Science.gov

Sample records for cells hescs grown

  1. Genome wide profiling of human embryonic stem cells (hESCs), their derivatives and embryonal carcinoma cells to develop base profiles of U.S. Federal government approved hESC lines.

    PubMed

    Liu, Ying; Shin, Soojung; Zeng, Xianmin; Zhan, Ming; Gonzalez, Rodolfo; Mueller, Franz-Josef; Schwartz, Catherine M; Xue, Haipeng; Li, Huai; Baker, Shawn C; Chudin, Eugene; Barker, David L; McDaniel, Timothy K; Oeser, Steffen; Loring, Jeanne F; Mattson, Mark P; Rao, Mahendra S

    2006-05-03

    In order to compare the gene expression profiles of human embryonic stem cell (hESC) lines and their differentiated progeny and to monitor feeder contaminations, we have examined gene expression in seven hESC lines and human fibroblast feeder cells using Illumina bead arrays that contain probes for 24,131 transcript probes. A total of 48 different samples (including duplicates) grown in multiple laboratories under different conditions were analyzed and pairwise comparisons were performed in all groups. Hierarchical clustering showed that blinded duplicates were correctly identified as the closest related samples. hESC lines clustered together irrespective of the laboratory in which they were maintained. hESCs could be readily distinguished from embryoid bodies (EB) differentiated from them and the karyotypically abnormal hESC line BG01V. The embryonal carcinoma (EC) line NTera2 is a useful model for evaluating characteristics of hESCs. Expression of subsets of individual genes was validated by comparing with published databases, MPSS (Massively Parallel Signature Sequencing) libraries, and parallel analysis by microarray and RT-PCR. we show that Illumina's bead array platform is a reliable, reproducible and robust method for developing base global profiles of cells and identifying similarities and differences in large number of samples.

  2. Genome wide profiling of human embryonic stem cells (hESCs), their derivatives and embryonal carcinoma cells to develop base profiles of U.S. Federal government approved hESC lines

    PubMed Central

    Liu, Ying; Shin, Soojung; Zeng, Xianmin; Zhan, Ming; Gonzalez, Rodolfo; Mueller, Franz-Josef; Schwartz, Catherine M; Xue, Haipeng; Li, Huai; Baker, Shawn C; Chudin, Eugene; Barker, David L; McDaniel, Timothy K; Oeser, Steffen; Loring, Jeanne F; Mattson, Mark P; Rao, Mahendra S

    2006-01-01

    Background In order to compare the gene expression profiles of human embryonic stem cell (hESC) lines and their differentiated progeny and to monitor feeder contaminations, we have examined gene expression in seven hESC lines and human fibroblast feeder cells using Illumina® bead arrays that contain probes for 24,131 transcript probes. Results A total of 48 different samples (including duplicates) grown in multiple laboratories under different conditions were analyzed and pairwise comparisons were performed in all groups. Hierarchical clustering showed that blinded duplicates were correctly identified as the closest related samples. hESC lines clustered together irrespective of the laboratory in which they were maintained. hESCs could be readily distinguished from embryoid bodies (EB) differentiated from them and the karyotypically abnormal hESC line BG01V. The embryonal carcinoma (EC) line NTera2 is a useful model for evaluating characteristics of hESCs. Expression of subsets of individual genes was validated by comparing with published databases, MPSS (Massively Parallel Signature Sequencing) libraries, and parallel analysis by microarray and RT-PCR. Conclusion we show that Illumina's bead array platform is a reliable, reproducible and robust method for developing base global profiles of cells and identifying similarities and differences in large number of samples. PMID:16672070

  3. Effect of ROCK inhibitor Y-27632 on normal and variant human embryonic stem cells (hESCs) in vitro: its benefits in hESC expansion.

    PubMed

    Gauthaman, Kalamegam; Fong, Chui-Yee; Bongso, Ariff

    2010-03-01

    The Rho associated coiled coil protein kinase (ROCK) dependent signaling pathway plays an important role in numerous physiological functions such as cell proliferation, adhesion, migration and inflammation. Human embryonic stem cells (hESCs) undergo differentiation and poor survival after single cell dissociation in culture thus limiting their expansion for cell based therapies. We evaluated the role of the selective ROCK inhibitor Y-27632 on hESC colonies and disassociated single hESCs from two different hESC lines. Karyotypically normal hESCs (HES3) and variant hESCs (BG01V) were treated with Y-27632 at 5, 10 and 20 muM concentrations for 72 h and its effects on hESC self renewal, colony morphology, cell cycle and pluripotency were evaluated. Increased cell proliferation of both HES3 and BG01V were observed for all three concentrations compared to untreated controls following passaging of cell clusters or dissociated single cells and some of these increases were statistically significant. Cell cycle assay demonstrated normal cell cycle progression with no peaks evident of apoptosis. No morphological differentiation was evident following treatment with the highest concentration of Y-27632 (20 muM) and the stemness related genes continued to be highly expressed in both HES3 and BG01V cells compared to untreated controls. The results confirmed that Y-27632 is a useful agent that aids in the expansion of undifferentiated hESC numbers for downstream applications in regenerative medicine.

  4. Population based model of human embryonic stem cell (hESC) differentiation during endoderm induction.

    PubMed

    Task, Keith; Jaramillo, Maria; Banerjee, Ipsita

    2012-01-01

    The mechanisms by which human embryonic stem cells (hESC) differentiate to endodermal lineage have not been extensively studied. Mathematical models can aid in the identification of mechanistic information. In this work we use a population-based modeling approach to understand the mechanism of endoderm induction in hESC, performed experimentally with exposure to Activin A and Activin A supplemented with growth factors (basic fibroblast growth factor (FGF2) and bone morphogenetic protein 4 (BMP4)). The differentiating cell population is analyzed daily for cellular growth, cell death, and expression of the endoderm proteins Sox17 and CXCR4. The stochastic model starts with a population of undifferentiated cells, wherefrom it evolves in time by assigning each cell a propensity to proliferate, die and differentiate using certain user defined rules. Twelve alternate mechanisms which might describe the observed dynamics were simulated, and an ensemble parameter estimation was performed on each mechanism. A comparison of the quality of agreement of experimental data with simulations for several competing mechanisms led to the identification of one which adequately describes the observed dynamics under both induction conditions. The results indicate that hESC commitment to endoderm occurs through an intermediate mesendoderm germ layer which further differentiates into mesoderm and endoderm, and that during induction proliferation of the endoderm germ layer is promoted. Furthermore, our model suggests that CXCR4 is expressed in mesendoderm and endoderm, but is not expressed in mesoderm. Comparison between the two induction conditions indicates that supplementing FGF2 and BMP4 to Activin A enhances the kinetics of differentiation than Activin A alone. This mechanistic information can aid in the derivation of functional, mature cells from their progenitors. While applied to initial endoderm commitment of hESC, the model is general enough to be applicable either to a system of

  5. Directed differentiation of neural-stem cells and subtype-specific neurons from hESCs

    PubMed Central

    Hu, Bao-Yang; Zhang, Su-Chun

    2010-01-01

    We describe a chemically defined protocol for efficient differentiation of human embryonic stem cells (hESCs) to neural epithelial cells and then to functional spinal motor neurons. This protocol comprises four major steps. Human ESCs are differentiated without morphogens into neuroepithelial cells that form neural tube-like rosettes in the first two weeks. The neuroepithelial cells are then specified to Olig2-expressing motoneuorn progenitors in the presence of retinoic acid (RA) and sonic hedgehog (SHH) in the following 2 weeks. These OLIG2 progenitors generate post-mitotic, HB9 expressing motoneurons at the 5th week and mature to functional motor neurons thereafter. The protein factor SHH can be replaced by a small molecule purmorphamine in the entire process, which may facilitate potential clinical applications. This protocol has been shown equally effective in generating motor neurons from human induced pluropotent stem (iPS) cells. PMID:20336520

  6. Label-free separation of human embryonic stem cells (hESCs) and their cardiac derivatives using Raman spectroscopy

    SciTech Connect

    Chan, J W; Lieu, D K; Huser, T R; Li, R A

    2008-09-08

    Self-renewable, pluripotent human embryonic stem cells (hESCs) can be differentiated into cardiomyocytes (CMs), providing an unlimited source of cells for transplantation therapies. However, unlike certain cell lineages such as hematopoietic cells, CMs lack specific surface markers for convenient identification, physical separation, and enrichment. Identification by immunostaining of cardiac-specific proteins such as troponin requires permeabilization, which renders the cells unviable and non-recoverable. Ectopic expression of a reporter protein under the transcriptional control of a heart-specific promoter for identifying hESC-derived CMs (hESC-CMs) is useful for research but complicates potential clinical applications. The practical detection and removal of undifferentiated hESCs in a graft, which may lead to tumors, is also critical. Here, we demonstrate a non-destructive, label-free optical method based on Raman scattering to interrogate the intrinsic biochemical signatures of individual hESCs and their cardiac derivatives, allowing cells to be identified and classified. By combining the Raman spectroscopic data with multivariate statistical analysis, our results indicate that hESCs, human fetal left ventricular CMs, and hESC-CMs can be identified by their intrinsic biochemical characteristics with an accuracy of 96%, 98% and 66%, respectively. The present study lays the groundwork for developing a systematic and automated method for the non-invasive and label-free sorting of (i) high-quality hESCs for expansion, and (ii) ex vivo CMs (derived from embryonic or adult stem cells) for cell-based heart therapies.

  7. Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines.

    PubMed

    Venkatesh, Priyanka; Panyutin, Irina V; Remeeva, Evgenia; Neumann, Ronald D; Panyutin, Igor G

    2016-01-02

    Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.

  8. MicroRNA-302/367 Cluster Governs hESC Self-Renewal by Dually Regulating Cell Cycle and Apoptosis Pathways

    PubMed Central

    Zhang, Zhonghui; Hong, Yuanfan; Xiang, Di; Zhu, Pei; Wu, Elise; Li, Wen; Mosenson, Jeffrey; Wu, Wen-Shu

    2015-01-01

    Summary miR-302/367 is the most abundant miRNA cluster in human embryonic stem cells (hESCs) and can promote somatic cell reprogramming. However, its role in hESCs remains poorly understood. Here, we studied functional roles of the endogenous miR-302/367 cluster in hESCs by employing specific TALE-based transcriptional repressors. We revealed that miR-302/367 cluster dually regulates hESC cell cycle and apoptosis in dose-dependent manner. Gene profiling and functional studies identified key targets of the miR-302/367 cluster in regulating hESC self-renewal and apoptosis. We demonstrate that in addition to its role in cell cycle regulation, miR-302/367 cluster conquers apoptosis by downregulating BNIP3L/Nix (a BH3-only proapoptotic factor) and upregulating BCL-xL expression. Furthermore, we show that butyrate, a natural compound, upregulates miR-302/367 cluster expression and alleviates hESCs from apoptosis induced by knockdown of miR-302/367 cluster. In summary, our findings provide new insights in molecular mechanisms of how miR-302/367 cluster regulates hESCs. PMID:25801506

  9. MicroRNA-302/367 cluster governs hESC self-renewal by dually regulating cell cycle and apoptosis pathways.

    PubMed

    Zhang, Zhonghui; Hong, Yuanfan; Xiang, Di; Zhu, Pei; Wu, Elise; Li, Wen; Mosenson, Jeffrey; Wu, Wen-Shu

    2015-04-14

    miR-302/367 is the most abundant miRNA cluster in human embryonic stem cells (hESCs) and can promote somatic cell reprogramming. However, its role in hESCs remains poorly understood. Here, we studied functional roles of the endogenous miR-302/367 cluster in hESCs by employing specific TALE-based transcriptional repressors. We revealed that miR-302/367 cluster dually regulates hESC cell cycle and apoptosis in dose-dependent manner. Gene profiling and functional studies identified key targets of the miR-302/367 cluster in regulating hESC self-renewal and apoptosis. We demonstrate that in addition to its role in cell cycle regulation, miR-302/367 cluster conquers apoptosis by downregulating BNIP3L/Nix (a BH3-only proapoptotic factor) and upregulating BCL-xL expression. Furthermore, we show that butyrate, a natural compound, upregulates miR-302/367 cluster expression and alleviates hESCs from apoptosis induced by knockdown of miR-302/367 cluster. In summary, our findings provide new insights in molecular mechanisms of how miR-302/367 cluster regulates hESCs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies

    PubMed Central

    Riera, Marina; Fontrodona, Laura; Albert, Silvia; Ramirez, Diana Mora; Seriola, Anna; Salas, Anna; Muñoz, Yolanda; Ramos, David; Villegas-Perez, Maria Paz; Zapata, Miguel Angel; Raya, Angel; Ruberte, Jesus; Veiga, Anna; Garcia-Arumi, Jose

    2016-01-01

    Retinal dystrophies (RD) are major causes of familial blindness and are characterized by progressive dysfunction of photoreceptor and/or retinal pigment epithelium (RPE) cells. In this study, we aimed to evaluate and compare the therapeutic effects of two pluripotent stem cell (PSC)-based therapies. We differentiated RPE from human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs) and transplanted them into the subretinal space of the Royal College of Surgeons (RCS) rat. Once differentiated, cells from either source of PSC resembled mature RPE in their morphology and gene expression profile. Following transplantation, both hESC- and hiPSC-derived cells maintained the expression of specific RPE markers, lost their proliferative capacity, established tight junctions, and were able to perform phagocytosis of photoreceptor outer segments. Remarkably, grafted areas showed increased numbers of photoreceptor nuclei and outer segment disk membranes. Regardless of the cell source, human transplants protected retina from cell apoptosis, glial stress and accumulation of autofluorescence, and responded better to light stimuli. Altogether, our results show that hESC- and hiPSC-derived cells survived, migrated, integrated, and functioned as RPE in the RCS rat retina, providing preclinical evidence that either PSC source could be of potential benefit for treating RD. PMID:27006969

  11. A novel stem cell associated marker identified by monoclonal antibody HESC5:3 differentiates between neoplastic lesions in follicular thyroid neoplasms.

    PubMed

    Heikkilä, Annukka; Fermér, Christian; Hagström, Jaana; Louhimo, Johanna; Mäenpää, Hanna; Siironen, Päivi; Heiskanen, Ilkka; Nilsson, Olle; Arola, Johanna; Haglund, Caj

    2015-07-01

    Follicular thyroid lesions are the bane of cytopathology. Differentiation between adenoma and carcinoma is impossible, and often these neoplasms are indistinguishable even from uninodular goitre. In other cancers as well, a theory of stem cells as the origin of cancer has been discussed in thyroid carcinogenesis. We aimed to examine a novel stem cell associated marker identified by monoclonal antibody HESC5:3 in follicular lesions in an attempt to find a marker for differential diagnosis in thyroid cytopathology. HESC5:3 was raised against and is specific for undifferentiated human embryonic stem cells. The epitope of this novel antibody is to be defined. Immunohistochemical expression of HESC5:3 was examined in clinical material comprised of follicular neoplasms (83 adenomas, 43 carcinomas) and non-neoplastic lesions (41 goitrous, 22 hyperplastic, 23 normal tissue specimens). Staining differed significantly between neoplastic and non-neoplastic lesions. Nuclear staining was increased in non-neoplastic cells, whereas in neoplastic cells expression was mainly cytoplasmic. There was no difference between benign and malignant lesions, suggesting a role in early tumourigenesis. In conclusion, the HESC5:3 epitope may be of benefit as a neoplasia marker in distinguishing between uninodular goitre and neoplasia. Characterization of the epitope would increase the interest in this promising new stem cell associated marker.

  12. Differentiation of stem cells upon deprivation of exogenous FGF2: a general approach to study spontaneous differentiation of hESCs in vitro.

    PubMed

    Kjartansdóttir, Kristín Rós; Gabrielsen, Anette; Reda, Ahmed; Söder, Olle; Bergström-Tengzelius, Rosita; Andersen, Claus Yding; Hovatta, Outi; Stukenborg, Jan-Bernd; Fedder, Jens

    2012-12-01

    Establishing a model for in vitro differentiation of human embryonic stem cells (hESCs) towards the germ cell lineage could be used to identify molecular mechanisms behind germ cell differentiation that may help in understanding human infertility. Here, we evaluate whether a lack of exogenous fibroblast growth factor 2 (FGF2) is supporting spontaneous differentiation of hESCs cultured on human foreskin fibroblast (hFF) monolayers towards germ cell lineage. Additionally to depriving the hESCs of exogenous FGF2, cells were stimulated with all-trans retinoic acid (ATRA). To get a more comprehensive impression on effects of removal of FGF2 and stimulation with ATRA, we combined the results of three cell lines for each experimental setting. When combining gene expression profiles of three cell lines for 96 genes, only 6 genes showed a significant up-regulation in all cell lines, when no FGF2 was added to the media for 12 weeks. None of these genes are related to the germ lineage, whereas genes for neuronal cells (PAX6 and NR6A1) and endothelial cells (FLT-1 and PTF1A) were up-regulated. To induce and support the differentiation towards the germ lineage we stimulated hESCs with different concentrations of ATRA for 7 and 14 days. We observed no significant difference in gene expression on RNA level when combining all cell lines. Whereas, the overall outcome was negative, one of these cell lines demonstrated an up-regulation of DDX4 on RNA and protein level after 7 days of ATRA stimulation. In summary, our data showed that the lack of exogenous FGF2 results in up-regulation of genes crucial for neuronal and endothelial cell differentiation of hESCs, but not in the up-regulation of genes related to germ cell differentiation when cultured on hFFs. Additionally, we demonstrated that ATRA supplementation did not result in a general specific direction of hESCs towards the germ lineage.

  13. Impact of transient down-regulation of DREAM in human embryonic stem cell pluripotency: The role of DREAM in the maintenance of hESCs.

    PubMed

    Fontán-Lozano, A; Capilla-Gonzalez, V; Aguilera, Y; Mellado, N; Carrión, A M; Soria, B; Hmadcha, A

    2016-05-01

    Little is known about the functions of downstream regulatory element antagonist modulator (DREAM) in embryonic stem cells (ESCs). However, DREAM interacts with cAMP response element-binding protein (CREB) in a Ca(2+)-dependent manner, preventing CREB binding protein (CBP) recruitment. Furthermore, CREB and CBP are involved in maintaining ESC self-renewal and pluripotency. However, a previous knockout study revealed the protective function of DREAM depletion in brain aging degeneration and that aging is accompanied by a progressive decline in stem cells (SCs) function. Interestingly, we found that DREAM is expressed in different cell types, including human ESCs (hESCs), human adipose-derived stromal cells (hASCs), human bone marrow-derived stromal cells (hBMSCs), and human newborn foreskin fibroblasts (hFFs), and that transitory inhibition of DREAM in hESCs reduces their pluripotency, increasing differentiation. We stipulate that these changes are partly mediated by increased CREB transcriptional activity. Overall, our data indicates that DREAM acts in the regulation of hESC pluripotency and could be a target to promote or prevent differentiation in embryonic cells.

  14. A Defined, Feeder-Free, Serum-Free System to Generate In Vitro Hematopoietic Progenitors and Differentiated Blood Cells from hESCs and hiPSCs

    PubMed Central

    Salvagiotto, Giorgia; Burton, Sarah; Daigh, Christine A.; Rajesh, Deepika; Slukvin, Igor I.; Seay, Nicholas J.

