has also been implicated in diseases such as metabolic syndrome, various forms of diabetes, and cancer. In this review, we discuss the current understanding of these areas and highlight some natural models that may inspire future therapeutics. PMID:29922517
Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick
2016-04-08
The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems.
McCormack, Ryan M; de Armas, Lesley R; Shiratsuchi, Motoaki; Fiorentino, Desiree G; Olsson, Melissa L; Lichtenheld, Mathias G; Morales, Alejo; Lyapichev, Kirill; Gonzalez, Louis E; Strbo, Natasa; Sukumar, Neelima; Stojadinovic, Olivera; Plano, Gregory V; Munson, George P; Tomic-Canic, Marjana; Kirsner, Robert S; Russell, David G; Podack, Eckhard R
2015-01-01
Perforin-2 (MPEG1) is a pore-forming, antibacterial protein with broad-spectrum activity. Perforin-2 is expressed constitutively in phagocytes and inducibly in parenchymal, tissue-forming cells. In vitro, Perforin-2 prevents the intracellular replication and proliferation of bacterial pathogens in these cells. Perforin-2 knockout mice are unable to control the systemic dissemination of methicillin-resistant Staphylococcus aureus (MRSA) or Salmonella typhimurium and perish shortly after epicutaneous or orogastric infection respectively. In contrast, Perforin-2-sufficient littermates clear the infection. Perforin-2 is a transmembrane protein of cytosolic vesicles -derived from multiple organelles- that translocate to and fuse with bacterium containing vesicles. Subsequently, Perforin-2 polymerizes and forms large clusters of 100 Å pores in the bacterial surface with Perforin-2 cleavage products present in bacteria. Perforin-2 is also required for the bactericidal activity of reactive oxygen and nitrogen species and hydrolytic enzymes. Perforin-2 constitutes a novel and apparently essential bactericidal effector molecule of the innate immune system. DOI: http://dx.doi.org/10.7554/eLife.06508.001 PMID:26402460
Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick
2016-01-01
The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems. DOI: http://dx.doi.org/10.7554/eLife.14022.001 PMID:27058171
Laser fabrication of porous silicon-based platforms for cell culturing.
Peláez, Ramón-J; Afonso, Carmen-N; Vega, Fidel; Recio-Sánchez, Gonzalo; Torres-Costa, Vicente; Manso-Silván, Miguel; García-Ruiz, Josefa-P; Martín-Palma, Raúl-J
2013-11-01
In this study, we explore the selective culturing of human mesenchymal stem cells (hMSCs) on Si-based diffractive platforms. We demonstrate a single-step and flexible method for producing platforms on nanostructured porous silicon (nanoPS) based on the use of single pulses of an excimer laser to expose phase masks. The resulting patterns are typically 1D patterns formed by fringes or 2D patterns formed by circles. They are formed by alternate regions of almost unmodified nanoPS and regions where the nanoPS surface has melted and transformed into Si nanoparticles. The patterns are produced in relatively large areas (a few square millimeters) and can have a wide range of periodicities and aspect ratios. Direct binding, that is, with no previous functionalization of the pattern, alignment, and active polarization of hMSCs are explored. The results show the preferential direct binding of the hMSCs along the transformed regions whenever their width compares with the dimensions of the cells and they escape from patterns for smaller widths suggesting that the selectivity can be tailored through the pattern period. Copyright © 2013 Wiley Periodicals, Inc.
Gaussian fluctuation of the diffusion exponent of virus capsid in a living cell nucleus
NASA Astrophysics Data System (ADS)
Itto, Yuichi
2018-05-01
In their work [4], Bosse et al. experimentally showed that virus capsid exhibits not only normal diffusion but also anomalous diffusion in nucleus of a living cell. There, it was found that the distribution of fluctuations of the diffusion exponent characterizing them takes the Gaussian form, which is, quite remarkably, the same form for two different types of the virus. This suggests high robustness of such fluctuations. Here, the statistical property of local fluctuations of the diffusion exponent of the virus capsid in the nucleus is studied. A maximum-entropy-principle approach (originally proposed for a different virus in a different cell) is applied for obtaining the fluctuation distribution of the exponent. Largeness of the number of blocks identified with local areas of interchromatin corrals is also examined based on the experimental data. It is shown that the Gaussian distribution of the local fluctuations can be derived, in accordance with the above form. In addition, it is quantified how the fluctuation distribution on a long time scale is different from the Gaussian distribution.
Gibier, Jean-Baptiste; Bouchindhomme, Brigitte; Dubois, Romain; Hivert, Benedicte; Grardel, Nathalie; Copin, Marie-Christine
2017-03-01
Age-related EBV-associated lymphoproliferative disorders form a new clinicopathological group. Until recently, this group was associated with diffuse large B-cell lymphoma (DLBCL), characterised by an aggressive clinical presentation and a poor prognosis. Recent findings in Western Caucasian patients, however, suggest that this entity covers a wide spectrum of diseases, ranging from reactive follicular hyperplasia (HR) to DLBCL. We report the case of an 85-year-old Caucasian man showing lymphadenopathy and numerous hypodense lesions of the liver. Examination of a lymph node revealed follicular hyperplasia with EBV expression confined to germinal centres. The patient was treated with Rituximab and subsequently, the lesions of the liver were explored. They showed extensive necrosis and a polymorphic large B-cell population with strong EBV expression. This is the first report to describe age-related EBV-associated follicular hyperplasia at one site coexisting with DLBCL at another. This case warrants undertaking further investigations each time a diagnosis of age-related EBV-HR is associated with extranodal lesions. Copyright © 2016 Elsevier GmbH. All rights reserved.
Shoshani, Ofer; Massalha, Hassan; Shani, Nir; Kagan, Sivan; Ravid, Orly; Madar, Shalom; Trakhtenbrot, Luba; Leshkowitz, Dena; Rechavi, Gideon; Zipori, Dov
2012-12-15
Mesenchymal stromal cells (MSC) are used extensively in clinical trials; however, the possibility that MSCs have a potential for malignant transformation was raised. We examined the genomic stability versus the tumor-forming capacity of multiple mouse MSCs. Murine MSCs have been shown to be less stable and more prone to malignant transformation than their human counterparts. A large series of independently isolated MSC populations exhibited low tumorigenic potential under syngeneic conditions, which increased in immunocompromised animals. Unexpectedly, higher ploidy correlated with reduced tumor-forming capacity. Furthermore, in both cultured MSCs and primary hepatocytes, polyploidization was associated with a dramatic decrease in the expression of the long noncoding RNA H19. Direct knockdown of H19 expression in diploid cells resulted in acquisition of polyploid cell traits. Moreover, artificial tetraploidization of diploid cancer cells led to a reduction of H19 levels, as well as to an attenuation of the tumorigenic potential. Polyploidy might therefore serve as a protective mechanism aimed at reducing malignant transformation through the involvement of the H19 regulatory long noncoding RNA.
Ieronimakis, Nicholas; Balasundaram, Gayathri; Reyes, Morayma
2008-01-01
Background Although diseases associated with microvascular endothelial dysfunction are among the most prevalent illnesses to date, currently no method exists to isolate pure endothelial cells (EC) from skeletal muscle for in vivo or in vitro study. Methodology By utilizing multicolor fluorescent-activated cell sorting (FACS), we have isolated a distinct population of Sca-1+, CD31+, CD34dim and CD45− cells from skeletal muscles of C57BL6 mice. Characterization of this population revealed these cells are functional EC that can be expanded several times in culture without losing their phenotype or capabilities to uptake acetylated low-density lipoprotein (ac-LDL), produce nitric oxide (NO) and form vascular tubes. When transplanted subcutaneously or intramuscularly into the tibialis anterior muscle, EC formed microvessels and integrated with existing vasculature. Conclusion This method, which is highly reproducible, can be used to study the biology and role of EC in diseases such as peripheral vascular disease. In addition this method allows us to isolate large quantities of skeletal muscle derived EC with potential for therapeutic angiogenic applications. PMID:18335025
Pujol, Rémy; Pickett, Sarah B.; Nguyen, Tot Bui; Stone, Jennifer S.
2014-01-01
Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here, we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell’s base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells range in shape, size, and branching, with the longest processes extending 3–4 hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Further, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network amongst type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3–6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells, and they suggest type II hair cells may directly communicate with each other, which has not been described in vertebrates. PMID:24825750
A Transcriptome-based Perspective of Cell Cycle Regulation in Dinoflagellates.
Morse, David; Daoust, Philip; Benribague, Siham
2016-12-01
Dinoflagellates are a group of unicellular and generally marine protists, of interest to many because of their ability to form the large algal blooms commonly called "red tides". The large algal concentrations in these blooms require sustained cell replication, yet to date little is known about cell cycle regulation in these organisms. To address this issue, we have screened the transcriptomes of two dinoflagellates, Lingulodinium polyedrum and Symbiodinium sp., with budding yeast cell cycle pathway components. We find most yeast cell cycle regulators have homologs in these dinoflagellates, suggesting that the yeast model is appropriate for understanding regulation of the dinoflagellate cell cycle. The dinoflagellates are lacking several components essential in yeast, but a comparison with a broader phylogenetic range of protists reveals these components are usually also missing in other organisms. Lastly, phylogenetic analyses show that the dinoflagellates contain at least three cyclin-dependent kinase (CDK) homologs (belonging to the CDK1, CDK5 and CDK8 families), and that the dinoflagellate cyclins belong exclusively to the A/B type. This suggests that dinoflagellate CDKs likely play a limited role outside regulation of the cell cycle. Copyright © 2016 Elsevier GmbH. All rights reserved.
How a High-Gradient Magnetic Field Could Affect Cell Life
NASA Astrophysics Data System (ADS)
Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr
2016-11-01
The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate.
How a High-Gradient Magnetic Field Could Affect Cell Life
Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr
2016-01-01
The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate. PMID:27857227
Pazzaglia, Ugo E; Congiu, Terenzio; Marchese, Marcella; Dell'Orbo, Carlo
2010-06-01
Cortex fractured surface and graded osmic maceration techniques were used to study the secretory activity of osteoblasts, the transformation of osteoblast to osteocytes, and the structural organization of the matrix around the cells with scanning electron microscopy (SEM). A specialized membrane differentiation at the base of the cell was observed with finger-like, flattened processes which formed a diffuse meshwork. These findings suggested that this membrane differentiation below the cells had not only functioned in transporting collagen through the membrane but also in orienting the fibrils once assembled. Thin ramifications arose from the large and flat membrane foldings oriented perpendicular to the plane of the osteoblasts. This meshwork of fine filaments could not be visualized with SEM because they were obscured within the matrix substance. Their 3-D structure, however, should be similar to the canalicular system. The meshwork of large, flattened processes was no more evident in the cells which had completed their transformation into osteocytes.
2013-01-01
Background Molecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabilities together in one environment, and NaviCell is one of them. Results NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. It is characterized by a combination of three essential features: (1) efficient map browsing based on Google Maps; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of interest in the context of signaling pathways and crosstalk between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell greatly facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive and user-friendly fashion due to an imbedded blogging system. Conclusions NaviCell provides user-friendly exploration of large-scale maps of molecular interactions, thanks to Google Maps and WordPress interfaces, with which many users are already familiar. Semantic zooming which is used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization readable. In addition, NaviCell provides a framework for community-based curation of maps. PMID:24099179
Kuperstein, Inna; Cohen, David P A; Pook, Stuart; Viara, Eric; Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei
2013-10-07
Molecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabilities together in one environment, and NaviCell is one of them. NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. It is characterized by a combination of three essential features: (1) efficient map browsing based on Google Maps; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of interest in the context of signaling pathways and crosstalk between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell greatly facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive and user-friendly fashion due to an imbedded blogging system. NaviCell provides user-friendly exploration of large-scale maps of molecular interactions, thanks to Google Maps and WordPress interfaces, with which many users are already familiar. Semantic zooming which is used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization readable. In addition, NaviCell provides a framework for community-based curation of maps.
Wang, Xiaodan; Yamaguchi, Nobuyasu; Someya, Takashi; Nasu, Masao
2007-10-01
The micro-colony method was used to enumerate viable bacteria in composts. Cells were vacuum-filtered onto polycarbonate filters and incubated for 18 h on LB medium at 37 degrees C. Bacteria on the filters were stained with SYBR Green II, and enumerated using a newly developed micro-colony auto counting system which can automatically count micro-colonies on half the area of the filter within 90 s. A large number of bacteria in samples retained physiological activity and formed micro-colonies within 18 h, whereas most could not form large colonies on conventional media within 1 week. The results showed that this convenient technique can enumerate viable bacteria in compost rapidly for its efficient quality control.
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)
2000-01-01
A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that, when the burning rate is realistically allowed to depend on temperature as well as pressure, sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes like pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wave numbers are sufficiently small. This analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wave number perturbations, the intrinsic pulsating instability for small wave numbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.
A simple theory of back-surface-field /BSF/ solar cells
NASA Technical Reports Server (NTRS)
Von Roos, O.
1979-01-01
An earlier calculation of the I-V characteristics of solar cells contains a mistake. The current generated by light within the depletion layer is too large by a factor of 2. When this mistake is corrected, not only are all previous conclusions unchanged, but the agreement with experiment becomes better. Results are presented in graphical form of new computations which not only take account of the factor of 2, but also include more recent data on material parameters.
2005-05-01
an impaired activity (see report of 2003). We obtained an EGFP fusion from Dr. Karen Knudsen (Ohio University, Cincinatti) in which a Gly-Ala linker ... Smad3 after its acetylation. The mutation of this lysine to glutamine or threonine (mimics acetylation), when expressed in DU145 cells promoted cell...forms. A Gly-Ala linker between the two proteins is necessary, since a direct fusion protein was largely impaired in its activity (not shown). 6. The
Muroi, K; Suda, T; Nakamura, M; Okada, S; Nojiri, H; Amemiya, Y; Miura, Y; Hakomori, S
1994-01-01
The epitopes Tn and sialosyl-Tn are expressed on erythrocytes of individuals with a very rare blood group, who often suffer from "Tn syndrome." We surveyed expression of Tn and sialosyl-Tn in normal blood cells, malignant transformed cells, and progenitor stem cells from bone marrow (BM). An anti-Tn antibody, IE3, and an anti-sialosyl-Tn antibody, TKH2, were used in this study. TKH2 reacted with erythroblasts, B cells, and a subset of CD4+ cells; but not with erythrocytes. Erythroblastic cell lines (K562, HEL, and UT7/EPO) and B-cell lines (Daudi, Raji, and B-cell lines transformed by Epstein-Barr virus) showed reactivity to TKH2. Similar results from the reactivity of TKH2 with transformed cells from leukemia patients and lymphoma patients were obtained; TKH2 reacted with blasts from erythroleukemia (M6; for 4 of 4 cases) and with lymphocytes from B-cell chronic lymphocytic leukemia (3 of 3), B-cell lymphoma (5 of 5), and CD4+ adult T-cell leukemia (4 of 4), but did not react with blasts from acute myeloid leukemia (M0 to M5; 0 of 22) or acute lymphoid leukemia (B-lymphoid leukemia, 0 of 11; T-lymphoid leukemia, 0 of 2; undifferentiated leukemia, 0 of 1). IE3 did not react with all of the tested cells. CD2-CD19-TKH2+ normal BM cells (BMC) contained blasts and various maturation stages of erythroblasts. The TKH2+ cells produced a large number of colony-forming unit-erythroid (CFU-E) colonies, whereas they produced a small number of burst-forming unit-erythroid colonies and CFU-granulocyte-macrophage colonies. CD34+ normal BMC did not express Tn and sialosyl-Tn. These findings suggest that sialosyl-Tn expresses in CFU-E to erythroblasts.
Co-occurrence of tannin and tannin-less vacuoles in sensitive plants.
Fleurat-Lessard, Pierrette; Béré, Emile; Lallemand, Magali; Dédaldéchamp, Fabienne; Roblin, Gabriel
2016-05-01
Vacuoles of different types frequently coexist in the same plant cell, but the duality of the tannin/tannin-less vacuoles observed in Mimosa pudica L. is rare. In this plant, which is characterized by highly motile leaves, the development and original features of the double vacuolar compartment were detailed in primary pulvini from the young to the mature leaf stage. In young pulvini, the differentiation of tannin vacuoles first occurred in the epidermis and progressively spread toward the inner cortex. In motor cells of nonmotile pulvini, tannin deposits first lined the membranes of small vacuole profiles and then formed opaque clusters that joined together to form a large tannin vacuole (TV), the proportion of which in the cell was approximately 45%. At this stage, transparent vacuole profiles were rare and small, but as the parenchyma cells enlarged, these profiles coalesced to form a transparent vacuole with a convexity toward the larger-sized tannin vacuole. When leaf motility began to occur, the two vacuole types reached the same relative proportion (approximately 30%). Finally, in mature cells displaying maximum motility, the large transparent colloidal vacuole (CV) showed a relative proportion increasing to approximately 50%. At this stage, the proportion of the tannin vacuole, occurring in the vicinity of the nucleus, decreased to approximately 10%. The presence of the condensed type of tannins (proanthocyanidins) was proven by detecting their fluorescence under UV light and by specific chemical staining. This dual vacuolar profile was also observed in nonmotile parts of M. pudica (e.g., the petiole and the stem). Additional observations of leaflet pulvini showing more or less rapid movements showed that this double vacuolar structure was present in certain plants (Mimosa spegazzinii and Desmodium gyrans), but absent in others (Albizzia julibrissin, Biophytum sensitivum, and Cassia fasciculata). Taken together, these observations strongly suggest that a direct correlation cannot be found between the presence of a tannin vacuole and the osmoregulated motility of pulvini.
Production of human monoclonal antibody in eggs of chimeric chickens.
Zhu, Lei; van de Lavoir, Marie-Cecile; Albanese, Jenny; Beenhouwer, David O; Cardarelli, Pina M; Cuison, Severino; Deng, David F; Deshpande, Shrikant; Diamond, Jennifer H; Green, Lynae; Halk, Edward L; Heyer, Babette S; Kay, Robert M; Kerchner, Allyn; Leighton, Philip A; Mather, Christine M; Morrison, Sherie L; Nikolov, Zivko L; Passmore, David B; Pradas-Monne, Alicia; Preston, Benjamin T; Rangan, Vangipuram S; Shi, Mingxia; Srinivasan, Mohan; White, Steven G; Winters-Digiacinto, Peggy; Wong, Susan; Zhou, Wen; Etches, Robert J
2005-09-01
The tubular gland of the chicken oviduct is an attractive system for protein expression as large quantities of proteins are deposited in the egg, the production of eggs is easily scalable and good manufacturing practices for therapeutics from eggs have been established. Here we examined the ability of upstream and downstream DNA sequences of ovalbumin, a protein produced exclusively in very high quantities in chicken egg white, to drive tissue-specific expression of human mAb in chicken eggs. To accommodate these large regulatory regions, we established and transfected lines of chicken embryonic stem (cES) cells and formed chimeras that express mAb from cES cell-derived tubular gland cells. Eggs from high-grade chimeras contained up to 3 mg of mAb that possesses enhanced antibody-dependent cellular cytotoxicity (ADCC), nonantigenic glycosylation, acceptable half-life, excellent antigen recognition and good rates of internalization.
The Genus Cladophora Kützing (Ulvophyceae) as a Globally Distributed Ecological Engineer.
Zulkifly, Shahrizim B; Graham, James M; Young, Erica B; Mayer, Robert J; Piotrowski, Michael J; Smith, Izak; Graham, Linda E
2013-02-01
The green algal genus Cladophora forms conspicuous nearshore populations in marine and freshwaters worldwide, commonly dominating peri-phyton communities. As the result of human activities, including the nutrient pollution of nearshore waters, Cladophora-dominated periphyton can form nuisance blooms. On the other hand, Cladophora has ecological functions that are beneficial, but less well appreciated. For example, Cladophora has previously been characterized as an ecological engineer because its complex structure fosters functional and taxonomic diversity of benthic microfauna. Here, we review classic and recent literature concerning taxonomy, cell biology, morphology, reproductive biology, and ecology of the genus Cladophora, to examine how this alga functions to modify habitats and influence littoral biogeochemistry. We review the evidence that Cladophora supports large, diverse populations of microalgal and bacterial epiphytes that influence the cycling of carbon and other key elements, and that the high production of cellulose and hydrocarbons by Cladophora-dominated periphyton has the potential for diverse technological applications, including wastewater remediation coupled to renewable biofuel production. We postulate that well-known aspects of Cladophora morphology, hydrodynamically stable and perennial holdfasts, distinctively branched architecture, unusually large cell and sporangial size and robust cell wall construction, are major factors contributing to the multiple roles of this organism as an ecological engineer. © 2013 Phycological Society of America.
Wilson, Thomas E; Arlt, Martin F; Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W
2015-02-01
Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. © 2015 Wilson et al.; Published by Cold Spring Harbor Laboratory Press.
Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W.
2015-01-01
Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. PMID:25373142
Yamashita, Tomoko; Miyamoto, Yuki; Bando, Yoshio; Ono, Takashi; Kobayashi, Sakurako; Doi, Ayano; Araki, Toshihiro; Kato, Yosuke; Shirakawa, Takayuki; Suzuki, Yutaka; Yamauchi, Junji; Yoshida, Shigetaka; Sato, Naoya
2017-01-01
Oligodendrocytes myelinate axons and form myelin sheaths in the central nervous system. The development of therapies for demyelinating diseases, including multiple sclerosis and leukodystrophies, is a challenge because the pathogenic mechanisms of disease remain poorly understood. Primate pluripotent stem cell-derived oligodendrocytes are expected to help elucidate the molecular pathogenesis of these diseases. Oligodendrocytes have been successfully differentiated from human pluripotent stem cells. However, it is challenging to prepare large amounts of oligodendrocytes over a short amount of time because of manipulation difficulties under conventional primate pluripotent stem cell culture methods. We developed a proprietary dissociated monolayer and feeder-free culture system to handle pluripotent stem cell cultures. Because the dissociated monolayer and feeder-free culture system improves the quality and growth of primate pluripotent stem cells, these cells could potentially be differentiated into any desired functional cells and consistently cultured in large-scale conditions. In the current study, oligodendrocyte progenitor cells and mature oligodendrocytes were generated within three months from monkey embryonic stem cells. The embryonic stem cell-derived oligodendrocytes exhibited in vitro myelinogenic potency with rat dorsal root ganglion neurons. Additionally, the transplanted oligodendrocyte progenitor cells differentiated into myelin basic protein-positive mature oligodendrocytes in the mouse corpus callosum. This preparative method was used for human induced pluripotent stem cells, which were also successfully differentiated into oligodendrocyte progenitor cells and mature oligodendrocytes that were capable of myelinating rat dorsal root ganglion neurons. Moreover, it was possible to freeze, thaw, and successfully re-culture the differentiating cells. These results showed that embryonic stem cells and human induced pluripotent stem cells maintained in a dissociated monolayer and feeder-free culture system have the potential to generate oligodendrocyte progenitor cells and mature oligodendrocytes in vitro and in vivo. This culture method could be applied to prepare large amounts of oligodendrocyte progenitor cells and mature oligodendrocytes in a relatively short amount of time.
Nonequilibrium stabilization of an RNA/protein droplet emulsion by nuclear actin
NASA Astrophysics Data System (ADS)
Brangwynne, Clifford
2013-03-01
Actin plays a structural role in the cytoplasm. However, actin takes on new functions and structures in the nucleus that are poorly understood. The nuclei of the large oocytes of the frog X. laevisspecifically accumulate actin to reach high concentrations; however, it remains unclear if this actin polymerizes into a network, and what, if any, structural role such an actin network might play. Here, we use microrheological and confocal imaging techniques to probe the local architecture and mechanics of the nucleus. Our data show that actin forms a weak network that spatially organizes the nucleus by kinetically stabilizing embedded liquid-like RNA/protein bodies which are important for cell growth. In actin-disrupted nuclei this RNA/protein droplet emulsion is destabilized leading to homotypic coalescence into single large droplets. Our data provide intriguing new insights into why large cell nuclei require an actin-based structural scaffold.
The Extracellular δ-Domain is Essential for the Formation of CD81 Tetraspanin Webs
Homsi, Yahya; Schloetel, Jan-Gero; Scheffer, Konstanze D.; Schmidt, Thomas H.; Destainville, Nicolas; Florin, Luise; Lang, Thorsten
2014-01-01
CD81 is a ubiquitously expressed member of the tetraspanin family. It forms large molecular platforms, so-called tetraspanin webs that play physiological roles in a variety of cellular functions and are involved in viral and parasite infections. We have investigated which part of the CD81 molecule is required for the formation of domains in the cell membranes of T-cells and hepatocytes. Surprisingly, we find that large CD81 platforms assemble via the short extracellular δ-domain, independent from a strong primary partner binding and from weak interactions mediated by palmitoylation. The δ-domain is also essential for the platforms to function during viral entry. We propose that, instead of stable binary interactions, CD81 interactions via the small δ-domain, possibly involving a dimerization step, play the key role in organizing CD81 into large tetraspanin webs and controlling its function. PMID:24988345
James, Aaron W.; Zara, Janette N.; Zhang, Xinli; Askarinam, Asal; Goyal, Raghav; Chiang, Michael; Yuan, Wei; Chang, Le; Corselli, Mirko; Shen, Jia; Pang, Shen; Stoker, David; Wu, Ben
2012-01-01
Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146+CD34−CD45−) and adventitial cells (CD146−CD34+CD45−), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis. PMID:23197855
Characterization of femtosecond-laser pulse induced cell membrane nanosurgical attachment.
Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y
2016-07-01
This article provides insight into the mechanism of femtosecond laser nanosurgical attachment of cells. We have demonstrated that during the attachment of two retinoblastoma cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength, the phospholipid molecules of both cells hemifuse and form one shared phospholipid bilayer, at the attachment location. In order to verify the hypothesis that hemifusion takes place, transmission electron microscope images of the cell membranes of retinoblastoma cells were taken. It is shown that at the attachment interface, the two cell membranes coalesce and form one single membrane shared by both cells. Thus, further evidence is provided to support the hypothesis that laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane, which resulted in cross-linking of the phospholipid molecules in each membrane. This process of hemifusion occurs throughout the entire penetration depth of the femtosecond laser pulse train. Thus, the attachment between the cells takes place across a large surface area, which affirms our findings of strong physical attachment between the cells. The femtosecond laser pulse hemifusion technique can potentially provide a platform for precise molecular manipulation of cellular membranes. Manipulation of the cellular membrane is an important procedure that could aid in studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.
Solé, Ricard V.; Valverde, Sergi
2013-01-01
The emergence of complex multicellular systems and their associated developmental programs is one of the major problems of evolutionary biology. The advantages of cooperation over individuality seem well known but it is not clear yet how such increase of complexity emerged from unicellular life forms. Current multicellular systems display a complex cell-cell communication machinery, often tied to large-scale controls of body size or tissue homeostasis. Some unicellular life forms are simpler and involve groups of cells cooperating in a tissue-like fashion, as it occurs with biofilms. However, before true gene regulatory interactions were widespread and allowed for controlled changes in cell phenotypes, simple cellular colonies displaying adhesion and interacting with their environments were in place. In this context, models often ignore the physical embedding of evolving cells, thus leaving aside a key component. The potential for evolving pre-developmental patterns is a relevant issue: how far a colony of evolving cells can go? Here we study these pre-conditions for morphogenesis by using CHIMERA, a physically embodied computational model of evolving virtual organisms in a pre-Mendelian world. Starting from a population of identical, independent cells moving in a fluid, the system undergoes a series of changes, from spatial segregation, increased adhesion and the development of generalism. Eventually, a major transition occurs where a change in the flow of nutrients is triggered by a sub-population. This ecosystem engineering phenomenon leads to a subsequent separation of the ecological network into two well defined compartments. The relevance of these results for evodevo and its potential ecological triggers is discussed. PMID:23596506
Recent progress in terrestrial photovoltaic collector technology
NASA Technical Reports Server (NTRS)
Ferber, R. R.
1982-01-01
The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.
Primary Gastric Lymphoma Presenting as Acute Pancreatitis: A Case Report.
Raj, Mithun; Ghoshal, Uday C; Choudhuri, Gourdas; Mohindra, Samir
2013-07-10
Diffuse large B-cell lymphoma is the commonest form of non-Hodgkin lymphoma. Gastro-intestinal tract and bone marrow are common extra-nodal sites of lymphomatous involvement. A 54-year-old woman presented with acute onset epigastric pain. On evaluation, raised serum amylase and radiological features of acute pancreatitis were detected. Gastroscopy revealed thickened folds in distal stomach, which on histopathology revealed large B-cell lymphoma. Subsequently, the patient developed extra-hepatic biliary obstruction due to peripancreatic lymph nodal mass that was relieved with plastic biliary stenting. Subsequent chemotherapy regime directed against lymphoma led to resolution of lymphoma. In this patient , pancreatitis was the initial presentation of primary gastric lymphoma, which has not been commonly reported and therefore should be considered in the etiological workup.
Intravascular large B-cell lymphoma diagnosed by FDG-PET/CT and endometrial biopsy.
Takeoka, Yasunobu; Inaba, Akiko; Fujitani, Yotaro; Kosaka, Saori; Yamamura, Ryosuke; Senzaki, Hideto; Okamura, Terue; Ohta, Kensuke
2011-11-01
Intravascular large B-cell lymphoma (IVLBCL) is a rare form of non-Hodgkin's lymphoma characterized by a proliferation of tumor cells within the lumina of small to medium-sized vessels. Because there are few or no concomitant solid lesions, a diagnosis of IVLBCL usually cannot be established by CT or MR imaging. Herein, we describe a case of IVLBCL involving the uterus, in which (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) was useful for diagnosis. A 47-year-old woman was referred to our hospital because of fever and anemia. Laboratory examination demonstrated anemia and thrombocytopenia. Bone marrow aspiration and biopsy showed hemophagocytosis without involvement of lymphoma cells. Random skin biopsy did not demonstrate lymphoma involvement. FDG-PET/CT imaging showed FDG accumulation in the uterus. MR imaging demonstrated uterine leiomyoma only. Based on these findings, uterine endometrial biopsy was performed and histological diagnosis of IVLBCL involving the uterus was established. She received 6 courses of R-CHOP therapy and high-dose chemotherapy followed by autologous peripheral blood stem cell transplantation. At present, she remains in complete remission after 33 months.
The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows
NASA Astrophysics Data System (ADS)
Brust, M.; Aouane, O.; Thiébaud, M.; Flormann, D.; Verdier, C.; Kaestner, L.; Laschke, M. W.; Selmi, H.; Benyoussef, A.; Podgorski, T.; Coupier, G.; Misbah, C.; Wagner, C.
2014-03-01
The supply of oxygen and nutrients and the disposal of metabolic waste in the organs depend strongly on how blood, especially red blood cells, flow through the microvascular network. Macromolecular plasma proteins such as fibrinogen cause red blood cells to form large aggregates, called rouleaux, which are usually assumed to be disaggregated in the circulation due to the shear forces present in bulk flow. This leads to the assumption that rouleaux formation is only relevant in the venule network and in arterioles at low shear rates or stasis. Thanks to an excellent agreement between combined experimental and numerical approaches, we show that despite the large shear rates present in microcapillaries, the presence of either fibrinogen or the synthetic polymer dextran leads to an enhanced formation of robust clusters of red blood cells, even at haematocrits as low as 1%. Robust aggregates are shown to exist in microcapillaries even for fibrinogen concentrations within the healthy physiological range. These persistent aggregates should strongly affect cell distribution and blood perfusion in the microvasculature, with putative implications for blood disorders even within apparently asymptomatic subjects.
Numerical study on xenon positive column discharges of mercury-free lamp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Jiting; He, Feng; Miao, Jinsong
2007-02-15
In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate inmore » a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells.« less
Murphy, Patricia; Kabir, Md Humayun; Srivastava, Tarini; Mason, Michele E.; Dewi, Chitra U.; Lim, Seakcheng; Yang, Andrian; Djordjevic, Djordje; Killingsworth, Murray C.; Ho, Joshua W. K.; Harman, David G.
2018-01-01
ABSTRACT Cataracts cause vision loss and blindness by impairing the ability of the ocular lens to focus light onto the retina. Various cataract risk factors have been identified, including drug treatments, age, smoking and diabetes. However, the molecular events responsible for these different forms of cataract are ill-defined, and the advent of modern cataract surgery in the 1960s virtually eliminated access to human lenses for research. Here, we demonstrate large-scale production of light-focusing human micro-lenses from spheroidal masses of human lens epithelial cells purified from differentiating pluripotent stem cells. The purified lens cells and micro-lenses display similar morphology, cellular arrangement, mRNA expression and protein expression to human lens cells and lenses. Exposing the micro-lenses to the emergent cystic fibrosis drug Vx-770 reduces micro-lens transparency and focusing ability. These human micro-lenses provide a powerful and large-scale platform for defining molecular disease mechanisms caused by cataract risk factors, for anti-cataract drug screening and for clinically relevant toxicity assays. PMID:29217756
Murphy, Patricia; Kabir, Md Humayun; Srivastava, Tarini; Mason, Michele E; Dewi, Chitra U; Lim, Seakcheng; Yang, Andrian; Djordjevic, Djordje; Killingsworth, Murray C; Ho, Joshua W K; Harman, David G; O'Connor, Michael D
2018-01-09
Cataracts cause vision loss and blindness by impairing the ability of the ocular lens to focus light onto the retina. Various cataract risk factors have been identified, including drug treatments, age, smoking and diabetes. However, the molecular events responsible for these different forms of cataract are ill-defined, and the advent of modern cataract surgery in the 1960s virtually eliminated access to human lenses for research. Here, we demonstrate large-scale production of light-focusing human micro-lenses from spheroidal masses of human lens epithelial cells purified from differentiating pluripotent stem cells. The purified lens cells and micro-lenses display similar morphology, cellular arrangement, mRNA expression and protein expression to human lens cells and lenses. Exposing the micro-lenses to the emergent cystic fibrosis drug Vx-770 reduces micro-lens transparency and focusing ability. These human micro-lenses provide a powerful and large-scale platform for defining molecular disease mechanisms caused by cataract risk factors, for anti-cataract drug screening and for clinically relevant toxicity assays. © 2018. Published by The Company of Biologists Ltd.
Mermelstein, Cláudia S; Portilho, Débora M; Medeiros, Rommel B; Matos, Aline R; Einicker-Lamas, Marcelo; Tortelote, Giovane G; Vieyra, Adalberto; Costa, Manoel L
2005-02-01
The formation of a skeletal muscle fiber begins with the withdrawal of committed mononucleated precursors from the cell cycle. These myoblasts elongate while aligning with each other, guided by recognition between their membranes. This step is followed by cell fusion and the formation of long striated multinucleated myotubes. We used methyl-beta-cyclodextrin (MCD) in primary cultured chick skeletal muscle cells to deplete membrane cholesterol and investigate its role during myogenesis. MCD promoted a significant increase in the expression of troponin T, enhanced myoblast fusion, and induced the formation of large multinucleated myotubes with nuclei being clustered centrally and not aligned at the cell periphery. MCD myotubes were striated, as indicated by sarcomeric alpha-actinin staining, and microtubule and desmin filament distribution was not altered. Pre-fusion MCD-treated myoblasts formed large aggregates, with cadherin and beta-catenin being accumulated in cell adhesion contacts. We also found that the membrane microdomain marker GM1 was not present as clusters in the membrane of MCD-treated myoblasts. Our data demonstrate that cholesterol is involved in the early steps of skeletal muscle differentiation.
Tokunaga, A; Akert, K; Sandri, C; Bennett, M V
1980-08-01
The medullary electromotor nucleus (EMN) of Sternarchus albifrons was studied at the light and electron microscopic levels. The EMN consists of a dense meshwork of myelinated axons and glial elements with interposed large neurons; it is provided with an abundant supply of capillaries. Two types of essentially adrendritic nerve cells were distinguished on the basis of size: giant neurons (approx. 70 micrometers in diameter) and large neurons (approx. 30 micrometers in diameter). Their population ratio is 1:4. Only giant cells are labelled following the injection of retrograde tracer into the spinal cord; they are therefore identified with the so-called "relay cells" of other gymnotids. Tracer experiments further suggest that the descending axons of these relay cells give off collateral branches throughout the elongated spinal electromotor nucleus. In contrast, the large cells remain unlabelled and therefore lack spinal projections; they most likely correspond to "pacemaker cells." The perikaryal surface, including axon hillock and proximal part of initial segment of both types of EMN cells, is contacted by clusters of synaptic terminals and astrocytic processes. Two main varieties of synaptic terminals occur: (1) large endings and (2) ordinary end feet with standard size (S-type) and variable size (Sv-type) clear, spherical vesicles. The junction between large endings and EMN cells is characterized by the combination of gap junctions and surrounding intermediate junctions whose freeze-fracture characteristics were morphometrically analyzed. The large endings were formed by nodes of Ranvier as well as by fiber terminations, and synchronization within the EMN may be achieved by presynaptic fibers. Some of the contacts occur directly on the initial segment, which could allow activity to bypass the soma. It is concluded that the elctromotor system of Sternarchus is comprised of a rapid conduction pathway where medullary pacemaker and relay cells as well as spinal electromotor neurons are coupled by synapses with gap junctions. In contrast to the spinal electromotor neurons, the medullary EMN cells receive synapses with morphological characteristics of chemical transmission, and the S-type and SV-type terminals may possibly correspond to Gray's Type I and Type II synapses, respectively. These synapses may be involved in modulation of the electric organ discharge frequency.
Measurement of oxygen tension within mesenchymal stem cell spheroids.
Murphy, Kaitlin C; Hung, Ben P; Browne-Bourne, Stephen; Zhou, Dejie; Yeung, Jessica; Genetos, Damian C; Leach, J Kent
2017-02-01
Spheroids formed of mesenchymal stem cells (MSCs) exhibit increased cell survival and trophic factor secretion compared with dissociated MSCs, making them therapeutically advantageous for cell therapy. Presently, there is no consensus for the mechanism of action. Many hypothesize that spheroid formation potentiates cell function by generating a hypoxic core within spheroids of sufficiently large diameters. The purpose of this study was to experimentally determine whether a hypoxic core is generated in MSC spheroids by measuring oxygen tension in aggregates of increasing diameter and correlating oxygen tension values with cell function. MSC spheroids were formed with 15 000, 30 000 or 60 000 cells per spheroid, resulting in radii of 176 ± 8 µm, 251 ± 12 µm and 353 ± 18 µm, respectively. Oxygen tension values coupled with mathematical modelling revealed a gradient that varied less than 10% from the outer diameter within the largest spheroids. Despite the modest radial variance in oxygen tension, cellular metabolism from spheroids significantly decreased as the number of cells and resultant spheroid size increased. This may be due to adaptive reductions in matrix deposition and packing density with increases in spheroid diameter, enabling spheroids to avoid the formation of a hypoxic core. Overall, these data provide evidence that the enhanced function of MSC spheroids is not oxygen mediated. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Kim, Yoonji; Bu, Jiyoon; Cho, Young-Ho; Son, Il Tae; Kang, Sung-Bum
2017-02-01
Circulating tumor cells (CTCs) contain prognostic information of the tumor, since they shed from the primary tumor and invade into the bloodstream. Therefore, the viable isolation is necessary for a consequent analysis of CTCs. Here, we present a device for the viable isolation and efficient retrieval of CTCs using slanted slot filters, formed by a reversibly deformable membrane barrier. Conventional filters have difficulties in retrieving captured cells, since they easily clog the slots. Moreover, large stress concentration at the sharp edges of squared slots, causes cell lysis. In contrast, the present device shows over 94% of high retrieval efficiency, since the slots can be opened simply by relieving the pressure. Furthermore, the inflated membrane barrier naturally forms the slanted slots, thus reducing the cell damage. By using cancer cell lines, we verified that the present device successfully isolate targeted cells, even at an extremely low concentrations (~10 cells/0.1 ml). In the clinical study, 85.7% of patients initially showed CTC positive while the numbers generally decreased after the surgery. We have also proved that the number of CTCs were highly correlated with tumour invasiveness. Therefore, the present device has potential for use in cancer diagnosis, surgical validation, and invasiveness analysis.
Iino, R; Koyama, I; Kusumi, A
2001-01-01
Single green fluorescent protein (GFP) molecules were successfully imaged for the first time in living cells. GFP linked to the cytoplasmic carboxyl terminus of E-cadherin (E-cad-GFP) was expressed in mouse fibroblast L cells, and observed using an objective-type total internal reflection fluorescence microscope. Based on the fluorescence intensity of individual fluorescent spots, the majority of E-cad-GFP molecules on the free cell surface were found to be oligomers of various sizes, many of them greater than dimers, suggesting that oligomerization of E-cadherin takes place before its assembly at cell-cell adhesion sites. The translational diffusion coefficient of E-cad-GFP is reduced by a factor of 10 to 40 upon oligomerization. Because such large decreases in translational mobility cannot be explained solely by increases in radius upon oligomerization, an oligomerization-induced trapping model is proposed in which, when oligomers are formed, they are trapped in place due to greatly enhanced tethering and corralling effects of the membrane skeleton on oligomers (compared with monomers). The presence of many oligomers greater than dimers on the free surface suggests that these greater oligomers are the basic building blocks for the two-dimensional cell adhesion structures (adherens junctions). PMID:11371443
Twin-bit via resistive random access memory in 16 nm FinFET logic technologies
NASA Astrophysics Data System (ADS)
Shih, Yi-Hong; Hsu, Meng-Yin; King, Ya-Chin; Lin, Chrong Jung
2018-04-01
A via resistive random access memory (RRAM) cell fully compatible with the standard CMOS logic process has been successfully demonstrated for high-density logic nonvolatile memory (NVM) modules in advanced FinFET circuits. In this new cell, the transition metal layers are formed on both sides of a via, given two storage bits per via. In addition to its compact cell area (1T + 14 nm × 32 nm), the twin-bit via RRAM cell features a low operation voltage, a large read window, good data retention, and excellent cycling capability. As fine alignments between mask layers become possible, the twin-bit via RRAM cell is expected to be highly scalable in advanced FinFET technology.
Network Characteristics of Collective Chemosensing
NASA Astrophysics Data System (ADS)
Sun, Bo; Duclos, Guillaume; Stone, Howard A.
2013-04-01
The collective chemosensing of nonexcitable mammalian cells involves a biochemical network that features gap junction communications and heterogeneous single cell activities. To understand the integrated multicellular chemosensing, we study the calcium dynamics of micropatterned fibroblast cell colonies in response to adenosine triphosphate (ATP) stimulation. We find that the cross-correlation function between the responses of individual cells decays with topological distance as a power law for large colonies and much faster for smaller colonies. Furthermore, the strongly correlated cell pairs tend to form clusters and are more likely to exceed the percolation threshold. At a given topological distance, the cross-correlations exhibit characteristics of Poisson distributions, which allows us to estimate the unitary conductance of a single gap junction which is in good agreement with direct experimental measurements.
NASA Astrophysics Data System (ADS)
Spradling, Emily M.; Viator, John A.
2009-02-01
Melanoma is the deadliest form of skin cancer. Although the initial malignant cells are removed, it is impossible to determine whether or not the cancer has metastasized until a secondary tumor forms that is large enough to detect with conventional imaging. Photoacoustic detection of circulating melanoma cells in the bloodstream has shown promise for early detection of metastasis that may aid in treatment of this aggressive cancer. When blood is irradiated with energy from an Nd:YAG laser at 532 nm, photoacoustic signals are created and melanoma cells can be differentiated from the surrounding cells based on waveforms produced by an oscilloscope. Before this can be used as a diagnostic technique, however, we needed to investigate several parameters. Specifically, the current technique involves the in vitro separation of blood through centrifugation to isolate and test only the white blood cell layer. Using this method, we have detected a single cultured melanoma cell among a suspension of white blood cells. However, the process could be made simpler if the plasma layer were used for detection instead of the white blood cell layer. This layer is easier to obtain after blood separation, the optical difference between plasma and melanoma cells is more pronounced in this layer than in the white blood cell layer, and the possibility that any stray red blood cells could distort the results is eliminated. Using the photoacoustic apparatus, we detected no melanoma cells within the plasma of whole blood samples spiked with cultured melanoma cells.
Chiu, Yu-Hsin; Alvarez-Baron, Claudia; Kim, Eun Young
2010-01-01
Large-conductance Ca2+-activated K+ (BKCa) channels regulate the physiology of many cell types. A single vertebrate gene variously known as Slo1, KCa1.1, or KCNMA1 encodes the pore-forming subunits of BKCa channel but is expressed in a potentially very large number of alternative splice variants. Two splice variants of Slo1, Slo1VEDEC and Slo1QEERL, which differ at the extreme COOH terminus, show markedly different steady-state expression levels on the cell surface. Here we show that Slo1VEDEC and Slo1QEERL can reciprocally coimmunoprecipitate, indicating that they form heteromeric complexes. Moreover, coexpression of even small amounts of Slo1VEDEC markedly reduces surface expression of Slo1QEERL and total Slo1 as indicated by cell-surface biotinylation assays. The effects of Slo1VEDEC on steady-state surface expression can be attributed primarily to the last five residues of the protein based on surface expression of motif-swapped constructs of Slo1 in human embryonic kidney (HEK) 293T cells. In addition, the presence of the VEDEC motif at the COOH terminus of Slo1 channels is sufficient to confer a dominant-negative effect on cell surface expression of itself or other types of Slo1 subunits. Treating cells with short peptides containing the VEDEC motif increased surface expression of Slo1VEDEC channels transiently expressed in HEK293T cells and increased current through endogenous BKCa channels in mouse podocytes. Slo1VEDEC and Slo1QEERL channels are removed from the HEK293T cell surface with similar kinetics and to a similar extent, which suggests that the inhibitory effect of the VEDEC motif is exerted primarily on forward trafficking into the plasma membrane. PMID:20051533
Investigation into the cellular origins of posterior regeneration in the annelid Capitella teleta
de Jong, Danielle M.
2017-01-01
Abstract Many animals can regenerate, although there is great diversity in regenerative capabilities. A major question in regenerative biology is determining the cellular source of newly formed tissue. The polychaete annelid, Capitella teleta, can regenerate posterior segments following transverse amputation. However, the source, behavior and molecular characteristics of the cells that form new tissue during regeneration are largely unknown. Using an indirect cell tracking method involving 5′‐ethynyl‐2′‐deoxyuridine (EdU) incorporation, we show that cell migration occurs during C. teleta posterior regeneration. Expression of the multipotency/germ line marker CapI‐vasa led us to hypothesize that stem cells originate from a multipotent progenitor cell (MPC) cluster, migrate through the coelomic cavity, and contribute to regeneration of tissue. We show that the capacity for posterior regeneration and segment formation is greater with than without the MPC cluster. Finally, we propose a working model of posterior regeneration in C. teleta. This work is the first in C. teleta that addresses the potential source of cells contributing to posterior regeneration, and may provide clues as to why some animals are highly successful regenerators. PMID:29721327
Ion Transport by Pulmonary Epithelia
Hollenhorst, Monika I.; Richter, Katrin; Fronius, Martin
2011-01-01
The lung surface of air-breathing vertebrates is formed by a continuous epithelium that is covered by a fluid layer. In the airways, this epithelium is largely pseudostratified consisting of diverse cell types such as ciliated cells, goblet cells, and undifferentiated basal cells, whereas the alveolar epithelium consists of alveolar type I and alveolar type II cells. Regulation and maintenance of the volume and viscosity of the fluid layer covering the epithelium is one of the most important functions of the epithelial barrier that forms the outer surface area of the lungs. Therefore, the epithelial cells are equipped with a wide variety of ion transport proteins, among which Na+, Cl−, and K+ channels have been identified to play a role in the regulation of the fluid layer. Malfunctions of pulmonary epithelial ion transport processes and, thus, impairment of the liquid balance in our lungs is associated with severe diseases, such as cystic fibrosis and pulmonary oedema. Due to the important role of pulmonary epithelial ion transport processes for proper lung function, the present paper summarizes the recent findings about composition, function, and ion transport properties of the airway epithelium as well as of the alveolar epithelium. PMID:22131798
Many applications analyze quantified transcript-level abundances to make inferences. Having completed this computation across the large sample set, the CTD2 Center at the Translational Genomics Research Institute presents the quantified data in a straightforward, consolidated form for these types of analyses.
In vitro dissolution and in vivo absorption of calcium [1-14C]butyrate in free or protected forms
USDA-ARS?s Scientific Manuscript database
Butyrate is a by-product of microbial carbohydrate fermentation that occurs primarily in the large intestine. When added to feed, butyrate quickly disappears in the upper digestive tract. Because butyrate is important for the epithelial cell development and for mucosal integrity, and for animal grow...
USDA-ARS?s Scientific Manuscript database
Plant organellar genomes contain large repetitive elements that may undergo pairing or recombination to form complex structures and/or sub-genomic fragments. Organellar genomes also exist in admixtures within a given cell or tissue type (heteroplasmy) and abundance of sub-types may change through de...
Bouvier, M; Wiley, D C
1996-01-01
Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides. Images Fig. 2 Fig. 4 PMID:8643447
Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops
2015-01-01
Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation. PMID:26509436
Enrichment of spinal cord cell cultures with motoneurons
1978-01-01
Spinal cord cell cultures contain several types of neurons. Two methods are described for enriching such cultures with motoneurons (defined here simply as cholinergic cells that are capable of innervating muscle). In the first method, 7-day embryonic chick spinal cord neurons were separated according to size by 1 g velocity sedimentation. It is assumed that cholinergic motoneurons are among the largest cells present at this stage. The spinal cords were dissociated vigorously so that 95-98% of the cells in the initial suspension were isolated from one another. Cells in leading fractions (large cell fractions: LCFs) contain about seven times as much choline acetyltransferase (CAT) activity per unit cytoplasm as do cells in trailing fractions (small cell fractions: SCFs). Muscle cultures seeded with LCFs develop 10-70 times as much CAT as cultures seeded with SCFs and six times as much CAT as cultures seeded with control (unfractionated) spinal cord cells. More than 20% of the large neurons in LCF-muscle cultures innervate nearby myotubes. In the second method, neurons were gently dissociated from 4-day embryonic spinal cords and maintained in vitro. This approach is based on earlier observations that cholinergic neurons are among the first cells to withdraw form the mitotic cycle in the developing chick embryo (Hamburger, V. 1948. J. Comp. Neurol. 88:221- 283; and Levi-Montalcini, R. 1950. J. Morphol. 86:253-283). 4-Day spinal cord-muscle cultures develop three times as much CAT as do 7-day spinal cord-muscle plates, prepared in the same (gentle) manner. More than 50% of the relatively large 4-day neurons innervate nearby myotubes. Thus, both methods are useful first steps toward the complete isolation of motoneurons. Both methods should facilitate study of the development of cholinergic neurons and of nerve-muscle synapse formation. PMID:566275
High Efficiency Latency and Activation of Herpes Simplex Virus in Human Cells
NASA Astrophysics Data System (ADS)
Wigdahl, Brian L.; Scheck, Adrienne C.; de Clercq, Erik; Rapp, Fred
1982-09-01
Herpes simplex virus (HSV) exists in humans in a latent form that can be activated. To characterize the molecular basis of the cell-virus interactions and to analyze the state of the latent HSV genome, an in vitro model system was established. In this system a large fraction of the latently infected cells contain an HSV genome that can be activated. Cell survival was reduced minimally after repression of high multiplicity HSV type 1 (HSV-1) infection of human fibroblast cells with (E)-5-(2-bromovinyl)-2'-deoxyuridine in combination with human leukocyte interferon (IFN-α ). A minimum of 1 to 3 percent of the surviving cells contained an HSV genome that could be activated either by human cytomegalovirus superinfection or reduction in incubation temperature.
Kromer, Krystyna; Kreitschitz, Agnieszka; Kleinteich, Thomas; Gorb, Stanislav N; Szumny, Antoni
2016-05-01
Arnica, a genus including the medicinal species A. montana, in its Arbo variety, and A. chamissonis, is among the plants richest in essential oils used as pharmaceutical materials. Despite its extensive use, the role of anatomy and histochemistry in the internal secretory system producing the essential oil is poorly understood. Anatomical sections allowed differentiation between two forms of secretory structures which differ according to their distribution in plants. The first axial type is connected to the vascular system of all vegetative organs and forms canals lined with epithelial cells. The second cortical type is represented by elongated intercellular spaces filled with oil formed only between the cortex cells of roots and rhizomes at maturity, with canals lacking an epithelial layer.Only in A. montana rhizomes do secretory structures form huge characteristic reservoirs. Computed tomography illustrates their spatial distribution and fusiform shape. The axial type of root secretory canals is formed at the interface between the endodermis and cortex parenchyma, while, in the stem, they are located in direct contact with veinal parenchyma. The peripheral phloem parenchyma cells are arranged in strands around sieve tube elements which possess a unique ability to accumulate large amounts of oil bodies. The cells of phloem parenchyma give rise to the aforementioned secretory structures while the lipid components (triacylglycerols) stored there support the biosynthesis of essential oils by later becoming a medium in which these oils are dissolved. The results indicate the integrity of axial secretory structures forming a continuous system in vegetative plant organs. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Blaesi, Aron H; Saka, Nannaji
2016-07-25
At present, the immediate-release solid dosage forms, such as the oral tablets and capsules, are granular solids. They release drug rapidly and have adequate mechanical properties, but their manufacture is fraught with difficulties inherent in processing particulate matter. Such difficulties, however, could be overcome by liquid-based processing. Therefore, we have recently introduced polymeric cellular (i.e., highly porous) dosage forms prepared from a melt process. Experiments have shown that upon immersion in a dissolution medium, the cellular dosage forms with polyethylene glycol (PEG) as excipient and with predominantly open-cell topology disintegrate by exfoliation, thus enabling rapid drug release. If the volume fraction of voids of the open-cell structures is too large, however, their mechanical strength is adversely affected. At present, the common method for determining the tensile strength of brittle, solid dosage forms (such as select granular forms) is the diametral compression test. In this study, the theory of diametral compression is first refined to demonstrate that the relevant mechanical properties of ductile and cellular solids (i.e., the elastic modulus and the yield strength) can also be extracted from this test. Diametral compression experiments are then conducted on PEG-based solid and cellular dosage forms. It is found that the elastic modulus and yield strength of the open-cell structures are about an order of magnitude smaller than those of the non-porous solids, but still are substantially greater than the stiffness and strength requirements for handling the dosage forms manually. This work thus demonstrates that melt-processed polymeric cellular dosage forms that release drug rapidly can be designed and manufactured to have adequate mechanical properties. Copyright © 2016. Published by Elsevier B.V.
Two dynamin-like proteins stabilize FtsZ rings during Streptomyces sporulation.
Schlimpert, Susan; Wasserstrom, Sebastian; Chandra, Govind; Bibb, Maureen J; Findlay, Kim C; Flärdh, Klas; Buttner, Mark J
2017-07-25
During sporulation, the filamentous bacteria Streptomyces undergo a massive cell division event in which the synthesis of ladders of sporulation septa convert multigenomic hyphae into chains of unigenomic spores. This process requires cytokinetic Z-rings formed by the bacterial tubulin homolog FtsZ, and the stabilization of the newly formed Z-rings is crucial for completion of septum synthesis. Here we show that two dynamin-like proteins, DynA and DynB, play critical roles in this process. Dynamins are a family of large, multidomain GTPases involved in key cellular processes in eukaryotes, including vesicle trafficking and organelle division. Many bacterial genomes encode dynamin-like proteins, but the biological function of these proteins has remained largely enigmatic. Using a cell biological approach, we show that the two Streptomyces dynamins specifically localize to sporulation septa in an FtsZ-dependent manner. Moreover, dynamin mutants have a cell division defect due to the decreased stability of sporulation-specific Z-rings, as demonstrated by kymographs derived from time-lapse images of FtsZ ladder formation. This defect causes the premature disassembly of individual Z-rings, leading to the frequent abortion of septum synthesis, which in turn results in the production of long spore-like compartments with multiple chromosomes. Two-hybrid analysis revealed that the dynamins are part of the cell division machinery and that they mediate their effects on Z-ring stability during developmentally controlled cell division via a network of protein-protein interactions involving DynA, DynB, FtsZ, SepF, SepF2, and the FtsZ-positioning protein SsgB.
Herrera, Elizabeth; del Mar Lorenzo, María; Blasco, Rafael; Isaacs, Stuart N.