    2011-01-01

    Human ESC and iPSC are an attractive source of cells of high quantity and purity to be used to elucidate early human development processes, for drug discovery, and in clinical cell therapy applications. To efficiently differentiate pluripotent cells into a pure population of hematopoietic progenitors we have developed a new 2-dimentional, defined and highly efficient protocol that avoids the use of feeder cells, serum or embryoid body formation. Here we showed that a single matrix protein in combination with growth factors and a hypoxic environment is sufficient to generate from pluripotent cells hematopoietic progenitors capable of differentiating further in mature cell types of different lineages of the blood system. We tested the differentiation method using hESCs and 9 iPSC lines generated from different tissues. These data indicate the robustness of the protocol providing a valuable tool for the generation of clinical-grade hematopoietic cells from pluripotent cells. PMID:21445267

  15. Fresh embryo donation for human embryonic stem cell (hESC) research: the experiences and values of IVF couples asked to be embryo donors.

    PubMed

    Haimes, E; Taylor, K

    2009-09-01

    This article reports on an investigation of the views of IVF couples asked to donate fresh embryos for research and contributes to the debates on: the acceptability of human embryonic stem cell (hESC) research, the moral status of the human embryo and embryo donation for research. A hypothesis-generating design was followed. All IVF couples in one UK clinic who were asked to donate embryos in 1 year were contacted 6 weeks after their pregnancy result. Forty four in-depth interviews were conducted. Interviewees were preoccupied with IVF treatment and the request to donate was a secondary consideration. They used a complex and dynamic system of embryo classification. Initially, all embryos were important but then their focus shifted to those that had most potential to produce a baby. At that point, 'other' embryos were less important though they later realise that they did not know what happened to them. Guessing that these embryos went to research, interviewees preferred not to contemplate what that might entail. The embryos that caused interviewees most concern were good quality embryos that might have produced a baby but went to research instead. 'The' embryo, the morally laden, but abstract, entity, did not play a central role in their decision-making. This study, despite missing those who refuse to donate embryos, suggests that debates on embryo donation for hESC research should include the views of embryo donors and should consider the social, as well as the moral, status of the human embryo.

  16. The hESC line Envy expresses high levels of GFP in all differentiated progeny.

    PubMed

    Costa, Magdaline; Dottori, Mirella; Ng, Elizabeth; Hawes, Susan M; Sourris, Koula; Jamshidi, Pegah; Pera, Martin F; Elefanty, Andrew G; Stanley, Edouard G

    2005-04-01

    Human embryonic stem cells (hESCs) have been advanced as a potential source of cells for use in cell replacement therapies. The ability to identify hESCs and their differentiated progeny readily in transplantation experiments will facilitate the analysis of hESC potential and function in vivo. We have generated a hESC line designated 'Envy', in which robust levels of green fluorescent protein (GFP) are expressed in stem cells and all differentiated progeny.

  17. Fresh embryo donation for human embryonic stem cell (hESC) research: the experiences and values of IVF couples asked to be embryo donors

    PubMed Central

    Haimes, E.; Taylor, K.

    2009-01-01

    BACKGROUND This article reports on an investigation of the views of IVF couples asked to donate fresh embryos for research and contributes to the debates on: the acceptability of human embryonic stem cell (hESC) research, the moral status of the human embryo and embryo donation for research. METHODS A hypothesis-generating design was followed. All IVF couples in one UK clinic who were asked to donate embryos in 1 year were contacted 6 weeks after their pregnancy result. Forty four in-depth interviews were conducted. RESULTS Interviewees were preoccupied with IVF treatment and the request to donate was a secondary consideration. They used a complex and dynamic system of embryo classification. Initially, all embryos were important but then their focus shifted to those that had most potential to produce a baby. At that point, ‘other’ embryos were less important though they later realise that they did not know what happened to them. Guessing that these embryos went to research, interviewees preferred not to contemplate what that might entail. The embryos that caused interviewees most concern were good quality embryos that might have produced a baby but went to research instead. ‘The’ embryo, the morally laden, but abstract, entity, did not play a central role in their decision-making. CONCLUSIONS This study, despite missing those who refuse to donate embryos, suggests that debates on embryo donation for hESC research should include the views of embryo donors and should consider the social, as well as the moral, status of the human embryo. PMID:19502616

  18. hESC Differentiation toward an Autonomic Neuronal Cell Fate Depends on Distinct Cues from the Co-Patterning Vasculature

    PubMed Central

    Acevedo, Lisette M.; Lindquist, Jeffrey N.; Walsh, Breda M.; Sia, Peik; Cimadamore, Flavio; Chen, Connie; Denzel, Martin; Pernia, Cameron D.; Ranscht, Barbara; Terskikh, Alexey; Snyder, Evan Y.; Cheresh, David A.

    2015-01-01

    Summary To gain insight into the cellular and molecular cues that promote neurovascular co-patterning at the earliest stages of human embryogenesis, we developed a human embryonic stem cell model to mimic the developing epiblast. Contact of ectoderm-derived neural cells with mesoderm-derived vasculature is initiated via the neural crest (NC), not the neural tube (NT). Neurovascular co-patterning then ensues with specification of NC toward an autonomic fate requiring vascular endothelial cell (EC)-secreted nitric oxide (NO) and direct contact with vascular smooth muscle cells (VSMCs) via T-cadherin-mediated homotypic interactions. Once a neurovascular template has been established, NT-derived central neurons then align themselves with the vasculature. Our findings reveal that, in early human development, the autonomic nervous system forms in response to distinct molecular cues from VSMCs and ECs, providing a model for how other developing lineages might coordinate their co-patterning. PMID:26004631

  19. Comparison of Nutech Functional Score with European Stroke Scale for Patients with Cerebrovascular Accident Treated with Human Embryonic Stem Cells: NFS for CVA Patients Treated with hESCs.

    PubMed

    Shroff, Geeta

    2017-06-01

    Stem cell therapy is a promising modality for treatment of patients with chronic cerebrovascular accident (CVA) in whom treatment other than physiotherapy or occupational therapy does not address the repair or recovery of the lost function. In this study, the author aimed at evaluating CVA patients treated with human embryonic stem cell (hESC) therapy and comparing their study outcomes with globally accepted European Stroke Scale (ESS) to that with novel scoring system, Nutech functional score (NFS), a 21-point positional and directional scoring system for assessing patients with CVA. Patients diagnosed with CVA were assessed with NFS and ESS before and after hESC therapy. NFS assessed the patients in the direction of 1-5 (bad to good), where 5 was considered as the highest possible grade (HPG). The findings were obtained for the patients who scored HPG, and had shown improvement by at least one grade. Overall, 66.7% of patients scored HPG level on the NFS scale and about 62.5% of the patients scored HPG according to the ESS scale. Approximately, 52.2% patients showed an improvement of 100% (by at least one grade) on NFS scale. None of the patients showed 100% improvement in the alteration of the score by at least one grade when scored with ESS. NFS and ESS scores show that a large population of CVA patients was benefitted with hESC therapy. NFS was found to give more convincing results than ESS, and overcomes the shortcomings of ESS.

  20. Efficient propagation of single cells Accutase-dissociated human embryonic stem cells.

    PubMed

    Bajpai, Ruchi; Lesperance, Jacqueline; Kim, Min; Terskikh, Alexey V

    2008-05-01

    Human embryonic stem cells (hESCs) hold great promise for cell-based therapies and drug screening applications. However, growing and processing large quantities of undifferentiated hESCs is a challenging task. Conventionally, hESCs are passaged as clusters, which can limit their growth efficiency and use in downstream applications. This study demonstrates that hESCs can be passaged as single cells using Accutase, a formulated mixture of digestive enzymes. In contrast to trypsin treatment, Accutase treatment does not significantly affect the viability and proliferation rate of hESC dissociation into single cells. Accutase-dissociated single cells can be separated by FACS and proliferate as fully pluripotent hESCs. An Oct4-eGFP reporter construct engineered into hESCs was used to monitor the pluripotency of hESCs passaged with Accutase. Compared to collagenase-passaged hESCs, Accutase-treated cultures contained a larger proportion of undifferentiated (Oct4-positive) cells. Additionally, Accutase-passaged undifferentiated hESCs could be grown as monolayers without the need for monitoring and/or selection for quality hESC colonies. (c) 2007 Wiley-Liss, Inc.

  1. Adapting collagen/CNT matrix in directing hESC differentiation.

    PubMed

    Sridharan, Indumathi; Kim, Taeyoung; Wang, Rong

    2009-04-17

    The lineage selection in human embryonic stem cell (hESC) differentiation relies on both the growth factors and small molecules in the media and the physical characteristics of the micro-environment. In this work, we utilized various materials, including the collagen-carbon nanotube (collagen/CNT) composite material, as cell culture matrices to examine the impact of matrix properties on hESC differentiation. Our AFM analysis indicated that the collagen/CNT formed rigid fibril bundles, which polarized the growth and differentiation of hESCs, resulting in more than 90% of the cells to the ectodermal lineage in Day 3 in the media commonly used for spontaneous differentiation. We also observed the differentiated cells followed the coarse alignment of the collagen/CNT matrix. The research not only revealed the responsiveness of hESCs to matrix properties, but also provided a simple yet efficient way to direct the hESC differentiation, and imposed the potential of forming neural-cell based bio-devices for further applications.

  2. Colon tumor cells grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These photos compare the results of colon carcinoma cells grown in a NASA Bioreactor flown on the STS-70 Space Shuttle in 1995 flight and ground control experiments. The cells grown in microgravity (left) have aggregated to form masses that are larger and more similar to tissue found in the body than the cells cultured on the ground (right). The principal investigator is Milburn Jessup of the University of Texas M. D. Anderson Cancer Center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and University of Texas M. D. Anderson Cancer Center.

  3. Colon tumor cells grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These photos compare the results of colon carcinoma cells grown in a NASA Bioreactor flown on the STS-70 Space Shuttle in 1995 flight and ground control experiments. The cells grown in microgravity (left) have aggregated to form masses that are larger and more similar to tissue found in the body than the cells cultured on the ground (right). The principal investigator is Milburn Jessup of the University of Texas M. D. Anderson Cancer Center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and University of Texas M. D. Anderson Cancer Center.

  4. ELABELA Is an Endogenous Growth Factor that Sustains hESC Self-Renewal via the PI3K/AKT Pathway.

    PubMed

    Ho, Lena; Tan, Shawn Y X; Wee, Sheena; Wu, Yixuan; Tan, Sam J C; Ramakrishna, Navin B; Chng, Serene C; Nama, Srikanth; Szczerbinska, Iwona; Sczerbinska, Iwona; Chan, Yun-Shen; Avery, Stuart; Tsuneyoshi, Norihiro; Ng, Huck Hui; Gunaratne, Jayantha; Dunn, N Ray; Reversade, Bruno

    2015-10-01

    ELABELA (ELA) is a peptide hormone required for heart development that signals via the Apelin Receptor (APLNR, APJ). ELA is also abundantly secreted by human embryonic stem cells (hESCs), which do not express APLNR. Here we show that ELA signals in a paracrine fashion in hESCs to maintain self-renewal. ELA inhibition by CRISPR/Cas9-mediated deletion, shRNA, or neutralizing antibodies causes reduced hESC growth, cell death, and loss of pluripotency. Global phosphoproteomic and transcriptomic analyses of ELA-pulsed hESCs show that it activates PI3K/AKT/mTORC1 signaling required for cell survival. ELA promotes hESC cell-cycle progression and protein translation and blocks stress-induced apoptosis. INSULIN and ELA have partially overlapping functions in hESC medium, but only ELA can potentiate the TGFβ pathway to prime hESCs toward the endoderm lineage. We propose that ELA, acting through an alternate cell-surface receptor, is an endogenous secreted growth factor in human embryos and hESCs that promotes growth and pluripotency. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Enhancement of the propagation of human embryonic stem cells by modifications in the gel architecture of PMEDSAH polymer coatings

    PubMed Central

    Qian, Xu; Villa-Diaz, Luis G.; Kumar, Ramya; Lahann, Joerg; Krebsbach, Paul H.

    2014-01-01

    Well-defined culture conditions are essential for realizing the full potential of human embryonic stem cells (hESCs) in regenerative medicine where large numbers of cells are required. Synthetic polymers, such as poly[2-(methacryloyloxy) ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide] (PMEDSAH), offer multiple advantages over mouse embryonic fibroblasts (MEFs) and Matrigel™ for hESC culture and expansion. However, there is limited understanding of the mechanisms by which hESCs are propagated on synthetic polymers coatings. Here, the effects of PMEDSAH gel architecture on hESC self-renewal were determined. By increasing the atom transfer radical polymerization (ATRP) reaction time, the thickness of PMEDSAH was increased and its internal hydrogel architecture was modified, while maintaining its overall chemical structure. A 105 nm thick ATRP PMEDSAH coating showed a significant increase in the expansion rate of hESCs. Theoretical calculations suggested that 20,000 hESCs cultured on this substrate could be expanded up to 4.7×109 undifferentiated cells in five weeks. In addition, hESCs grown on ATRP PMEDSAH coatings retained pluripotency and displayed a normal karyotype after long-term culture. These data demonstrate the importance of polymer physical properties in hESC expansion. This and similar modifications of PMEDSAH coatings may be used to obtain large populations of hESCs required for many applications in regenerative medicine. PMID:25189518

  6. Comparative Proteomic Analysis of Supportive and Unsupportive Extracellular Matrix Substrates for Human Embryonic Stem Cell Maintenance*

    PubMed Central

    Soteriou, Despina; Iskender, Banu; Byron, Adam; Humphries, Jonathan D.; Borg-Bartolo, Simon; Haddock, Marie-Claire; Baxter, Melissa A.; Knight, David; Humphries, Martin J.; Kimber, Susan J.

    2013-01-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal. PMID:23658023

  7. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling

    PubMed Central

    Hay, David C.; Fletcher, Judy; Payne, Catherine; Terrace, John D.; Gallagher, Ronald C. J.; Snoeys, Jan; Black, James R.; Wojtacha, Davina; Samuel, Kay; Hannoun, Zara; Pryde, Anne; Filippi, Celine; Currie, Ian S.; Forbes, Stuart J.; Ross, James A.; Newsome, Philip N.; Iredale, John P.

    2008-01-01

    Human embryonic stem cells (hESCs) are a valuable source of pluripotential primary cells. To date, however, their homogeneous cellular differentiation to specific cell types in vitro has proven difficult. Wnt signaling has been shown to play important roles in coordinating development, and we demonstrate that Wnt3a is differentially expressed at critical stages of human liver development in vivo. The essential role of Wnt3a in hepatocyte differentiation from hESCs is paralleled by our in vitro model, demonstrating the importance of a physiologic approach to cellular differentiation. Our studies provide compelling evidence that Wnt3a signaling is important for coordinated hepatocellular function in vitro and in vivo. In addition, we demonstrate that Wnt3a facilitates clonal plating of hESCs exhibiting functional hepatic differentiation. These studies represent an important step toward the use of hESC-derived hepatocytes in high-throughput metabolic analysis of human liver function. PMID:18719101

  8. Nanofibrous substrates support colony formation and maintain stemness of human embryonic stem cells

    PubMed Central

    Gauthaman, Kalamegam; Venugopal, Jayarama Reddy; Yee, Fong Chui; Peh, Gary Swee Lim; Ramakrishna, Seeram; Bongso, Ariff

    2009-01-01

    Inadequate cell numbers in culture is one of the hurdles currently delaying the application of human embryonic stem cells (hESCs) for transplantation therapy. Nanofibrous scaffolds have been effectively used to expand and differentiate non-colony forming multipotent mesenchymal stem cells (MSC) for the repair of tissues or organs. In the present study, we evaluated the influence of nanofibrous scaffolds for hESC proliferation, increase in colony formation, self-renewal properties, undifferentiation and retention of ‘stemness’. Polycaprolactone/collagen (PCL/collagen) and PCL/gelatin nanofibrous scaffolds were fabricated using electrospinning technology. The hESCs were seeded on the nanofibrous scaffolds in the presence or absence of mitomycin-C treated mouse embryonic fibroblasts (MEFs). The hESCs grown on both scaffolds in the presence of the MEFs produced an increase in cell growth of 47.58% (P≤ 0.006) and 40.18% (P≤ 0.005), respectively, over conventional controls of hESCs on MEFs alone. The hESC colonies were also larger in diameter on the scaffolds compared to controls (PCL/collagen, 156.25 ± 7 μM and PCL/gelatin, 135.42 ± 5 μM). Immunohistochemistry of the hESCs grown on the nanofibrous scaffolds with MEFs, demonstrated positive staining for the various stemness-related markers (octamer 4 [OCT-4], tumour rejection antigen-1–60, GCTM-2 and TG-30), and semi-quantitative RT-PCR for the pluripotent stemness genomic markers (NANOG, SOX-2, OCT-4) showed that they were also highly expressed. Continued successful propagation of hESC colonies from nanofibrous scaffolds back to conventional culture on MEFs was also possible. Nanofibrous scaffolds support hESC expansion in an undifferentiated state with retention of stemness characteristics thus having tremendous potential in scaling up cell numbers for transplantation therapy. PMID:19228268

  9. Human embryonic stem cell derivation and directed differentiation.

    PubMed

    Trounson, A

    2005-01-01

    Human embryonic stem cells (hESCs) are produced from normal, chromosomally aneuploid and mutant human embryos, which are available from in vitro fertilisation (IVF) for infertility or preimplantation diagnosis. These hESC lines are an important resource for functional genomics, drug screening and eventually cell and gene therapy. The methods for deriving hESCs are well established and repeatable, and are relatively successful, with a ratio of 1:10 to 1:2 hESC lines established to embryos used. hESCs can be formed from morula and blastocyst-stage embryos and from isolated inner cell mass cell (ICM) clusters. The hESCs can be formed and maintained on mouse or human somatic cells in serum-free conditions, and for several passages in cell-free cultures. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in culture while maintaining their original karyotype but this must be confirmed from time to time. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating attachment cultures and in unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes and characteristic morphology, and the culture thereafter enriched for further culture to more mature cell types. The most advanced directed differentiation pathways have been developed for neural cells and cardiac muscle cells, but many other cell types including haematopoietic progenitors, endothelial cells, lung alveoli, keratinocytes, pigmented retinal epithelium, neural crest cells and motor neurones, hepatic progenitors and cells that have some markers of gut tissue and pancreatic cells have been produced. The prospects for regenerative medicine are significant and there is much

  10. Platinum blue staining of cells grown in electrospun scaffolds.

    PubMed

    Yusuf, Mohammed; Millas, Ana Luiza G; Estandarte, Ana Katrina C; Bhella, Gurdeep K; McKean, Robert; Bittencourt, Edison; Robinson, Ian K

    2014-01-01

    Fibroblast cells grown in electrospun polymer scaffolds were stained with platinum blue, a heavy metal stain, and imaged using scanning electron microscopy. Good contrast on the cells was achieved compared with samples that were gold sputter coated. The cell morphology could be clearly observed, and the cells could be distinguished from the scaffold fibers. Here we optimized the required concentration of platinum blue for imaging cells grown in scaffolds and show that a higher concentration causes platinum aggregation. Overall, platinum blue is a useful stain for imaging cells because of its enhanced contrast using scanning electron microscopy (SEM). In the future it would be useful to investigate cell growth and morphology using three-dimensional imaging methods.