1998-01-01
Vaccinia virus has two forms of infectious virions: the intracellular mature virus and the extracellular enveloped virus (EEV). EEV is critical for cell-to-cell and long-range spread of the virus. The B5R open reading frame (ORF) encodes a membrane protein that is essential for EEV formation. Deletion of the B5R ORF results in a dramatic reduction of EEV, and as a consequence, the virus produces small plaques in vitro and is highly attenuated in vivo. The extracellular portion of B5R is composed mainly of four domains that are similar to the short consensus repeats (SCRs) present in complement regulatory proteins. To determine the contribution of these putative SCR domains to EEV formation, we constructed recombinant vaccinia viruses that replaced the wild-type B5R gene with a mutated gene encoding a B5R protein lacking the SCRs. The resulting recombinant viruses produced large plaques, indicating efficient cell-to-cell spread in vitro, and gradient centrifugation of supernatants from infected cells confirmed that EEV was formed. In contrast, phalloidin staining of infected cells showed that the virus lacking the SCR domains was deficient in the induction of thick actin bundles. Thus, the highly conserved SCR domains present in the extracellular portion of the B5R protein are dispensable for EEV formation. This indicates that the B5R protein is a key viral protein with multiple functions in the process of virus envelopment and release. In addition, given the similarity of the extracellular domain to complement control proteins, the B5R protein may be involved in viral evasion from host immune responses. PMID:9420227
Ward, Richard J.; Pediani, John D.; Godin, Antoine G.; Milligan, Graeme
2015-01-01
The questions of whether G protein-coupled receptors exist as monomers, dimers, and/or oligomers and if these species interconvert in a ligand-dependent manner are among the most contentious current issues in biology. When employing spatial intensity distribution analysis to laser scanning confocal microscope images of cells stably expressing either a plasma membrane-associated form of monomeric enhanced green fluorescent protein (eGFP) or a tandem version of this fluorophore, the eGFP tandem was identified as a dimer. Similar studies on cells stably expressing an eGFP-tagged form of the epidermal growth factor receptor demonstrated that, although largely a monomer in the basal state, this receptor rapidly became predominantly dimeric upon the addition of its ligand epidermal growth factor. In cells induced to express an eGFP-tagged form of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor, global analysis of construct quantal brightness was consistent with the predominant form of the receptor being dimeric. However, detailed spatial intensity distribution analysis demonstrated the presence of multiple forms ranging from monomers to higher-order oligomers. Furthermore, treatment with chemically distinct 5-HT2C receptor antagonists resulted in a time-dependent change in the quaternary organization to one in which there was a preponderance of receptor monomers. This antagonist-mediated effect was reversible, because washout of the ligand resulted in the regeneration of many of the oligomeric forms of the receptor. PMID:25825490
NASA Astrophysics Data System (ADS)
Bahtiar, A.; Rahmanita, S.; Inayatie, Y. D.
2017-05-01
Morphology of perovskite film is a key important for achieving high performance perovskite solar cells. Perovskite films are commonly prepared by two-step spin-coating method. However, pin-holes are frequently formed in perovskite films due to incomplete conversion of lead-iodide (PbI2) into perovskite CH3NH3PbI3. Pin-holes in perovskite film cause large hysteresis in current-voltage curve of solar cells due to large series resistance between perovskite layer-hole transport material. Moreover, crystal structure and grain size of perovskite crystal are also other important parameters for achieving high performance solar cells, which are significantly affected by preparation of perovskite film. We studied the effect of preparation of perovskite film using controlled spin-coating parameters on crystal structure and morphological properties of perovskite film. We used two-step spin-coating method for preparation of perovskite film with varied spinning speed, spinning time and temperature of spin-coating process to control growth of perovskite crystal aimed to produce high quality perovskite crystal with pin-hole free and large grain size. All experiment was performed in air with high humidity (larger than 80%). The best crystal structure, pin-hole free with large grain crystal size of perovskite film was obtained from film prepared at room temperature with spinning speed 1000 rpm for 20 seconds and annealed at 100°C for 300 seconds.
Generating Porcine Chimeras Using Inner Cell Mass Cells and Parthenogenetic Preimplantation Embryos
Nakano, Kazuaki; Watanabe, Masahito; Matsunari, Hitomi; Matsuda, Taisuke; Honda, Kasumi; Maehara, Miki; Kanai, Takahiro; Hayashida, Gota; Kobayashi, Mirina; Kuramoto, Momoko; Arai, Yoshikazu; Umeyama, Kazuhiro; Fujishiro, Shuh-hei; Mizukami, Yoshihisa; Nagaya, Masaki; Hanazono, Yutaka; Nagashima, Hiroshi
2013-01-01
Background The development and validation of stem cell therapies using induced pluripotent stem (iPS) cells can be optimized through translational research using pigs as large animal models, because pigs have the closest characteristics to humans among non-primate animals. As the recent investigations have been heading for establishment of the human iPS cells with naïve type characteristics, it is an indispensable challenge to develop naïve type porcine iPS cells. The pluripotency of the porcine iPS cells can be evaluated using their abilities to form chimeras. Here, we describe a simple aggregation method using parthenogenetic host embryos that offers a reliable and effective means of determining the chimera formation ability of pluripotent porcine cells. Methodology/Significant Principal Findings In this study, we show that a high yield of chimeric blastocysts can be achieved by aggregating the inner cell mass (ICM) from porcine blastocysts with parthenogenetic porcine embryos. ICMs cultured with morulae or 4–8 cell-stage parthenogenetic embryos derived from in vitro-matured (IVM) oocytes can aggregate to form chimeric blastocysts that can develop into chimeric fetuses after transfer. The rate of production of chimeric blastocysts after aggregation with host morulae (20/24, 83.3%) was similar to that after the injection of ICMs into morulae (24/29, 82.8%). We also found that 4–8 cell-stage embryos could be used; chimeric blastocysts were produced with a similar efficiency (17/26, 65.4%). After transfer into recipients, these blastocysts yielded chimeric fetuses at frequencies of 36.0% and 13.6%, respectively. Conclusion/Significance Our findings indicate that the aggregation method using parthenogenetic morulae or 4–8 cell-stage embryos offers a highly reproducible approach for producing chimeric fetuses from porcine pluripotent cells. This method provides a practical and highly accurate system for evaluating pluripotency of undifferentiated cells, such as iPS cells, based on their ability to form chimeras. PMID:23626746
Electromechanical integration of cardiomyocytes derived from human embryonic stem cells.
Kehat, Izhak; Khimovich, Leonid; Caspi, Oren; Gepstein, Amira; Shofti, Rona; Arbel, Gil; Huber, Irit; Satin, Jonathan; Itskovitz-Eldor, Joseph; Gepstein, Lior
2004-10-01
Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial electromechanical properties. Cardiomyocyte cell grafts were generated from hES cells in vitro using the embryoid body differentiating system. This tissue formed structural and electromechanical connections with cultured rat cardiomyocytes. In vivo integration was shown in a large-animal model of slow heart rate. The transplanted hES cell-derived cardiomyocytes paced the hearts of swine with complete atrioventricular block, as assessed by detailed three-dimensional electrophysiological mapping and histopathological examination. These results demonstrate the potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies.
Takahashi, Nobuyasu; Aoyama, Fumiyo; Ohuchida, Jiro; Sameshima, Naoki; Asada, Yujiro; Sawaguchi, Akira
2015-10-01
A new pancreas cancer cell line, SUIT-58, was established from metastatic liver tumor. The cultured cells exhibited polygonal shape, and proliferated in a form of sheet-structure showing prominent nucleoli and frequent mitotic features. Chromosome count ranged from 54 to 73 with modal chromosome numbers 72 and 73. It was noteworthy that this cell line grew in the serum-free media and maintained in this condition for 30 passages (designated as S58-SF). Both SUIT-58 and S58-SF cell lines were successfully transplanted into nude mice, and their tumor doubling times in xenografts were calculated as 5.4 and 2.8 days, respectively. Histopathologically, the xenografts formed glandular structure that resembled the original tumor. In culture media, the doubling time of SUIT-58 and S58-SF cell lines was calculated as 32 and 35.7 h, respectively. Although the cellular arrangements of SUIT-58 and S58-SF cell lines are different to some extent, their subcellular structures under electron microscope were similar with a large number of lysosomes and distinct desmosomes at cell-cell adhesion sites. The present SUIT-58 and its derivative cell line S58-SF will be applicable for biological studies to develop a new clinical treatment of refractory pancreatic cancer.
Tumor surrogate blood vessel subtypes exhibit differential susceptibility to anti-VEGF therapy
Sitohy, Basel; Nagy, Janice A.; Shih, Shou-Ching; Dvorak, Harold F.
2011-01-01
Anti-vascular therapy directed against VEGF or its receptors has been successful when administered at early stages of tumor vessel growth, but is less effective when administered later. Tumor blood vessels are heterogeneous, so vessel subpopulations may differ in their requirements for tumor cell-secreted VEGF and in their susceptibility to anti-VEGF/VEGFR therapy. Human cancers contain several distinct blood vessel types, including mother vessels (MV), glomeruloid microvascular proliferations (GMP), vascular malformations (VM), feeding arteries (FA) and draining veins (DV), all of which can be generated in mice in the absence of tumor cells using expression vectors for VEGF-A164. In this study, we investigated the sensitivity of each of these vessel types to anti-VEGF therapy with aflibercept ® (VEGF Trap), a potent inhibitor of VEGF-A164. Administering VEGF Trap treatment before or shortly after injection of a recombinant VEGF-A164 expressing adenovirus could prevent or regress tumor-free neovasculature, but it was progressively less effective if initiated at later times. Early-forming MVs and GMPs in which the lining endothelial cells expressed high levels of VEGFR-2 were highly susceptible to blockade by VEGF Trap. In contrast, late-forming VMs, FAs, and DVs that expressed low levels of VEGFR-2 were largely resistant. Together, our findings define the susceptibility of different blood vessel subtypes to anti-VEGF therapy, offering a possible explanation for the limited effectiveness of anti-VEGF-A/VEGFR treatment of human cancers, which are typically present for months to years before discovery and are largely populated by late-forming blood vessels. PMID:21937680
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonsall, R.W.; Rees, H.D.; Micheal, R.P.
1986-03-01
To study the mechanism by which testosterone restores the sexual potency of castrated cynomolgus monkeys, two males (body weights 5.2 and 5.3 kg) were castrated and, 3 days later, injected with 3 mCi (/sup 3/H)testosterone ((/sup 3/H)T) as an intravenous bolus. After 30 min, males were killed and brains and samples of other tissues were rapidly removed and placed on ice. Samples were dissected from the right halves of the brain and homogenized. Purified cell nuclei were prepared and ether extracts were analyzed by reverse-phase HPCL. Generally, unchanged (/sup 3/H)T was the major form of radioactivity in brain and pituitarymore » gland, but in cell nuclei from hypothalamus, preoptic area and amygdala, a large proportion (34 - 61%) was in the form of (/sup 3/H)estradiol ((/sup 4/H)E/sub 2/). Little or no (/sup 3/H)dihydrotestosterone ((/sup 3/H)DHT) was detected in cell nuclei from any brain region or from pituitary gland. However, (/sup 3/H)DHT was the major form (61 - 95%) of radioactivity in cell nuclei from glans penis, prostrate and seminal vesicles. In autoradiograms of the left halves of the same brains, the percentage of cells that accumulated radioactivity in their nuclei was high in specific regions of the hypothalamus, preoptic areas and amygdala. The authors conclude that the peripheral actions of T are mediated via DHT, but its central actions are dependent on unchanged T or on E/sub 2/ formed locally by aromatization.« less
Global functional analyses of cellular responses to pore-forming toxins.
Kao, Cheng-Yuan; Los, Ferdinand C O; Huffman, Danielle L; Wachi, Shinichiro; Kloft, Nicole; Husmann, Matthias; Karabrahimi, Valbona; Schwartz, Jean-Louis; Bellier, Audrey; Ha, Christine; Sagong, Youn; Fan, Hui; Ghosh, Partho; Hsieh, Mindy; Hsu, Chih-Shen; Chen, Li; Aroian, Raffi V
2011-03-01
Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.
Lyu, Mi-Ae; Cheung, Lawrence H; Hittelman, Walter N; Liu, Yuying; Marks, John W; Cho, Min-Jeong; Rosenblum, Michael G
2012-09-28
We generated a fusion protein Bax(345)/BLyS containing the truncated form of Bax (Bax(345)) at the N-terminus followed by a 218 linker to the B lymphocyte stimulator (BLyS). Bax(345)/BLyS was cytotoxic to a panel of diffuse large B cell lymphoma and mantle cell lymphoma lines expressing the BLyS receptors. Specific delivery of Bax(345)/BLyS to malignant B cells drove cells into apoptosis by mitochondrial dysfunction and treatment of cells with Bax(345)/BLyS induced down-regulation of Mcl-1, X-IAP, and survivin. Bax(345)/BLyS represents a new class of targeted therapeutic agents with a unique mechanism of action and may have therapeutic potential for malignant B cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Human induced pluripotent stem cells and their use in drug discovery for toxicity testing.
Scott, Clay W; Peters, Matthew F; Dragan, Yvonne P
2013-05-10
Predicting human safety risks of novel xenobiotics remains a major challenge, partly due to the limited availability of human cells to evaluate tissue-specific toxicity. Recent progress in the production of human induced pluripotent stem cells (hiPSCs) may fill this gap. hiPSCs can be continuously expanded in culture in an undifferentiated state and then differentiated to form most cell types. Thus, it is becoming technically feasible to generate large quantities of human cell types and, in combination with relatively new detection methods, to develop higher-throughput in vitro assays that quantify tissue-specific biological properties. Indeed, the first wave of large scale hiSC-differentiated cell types including patient-derived hiPSCS are now commercially available. However, significant improvements in hiPSC production and differentiation processes are required before cell-based toxicity assays that accurately reflect mature tissue phenotypes can be delivered and implemented in a cost-effective manner. In this review, we discuss the promising alignment of hiPSCs and recently emerging technologies to quantify tissue-specific functions. We emphasize liver, cardiovascular, and CNS safety risks and highlight limitations that must be overcome before routine screening for toxicity pathways in hiSC-derived cells can be established. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Huang, Po-Shuan; Chung, I-Hsiao; Lin, Yang-Hsiang; Lin, Tzu-Kang; Chen, Wei-Jan; Lin, Kwang-Huei
2018-05-14
Anaplastic lymphoma kinase (ALK)-negative anaplastic large-cell lymphoma (ALCL) is a rare type of highly malignant, non-Hodgkin lymphoma. Currently, only a few gene rearrangements have been linked to ALK-negative ALCL progression. However, the specific molecular mechanisms underlying the growth of ALK-negative ALCL tumors remain unclear. Here, we investigated aberrantly expressed, long non-coding RNAs (lncRNAs) in ALK-negative ALCL and assessed their potential biological function. MIR503HG ( miR-503 host gene) was highly expressed in ALK-negative cell lines and was significantly upregulated in tumors in mice formed from ALK-negative ALCL cell lines. Depletion of MIR503HG suppressed tumor cell proliferation in vivo and in vitro; conversely, its overexpression enhanced tumor cell growth. MIR503HG -induced proliferation was mediated by the induction of microRNA-503 ( miR - 503 ) and suppression of Smurf2, resulting in stabilization of the tumor growth factor-β receptor (TGFBR) and enhanced tumor cell growth. Collectively, these findings support a potential role for MIR503HG in cancer cell proliferation through the miR-503 /Smurf2/TGFBR axis and indicate that MIR503HG is a potential marker in ALK-negative ALCL.
Enzyme and microbial technology for synthesis of bioactive oligosaccharides: an update.
Chen, Rachel
2018-04-01
Oligosaccharides, in either free or bound forms, play crucial roles in a wide range of biological processes. Increasing appreciation of their roles in cellular communication, interaction, pathogenesis, and prebiotic functions has stimulated tremendous interests in their synthesis. Pure and structurally defined oligosaccharides are essential for fundamental studies. On the other hand, for those with near term medical and nutraceutical applications, their large-scale synthesis is necessary. Unfortunately, oligosaccharides are notoriously difficult in their synthesis, and their enormous diverse structures leave a vast gap between what have been synthesized in laboratory and those present in various biological systems. While enzymes and microbes are nature's catalysts for oligosaccharides, their effective use is not without challenges. Using examples of galactose-containing oligosaccharides, this review analyzes the pros and cons of these two forms of biocatalysts and provides an updated view on the status of biocatalysis in this important field. Over the past few years, a large number of novel galactosidases were discovered and/or engineered for improved synthesis via transglycosylation. The use of salvage pathway for regeneration of uridine diphosphate (UDP)-galactose has made the use of Leloir glycosyltransferases simpler and more efficient. The recent success of large-scale synthesis of 2' fucosyllactose heralded the power of whole-cell biocatalysis as a scalable technology. While it still lags behind enzyme catalysis in terms of the number of oligosaccharides synthesized, an acceleration in the use of this form of biocatalyst is expected as rapid advances in synthetic biology have made the engineering of whole cell biocatalysts less arduous and less time consuming.
Specificity, Privacy, and Degeneracy in the CD4 T Cell Receptor Repertoire Following Immunization
Sun, Yuxin; Best, Katharine; Cinelli, Mattia; Heather, James M.; Reich-Zeliger, Shlomit; Shifrut, Eric; Friedman, Nir; Shawe-Taylor, John; Chain, Benny
2017-01-01
T cells recognize antigen using a large and diverse set of antigen-specific receptors created by a complex process of imprecise somatic cell gene rearrangements. In response to antigen-/receptor-binding-specific T cells then divide to form memory and effector populations. We apply high-throughput sequencing to investigate the global changes in T cell receptor sequences following immunization with ovalbumin (OVA) and adjuvant, to understand how adaptive immunity achieves specificity. Each immunized mouse contained a predominantly private but related set of expanded CDR3β sequences. We used machine learning to identify common patterns which distinguished repertoires from mice immunized with adjuvant with and without OVA. The CDR3β sequences were deconstructed into sets of overlapping contiguous amino acid triplets. The frequencies of these motifs were used to train the linear programming boosting (LPBoost) algorithm LPBoost to classify between TCR repertoires. LPBoost could distinguish between the two classes of repertoire with accuracies above 80%, using a small subset of triplet sequences present at defined positions along the CDR3. The results suggest a model in which such motifs confer degenerate antigen specificity in the context of a highly diverse and largely private set of T cell receptors. PMID:28450864
Multi-casting approach for vascular networks in cellularized hydrogels.
Justin, Alexander W; Brooks, Roger A; Markaki, Athina E
2016-12-01
Vascularization is essential for living tissue and remains a major challenge in the field of tissue engineering. A lack of a perfusable channel network within a large and densely populated tissue engineered construct leads to necrotic core formation, preventing fabrication of functional tissues and organs. We report a new method for producing a hierarchical, three-dimensional (3D) and perfusable vasculature in a large, cellularized fibrin hydrogel. Bifurcating channels, varying in size from 1 mm to 200-250 µm, are formed using a novel process in which we convert a 3D printed thermoplastic material into a gelatin network template, by way of an intermediate alginate hydrogel. This enables a CAD-based model design, which is highly customizable, reproducible, and which can yield highly complex architectures, to be made into a removable material, which can be used in cellular environments. Our approach yields constructs with a uniform and high density of cells in the bulk, made from bioactive collagen and fibrin hydrogels. Using standard cell staining and immuno-histochemistry techniques, we showed good cell seeding and the presence of tight junctions between channel endothelial cells, and high cell viability and cell spreading in the bulk hydrogel. © 2016 The Authors.
Gap junction disorders of myelinating cells.
Kleopa, Kleopas A; Orthmann-Murphy, Jennifer; Sargiannidou, Irene
2010-01-01
Gap junctions (GJs) are channels that allow the diffusion of ions and small molecules across apposed cell membranes. In peripheral nerves, Schwann cells express the GJ proteins connexin32 (Cx32) and Cx29, which have distinct localizations. Cx32 forms GJs through non-compact myelin areas, whereas Cx29 forms hemichannels in the innermost layers of myelin apposing axonal Shaker-type K+ channels. In the CNS, rodent oligodendrocytes express Cx47, Cx32 and Cx29. Cx47 is expressed by all types of oligodendrocytes both in the white and grey matter and forms GJs on cell bodies and proximal processes, as well as most of the intercellular channels with astrocytes. Cx32 is expressed mostly by white matter oligodendrocytes and is localized in the myelin sheath of large diameter fibers. Cx29, and its human ortholog Cx31.3, appear to be restricted to oligodendrocytes that myelinate small caliber fibers, likely forming hemichannels. The importance of intercellular and intracellular GJs in myelinating cells are demonstrated by human disorders resulting from mutations affecting GJ proteins. The X-linked Charcot Marie Tooth disease (CMT1X) is caused by hundreds of mutations affecting Cx32. Patients with CMT1X present mainly with a progressive peripheral neuropathy, which may be accompanied by CNS myelin dysfunction. Mutations in Cx47 may cause a devastating leukodystrophy called Pelizaeus-Merzbacher-like disease or a milder spastic paraplegia. In addition, CNS demyelination may be caused by defects in genes expressing astrocytic GJ proteins, which are essential for oligodendrocytes. Findings from in vitro and in vivo models of these disorders developed over the last decade indicate that most mutations cause loss of function and an inability of the mutant connexins to form functional GJs. Here we review the clinical, genetic, and neurobiological aspects of GJ disorders affecting the PNS and CNS myelinating cells.
Transmembrane Mucins: Signaling Receptors at the Intersection of Inflammation and Cancer
van Putten, Jos P.M.; Strijbis, Karin
2017-01-01
Mucosal surfaces line our body cavities and provide the interaction surface between commensal and pathogenic microbiota and the host. The barrier function of the mucosal layer is largely maintained by gel-forming mucin proteins that are secreted by goblet cells. In addition, mucosal epithelial cells express cell-bound mucins that have both barrier and signaling functions. The family of transmembrane mucins consists of diverse members that share a few characteristics. The highly glycosylated extracellular mucin domains inhibit invasion by pathogenic bacteria and can form a tight mesh structure that protects cells in harmful conditions. The intracellular tails of transmembrane mucins can be phosphorylated and connect to signaling pathways that regulate inflammation, cell-cell interactions, differentiation, and apoptosis. Transmembrane mucins play important roles in preventing infection at mucosal surfaces, but are also renowned for their contributions to the development, progression, and metastasis of adenocarcinomas. In general, transmembrane mucins seem to have evolved to monitor and repair damaged epithelia, but these functions can be highjacked by cancer cells to yield a survival advantage. This review presents an overview of the current knowledge of the functions of transmembrane mucins in inflammatory processes and carcinogenesis in order to better understand the diverse functions of these multifunctional proteins. PMID:28052300
Traction force dynamics predict gap formation in activated endothelium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valent, Erik T.; Nieuw Amerongen, Geerten P. van; Hinsbergh, Victor W.M. van
In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneousmore » distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. - Highlights: • Endothelial monolayers exert dynamic- and heterogeneous traction forces. • High traction forces correlate with junctional areas and the F-actin cytoskeleton. • Newly formed inter-endothelial gaps are characterized by opposing traction forces. • Force stability is a key feature controlling endothelial permeability.« less
Gottlieb, Philip A.; Sachs, Frederick
2012-01-01
Piezo ion channels have been found to be essential for mechanical responses in cells. These channels were first shown to exist in Neuro2A cells, and the gene was identified by siRNAs that diminished the mechanical response. Piezo channels are approximately 2500 amino acids long, have between 24–32 transmembrane regions, and appear to assemble into tetramers and require no other proteins for activity. They have a reversal potential around 0 mV and show voltage dependent inactivation. The channel is constitutively active in liposomes, indicating that no cytoskeletal elements are required. Heterologous expression of the Piezo protein can create mechanical sensitivity in otherwise insensitive cells. Piezo1 currents in outside-out patches were blocked by the extracellular MSC inhibitor peptide GsMTx4. Both enantiomeric forms of GsMTx4 inhibited channel activity in a manner similar to endogenous mechanical channels. Piezo1 can adopt a tonic (non-inactivating) form with repeated stimulation. The transition to the non-inactivating form generally occurs in large groups of channels, indicating that the channels exist in domains, and once the domain is compromised, the members simultaneously adopt new properties. Piezo proteins are associated with physiological responses in cells, such as the reaction to noxious stimulus of Drosophila larvae. Recent work measuring cell crowding, shows that Piezo1 is essential for the removal of extra cells without apoptosis. Piezo1 mutations have also been linked to the pathological response of red blood cells in a genetic disease called Xerocytosis. These finding suggest that Piezo1 is a key player in cells’ responses to mechanical stimuli. PMID:22790400
Kuczyńska-Wiśnik, Dorota; Moruno-Algara, María; Stojowska-Swędrzyńska, Karolina; Laskowska, Ewa
2016-11-10
Acetylation of lysine residues is a reversible post-translational modification conserved from bacteria to humans. Several recent studies have revealed hundreds of lysine-acetylated proteins in various bacteria; however, the physiological role of these modifications remains largely unknown. Since lysine acetylation changes the size and charge of proteins and thereby may affect their conformation, we assumed that lysine acetylation can stimulate aggregation of proteins, especially for overproduced recombinant proteins that form inclusion bodies. To verify this assumption, we used Escherichia coli strains that overproduce aggregation-prone VP1GFP protein. We found that in ΔackA-pta cells, which display diminished protein acetylation, inclusion bodies were formed with a delay and processed faster than in the wild-type cells. Moreover, in ΔackA-pta cells, inclusion bodies exhibited significantly increased specific GFP fluorescence. In CobB deacetylase-deficient cells, in which protein acetylation was enhanced, the formation of inclusion bodies was increased and their processing was significantly inhibited. Similar results were obtained with regard to endogenous protein aggregates formed during the late stationary phase in ΔackA-pta and ΔcobB cells. Our studies revealed that protein acetylation affected the aggregation of endogenous E. coli proteins and the yield, solubility, and biological activity of a model recombinant protein. In general, decreased lysine acetylation inhibited the formation of protein aggregates, whereas increased lysine acetylation stabilized protein aggregates. These findings should be considered during the designing of efficient strategies for the production of recombinant proteins in E. coli cells.
Why plants make puzzle cells, and how their shape emerges.
Sapala, Aleksandra; Runions, Adam; Routier-Kierzkowska, Anne-Lise; Das Gupta, Mainak; Hong, Lilan; Hofhuis, Hugo; Verger, Stéphane; Mosca, Gabriella; Li, Chun-Biu; Hay, Angela; Hamant, Olivier; Roeder, Adrienne Hk; Tsiantis, Miltos; Prusinkiewicz, Przemyslaw; Smith, Richard S
2018-02-27
The shape and function of plant cells are often highly interdependent. The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape, however their functional benefit has remained elusive. We propose that these intricate forms provide an effective strategy to reduce mechanical stress in the cell wall of the epidermis. When tissue-level growth is isotropic, we hypothesize that lobes emerge at the cellular level to prevent formation of large isodiametric cells that would bulge under the stress produced by turgor pressure. Data from various plant organs and species support the relationship between lobes and growth isotropy, which we test with mutants where growth direction is perturbed. Using simulation models we show that a mechanism actively regulating cellular stress plausibly reproduces the development of epidermal cell shape. Together, our results suggest that mechanical stress is a key driver of cell-shape morphogenesis. © 2018, Sapala et al.
Why plants make puzzle cells, and how their shape emerges
Routier-Kierzkowska, Anne-Lise; Das Gupta, Mainak; Hong, Lilan; Hofhuis, Hugo; Verger, Stéphane; Mosca, Gabriella; Li, Chun-Biu; Hay, Angela; Hamant, Olivier; Roeder, Adrienne HK; Tsiantis, Miltos; Prusinkiewicz, Przemyslaw
2018-01-01
The shape and function of plant cells are often highly interdependent. The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape, however their functional benefit has remained elusive. We propose that these intricate forms provide an effective strategy to reduce mechanical stress in the cell wall of the epidermis. When tissue-level growth is isotropic, we hypothesize that lobes emerge at the cellular level to prevent formation of large isodiametric cells that would bulge under the stress produced by turgor pressure. Data from various plant organs and species support the relationship between lobes and growth isotropy, which we test with mutants where growth direction is perturbed. Using simulation models we show that a mechanism actively regulating cellular stress plausibly reproduces the development of epidermal cell shape. Together, our results suggest that mechanical stress is a key driver of cell-shape morphogenesis. PMID:29482719
Podvyaznaya, Irina M; Galaktionov, Kirill V
2014-03-01
The germinal mass in Himasthla elongata rediae was studied in detail using transmission electron microscopy. It was shown to be a specialized reproductive organ consisting of germinal cells at various maturation stages, supporting cells and stem cells. The germinal mass also contains early cercarial embryos emerging as a result of cleavage division of mature germinal cells. The stem cells that give rise to germinal cells have heterochromatin-rich nuclei with distinct nucleoli and scarce cytoplasm containing mainly free ribosomes and few mitochondria. The differentiating germinal cells undergo a growth, which is accompanied by an emergence of annulate lamellae and the nuage in their cytoplasm, a noticeable development of RER and Golgi apparatus and an increase in the number of mitochondria. The mitochondria form a large group at one of the cell poles. During differentiation, the nucleus and nucleolus of the germinal cell enlarge while the chromatin becomes gradually less condensed. The supporting tissue of the germinal mass is made up of cells connected by septate junctions. These supporting cells are distinctly different in cellular shape and nuclear ultrastructure. Their outgrowths form a tight meshwork housing stem cells, germinal cells and early cercarial embryos. The cytoplasm of the supporting cells in the mesh area is separated into fine parallel layers by labyrinthine narrow cavities communicating with the intercellular space. The supporting tissue contains differentiating and degenerating cells which indicates its renewal. The results of this ultrastructural study lend support to the hypothesis that the germinal cells of digeneans are germ line cells.
Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos.
Behboodi, E; Bondareva, A; Begin, I; Rao, K; Neveu, N; Pierson, J T; Wylie, C; Piero, F D; Huang, Y J; Zeng, W; Tanco, V; Baldassarre, H; Karatzas, C N; Dobrinski, I
2011-03-01
Embryonic stem (ES) cells with the capacity for germ line transmission have only been verified in mouse and rat. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. Here, we describe derivation of ES cells from goat embryos. In vivo-derived embryos were cultured on goat fetal fibroblast feeders. Embryos either attached to the feeder layer or remained floating and expanded in culture. Embryos that attached showed a prominent inner cell mass (ICM) and those that remained floating formed structures resembling ICM disks surrounded by trophectodermal cells. ICM cells and embryonic disks were isolated mechanically, cultured on feeder cells in the presence of hLIF, and outgrown into ES-like colonies. Two cell lines were cultured for 25 passages and stained positive for alkaline phosphatase, POU5F1, NANOG, SOX2, SSEA-1, and SSEA-4. Embryoid bodies formed in suspension culture without hLIF. One cell line was cultured for 2 years (over 120 passages). This cell line differentiated in vitro into epithelia and neuronal cells, and could be stably transfected and selected for expression of a fluorescent marker. When cells were injected into SCID mice, teratomas were identified 5-6 weeks after transplantation. Expression of known ES cell markers, maintenance in vitro for 2 years in an undifferentiated state, differentiation in vitro, and formation of teratomas in immunodeficient mice provide evidence that the established cell line represents goat ES cells. This also is the first report of teratoma formation from large animal ES cells. Copyright © 2011 Wiley-Liss, Inc.
Membrane Transport across Polarized Epithelia.
Garcia-Castillo, Maria Daniela; Chinnapen, Daniel J-F; Lencer, Wayne I
2017-09-01
Polarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids. We also discuss briefly the promise of harnessing the molecules that undergo transcytosis as vehicles for clinical applications in drug delivery. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Signal transduction by the Wnt family of ligands.
Dale, T C
1998-01-01
The Wnt genes encode a large family of secreted polypeptides that mediate cell-cell communication in diverse developmental processes. The loss or inappropriate activation of Wnt expression has been shown to alter cell fate, morphogenesis and mitogenesis. Recent progress has identified Wnt receptors and components of an intracellular signalling pathway that mediate Wnt-dependent transcription. This review will highlight this 'core' Wnt signal-transduction pathway, but also aims to reveal the potential diversity of Wnt signalling targets. Particular attention will be paid to the overlap between developmental biology and oncogenesis, since recent progress shows Wnt signalling forms a paradigm for an interdisciplinary approach. PMID:9425102
Hunsberger, Joshua G; Efthymiou, Anastasia G; Malik, Nasir; Behl, Mamta; Mead, Ivy L; Zeng, Xianmin; Simeonov, Anton; Rao, Mahendra
2015-08-15
There is great need to develop more predictive drug discovery tools to identify new therapies to treat diseases of the central nervous system (CNS). Current nonpluripotent stem cell-based models often utilize non-CNS immortalized cell lines and do not enable the development of personalized models of disease. In this review, we discuss why in vitro models are necessary for translational research and outline the unique advantages of induced pluripotent stem cell (iPSC)-based models over those of current systems. We suggest that iPSC-based models can be patient specific and isogenic lines can be differentiated into many neural cell types for detailed comparisons. iPSC-derived cells can be combined to form small organoids, or large panels of lines can be developed that enable new forms of analysis. iPSC and embryonic stem cell-derived cells can be readily engineered to develop reporters for lineage studies or mechanism of action experiments further extending the utility of iPSC-based systems. We conclude by describing novel technologies that include strategies for the development of diversity panels, novel genomic engineering tools, new three-dimensional organoid systems, and modified high-content screens that may bring toxicology into the 21st century. The strategic integration of these technologies with the advantages of iPSC-derived cell technology, we believe, will be a paradigm shift for toxicology and drug discovery efforts.
Zeng, Changjun; Zhang, Yanling; Park, Su Cheol; Eun, Jong Ryeol; Nguyen, Ngoc Tue; Tschudy-Seney, Benjamin; Jung, Yong Jin; Theise, Neil D; Zern, Mark A; Duan, Yuyou
2015-11-01
A large number of cancer stem cells (CSCs) were identified and characterized; however, the origins and formation of CSCs remain elusive. In this study, we examined the origination of the newly identified CD34(+) liver CSC (LCSC). We found that CD34(+) LCSC coexpressed liver stem cell and myelomonocytic cell markers, showing a mixed phenotype, a combination of hepatobiliary stem/progenitor cells (HSPCs) and myelomonocytic cells. Moreover, human xenografts produced by CD34(+) LCSCs and the parental cells, which CD34(+) LCSC was isolated from, coexpressed liver cancer and myelomonocytic markers, also demonstrating mixed phenotypes. The xenografts and the parental cells secreted albumin demonstrating their hepatocyte origin and also expressed cytokines [interleukin (IL)-1b, IL-6, IL-12A, IL-18, tumor necrosis factor-alpha (TNF-α), and CSF1] and chemokines (IL-8, CCL2, and CCL5). Expression of these cytokines and chemokines responded to the stimuli [interferon-γ (INF-γ), IL-4, and lipopolysaccharide (LPS)]. Furthermore, human xenografts and the parental cells phagocytized Escherichia coli. CD34(+) LCSC coexpressed CD45, demonstrating that its origin appears to be from a hematopoietic precursor. The percentage of cells positive for OV6, CD34, and CD31, presenting the markers of HSPC, hematopoietic, and myelomonocytic cells, increased under treatment of CD34(+) LCSC with a drug. Cytogenetic analysis showed that CD34(+) LCSC contained a greater number of chromosomes. HBV DNA integrations and mutations in CD34(+) LCSC and the parental cells were identical to those in the literature or the database. Thus, these results demonstrated that CD34(+) LCSCs were formed by fusion of HSPC with CD34(+) hematopoietic precursor-derived myeloid intermediates; it appears that this is the first report that human CSCs have been formed by the fusion. Therefore, it represents a significant step toward better understanding of the formation of human CSC and the diverse origins of liver cancers.
Johnson, M D; Yee, A G
1995-08-01
Recent electrophysiological investigations in this laboratory have shown that cultured mesopontine serotonergic neurons from neonatal rats evoke serotonergic and/or glutamatergic responses in themselves and in non-serotonergic neurons. Serotonergic nerve terminals in vivo are heterogeneous with respect to vesicle type, synaptic structure, and the frequency with which they form conventional synaptic contacts, but the functional correlates of this heterogeneity are unclear. We have therefore examined the ultrastructure of electrophysiologically-characterized synapses formed by cultured serotonergic neurons, and have compared the findings with the ultrastructural characteristics of serotonergic synapses reported in vivo. Dissociated rat serotonergic neurons in microcultures were identified by serotonin immunocytochemistry or by uptake of the autofluorescent serotonin analogue 5,7-dihydroxytryptamine, and were subsequently processed for electron microscopy. Unlabeled axon terminals formed numerous synapses on serotonin-immunoreactive somata and dendrites. Serotonin-immunoreactive axon terminals formed synapses on the somata, dendrites and somatodendritic spine-like appendages of serotonergic and non-serotonergic neurons. In microcultures containing a solitary serotonergic neuron that evoked glutamatergic or serotonergic/glutamatergic autaptic responses, both symmetric and asymmetric synapses were present. In addition to large dense core vesicles, individual neurons contained either microcanaliculi and microvesicles, clear round vesicles, or clear pleiomorphic vesicles. For a given cell, however, the subtypes of vesicles present in each axon terminal were similar. Thus, dissociated serotonergic and non-serotonergic raphe neurons formed functional, morphological synapses in culture. A direct examination of both the synaptic physiology and ultrastructure of single cultured serotonergic neurons indicated that these cells released serotonin and glutamate at synapses that were morphologically similar to synapses formed by serotonergic neurons in vivo. The findings also suggested that individual serotonergic neurons differ with respect to synaptic vesicle morphology, and are capable of simultaneously forming symmetric and asymmetric synapses with target cells.
Gasdermins: Effectors of Pyroptosis.
Kovacs, Stephen B; Miao, Edward A
2017-09-01
Pyroptosis is a form of lytic programmed cell death initiated by inflammasomes, which detect cytosolic contamination or perturbation. This drives activation of caspase-1 or caspase-11/4/5, which cleave gasdermin D, separating its N-terminal pore-forming domain (PFD) from the C-terminal repressor domain (RD). The PFD oligomerizes to form large pores in the membrane that drive swelling and membrane rupture. Gasdermin D is one of six (in humans) gasdermin family members; several other gasdermins have also been shown to form pores that cause pyroptosis after cleavage to activate their PFDs. One of these, gasdermin E, is activated by caspase-3 cleavage. We review our current understanding of pyroptosis as well as current knowledge of the gasdermin family. Copyright © 2017 Elsevier Ltd. All rights reserved.
Left-right asymmetry is formed in individual cells by intrinsic cell chirality.
Hatori, Ryo; Ando, Tadashi; Sasamura, Takeshi; Nakazawa, Naotaka; Nakamura, Mitsutoshi; Taniguchi, Kiichiro; Hozumi, Shunya; Kikuta, Junichi; Ishii, Masaru; Matsuno, Kenji
2014-08-01
Many animals show left-right (LR) asymmetric morphology. The mechanisms of LR asymmetric development are evolutionarily divergent, and they remain elusive in invertebrates. Various organs in Drosophila melanogaster show stereotypic LR asymmetry, including the embryonic gut. The Drosophila embryonic hindgut twists 90° left-handedly, thereby generating directional LR asymmetry. We recently revealed that the hindgut epithelial cell is chiral in shape and other properties; this is termed planar cell chirality (PCC). We previously showed by computer modeling that PCC is sufficient to induce the hindgut rotation. In addition, both the PCC and the direction of hindgut twisting are reversed in Myosin31DF (Myo31DF) mutants. Myo31DF encodes Drosophila MyosinID, an actin-based motor protein, whose molecular functions in LR asymmetric development are largely unknown. Here, to understand how PCC directs the asymmetric cell-shape, we analyzed PCC in genetic mosaics composed of cells homozygous for mutant Myo31DF, some of which also overexpressed wild-type Myo31DF. Wild-type cell-shape chirality only formed in the Myo31DF-overexpressing cells, suggesting that cell-shape chirality was established in each cell and reflects intrinsic PCC. A computer model recapitulating the development of this genetic mosaic suggested that mechanical interactions between cells are required for the cell-shape behavior seen in vivo. Our mosaic analysis also suggested that during hindgut rotation in vivo, wild-type Myo31DF suppresses the elongation of cell boundaries, supporting the idea that cell-shape chirality is an intrinsic property determined in each cell. However, the amount and distribution of F-actin and Myosin II, which are known to help generate the contraction force on cell boundaries, did not show differences between Myo31DF mutant cells and wild-type cells, suggesting that the static amount and distribution of these proteins are not involved in the suppression of cell-boundary elongation. Taken together, our results suggest that cell-shape chirality is intrinsically formed in each cell, and that mechanical force from intercellular interactions contributes to its formation and/or maintenance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Gharibzadeh, Saba; Nejand, Bahram Abdollahi; Moshaii, Ahmad; Mohammadian, Nasim; Alizadeh, Amir Hossein; Mohammadpour, Rahele; Ahmadi, Vahid; Alizadeh, Abdolali
2016-08-09
A simple and practical approach is introduced for the deposition of CuI as an inexpensive inorganic hole-transport material (HTM) for the fabrication of low cost perovskite solar cells (PSCs) by gas-solid phase transformation of Cu to CuI. The method provides a uniform and well-controlled CuI layer with large grains and good compactness that prevents the direct connection between the contact electrodes. Solar cells prepared with CuI as the HTM with Au electrodes displays an exceptionally high short-circuit current density of 32 mA cm(-2) , owing to an interfacial species formed between the perovskite and the Cu resulting in a long wavelength contribution to the incident photon-to-electron conversion efficiency (IPCE), and an overall power conversion efficiency (PCE) of 7.4 %. The growth of crystalline and uniform CuI on a low roughness perovskite layer leads to remarkably high charge extraction in the cells, which originates from the high hole mobility of CuI in addition to a large number of contact points between CuI and the perovskite layer. In addition, the solvent-free method has no damaging side effect on the perovskite layer, which makes it an appropriate method for large scale applications of CuI in perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhao, Zhili; Zhang, Cuiping; Fu, Xiaobing; Yang, Rongya; Peng, Chen; Gu, Tingmin; Sui, Zhifu; Wang, Congmin; Liu, Chang
2012-01-01
Epidermal stem cells are of major importance for skin regeneration and tissue engineering, but differentiated epidermal cells lost their proliferative capacity and are no longer able to regenerate a skin equivalent. Here, we investigated the role of β-catenin in regulating regenerative functions of differentiated epidermal cells. Lithium chloride and a highly specific glycogen synthase kinase (GSK)-3β inhibitor were applied to induce the expression of β-catenin in differentiated epidermal cells. After a 6-day induction, the large flat-shaped cells with a small nuclear-cytoplasmic ratio had changed into small round-shaped cells with a large nuclear-cytoplasmic ratio. Phenotypic assays showed a remarkably higher expression of CK19, β(1)-integrin, Oct4 and Nanog in induced cells than in the control group (p < 0.01). In addition, the results of growth and functional investigations demonstrated that the induced epidermal cells exhibited a high colony-forming ability, a long-term proliferative potential and the ability to regenerate a skin equivalent, which were regarded as the most important features of epidermal stem cells. These results suggest that the activation of β-catenin favors the reversion or dedifferentiation of differentiated epidermal cells to an immature or a less differentiated state. This study may also offer a new approach to yield enough epidermal stem cells for skin regeneration and tissue engineering. Copyright © 2012 S. Karger AG, Basel.
Many applications analyze quantified transcript-level abundances to make inferences. Having completed this computation across the large sample set, the CTD2 Center at the Translational Genomics Research Institute presents the quantified data in a straightforward, consolidated form for these types of analyses. Experimental Approaches
Inquiry in the Large-Enrollment Science Classroom: Simulating a Research Investigation
ERIC Educational Resources Information Center
Reeve, Suzanne; Hammond, Jennetta W.; Bradshaw, William S.
2004-01-01
We conduct research workshops twice each semester in our cell biology lecture course. Instead of solely analyzing data obtained by others, students form groups to design research questions and experimental protocols on a given topic. The main focus is the process of scientific thinking, not simply obtaining a correct product. (Contains 3 tables…
Using Spreadsheets to Help Students Think Recursively
ERIC Educational Resources Information Center
Webber, Robert P.
2012-01-01
Spreadsheets lend themselves naturally to recursive computations, since a formula can be defined as a function of one of more preceding cells. A hypothesized closed form for the "n"th term of a recursive sequence can be tested easily by using a spreadsheet to compute a large number of the terms. Similarly, a conjecture about the limit of a series…
Grafting of ARPE-19 and Schwann cells to the subretinal space in RCS rats.
Wang, Shaomei; Lu, Bin; Wood, Patrick; Lund, Raymond D
2005-07-01
To study the distribution of the human retinal pigment epithelium (hRPE) cell line ARPE-19 and human Schwann (hSC) cells grafted to the subretinal space of the Royal College of Surgeon (RCS) rat and the relation of graft cell distribution to photoreceptor rescue. Cell suspensions of both donor types were injected into the subretinal space of 3-week-old dystrophic RCS rats through a transscleral approach, human fibroblast and medium were used as control grafts. All animals were maintained on oral cyclosporine. At 1, 2, 4, 6, 15, 28, and 36 weeks after grafting, animals were killed. Human cell-specific markers were used to localize donor cells. Both donor cell types, as revealed by antibodies survived for a substantial time. Their distribution was very different: hRPE cells formed a large clump early on and, with time, spread along the host RPE in a layer one to two cells deep, whereas hSCs formed many smaller clumps, mainly in the subretinal space. Both cells rescued photoreceptors beyond the area of donor cell distribution. The number of surviving cells declined with time. Both hRPE and hSC grafts can survive and rescue photoreceptors for a substantial time after grafting. The number of both donor cell types declined with time, which could be an immune-related problem and/or due to other factors intrinsic to the host RCS retina. The fact that rescue occurred beyond the area of donor cell distribution suggests that diffusible factors are involved, raising the possibility that the two cell types function in a similar manner to rescue photoreceptors.
VLSI (Very Large Scale Integration) Design Tools, Reference Manual, Release 3.0.
1985-08-01
generators/mult prior to running mult. The generated layout is output in directory 1ca in caesar cells with names of the form "caesarame*oca. Mut is a cft ...vlsa) spice(1.vlsi), User’s Guide to AML VLSI Dodgen Tools Reference Manual, UW/NW VLSI Consortium, University of Washington, (Christopher Terman, MIT...of the form ’caesarname..ca. Muls is a cft -based program and therefore also produces *.bd fiIls ’Caesaramew may not begin with the string mule. The
Use of NASA Bioreactor in Engineering Tissue for Bone Repair
NASA Technical Reports Server (NTRS)
Duke, Pauline
1998-01-01
This study was proposed in search for a new alternative for bone replacement or repair. Because the systems commonly used in repair of bony defects form bone by going through a cartilaginous phase, implantation of a piece of cartilage could enhance the healing process by having a more advanced starting point. However, cartilage has seldom been used to replace bone due, in part, to the limitations in conventional culture systems that did not allow production of enough tissue for implants. The NASA-developed bioreactors known as STLV (Slow Turning Lateral Vessel) provide homogeneous distribution of cells, nutrients, and waste products, with less damaging turbulence and shear forces than conventional systems. Cultures under these conditions have higher growth rates, viability, and longevity, allowing larger "tissue-like" aggregates to form, thus opening the possibilities of producing enough tissue for implantation, along with the inherent advantages of in vitro manipulations. To assure large numbers of cells and to eliminate the use of timed embryos, we proposed to use an immortalized mouse limb bud cell line as the source of cells.
Microgravity mediated changes in phytoferritin accumulation in soybean root cap cells
NASA Technical Reports Server (NTRS)
Klymchuk, D. O.; Kordyum, E. L.; Vorobyova, T. V.; Brown, C. S.; Chapman, D. K.
2000-01-01
Phytoferritin is an iron-protein complex analogous to the ferritin found in mammalian, bacteria and fungi cells. Phytoferritin molecules are large proteins, about 10.5 nm in diameter, visualised in an electron microscope as discrete, electron dense particles with iron-containing core, where several thousand atoms of iron lie within the proteinaceous shell (apoferritin). In higher plants, a plastid stroma is the site of phytoferritin storage. Phytoferritin is seen in all types of plastids. It is considered to be a mechanism used by cells to store iron in a non-toxic form. Phytoferritin-bound iron may subsequently be used to form iron-containing components. It was shown that low levels of phytoferritin are synthesised in normal green leaves, whereas chlorotic leaves do not have a measurable amount of phytoferritin and leaves of iron-loaded seedlings contain a high level of total iron, and phytoferritin well-filled by iron. Phytoferritin accumulation was observed in photosynthetic inactivity chloroplasts during senescence and disease. In this study we analised the effects of microgravity and ethylene on production of phytoferritin in the root cap columella cells of soybean seedlings.
Tran, Dat Q; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M
2009-08-11
TGF-beta family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-beta is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFbeta-binding protein (LTBP) to produce a large latent form. Latent TGF-beta is also found on the surface of activated FOXP3(+) regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-beta to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-beta and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-beta expression on activated Tregs and recombinant latent TGF-beta1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-beta on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism.
Tran, Dat Q.; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M.
2009-01-01
TGF-β family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-β is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFβ-binding protein (LTBP) to produce a large latent form. Latent TGF-β is also found on the surface of activated FOXP3+ regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-β to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-β and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-β expression on activated Tregs and recombinant latent TGF-β1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-β on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism. PMID:19651619
Goryshina, E N
1980-07-01
A supposed life-span of hemosiderin-containing macrophages in the frog spleen has been described on the basis of their morphology, changes in the number of nuclei, and results of autoradiographic studies of DNA synthesis in various seasons. The hibernating stages of the lines are hemocytoblasts, mononuclear and moderately polynuclear macrophages, which renew the phagocytosis and nuclear division at the beginning of spring. A new population of monomuclear macrophages develops from hemocytoblasts during spring. Large polynuclear forms appear during spring and summer, reach their maximal size and erythrophagocytotic activity towards the end of summer, and die in winter. The most part of the stored pigments is removed from the spleen. DNA synthesis and division occur asynchronously in the nuclei of one cell. Some pathologic forms of macrophages are described. The similarity in the proliferation cell kinetics of neutrophilic and macrophagal lines confirms a close relation between the two. The role of temperature and photoperiod in the regulations of proliferative activity of these cells during spring is discussed.
Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche
Lawson, Michelle A.; McDonald, Michelle M.; Kovacic, Natasa; Hua Khoo, Weng; Terry, Rachael L.; Down, Jenny; Kaplan, Warren; Paton-Hough, Julia; Fellows, Clair; Pettitt, Jessica A.; Neil Dear, T.; Van Valckenborgh, Els; Baldock, Paul A.; Rogers, Michael J.; Eaton, Colby L.; Vanderkerken, Karin; Pettit, Allison R.; Quinn, Julian M. W.; Zannettino, Andrew C. W.; Phan, Tri Giang; Croucher, Peter I.
2015-01-01
Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched ‘on' by engagement with bone-lining cells or osteoblasts, and switched ‘off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse. PMID:26632274
Cell fate control in the developing central nervous system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se
The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatmentsmore » of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.« less
Dinitrophenyl-reactive immunoglobulins in the serum of normal bowfin, Amia calva
Bradshaw, Claire; Sigel, M. M.
1972-01-01
The sera from unimmunized bowfin agglutinate a large variety of red cells. Although they precipitate DNP-BSA they manifest only slight agglutinating capacity for DNP-coated cells. 15S immunoglobulin isolated by DEAE-cellulose chromatography followed by Sephadex G-200 gel filtration possessed a high level of broad reactivity towards unmodified DNP-coated cells, whereas the 7S immunoglobulin isolated by this procedure was inactive. However, following precipitation of whole serum with DNP-BSA both molecules could be recovered in a form which demonstrated specificity for DNP, in that both precipitated DNP-BSA and agglutinated DNP-coated cells but not unmodified cells. The mechanism of activation of the 7S molecule is not known but the data suggest that this immunoglobulin is divalent. ImagesFIG. 3FIG. 4 PMID:4624342
NASA Technical Reports Server (NTRS)
Ungar, Lyle H.; Bennett, Mark J.; Brown, Robert A.
1985-01-01
The shape and stability of two-dimensional finite-amplitude cellular interfaces arising during directional solidification are compared for several solidification models that account differently for latent heat released at the interface, unequal thermal conductivities of melt and solid, and solute diffusivity in the solid. Finite-element analysis and computer-implemented perturbation methods are used to analyze the families of steadily growing cellular forms that evolve from the planar state. In all models a secondary bifurcation between different families of finite-amplitude cells exists that halves the spatial wavelength of the stable interface. The quantitative location of this transition is very dependent on the details of the model. Large amounts of solute diffusion in the solid retard the growth of large-amplitude cells.
Multiple roles of connexins in atherosclerosis- and restenosis-induced vascular remodelling.
Morel, Sandrine
2014-01-01
Endothelial dysfunction is the initial step in atherosclerotic plaque development in large- and medium-sized arteries. This progressive disease, which starts during childhood, is characterized by the accumulation of lipids, macrophages, neutrophils, T lymphocytes and smooth muscle cells in the intima of the vessels. Erosion and rupture of the atherosclerotic plaque may induce myocardial infarction and cerebrovascular accidents, which are responsible for a large percentage of sudden deaths. The most common treatment for atherosclerosis is angioplasty and stent implantation, but these surgical interventions favour a vascular reaction called restenosis and the associated de-endothelialization increases the risk of thrombosis. This review provides an overview of the role of connexins, a large family of transmembrane proteins, in vascular remodelling associated with atherosclerosis and restenosis. The connexins expressed in the vascular wall are Cx37, Cx40, Cx43 and Cx45; their expressions vary with vascular territory and species. Connexins form hemichannels or gap junction channels, allowing the exchange of ions and small metabolites between the cytosol and extracellular space or between neighbouring cells, respectively. Connexins have important roles in vascular physiology; they support radial and longitudinal cell-to-cell communication in the vascular wall, and significant changes in their expression patterns have been described during atherosclerosis and restenosis.
Barriers for Deriving Transgene-Free Pig iPS Cells with Episomal Vectors.
Du, Xuguang; Feng, Tao; Yu, Dawei; Wu, Yuanyuan; Zou, Huiying; Ma, Shuangyu; Feng, Chong; Huang, Yongye; Ouyang, Hongsheng; Hu, Xiaoxiang; Pan, Dengke; Li, Ning; Wu, Sen
2015-11-01
To date no authentic embryonic stem cell (ESC) line or germline-competent-induced pluripotent stem cell (iPSC) line has been established for large animals. Despite this fact, there is an impression in the field that large animal ESCs or iPSCs are as good as mouse counterparts. Clarification of this issue is important for a healthy advancement of the stem cell field. Elucidation of the causes of this failure in obtaining high quality iPSCs/ESCs may offer essential clues for eventual establishment of authentic ESCs for large animals including humans. To this end, we first generated porcine iPSCs using nonintegrating replicating episomal plasmids. Although these porcine iPSCs met most pluripotency criteria, they could neither generate cloned piglets through nuclear transfer, nor contribute to later stage chimeras through morula injections or aggregations. We found that the reprogramming genes in iPSCs could not be removed even under negative selection, indicating they are required to maintain self-renewal. The persistent expression of these genes in porcine iPSCs in turn caused differentiation defects in vivo. Therefore, incomplete reprogramming manifested by a reliance on sustained expression of exogenous-reprogramming factors appears to be the main reason for the inability of porcine iPSCs to form iPSC-derived piglets. © 2015 AlphaMed Press.
Wegiel, J; Wang, K C; Imaki, H; Rubenstein, R; Wronska, A; Osuchowski, M; Lipinski, W J; Walker, L C; LeVine, H
2001-01-01
Ultrastructural reconstruction of 27 fibrillar plaques in different stages of formation and maturation was undertaken to characterize the development of fibrillar plaques in the brains of human APP(SW) transgenic mice (Tg2576). The study suggests that microglial cells are not engaged in Abeta removal and plaque degradation, but in contrast, are a driving force in plaque formation and development. Fibrillar Abeta deposition at the amyloid pole of microglial cells appears to initiate three types of neuropil response: degeneration of neurons, protective activation of astrocytes, and attraction and activation of microglial cells sustaining plaque growth. Enlargement of neuronal processes and synapses with accumulation of degenerated mitochondria, dense bodies, and Hirano-type bodies is the marker of toxic injury of neurons by fibrillar Abeta. Separation of amyloid cores from neurons and degradation of amyloid cores by cytoplasmic processes of hypertrophic astrocytes suggest the protective and defensive character of astrocytic response to fibrillar Abeta. The growth of cored plaque from a small plaque with one microglial cell with an amyloid star and a few dystrophic neurites to a large plaque formed by several dozen microglial cells seen in old mice is the effect of attraction and activation of microglial cells residing outside of the plaque perimeter. This mechanism of growth of plaques appears to be characteristic of cored plaques in transgenic mice. Other features in mouse microglial cells that are absent in human brain are clusters of vacuoles, probably of lysosomal origin. They evolve into circular cisternae and finally into large vacuoles filled with osmiophilic, amorphous material and bundles of fibrils that are poorly labeled with antibody to Abeta. Microglial cells appear to release large amounts of fibrillar Abeta and accumulate traces of fibrillar Abeta in a lysosomal pathway.