  11. CAR expression in human embryos and hESC illustrates its role in pluripotency and tight junctions.

    PubMed

    Krivega, M; Geens, M; Van de Velde, H

    2014-11-01

    Coxsackie virus and adenovirus receptor, CXADR (CAR), is present during embryogenesis and is involved in tissue regeneration, cancer and intercellular adhesion. We investigated the expression of CAR in human preimplantation embryos and embryonic stem cells (hESC) to identify its role in early embryogenesis and differentiation. CAR protein was ubiquitously present during preimplantation development. It was localised in the nucleus of uncommitted cells, from the cleavage stage up to the precursor epiblast, and corresponded with the presence of soluble CXADR3/7 splice variant. CAR was displayed on the membrane, involving in the formation of tight junction at compaction and blastocyst stages in both outer and inner cells, and CAR corresponded with the full-length CAR-containing transmembrane domain. In trophectodermal cells of hatched blastocysts, CAR was reduced in the membrane and concentrated in the nucleus, which correlated with the switch in RNA expression to the CXADR4/7 and CXADR2/7 splice variants. The cells in the outer layer of hESC colonies contained CAR on the membrane and all the cells of the colony had CAR in the nucleus, corresponding with the transmembrane CXADR and CXADR4/7. Upon differentiation of hESC into cells representing the three germ layers and trophoblast lineage, the expression of CXADR was downregulated. We concluded that CXADR is differentially expressed during human preimplantation development. We described various CAR expressions: i) soluble CXADR marking undifferentiated blastomeres; ii) transmembrane CAR related with epithelial-like cell types, such as the trophectoderm (TE) and the outer layer of hESC colonies; and iii) soluble CAR present in TE nuclei after hatching. The functions of these distinct forms remain to be elucidated.

  12. Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation.

    PubMed

    Goudenege, Sébastien; Lebel, Carl; Huot, Nicolas B; Dufour, Christine; Fujii, Isao; Gekas, Jean; Rousseau, Joël; Tremblay, Jacques P

    2012-11-01

    Human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) have an endless self-renewal capacity and can theoretically differentiate into all types of lineages. They thus represent an unlimited source of cells for therapies of regenerative diseases, such as Duchenne muscular dystrophy (DMD), and for tissue repair in specific medical fields. However, at the moment, the low number of efficient specific lineage differentiation protocols compromises their use in regenerative medicine. We developed a two-step procedure to differentiate hESCs and dystrophic hiPSCs in myogenic cells. The first step was a culture in a myogenic medium and the second step an infection with an adenovirus expressing the myogenic master gene MyoD. Following infection, the cells expressed several myogenic markers and formed abundant multinucleated myotubes in vitro. When transplanted in the muscle of Rag/mdx mice, these cells participated in muscle regeneration by fusing very well with existing muscle fibers. Our findings provide an effective method that will permit to use hESCs or hiPSCs for preclinical studies in muscle repair.

  13. OM-VPE grown materials for high efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Saxena, R.; Cooper, B., III; Ludowise, M.; Borden, P.; Gregory, P.

    1980-01-01

    Organometallic sources are available for all the III-V elements and a variety of dopants; thus it is possible to use the technique to grow a wide variety of semiconductor compounds. AlGaAsSb and AlGaInAs alloys for multijunction monolithic solar cells were grown by OM-VPE. While the effort concentrated on terrestrial applications, the success of OM-VPE grown GaAs/AlGaAs concentrator solar cells (23% at 400 suns) demonstrates that OM-VPE is suitable for growing high efficiency solar cells in large quantities for space applications. In addition, OM-VPE offers the potential for substantial cost reduction of photovoltaic devices with scale up and automation and due to high process yield from reproducible, uniform epitaxial growths with excellent surface morphology.

  14. Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space

    PubMed Central

    Stanzel, Boris V.; Liu, Zengping; Somboonthanakij, Sudawadee; Wongsawad, Warapat; Brinken, Ralf; Eter, Nicole; Corneo, Barbara; Holz, Frank G.; Temple, Sally; Stern, Jeffrey H.; Blenkinsop, Timothy A.

    2014-01-01

    Summary Transplantation of the retinal pigment epithelium (RPE) is being developed as a cell-replacement therapy for age-related macular degeneration. Human embryonic stem cell (hESC) and induced pluripotent stem cell (iPSC)-derived RPE are currently translating toward clinic. We introduce the adult human RPE stem cell (hRPESC) as an alternative RPE source. Polarized monolayers of adult hRPESC-derived RPE grown on polyester (PET) membranes had near-native characteristics. Trephined pieces of RPE monolayers on PET were transplanted subretinally in the rabbit, a large-eyed animal model. After 4 days, retinal edema was observed above the implant, detected by spectral domain optical coherence tomography (SD-OCT) and fundoscopy. At 1 week, retinal atrophy overlying the fetal or adult transplant was observed, remaining stable thereafter. Histology obtained 4 weeks after implantation confirmed a continuous polarized human RPE monolayer on PET. Taken together, the xeno-RPE survived with retained characteristics in the subretinal space. These experiments support that adult hRPESC-derived RPE are a potential source for transplantation therapies. PMID:24511471

  15. Proliferation and Pluripotency of Human Embryonic Stem Cells Maintained on Type I Collagen

    PubMed Central

    Jones, Meredith B.; Chu, Chia H.; Pendleton, James C.; Betenbaugh, Michael J.; Shiloach, Joseph; Baljinnyam, Bolormaa; Rubin, Jeffrey S.

    2010-01-01

    Human embryonic stem cells (hESC) require a balance of growth factors and signaling molecules to proliferate and retain pluripotency. Conditioned medium (CM) from a human embryonic germ-cell-derived cell culture, SDEC, was observed to support the growth of hESC on type I collagen (COL I) and on Matrigel (MAT) biomatricies. After 1 month, the population doubling of hESC grown in SDEC CM on COL I was equivalent to that of hESC grown in mouse embryonic fibroblast (MEF) CM on MAT. hESC grown in SDEC CM on COL I expressed OCT4, NANOG, SSEA-4, alkaline phosphatase (AP), and TRA-1-60; retained a normal karyotype; and were capable of forming teratomas. DNA microarray analysis was used to compare the transcriptional profiles of SDEC and the less supportive WI38 and Detroit 551 human cell lines. The mRNA level of secreted frizzled-related protein (sFRP-1), a known antagonist of the WNT/β-catenin signaling pathway, was significantly reduced in SDEC as compared with the other 2 cell lines, whereas the mRNA levels of prostaglandin-endoperoxide synthase 2 (PTGS2 or COX-2) and prostaglandin I2 synthase (PGIS), two prostaglandin biosynthesis genes, were significantly increased in SDEC. The level of sFRP-1 protein was significantly reduced, and levels of 2 prostaglandins that are downstream products of PTGS2 and PGIS, prostaglandin E2 and 6-keto-prostaglandin F1α, were significantly elevated in SDEC CM compared with WI38, Detroit 551, and MEF CM. Further, addition of purified sFRP-1 to SDEC CM reduced the proliferation of hESC grown on COL I as well as MAT in a dose-dependent manner. PMID:20367282

  16. Aquaporin expression and function in human pluripotent stem cell-derived retinal pigmented epithelial cells.

    PubMed

    Juuti-Uusitalo, Kati; Delporte, Christine; Grégoire, Francoise; Perret, Jason; Huhtala, Heini; Savolainen, Virpi; Nymark, Soile; Hyttinen, Jari; Uusitalo, Hannu; Willermain, Francois; Skottman, Heli

    2013-05-01

    Aquaporins (AQPs), a family of transmembrane water channel proteins, are essential for allowing passive water transport through retinal pigmented epithelial (RPE) cells. Even though human native RPE cells and immortalized human RPEs have been shown to express AQPs, the expression of AQPs during the differentiation in stem cell-derived RPE remains to be elucidated. In human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs)-derived RPE cells, the expression of several AQPs was determined by quantitative real-time PCR and the localization of AQP1 was assessed with confocal microscopy. The functionality of AQP water channels was determined by cell volume assay in hESC-derived RPE cells. AQP1, AQP3, AQP4, AQP5, AQP6, AQP7, AQP10, AQP11, and AQP12 were expressed in hESC- and hiPSC-derived RPE cells. Furthermore, the expression of AQP1 and AQP11 genes were significantly upregulated during the maturation of both hESC and iPSC into RPE. Confocal microscopy shows the expression of AQP1 at the apical plasma membrane of polarized cobblestone hESC- and hiPSC-derived RPE cells. Lastly, aquaporin inhibitors significantly reduced AQP functionality in hESC-RPE cells. hESC-RPE and hiPSC-RPE cells express several AQP genes, which are functional in mature hESC-derived RPE cells. The localization of AQP1 on the apical plasma membrane in mature RPE cells derived from both hESC and hiPSC suggests its functionality. These data propose that hESC- and hiPSC-derived RPE cells, grown and differentiated under serum-free conditions, resemble their native counterpart in the human eye.

  17. Gene expression in Fusarium graminearum grown on plant cell wall.

    PubMed

    Carapito, Raphaël; Hatsch, Didier; Vorwerk, Sonja; Petkovski, Elizabet; Jeltsch, Jean-Marc; Phalip, Vincent

    2008-05-01

    Fusarium graminearum is a phytopathogenic filamentous fungus attacking a wide range of plants including Humulus lupulus (hop). Transcriptional analysis of F. graminearum grown on minimal media containing hop cell wall or glucose as the sole carbon source was performed by applying a highly stringent method combining microarrays and a subtracted cDNA library. In addition to genes coding for various cell wall degrading enzymes (CWDE), several metabolic pathways were induced in response to the plant cell wall substrate. Many genes participating in these pathways are probably involved in cellular transport. But the most interesting was that all the genes composing the 4-aminobutyrate-shunt (GABA-shunt) were also up-regulated in the presence of plant cell wall material and were present in the cDNA library. This study provides a description of a part of the fungal gene expression profile when it is in contact with raw biological materials, and helps in understanding the plant cell wall degradation and the infection process.

  18. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells.

    PubMed

    Bruckmann, Astrid; Hensbergen, Paul J; Balog, Crina I A; Deelder, André M; Brandt, Raymond; Snoek, I S Ishtar; Steensma, H Yde; van Heusden, G Paul H

    2009-01-30

    The yeast Saccharomyces cerevisiae is able to grow under aerobic as well as anaerobic conditions. We and others previously found that transcription levels of approximately 500 genes differed more than two-fold when cells from anaerobic and aerobic conditions were compared. Here, we addressed the effect of anaerobic growth at the post-transcriptional level by comparing the proteomes of cells isolated from steady-state glucose-limited anaerobic and aerobic cultures. Following two-dimensional gel electrophoresis and mass spectrometry we identified 110 protein spots, corresponding to 75 unique proteins, of which the levels differed more than two-fold between aerobically and anaerobically-grown cells. For 21 of the 110 spots, the intensities decreased more than two-fold whereas the corresponding mRNA levels increased or did not change significantly under anaerobic conditions. The intensities of the other 89 spots changed in the same direction as the mRNA levels of the corresponding genes, although to different extents. For some genes of glycolysis a small increase in mRNA levels, 1.5-2 fold, corresponded to a 5-10 fold increase in protein levels. Extrapolation of our results suggests that transcriptional regulation is the major but not exclusive mechanism for adaptation of S. cerevisiae to anaerobic growth conditions.

  19. Early Acquisition of Neural Crest Competence During hESCs Neuralization

    PubMed Central

    McKeown, Sonja J.; Cattarossi, Giulio; Cimadamore, Flavio; Nilbratt, Mats; Snyder, Evan Y.; Bronner-Fraser, Marianne; Terskikh, Alexey V.

    2010-01-01

    Background Neural crest stem cells (NCSCs) are a transient multipotent embryonic cell population that represents a defining characteristic of vertebrates. The neural crest (NC) gives rise to many derivatives including the neurons and glia of the sensory and autonomic ganglia of the peripheral nervous system, enteric neurons and glia, melanocytes, and the cartilaginous, bony and connective tissue of the craniofacial skeleton, cephalic neuroendocrine organs, and some heart vessels. Methodology/Principal Findings We present evidence that neural crest (NC) competence can be acquired very early when human embryonic stem cells (hESCs) are selectively neuralized towards dorsal neuroepithelium in the absence of feeder cells in fully defined conditions. When hESC-derived neurospheres are plated on fibronectin, some cells emigrate onto the substrate. These early migratory Neural Crest Stem Cells (emNCSCs) uniformly upregulate Sox10 and vimentin, downregulate N-cadherin, and remodel F-actin, consistent with a transition from neuroepithelium to a mesenchymal NC cell. Over 13% of emNCSCs upregulate CD73, a marker of mesenchymal lineage characteristic of cephalic NC and connexin 43, found on early migratory NC cells. We demonstrated that emNCSCs give rise in vitro to all NC lineages, are multipotent on clonal level, and appropriately respond to developmental factors. We suggest that human emNCSC resemble cephalic NC described in model organisms. Ex vivo emNCSCs can differentiate into neurons in Ret.k- mouse embryonic gut tissue cultures and transplanted emNCSCs incorporate into NC-derived structures but not CNS tissues in chick embryos. Conclusions/Significance These findings will provide a framework for further studying early human NC development including the epithelial to mesenchymal transition during NC delamination. PMID:21085480

  20. Human respiratory syncytial virus Memphis 37 grown in HEp-2 cells causes more severe disease in lambs than virus grown in Vero cells.

    PubMed

    Derscheid, Rachel J; van Geelen, Albert; McGill, Jodi L; Gallup, Jack M; Cihlar, Tomas; Sacco, Randy E; Ackermann, Mark R

    2013-11-22

    Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants and young children. A small percentage of these individuals develop severe and even fatal disease. To better understand the pathogenesis of severe disease and develop therapies unique to the less-developed infant immune system, a model of infant disease is needed. The neonatal lamb pulmonary development and physiology is similar to that of infants, and sheep are susceptible to ovine, bovine, or human strains of RSV. RSV grown in Vero (African green monkey) cells has a truncated attachment G glycoprotein as compared to that grown in HEp-2 cells. We hypothesized that the virus grown in HEp-2 cells would cause more severe clinical symptoms and cause more severe pathology. To confirm the hypothesis, lambs were inoculated simultaneously by two different delivery methods (intranasal and nebulized inoculation) with either Vero-grown or HEp-2-grown RSV Memphis 37 (M37) strain of virus to compare viral infection and disease symptoms. Lambs infected with HEp-2 cell-derived virus by either intranasal or nebulization inoculation had significantly higher levels of viral RNA in lungs as well as greater clinical disease including both gross and histopathologic lesions compared to lambs similarly inoculated with Vero-grown virus. Thus, our results provide convincing in vivo evidence for differences in viral infectivity that corroborate previous in vitro mechanistic studies demonstrating differences in the G glycoprotein expression by RSV grown in Vero cells.

  1. Organic solar cells using CVD-grown graphene electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Hobeom; Bae, Sang-Hoon; Han, Tae-Hee; Lim, Kyung-Geun; Ahn, Jong-Hyun; Lee, Tae-Woo

    2014-01-01

    We report on the development of flexible organic solar cells (OSCs) incorporating graphene sheets synthesized by chemical vapor deposition (CVD) as transparent conducting electrodes on polyethylene terephthalate (PET) substrates. A key barrier that must be overcome for the successful fabrication of OSCs with graphene electrodes is the poor-film properties of water-based poly(3,4-ethylenedioxythiphene):poly(styrenesulfonate) (PEDOT:PSS) when coated onto hydrophobic graphene surfaces. To form a uniform PEDOT:PSS film on a graphene surface, we added perfluorinated ionomers (PFI) to pristine PEDOT:PSS to create ‘GraHEL’, which we then successfully spin coated onto the graphene surface. We systematically investigated the effect of number of layers in layer-by-layer stacked graphene anode of an OSC on the performance parameters including the open-circuit voltage (Voc), short-circuit current (Jsc), and fill factor (FF). As the number of graphene layers increased, the FF tended to increase owing to lower sheet resistance, while Jsc tended to decrease owing to the lower light absorption. In light of this trade-off between sheet resistance and transmittance, we determined that three-layer graphene (3LG) represents the best configuration for obtaining the optimal power conversion efficiency (PCE) in OSC anodes, even at suboptimal sheet resistances. We finally developed efficient, flexible OSCs with a PCE of 4.33%, which is the highest efficiency attained so far by an OSC with CVD-grown graphene electrodes to the best of our knowledge.

  2. Organic solar cells using CVD-grown graphene electrodes.

    PubMed

    Kim, Hobeom; Bae, Sang-Hoon; Han, Tae-Hee; Lim, Kyung-Geun; Ahn, Jong-Hyun; Lee, Tae-Woo

    2014-01-10

    We report on the development of flexible organic solar cells (OSCs) incorporating graphene sheets synthesized by chemical vapor deposition (CVD) as transparent conducting electrodes on polyethylene terephthalate (PET) substrates. A key barrier that must be overcome for the successful fabrication of OSCs with graphene electrodes is the poor-film properties of water-based poly(3,4-ethylenedioxythiphene):poly(styrenesulfonate) (PEDOT:PSS) when coated onto hydrophobic graphene surfaces. To form a uniform PEDOT:PSS film on a graphene surface, we added perfluorinated ionomers (PFI) to pristine PEDOT:PSS to create 'GraHEL', which we then successfully spin coated onto the graphene surface. We systematically investigated the effect of number of layers in layer-by-layer stacked graphene anode of an OSC on the performance parameters including the open-circuit voltage (Voc), short-circuit current (Jsc), and fill factor (FF). As the number of graphene layers increased, the FF tended to increase owing to lower sheet resistance, while Jsc tended to decrease owing to the lower light absorption. In light of this trade-off between sheet resistance and transmittance, we determined that three-layer graphene (3LG) represents the best configuration for obtaining the optimal power conversion efficiency (PCE) in OSC anodes, even at suboptimal sheet resistances. We finally developed efficient, flexible OSCs with a PCE of 4.33%, which is the highest efficiency attained so far by an OSC with CVD-grown graphene electrodes to the best of our knowledge.

  3. Non-responders to egg grown influenza vaccine seroconvert after booster immunization with MDCK cell grown vaccine.

    PubMed

    Oxford, John S; Al-Jabri, Ali A; Lambkin, Robert; Palache, A M; Fleming, D M

    2003-06-20

    We have investigated whether 'at risk' subjects who did not respond serologically during a pre-study vaccination with a commercial egg grown influenza sub-unit vaccine would respond to a subsequent vaccination with either a single dose of MDCK cell grown influenza vaccine or a standard egg grown influenza vaccine containing the same virus strains. We studied 48 non-responder subjects with a mean age 67.5, range: 34-82 years. In this non-responder group the increased immune response that was detected after boosting with an MDCK cell derived vaccine response was variable and relatively modest, except for the A/Texas strain in the vaccine. The proportion of subjects, with an HI titre of >/=40 (protective antibody titre) increased from 50 to 83% (A/Texas strain), from 13 to 25% (B/Harbin strain) and from 38 to 46% (A/Wuhan strain). In comparison a booster vaccination with egg-derived influenza vaccine resulted in an increase immune response with an HI antibody titre >/=40 for two of the three strains, namely from 17 to 58% for the B/Harbin strain and from 8 to 33% for the A/Wuhan strain.