Stover, Alexander E.; Brick, David J.; Nethercott, Hubert E.; Banuelos, Maria G.; Sun, Lei; O’Dowd, Diane K.; Schwartz, Philip H.
2014-01-01
Robust strategies for developing patient-specific, human, induced pluripotent stem cell (iPSC)-based therapies of the brain require an ability to derive large numbers of highly defined neural cells. Recent progress in iPSC culture techniques includes partial-to-complete elimination of feeder layers, use of defined media, and single-cell passaging. However, these techniques still require embryoid body formation or coculture for differentiation into neural stem cells (NSCs). In addition, none of the published methodologies has employed all of the advances in a single culture system. Here we describe a reliable method for long-term, single-cell passaging of PSCs using a feeder-free, defined culture system that produces confluent, adherent PSCs that can be differentiated into NSCs. To provide a basis for robust quality control, we have devised a system of cellular nomenclature that describes an accurate genotype and phenotype of the cells at specific stages in the process. We demonstrate that this protocol allows for the efficient, large-scale, cGMP-compliant production of transplantable NSCs from all lines tested. We also show that NSCs generated from iPSCs produced with the process described are capable of forming both glia defined by their expression of S100β and neurons that fire repetitive action potentials. PMID:23893392
The "sweet" side of the protein corona: effects of glycosylation on nanoparticle-cell interactions.
Wan, Sha; Kelly, Philip M; Mahon, Eugene; Stöckmann, Henning; Rudd, Pauline M; Caruso, Frank; Dawson, Kenneth A; Yan, Yan; Monopoli, Marco P
2015-02-24
The significance of a protein corona on nanoparticles in modulating particle properties and their biological interactions has been widely acknowledged. The protein corona is derived from proteins in biological fluids, many of which are glycosylated. To date, the glycans on the proteins have been largely overlooked in studies of nanoparticle-cell interactions. In this study, we demonstrate that glycosylation of the protein corona plays an important role in maintaining the colloidal stability of nanoparticles and influences nanoparticle-cell interactions. The removal of glycans from the protein corona enhances cell membrane adhesion and cell uptake of nanoparticles in comparison with the fully glycosylated form, resulting in the generation of a pro-inflammatory milieu by macrophages. This study highlights that the post-translational modification of proteins can significantly impact nanoparticle-cell interactions by modulating the protein corona properties.
Bali, Rachna; Savino, Laura; Ramirez, Diego A.; Tsvetkova, Nelly M.; Bagatolli, Luis; Tablin, Fern; Crowe, John H.; Leidy, Chad
2009-01-01
There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large domains. In contrast, some polarizable cells do show large regions with qualitative differences in lipid fluidity. It is important to ask more precisely, based on the current phase diagrams, under what conditions would large domains be expected to form in cells. In this work we study the thermotropic phase behavior of the platelet plasma membrane by FTIR, and compare it to a POPC/Sphingomyelin/Cholesterol model representing the outer leaflet composition. We find that this model closely reflects the platelet phase behavior. Previous work has shown that the platelet plasma membrane presents inhomogeneous distribution of DiI18:0 at 24°C, but not at 37°C, which suggests the formation of macroscopic lipid domains at low temperatures. We show by fluorescence microscopy, and by comparison with published phase diagrams, that the outer leaflet model system enters the macroscopic domain region only at the lower temperature. In addition, the low cholesterol content in platelets (~15 mol %), appears to be crucial for the formation of large domains during cooling. PMID:19341703
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chern, Yann-Cherng; Wu, Hung-Ruei; Chen, Yen-Chu
2015-08-15
A solvent soaking and rinsing method, in which the solvent was allowed to soak all over the surface followed by a spinning for solvent draining, was found to produce perovskite layers with high uniformity on a centimeter scale and with much improved reliability. Besides the enhanced crystallinity and surface morphology due to the rinsing induced surface precipitation that constrains the grain growth underneath in the precursor films, large-area uniformity with film thickness determined exclusively by the rotational speed of rinsing spinning for solvent draining was observed. With chloroform as rinsing solvent, highly uniform and mirror-like perovskite layers of area asmore » large as 8 cm × 8 cm were produced and highly uniform planar perovskite solar cells with power conversion efficiency of 10.6 ± 0.2% as well as much prolonged lifetime were obtained. The high uniformity and reliability observed with this solvent soaking and rinsing method were ascribed to the low viscosity of chloroform as well as its feasibility of mixing with the solvent used in the precursor solution. Moreover, since the surface precipitation forms before the solvent draining, this solvent soaking and rinsing method may be adapted to spinless process and be compatible with large-area and continuous production. With the large-area uniformity and reliability for the resultant perovskite layers, this chloroform soaking and rinsing approach may thus be promising for the mass production and commercialization of large-area perovskite solar cells.« less
Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics.
Gamwell, Lisa F; Gambaro, Karen; Merziotis, Maria; Crane, Colleen; Arcand, Suzanna L; Bourada, Valerie; Davis, Christopher; Squire, Jeremy A; Huntsman, David G; Tonin, Patricia N; Vanderhyden, Barbara C
2013-02-21
The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing. Spectral karyotyping revealed a largely normal diploid karyotype (in greater than 95% of cells) with a visibly shorter chromosome 20 contig. High density SNP array analysis also revealed few genomic anomalies in BIN-67 cells, which included loss of heterozygosity of an estimated 16.7 Mb interval on chromosome 20. SNP array analyses of four SCCOHT samples also indicated a low frequency of genomic anomalies in the majority of cases. Although resistant to platinum chemotherapeutic drugs, BIN-67 cell viability in vitro was reduced by > 75% after infection with oncolytic viruses. These results show that SCCOHT differs from high-grade serous carcinomas by exhibiting few chromosomal anomalies and lacking TP53 mutations. Although BIN-67 cells are resistant to standard chemotherapeutic agents, their sensitivity to oncolytic viruses suggests that their therapeutic use in SCCOHT should be considered.
Morphogenic Protein RodZ Interacts with Sporulation Specific SpoIIE in Bacillus subtilis.
Muchová, Katarína; Chromiková, Zuzana; Bradshaw, Niels; Wilkinson, Anthony J; Barák, Imrich
2016-01-01
The first landmark in sporulation of Bacillus subtilis is the formation of an asymmetric septum followed by selective activation of the transcription factor σF in the resulting smaller cell. How the morphological transformations that occur during sporulation are coupled to cell-specific activation of transcription is largely unknown. The membrane protein SpoIIE is a constituent of the asymmetric sporulation septum and is a crucial determinant of σF activation. Here we report that the morphogenic protein, RodZ, which is essential for cell shape determination, is additionally required for asymmetric septum formation and sporulation. In cells depleted of RodZ, formation of asymmetric septa is disturbed and σF activation is perturbed. During sporulation, we found that SpoIIE recruits RodZ to the asymmetric septum. Moreover, we detected a direct interaction between SpoIIE and RodZ in vitro and in vivo, indicating that SpoIIE-RodZ may form a complex to coordinate asymmetric septum formation and σF activation. We propose that RodZ could provide a link between the cell shape machinery and the coordinated morphological and developmental transitions required to form a resistant spore.
NASA Astrophysics Data System (ADS)
Barrett, Ronald M.; Barrett, Ronald P.; Barrett, Cassandra M.
2017-09-01
This paper lays out the inspiration, operational principles, analytical modeling and coupon testing of a new class of thermally adaptive building coverings. The fundamental driving concepts for these coverings are derived from various families of thermotropic plant structures. Certain plant cellular structures like those in Mimosa pudica (Sensitive Plant), Rhododendron leaves or Albizia julibrissin (Mimosa Tree), exhibit actuation physiology which depends on changes in cellular turgor pressures to generate motion. This form of cellular action via turgor pressure manipulation is an inspiration for a new field of thermally adaptive building coverings which use various forms of cellular foam to aid or enable actuation much like plant cells are used to move leaves. When exposed to high solar loading, the structures use the inherent actuation capability of pockets of air trapped in closed cell foam as actuators to curve plates upwards and outwards. When cold, these same structures curve back towards the building forming large convex pockets of dead air to insulate the building. This paper describes basic classical laminated plate theory models comparing theory and experiment of such coupons containing closed-cell foam actuators. The study concludes with a global description of the effectiveness of this class of thermally adaptive building coverings.
Vicente-Manzanares, Miguel; Newell-Litwa, Karen; Bachir, Alexia I; Whitmore, Leanna A; Horwitz, Alan Rick
2011-04-18
Migratory front-back polarity emerges from the cooperative effect of myosin IIA (MIIA) and IIB (MIIB) on adhesive signaling. We demonstrate here that, during polarization, MIIA and MIIB coordinately promote localized actomyosin bundling, which generates large, stable adhesions that do not signal to Rac and thereby form the cell rear. MIIA formed dynamic actomyosin proto-bundles that mark the cell rear during spreading; it also bound to actin filament bundles associated with initial adhesion maturation in protrusions. Subsequent incorporation of MIIB stabilized the adhesions and actomyosin filaments with which it associated and formed a stable, extended rear. These adhesions did not turn over and no longer signal to Rac. Microtubules fine-tuned the polarity by positioning the front opposite the MIIA/MIIB-specified rear. Decreased Rac signaling in the vicinity of the MIIA/MIIB-stabilized proto-bundles and adhesions was accompanied by the loss of Rac guanine nucleotide exchange factor (GEFs), like βPIX and DOCK180, and by inhibited phosphorylation of key residues on adhesion proteins that recruit and activate Rac GEFs. These observations lead to a model for front-back polarity through local GEF depletion.
Geochemical constraints on the Hadean environment from mineral fingerprints of prokaryotes.
Novoselov, Alexey A; Silva, Dailto; Schneider, Jerusa; Abrevaya, Ximena Celeste; Chaffin, Michael S; Serrano, Paloma; Navarro, Margareth Sugano; Conti, Maria Josiane; Souza Filho, Carlos Roberto de
2017-06-21
The environmental conditions on the Earth before 4 billion years ago are highly uncertain, largely because of the lack of a substantial rock record from this period. During this time interval, known as the Hadean, the young planet transformed from an uninhabited world to the one capable of supporting, and inhabited by the first living cells. These cells formed in a fluid environment they could not at first control, with homeostatic mechanisms developing only later. It is therefore possible that present-day organisms retain some record of the primordial fluid in which the first cells formed. Here we present new data on the elemental compositions and mineral fingerprints of both Bacteria and Archaea, using these data to constrain the environment in which life formed. The cradle solution that produced this elemental signature was saturated in barite, sphene, chalcedony, apatite, and clay minerals. The presence of these minerals, as well as other chemical features, suggests that the cradle environment of life may have been a weathering fluid interacting with dry-land silicate rocks. The specific mineral assemblage provides evidence for a moderate Hadean climate with dry and wet seasons and a lower atmospheric abundance of CO 2 than is present today.
Dscam2 mediates axonal tiling in the Drosophila visual system
Millard, S. Sean; Flanagan, John J.; Pappu, Kartik S.; Wu, Wei; Zipursky, S. Lawrence
2009-01-01
Sensory processing centres in both the vertebrate and the invertebrate brain are often organized into reiterated columns, thus facilitating an internal topographic representation of the external world. Cells within each column are arranged in a stereotyped fashion and form precise patterns of synaptic connections within discrete layers. These connections are largely confined to a single column, thereby preserving the spatial information from the periphery. Other neurons integrate this information by connecting to multiple columns. Restricting axons to columns is conceptually similar to tiling. Axons and dendrites of neighbouring neurons of the same class use tiling to form complete, yet non-overlapping, receptive fields1-3. It is thought that, at the molecular level, cell-surface proteins mediate tiling through contact-dependent repulsive interactions1,2,4,5, but proteins serving this function have not yet been identified. Here we show that the immunoglobulin superfamily member Dscam2 restricts the connections formed by L1 lamina neurons to columns in the Drosophila visual system. Our data support a model in which Dscam2 homophilic interactions mediate repulsion between neurites of L1 cells in neighbouring columns. We propose that Dscam2 is a tiling receptor for L1 neurons. PMID:17554308
A Novel Isoform of the B Cell Tyrosine Kinase BTK Protects Breast Cancer Cells from Apoptosis
Eifert, Cheryl; Wang, Xianhui; Kokabee, Leila; Kourtidis, Antonis; Jain, Ritu; Gerdes, Michael J.; Conklin, Douglas S.
2016-01-01
Tyrosine kinases orchestrate key cellular signaling pathways and their dysregulation is often associated with cellular transformation. Several recent cases in which inhibitors of tyrosine kinases have been successfully used as anticancer agents have underscored the importance of this class of proteins in the development of targeted cancer therapies. We have carried out a large-scale loss-of-function analysis of the human tyrosine kinases using RNA interference to identify novel survival factors for breast cancer cells. In addition to kinases with known roles in breast and other cancers, we identified several kinases that were previously unknown to be required for breast cancer cell survival. The most surprising of these was the cytosolic, nonreceptor tyrosine kinase, Bruton’s tyrosine kinase (BTK), which has been extensively studied in B cell development. Down regulation of this protein with RNAi or inhibition with pharmacological inhibitors causes apoptosis; overexpression inhibits apoptosis induced by Doxorubicin in breast cancer cells. Our results surprisingly show that BTK is expressed in several breast cancer cell lines and tumors. The predominant form of BTK found in tumor cells is transcribed from an alternative promoter and results in a protein with an amino-terminal extension. This alternate form of BTK is expressed at significantly higher levels in tumorigenic breast cells than in normal breast cells. Since this protein is a survival factor for these cells, it represents both a potential marker and novel therapeutic target for breast cancer. PMID:23913792
The survival of salmonellas in shell eggs cooked under simulated domestic conditions.
Humphrey, T. J.; Greenwood, M.; Gilbert, R. J.; Rowe, B.; Chapman, P. A.
1989-01-01
Strains of Salmonella enteritidis, S. typhimurium and S. senftenberg inoculated into the yolks of shell eggs were found to survive forms of cooking where some of the yolk remained liquid. Survival was largely independent of the size of the initial inoculum. The organisms also grew rapidly in eggs stored at room temperature and after 2 days the number of cells per gram of yolk exceeded log10 8.0. With this level of contamination viable cells could be recovered from eggs cooked in any manner. PMID:2673824
Intrahepatic cholangiocarcinoma.
Nakano, Masayuki; Ariizumi, Shun-Ichi; Yamamoto, Masakazu
2017-03-01
Cholangiocarcinoma, also referred to as cholangiocellular carcinoma (particularly in Japan), develops along the biliary tract. The tumor may be intra- or extrahepatic and have different features with specific treatments based on the site of origin. Guidelines for diagnosis and management of cholangiorcarcinoma, such as those proposed by EASL (European Association for the Study of the Liver) 1 and the Mayo Clinic 2 classify the tumor into intrahepatic, perihilar, and distal cholangiocarcinoma. There are three main macroscopic patterns of growth of cholangiocarcinoma: mass-forming, periductal-infiltrating and intraductal. A combination of mass-forming and periductal infiltrating tumors have been shown to have a poor prognosis. 3 Intrahepatic cholangiocarcinoma (ICC) comprises two microscopic subtypes: bile duct and cholangiolar. 4 The bile duct subtype has tall columnar cells that form large glands, whereas cholangiolar tumors are composed of cuboidal and low columnar cells. Patients with cholangiolar tumors, referred to as cholangiolocellular carcinoma, reportedly have a better 5-year survival rate than those with the bile duct type. 4 . Copyright © 2017 Elsevier Inc. All rights reserved.
Actin Is Crucial for All Kinetically Distinguishable Forms of Endocytosis at Synapses.
Wu, Xin-Sheng; Lee, Sung Hoon; Sheng, Jiansong; Zhang, Zhen; Zhao, Wei-Dong; Wang, Dongsheng; Jin, Yinghui; Charnay, Patrick; Ervasti, James M; Wu, Ling-Gang
2016-12-07
Mechanical force is needed to mediate endocytosis. Whether actin, the most abundant force-generating molecule, is essential for endocytosis is highly controversial in mammalian cells, particularly synapses, likely due to the use of actin blockers, the efficiency and specificity of which are often unclear in the studied cell. Here we addressed this issue using a knockout approach combined with measurements of membrane capacitance and fission pore conductance, imaging of vesicular protein endocytosis, and electron microscopy. We found that two actin isoforms, β- and γ-actin, are crucial for slow, rapid, bulk, and overshoot endocytosis at large calyx-type synapses, and for slow endocytosis and bulk endocytosis at small hippocampal synapses. Polymerized actin provides mechanical force to form endocytic pits. Actin also facilitates replenishment of the readily releasable vesicle pool, likely via endocytic clearance of active zones. We conclude that polymerized actin provides mechanical force essential for all kinetically distinguishable forms of endocytosis at synapses. Published by Elsevier Inc.
Actin is crucial for all kinetically distinguishable forms of endocytosis at synapses
Wu, Xin-Sheng; Lee, Sunghoon; Sheng, Jiansong; Zhang, Zhen; Zhao, Weidong; Wang, Dongsheng; Jin, Yinghui; Charnay, Patrick; Ervasti, James M.; Wu, Ling-Gang
2016-01-01
Summary Mechanical force is needed to mediate endocytosis. Whether actin, the most abundant force-generating molecule, is essential for endocytosis is highly controversial in mammalian cells, particularly synapses, likely due to the use of actin blockers, the efficiency and specificity of which are often unclear in the studied cell. Here we addressed this issue using knockout approach combined with measurements of membrane capacitance and fission pore conductance, imaging of vesicular protein endocytosis, and electron microscopy. We found that two actin isoforms, β- and γ-actin, are crucial for slow, rapid, bulk, and overshoot endocytosis at large calyx-type synapses, and for slow endocytosis and bulk endocytosis at small hippocampal synapses. Polymerized actin provides mechanical force to form endocytic pits. Actin also facilitates replenishment of the readily releasable vesicle pool, likely via endocytic clearance of active zones. We conclude that polymerized actin provides mechanical force essential for all kinetically distinguishable forms of endocytosis at synapses. PMID:27840001
NASA Astrophysics Data System (ADS)
Huang, Haiping
2017-03-01
To understand the collective spiking activity in neuronal populations, it is essential to reveal basic circuit variables responsible for these emergent functional states. Here, I develop a mean field theory for the population coupling recently proposed in the studies of the visual cortex of mouse and monkey, relating the individual neuron activity to the population activity, and extend the original form to the second order, relating neuron-pair’s activity to the population activity, to explain the high order correlations observed in the neural data. I test the computational framework on the salamander retinal data and the cortical spiking data of behaving rats. For the retinal data, the original form of population coupling and its advanced form can explain a significant fraction of two-cell correlations and three-cell correlations, respectively. For the cortical data, the performance becomes much better, and the second order population coupling reveals non-local effects in local cortical circuits.
Three-Dimensional Cell Culture Models for Infectious Disease and Drug Development
NASA Technical Reports Server (NTRS)
Nickerson, Cheryl A.; Honer zu Bentrup, Kerstin; Ott, C. Mark
2005-01-01
Three-dimensional (3-D) cell cultures hold enormous potential to advance our understanding of infectious disease and to effectively translate basic cellular research into clinical applications. Using novel NASA bioreactor technology, the rotating wall vessel (RWV), we have engineered physiologically relevant 3-D human tissue culture models for infectious disease studies. The design of the RWV is based on the understanding that organs and tissues function in a 3-D environment, and that this 3-D architecture is critical for the differentiated form and function of tissues in vivo. The RWV provides large numbers of cells which are amenable to a wide variety of experimental manipulations and provides an easy, reproducible, and cost-effective approach to enhance differentiated features of cell culture models.
Hydrodynamic effects on cell growth in agitated microcarrier bioreactors
NASA Technical Reports Server (NTRS)
Cherry, Robert S.; Papoutsakis, E. Terry
1988-01-01
The net growth rate of bovine embryonic kidney cells in microcarrier bioreactor is the result of a variable death rate imposed on a cell culture trying to grow at a constant intrinsic growth rate. The death rate is a function of the agitation conditions in the system, and increases at higher agitation because of increasingly energetic interactions of the cell covered microcarriers with turbulent eddies in the fluid. At very low agitation rates bead-bead bridging becomes important; the large clumps formed by bridging can interact with larger eddies than single beads, leading to a higher death rate at low agitation. The growth and death rate were correlated with a dimensionless eddy number which compares eddy forces to the buoyant force on the bead.
NASA Astrophysics Data System (ADS)
Carroll, David J.; Hua, Wei
The starfish oocyte has proven useful for studies involving microinjection because it is relatively large (190 μm) and optically clear. These oocytes are easily obtained from the ovary arrested at prophase of meiosis I, making them useful as a model system for the study of cell cycle-related events. In this chapter, a method for combining microinjection with immunoblotting of single cells is described. Individual starfish oocytes are injected, removed from the microinjection chamber, and analyzed by immunoblotting for the dual-phosphorylated form of mitogen-activated protein kinase (MAPK). This method will allow for experiments testing the regulation of MAPK in single cells and for the manipulation of these cells by a quantitative microinjection technique.
The cell signaling protein tumor necrosis factor (TNF), produced by white blood cells, promotes inflammation and immunity processes such as fever and is involved in tumorigenesis and apoptosis (programmed cell death). However, dysregulation of TNF can also lead to another form of programmed cell death called necroptosis, which is characterized by a rise in intracellular Ca2+, generation of reactive oxygen species (ROS), intracellular acidity, depletion of ATP, and, eventually, plasma membrane rupture. TNF-induced necroptosis has been associated with a wide variety of diseases including neurodegenerative diseases, major depression, rheumatoid arthritis, and cancer. Whereas the signaling mechanisms underlying TNF-induced apoptosis have largely been determined, the events precipitating in TNF-initiated necroptosis are still unknown.
Blood-brain barrier transport of drugs for the treatment of brain diseases.
Gabathuler, Reinhard
2009-06-01
The central nervous system is a sanctuary protected by barriers that regulate brain homeostasis and control the transport of endogenous compounds into the brain. The blood-brain barrier, formed by endothelial cells of the brain capillaries, restricts access to brain cells allowing entry only to amino acids, glucose and hormones needed for normal brain cell function and metabolism. This very tight regulation of brain cell access is essential for the survival of neurons which do not have a significant capacity to regenerate, but also prevents therapeutic compounds, small and large, from reaching the brain. As a result, various strategies are being developed to enhance access of drugs to the brain parenchyma at therapeutically meaningful concentrations to effectively manage disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; Ievskaya, Yulia; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk
2015-02-01
Electrochemically deposited Cu{sub 2}O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu{sub 2}O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achievedmore » in vacuum processed cells.« less
Krey, Jocelyn F; Dumont, Rachel A; Wilmarth, Philip A; David, Larry L; Johnson, Kenneth R; Barr-Gillespie, Peter G
2018-01-24
Sensory hair cells require control of physical properties of their apical plasma membranes for normal development and function. Members of the ADP-ribosylation factor (ARF) small GTPase family regulate membrane trafficking and cytoskeletal assembly in many cells. We identified ELMO domain-containing protein 1 (ELMOD1), a guanine nucleoside triphosphatase activating protein (GAP) for ARF6, as the most highly enriched ARF regulator in hair cells. To characterize ELMOD1 control of trafficking, we analyzed mice of both sexes from a strain lacking functional ELMOD1 [roundabout ( rda )]. In rda/rda mice, cuticular plates of utricle hair cells initially formed normally, then degenerated after postnatal day 5; large numbers of vesicles invaded the compromised cuticular plate. Hair bundles initially developed normally, but the cell's apical membrane lifted away from the cuticular plate, and stereocilia elongated and fused. Membrane trafficking in type I hair cells, measured by FM1-43 dye labeling, was altered in rda/rda mice. Consistent with the proposed GAP role for ELMOD1, the ARF6 GTP/GDP ratio was significantly elevated in rda/rda utricles compared with controls, and the level of ARF6-GTP was correlated with the severity of the rda/rda phenotype. These results suggest that conversion of ARF6 to its GDP-bound form is necessary for final stabilization of the hair bundle. SIGNIFICANCE STATEMENT Assembly of the mechanically sensitive hair bundle of sensory hair cells requires growth and reorganization of apical actin and membrane structures. Hair bundles and apical membranes in mice with mutations in the Elmod1 gene degenerate after formation, suggesting that the ELMOD1 protein stabilizes these structures. We show that ELMOD1 is a GTPase-activating protein in hair cells for the small GTP-binding protein ARF6, known to participate in actin assembly and membrane trafficking. We propose that conversion of ARF6 into the GDP-bound form in the apical domain of hair cells is essential for stabilizing apical actin structures like the hair bundle and ensuring that the apical membrane forms appropriately around the stereocilia. Copyright © 2018 the authors 0270-6474/18/380843-15$15.00/0.
Regulation of humoral immunity by complement.
Carroll, Michael C; Isenman, David E
2012-08-24
The complement system of innate immunity is important in regulating humoral immunity largely through the complement receptor CR2, which forms a coreceptor on B cells during antigen-induced activation. However, CR2 also retains antigens on follicular dendritic cells (FDCs). Display of antigen on FDCs is critical for clonal selection and affinity maturation of activated B cells. This review will discuss the role of complement in adaptive immunity in general with a focus on the interplay between CR2-associated antigen on B cells with CR2 expressed on FDCs. This latter interaction provides an opportunity for memory B cells to sample antigen over prolonged periods. The cocrystal structure of CR2 with its ligand C3d provides insight into how the complement system regulates access of antigen by B cells with implications for therapeutic manipulations to modulate aberrant B cell responses in the case of autoimmunity. Copyright © 2012 Elsevier Inc. All rights reserved.
Navigating the plant cell: intracellular transport logistics in the green kingdom.
Geitmann, Anja; Nebenführ, Andreas
2015-10-01
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin-myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. © 2015 Geitmann and Nebenführ. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Xie, Yuan; Bergström, Tobias; Jiang, Yiwen; Johansson, Patrik; Marinescu, Voichita Dana; Lindberg, Nanna; Segerman, Anna; Wicher, Grzegorz; Niklasson, Mia; Baskaran, Sathishkumar; Sreedharan, Smitha; Everlien, Isabelle; Kastemar, Marianne; Hermansson, Annika; Elfineh, Lioudmila; Libard, Sylwia; Holland, Eric Charles; Hesselager, Göran; Alafuzoff, Irina; Westermark, Bengt; Nelander, Sven; Forsberg-Nilsson, Karin; Uhrbom, Lene
2015-10-01
Glioblastoma (GBM) is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs). To meet the present shortage of relevant GBM cell (GC) lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC) resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research.
Emergent patterns of collective cell migration under tubular confinement.
Xi, Wang; Sonam, Surabhi; Beng Saw, Thuan; Ladoux, Benoit; Teck Lim, Chwee
2017-11-15
Collective epithelial behaviors are essential for the development of lumens in organs. However, conventional assays of planar systems fail to replicate cell cohorts of tubular structures that advance in concerted ways on out-of-plane curved and confined surfaces, such as ductal elongation in vivo. Here, we mimic such coordinated tissue migration by forming lumens of epithelial cell sheets inside microtubes of 1-10 cell lengths in diameter. We show that these cell tubes reproduce the physiological apical-basal polarity, and have actin alignment, cell orientation, tissue organization, and migration modes that depend on the extent of tubular confinement and/or curvature. In contrast to flat constraint, the cell sheets in a highly constricted smaller microtube demonstrate slow motion with periodic relaxation, but fast overall movement in large microtubes. Altogether, our findings provide insights into the emerging migratory modes for epithelial migration and growth under tubular confinement, which are reminiscent of the in vivo scenario.
Salt-mediated multicell formation in Deinococcus radiodurans.
Chou, F I; Tan, S T
1991-01-01
The highly radiation-resistant tetracoccal bacterium Deinococcus radiodurans exhibited a reversible multi-cell-form transition which depended on the NaCl concentration in the medium. In response to 0.8% NaCl addition into the medium, the pair/tetrad (designated 2/4) cells in a young culture grew and divided but did not separate and became 8-, 16-, and 32-cell units successively. In exponential growth phase, the cells divided in a 16/32 pattern. Potassium ions were equally effective as Na+ in mediating this multicell-formation effect; Mg2+, Li+, and Ca2+ also worked but produced less multiplicity. This effect appears to be species specific. This-section micrographs revealed that in a 16/32-cell unit, eight 2/4 cells were encased in an orderly manner within a large peripheral wall, showing five cycles of septation. Our results suggest the presence of a salt-sensitive mechanism for controlling cell separation in D. radiodurans. Images PMID:2022617
Prospects for Replacement of Auditory Neurons by Stem Cells
Shi, Fuxin; Edge, Albert S.B.