  4. The production and directed differentiation of human embryonic stem cells.

    PubMed

    Trounson, Alan

    2006-04-01

    Human embryonic stem cells (hESCs) are being rapidly produced from chromosomally euploid, aneuploid, and mutant human embryos that are available from in vitro fertilization clinics treating patients for infertility or preimplantation genetic diagnosis. These hESC lines are an important resource for functional genomics, drug screening, and, perhaps eventually, cell and gene therapy. The methods for deriving hESCs are well established and repeatable and are relatively successful with a ratio of 1:10 to 1:2 new hESC lines produced from 4- to 8-d-old morula and blastocysts and from isolated inner cell mass cell clusters of human blastocysts. The hESCs can be formed and maintained on human somatic cells in humanized serum-free culture conditions and for several passages in cell-free culture systems. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in vitro while maintaining their original karyotype and epigenetic status, but this needs to be confirmed from time to time in long-term cultures. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating flat attachment cultures and unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes, and characteristic morphology, and the cells thereafter enriched for progenitor types and further culture to more mature cell types. Directed differentiation systems are well developed for ectodermal pathways that result in neural and glial cells and the mesendodermal pathway for cardiac muscle cells and many other cell types including hematopoietic progenitors and endothelial cells. Directed differentiation into endoderm has been more difficult to achieve, perhaps because of the lack of markers of

  5. Comparison of cytochromes from anaerobically and aerobically grown cells of Pseudomonas perfectomarinus.

    PubMed Central

    Liu, M C; Payne, W J; Peck, H D; LeGall, J

    1983-01-01

    Pseudomonas perfectomarinus (ATCC 14405) is a facultative anaerobe capable of either oxygen respiration or anaerobic nitrate respiration, i.e., denitrification. A comparative study of the electron transfer components of cells revealed five c-type cytochromes and cytochrome cd in the soluble fraction from anaerobically grown cells and four c-type cytochromes in the soluble fraction from aerobically grown cells. Purification procedures yielded three c-type cytochromes (designated c-551, c-554, and acidic c-type) from both kinds of cells as indicated by similarities in absorption spectra, molecular weight, and electrophoretic mobility. Cytochrome cd, a diheme c-type cytochrome (cytochrome c-552), and a split-alpha c-type cytochrome were recovered only from anaerobically grown cells. A c-type cytochrome with a low ratio of alpha to beta absorption peak heights was uniquely present in the aerobically grown cells. Liquid N2 temperature absorption spectroscopy on the membrane fraction from anaerobically grown cells revealed residual cytochrome cd as well as differences in the relative amounts of c-type and b-type cytochromes in membranes prepared from cells grown under the two different conditions. PMID:6833178

  6. Intracytoplasmic membrane, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions.

    PubMed Central

    Patt, T E; Hanson, R S

    1978-01-01

    Intracytoplasmic membranes were present in Methylobacterium organophilum when cells were grown with methane, but not methanol or glucose, as the sole carbon and energy source. Cells grown with methane as the carbon and energy source and low levels of dissolved oxygen had the greatest amount of intracytoplasmic membrane. Cells grown with increased levels of dissolved oxygen had less intracytoplasmic membrane. The amount of total lipid correlated with the amount of membrane material observed in thin sections. The individual phospholipids varied in amount, but the same four were present in M. organophilum grown with different substrates and oxygen levels. Phosphatidyl choline was present as a major component of the phospholipids. Sterols were present, and they differed from those in the type I methylotroph Methylococcus capsulatus. The relative amounts of different sterols and squalene changed with the substrate provided for growth. The greatest amounts of sterols were found in methane-grown cells grown at low levels of dissolved oxygen. None of the unusual or usual membrane components assayed was uniquely present in the intracytoplasmic membranes. Images PMID:96093

  7. Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate.

    PubMed

    Pennington, Britney O; Clegg, Dennis O; Melkoumian, Zara K; Hikita, Sherry T

    2015-02-01

    Age-related macular degeneration (AMD), a leading cause of blindness, is characterized by the death of the retinal pigmented epithelium (RPE), which is a monolayer posterior to the retina that supports the photoreceptors. Human embryonic stem cells (hESCs) can generate an unlimited source of RPE for cellular therapies, and clinical trials have been initiated. However, protocols for RPE derivation using defined conditions free of nonhuman derivatives (xeno-free) are preferred for clinical translation. This avoids exposing AMD patients to animal-derived products, which could incite an immune response. In this study, we investigated the maintenance of hESCs and their differentiation into RPE using Synthemax II-SC, which is a novel, synthetic animal-derived component-free, RGD peptide-containing copolymer compliant with good manufacturing practices designed for xeno-free stem cell culture. Cells on Synthemax II-SC were compared with cultures grown with xenogeneic and xeno-free control substrates. This report demonstrates that Synthemax II-SC supports long-term culture of H9 and H14 hESC lines and permits efficient differentiation of hESCs into functional RPE. Expression of RPE-specific markers was assessed by flow cytometry, quantitative polymerase chain reaction, and immunocytochemistry, and RPE function was determined by phagocytosis of rod outer segments and secretion of pigment epithelium-derived factor. Both hESCs and hESC-RPE maintained normal karyotypes after long-term culture on Synthemax II-SC. Furthermore, RPE generated on Synthemax II-SC are functional when seeded onto parylene-C scaffolds designed for clinical use. These experiments suggest that Synthemax II-SC is a suitable, defined substrate for hESC culture and the xeno-free derivation of RPE for cellular therapies.

  8. Endocytic activity of Sertoli cells grown in bicameral culture chambers

    SciTech Connect

    Dai, R.X.; Djakiew, D.; Dym, M.

    1987-07-01

    Immature rat Sertoli cells were cultured for 7 to 14 days on Millipore filters impregnated with a reconstituted basement membrane extract in dual-environment (bicameral) culture chambers. Electron microscopy of the cultured cells revealed the presence of rod-shaped mitochondria, Golgi apparatus, rough endoplasmic reticulum, and Sertoli-Sertoli tight junctions, typical of these cells in vivo. The endocytic activity of both the apical and basal surfaces of the Sertoli cells was examined by either adding alpha 2-macroglobulin (alpha 2-M) conjugated to 20 nm gold particles to the apical chamber or by adding /sup 125/I labeled alpha 2-M to the basal chamber. During endocytosis from the apical surface of Sertoli cells, the alpha 2-M-gold particles were bound initially to coated pits and then internalized into coated vesicles within 5 minutes. After 10 minutes, the alpha 2-M-gold was found in multi-vesicular bodies (MVBs) and by 30 minutes it was present in the lysosomes. The proportion of alpha 2-M-gold found within endocytic cell organelles after 1 hour of uptake was used to estimate the approximate time that this ligand spent in each type of organelle. The alpha 2-M-gold was present in coated pits, coated vesicles, multivesicular bodies, and lysosomes for approximately 3, 11, 22, and 24 minutes, respectively. This indicates that the initial stages of endocytosis are rapid, whereas MVBs and lysosomes are relatively long-lived.

  9. Immunolabeling of cells grown attached to a substratum or in suspension with actin antibodies.

    PubMed

    Spudich, Anna

    2011-09-01

    Actin is a major component of all eukaryotic cells and is highly conserved across species. The different isoforms of actin show a very high degree of homology, and almost all actins bind cytochalasins, phallotoxins, and DNase I. Actin is important for maintaining cell shape and for myosin-based movements in cells. In addition, the actin cytoskeleton is involved in localization of other molecules in the cytoplasm and in cellular compartmentalization. Polyclonal and monoclonal antibodies with different specificities are commercially available for labeling actin-containing structures in cells. This article describes a protocol for immunolabeling actin that works well for cells grown in tissue culture as monolayers and for cells grown in suspension cultures that can be attached to polylysine-coated coverslips.

  10. Prodigiosin Induces Autolysins in Actively Grown Bacillus subtilis Cells

    PubMed Central

    Danevčič, Tjaša; Borić Vezjak, Maja; Tabor, Maja; Zorec, Maša; Stopar, David

    2016-01-01

    Prodigiosin produced by marine bacterium Vibrio ruber DSM 14379 exhibits a potent antimicrobial activity against a broad range of Gram positive and Gram negative bacteria. The mechanism of prodigiosin antimicrobial action, however, is not known. In this work, the effect of prodigiosin on Bacillus subtilis growth, cell membrane leakage, and induction of autolysins was studied. Treating B. subtilis with prodigiosin resulted in rapid decline of optical density and increased cell membrane leakage measured by β-galactosidase activity. Cell lysis was initiated immediately after treatment with prodigiosin in the middle exponential phase and was completed within 2 h. Lytic activity of prodigiosin in mutant strains with impaired autolysin genes lytABCD decreased for 80% compared to the wild type strain, while in lytABCDEF mutant strain prodigiosin had no bacteriolytic but only bacteriostatic effect. Fast prodigiosin lytic activity on individual B. subtilis cells was confirmed by a modified comet assay. The results indicate that prodigiosin autolysin induction in B. subtilis is growth phase dependent. PMID:26858704

  11. Localized decrease of {beta}-catenin contributes to the differentiation of human embryonic stem cells

    SciTech Connect

    Lam, Hayley; Patel, Shyam; Wong, Janelle; Chu, Julia; Li, Adrian; Li, Song

    2008-08-08

    Human embryonic stem cells (hESC) are pluripotent, and can be directed to differentiate into different cell types for therapeutic applications. To expand hESCs, it is desirable to maintain hESC growth without differentiation. As hESC colonies grow, differentiated cells are often found at the periphery of the colonies, but the underlying mechanism is not well understood. Here, we utilized micropatterning techniques to pattern circular islands or strips of matrix proteins, and examined the spatial pattern of hESC renewal and differentiation. We found that micropatterned matrix restricted hESC differentiation at colony periphery but allowed hESC growth into multiple layers in the central region, which decreased hESC proliferation and induced hESC differentiation. In undifferentiated hESCs, {beta}-catenin primarily localized at cell-cell junctions but not in the nucleus. The amount of {beta}-catenin in differentiating hESCs at the periphery of colonies or in multiple layers decreased significantly at cell-cell junctions. Consistently, knocking down {beta}-catenin decreased Oct-4 expression in hESCs. These results indicate that localized decrease of {beta}-catenin contributes to the spatial pattern of differentiation in hESC colonies.

  12. Mechanics regulates fate decisions of human embryonic stem cells.

    PubMed

    Sun, Yubing; Villa-Diaz, Luis G; Lam, Raymond H W; Chen, Weiqiang; Krebsbach, Paul H; Fu, Jianping

    2012-01-01

    Research on human embryonic stem cells (hESCs) has attracted much attention given their great potential for tissue regenerative therapy and fundamental developmental biology studies. Yet, there is still limited understanding of how mechanical signals in the local cellular microenvironment of hESCs regulate their fate decisions. Here, we applied a microfabricated micromechanical platform to investigate the mechanoresponsive behaviors of hESCs. We demonstrated that hESCs are mechanosensitive, and they could increase their cytoskeleton contractility with matrix rigidity. Furthermore, rigid substrates supported maintenance of pluripotency of hESCs. Matrix mechanics-mediated cytoskeleton contractility might be functionally correlated with E-cadherin expressions in cell-cell contacts and thus involved in fate decisions of hESCs. Our results highlighted the important functional link between matrix rigidity, cellular mechanics, and pluripotency of hESCs and provided a novel approach to characterize and understand mechanotransduction and its involvement in hESC function.

  13. Mechanics Regulates Fate Decisions of Human Embryonic Stem Cells

    PubMed Central

    Sun, Yubing; Villa-Diaz, Luis G.; Lam, Raymond H. W.; Chen, Weiqiang; Krebsbach, Paul H.; Fu, Jianping

    2012-01-01

    Research on human embryonic stem cells (hESCs) has attracted much attention given their great potential for tissue regenerative therapy and fundamental developmental biology studies. Yet, there is still limited understanding of how mechanical signals in the local cellular microenvironment of hESCs regulate their fate decisions. Here, we applied a microfabricated micromechanical platform to investigate the mechanoresponsive behaviors of hESCs. We demonstrated that hESCs are mechanosensitive, and they could increase their cytoskeleton contractility with matrix rigidity. Furthermore, rigid substrates supported maintenance of pluripotency of hESCs. Matrix mechanics-mediated cytoskeleton contractility might be functionally correlated with E-cadherin expressions in cell-cell contacts and thus involved in fate decisions of hESCs. Our results highlighted the important functional link between matrix rigidity, cellular mechanics, and pluripotency of hESCs and provided a novel approach to characterize and understand mechanotransduction and its involvement in hESC function. PMID:22615930

  14. Plastid distribution in columella cells of a starchless Arabidopsis mutant grown in microgravity

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    Wild-type and starchless Arabidopsis thaliana mutant seedlings (TC7) were grown and fixed in the microgravity environment of a U.S. Space Shuttle spaceflight. Computer image analysis of longitudinal sections from columella cells suggest a different plastid positioning mechanism for mutant and wild-type in the absence of gravity.

  15. Plastid distribution in columella cells of a starchless Arabidopsis mutant grown in microgravity

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    Wild-type and starchless Arabidopsis thaliana mutant seedlings (TC7) were grown and fixed in the microgravity environment of a U.S. Space Shuttle spaceflight. Computer image analysis of longitudinal sections from columella cells suggest a different plastid positioning mechanism for mutant and wild-type in the absence of gravity.

  16. An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells.

    PubMed

    Stojkovic, Petra; Lako, Majlinda; Stewart, Rebecca; Przyborski, Stefan; Armstrong, Lyle; Evans, Jerome; Murdoch, Alison; Strachan, Tom; Stojkovic, Miodrag

    2005-03-01

    Human embryonic stem cells (hESCs) have great potential as a source of cells for therapeutic uses, but their culture requires the support of mouse or human cells, either directly as a feeder cell layer or indirectly as a source of conditioned medium in feeder-free culture systems. Unfortunately, the risks of cross-transfer of pathogens from xenogeneic or allogeneic feeders or cell by-products limit their medical applications. In addition, not all human feeders support the growth of hESCs equally well, and ethical concerns have been raised regarding the derivation of feeder cells from aborted human fetuses. We report here the culture of hESCs on a novel feeder cell system, comprising fibroblast-like cells derived from the spontaneous differentiation of hESCs. Isogenicity of the hESCs and hESC-derived fibroblasts was confirmed by micro satellite analysis. The nature of the hESC-derived fibroblasts was identified by the expression of specific markers. This feeder system permits continuous growth of undifferentiated and pluripotent hESCs, as demonstrated by the expression of specific hESC markers, by the formation of teratomas after injection of hESCs into severely combined immunodeficient mice, and by in vitro differentiation of hESCs into differentiated cells of ectodermal, endodermal, and mesodermal origin. Feeder cells derived from hESCs offers a potentially more secure autogeneic and genotypically homogenous system for the growth of undifferentiated hESCs.

  17. Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode.

    PubMed

    Juang, D F; Lee, C H; Hsueh, S C

    2012-11-01

    Electricity generation capabilities of microbial fuel cell with different light power on algae grown cathode were compared. Results showed that microbial fuel cell with 6 and 12W power of light always produced higher voltage and power density than with 18 and 26W. Similarly, microbial fuel cell with 6 and 12W of light power always displayed higher Coulombic efficiency and specific power than the one with 18 and 26W. The results also showed that microbial fuel cell with covered anodic chamber always displayed higher voltage, power density, Coulombic efficiency and specific power than the one without covered anodic chamber. Binary quadratic equations can be used to express the relationships between the light power and the voltage, power density, Coulombic efficiency and specific power. Although lower power of light on algae grown cathode and covering anodic chamber will increase system's electricity production, they will not significantly reduce its internal resistance.

  18. Detailed Structural and Quantitative Analysis Reveals the Spatial Organization of the Cell Walls of in Vivo Grown Mycobacterium leprae and in Vitro Grown Mycobacterium tuberculosis*

    PubMed Central

    Bhamidi, Suresh; Scherman, Michael S.; Jones, Victoria; Crick, Dean C.; Belisle, John T.; Brennan, Patrick J.; McNeil, Michael R.

    2011-01-01

    The cell wall of mycobacteria consists of an outer membrane, analogous to that of Gram-negative bacteria, attached to the peptidoglycan (PG) via a connecting polysaccharide arabinogalactan (AG). Although the primary structure of these components is fairly well deciphered, issues such as the coverage of the PG layer by covalently attached mycolates in the outer membrane and the spatial details of the mycolic acid attachment to the arabinan have remained unknown. It is also not understood how these components work together to lead to the classical acid-fast staining of mycobacteria. Because the majority of Mycobacterium tuberculosis bacteria in established experimental animal infections are acid-fast negative, clearly cell wall changes are occurring. To address both the spatial properties of mycobacterial cell walls and to begin to study the differences between bacteria grown in animals and cultures, the cell walls of Mycobacterium leprae grown in armadillos was characterized and compared with that of M. tuberculosis grown in culture. Most fundamentally, it was determined that the cell wall of M. leprae contained significantly more mycolic acids attached to PG than that of in vitro grown M. tuberculosis (mycolate:PG ratios of 21:10 versus 16:10, respectively). In keeping with this difference, more arabinogalactan (AG) molecules, linking the mycolic acids to PG, were found. Differences in the structures of the AG were also found; the AG of M. leprae is smaller than that of M. tuberculosis, although the same basic structural motifs are retained. PMID:21555513

  19. Detailed structural and quantitative analysis reveals the spatial organization of the cell walls of in vivo grown Mycobacterium leprae and in vitro grown Mycobacterium tuberculosis.

    PubMed

    Bhamidi, Suresh; Scherman, Michael S; Jones, Victoria; Crick, Dean C; Belisle, John T; Brennan, Patrick J; McNeil, Michael R

    2011-07-01

    The cell wall of mycobacteria consists of an outer membrane, analogous to that of gram-negative bacteria, attached to the peptidoglycan (PG) via a connecting polysaccharide arabinogalactan (AG). Although the primary structure of these components is fairly well deciphered, issues such as the coverage of the PG layer by covalently attached mycolates in the outer membrane and the spatial details of the mycolic acid attachment to the arabinan have remained unknown. It is also not understood how these components work together to lead to the classical acid-fast staining of mycobacteria. Because the majority of Mycobacterium tuberculosis bacteria in established experimental animal infections are acid-fast negative, clearly cell wall changes are occurring. To address both the spatial properties of mycobacterial cell walls and to begin to study the differences between bacteria grown in animals and cultures, the cell walls of Mycobacterium leprae grown in armadillos was characterized and compared with that of M. tuberculosis grown in culture. Most fundamentally, it was determined that the cell wall of M. leprae contained significantly more mycolic acids attached to PG than that of in vitro grown M. tuberculosis (mycolate:PG ratios of 21:10 versus 16:10, respectively). In keeping with this difference, more arabinogalactan (AG) molecules, linking the mycolic acids to PG, were found. Differences in the structures of the AG were also found; the AG of M. leprae is smaller than that of M. tuberculosis, although the same basic structural motifs are retained.

  20. Osmotic Adjustment of Cultured Tobacco Cells (Nicotiana tabacum var. Samsum) Grown on Sodium Chloride 1

    PubMed Central

    Heyser, James W.; Nabors, Murray W.

    1981-01-01

    Tobacco cell cultures (var. Samsum) were grown on increasing levels of NaCl to select variants for increased salt tolerance. The osmotic adjustment of NaCl-adapted and nonadapted cell lines was studied. Both cell lines were grown on modified Linsmaier and Skoog medium with or without NaCl. Few differences were found in the response of adapted and nonadapted lines to NaCl. The concentrations of sugars, Na+, Cl−, and NO3− were identical in the cells and medium. Potassium and amino acids were accumulated by the cells. All of the above solutes accounted for 80 to 90% of the osmotic potential for both cell lines when grown on basal medium with or without NaCl. The osmotic potential of growing cells was always 1 to 3 bars more negative than that of the medium. During the first 10 days culture, the cells hydrolyzed the 117 millimolar sucrose present in the fresh media, and the media became more negative by 3 bars. Growing cells absorbed and metabolized the sugars, NH4+, and NO3− during the next 25 days, and the osmotic potential of the media and cells became less negative. The addition of 130 millimolar NaCl made the media and cells osmotically more negative by 6 bars throughout the growth cycle, as compared with cells growing on basal medium. The efflux of cellular solutes during distilled H2O washes was resolved into two components. The fast component (0.6 to 1.7 minutes half-time) included solutes of the free space and cytoplasm, whereas the slow component (1.6 to 4.9 hours half-time) represented the vacuolar solutes. Sodium and Cl− were present in the vacuole. No differences were observed in the solute efflux between the adapted and nonadapted cell lines. PMID:16661743

  1. High-efficiency AlGaInP solar cells grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Faucher, J.; Sun, Y.; Jung, D.; Martin, D.; Masuda, T.; Lee, M. L.

    2016-10-01

    AlGaInP is an ideal material for ultra-high efficiency, lattice-matched multi-junction solar cells grown by molecular beam epitaxy (MBE) because it can be grown lattice-matched to GaAs with a wide 1.9-2.2 eV bandgap. Despite this potential, AlGaInP grown by molecular beam epitaxy (MBE) has yet to be fully explored, with the initial 2.0 eV devices suffering from poor performance due to low minority carrier diffusion lengths in both the emitter and base regions of the solar cell. In this work, we show that implementing an AlGaInP graded layer to introduce a drift field near the front surface of the device enabled greatly improved internal quantum efficiency (IQE) across all wavelengths. In addition, optimizing growth conditions and post-growth annealing improved the long-wavelength IQE and the open-circuit voltage of the cells, corresponding to a 3× increase in diffusion length in the base. Taken together, this work demonstrates greatly improved IQE, attaining peak values of 95%, combined with an uncoated AM1.5G efficiency of 10.9%, double that of previously reported MBE-grown devices.

  2. Cu(In, Ga)Se2 thin film solar cells grown at low temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhu, H.; Zhang, L.; Guo, Y.; Niu, X.; Li, Z.; Chen, J.; Liu, Q.; Mai, Y.

    2017-06-01

    Cu(In, Ga)Se2 (CIGS) thin film solar cells were grown on polyimide (PI) and soda lime glass (SLG) substrates at low substrate temperatures between 400 °C and 500 °C. Different material properties of the CIGS thin films and photovoltaic performances of the solar cells were systematically investigated. It is found that the (112), (220)/(204) and (116)/(312) peaks from X-ray diffraction (XRD) patterns show double-peak patterns as the substrate temperature decreases. The CIGS thin films grown on both PI and SLG substrates shows layered structures. The bottom and surficial layers of CIGS thin films display small size polycrystalline grains while the middle layers show large size polycrystalline grains. Both types of CIGS thin film solar cells exhibit similar efficiencies while CIGS thin film solar cells grown on PI substrates show lower open circuit voltage and fill factor but higher short circuit current density, as compared to those of CIGS thin film solar cells on SLG substrates. The highest efficiency of 6.14% has been achieved for the CIGS thin film solar cells on PI with the structure of PI/Mo/CIGS/CdS/i-ZnO/ZnO:Al/Al grid here.

  3. Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall.

    PubMed

    Phalip, Vincent; Delalande, François; Carapito, Christine; Goubet, Florence; Hatsch, Didier; Leize-Wagner, Emmanuelle; Dupree, Paul; Dorsselaer, Alain Van; Jeltsch, Jean-Marc

    2005-12-01

    The exoproteome of the fungus Fusarium graminearum grown on glucose and on hop (Humulus lupulus, L.) cell wall has been investigated. The culture medium was found to contain a higher quantity of proteins and the proteins are more diverse when the fungus is grown on cell wall. Using both 1D and 2D electrophoresis followed by mass spectrometry analysis and protein identification based on similarity searches, 84 unique proteins were identified in the cell wall-grown fungal exoproteome. Many are putatively implicated in carbohydrate metabolism, mainly in cell wall polysaccharide degradation. The predicted carbohydrate-active enzymes fell into 24 different enzymes classes, and up to eight different proteins within a same class are secreted. This indicates that fungal metabolism becomes oriented towards synthesis and secretion of a whole arsenal of enzymes able to digest almost the complete plant cell wall. Cellobiohydrolase is one of the only four proteins found both after growth on glucose and on plant cell wall and we propose that this enzyme could act as a sensor of the extracellular environment. Extensive knowledge of this very diverse F. graminearum exoproteome is an important step towards the full understanding of Fusarium/plants interactions.

  4. Comparison of planktonic and biofilm cultures of Pseudomonas fluorescens DSM 8341 cells grown on fluoroacetate.

    PubMed

    Heffernan, Barry; Murphy, Cormac D; Casey, Eoin

    2009-05-01

    Comparisons between the physiological properties of Pseudomonas fluorescens biofilm cells grown in a tubular biofilm reactor and planktonic cells grown in a chemostat were performed. Fluoroacetate was the sole carbon source for all experiments. The performance of cells was assessed using cell cycle kinetics and by determining specific fluoroacetate utilization rates. Cell cycle kinetics were studied by flow cytometry in conjunction with the fluorescent stain propidium iodide. Determination of the DNA content of planktonic and biofilm cultures showed little difference between the two modes of growth. Cultures with comparable specific glycolate utilization rates had similar percentages of cells in the B phase of the cell cycle, indicating similar growth rates. Specific fluoroacetate utilization rates showed the performance of planktonic cells to be superior to that of biofilm cells, with more fluoroacetate utilized per cell at similar specific fluoroacetate loading rates. A consequence of this decreased biofilm performance was the accumulation of glycolate in the effluent of biofilm cultures. This accumulation of glycolate was not observed in the effluent of planktonic cultures. Spatial stratification of oxygen within the biofilm was identified as a possible explanation for the overflow metabolism of glycolate and the decreased performance of the biofilm cells.

  5. Studies on the replication of Mayaro virus grown in interferon treated cells.

    PubMed

    Rebello, M C; Fonseca, M E; Marinho, J O; Rebello, M A

    1994-01-01

    Mayaro virus grown in interferon treated infected cells has been characterized with regard to its ability to replicate in vertebrate (TC7) and invertebrate (Aedes albopictus) cells. Virus purified from interferon treated TC7 cells adsorbs and penetrates to the same extent as the control virus. During infection, these virus particles caused inhibition of host protein synthesis and synthesized the same spectrum of viral proteins as normal virus. This population however, was apparently more sensitive to interferon treatment. Electron microscopy of TC7 cells showed the presence of numerous aberrant virus particles budding from the plasma membrane.

  6. Homojunction GaAs solar cells grown by close space vapor transport

    SciTech Connect

    Boucher, Jason W.; Ritenour, Andrew J.; Greenaway, Ann L.; Aloni, Shaul; Boettcher, Shannon W.

    2014-06-08

    We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping, and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.

  7. Detailed method description for noninvasive monitoring of differentiation status of human embryonic stem cells.

    PubMed

    Scheerlinck, Ellen; Van Steendam, Katleen; Vandewoestyne, Mado; Lepez, Trees; Gobin, Veerle; Meert, Paulien; Vossaert, Liesbeth; Van Nieuwerburgh, Filip; Van Soom, Ann; Peelman, Luc; Heindryckx, Björn; De Sutter, Petra; Dhaenens, Maarten; Deforce, Dieter

    2014-09-15

    The (non)differentiation status of human embryonic stem cells (hESCs) is usually analyzed by determination of key pluripotency defining markers (e.g., OCT4, Nanog, SOX2) by means of reverse transcription quantitative polymerase chain reaction (RT-qPCR), flow cytometry (FC), and immunostaining. Despite proven usefulness of these techniques, their destructive nature makes it impossible to follow up on the same hESC colonies for several days, leading to a loss of information. In 2003, an OCT4-eGFP knock-in hESC line to monitor OCT4 expression was developed and commercialized. However, to the best of our knowledge, the use of fluorescence microscopy (FM) for monitoring the OCT4-eGFP expression of these cells without sacrificing them has not been described to date. Here, we describe such a method in detail, emphasizing both its resolving power and its complementary nature to FC as well as the potential pitfalls in standardizing the output of the FM measurements. The potential of the method is demonstrated by comparison of hESCs cultured in several conditions, both feeder free (vitronectin, VN) and grown on feeder cells (mouse embryonic fibroblasts, MEFs). Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Strategy for the creation of clinical grade hESC line banks that HLA-match a target population

    PubMed Central

    Jacquet, Laureen; Stephenson, Emma; Collins, Robert; Patel, Heema; Trussler, Jane; Al-Bedaery, Roaa; Renwick, Pamela; Ogilvie, Caroline; Vaughan, Robert; Ilic, Dusko

    2013-01-01

    Here, we describe a pre-derivation embryo haplotyping strategy that we developed in order to maximize the efficiency and minimize the costs of establishing banks of clinical grade hESC lines in which human leukocyte antigen (HLA) haplotypes match a significant proportion of the population. Using whole genome amplification followed by medium resolution HLA typing using PCR amplification with sequence-specific primers (PCR-SSP), we have typed the parents, embryos and hESC lines from three families as well as our eight clinical grade hESC lines and shown that this technical approach is rapid, reliable and accurate. By employing this pre-derivation strategy where, based on HLA match, embryos are selected for a GMP route on day 3–4 of development, we would have drastically reduced our cGMP laboratory running costs. PMID:23161805

  9. Efficient in situ electroporation of mammalian cells grown on microporous membranes.

    PubMed Central

    Yang, T A; Heiser, W C; Sedivy, J M

    1995-01-01

    Electroporation is a common technique for the introduction of DNA molecules into living cells. The method is currently limited by the necessity of applying the electrical discharge to cells in suspension. Adherent cells must therefore be removed from their substratum, which can induce unwanted physiological effects. We report here a new procedure for in situ electroporation of cells grown on microporous membranes of polyethylene terephthalate (PET) or polyester (PE). We demonstrate that this method of in situ electroporation employs only readily available materials and standard electroporation devices without any modifications, is as efficient as conventional electroporation of cells in suspension, and is applicable to a wide range of cell types. Efficient electroporation can be achieved under conditions of minimal cell killing, and can be performed with quiescent cells as well as with confluent epithelial sheets. The method is a useful extension of electroporation technology, and will allow the application of electroporation to a wider spectrum of biological systems. Images PMID:7659501

  10. Generation of lung epithelial-like tissue from human embryonic stem cells

    PubMed Central

    2009-01-01

    Background Human embryonic stem cells (hESC) have the capacity to differentiate in vivo and in vitro into cells from all three germ lineages. The aim of the present study was to investigate the effect of specific culture conditions on the differentiation of hESC into lung epithelial cells. Methods Undifferentiated hESC, grown on a porous membrane in hESC medium for four days, were switched to a differentiation medium for four days; this was followed by culture in air-liquid interface conditions during another 20 days. Expression of several lung markers was measured by immunohistochemistry and by quantitative real-time RT-PCR at four different time points throughout the differentiation and compared to appropriate controls. Results Expression of CC16 and NKX2.1 showed a 1,000- and 10,000- fold increase at day 10 of differentiation. Other lung markers such as SP-C and Aquaporin 5 had the highest expression after twenty days of culture, as well as two markers for ciliated cells, FOXJ1 and β-tubulin IV. The results from qRT-PCR were confirmed by immunohistochemistry on paraffin-embedded samples. Antibodies against CC16, SP-A and SP-C were chosen as specific markers for Clara Cells and alveolar type II cells. The functionality was tested by measuring the secretion of CC16 in the medium using an enzyme immunoassay. Conclusion These results suggest that by using our novel culture protocol hESC can be differentiated into the major cell types of lung epithelial tissue. PMID:19891764

  11. Effects of method of detachment on electrophoretic mobility of mammalian cells grown in monolayer culture

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    A variety of proteolytic and micolytic enzumes, mechanical procedures, and changes in the ionic environment, especially Ca chelation, are used for dispersal of monolayer grown cells. If either chelating agents or mechanical dispersion are used alone, the cell yield is often low and suspensions of single cells are difficult to obtain. Confluent monolayers treated with EDTA tend to be released from their surfaces in sheets, and clumps of cells remain even after further incubation in EDTA. Crude trypsin is the most popular dispersal agent and is known to contain a variety of contaminating enzymes which contribute to the dispersal of cells. A variety of cell injuries resulting from the activity of proteolytic enzymes are reported. It is shown that crystalline trypsin is least harmful to cell integrity as judged by trypan blue uptake.

  12. Effects of method of detachment on electrophoretic mobility of mammalian cells grown in monolayer culture

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    A variety of proteolytic and micolytic enzumes, mechanical procedures, and changes in the ionic environment, especially Ca chelation, are used for dispersal of monolayer grown cells. If either chelating agents or mechanical dispersion are used alone, the cell yield is often low and suspensions of single cells are difficult to obtain. Confluent monolayers treated with EDTA tend to be released from their surfaces in sheets, and clumps of cells remain even after further incubation in EDTA. Crude trypsin is the most popular dispersal agent and is known to contain a variety of contaminating enzymes which contribute to the dispersal of cells. A variety of cell injuries resulting from the activity of proteolytic enzymes are reported. It is shown that crystalline trypsin is least harmful to cell integrity as judged by trypan blue uptake.

  13. Reprogramming mediated radio-resistance of 3D-grown cancer cells.

    PubMed

    Xue, Gang; Ren, Zhenxin; Grabham, Peter W; Chen, Yaxiong; Zhu, Jiayun; Du, Yarong; Pan, Dong; Li, Xiaoman; Hu, Burong

    2015-07-01

    In vitro 3D growth of tumors is a new cell culture model that more closely mimics the features of the in vivo environment and is being used increasingly in the field of biological and medical research. It has been demonstrated that cancer cells cultured in 3D matrices are more radio-resistant compared with cells in monolayers. However, the mechanisms causing this difference remain unclear. Here we show that cancer cells cultured in a 3D microenvironment demonstrated an increase in cells with stem cell properties. This was confirmed by the finding that cells in 3D cultures upregulated the gene and protein expression of the stem cell reprogramming factors such as OCT4, SOX2, NANOG, LIN28 and miR-302a, compared with cells in monolayers. Moreover, the expression of β-catenin, a regulating molecule of reprogramming factors, also increased in 3D-grown cancer cells. These findings suggest that cancer cells were reprogrammed to become stem cell-like cancer cells in a 3D growth culture microenvironment. Since cancer stem cell-like cells demonstrate an increased radio-resistance and chemo-resistance, our results offer a new perspective as to why. Our findings shed new light on understanding the features of the 3D growth cell model and its application in basic research into clinical radiotherapy and medicine. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  14. Phosgene Effects on F-Actin in Cells Grown from Pulmonary Tissues

    DTIC Science & Technology

    1993-05-13

    Plato, N., Alexandersson, R ., Eklund, A., and Falkenberg , C. (1991). Pulmonary reactions caused by welding-induced decomposed trichlorethylene. Chest 99...CY) CO 0= Phosgene Effects on F-actin in Cells Grown on from Pulmonary Tissues I R . Werrlein, J. Madren-Whalley and S.D. Kirby United States Army...shape, the image in Fig. 1 shows organization that was characteristic of F-actin in untreated and sham-treated control populations. B 4000- DPB (7 r 3000

  15. Reprogramming mediated radio-resistance of 3D-grown cancer cells

    PubMed Central

    Xue, Gang; Ren, Zhenxin; Grabham, Peter W.; Chen, Yaxiong; Zhu, Jiayun; Du, Yarong; Pan, Dong; Li, Xiaoman; Hu, Burong

    2015-01-01

    In vitro 3D growth of tumors is a new cell culture model that more closely mimics the features of the in vivo environment and is being used increasingly in the field of biological and medical research. It has been demonstrated that cancer cells cultured in 3D matrices are more radio-resistant compared with cells in monolayers. However, the mechanisms causing this difference remain unclear. Here we show that cancer cells cultured in a 3D microenvironment demonstrated an increase in cells with stem cell properties. This was confirmed by the finding that cells in 3D cultures upregulated the gene and protein expression of the stem cell reprogramming factors such as OCT4, SOX2, NANOG, LIN28 and miR-302a, compared with cells in monolayers. Moreover, the expression of β-catenin, a regulating molecule of reprogramming factors, also increased in 3D-grown cancer cells. These findings suggest that cancer cells were reprogrammed to become stem cell–like cancer cells in a 3D growth culture microenvironment. Since cancer stem cell–like cells demonstrate an increased radio-resistance and chemo-resistance, our results offer a new perspective as to why. Our findings shed new light on understanding the features of the 3D growth cell model and its application in basic research into clinical radiotherapy and medicine. PMID:25883172

  16. Sensitivity of Candida Albicans Biofilm Cells Grown on Denture Acrylic to Antifungal Proteins and Chlorhexidine

    PubMed Central

    Pusateri, Christopher R.; Monaco, Edward A.; Edgerton, Mira

    2009-01-01

    Objectives Candida albicans cells form biofilms on polymeric surfaces of dentures and other prostheses introduced into the oral cavity. Many biofilm microorganisms exhibit resistance to antimicrobial agents; C. albicans cells may also develop resistance to naturally-occurring antifungal peptides in human saliva including histatins (Hsts) and defensins (hBDs). Therefore, we evaluated Hst 5 activity on C. albicans biofilm cells compared to planktonic cells and measured whether surface treatment of denture acrylic with Hst 5, hBD-3, or chlorhexidine gluconate could inhibit in vitro biofilm development. Methods Acrylic disks were preconditioned with 500 μl saliva for 30 min, and inoculated with C. albicans cells (106 cells/ml) for 1 h, at 37 °C. Non-adherent cells were removed by washing and disks and were incubated in YPD growth medium for 24, 48, and 72 h at 37 °C. Candidacidal assays were performed on 48-hour-biofilms and on planktonically-grown cells using Hst 5 (15.5 μM, 31.25 μM, 62 μM). Cell adhesion was compared on disks pre-coated with 0.12% chlorhexidine gluconate, 50 μM Hst 5, or 0.6 μM hBD-3 after 24 h, 48 h, and 72 h growth. Results No significant difference was observed in sensitivity to Hst 5 of biofilm cells compared to planktonic cells (p > 0.05). Pre-coating disks with hBD-3 did not inhibit biofilm development; however, Hst 5 significantly inhibited biofilm development at 72 h, while 0.12% chlorhexidine significantly inhibited biofilm development at all time intervals (p < 0.05). Conclusions C. albicans biofilm cells grown on denture acrylic are sensitive to killing by Hst 5. Surface coating acrylic with chlorhexidine or Hst 5 effectively inhibits biofilm growth and has potential therapeutic application. PMID:19249746

  17. Performance of silicon solar cells fabricated from multiple Czochralski ingots grown by using a single crucible

    NASA Technical Reports Server (NTRS)

    Kachare, A. H.; Uno, F. M.; Miyahira, T.; Lane, R. L.

    1980-01-01

    Results on the performance of solar cells fabricated on wafers from multiple silicon ingots of large diameter, grown by using a single crucible and a sequential melt replenishment Czochralski (CZO) technique are presented. Samples were analyzed for resistivity, dislocation density and impurity content. Solar cells were fabricated from the seed, center and tang end of each ingot to evaluate the growth reproducibility and material quality. The cell efficiency within a given wafer varies by no more than plus or minus 5% of the average value. A small but consistent decrease in the cell efficiency is observed from the first to the fourth ingot grown from a single crucible. This decrease may be related to an increase in impurity content or dislocation density or a combination of both. The efficiency of the cells fabricated from the tang end of the fourth ingot is about 10% lower than that of the control cell. An impurity effects model is employed to correlate this decrease in efficiency with the impurity build-up in the residual melt.

  18. Epitaxial Crystal Silicon Absorber Layers and Solar Cells Grown at 1.8 Microns per Minute

    SciTech Connect

    Bobela, D. C.; Teplin, C. W.; Young, D. L.; Branz, H. M.; Stradins, P.

    2011-01-01

    We have grown device-quality epitaxial silicon thin films at growth rates up to 1.85 {micro}m/min, using hot-wire chemical vapor deposition from silane, at substrate temperatures below 750 C. At these rates, which are more than 30 times faster than those used by the amorphous and nanocrystalline Si industry, capital costs for large-scale solar cell production would be dramatically reduced, even for cell absorber layers up to 10 {micro}m thick. We achieved high growth rates by optimizing the three key parameters: silane flow, depletion, and filament geometry, based on our model developed earlier. Hydrogen coverage of the filament surface likely limits silane decomposition and growth rate at high system pressures. No considerable deterioration in PV device performance is observed when grown at high rate, provided that the epitaxial growth is initiated at low rate. A simple mesa device structure (wafer/epi Si/a-Si(i)/a-Si:H(p)/ITO) with a 2.3 {micro}m thick epitaxial silicon absorber layer was grown at 0.7 {micro}m/min. The finished device had an open-circuit voltage of 0.424 V without hydrogenation treatment.