2013-01-01
Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment. PMID:23370457
Ianzini, Fiorenza; Kosmacek, Elizabeth A.; Nelson, Elke S.; Napoli, Eleonora; Erenpreisa, Jekaterina; Kalejs, Martins; Mackey, Michael A.
2009-01-01
Cancer is frequently characterized histologically by the appearance of large cells that are either aneuploid or polyploid. Aneuploidy and polyploidy are hallmarks of radiation-induced mitotic catastrophe (MC), a common phenomenon occurring in tumor cells with impaired p53 function exposed to various cytotoxic and genotoxic agents. MC is characterized by altered expression of mitotic regulators, untimely and abnormal cell division, delayed DNA damage, and changes in morphology. We report here that cells undergoing radiation-induced MC are more plastic with regards to ploidy and that this plasticity allows them to reorganize their genetic material through reduction divisions to produce smaller cells morphologically indistinguishable from control cells. Experiments conducted with the Large Scale Digital Cell Analysis System (LSDCAS) are discussed that show that a small fraction of polyploid cancer cells formed via radiation-induced MC can survive and start a process of depolyploidization that yields various outcomes. While most multipolar divisions failed and cell fusion occurred; some of these divisions were successful and originated a variety of cell progeny characterized by different ploidy. Among these ploidy phenotypes, a progeny of small mononucleated cells, indistinguishable from the untreated control cells, is often seen. We report here evidence that meiosis-specific genes are expressed in the polyploid cells during depolyploidization. Tumor cells might take advantage of the temporary change from a pro-mitotic to a pro-meiotic division regimen to facilitate depolyploidization and restore the proliferative state of the tumor cell population. These events might be mechanisms by which tumor progression and resistance to treatment occur in vivo. PMID:19258501
Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.
Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan
2016-10-01
This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.
Therapeutic avenues for hereditary forms of retinal blindness.
Kannabiran, Chitra; Mariappan, Indumathi
2018-03-01
Hereditary retinal diseases, known as retinal degenerations or dystrophies, are a large group of inherited eye disorders resulting in irreversible visual loss and blindness. They develop due to mutations in one or more genes that lead to the death of the retinal photoreceptor cells. Till date, mutations in over 200 genes are known to be associated with all different forms of retinal disorders. The enormous genetic heterogeneity of this group of diseases has posedmany challenges in understanding the mechanisms of disease and in developing suitable therapies. Therapeutic avenues that are being investigated for these disorders include gene therapy to replace the defective gene, treatment with neurotrophic factors to stimulate the growth of photoreceptors, cell replacement therapy, and prosthetic devices that can capture light and transmit electrical signals through retinal neurons to the brain. Several of these are in process of human trials in patients, and have shown safety and efficacy of the treatment. A combination of approaches that involve both gene replacement and cell replacement may be required for optimum benefit.
Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells.
Nordlund, Henri R; Laitinen, Olli H; Uotila, Sanna T H; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S
2005-10-14
The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.
A computational study of the open and closed forms of the N-lobe human serum transferrin apoprotein.
Rinaldo, David; Field, Martin J
2003-12-01
Human serum transferrin tightly binds ferric ions in the blood stream but is able to release them in cells by a process involving receptor-mediated endocytosis and decrease in pH. Iron binding and release are accompanied by a large conformation change. In this study, we investigate theoretically the open and closed forms of the N-lobe human serum transferrin apoprotein by performing pKa calculations and molecular dynamics and free-energy simulations. In agreement with the hypothesis based on the x-ray crystal structures, our calculations show that there is a shift in the pKa values of the lysines forming the dilysine trigger when the conformation changes. We argue, however, that simple electrostatic repulsion between the lysines is not sufficient to trigger domain opening and, instead, propose an alternative explanation for the dilysine-trigger effect. Analysis of the molecular dynamics and free-energy results indicate that the open form is more mobile than the closed form and is much more stable at pH 5.3, in large part due to entropic effects. Despite a lower free energy, the dynamics simulation of the open form shows that it is flexible enough to sample conformations that are consistent with iron binding.
A Water Droplet Pinning and Heat Transfer Characteristics on an Inclined Hydrophobic Surface.
Al-Sharafi, Abdullah; Yilbas, Bekir Sami; Ali, Haider; AlAqeeli, N
2018-02-15
A water droplet pinning on inclined hydrophobic surface is considered and the droplet heat transfer characteristics are examined. Solution crystallization of polycarbonate is carried out to create hydrophobic characteristics on the surface. The pinning state of the water droplet on the extreme inclined hydrophobic surface (0° ≤ δ ≤ 180°, δ being the inclination angle) is assessed. Heat transfer from inclined hydrophobic surface to droplet is simulated for various droplet volumes and inclination angles in line with the experimental conditions. The findings revealed that the hydrophobic surface give rise to large amount of air being trapped within texture, which generates Magdeburg like forces between the droplet meniscus and the textured surface while contributing to droplet pinning at extreme inclination angles. Two counter rotating cells are developed for inclination angle in the range of 0° < δ < 20° and 135° < δ < 180°; however, a single circulation cell is formed inside the droplet for inclination angle of 25° ≤ δ ≤ 135°. The Nusselt number remains high for the range of inclination angle of 45° ≤ δ ≤ 135°. Convection and conduction heat transfer enhances when a single and large circulation cell is formed inside the droplet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, K. F.; Murakami, M. T.; Cintra, A. C. O.
2007-04-01
Crotoxin, a potent neurotoxin from the venom of the South American rattlesnake Crotalus durissus terrificus, exists as a heterodimer formed between a phospholipase A{sub 2} and a catalytically inactive acidic phospholipase A{sub 2} analogue (crotapotin). Large single crystals of the crotoxin complex and of the isolated subunits have been obtained. Crotoxin, a potent neurotoxin from the venom of the South American rattlesnake Crotalus durissus terrificus, exists as a heterodimer formed between a phospholipase A{sub 2} and a catalytically inactive acidic phospholipase A{sub 2} analogue (crotapotin). Large single crystals of the crotoxin complex and of the isolated subunits have been obtained.more » The crotoxin complex crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 38.2, b = 68.7, c = 84.2 Å, and diffracted to 1.75 Å resolution. The crystal of the phospholipase A{sub 2} domain belongs to the hexagonal space group P6{sub 1}22 (or its enantiomorph P6{sub 5}22), with unit-cell parameters a = b = 38.7, c = 286.7 Å, and diffracted to 2.6 Å resolution. The crotapotin crystal diffracted to 2.3 Å resolution; however, the highly diffuse diffraction pattern did not permit unambiguous assignment of the unit-cell parameters.« less
Probing features in the primordial perturbation spectrum with large-scale structure data
NASA Astrophysics Data System (ADS)
L'Huillier, Benjamin; Shafieloo, Arman; Hazra, Dhiraj Kumar; Smoot, George F.; Starobinsky, Alexei A.
2018-06-01
The form of the primordial power spectrum (PPS) of cosmological scalar (matter density) perturbations is not yet constrained satisfactorily in spite of the tremendous amount of information from the Cosmic Microwave Background (CMB) data. While a smooth power-law-like form of the PPS is consistent with the CMB data, some PPSs with small non-smooth features at large scales can also fit the CMB temperature and polarization data with similar statistical evidence. Future CMB surveys cannot help distinguish all such models due to the cosmic variance at large angular scales. In this paper, we study how well we can differentiate between such featured forms of the PPS not otherwise distinguishable using CMB data. We ran 15 N-body DESI-like simulations of these models to explore this approach. Showing that statistics such as the halo mass function and the two-point correlation function are not able to distinguish these models in a DESI-like survey, we advocate to avoid reducing the dimensionality of the problem by demonstrating that the use of a simple three-dimensional count-in-cell density field can be much more effective for the purpose of model distinction.
Viscous and Thermal Effects on Hydrodynamic Instability in Liquid-Propellant Combustion
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)
2000-01-01
A pulsating form of hydrodynamic instability has recently been shown to arise during the deflagration of liquid propellants in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.
Meissner-Roloff, Madelein; Pepper, Michael S
2013-12-01
South Africa (SA) faces a large unmet need for bone marrow (BM) transplantation, which could be alleviated in part by establishing a public umbilical cord blood stem cell bank (UCB SCB). Umbilical cord blood is an increasingly utilised source of hematopoietic stem cells for BM transplantation in addition to BM or mobilized peripheral blood stem cells. Establishing a public UCB SCB would therefore be a positive step towards improving the quality of health care in SA by providing for an important unmet need. This study takes the form of an enquiry into the acceptability of establishing a public bank through an interview with and questionnaire completed by mothers-to-be in the antenatal clinic of a large public hospital in SA. Initial results are positive, with 85 % of the participants in favour of establishing a public UCB SCB in SA. This initial probe will serve as a model for a more comprehensive national enquiry into public support and acceptability in different clinics, hospitals and provinces in SA.
Webb, Thomas R; Slavish, Jake; George, Rani E; Look, A Thomas; Xue, Liquan; Jiang, Qin; Cui, Xiaoli; Rentrop, Walter B; Morris, Stephan W
2009-01-01
Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase in the insulin receptor superfamily, was initially identified in constitutively activated oncogenic fusion forms – the most common being nucleophosmin-ALK – in anaplastic large-cell lymphomas, and subsequent studies have identified ALK fusions in diffuse large B-cell lymphomas, systemic histiocytosis, inflammatory myofibroblastic tumors, esophageal squamous cell carcinomas and non-small-cell lung carcinomas. More recently, genomic DNA amplification and protein overexpression, as well as activating point mutations, of ALK have been described in neuroblastomas. In addition to those cancers for which a causative role for aberrant ALK activity is well validated, more circumstantial links implicate the full-length, normal ALK receptor in the genesis of other malignancies – including glioblastoma and breast cancer – via a mechanism of receptor activation involving autocrine and/or paracrine growth loops with the reported ALK ligands, pleiotrophin and midkine. This review summarizes normal ALK biology, the confirmed and putative roles of ALK in the development of human cancers and efforts to target ALK using small-molecule kinase inhibitors. PMID:19275511
Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa
2013-01-01
Objective: The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells. Methods: Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow–derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O’Driscoll score). Results: The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O’Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. Conclusions: This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated. PMID:26069678
Riquelme, Meritxell; Aguirre, Jesús; Bartnicki-García, Salomon; Braus, Gerhard H; Feldbrügge, Michael; Fleig, Ursula; Hansberg, Wilhelm; Herrera-Estrella, Alfredo; Kämper, Jörg; Kück, Ulrich; Mouriño-Pérez, Rosa R; Takeshita, Norio; Fischer, Reinhard
2018-06-01
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established. Copyright © 2018 American Society for Microbiology.
Hashimoto, Yoko; Yokohama, Akihiko; Saitoh, Akio; Nakahashi, Hirotaka; Toyama, Kohtaro; Mitsui, Takeki; Koiso, Hiromi; Saitoh, Takayuki; Handa, Hiroshi; Uchiumi, Hideki; Jinbo, Takahiro; Murayama, Kayoko; Matsumoto, Morio; Sawamura, Morio; Karasawa, Masamitsu; Murakami, Hirokazu; Hirato, Junko; Nojima, Yoshihisa; Kojima, Masaru; Tsukamoto, Norifumi
2013-01-01
We evaluated the prognostic significance of the serum level of the soluble form of interleukin-2 receptorα (sIL-2Rα) and investigated its association with CD25 expression on tumor cells in diffuse large B-cell lymphoma (DLBCL). Three hundred and thirty-eight adult patients with newly diagnosed DLBCL were eligible for this retrospective study. 32.2% of patients were treated with CHOP-like regimen and 67.8% with R-CHOP-like regimen. CD25 expression on the surface of tumor cells was evaluated in 143 cases and its relationship with sIL-2Rα level was also investigated. Both overall survival (OS) and progression-free survival (PFS) were poorer in patients with higher sIL-2Rα, in both R-CHOP and CHOP groups. sIL-2Rα > 1,000 U/mL and performance status (PS) ≥ 2 were independently associated with poorer OS, and sIL-2Rα > 1,000 U/mL, age > 60 years, and ≥ 2 extranodal sites were independently associated with poorer PFS in the R-CHOP group. The sIL-2Rα level was higher in the CD25-positive group than in the CD25-negative group in stage 3 or 4 disease (p = 0.010). Multiple linear regression analysis showed CD25 expression to be independently correlated with sIL-2Rα levels. High sIL-2Rα is an important risk factor for survival in DLBCL treated with not only CHOP-like, but also R-CHOP-like regimens, regardless of the tumor's expression of CD25.
Cheng, Catherine; Nowak, Roberta B.; Gao, Junyuan; Sun, Xiurong; Biswas, Sondip K.; Lo, Woo-Kuen; Mathias, Richard T.
2015-01-01
The eye lens consists of layers of tightly packed fiber cells, forming a transparent and avascular organ that is important for focusing light onto the retina. A microcirculation system, facilitated by a network of gap junction channels composed of connexins 46 and 50 (Cx46 and Cx50), is hypothesized to maintain and nourish lens fiber cells. We measured lens impedance in mice lacking tropomodulin 1 (Tmod1, an actin pointed-end capping protein), CP49 (a lens-specific intermediate filament protein), or both Tmod1 and CP49. We were surprised to find that simultaneous loss of Tmod1 and CP49, which disrupts cytoskeletal networks in lens fiber cells, results in increased gap junction coupling resistance, hydrostatic pressure, and sodium concentration. Protein levels of Cx46 and Cx50 in Tmod1−/−;CP49−/− double-knockout (DKO) lenses were unchanged, and electron microscopy revealed normal gap junctions. However, immunostaining and quantitative analysis of three-dimensional confocal images showed that Cx46 gap junction plaques are smaller and more dispersed in DKO differentiating fiber cells. The localization and sizes of Cx50 gap junction plaques in DKO fibers were unaffected, suggesting that Cx46 and Cx50 form homomeric channels. We also demonstrate that gap junction plaques rest in lacunae of the membrane-associated actin-spectrin network, suggesting that disruption of the actin-spectrin network in DKO fibers may interfere with gap junction plaque accretion into micrometer-sized domains or alter the stability of large plaques. This is the first work to reveal that normal gap junction plaque localization and size are associated with normal lens coupling conductance. PMID:25740157
Cheng, Catherine; Nowak, Roberta B; Gao, Junyuan; Sun, Xiurong; Biswas, Sondip K; Lo, Woo-Kuen; Mathias, Richard T; Fowler, Velia M
2015-05-15
The eye lens consists of layers of tightly packed fiber cells, forming a transparent and avascular organ that is important for focusing light onto the retina. A microcirculation system, facilitated by a network of gap junction channels composed of connexins 46 and 50 (Cx46 and Cx50), is hypothesized to maintain and nourish lens fiber cells. We measured lens impedance in mice lacking tropomodulin 1 (Tmod1, an actin pointed-end capping protein), CP49 (a lens-specific intermediate filament protein), or both Tmod1 and CP49. We were surprised to find that simultaneous loss of Tmod1 and CP49, which disrupts cytoskeletal networks in lens fiber cells, results in increased gap junction coupling resistance, hydrostatic pressure, and sodium concentration. Protein levels of Cx46 and Cx50 in Tmod1(-/-);CP49(-/-) double-knockout (DKO) lenses were unchanged, and electron microscopy revealed normal gap junctions. However, immunostaining and quantitative analysis of three-dimensional confocal images showed that Cx46 gap junction plaques are smaller and more dispersed in DKO differentiating fiber cells. The localization and sizes of Cx50 gap junction plaques in DKO fibers were unaffected, suggesting that Cx46 and Cx50 form homomeric channels. We also demonstrate that gap junction plaques rest in lacunae of the membrane-associated actin-spectrin network, suggesting that disruption of the actin-spectrin network in DKO fibers may interfere with gap junction plaque accretion into micrometer-sized domains or alter the stability of large plaques. This is the first work to reveal that normal gap junction plaque localization and size are associated with normal lens coupling conductance. Copyright © 2015 the American Physiological Society.
Purification and properties of insulin receptor ectodomain from large-scale mammalian cell culture.
Cosgrove, L; Lovrecz, G O; Verkuylen, A; Cavaleri, L; Black, L A; Bentley, J D; Howlett, G J; Gray, P P; Ward, C W; McKern, N M
1995-12-01
Ectodomain of the exon 11+ form of the human insulin receptor (hIR) was expressed in the mammalian cell secretion vector pEE6.HCMV-GS, containing the glutamine synthetase gene. Following transfection of the hIR ectodomain gene into Chinese hamster ovary (CHO-K1) cells, clones were isolated by selecting for glutamine synthetase expression with methionine sulphoximine. The expression levels of ectodomain were subsequently increased by gene amplification. Production was scaled up using a 40-liter airlift fermenter in which the transfected CHO-K1 cells were cultured on microcarrier beads, initially in medium containing 10% fetal calf serum (FCS). By continuous perfusion of serum-free medium into the bioreactor, cell viability was maintained during reduction of FCS, which enabled soluble hIR ectodomain to be harvested for at least 22 days. Harvests were concentrated 20-fold by anion-exchange chromatography. Optimal recovery of ectodomain from early harvests containing large quantities of serum proteins was achieved by insulin-affinity chromatography, whereas in later harvests purification was achieved by multistep chromatography. Analysis of the purified hIR ectodomain showed that it had a molecular weight by sedimentation equilibrium analysis of 269,500. Amino-terminal amino acid sequence analysis showed that the ectodomain was correctly processed to alpha and beta chains and that glycosylation characteristics were similar to those of native hIR. The integrity of the ectodomain was demonstrated by the recognition of conformation-dependent anti-hIR antibodies and by its binding of insulin (Kd approximately 2 x 10(-9) M). These results demonstrate the successful production and purification of hIR ectodomain by processes amenable to scale-up and in a form appropriate for structure/function studies of the ligand-binding domain of the receptor.
NASA Technical Reports Server (NTRS)
Karpova, E. A.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Three different types of ribosome crystals were grown by the vapor diffusion technique in hanging drops as described in (1,2). The ribosome is a large asymmetric RNA-protein complex (2.3 million Da), which is protein syntheses machinery of the cell. In this poster we would like to discuss the features of ribosome crystallization. Ribosomes were purified from the thermophilic bacteria Thermus thermophilus by centrifugation (3). Three types of crystals (needle, flat tetragonal and tetragonal-like pyramid) can be grown from the same solution; furthermore, in the same drop using 10-15% 2-methyl-2,4- pentanediol as a precipitant. The crystals appeared in 5-48 hours. The crystals were stable and can co-exist in solution over long period of time. The kinetics of appearance of different crystal forms was different: first the needle crystals were grown, then the tetragonal, and finally the tetragonal pyramids. Later studies of the process of ribosome crystal growth depending on supersaturation showed that low supersaturation results in the appearance of tetragonal plates or tetragonal-like pyramids. An electron microscopy study, together with computer modeling, has shown that crystals of different forms have a high probability of having the same unit cell parameters. According to these experiments the following conclusion can be dranvn: the level of supersaturation of the macromolecule in a crystallizing solution is one of the major factors for forming three-dimensional crystals convenient for X-rays diffraction analysis. From the same macromolecule solution, crystals of different forms can be grown at approximately the same conditions by varying the concentration of macromolecule in the solution. Ion-macromolecule and water-macromolecule interactions, apparently, play the main role in the formation of the unit cell of the crystals.
Sugitani, K; Mimura, K; Takeuchi, M; Lepot, K; Ito, S; Javaux, E J
2015-11-01
The Strelley Pool Formation (SPF) is widely distributed in the East Pilbara Terrane (EPT) of the Pilbara Craton, Western Australia, and represents a Paleoarchean shallow-water to subaerial environment. It was deposited ~3.4 billion years ago and displays well-documented carbonate stromatolites. Diverse putative microfossils (SPF microfossils) were recently reported from several localities in the East Strelley, Panorama, Warralong, and Goldsworthy greenstone belts. Thus, the SPF provides unparalleled opportunities to gain insights into a shallow-water to subaerial ecosystem on the early Earth. Our new micro- to nanoscale ultrastructural and microchemical studies of the SPF microfossils show that large (20-70 μm) lenticular organic-walled flanged microfossils retain their structural integrity, morphology, and chain-like arrangements after acid (HF-HCl) extraction (palynology). Scanning and transmitted electron microscopy of extracted microfossils revealed that the central lenticular body is either alveolar or hollow, and the wall is continuous with the surrounding smooth to reticulated discoidal flange. These features demonstrate the evolution of large micro-organisms able to form an acid-resistant recalcitrant envelope or cell wall with complex morphology and to form colonial chains in the Paleoarchean era. This study provides evidence of the evolution of very early and remarkable biological innovations, well before the presumed late emergence of complex cells. © 2015 John Wiley & Sons Ltd.
Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon
2006-10-01
Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.
Carcinoma ex basal cell adenoma of the parotid gland: A report of an extremely rare case.
Kusafuka, Kimihide; Kawasaki, Takuya; Nakajima, Takashi; Sugino, Takashi
2017-07-01
Malignant non-basaloid tumors that arise from basal cell adenoma (BCA) are extremely rare. The patient was a 72-year-old Japanese male, who had noticed swelling of the left parotid region 21 years ago. A superficial lobectomy was performed. About 60% of the tumor was made up of cribriform and trabecular tissue composed of basaloid cells, which exhibited mild atypia and nuclear expression of β-catenin. This portion of the tumor was considered to be a BCA. In the other part of the tumor, the proliferation of large eosinophilic atypical cells, most of which formed intraductal structures, was observed. These tumor cells displayed cellular atypia, and some of them formed Roman bridge structures or contributed to intracapsular invasion. Immunohistochemically, these cells were positive for cytokeratin 7, gross cystic disease fluid proten-15 (GCDFP-15), androgen receptor (AR), and mammaglobin (MMG) and exhibited a high Ki-67 labeling index. So, this portion of the tumor was considered to be a salivary duct carcinoma (SDC). The tumor's final diagnosis was SDC ex BCA (intracapsular type), which is extremely rare. GCDFP-15, AR, MMG, and Ki-67 are useful immunohistochemical markers for diagnosing SDC ex BCA. © 2017 The Authors. Pathology International Published by Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Han, Shen; Kollmer, Marius; Markx, Daniel; Claus, Stephanie; Walther, Paul; Fändrich, Marcus
2017-01-01
The deposition of amyloid fibrils as plaques is a key feature of several neurodegenerative diseases including in particular Alzheimer’s. This disease is characterized, if not provoked, by amyloid aggregates formed from Aβ peptide that deposit inside the brain or are toxic to neuronal cells. We here used scanning transmission electron microscopy (STEM) to determine the fibril network structure and interactions of Aβ fibrils within a cell culture model of Alzheimer’s disease. STEM images taken from the formed Aβ amyloid deposits revealed three main types of fibril network structures, termed amorphous meshwork, fibril bundle and amyloid star. All three were infiltrated by different types of lipid inclusions from small-sized exosome-like structures (50–100 nm diameter) to large-sized extracellular vesicles (up to 300 nm). The fibrils also presented strong interactions with the surrounding cells such that fibril bundles extended into tubular invaginations of the plasma membrane. Amyloid formation in the cell model was previously found to have an intracellular origin and we show here that it functionally destroys the integrity of the intracellular membranes as it leads to lysosomal leakage. These data provide a mechanistic link to explain why intracellular fibril formation is toxic to the cell. PMID:28240273
Maunoury, Nicolas; Redondo-Nieto, Miguel; Bourcy, Marie; Van de Velde, Willem; Alunni, Benoit; Laporte, Philippe; Durand, Patricia; Agier, Nicolas; Marisa, Laetitia; Vaubert, Danièle; Delacroix, Hervé; Duc, Gérard; Ratet, Pascal; Aggerbeck, Lawrence; Kondorosi, Eva; Mergaert, Peter
2010-01-01
The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix− nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this “nodule-specific transcriptome” were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic cells and also displayed a root-like transcriptome. A correlation thus exists between the differentiation of symbiotic nodule cells and the first wave of nodule specific gene activation and between differentiation of rhizobia to bacteroids and the second transcriptome wave in nodules. The differentiation of symbiotic cells and of bacteroids may therefore constitute signals for the execution of these transcriptome-switches. PMID:20209049
Manzanares, Miguel Á.; Campbell, Deanna J.W.; Maldonado, Gabrielle T.
2017-01-01
Periostin and mesothelin have each been suggested to be predictors of poor survival for patients with intrahepatic cholangiocarcinoma, although the clinical prognostic value of both of these biomarkers remains uncertain. The aim of the current study was to investigate these biomarkers for their potential to act as tumor progression factors when assessed in orthotopic tumor and three‐dimensional culture models of rat cholangiocarcinoma progression. Using our orthotopic model, we demonstrated a strong positive correlation between tumor and serum periostin and mesothelin and increasing liver tumor mass and associated peritoneal metastases that also reflected differences in cholangiocarcinoma cell aggressiveness and malignant grade. Periostin immunostaining was most prominent in the desmoplastic stroma of larger sized more aggressive liver tumors and peritoneal metastases. In comparison, mesothelin was more highly expressed in the cholangiocarcinoma cells; the slower growing more highly differentiated liver tumors exhibited a luminal cancer cell surface immunostaining for this biomarker, and the rapidly growing less differentiated liver and metastatic tumor masses largely showed cytoplasmic mesothelin immunoreactivity. Two molecular weight forms of mesothelin were identified, one at ∼40 kDa and the other, a more heavily glycosylated form, at ∼50 kDa. Increased expression of the 40‐kDa mesothelin over that of the 50 kDa form predicted increased malignant progression in both the orthotopic liver tumors and in cholangiocarcinoma cells of different malignant potential in three‐dimensional culture. Moreover, coculturing of cancer‐associated myofibroblasts with cholangiocarcinoma cells promoted overexpression of the 40‐kDa mesothelin, which correlated with enhanced malignant progression in vitro. Conclusion: Periostin and mesothelin are useful predictors of tumor progression in our rat desmoplastic cholangiocarcinoma models. This supports their relevance to human intrahepatic cholangiocarcinoma. (Hepatology Communications 2018;2:155–172) PMID:29404524
Wang, Yan; Shen, Hong; Xu, Liang; Zhu, Xianwen; Li, Chao; Zhang, Wei; Xie, Yang; Gong, Yiqin; Liu, Liwang
2015-01-01
Lead (Pb), a ubiquitous but highly toxic heavy metal (HM), is harmful to human health through various pathways including by ingestion of contaminated vegetables. Radish is a worldwide root vegetable crop with significant health and nutritional benefits. However, little is known about Pb translocation and distribution within radish plants after its uptake by the roots. In this study, Pb stress was induced using Pb(NO3)2 in hydroponic culture, aiming to characterize the transport, ultrastructural localization, and distribution of chemical forms of Pb in different tissues of radish. The results showed that the majority of Pb (85.76-98.72%) was retained in underground organs including lateral roots, root heads and taproot skins, while a small proportion of Pb was absorbed by root flesh (0.44-1.56%) or transported to the shoot (1.28-14.24%). A large proportion of Pb (74.11-99.30%) was integrated with undissolved Pb oxalate, protein and pectates forming Pb-phosphate complexes. Moreover, a low-Pb-accumulating line of radish showed a higher proportion of Pb in water-soluble form compared with a high-Pb-accumulating line. Subcellular distribution analysis showed that a large proportion of Pb was bound to cell wall fraction in lateral roots (71.08-80.40%) and taproot skin (46.22-77.94%), while the leaves and roots had 28.36-39.37% and 27.35-46.51% of Pb stored in the soluble fraction, respectively. Furthermore, transmission electron microscopy (TEM) revealed Pb precipitates in intercellular space, cell wall, plasma lemma and vacuoles. Fractionation results also showed the accumulation of Pb on the cell wall, intercellular space and vacuole, and low uptake of undissolved Pb oxalate, protein, pectates and Pb-phosphate complexes, which might be due to low transport efficiency and Pb tolerance of radish. These findings would provide insight into molecular mechanism of Pb uptake and translocation in radish and facilitate development of low-Pb-content cultivars in root vegetable crops.