  19. Aging impairs osteoblast differentiation of mesenchymal stem cells grown on titanium by favoring adipogenesis

    PubMed Central

    ABUNA, Rodrigo Paolo Flores; STRINGHETTA-GARCIA, Camila Tami; FIORI, Leonardo Pimentel; DORNELLES, Rita Cassia Menegati; ROSA, Adalberto Luiz; BELOTI, Marcio Mateus

    2016-01-01

    ABSTRACT Aging negatively affects bone/titanium implant interactions. Our hypothesis is that the unbalance between osteogenesis and adipogenesis induced by aging may be involved in this phenomenon. Objective We investigated the osteoblast and adipocyte differentiation of mesenchymal stem cells (MSCs) from young and aged rats cultured on Ti. Material and Methods Bone marrow MSCs derived from 1-month and 21-month rats were cultured on Ti discs under osteogenic conditions for periods of up to 21 days and osteoblast and adipocyte markers were evaluated. Results Cell proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization and gene expression of RUNX2, osterix, ALP, bone sialoprotein, osteopontin, and osteocalcin were reduced in cultures of 21-month rats compared with 1-month rats grown on Ti. Gene expression of PPAR-γ , adipocyte protein 2, and resistin and lipid accumulation were increased in cultures of 21-month rats compared with 1-month rats grown on the same conditions. Conclusions These results indicate that the lower osteogenic potential of MSCs derived from aged rats compared with young rats goes along with the higher adipogenic potential in cultures grown on Ti surface. This unbalance between osteoblast and adipocyte differentiation should be considered in dental implant therapy to the elderly population. PMID:27556209

  20. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis.

    PubMed

    Čáp, Michal; Váchová, Libuše; Palková, Zdena

    2015-01-01

    Colonies of Saccharomyces cerevisiae laboratory strains pass through specific developmental phases when growing on solid respiratory medium. During entry into the so-called alkali phase, in which ammonia signaling is initiated, 2 prominent cell types are formed within the colonies: U cells in upper colony regions, which have a longevity phenotype and activate the expression of a large number of metabolic genes, and L cells in lower regions, which die more quickly and exhibit a starvation phenotype. Here, we performed a detailed analysis of the activities of enzymes of central carbon metabolism in lysates of both cell types and determined several fermentation end products, showing that previously reported expression differences are reflected in the different enzymatic capabilities of each cell type. Hence, U cells, despite being grown on respiratory medium, behave as fermenting cells, whereas L cells rely on respiratory metabolism and possess active gluconeogenesis. Using a spectrum of different inhibitors, we showed that glycolysis is essential for the formation, and particularly, the survival of U cells. We also showed that β-1,3-glucans that are released from the cell walls of L cells are the most likely source of carbohydrates for U cells.

  1. Lithium induces ER stress and N-glycan modification in galactose-grown Jurkat cells.

    PubMed

    Nagy, Tamás; Frank, Dorottya; Kátai, Emese; Yahiro, Rikki K K; Poór, Viktor S; Montskó, Gergely; Zrínyi, Zita; Kovács, Gábor L; Miseta, Attila

    2013-01-01

    We previously reported that lithium had a significant impact on Ca(2+) regulation and induced unfolded protein response (UPR) in yeast cells grown on galactose due to inhibition of phosphoglucomutase (PGM), however the exact mechanism has not been established yet. In this study, we analysed lithium's effect in galactose-fed cells to clarify whether these ER-related changes are the result of a relative hypoglycemic state. Furthermore, we investigated whether the alterations in galactose metabolism impact protein post-translational modifications. Thus, Jurkat cells were incubated in glucose or galactose containing media with or without lithium treatment. We found that galactose-fed and lithium treated cells showed better survivability than fasting cells. We also found higher UDP-Hexose and glycogen levels in these cells compared to fasting cells. On the other hand, the UPR (X-box binding protein 1 mRNA levels) of galactose-fed and lithium treated cells was even greater than in fasting cells. We also found increased amount of proteins that contained N-linked N-acetyl-glucosamine, similar to what was reported in fasting cells by a recent study. Our results demonstrate that lithium treatment of galactose-fed cells can induce stress responses similar to hypoglycemia, however cell survival is still secured by alternative pathways. We propose that clarifying this process might be an important addition toward the better understanding of the molecular mechanisms that regulate ER-associated stress response.

  2. Lithium Induces ER Stress and N-Glycan Modification in Galactose-Grown Jurkat Cells

    PubMed Central

    Kátai, Emese; Yahiro, Rikki K. K.; Poór, Viktor S.; Montskó, Gergely; Zrínyi, Zita; Kovács, Gábor L.; Miseta, Attila

    2013-01-01

    We previously reported that lithium had a significant impact on Ca2+ regulation and induced unfolded protein response (UPR) in yeast cells grown on galactose due to inhibition of phosphoglucomutase (PGM), however the exact mechanism has not been established yet. In this study, we analysed lithium's effect in galactose-fed cells to clarify whether these ER-related changes are the result of a relative hypoglycemic state. Furthermore, we investigated whether the alterations in galactose metabolism impact protein post-translational modifications. Thus, Jurkat cells were incubated in glucose or galactose containing media with or without lithium treatment. We found that galactose-fed and lithium treated cells showed better survivability than fasting cells. We also found higher UDP-Hexose and glycogen levels in these cells compared to fasting cells. On the other hand, the UPR (X-box binding protein 1 mRNA levels) of galactose-fed and lithium treated cells was even greater than in fasting cells. We also found increased amount of proteins that contained N-linked N-acetyl-glucosamine, similar to what was reported in fasting cells by a recent study. Our results demonstrate that lithium treatment of galactose-fed cells can induce stress responses similar to hypoglycemia, however cell survival is still secured by alternative pathways. We propose that clarifying this process might be an important addition toward the better understanding of the molecular mechanisms that regulate ER-associated stress response. PMID:23894652

  3. In-depth investigation of spin-on doped solar cells with thermally grown oxide passivation

    NASA Astrophysics Data System (ADS)

    Ahmad, Samir Mahmmod; Cheow, Siu Leong; Ludin, Norasikin A.; Sopian, K.; Zaidi, Saleem H.

    Solar cell industrial manufacturing, based largely on proven semiconductor processing technologies supported by significant advancements in automation, has reached a plateau in terms of cost and efficiency. However, solar cell manufacturing cost (dollar/watt) is still substantially higher than fossil fuels. The route to lowering cost may not lie with continuing automation and economies of scale. Alternate fabrication processes with lower cost and environmental-sustainability coupled with self-reliance, simplicity, and affordability may lead to price compatibility with carbon-based fuels. In this paper, a custom-designed formulation of phosphoric acid has been investigated, for n-type doping in p-type substrates, as a function of concentration and drive-in temperature. For post-diffusion surface passivation and anti-reflection, thermally-grown oxide films in 50-150-nm thickness were grown. These fabrication methods facilitate process simplicity, reduced costs, and environmental sustainability by elimination of poisonous chemicals and toxic gases (POCl3, SiH4, NH3). Simultaneous fire-through contact formation process based on screen-printed front surface Ag and back surface through thermally grown oxide films was optimized as a function of the peak temperature in conveyor belt furnace. Highest efficiency solar cells fabricated exhibited efficiency of ∼13%. Analysis of results based on internal quantum efficiency and minority carried measurements reveals three contributing factors: high front surface recombination, low minority carrier lifetime, and higher reflection. Solar cell simulations based on PC1D showed that, with improved passivation, lower reflection, and high lifetimes, efficiency can be enhanced to match with commercially-produced PECVD SiN-coated solar cells.

  4. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    NASA Astrophysics Data System (ADS)

    Li, Wei; Varlamov, Sergey; Xue, Chaowei

    2014-09-01

    This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, Voc and Jsc than the one on the seed layer without RTA treatment.

  5. Increased liposome-mediated gene transfer into haematopoietic cells grown in adhesion to stromal or fibroblast cell line monolayers.

    PubMed

    Marit, G; Cao, Y; Froussard, P; Ripoche, J; Dupouy, M; Elandaloussi, A; Lacombe, F; Mahon, F X; Keller, H; Pla, M; Reiffers, J; Theze, J

    2000-01-01

    We investigated transfection rates of CD34+ haematopoietic progenitor cells (HPC) or haematopoietic cell lines (TF-1, KG1a and K562) using the LacZ gene as a reporter and cationic liposomes. The transfection efficiency of CD34+ haematopoietic progenitor cells (HPC) or TF-1, KG1a and K562 grown in suspension is very low (average percentage of 0.013 for HPC and 0.03 for cell lines). Adhesion of HPC or cell lines to plates by immunological or physical methods significantly enhances transfection efficiency; however, the percentage of transfected cells still remained low. We found that adhesion of TF-1, KG1a and K562 HC to MS-5 stroma cells or NIH-3T3 fibroblast cells increased transfection efficiency. Under these conditions transfection is achieved in 11.2-25% (mean 18.30%) for the cell lines and 13.6% (range 8.2-24.2%) for CD34+ HPC. These results indicate that liposome-mediated transfection of HC is significantly increased when cells are grown in adherence to stroma or fibroblast monolayers.

  6. Cyclic-radiation response of murine fibrosarcoma cells grown as pulmonary nodules

    SciTech Connect

    Grdina, D.J.; Hunter, N.

    1982-10-01

    The radiation age response of murine fibrosarcoma (FSa) cells grown as pulmonary nodules in C/sub 3/Hf/Kam mice was determined. FSa cells were irradiated in vivo either with 10 Gy as 14 day-old lung tumors (i.e., artificial macrometastases) prior to cell separation or with 5 Gy as single cells trapped in the lungs of recipient mice (i.e., artificial micrometastases) following cell separation and synchronization by centrifugal elutriation. Flow microfluorometry (FMF) was used to determine cell-cycle parameters and the relative synchrony of the separated populations, as well as the percent contamination of normal diploid cells in each of the tumor cell populations. Tumor populations containing up to 90% G/sub 1/, 60% S-, and 75% G/sub 2/+M-phase tumor cells were obtained. Cell clonogenicity, determined using a lung colony assay, ranged from 0.7 to 6% for control FSa cells from the various elutriator fractions. The radiation sensitivity of these separated cell populations varied by a factor of 6, regardless of whether the cells were irradiated as artificial micro or macro-metastases. In each experiment, tumor populations most enriched in s-phase cells exhibited the greatest radiation sensitivity. To confirm that these populations were highly enriched in S-phase cells and to demonstrate that they were more radiosensitive than FSa cells in other parts of the cell cycle, the elutriated tumor populations were exposed to either suicide labeling by high specific activity tritiated thymidine or hydroxyurea. The resultant age response curves were qualitatively similar to those obtained following irradiation and reflected the S-phase sensitivity of FSa cells to these agents.

  7. InGaAsP Solar Cells Grown by Hydride Vapor Phase Epitaxy

    SciTech Connect

    Jain, Nikhil; Simon, John; Schulte, Kevin L.; Dippo, Patricia; Young, Michelle; Young, David L.; Ptak, Aaron J.

    2016-11-21

    Hydride vapor phase epitaxy (HVPE) has recently reemerged as a low-cost, high-throughput alternative to metalorganic chemical vapor deposition (MOCVD) for the growth of high-efficiency III-V solar cells. Quaternary InGaAsP solar cells in the bandgap range of ~1.7-1.8 eV are promising top-cell candidates for integration in Ill-V/Si tandem cells with projected one-sun efficiencies exceeding 30%. In this work, we report on the development of lattice-matched InGaAsP solar cells grown on GaAs substrates via HVPE at very high growth rates of ~0.7 um/min. We demonstrate prototype 1.7 eV InGaAsP solar cells with an open-circuit voltage of 1.11 V. The short-circuit current is limited by the lack of a window layer in these early stage devices. The photo response of 1.7 InGaAsP solar cell with ~1.1 um thick base layer is found to be nearly insensitive to variation in p-type base doping concentration in the range from Na - 4x1016 to - 1x1017 cm-3, indicating an effective carrier collection length on the order of - 1.1 um or higher in our devices. These initial InGaAsP cell results are encouraging and highlight the viability of HVPE to produce mixed arsenide-phosphide solar cells grown lattice-matched on GaAs.

  8. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition

    PubMed Central

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin

    2017-01-01

    Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface. PMID:28209964

  9. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin

    2017-02-01

    Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface.

  10. Comparative studies of two membrane fractions isolated from chemotrophically and phototrophically grown cells of Rhodopseudomonas capsulata.

    PubMed Central

    Garcia, A F; Drews, G; Reidl, H H

    1981-01-01

    Light and heavy membrane fractions have been isolated by equilibrium sucrose density centrifugation from Rhodopseudomonas capsulata 938 GCM grown aerobically in the dark (chemotrophically) and anaerobically in the light (phototrophically). The densities of the light and heavy fractions from phototrophic cells were 1.1004 to 1.1006 and 1.1478, respectively, and the densities of the light and heavy fractions from chemotrophic cells were 1.0957 to 1.0958 and 1.1315, respectively. Both fractions were active in photochemical and respiratory functions and in electron transport-coupled phosphorylation. The light membrane fraction isolated from chemotrophic cells contained the reaction center and the light-harvesting pigment-protein complex B 870, but not the variable light-harvesting complex B 800-850. A small amount of the complex B 800-850 was present in the light fraction isolated from phototrophically grown cells, but it was not energetically coupled to the photosynthetic apparatus. From inhibitor studies, difference spectroscopy, and measurement of enzyme activities it was tentatively concluded that the light membrane fraction contains only the reduced nicotinamide adenine dinucleotide-oxidizing electron transport chain having a KCN-insensitive, low-potential cytochrome c oxidase, whereas the heavy fraction contains additionally the succinate dehydrogenase and a high-potential cytochrome b terminal oxidase sensitive to KCN. The light membrane fraction was more labile than the heavy fraction in terms of phosphorylating activity. PMID:7204341

  11. Voc Degradation in TF-VLS Grown InP Solar Cells

    SciTech Connect

    Sun, Yubo; Sun, Xingshu; Johnston, Steve; Sutter-Fella, Carolin M.; Hettick, Mark; Javey, Ali; Bermel, Peter

    2016-11-21

    Here we consider two hypotheses to explain the open-circuit voltage (VOC) degradation observed in thin-film vapor-liquid-solid (TF-VLS) grown p-type InP photovoltaic cells: bandgap narrowing and local shunting. First, a bandgap (Eg) narrowing effect is hypothesized, based on the surface inhomogeneity of VLS InP captured by the photoluminescence (PL) image. The PL data was used to estimate a spatially-resolved active VOC across surface of the InP sample. Combining this data with the effective Jsc allowed an assessment of the I-V characteristics of individual unit cells. Next, an H-SPICE diode compact model was utilized to reproduce the I-V characteristics of the whole sample. We find a good fit to the I-V performance of TF-VLS grown InP solar cell. Second, a local shunting effect was also considered as an alternative explanation of the VOC degradation effect. Again, PL image data was used, and small local shunt resistance was added in arbitrary elementary unit cells to represent certain dark spots seen in the PL image and dictate the VOC degradation occurred in the sample.

  12. In vivo Evaluation of Human Embryonic Stem Cells Isolated by 57-C11 Monoclonal Antibody

    PubMed Central

    Kim, Won-Tae; Lee, Hyun Min; Kim, Min Kyu; Choi, Hong Seo; Ryu, Chun Jeih

    2016-01-01

    Background The normal cells derived from human embryonic stem cells (hESCs) are regarded as substitutes for damaged or dysfunctional adult cells. However, tumorigenicity of hESCs remains a major challenge in clinical application of hESC-derived cell transplantation. Previously, we generated monoclonal antibody (MAb) 57-C11 specific to the surface molecule on undifferentiated hESCs. The aim of this study is to prove whether 57-C11-positive hESCs are pluripotent and tumorigenic in immunodeficient mice. Methods Undifferentiated hESCs were mixed with retinoic acid (RA)-differentiated hESCs at different ratios prior to 57-C11-mediated separation. To isolate 57-C11-positive hESCs from the mixture, biotinylated 57-C11 and streptavidin-coated magnetic beads were added to the mixture. Unbound 57-C11-negative hESCs were first isolated after applying magnet to the cell mixture, and 57-C11-bound hESCs were then released from the magnetic beads. In order to measure the efficiency of separation, 57-C11-positive or -negative hESCs were counted after isolation. To evaluate the efficiency of teratoma formation in vivo, 57-C11-positive or negative cells were further injected into left and right, respectively, testes of nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Results Approximately 77~100% of undifferentiated hESCs were isolated after applying 57-C11-coated magnetic beads to the mixed cell populations. Importantly, teratomas were not observed in NOD/SCID mice after the injection of isolated 57-C11-negative hESCs, whereas teratomas were observed with 57-C11-positive hESCs. Conclusion 57-C11-positive hESCs are pluripotent and tumorigenic. The combination of 57-C11 and magnetic beads will be useful to eliminate remaining undifferentiated hESCs for the safe cell transplantation. PMID:27871153

  13. "So, what is an embryo?" A comparative study of the views of those asked to donate embryos for hESC research in the UK and Switzerland.

    PubMed

    Haimes, Erica; Porz, Rouven; Scully, Jackie; Rehmann-Sutter, Christoph

    2008-06-01

    The moral status of the human embryo has gained much attention in debates over the acceptability, or otherwise, of human embryonic stem cell research. Far less attention has been paid to the suppliers of those embryos: people who have undergone IVF treatment to produce embryos to assist them to have a baby. It is sociologically and ethically important to understand their views and experiences of being asked to donate embryos for research if we are to fully understand the wider social and regulatory aspects of hESC science. This paper reports on parallel studies investigating these issues in the UK and in Switzerland. The studies reveal the inextricable entangling of the social and moral status of embryos. Since donors participate in different discursive domains and contexts (public, clinic, family) that shape their perception of "what" an embryo is, their views of embryos embody conflicting ideas and ambivalences.

  14. Electrical properties of dog tracheal epithelial cells grown in monolayer culture.

    PubMed

    Coleman, D L; Tuet, I K; Widdicombe, J H

    1984-03-01

    Epithelial cells from dog trachea, when grown in tissue culture, formed confluent monolayers 5-6 days after plating. After 8-10 days, domes [mean diam 356 +/- (SE) 53 micron] appeared in monolayers grown in collagen-coated flasks. When grown on polycarbonate filters coated with collagen, a detectable resistance (greater than 5 omega X cm2) and transepithelial potential difference (PD) (greater than 0.1 mV) developed 6 days after plating and increased to approximately 15 omega X cm2 and 15 mV at 10 days. Serosal ouabain (10(-4) M) abolished PD and short-circuit current (Isc). Luminal ouabain had no effect. Luminal amiloride (10(-4) M) and serosal bumetanide (10(-4) M) each decreased PD and Isc. However, a combination of both of these drugs did not abolish Isc. Isoproterenol (10(-5) M), dibutyryl adenosine 3',5'-cyclic monophosphate (10(-3) M), vasoactive intestinal peptide (10(-7) M), prostaglandin (PG) E2 (10(-5) M), PGF2 alpha (10(-5) M), and bradykinin (10(-5) M) each increased PD and Isc. Thus these monolayer cultures maintain electrical properties resembling those of the original tissue. This preparation may prove useful for the study of water and ion transport by airway epithelia.

  15. Assessing individual radial junction solar cells over millions on VLS-grown silicon nanowires

    NASA Astrophysics Data System (ADS)

    Yu, Linwei; Rigutti, Lorenzo; Tchernycheva, Maria; Misra, Soumyadeep; Foldyna, Martin; Picardi, Gennaro; Cabarrocas, Pere Roca i.

    2013-07-01

    Silicon nanowires (SiNWs) grown on low-cost substrates provide an ideal framework for the monolithic fabrication of radial junction photovoltaics. However, the quality of junction formation over a random matrix of SiNWs, fabricated via a vapor-liquid-solid (VLS) mechanism, has never been assessed in a realistic context. To address this, we probe the current response of individual radial junction solar cells under electron-beam and optical-beam excitations. Excellent current generation from the radial junction units, compared to their planar counterparts, has been recorded, indicating a high junction quality and effective doping in the ultra-thin SiNWs with diameters thinner than 20 nm. Interestingly, we found that the formation of radial junctions by plasma deposition can be quite robust against geometrical disorder and even the crossings of neighboring cell units. These results provide a strong support to the feasibility of building high-quality radial junction solar cells over high-throughput VLS-grown SiNWs on low-cost substrates.

  16. Assessing individual radial junction solar cells over millions on VLS-grown silicon nanowires.

    PubMed

    Yu, Linwei; Rigutti, Lorenzo; Tchernycheva, Maria; Misra, Soumyadeep; Foldyna, Martin; Picardi, Gennaro; Roca i Cabarrocas, Pere

    2013-07-12

    Silicon nanowires (SiNWs) grown on low-cost substrates provide an ideal framework for the monolithic fabrication of radial junction photovoltaics. However, the quality of junction formation over a random matrix of SiNWs, fabricated via a vapor-liquid-solid (VLS) mechanism, has never been assessed in a realistic context. To address this, we probe the current response of individual radial junction solar cells under electron-beam and optical-beam excitations. Excellent current generation from the radial junction units, compared to their planar counterparts, has been recorded, indicating a high junction quality and effective doping in the ultra-thin SiNWs with diameters thinner than 20 nm. Interestingly, we found that the formation of radial junctions by plasma deposition can be quite robust against geometrical disorder and even the crossings of neighboring cell units. These results provide a strong support to the feasibility of building high-quality radial junction solar cells over high-throughput VLS-grown SiNWs on low-cost substrates.

  17. Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity.

    PubMed

    Vilariño-Feltrer, G; Martínez-Ramos, C; Monleón-de-la-Fuente, A; Vallés-Lluch, A; Moratal, D; Barcia Albacar, J A; Monleón Pradas, M

    2016-01-01

    Cell transplantation therapies in the nervous system are frequently hampered by glial scarring and cell drain from the damaged site, among others. To improve this situation, new biomaterials may be of help. Here, novel single-channel tubular conduits based on hyaluronic acid (HA) with and without poly-l-lactide acid fibers in their lumen were fabricated. Rat Schwann cells were seeded within the conduits and cultured for 10days. The conduits possessed a three-layered porous structure that impeded the leakage of the cells seeded in their interior and made them impervious to cell invasion from the exterior, while allowing free transport of nutrients and other molecules needed for cell survival. The channel's surface acted as a template for the formation of a cylindrical sheath-like tapestry of Schwann cells continuously spanning the whole length of the lumen. Schwann-cell tubes having a diameter of around 0.5mm and variable lengths can thus be generated. This structure is not found in nature and represents a truly engineered tissue, the outcome of the specific cell-material interactions. The conduits might be useful to sustain and protect cells for transplantation, and the biohybrids here described, together with neuronal precursors, might be of help in building bridges across significant distances in the central and peripheral nervous system. The paper entitled "Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity" reports on the development of a novel tubular scaffold and on how this scaffold acts on Schwann cells seeded in its interior as a template to produce macroscopic hollow continuous cylinders of tightly joined Schwann cells. This cellular structure is not found in nature and represents a truly engineered novel tissue, which obtains as a consequence of the specific cell-material interactions within the scaffold. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Identification of genes differentially expressed in V79 cells grown as multicell spheroids.

    PubMed

    Oloumi, A; Lam, W; Banáth, J P; Olive, P L

    2002-06-01

    Growth of Chinese hamster V79 cells as multicell spheroids leads to an increase in resistance to killing by ionizing radiation and etoposide. Differential display was used to identify changes in gene expression that occur when cells are grown as spheroids. Differential display was performed using exponentially growing Chinese hamster V79 cells and the outer cell layer of V79 spheroids. Using six different pairs of primers, 20 altered bands were selected. Eight genes, confirmed using reverse Northerns, showed a match in a GenBank search. Antibodies against a calcium-binding protein, mts1, confirmed differential expression of this protein. Intracellular free calcium levels were measured using fluo-3 fluorescence, and the effect of a calcium-binding agent on etoposide resistance was examined using the comet assay. Genes upregulated in the outer cell layer of spheroids relative to monolayers included: (1) mts1 (S100A4), a calcium binding protein implicated in proliferation, metastasis, cell adhesion, and angiogenesis; (2) cytochrome c oxidase II; (3) B-ind1, a mediator of Rac-1 signaling; (4) TRAM, an endoplasmic reticulum protein. Genes downregulated in spheroids were: (5) phosphoglycerate kinase; (6) ARL-3, a ras-related GTP binding protein; (7) MHC class III complement 4A; and (8) 2,4-dienoyl-CoA. Immunohistochemistry confirmed overexpression of mts1 and another calcium-binding protein, calreticulin, in V79 outer spheroid cells relative to monolayers. C6 rat glioma and SiHa human cervical carcinoma cells that demonstrate a contact effect also showed upregulation of mts1 or calreticulin, while WiDr colon carcinoma cells that lack contact resistance showed no change in expression of either calcium binding protein. Intracellular free calcium levels were found to be almost two times lower in the outer cells of V79 spheroids compared to monolayers. V79 monolayer and outer spheroid cells treated with the calcium chelating agent BAPTA-AM showed a similar level of DNA

  19. Human norovirus infection of caco-2 cells grown as a three-dimensional tissue structure.

    PubMed

    Straub, Timothy M; Bartholomew, Rachel A; Valdez, Catherine O; Valentine, Nancy B; Dohnalkova, Alice; Ozanich, Richard M; Bruckner-Lea, Cynthia J; Call, Douglas R

    2011-06-01

    Human norovirus (hNoV) infectivity was studied using a three-dimensional model of large intestinal epithelium. Large intestine Caco-2 cells were grown in rotating wall vessel bioreactors for 18-21 days at 37 degrees C and then transferred to 24-well tissue culture plates where they were infected with GI.1 and GII.4 human noroviruses collected from human challenge trials and various outbreak settings, respectively. Compared with uninfected cells, transmission micrographs of norovirus-infected cells displayed evidence of shortening or total loss of apical microvilli, and vacuolization. Quantitative reverse transcription real-time PCR (qRT-PCR) indicated an approximate 2-3 log10 increase in viral RNA copies for the infected cells. A passage experiment examined both the ability for continued viral RNA and viral antigen detection. In the passaged samples 1.01x10(6) copies ml(-1) were detected by qRT-PCR. Immune electron microscopy using primary antibody to hNoV GI.1 capsids in conjunction with 6 nm gold-labelled secondary antibodies was performed on crude cellular lysates. Localization of antibody was observed in infected but not for uninfected cells. Our present findings, coupled with earlier work with the three-dimensional small intestinal INT407 model, demonstrate the utility of 3-D cell culture methods to develop infectivity assays for enteric viruses that do not readily infect mammalian cell cultures.

  20. Proliferation and Differentiation Potential of Human Adipose-Derived Stem Cells Grown on Chitosan Hydrogel

    PubMed Central

    Debnath, Tanya; Ghosh, Sutapa; Potlapuvu, Usha Shalini; Kona, Lakshmi; Kamaraju, Suguna Ratnakar; Sarkar, Suprabhat; Gaddam, Sumanlatha; Chelluri, Lakshmi Kiran

    2015-01-01

    Applied tissue engineering in regenerative medicine warrants our enhanced understanding of the biomaterials and its function. The aim of this study was to evaluate the proliferation and differentiation potential of human adipose-derived stem cells (hADSCs) grown on chitosan hydrogel. The stability of this hydrogel is pH-dependent and its swelling property is pivotal in providing a favorable matrix for cell growth. The study utilized an economical method of cross linking the chitosan with 0.5% glutaraldehyde. Following the isolation of hADSCs from omentum tissue, these cells were cultured and characterized on chitosan hydrogel. Subsequent assays that were performed included JC-1 staining for the mitochondrial integrity as a surrogate marker for viability, cell proliferation and growth kinetics by MTT assay, lineage specific differentiation under two-dimensional culture conditions. Confocal imaging, scanning electron microscopy (SEM), and flow cytometry were used to evaluate these assays. The study revealed that chitosan hydrogel promotes cell proliferation coupled with > 90% cell viability. Cytotoxicity assays demonstrated safety profile. Furthermore, glutaraldehyde cross linked chitosan showed < 5% cytotoxicity, thus serving as a scaffold and facilitating the expansion and differentiation of hADSCs across endoderm, ectoderm and mesoderm lineages. Additional functionalities can be added to this hydrogel, particularly those that regulate stem cell fate. PMID:25746846

  1. Rabies veterinary virus vaccine produced in BHK-21 cells grown on microcarriers in a bioreactor.

    PubMed

    Gallegos Gallegos, R M; Espinosa Larios, E L; Ramos Ramírez, L; Kretschmer Schmid, R; Aguilar Setién, A

    1995-01-01

    BHK-21 cells were grown in microcarriers in the CELLIGEN CL 50 bioreactor to produce a stock of rabies veterinary virus vaccine PV (Pasteur virus) strain. Perfusion mode operation of this bioreactor produced between two- and fourfold larger yields (cells/ml) than traditional stationary cell culture systems (i.e., Blake, and Roller bottles or cell factory multitrays). The method employed harvested 281 of rabies virus in 200 h (infectivity titer 0.6 +/- 1.4 x 10(7) LD50 per ml) in a single operation. The risk of contamination is thus reduced when compared with traditional stationary methods which, in order to obtain the same amount of virus, would require the operation of 285 Blake bottles, or 143 Roller bottles, or 15 Cell Factory multitrays (10 trays). By perfusion mode operation of the bioreactor, 89% of the cell culture medium was recovered as vaccinal virus, which contrasts with the yield of only 50-59% using traditional cell culture systems. On the other hand, only 925 ml of fetal serum was required to obtain the 281 of rabies virus harvest as compared to the 3420 ml required by traditional methods.

  2. Characterization of Epitaxial Film Silicon Solar Cells Grown on Seeded Display Glass: Preprint

    SciTech Connect

    Young, D. L.; Grover, S.; Teplin, C.; Stradins, P.; LaSalvia, V.; Chuang, T. K.; Couillard, J. G.; Branz, H. M.

    2012-06-01

    We report characterizations of epitaxial film crystal silicon (c-Si) solar cells with open-circuit voltages (Voc) above 560 mV. The 2-um absorber cells are grown by low-temperature (<750 degrees C) hot-wire CVD (HWCVD) on Corning EAGLE XG display glass coated with a layer-transferred (LT) Si seed. The high Voc is a result of low-defect epitaxial Si (epi-Si) growth and effective hydrogen passivation of defects. The quality of HWCVD epitaxial growth on seeded glass substrates depends on the crystallographic quality of the seed and the morphology of the epitaxial growth surface. Heterojunction devices consist of glass/c-Si LT seed/ epi n+ Si:P/epi n- Si:P/intrinsic a-Si:H/p+ a-Si:H/ITO. Similar devices grown on electronically 'dead' n+ wafers have given Voc {approx}630 mV and {approx}8% efficiency with no light trapping features. Here we study the effects of the seed surface polish on epi-Si quality, how hydrogenation influences the device character, and the dominant junction transport physics.

  3. Pigments for natural dye-sensitized solar cells from in vitro grown shoot cultures

    NASA Astrophysics Data System (ADS)

    Di Bari, Chiara; Forni, Cinzia; Di Carlo, Aldo; Barrajón-Catalán, Enrique; Micol, Vicente; Teoli, Federico; Nota, Paolo; Matteocci, Fabio; Frattarelli, Andrea; Caboni, Emilia; Lucioli, Simona

    2017-04-01

    In vitro grown shoots cultures (Prunus salicina × Prunus persica), elicited by methyl jasmonate (MJ), are reported here for the first time to prepare a natural dye for dye-sensitized solar cells (DSSC). Redox properties of the dye, its photostability, and light absorption properties suggested it as a candidate as natural photosensitizers for TiO2 photoelectrodes. Redox properties of the dye influence the DSSC production of photocurrent, thus three antioxidant assays were performed in order to characterize the antioxidant potential of this dye. The dye exhibited a high antioxidant activity in all the assays performed. Photostability assay revealed that the dye was quite stable to light. The power conversion efficiency that we obtained (0.53%) was comparable to the data by other authors with anthocyanins-based dyes from in vivo grown plants. Finally, we compared the dye with the partially purified one as photosensitizer in DSSC. The results indicated that the raw pigment from in vitro shoot cultures of P. salicina × P. persica elicited with MJ can be proposed without the needing of any other chemicals, thermal or purification process, or pH adjustments, as a dye for natural sensitized solar cells.

  4. Mass spectrometry-based proteomic analysis of the matrix microenvironment in pluripotent stem cell culture.

    PubMed

    Hughes, Chris; Radan, Lida; Chang, Wing Y; Stanford, William L; Betts, Dean H; Postovit, Lynne-Marie; Lajoie, Gilles A

    2012-12-01

    The cellular microenvironment comprises soluble factors, support cells, and components of the extracellular matrix (ECM) that combine to regulate cellular behavior. Pluripotent stem cells utilize interactions between support cells and soluble factors in the microenvironment to assist in the maintenance of self-renewal and the process of differentiation. However, the ECM also plays a significant role in shaping the behavior of human pluripotent stem cells, including embryonic stem cells (hESCs) and induced pluripotent stem cells. Moreover, it has recently been observed that deposited factors in a hESC-conditioned matrix have the potential to contribute to the reprogramming of metastatic melanoma cells. Therefore, the ECM component of the pluripotent stem cell microenvironment necessitates further analysis. In this study we first compared the self-renewal and differentiation properties of hESCs grown on Matrigel™ pre-conditioned by hESCs to those on unconditioned Matrigel™. We determined that culture on conditioned Matrigel™ prevents differentiation when supportive growth factors are removed from the culture medium. To investigate and identify factors potentially responsible for this beneficial effect, we performed a defined SILAC MS-based proteomics screen of hESC-conditioned Matrigel™. From this proteomics screen, we identified over 80 extracellular proteins in matrix conditioned by hESCs and induced pluripotent stem cells. These included matrix-associated factors that participate in key stem cell pluripotency regulatory pathways, such as Nodal/Activin and canonical Wnt signaling. This work represents the first investigation of stem-cell-derived matrices from human pluripotent stem cells using a defined SILAC MS-based proteomics approach.

  5. Human embryonic stem cells and gene therapy.

    PubMed

    Strulovici, Yael; Leopold, Philip L; O'Connor, Timothy P; Pergolizzi, Robert G; Crystal, Ronald G

    2007-05-01

    Human embryonic stem cells (hESCs) theoretically represent an unlimited supply of normal differentiated cells to engineer diseased tissues to regain normal function. However, before hESCs can be useful as human therapeutics, technologies must be developed to provide them with the specific signals required to differentiate in a controlled fashion, to regulate and/or shut down the growth of hESCs and their progeny once they have been transferred to the recipient, and to circumvent the recognition of non-autologous hESC-derived cells as foreign. In the context that gene therapy technologies represent strategies to deliver biological signals to address all of these challenges, this review sets out a framework for combined gene transfer/hESC therapies. We discuss how hESCs are derived, characterized, and differentiated into specific cell lineages, and we summarize the characteristics of the 500 hESC lines reported to date. The successes and failures of gene transfer to hESCs are reviewed for both non-viral and viral vectors, as are the challenges to successful use of gene transfer in developing hESC therapy. We also consider gene transfer as a means of facilitating growth and isolation of genetically modified hESCs and as a mechanism for mitigating adverse effects associated with administration of hESCs or their derivatives. Finally, we evaluate the challenges that are likely to be encountered in translating the promise of hESCs to the clinic.

  6. Electron-cytochemical study of Ca2+ in cotyledon cells of soybean seedlings grown in microgravity

    NASA Technical Reports Server (NTRS)

    Nedukha, O.; Brown, C. S.; Kordyum, E.; Piastuch, W. C.; Guikema, J. A. (Principal Investigator)

    1999-01-01

    Microgravity and horizontal clinorotation are known to cause the rearrangement of the structural-functional organization of plant cells, leading to accelerated aging. Altered gravity conditions resulted in an increase in the droplets volume in cells and the destruction of chloroplast structure in Arabidopsis thaliana plants, an enhancement of cytosolic autophagaous processes, an increase in the respiration rate and a greater number of multimolecular forms of succinate- and malate dehydrogenases in cells of the Funaria hygrometrica protonema and Chlorella vulgaris, and changes in calcium balance of cells. Because ethylene is known to be involved in cell aging and microgravity appears to speed the process, and because soybean seedlings grown in space produce higher ethylene levels we asked: 1) does an acceleration of soybean cotyledon cell development and aging occur in microgravity? 2) what roles do Ca2+ ions and the enhanced ethylene level play in these events? Therefore, the goal of our investigation was to examine of the interaction of microgravity and ethylene on the localization of Ca2+ in cotyledon mesophyll of soybean seedlings.

  7. Electron-cytochemical study of Ca2+ in cotyledon cells of soybean seedlings grown in microgravity.

    PubMed

    Nedukha, O; Brown, C S; Kordyum, E; Piastuch, W C

    1999-07-01

    Microgravity and horizontal clinorotation are known to cause the rearrangement of the structural-functional organization of plant cells, leading to accelerated aging. Altered gravity conditions resulted in an increase in the droplets volume in cells and the destruction of chloroplast structure in Arabidopsis thaliana plants, an enhancement of cytosolic autophagaous processes, an increase in the respiration rate and a greater number of multimolecular forms of succinate- and malate dehydrogenases in cells of the Funaria hygrometrica protonema and Chlorella vulgaris, and changes in calcium balance of cells. Because ethylene is known to be involved in cell aging and microgravity appears to speed the process, and because soybean seedlings grown in space produce higher ethylene levels we asked: 1) does an acceleration of soybean cotyledon cell development and aging occur in microgravity? 2) what roles do Ca2+ ions and the enhanced ethylene level play in these events? Therefore, the goal of our investigation was to examine of the interaction of microgravity and ethylene on the localization of Ca2+ in cotyledon mesophyll of soybean seedlings.

  8. Stimulation of Cell Elongation by Tetraploidy in Hypocotyls of Dark-Grown Arabidopsis Seedlings.

    PubMed

    Narukawa, Hideki; Yokoyama, Ryusuke; Komaki, Shinichiro; Sugimoto, Keiko; Nishitani, Kazuhiko

    2015-01-01

    Plant size is largely determined by the size of individual cells. A number of studies showed a link between ploidy and cell size in land plants, but this link remains controversial. In this study, post-germination growth, which occurs entirely by cell elongation, was examined in diploid and autotetraploid hypocotyls of Arabidopsis thaliana (L.) Heynh. Final hypocotyl length was longer in tetraploid plants than in diploid plants, particularly when seedlings were grown in the dark. The longer hypocotyl in the tetraploid seedlings developed as a result of enhanced cell elongation rather than by an increase in cell number. DNA microarray analysis showed that genes involved in the transport of cuticle precursors were downregulated in a defined region of the tetraploid hypocotyl when compared to the diploid hypocotyl. Cuticle permeability, as assessed by toluidine-blue staining, and cuticular structure, as visualized by electron microscopy, were altered in tetraploid plants. Taken together, these data indicate that promotion of cell elongation is responsible for ploidy-dependent size determination in the Arabidopsis hypocotyl, and that this process is directly or indirectly related to cuticular function.