Cell Vacuolation Caused by Vibrio cholerae Hemolysin
Figueroa-Arredondo, Paula; Heuser, John E.; Akopyants, Natalia S.; Morisaki, J. Hiroshi; Giono-Cerezo, Silvia; Enríquez-Rincón, Fernando; Berg, Douglas E.
2001-01-01
Non-O1 strains of Vibrio cholerae implicated in gastroenteritis and diarrhea generally lack virulence determinants such as cholera toxin that are characteristic of epidemic strains; the factors that contribute to their virulence are not understood. Here we report that at least one-third of diarrhea-associated nonepidemic V. cholerae strains from Mexico cause vacuolation of cultured Vero cells. Detailed analyses indicated that this vacuolation was related to that caused by aerolysin, a pore-forming toxin of Aeromonas; it involved primarily the endoplasmic reticulum at early times (∼1 to 4 h after exposure), and resulted in formation of large, acidic, endosome-like multivesicular vacuoles (probably autophagosomes) only at late times (∼16 h). In contrast to vacuolation caused by Helicobacter pylori VacA protein, that induced by V. cholerae was exacerbated by agents that block vacuolar proton pumping but not by endosome-targeted weak bases. It caused centripetal redistribution of endosomes, reflecting cytoplasmic alkalinization. The gene for V. cholerae vacuolating activity was cloned and was found to correspond to hlyA, the structural gene for hemolysin. HlyA protein is a pore-forming toxin that causes ion leakage and, ultimately, eukaryotic cell lysis. Thus, a distinct form of cell vacuolation precedes cytolysis at low doses of hemolysin. We propose that this vacuolation, in itself, contributes to the virulence of V. cholerae strains, perhaps by perturbing intracellular membrane trafficking or ion exchange in target cells and thereby affecting local intestinal inflammatory or other defense responses. PMID:11179335
Cell vacuolation caused by Vibrio cholerae hemolysin.
Figueroa-Arredondo, P; Heuser, J E; Akopyants, N S; Morisaki, J H; Giono-Cerezo, S; Enríquez-Rincón, F; Berg, D E
2001-03-01
Non-O1 strains of Vibrio cholerae implicated in gastroenteritis and diarrhea generally lack virulence determinants such as cholera toxin that are characteristic of epidemic strains; the factors that contribute to their virulence are not understood. Here we report that at least one-third of diarrhea-associated nonepidemic V. cholerae strains from Mexico cause vacuolation of cultured Vero cells. Detailed analyses indicated that this vacuolation was related to that caused by aerolysin, a pore-forming toxin of Aeromonas; it involved primarily the endoplasmic reticulum at early times (approximately 1 to 4 h after exposure), and resulted in formation of large, acidic, endosome-like multivesicular vacuoles (probably autophagosomes) only at late times (approximately 16 h). In contrast to vacuolation caused by Helicobacter pylori VacA protein, that induced by V. cholerae was exacerbated by agents that block vacuolar proton pumping but not by endosome-targeted weak bases. It caused centripetal redistribution of endosomes, reflecting cytoplasmic alkalinization. The gene for V. cholerae vacuolating activity was cloned and was found to correspond to hlyA, the structural gene for hemolysin. HlyA protein is a pore-forming toxin that causes ion leakage and, ultimately, eukaryotic cell lysis. Thus, a distinct form of cell vacuolation precedes cytolysis at low doses of hemolysin. We propose that this vacuolation, in itself, contributes to the virulence of V. cholerae strains, perhaps by perturbing intracellular membrane trafficking or ion exchange in target cells and thereby affecting local intestinal inflammatory or other defense responses.
Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos
Katow, Hideki
2015-01-01
Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research. PMID:26716069
T- and B-cell subpopulations in infectious mononucleosis
Papamichail, M.; Sheldon, P. J.; Holborow, E. J.
1974-01-01
Mononuclear cells separated from the blood in fourteen cases of infectious mononucleosis at various intervals from the onset were tested for the presence of surface immunoglobulin and for ability to form spontaneous rosettes with washed sheep red blood cells. The mononucleosis during the acute phase of the illness consisted largely of a T lymphocytosis. The absolute count of T lymphocytes returned to the normal range approximately 2 months after the onset of the illness. B cells (bearing surface immunoglobulin) were only slightly increased in the acute phase. In four cases appreciable numbers of fluorescent rosetting cells were also present, and investigation suggested that these were T cells coated with anti-T-cell autoantibody. During the first 2 weeks of the illness responsiveness to phytohaemagglutinin was severely depressed, but thereafter returned towards normal. It is thought likely that in infectious mononucleosis the vast majority of atypical mononuclear cells are T cells proliferating in response to E-B virus-infected B cells, and cytotoxic towards them. ImagesFig. 3 PMID:4549622
Doherty, Melissa; Osborne, Douglas G.; Browning, Diana L.; Parker, David C.; Wetzel, Scott A.
2010-01-01
CD4+ T cell recognition of MHC:peptide complexes in the context of a costimulatory signal results in the large-scale redistribution of molecules at the T-APC interface to form the immunological synapse. The immunological synapse is the location of sustained TCR signaling and delivery of a subset of effector functions. T cells activated in the absence of costimulation are rendered anergic and are hyporesponsive when presented with antigen in the presence of optimal costimulation. Several previous studies have looked at aspects of immunological synapses formed by anergic T cells, but it remains unclear whether there are differences in the formation or composition of anergic immunological synapses. In this study we anergized primary murine CD4+ T cells by incubation of costimulation-deficient, transfected fibroblast APC. Using a combination of TCR, MHC:peptide, and ICAM-1 staining, we found that anergic T cells make mature immunological synapses with characteristic cSMAC and pSMAC domains that were indistinguishable from control synapses. There were small increases in total phosphotyrosine at the anergic synapse along with significant decreases in phosphorylated ERK 1/2 accumulation. Most striking, there was specific accumulation of c-Cbl and Cbl-b to the anergic synapses. Cbl-b, previously shown to be essential in anergy induction, was found in both the pSMAC and the cSMAC of the anergic synapse. This Cbl-b (and c-Cbl) accumulation at the anergic synapse may play an important role in anergy maintenance and/or induction. PMID:20207996
Rapid integration of young newborn dentate gyrus granule cells in the adult hippocampal circuitry.
Ide, Yoko; Fujiyama, Fumino; Okamoto-Furuta, Keiko; Tamamaki, Nobuaki; Kaneko, Takeshi; Hisatsune, Tatsuhiro
2008-12-01
Newborn dentate gyrus granule cells (DGCs) are integrated into the hippocampal circuitry and contribute to the cognitive functions of learning and memory. The dendritic maturation of newborn DGCs in adult mice occurs by the first 3-4 weeks, but DGCs seem to receive a variety of neural inputs at both their dendrites and soma even shortly after their birth. However, few studies on the axonal maturation of newborn DGCs have focused on synaptic structure. Here, we investigated the potentiality of output and input in newborn DGCs, especially in the early period after terminal mitosis. We labeled nestin-positive progenitor cells by injecting GFP Cre-reporter adenovirus into Nestin-Cre mice, enabling us to trace the development of progenitor cells by their GFP expression. In addition to GABAergic input from interneurons, we observed that the young DGCs received axosomatic input from the medial septum as early as postinfection day 7 (PID 7). To evaluate the axonal maturation of the newborn DGCs compared with mature DCGs, we performed confocal and electron microscopic analyses. We observed that newborn DGCs projected their mossy fibers to the CA3 region, forming small terminals on hilar or CA3 interneurons and large boutons on CA3 pyramidal cells. These terminals expressed vesicular glutamate transporter 1, indicating they were glutamatergic terminals. Intriguingly, the terminals at PID 7 had already formed asymmetric synapses, similar to those of mature DGCs. Together, our findings suggest that newborn DGCs may form excitatory synapses on both interneurons and CA3 pyramidal cells within 7 days of their terminal mitosis.
Tsao, D D; Wang, S G; Lynn, B D; Nagy, J I
2017-06-01
Gap junctions between cells in the pineal gland have been described ultrastructurally, but their connexin constituents have not been fully characterized. We used immunofluorescence in combination with markers of pineal cells to document the cellular localization of connexin43 (Cx43). Immunofluorescence labelling of Cx43 with several different antibodies was widely distributed throughout the pineal, whereas another connexin examined, connexin26, was not found in pineal but only in surrounding leptomeninges. Labelling apparently associated with plasma membranes was visualized either as fine Cx43-puncta (1-2 μm) or as unusually large pools of Cx43 ranging up to 4-7 μm in diameter or length. These puncta and pools were highly concentrated in perivascular spaces, where they were associated with numerous cells devoid of labelling for markers of pinealocytes (e.g. tryptophan hydroxylase and serotonin), and where they were minimally associated with blood vessels and lacked association with resident macrophages. Astrocytes labelled for glial fibrillary acidic protein were largely restricted to the anterior pole of the pineal gland, where they displayed only fine and sparse Cx43-puncta along their processes. Labelling for Cx43 was localized largely though not exclusively to the somata and long processes of a subpopulation of perivascular interstitial cells that were immunopositive for calbindin-D28K. These cells were often located among dense bundles or termination areas of sympathetic fibres labelled for tyrosine hydroxylase or serotonin. The results indicate that interstitial cells form abundant gap junctions composed of Cx43, and suggest that gap junction-mediated intracellular communication by these cells supports the activities of pinealocytes. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Fiser, Radovan; Linhartova, Irena; Osicka, Radim; Bumba, Ladislav; Hewlett, Erik L.; Benz, Roland; Sebo, Peter
2013-01-01
A large subgroup of the repeat in toxin (RTX) family of leukotoxins of Gram-negative pathogens consists of pore-forming hemolysins. These can permeabilize mammalian erythrocytes (RBCs) and provoke their colloid osmotic lysis (hemolytic activity). Recently, ATP leakage through pannexin channels and P2X receptor-mediated opening of cellular calcium and potassium channels were implicated in cell permeabilization by pore-forming toxins. In the study described here, we examined the role played by purinergic signaling in the cytolytic action of two RTX toxins that form pores of different sizes. The cytolytic potency of ApxIA hemolysin of Actinobacillus pleuropneumoniae, which forms pores about 2.4 nm wide, was clearly reduced in the presence of P2X7 receptor antagonists or an ATP scavenger, such as pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), Brilliant Blue G, ATP oxidized sodium salt, or hexokinase. In contrast, antagonists of purinergic signaling had no impact on the hemolytic potency of the adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis, which forms pores of 0.6 to 0.8 nm in diameter. Moreover, the conductance of pores formed by ApxIA increased with the toxin concentration, while the conductance of the CyaA single pore units was constant at various toxin concentrations. However, the P2X7 receptor antagonist PPADS inhibited in a concentration-dependent manner the exacerbated hemolytic activity of a CyaA-ΔN489 construct (lacking 489 N-terminal residues of CyaA), which exhibited a strongly enhanced pore-forming propensity (>20-fold) and also formed severalfold larger conductance units in planar lipid bilayers than intact CyaA. These results point to a pore size threshold of purinergic amplification involvement in cell permeabilization by pore-forming RTX toxins. PMID:24082076
Spicer, Julie A; Huttunen, Kristiina M; Miller, Christian K; Denny, William A; Ciccone, Annette; Browne, Kylie A; Trapani, Joseph A
2012-02-01
An aryl-substituted isobenzofuran-1(3H)-one lead compound was identified from a high throughput screen designed to find inhibitors of the lymphocyte pore-forming protein perforin. A series of analogs were then designed and prepared, exploring structure-activity relationships through variation of 2-thioxoimidazolidin-4-one and furan subunits on an isobenzofuranone core. The ability of the resulting compounds to inhibit the lytic activity of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 natural killer effector cells was determined. Several compounds showed excellent activity at concentrations that were non-toxic to the killer cells. This series represents a significant improvement on previous classes of compounds, being substantially more potent and largely retaining activity in the presence of serum. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kridsada, Kim; Niu, Jingwen; Haldipur, Parthiv; Wang, Zhiping; Ding, Long; Li, Jian J; Lindgren, Anne G; Herrera, Eloisa; Thomas, Gareth M; Chizhikov, Victor V; Millen, Kathleen J; Luo, Wenqin
2018-06-05
Spinal cord longitudinal axons comprise some of the longest axons in our body. However, mechanisms that drive this extra long-distance axonal growth are largely unclear. We found that ascending axons of rapidly adapting (RA) mechanoreceptors closely abut a previously undescribed population of roof plate-derived radial glial-like cells (RGLCs) in the spinal cord dorsal column, which form a network of processes enriched with growth-promoting factors. In dreher mutant mice that lack RGLCs, the lengths of ascending RA mechanoreceptor axon branches are specifically reduced, whereas their descending and collateral branches, and other dorsal column and sensory pathways, are largely unaffected. Because the number and intrinsic growth ability of RA mechanoreceptors are normal in dreher mice, our data suggest that RGLCs provide critical non-cell autonomous growth support for the ascending axons of RA mechanoreceptors. Together, our work identifies a developmental mechanism specifically required for long-range spinal cord longitudinal axons. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Spontaneous osteosarcoma of the femur in a non-obese diabetic mouse
Hong, Sunhwa; Lee, Hyun-A; Choe, Ohmok; Chung, Youngho
2011-01-01
An abnormal swelling was identified in the distal portion of the right femur in a 1-year-old non-obese diabetic (NOD) mouse. Grossly, a large mass of the distal femur was observed in the right femur. Lesions were poorly marginated, associated with destruction of the cancellous and cortical elements of the bone, and showed ossification within the soft tissue component. Histologically, the tumor was identified as a poorly differentiated sarcoma. Histopathologic examination of the bone masses revealed invasive proliferation of poorly differentiated neoplastic mesenchymal cells forming streams, bundles, and nests, which resulted in destruction of normal bone. Neoplastic cells exhibited random variation in cellular appearance and arrangement, as well as matrix composition and abundance. Haphazard and often intermingling patterns of osteogenic, chondroblastic, lipoblastic, and angiogenic tissues were present. Larger areas of neoplastic bone and hyaline cartilage contained multiple large areas of hemorrhage and necrosis bordered by neoplastic cells. The mass was diagnosed as an osteosarcoma. To our knowledge, this is the first spontaneous osteosarcoma in an NOD mouse. PMID:21998615
Fabrication of large size alginate beads for three-dimensional cell-cluster culture
NASA Astrophysics Data System (ADS)
Zhang, Zhengtao; Ruan, Meilin; Liu, Hongni; Cao, Yiping; He, Rongxiang
2017-08-01
We fabricated large size alginate beads using a simple microfluidic device under a co-axial injection regime. This device was made by PDMS casting with a mold formed by small diameter metal and polytetrafluorothylene tubes. Droplets of 2% sodium alginate were generated in soybean oil through the device and then cross-linked in a 2% CaCl2 solution, which was mixed tween80 with at a concentration of 0.4 to 40% (w/v). Our results showed that the morphology of the produced alginate beads strongly depends on the tween80 concentration. With the increase of concentration of tween80, the shape of the alginate beads varied from semi-spherical to tailed-spherical, due to the decrease of interface tension between oil and cross-link solution. To access the biocompatibility of the approach, MCF-7 cells were cultured with the alginate beads, showing the formation of cancer cells clusters which might be useful for future studies.
Tomonaga, M; Jinnai, I; Tagawa, M; Amenomori, T; Nishino, K; Yao, E; Nonaka, H; Kuriyama, K; Yoshida, Y; Matsuo, T
1987-02-01
The bone marrow of a patient with acute undifferentiated leukemia developed unique colonies after a 14-day culture in erythropoietin (EPO)-containing methylcellulose. The colonies consisted of 20 to 200 nonhemoglobinized large blast cells. Cytogenetic analysis of single colonies revealed hypotetraploid karyotypes with several marker chromosomes that were identical to those found in directly sampled bone marrow. The concurrently formed erythroid bursts showed only normal karyotypes. No leukemic colony formation was observed in other culture systems with either colony-stimulating activity (CSA) or phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM). The leukemic colonies exhibited a complete EPO-dose dependency similar to that of the patient's normal BFU-E. Although cytochemical and immunologic marker studies of the bone marrow cells failed to clarify the cell lineage of the leukemic cells with extraordinarily large cell size, ultrastructural study revealed erythroid differentiation such as siderosome formation in the cytoplasm and ferritin particles in the rhophecytosis invaginations. These findings indicate that the patient had poorly differentiated erythroid leukemia and that some of the clonogenic cells might respond to EPO in vitro. Corresponding to this biological feature, the leukemic cells were markedly decreased in number in response to repeated RBC transfusions, and partial remission was obtained. These observations suggest that erythroid leukemia distinct from erythroleukemia (M6) with a myeloblastic component, can develop as a minor entity of human acute leukemia.
Bidarra, S J; Oliveira, P; Rocha, S; Saraiva, D P; Oliveira, C; Barrias, C C
2016-06-03
Epithelial-to-mesenchymal transitions (EMT) are strongly implicated in cancer dissemination. Intermediate states, arising from inter-conversion between epithelial (E) and mesenchymal (M) states, are characterized by phenotypic heterogeneity combining E and M features and increased plasticity. Hybrid EMT states are highly relevant in metastatic contexts, but have been largely neglected, partially due to the lack of physiologically-relevant 3D platforms to study them. Here we propose a new in vitro model, combining mammary E cells with a bioengineered 3D matrix, to explore phenotypic and functional properties of cells in transition between E and M states. Optimized alginate-based 3D matrices provided adequate 3D microenvironments, where normal epithelial morphogenesis was recapitulated, with formation of acini-like structures, similar to those found in native mammary tissue. TGFβ1-driven EMT in 3D could be successfully promoted, generating M-like cells. TGFβ1 removal resulted in phenotypic switching to an intermediate state (RE cells), a hybrid cell population expressing both E and M markers at gene/protein levels. RE cells exhibited increased proliferative/clonogenic activity, as compared to M cells, being able to form large colonies containing cells with front-back polarity, suggesting a more aggressive phenotype. Our 3D model provides a powerful tool to investigate the role of the microenvironment on metastable EMT stages.
SOX2 amplification is a common event in squamous cell carcinomas of different organ sites.
Maier, Sebastian; Wilbertz, Theresia; Braun, Martin; Scheble, Veit; Reischl, Markus; Mikut, Ralf; Menon, Roopika; Nikolov, Pavel; Petersen, Karen; Beschorner, Christine; Moch, Holger; Kakies, Christoph; Protzel, Chris; Bauer, Jürgen; Soltermann, Alex; Fend, Falko; Staebler, Annette; Lengerke, Claudia; Perner, Sven
2011-08-01
Acquired chromosomal aberrations, including gene copy number alterations, are involved in the development and progression of human malignancies. SOX2, a transcription factor-coding gene located at 3q26.33, is known to be recurrently and specifically amplified in squamous cell carcinomas of the lung, the esophagus, and the oral cavity. In these organs, the SOX2 protein plays an important role in tumorigenesis and tumor survival. The aim of this study was to determine whether SOX2 amplification is also found in squamous cell carcinomas in other organs commonly affected by this tumor entity. In addition, we examined a large spectrum of lung cancer entities with neuroendocrine differentiation (ie, small cell cancers, large cell cancers, typical and atypical carcinoids) for SOX2 and TTF1 copy number gains to reveal potential molecular ties to squamous cell carcinomas or adenocarcinomas of the lung. Applying fluorescence in situ hybridization, we assessed squamous cell carcinomas of the cervix uteri (n = 47), the skin (n = 57), and the penis (n = 53) for SOX2 copy number alterations and detected amplifications in 28%, 28%, and 32% of tumors, respectively. Furthermore, we performed immunohistochemical SOX2 staining and found that SOX2 amplification is significantly associated with overexpression of the corresponding protein in squamous cell carcinomas (P < .001). Of the lung cancer entities with neuroendocrine differentiation, only small cell cancers and large cell cancers exhibited SOX2 or TTF1 amplifications at significant frequencies, indicating that at least a subset of these might be dedifferentiated forms of squamous cell carcinomas or adenocarcinomas of the lung. We conclude that SOX2 amplification and consequent SOX2 protein overexpression may represent important mechanisms of tumor initiation and progression in a considerable subset of squamous cell carcinomas. Copyright © 2011 Elsevier Inc. All rights reserved.
2018-06-11
ALK-Positive Large B-Cell Lymphoma; Atypical Burkitt/Burkitt-Like Lymphoma; Burkitt-Like Lymphoma With 11q Aberration; Diffuse Large B-Cell Lymphoma Activated B-Cell Type; Diffuse Large B-Cell Lymphoma Associated With Chronic Inflammation; Diffuse Large B-Cell Lymphoma Germinal Center B-Cell Type; Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; EBV-Positive Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; EBV-Positive Mucocutaneous Ulcer; High-Grade B-Cell Lymphoma With MYC, BCL2, and BCL6 Rearrangements; Human Herpesvirus 8-Positive Neoplastic Cells Present; Intravascular Large B-Cell Lymphoma; Large B-Cell Lymphoma With IRF4 Rearrangement; Plasmablastic Lymphoma; Primary Cutaneous Diffuse Large B-Cell Lymphoma; Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type; Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System; Primary Effusion Lymphoma; Recurrent B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classic Hodgkin Lymphoma; Recurrent Burkitt Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Lymphomatoid Granulomatosis; Recurrent Primary Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classic Hodgkin Lymphoma; Refractory Burkitt Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Primary Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Small Intestinal High Grade B-Cell Lymphoma, Not Otherwise Specified; T-Cell/Histiocyte-Rich Large B-Cell Lymphoma
DECREASED LEVEL OF CORD BLOOD CIRCULATING ENDOTHELIAL COLONY-FORMING CELLS IN PREECLAMPSIA
Muñoz-Hernandez, Rocio; Miranda, Maria L.; Stiefel, Pablo; Lin, Ruei-Zeng; Praena-Fernández, Juan M.; Dominguez-Simeon, Maria J.; Villar, Jose; Moreno-Luna, Rafael; Melero-Martin, Juan M.
2014-01-01
Preeclampsia is a pregnancy-related disorder associated with increased cardiovascular risk for the offspring. Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that participate in the formation of vasculature during development. However, the effect of preeclampsia on fetal levels of ECFCs is largely unknown. In this study, we sought to determine whether cord blood ECFC abundance and function are altered in preeclampsia. We conducted a prospective cohort study that included women with normal (n=35) and preeclamptic (n=15) pregnancies. We measured ECFC levels in the umbilical cord blood of neonates and characterized ECFC phenotype, cloning-forming ability, proliferation and migration towards VEGF-A and FGF-2, in vitro formation of capillary-like structures, and in vivo vasculogenic ability in immunodeficient mice. We found that the level of cord blood ECFCs was statistically lower in preeclampsia than in control pregnancies (P = .04), a reduction that was independent of other obstetric factors. In addition, cord blood ECFCs from preeclamptic pregnancies required more time to emerge in culture than control ECFCs. However, once derived in culture, ECFC function was deemed normal and highly similar between preeclampsia and control, including the ability to form vascular networks in vivo. This study demonstrates that preeclampsia affects ECFC abundance in neonates. A reduced level of ECFCs during preeclamptic pregnancies may contribute to an increased risk of developing future cardiovascular events. PMID:24752434
Determination of the Gene Sequence of Poliovirus with Pactamycin
Summers, D. F.; Maizel, J. V.
1971-01-01
By examination of the virus-specific polypeptides formed after the addition of pactamycin, an inhibitor of protein chain initiation, to infected cells, it has been possible to tentatively locate the virus coat proteins at the amino terminus of the large, virus-specific protein precursor, and, therefore, to assign the coat protein cistron to the 5′ end of the RNA. PMID:4330946
Development and manufacture of reactive-transfer-printed CIGS photovoltaic modules
NASA Astrophysics Data System (ADS)
Eldada, Louay; Sang, Baosheng; Lu, Dingyuan; Stanbery, Billy J.
2010-09-01
In recent years, thin-film photovoltaic (PV) companies started realizing their low manufacturing cost potential, and grabbing an increasingly larger market share from multicrystalline silicon companies. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, high-quality CIGS grains, and a fast reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable print plates in the first stage, while in the second stage, the CIGS layer is formed by rapid heating with Se confinement. High quality CIGS films with large grains were produced on a full-scale manufacturing line, and resulted in high-efficiency large-form-factor modules. With 14% cell efficiency and 12% module efficiency, HelioVolt started to commercialize the process on its first production line with 20 MW nameplate capacity.
Dynamics and Size of Cross-Linking-Induced Lipid Nanodomains in Model Membranes
Štefl, Martin; Šachl, Radek; Humpolíčková, Jana; Cebecauer, Marek; Macháň, Radek; Kolářová, Marie; Johansson, Lennart B.-Å.; Hof, Martin
2012-01-01
Changes of membrane organization upon cross-linking of its components trigger cell signaling response to various exogenous factors. Cross-linking of raft gangliosides GM1 with cholera toxin (CTxB) was shown to cause microscopic phase separation in model membranes, and the CTxB-GM1 complexes forming a minimal lipid raft unit are the subject of ongoing cell membrane research. Yet, those subdiffraction sized rafts have never been described in terms of size and dynamics. By means of two-color z-scan fluorescence correlation spectroscopy, we show that the nanosized domains are formed in model membranes at lower sphingomyelin (Sph) content than needed for the large-scale phase separation and that the CTxB-GM1 complexes are confined in the domains poorly stabilized with Sph. Förster resonance energy transfer together with Monte Carlo modeling of the donor decay response reveal the domain radius of ∼8 nm, which increases at higher Sph content. We observed two types of domains behaving differently, which suggests a dual role of the cross-linker: first, local transient condensation of the GM1 molecules compensating for a lack of Sph and second, coalescence of existing nanodomains ending in large-scale phase separation. PMID:22824274
NASA Astrophysics Data System (ADS)
Nishioka, S.; Goto, I.; Miyamoto, K.; Hatayama, A.; Fukano, A.
2016-01-01
Recently, in large-scale hydrogen negative ion sources, the experimental results have shown that ion-ion plasma is formed in the vicinity of the extraction hole under the surface negative ion production case. The purpose of this paper is to clarify the mechanism of the ion-ion plasma formation by our three dimensional particle-in-cell simulation. In the present model, the electron loss along the magnetic filter field is taken into account by the " √{τ///τ⊥ } model." The simulation results show that the ion-ion plasma formation is due to the electron loss along the magnetic filter field. Moreover, the potential profile for the ion-ion plasma case has been looked into carefully in order to discuss the ion-ion plasma formation. Our present results show that the potential drop of the virtual cathode in front of the plasma grid is large when the ion-ion plasma is formed. This tendency has been explained by a relationship between the virtual cathode depth and the net particle flux density at the virtual cathode.
Heterogeneity-induced large deviations in activity and (in some cases) entropy production
NASA Astrophysics Data System (ADS)
Gingrich, Todd R.; Vaikuntanathan, Suriyanarayanan; Geissler, Phillip L.
2014-10-01
We solve a simple model that supports a dynamic phase transition and show conditions for the existence of the transition. Using methods of large deviation theory we analytically compute the probability distribution for activity and entropy production rates of the trajectories on a large ring with a single heterogeneous link. The corresponding joint rate function demonstrates two dynamical phases—one localized and the other delocalized, but the marginal rate functions do not always exhibit the underlying transition. Symmetries in dynamic order parameters influence the observation of a transition, such that distributions for certain dynamic order parameters need not reveal an underlying dynamical bistability. Solution of our model system furthermore yields the form of the effective Markov transition matrices that generate dynamics in which the two dynamical phases are at coexistence. We discuss the implications of the transition for the response of bacterial cells to antibiotic treatment, arguing that even simple models of a cell cycle lacking an explicit bistability in configuration space will exhibit a bistability of dynamical phases.
Synthesis and excretion of glycerol teichoic acid during growth of two streptococcal species.
Joseph, R; Shockman, G D
1975-01-01
Examination of both supernatant culture medium and cell pellets after exponential- and stationary-phase growth of Streptococcus mutans strain FA-1 and Streptococcus faecalis ATCC 9790 (S. faecium) showed the presence of [-3H]glycerol-labeled material that possessed several of the properties of glycerol teichoic acid. In the supernatant medium of S. mutans FA-1, an apparently large-molecular-size material, which eluted from agarose columns with the Kd value expected of a lipoteichoic acid, was observed. Large amounts of this material were present in supernatants during the stationary phase. In contrast, with S. faecalis only an apparently lower-molecular-weight form, with a Kd consistent with deacylated glycerol teichoic acid, was found in the growth medium. Both organisms had high-molecular-weight lipoteichoic acid in the cells along with the deacylated glycerol teichoic acid. The presence of relatively large amounts of glycerol teichoic acids in the medium was considered to be a result of excretion of these compounds rather than a result of cellular lysis. PMID:807523
δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.
Wang, Hong; Hong, Jungil; Yang, Chung S
2016-11-01
The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Nadali, G; Vinante, F; Stein, H; Todeschini, G; Tecchio, C; Morosato, L; Chilosi, M; Menestrina, F; Kinney, M C; Greer, J P
1995-06-01
To determine serum levels of the soluble form of CD30 molecule (sCD30) in patients with Ki-1/CD30+ anaplastic large-cell lymphoma (ALCL), and to evaluate its correlation with clinical features at presentation and its possible role as a tumor marker to monitor response to treatment and subsequent follow-up. sCD30 serum levels were measured with an improved commercial sandwich enzyme-linked immunosorbent assay (ELISA) test kit in 24 patients with CD30+ ALCL at diagnosis and in 13 after treatment. Increased values (> 20 U/mL) at diagnosis were observed in 23 of 24 cases (median, 842.5 U/mL; range, 16 to 37,250) as compared with controls (P < .0001). These values were greater than those of 60 stage-matched cases of Hodgkin's disease (HD) (P < .0001). The highest median value was observed in patients with T-cell-type ALCL (1,690 U/mL), with a significant overall difference as compared with B- and null-cell types (P = .004). Phenotype maintained its significance when results were corrected for other parameters, such as age, sex, and stage (P = .03). sCD30 values returned to the normal range in complete remission (CR), but remained increased in one patient who only partially responded to treatment. Subsequent increases of sCD30 levels were recorded in four of four patients after relapse. sCD30 appears to be a new biologic serum tumor marker of possible use in the clinical setting of CD30+ ALCL.
Plume structure in high-Rayleigh-number convection
NASA Astrophysics Data System (ADS)
Puthenveettil, Baburaj A.; Arakeri, Jaywant H.
2005-10-01
Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.
Mignot, Cyril; Delarasse, Cécile; Escaich, Séverine; Della Gaspera, Bruno; Noé, Eric; Colucci-Guyon, Emma; Babinet, Charles; Pekny, Milos; Vicart, Patrick; Boespflug-Tanguy, Odile; Dautigny, André; Rodriguez, Diana; Pham-Dinh, Danielle
2007-08-01
Alexander disease (AxD) is a rare neurodegenerative disorder characterized by large cytoplasmic aggregates in astrocytes and myelin abnormalities and caused by dominant mutations in the gene encoding glial fibrillary acidic protein (GFAP), the main intermediate filament protein in astrocytes. We tested the effects of three mutations (R236H, R76H and L232P) associated with AxD in cells transiently expressing mutated GFAP fused to green fluorescent protein (GFP). Mutated GFAP-GFP expressed in astrocytes formed networks or aggregates similar to those found in the brains of patients with the disease. Time-lapse recordings of living astrocytes showed that aggregates of mutated GFAP-GFP may either disappear, associated with cell survival, or coalesce in a huge juxtanuclear structure associated with cell death. Immunolabeling of fixed cells suggested that this gathering of aggregates forms an aggresome-like structure. Proteasome inhibition and immunoprecipitation assays revealed mutated GFAP-GFP ubiquitination, suggesting a role of the ubiquitin-proteasome system in the disaggregation process. In astrocytes from wild-type-, GFAP-, and vimentin-deficient mice, mutated GFAP-GFP aggregated or formed a network, depending on qualitative and quantitative interactions with normal intermediate filament partners. Particularly, vimentin displayed an anti-aggregation effect on mutated GFAP. Our data indicate a dynamic and reversible aggregation of mutated GFAP, suggesting that therapeutic approaches may be possible.
Prediction of weak topological insulators in layered semiconductors.
Yan, Binghai; Müchler, Lukas; Felser, Claudia
2012-09-14
We report the discovery of weak topological insulators by ab initio calculations in a honeycomb lattice. We propose a structure with an odd number of layers in the primitive unit cell as a prerequisite for forming weak topological insulators. Here, the single-layered KHgSb is the most suitable candidate for its large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Although the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as prototypes to aid in the finding of new weak topological insulators in layered small-gap semiconductors.
The Origin and Early Evolution of Membrane Proteins
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.
2005-01-01
Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.
Horvath, E; Kovacs, K; Smyth, H S; Cusimano, M; Singer, W
2005-01-01
The silent adenoma subtype 3 (SAS-3) of undetermined cellular derivation is a seemingly nonfunctioning aggressive pituitary tumor with a high recurrence rate. At the time of diagnosis SAS-3s are macro- or giant adenomas particularly aggressive in young individuals, especially women. They are usually associated with mild hyperprolactinemia and are unremarkable by histology. Immunohistochemistry, demonstrating scattered immunoreactivity mostly for GH, PRL, TSH, and alpha-subunit, is not diagnostic. Presently, only TEM permits conclusive diagnosis. Ultrastructurally, the large polar adenoma cells contain abundant RER, masses of SER, extensive multipolar Golgi apparatus, and unevenly clustered mitochondria, displaced by RER and SER, which may show close spatial relationship to RER. Cell membranes often form plexiform interdigitations. Nuclear pleomorphism and nuclear inclusions are common. The 100- to 200-nm secretory granules accumulate heavily in cell processes, which is a hallmark of glycoprotein hormone cell differentiation. The endothelial cells may contain tubuloreticular inclusions. Complete surgical removal of the large often invasive tumors is difficult necessitating postoperative treatment. SAS-3 is sensitive to conventional radiation. Some tumors express somatostatin receptors and respond well to somatostatin analogues, offering long-term control in patients with residual tumor. Possible derivation of SAS-3 from rostral thyrotrophs, a cell type presently known in rodents is contemplated.
Design of coated standing nanowire array solar cell performing beyond the planar efficiency limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yang; Ye, Qinghao; Shen, Wenzhong, E-mail: wzshen@sjtu.edu.cn
2016-05-28
The single standing nanowire (SNW) solar cells have been proven to perform beyond the planar efficiency limits in both open-circuit voltage and internal quantum efficiency due to the built-in concentration and the shifting of the absorption front. However, the expandability of these nano-scale units to a macro-scale photovoltaic device remains unsolved. The main difficulty lies in the simultaneous preservation of an effective built-in concentration in each unit cell and a broadband high absorption capability of their array. Here, we have provided a detailed theoretical guideline for realizing a macro-scale solar cell that performs furthest beyond the planar limits. The keymore » lies in a complementary design between the light-trapping of the single SNWs and that of the photonic crystal slab formed by the array. By tuning the hybrid HE modes of the SNWs through the thickness of a coaxial dielectric coating, the optimized coated SNW array can sustain an absorption rate over 97.5% for a period as large as 425 nm, which, together with the inherited carrier extraction advantage, leads to a cell efficiency increment of 30% over the planar limit. This work has demonstrated the viability of a large-size solar cell that performs beyond the planar limits.« less
The Human Leukocyte Antigen–presented Ligandome of B Lymphocytes*
Hassan, Chopie; Kester, Michel G. D.; de Ru, Arnoud H.; Hombrink, Pleun; Drijfhout, Jan Wouter; Nijveen, Harm; Leunissen, Jack A. M.; Heemskerk, Mirjam H. M.; Falkenburg, J. H. Frederik; van Veelen, Peter A.
2013-01-01
Peptides presented by human leukocyte antigen (HLA) molecules on the cell surface play a crucial role in adaptive immunology, mediating the communication between T cells and antigen presenting cells. Knowledge of these peptides is of pivotal importance in fundamental studies of T cell action and in cellular immunotherapy and transplantation. In this paper we present the in-depth identification and relative quantification of 14,500 peptide ligands constituting the HLA ligandome of B cells. This large number of identified ligands provides general insight into the presented peptide repertoire and antigen presentation. Our uniquely large set of HLA ligands allowed us to characterize in detail the peptides constituting the ligandome in terms of relative abundance, peptide length distribution, physicochemical properties, binding affinity to the HLA molecule, and presence of post-translational modifications. The presented B-lymphocyte ligandome is shown to be a rich source of information by the presence of minor histocompatibility antigens, virus-derived epitopes, and post-translationally modified HLA ligands, and it can be a good starting point for solving a wealth of specific immunological questions. These HLA ligands can form the basis for reversed immunology approaches to identify T cell epitopes based not on in silico predictions but on the bona fide eluted HLA ligandome. PMID:23481700
Walukiewicz, Wladyslaw [Kensington, CA; Yu, Kin Man [Lafayette, CA; Wu, Junqiao [Richmond, CA; Schaff, William J [Ithaca, NY
2007-05-15
An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.
NASA Astrophysics Data System (ADS)
Schweikhard, Volker
2016-02-01
The precise sub-cellular spatial localization of multi-protein complexes is increasingly recognized as a key mechanism governing the organization of mammalian cells. Consequently, there is a need for novel microscopy techniques capable of investigating such sub-cellular architectures in comprehensive detail. Here, we applied a novel multiplexed STORM super-resolution microscopy technique, in combination with high-throughput immunofluorescence microscopy and live-cell imaging, to investigate the roles of the scaffold protein IQGAP1 in epithelial cells. IQGAP1 is known to orchestrate a wide range of biological processes, including intracellular signaling, cytoskeletal regulation, cell-cell adhesion, and protein trafficking, by forming distinct complexes with a number of known interaction partners, and recruiting these complexes to specific subcellular locations. Our results demonstrate that, in addition to supporting epithelial adherens junctions by associating with specialized cortical actin structures, IQGAP1 plays a second role in which it controls the confinement of a unique, previously undocumented class of membranous compartments to the basal actin cortex. These largely immotile yet highly dynamic structures appear transiently as cells merge into clusters and establish of apical-basolateral (epithelial) polarity, and are identified as an intermediate compartment in the endocytic recycling pathways for cell junction complexes and cell surface receptors. Although these two functions of IQGAP1 occur in parallel and largely independently of each other, they both support the maturation and maintenance of polarized epithelial cell architectures.
2017-01-01
Intercellular communications play a major role in tissue homeostasis and responses to external cues. Novel structures for this communication have recently been described. These tunneling nanotubes (TNTs) consist of thin-extended membrane protrusions that connect cells together. TNTs allow the cell-to-cell transfer of various cellular components, including proteins, RNAs, viruses, and organelles, such as mitochondria. Mesenchymal stem cells (MSCs) are both naturally present and recruited to many different tissues where their interaction with resident cells via secreted factors has been largely documented. Their immunosuppressive and repairing capacities constitute the basis for many current clinical trials. MSCs recruited to the tumor microenvironment also play an important role in tumor progression and resistance to therapy. MSCs are now the focus of intense scrutiny due to their capacity to form TNTs and transfer mitochondria to target cells, either in normal physiological or in pathological conditions, leading to changes in cell energy metabolism and functions, as described in this review. PMID:28659978
Kenngott, R A-M; Scholz, W; Sinowatz, F
2016-10-01
The aim of this investigation was to study the ultrastructural features during the development of fetal bovine ovaries (crown rump length ranging from 11.4 to 94.0 cm). An interesting observation was the occurrence of big elongated cells containing a variety of electron dense granules and light homogenous vacuoles/bodies. They were located between the stroma cells surrounding the germ cell cord ends, adjacent to the first formed primordial follicles, typically situated near blood vessels. ER alpha and ER beta receptor positive cells could be detected in the same regions by means of immunohistochemistry. Intercellular bridges linked the germ cells nests oogonia. Germ cell cords consisted of centrally located, large, pale oogonia, surrounded by elongated somatic cells with very long cytoplasm extensions. Primordial follicles with flat pale follicular cells could be observed on the inner end of the cords. Extrusions of the outer nuclear membrane could often been recognised in voluminous oocytes. © 2016 Blackwell Verlag GmbH.
Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Si-Jian; Wu, Yue-Bing; Cai, Shang
Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitromore » proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation.« less
On the birefringence of healthy and malaria-infected red blood cells
NASA Astrophysics Data System (ADS)
Dharmadhikari, Aditya K.; Basu, Himanish; Dharmadhikari, Jayashree A.; Sharma, Shobhona; Mathur, Deepak
2013-12-01
The birefringence of a red blood cell (RBC) is quantitatively monitored as it becomes infected by a malarial parasite. Large changes occur in the cell's refractive index at different stages of malarial infection. The observed rotation of an optically trapped, malaria-infected RBC is not a simple function of shape distortion: the malarial parasite is found to itself exercise a profound influence on the rotational dynamics by inducing stage-specific birefringence. Our measurements shed new light on the competition between shape- and form-birefringence in RBCs. We demonstrate the possibility of using birefringence to establish very early stages of infected parasites and of assessing various factors that contribute to birefringence in normal and infected cells. Our results have implications for the development and use of noninvasive techniques of quantifying changes in cell properties induced by malaria disease pathology.
The Microenvironment in Epstein-Barr Virus-Associated Malignancies.
Tan, Geok Wee; Visser, Lydia; Tan, Lu Ping; van den Berg, Anke; Diepstra, Arjan
2018-04-13
The Epstein–Barr virus (EBV) can cause a wide variety of cancers upon infection of different cell types and induces a highly variable composition of the tumor microenvironment (TME). This TME consists of both innate and adaptive immune cells and is not merely an aspecific reaction to the tumor cells. In fact, latent EBV-infected tumor cells utilize several specific mechanisms to form and shape the TME to their own benefit. These mechanisms have been studied largely in the context of EBV+ Hodgkin lymphoma, undifferentiated nasopharyngeal carcinoma, and EBV+ gastric cancer. This review describes the composition, immune escape mechanisms, and tumor cell promoting properties of the TME in these three malignancies. Mechanisms of susceptibility which regularly involve genes related to immune system function are also discussed, as only a small proportion of EBV-infected individuals develops an EBV-associated malignancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveeva, V. G., E-mail: matveeva-vg@mail.ru; Antonova, L. V., E-mail: antonova.la@mail.ru; Velikanova, E. A.
We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwovenmore » scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.« less
Yang, Zhigang; Yao, Hong; Fei, Fei; Li, Yuwei; Qu, Jie; Li, Chunyuan; Zhang, Shiwu
2018-04-01
During development and tumor progression, cells need a sufficient blood supply to maintain development and rapid growth. It is reported that there are three patterns of blood supply for tumor growth: endothelium-dependent vessels, mosaic vessels, and vasculogenic mimicry (VM). VM was first reported in highly aggressive uveal melanomas, with tumor cells mimicking the presence and function of endothelial cells forming the walls of VM vessels. The walls of mosaic vessels are randomly lined with both endothelial cells and tumor cells. We previously proposed a three-stage process, beginning with VM, progressing to mosaic vessels, and eventually leading to endothelium-dependent vessels. However, many phenomena unique to VM channel formation remain to be elucidated, such as the origin of erythrocytes before VM vessels connect with endothelium-dependent vessels. In adults, erythroid cells are generally believed to be generated from hematopoietic stem cells in the bone marrow. In contrast, embryonic tissue obtains oxygen through formation of blood islands, which are largely composed of embryonic hemoglobin with a higher affinity with oxygen, in the absence of mature erythrocytes. Recent data from our laboratory suggest that embryonic blood-forming mechanisms also exist in cancer tissue, particularly when these tissues are under environmental stress such as hypoxia. We review the evidence from induced pluripotent stem cells in vitro and in vivo to support this previously underappreciated cell functionality in normal and cancer cells, including the ability to generate erythroid cells. We will also summarize the current understanding of tumor angiogenesis, VM, and our recent work on polyploid giant cancer cells, with emphasis on their ability to generate erythroid cells and their association with tumor growth under hypoxia. An alternative embryonic pathway to obtain oxygen in cancer cells exists, particularly when they are under hypoxic conditions.
Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure
NASA Astrophysics Data System (ADS)
Bimo Prakoso, Ari; Rusli; Li, Zeyu; Lu, Chenjin; Jiang, Changyun
2018-03-01
We study the design of Si/organic hybrid (SOH) solar cells with interdigitated back contact (IBC) structure. SOH solar cells formed between n-Si and poly(3,4-ethylenedioxythiophene): polystyrenesulphonate (PEDOT:PSS) is a promising concept that combines the excellent electronic properties of Si with the solution-based processing advantage of an organic polymer. The IBC cell structure is employed to minimize parasitic absorption losses in the organic polymer, eliminate grid shadowing losses, and allow excellent passivation of the front Si surface in one step over a large area. The influence of Si thickness, doping concentration and contact geometry are simulated in this study to optimize the performance of the SOH-IBC solar cell. We found that a high power conversion efficiency of >20% can be achieved for optimized SOH-IBC cell based on a thin c-Si substrate of 40 μm thickness.
Detection of ASC Speck Formation by Flow Cytometry and Chemical Cross-linking.
Hoss, Florian; Rolfes, Verena; Davanso, Mariana R; Braga, Tarcio T; Franklin, Bernardo S
2018-01-01
Assembly of a relatively large protein aggregate or "speck" formed by the adaptor protein ASC is a common downstream step in the activation of most inflammasomes. This unique feature of ASC allows its visualization by several imaging techniques and constitutes a reliable and feasible readout for inflammasome activation in cells and tissues. We have previously described step-by-step protocols to generate immortalized cell lines stably expressing ASC fused to a fluorescent protein for measuring inflammasome activation by confocal microscopy, and immunofluorescence of endogenous ASC in primary cells. Here, we present two more methods to detect ASC speck formation: (1) Assessment of ASC speck formation by flow cytometry; and (2) Chemical cross-linking of ASC followed by immunoblotting. These methods allow for the discrimination of inflammasome-activated versus non-activated cells, the identification of lineage-specific inflammasome activation in complex cell mixtures, and sorting of inflammasome-activated cells for further analysis.
Electromagnetic cellular interactions.
Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan
2011-05-01
Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.
Analysis of three echo-trainings of a rainstorm in the South China warm region
NASA Astrophysics Data System (ADS)
Ding, Zhiying; Qian, Lei; Zhao, Xiangjun; Xia, Fan
2018-06-01
A rainstorm which occurred between May 22 and 23, 2014 in Guangdong Province of the South China warm region was simulated by using the ARW-WRF model. Three "echo-trainings" over the rainstorm center were analyzed and the results of both the simulation and observational analysis showed that this rainstorm process was composed of three stages. In the first stage, gravity waves triggered the simultaneous but relatively independent formation of linear convection and convective cells, which moved toward the northeast through the rain center, thus creating the echo-training. In the second stage, with the formation of cold outflow, new convective cells were continuously created in the southwest and northwest of the rain area and then gradually moved to merge into the northeast rain area, thus forming a new echo-training. In the third stage, multiple rain bands above the rain area moved southeastward and passed through the strongest precipitation center, thus creating the third echo-training. The model simulation showed that a substantial warming appeared at 900 hPa before the convective initiation, leading to the formation of a stable layer below 900 hPa, which was the primary cause for the gravity waves that triggered the multiple convective cells. The multiple convective cells formed the convective line, following which new convection was formed from the cold outflow in its southwest and northwest directions. The new convection in the southwest maintained the rain band; however, the new convection in the northwest, combined with the rain band of the north, formed a large radar reflectivity area and consequently, a larger MCS.
Analysis of three echo-trainings of a rainstorm in the South China warm region
NASA Astrophysics Data System (ADS)
Ding, Zhiying; Qian, Lei; Zhao, Xiangjun; Xia, Fan
2017-07-01
A rainstorm which occurred between May 22 and 23, 2014 in Guangdong Province of the South China warm region was simulated by using the ARW-WRF model. Three "echo-trainings" over the rainstorm center were analyzed and the results of both the simulation and observational analysis showed that this rainstorm process was composed of three stages. In the first stage, gravity waves triggered the simultaneous but relatively independent formation of linear convection and convective cells, which moved toward the northeast through the rain center, thus creating the echo-training. In the second stage, with the formation of cold outflow, new convective cells were continuously created in the southwest and northwest of the rain area and then gradually moved to merge into the northeast rain area, thus forming a new echo-training. In the third stage, multiple rain bands above the rain area moved southeastward and passed through the strongest precipitation center, thus creating the third echo-training. The model simulation showed that a substantial warming appeared at 900 hPa before the convective initiation, leading to the formation of a stable layer below 900 hPa, which was the primary cause for the gravity waves that triggered the multiple convective cells. The multiple convective cells formed the convective line, following which new convection was formed from the cold outflow in its southwest and northwest directions. The new convection in the southwest maintained the rain band; however, the new convection in the northwest, combined with the rain band of the north, formed a large radar reflectivity area and consequently, a larger MCS.
Hong, Sung Noh; Dunn, James C Y; Stelzner, Matthias; Martín, Martín G
2017-02-01
Intestinal failure is a rare life-threatening condition that results in the inability to maintain normal growth and hydration status by enteral nutrition alone. Although parenteral nutrition and whole organ allogeneic transplantation have improved the survival of these patients, current therapies are associated with a high risk for morbidity and mortality. Development of methods to propagate adult human intestinal stem cells (ISCs) and pluripotent stem cells raises the possibility of using stem cell-based therapy for patients with monogenic and polygenic forms of intestinal failure. Organoids have demonstrated the capacity to proliferate indefinitely and differentiate into the various cellular lineages of the gut. Genome-editing techniques, including the overexpression of the corrected form of the defective gene, or the use of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to selectively correct the monogenic disease-causing variant within the stem cell, make autologous ISC transplantation a feasible approach. However, numerous techniques still need to be further optimized, including more robust ex vivo ISC expansion, native ISC ablation, and engraftment protocols. Large-animal models can to be used to develop such techniques and protocols and to establish the safety of autologous ISC transplantation because outcomes in such models can be extrapolated more readily to humans. Stem Cells Translational Medicine 2017;6:666-676. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Role of Hemichannels in CNS Inflammation and the Inflammasome Pathway.
Kim, Yeri; Davidson, Joanne O; Gunn, Katherine C; Phillips, Anthony R; Green, Colin R; Gunn, Alistair J
2016-01-01
Neurodegenerative, cardiovascular, and metabolic disorders, once triggered, share a number of common features, including sustained inflammatory cell activation and vascular disruption. These shared pathways are induced independently of any genetic predisposition to the disease or the precise external stimulus. Glial cells respond to injury with an innate immune response that includes release of proinflammatory cytokines and chemokines. Vascular endothelial cells may also be affected, leading to opening of the blood-brain barrier that facilitates invasion by circulating inflammatory cells. Inflammation can trigger acute neural injury followed by chronic inflammation that plays a key role in neurodegenerative conditions. Gap junction channels normally allow direct cell-to-cell communication. They are formed by the docking of two hemichannels, one contributed by each of the neighboring cells. While the opening probability of these channels is tightly controlled under resting conditions, hemichannels can open in response to injury or inflammatory factors, forming a large, relatively nonselective membrane pore. In this review, we consider the CNS immune system from the perspective that modulating connexin hemichannel opening can prevent tissue damage arising from excessive and uncontrolled inflammation. We discuss connexin channel roles in microglia, astrocytes, and endothelial cells in both acute and chronic inflammatory conditions, and in particular describe the role of connexin hemichannels in the inflammasome pathway where they contribute to both its activation and its spread to neighboring cells. Finally, we describe the benefits of hemichannel block in animal models of brain injury. © 2016 Elsevier Inc. All rights reserved.
Mechanisms for Cell-to-Cell Transmission of HIV-1
Bracq, Lucie; Xie, Maorong; Benichou, Serge; Bouchet, Jérôme
2018-01-01
While HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues. PMID:29515578
Heatfield, B M; Travis, D F
1975-01-01
The fine structure of regenerating tips of spines of the sea urchin Strongylocentrotus purpuratus was investigated. Each conical tip consisted of an inner dermis, which deposits and contains the calcite skeleton, and an external layer of epidermis. Although cell types termed spherulecytes containing large, intracellular membrane bound spherules were also present in spine tissues, only epidermal and dermal cell types lacking such spherules are described in this paper. The epidermis was composed largely of free cells representing several functional types. Over the apical portion of the tip these cells occurred in groups, while proximally they were distributed within longitudinal grooves present along the periphery of the spine from the base to the tip. The terminal portions of apical processes extending from some of the epidermal cells formed a thin, contiguous outer layer consisting of small individual islands of cytoplasm bearing microvilli. Adjacent islands were connected around the periphery by a junctional complex extending roughly 200 A in depth in which the opposing plasma membranes were separated by a narrow gap about 145 A in width bridged by amorphous material. Other epidermal cells were closely associated with the basal lamina, which was 900 A in thickness and delineated the dermoepidermal junction; some of these cells appeared to synthesize the lamina, while others may be sensory nerve cells. The dermis at the spine tip also consisted of several functional types of free cells; the most interesting of these was the calcoblast, which deposits the skeleton. Calcoblasts extended a thin, cytoplasmic skeletal sheath which surrounded the tips and adjacent proximal portions of each of the longitudinally oriented microspines comprising the regenerating skeleton, and distally, formed a conical extracellular channel ahead of the mineralizing tip. The intimate relationship between calcoblasts and the growing mineral surface strongly suggests that these cells directly control both the kinetics of mineral deposition and morphogenesis of the skeleton. Other cell types in the dermis were precalcoblasts and phagocytes. Precalcoblasts may function as fibroblasts and are possible precursors of calcoblasts. Closely associated with the basal lamina at the dermoepidermal junction were extracellular unbanded anchoring fi0rils 150 A to 200 A51 in diameter. Scattered proximally among dermal cells were other extracellular fibrils, presumably collagenous, about 300 A in diameter wit
NASA Astrophysics Data System (ADS)
Nestoridi, Maria; Pletcher, Derek; Wharton, Julian A.; Wood, Robert J. K.
As part of a programme to develop a high power density, Al/air battery with a NaCl brine electrolyte, the high rate dissolution of an aluminium alloy containing tin and gallium was investigated in a small volume cell. The objective was to define the factors that limit aluminium dissolution in condition that mimic a high power density battery. In a cell with a large ratio of aluminium alloy to electrolyte, over a range of current densities the extent of dissolution was limited to ∼1000 C cm -2 of anode surface by a thick layer of loosely bound, crystalline deposit on the Al alloy anode formed by precipitation from solution. This leads to a large increase in impedance and acts as a barrier to transport of ions.
Free lipid and computerized determination of adipocyte size.
Svensson, Henrik; Olausson, Daniel; Holmäng, Agneta; Jennische, Eva; Edén, Staffan; Lönn, Malin
2018-06-21
The size distribution of adipocytes in a suspension, after collagenase digestion of adipose tissue, can be determined by computerized image analysis. Free lipid, forming droplets, in such suspensions implicates a bias since droplets present in the images may be identified as adipocytes. This problem is not always adjusted for and some reports state that distinguishing droplets and cells is a considerable problem. In addition, if the droplets originate mainly from rupture of large adipocytes, as often described, this will also bias size analysis. We here confirm that our ordinary manual means of distinguishing droplets and adipocytes in the images ensure correct and rapid identification before exclusion of the droplets. Further, in our suspensions, prepared with focus on gentle handling of tissue and cells, we find no association between the amount of free lipid and mean adipocyte size or proportion of large adipocytes.
Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung
2014-10-28
Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.
Eichner, Meri J; Klawonn, Isabell; Wilson, Samuel T; Littmann, Sten; Whitehouse, Martin J; Church, Matthew J; Kuypers, Marcel MM; Karl, David M; Ploug, Helle
2017-01-01
Gradients of oxygen (O2) and pH, as well as small-scale fluxes of carbon (C), nitrogen (N) and O2 were investigated under different partial pressures of carbon dioxide (pCO2) in field-collected colonies of the marine dinitrogen (N2)-fixing cyanobacterium Trichodesmium. Microsensor measurements indicated that cells within colonies experienced large fluctuations in O2, pH and CO2 concentrations over a day–night cycle. O2 concentrations varied with light intensity and time of day, yet colonies exposed to light were supersaturated with O2 (up to ~200%) throughout the light period and anoxia was not detected. Alternating between light and dark conditions caused a variation in pH levels by on average 0.5 units (equivalent to 15 nmol l−1 proton concentration). Single-cell analyses of C and N assimilation using secondary ion mass spectrometry (SIMS; large geometry SIMS and nanoscale SIMS) revealed high variability in metabolic activity of single cells and trichomes of Trichodesmium, and indicated transfer of C and N to colony-associated non-photosynthetic bacteria. Neither O2 fluxes nor C fixation by Trichodesmium were significantly influenced by short-term incubations under different pCO2 levels, whereas N2 fixation increased with increasing pCO2. The large range of metabolic rates observed at the single-cell level may reflect a response by colony-forming microbial populations to highly variable microenvironments. PMID:28398346