  9. Electron-cytochemical study of Ca2+ in cotyledon cells of soybean seedlings grown in microgravity

    NASA Technical Reports Server (NTRS)

    Nedukha, O.; Brown, C. S.; Kordyum, E.; Piastuch, W. C.; Guikema, J. A. (Principal Investigator)

    1999-01-01

    Microgravity and horizontal clinorotation are known to cause the rearrangement of the structural-functional organization of plant cells, leading to accelerated aging. Altered gravity conditions resulted in an increase in the droplets volume in cells and the destruction of chloroplast structure in Arabidopsis thaliana plants, an enhancement of cytosolic autophagaous processes, an increase in the respiration rate and a greater number of multimolecular forms of succinate- and malate dehydrogenases in cells of the Funaria hygrometrica protonema and Chlorella vulgaris, and changes in calcium balance of cells. Because ethylene is known to be involved in cell aging and microgravity appears to speed the process, and because soybean seedlings grown in space produce higher ethylene levels we asked: 1) does an acceleration of soybean cotyledon cell development and aging occur in microgravity? 2) what roles do Ca2+ ions and the enhanced ethylene level play in these events? Therefore, the goal of our investigation was to examine of the interaction of microgravity and ethylene on the localization of Ca2+ in cotyledon mesophyll of soybean seedlings.

  10. Stimulation of Cell Elongation by Tetraploidy in Hypocotyls of Dark-Grown Arabidopsis Seedlings

    PubMed Central

    Narukawa, Hideki; Yokoyama, Ryusuke; Komaki, Shinichiro; Sugimoto, Keiko; Nishitani, Kazuhiko

    2015-01-01

    Plant size is largely determined by the size of individual cells. A number of studies showed a link between ploidy and cell size in land plants, but this link remains controversial. In this study, post-germination growth, which occurs entirely by cell elongation, was examined in diploid and autotetraploid hypocotyls of Arabidopsis thaliana (L.) Heynh. Final hypocotyl length was longer in tetraploid plants than in diploid plants, particularly when seedlings were grown in the dark. The longer hypocotyl in the tetraploid seedlings developed as a result of enhanced cell elongation rather than by an increase in cell number. DNA microarray analysis showed that genes involved in the transport of cuticle precursors were downregulated in a defined region of the tetraploid hypocotyl when compared to the diploid hypocotyl. Cuticle permeability, as assessed by toluidine-blue staining, and cuticular structure, as visualized by electron microscopy, were altered in tetraploid plants. Taken together, these data indicate that promotion of cell elongation is responsible for ploidy-dependent size determination in the Arabidopsis hypocotyl, and that this process is directly or indirectly related to cuticular function. PMID:26244498

  11. Quantitative analysis of cell walls of nutritionally variant streptococci grown under various growth conditions.

    PubMed Central

    van de Rijn, I

    1985-01-01

    Strains of nutritionally variant streptococci are usually isolated from patients with subacute bacterial endocarditis. Only recently have these strains been subdivided into three serotypes; however, no group-specific antigen has been described. To understand the immunochemical basis for the serology of these microorganisms as well as set the groundwork for adherence studies, quantitative analysis of the cell walls of nutritionally variant streptococci was undertaken. The bacteria were grown in semisynthetic medium or pyridoxal-supplemented Todd-Hewitt broth and harvested during the exponential or stationary phase. Cell walls were isolated and analyzed for amino sugars, sugars, polyalcohols, amino acids, and phosphorus by gas chromatography, high-pressure liquid chromatography, or colorimetric assays. The peptidoglycans of the cell walls of the prototype strains from the three serotypes were representative of other streptococcal cell walls, including the presence of alanine as the possible cross-bridge. The composition of the peptidoglycan was similar for all three strains and included a decreased concentration of peptidoglycan in their cell walls during the stationary phase. Glucosamine, glucose, galactose, ribitol, and a small amount of rhamnose were found in each of the cell wall polysaccharides. Galactosamine was only found in serotype II and III cell walls and might be responsible for the previously described cross-reaction between these strains. The concentration of the other sugars and amino sugars varied in each of the cell wall preparations, depending on the growth conditions. Finally, all three strains expressed both ribitol and phosphorus in their cell walls, characteristic of the presence of a ribitol teichoic acid. Therefore the cell wall composition of the nutritionally variant streptococci varies depending on the growth conditions, and their composition appears similar to that of strains of Streptococcus mitis. PMID:4030093

  12. Differential Glioma-Associated Tumor Antigen Expression Profiles of Human Glioma Cells Grown in Hypoxia

    PubMed Central

    Ge, Lisheng; Cornforth, Andrew N.; Hoa, Neil T.; Delgado, Christina; Chiou, Shiun Kwei; Zhou, Yi Hong; Jadus, Martin R.

    2012-01-01

    Human U251 and D54 glioma cells were tested for expression of 25 glioma-associated tumor antigen precursor proteins (TAPP) under hypoxic (1% O2) or normoxic (21% O2) conditions. Hypoxic glioma cell lines increased their mRNA expression for nine TAPP (Aim2, Art-4, EphA2, EZH2, Fosl1, PTH-rP, Sox 11, Whsc2 and YKL-40), as assessed by quantitative reverse transcriptase real-time/polymerase chain reaction (qRT-PCR). Increased differences with three hypoxic-induced TAPP: EZH2, Whsc2 and YKL-40 were shown at the protein levels by fluorescent antibody staining and quantitative electrophoretic analysis. Two TAPP (MRP3 and Trp1) were down-regulated by hypoxia in glioma cell lines. Growing the glioma cells under hypoxia for 13 days, followed by returning them back to normoxic conditions for 7 days, and restored the original normoxic TAPP profile. Thus, hypoxia was an environmental factor that stimulated the transient expression of these antigens. Intracranial xenografts grown in nude mice derived from U251 cells that had been cultured under neurosphere stem cell conditions showed increased expression of Whsc2 or YKL-40, demonstrating that these in vitro properties of glioma also occur in vivo. Whsc2-specific cytotoxic T lymphocytes killed the hypoxic U251 glioma cells better than normoxic glioma cells. The antigens expressed by hypoxic tumor cells may be a better source of starting tumor material for loading dendritic cells for novel immunotherapy of glioma using tumor-associated antigens. PMID:22957023

  13. Differential glioma-associated tumor antigen expression profiles of human glioma cells grown in hypoxia.

    PubMed

    Ge, Lisheng; Cornforth, Andrew N; Hoa, Neil T; Delgado, Christina; Chiou, Shiun Kwei; Zhou, Yi Hong; Jadus, Martin R

    2012-01-01

    Human U251 and D54 glioma cells were tested for expression of 25 glioma-associated tumor antigen precursor proteins (TAPP) under hypoxic (1% O(2)) or normoxic (21% O(2)) conditions. Hypoxic glioma cell lines increased their mRNA expression for nine TAPP (Aim2, Art-4, EphA2, EZH2, Fosl1, PTH-rP, Sox 11, Whsc2 and YKL-40), as assessed by quantitative reverse transcriptase real-time/polymerase chain reaction (qRT-PCR). Increased differences with three hypoxic-induced TAPP: EZH2, Whsc2 and YKL-40 were shown at the protein levels by fluorescent antibody staining and quantitative electrophoretic analysis. Two TAPP (MRP3 and Trp1) were down-regulated by hypoxia in glioma cell lines. Growing the glioma cells under hypoxia for 13 days, followed by returning them back to normoxic conditions for 7 days, and restored the original normoxic TAPP profile. Thus, hypoxia was an environmental factor that stimulated the transient expression of these antigens. Intracranial xenografts grown in nude mice derived from U251 cells that had been cultured under neurosphere stem cell conditions showed increased expression of Whsc2 or YKL-40, demonstrating that these in vitro properties of glioma also occur in vivo. Whsc2-specific cytotoxic T lymphocytes killed the hypoxic U251 glioma cells better than normoxic glioma cells. The antigens expressed by hypoxic tumor cells may be a better source of starting tumor material for loading dendritic cells for novel immunotherapy of glioma using tumor-associated antigens.

  14. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space.

    PubMed

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi

    2015-01-01

    Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions.

  15. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space

    PubMed Central

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi

    2015-01-01

    Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions. PMID:26378793

  16. Enterotoxin production by Vibrio cholerae and Vibrio mimicus grown in continuous culture with microbial cell recycle.

    PubMed Central

    Spira, W M; Fedorka-Cray, P J

    1983-01-01

    We have examined the effect of complete cell recycle on the production of cholera toxin (CT) by Vibrio cholerae and CT-like toxin by Vibrio mimicus in continuous culture fermentations. Complete cell recycle was obtained by filtering culture fluids through Amicon hollow fibers with an exclusion limit of 100,000 daltons (H1P100-20) and returning the concentrated cell slurry to the fermentor. A single 1-liter laboratory fermentor system modified with this recycle loop was capable of producing over 20 liters of cell-free culture filtrate per day. Toxin production in this system was compared with yields obtained in traditional continuous cultures and in shake flask cultures. Yields of CT from V. cholerae 569B in the recycle fermentor were highest at the highest dilution rate employed (1.0 vol/vol per h). The use of complete cell recycle dramatically increased yields over those obtained in continuous culture and equaled those obtained in shake flasks. The concentration of CT in the filtrate was slightly less than half of that measured in culture fluids sampled at the same time. Similarly, V. mimicus 61892 grown in the presence of 50 micrograms of lincomycin per ml produced 280 ng of CT per ml in the recycle fermentor, compared with 210 ng/ml in shake flasks under optimal conditions. The sterile filtrate from this fermentation contained 110 ng/ml. PMID:6357081

  17. Label-free optical detection of cells grown in 3D silicon microstructures.

    PubMed

    Merlo, Sabina; Carpignano, Francesca; Silva, Gloria; Aredia, Francesca; Scovassi, A Ivana; Mazzini, Giuliano; Surdo, Salvatore; Barillaro, Giuseppe

    2013-08-21

    We demonstrate high aspect-ratio photonic crystals that could serve as three-dimensional (3D) microincubators for cell culture and also provide label-free optical detection of the cells. The investigated microstructures, fabricated by electrochemical micromachining of standard silicon wafers, consist of periodic arrays of silicon walls separated by narrow deeply etched air-gaps (50 μm high and 5 μm wide) and feature the typical spectral properties of photonic crystals in the wavelength range 1.0-1.7 μm: their spectral reflectivity is characterized by wavelength regions where reflectivity is high (photonic bandgaps), separated by narrow wavelength regions where reflectivity is very low. In this work, we show that the presence of cells, grown inside the gaps, strongly affects light propagation across the photonic crystal and, therefore, its spectral reflectivity. Exploiting a label-free optical detection method, based on a fiberoptic setup, we are able to probe the extension of cells adherent to the vertical silicon walls with a non-invasive direct testing. In particular, the intensity ratio at two wavelengths is the experimental parameter that can be well correlated to the cell spreading on the silicon wall inside the gaps.

  18. Xylem Development and Cell Wall Changes of Soybean Seedlings Grown in Space

    PubMed Central

    de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia

    2008-01-01

    Background and Aims Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Methods Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Key Results Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. Conclusions The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth. PMID:18252765

  19. Xylem development and cell wall changes of soybean seedlings grown in space.

    PubMed

    de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia

    2008-04-01

    Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth.

  20. Comparative development of SIRC rabbit corneal cells grown on polycarbonate- and polyester-based filters.

    PubMed

    Hutak, Christine M; Kavanagh, Marie E; Reddy, Indra K

    2002-01-01

    Statens Seruminstitut Rabbit Cornea (SIRC) cells were grown on sterile polycarbonate- and polyester-based filter inserts to evaluate the feasibility of substituting the polyester-based filter inserts for use in a previously developed permeability model. The two filter types were compared for differences in cellular growth rate and morphological changes following days 3, 7 and 10 in culture. There were no significant differences in the number of cell layers formed on any day examined. The numbers of cell layers formed with the polycarbonate-based filter inserts were 1.75 +/- 0.09, 2.53 +/- 0.14 and 2.93 +/- 0.16, for days 3, 7 and 10, respectively. The numbers of cell layers formed with the polyester-based filter inserts were 1.79 +/- 0.07, 2.23 +/- 0.11 and 2.90 +/- 0.13, for days 3, 7 and 10, respectively. The SIRC cells had a similar comparative morphology on each of the above days. Active cell growth was seen on each day with signs of maturation evident by day 7 in culture. The polyester-based filter inserts can be substituted in the previously established permeability assay without alteration of morphology or rate of growth, thus allowing confirmation of cell confluency prior to use in the permeability assay. It will also allow for photographic documentation of cell injury prior to recovery studies, without necessitating the preparation of extra samples for fixation at the time of initial injury. Future studies will be required to determine if there will be any alteration in the rate of permeability with a previously tested standard, before adoption of the new filter. Copyright 2002 S. Karger AG, Basel

  1. Development of GaInP Solar Cells Grown by Hydride Vapor Phase Epitaxy

    DOE PAGES

    Schulte, Kevin L.; Simon, John; Mangum, John; ...

    2017-04-30

    We demonstrate the growth of homojunction GaInP solar cells by dynamic hydride vapor phase epitaxy for the first time. Simple unpassivated n-on-p structures grown in an inverted configuration with gold back reflectors were analyzed. Short wavelength performance varied strongly with emitter thickness, since collection in the emitter was limited by the lack of surface passivation. Collection in the base increased strongly with decreasing doping density, in the range 1 x 1016 - 5 x 1017 cm-3. Optical modeling indicated that, in our best device, doped ~1 x 1016 cm-3, almost 94% of photons that passed through the emitter were collected.more » Modeling also indicated that the majority of collection occurs in the depletion region with this design, suggesting that nonradiative recombination there might limit device performance. In agreement with this observation, the experimental dark J-V curve exhibited an ideality factor near n = 2. Thus, limitation of deep level carrier traps in the material is a path to improved performance. Preliminary experiments indicate that a reduced V/III ratio, which potentially affects the density of these presumed traps, improves cell performance. With reduced V/III ratio, we demonstrate a ~13% efficient GaInP cell measured under the 1-sun AM1.5G spectrum. In conclusion, this cell had an antireflective coating, but no front surface passivation.« less

  2. Enhanced cardiomyogenic lineage differentiation of adult bone-marrow-derived stem cells grown on cardiogel.

    PubMed

    Sreejit, P; Verma, R S

    2013-09-01

    The extracellular matrix (ECM) and its components are known to promote growth and cellular differentiation in vitro. Cardiogel, a three-dimensional extracellular matrix derived from cardiac fibroblasts, is evaluated for its cardiomyogenic-differentiation-inducing potential on bone-marrow-derived stem cells (BMSC). BMSC from adult mice were grown on cardiogel and induced to differentiate into specific lineages that were validated by morphological, phenotypic and molecular assays. The data revealed that the cardiogel enhanced cardiomyogenic and adipogenic differentiation and relegated osteogenic differentiation following specific induction. More importantly, increased cardiomyogenic differentiation was also observed following BMSC growth on cardiogel without specific chemical (5-azacytidine) induction. This is the first report of an attempt to use cardiogel as a biomaterial on which to achieve cardiomyogenic differentiation of BMSC without chemical induction. Our study suggests that cardiogel is an efficient extracellular matrix that enhances the cardiomyogenic differentiation of BMSC and that it can therefore be used as a scaffold for cardiac tissue regeneration.

  3. Molecular imaging of human embryonic stem cells.

    PubMed

    Narsinh, Kazim H; Cao, Feng; Wu, Joseph C

    2009-01-01

    Human embryonic stem cells (hESCs) are a renewable source of differentiated cell types that may be employed in various tissue regeneration strategies. However, clinical implementation of cell transplantation therapy is hindered by legitimate concerns regarding the in vivo teratoma formation of undifferentiated hESCs and host immune reactions to allogenic cells. Investigating in vivo hESC behaviour and the ultimate feasibility of cell transplantation therapy necessitates the development of novel molecular imaging techniques to longitudinally monitor hESC localization, proliferation, and viability in living subjects. An innovative approach to harness the respective strengths of various imaging platforms is the creation and use of a fusion reporter construct composed of red fluorescent protein (RFP), firefly luciferase (fluc), and herpes simplex virus thymidine kinase (HSV-tk). The imaging modalities made available by use of this construct, including optical fluorescence, bioluminescence, and positron emission tomography (PET), mat be adapted to investigate a variety of physiological phenomena, including the spatio-temporal kinetics of hESC engraftment and proliferation in living subjects. This chapter describes the applications of reporter gene imaging to accelerate basic science research and clinical studies involving hESCs through (1) isolation of a homogenous hESC population, (2) noninvasive, longitudinal tracking of the location and proliferation of hESCs administered to a living subject, and (3) ablation of the hESC graft in the event of cellular misbehavior.

  4. Epoxidation of Short-Chain Alkenes by Resting-Cell Suspensions of Propane-Grown Bacteria

    PubMed Central

    Hou, Ching T.; Patel, Ramesh; Laskin, Allen I.; Barnabe, Nancy; Barist, Irene

    1983-01-01

    Sixteen new cultures of propane-utilizing bacteria were isolated from lake water from Warinanco Park, Linden, N.J. and from lake and soil samples from Bayway Refinery, Linden, N.J. In addition, 19 known cultures obtained from culture collections were also found to be able to grow on propane as the sole carbon and energy source. In addition to their ability to oxidize n-alkanes, resting-cell suspensions of both new cultures and known cultures grown on propane oxidize short-chain alkenes to their corresponding 1,2-epoxides. Among the substrate alkenes, propylene was oxidized at the highest rate. In contrast to the case with methylotrophic bacteria, the product epoxides are further metabolized. Propane and other gaseous n-alkanes inhibit the epoxidation of propylene. The optimum conditions for in vivo epoxidation are described. Results from inhibition studies indicate that a propane monooxygenase system catalyzes both the epoxidation and hydroxylation reactions. Experiments with cell-free extracts show that both hydroxylation and epoxidation activities are located in the soluble fraction obtained after 80,000 × g centrifugation. PMID:16346338

  5. Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires.

    PubMed

    Yu, Linwei; O'Donnell, Benedict; Foldyna, Martin; Roca i Cabarrocas, Pere

    2012-05-17

    Constructing radial junction hydrogenated amorphous silicon (a-Si:H) solar cells on top of silicon nanowires (SiNWs) represents a promising approach towards high performance and cost-effective thin film photovoltaics. We here develop an all-in situ strategy to grow SiNWs, via a vapour-liquid-solid (VLS) mechanism on top of ZnO-coated glass substrate, in a plasma-enhanced chemical vapour deposition (PECVD) reactor. Controlling the distribution of indium catalyst drops allows us to tailor the as-grown SiNW arrays into suitable size and density, which in turn results in both a sufficient light trapping effect and a suitable arrangement allowing for conformal coverage of SiNWs by subsequent a-Si:H layers. We then demonstrate the fabrication of radial junction solar cells and carry on a parametric study designed to shed light on the absorption and quantum efficiency response, as functions of the intrinsic a-Si:H layer thickness and the density of SiNWs. These results lay a solid foundation for future structural optimization and performance ramp-up of the radial junction thin film a-Si:H photovoltaics.

  6. Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Forrest, Stephen R.

    2009-09-01

    We demonstrate small molecule bulk heterojunction organic photovoltaic cells using oblique angle vacuum deposition. Obliquely deposited donor chloroaluminum phthalocyanine (ClAlPc) films on indium tin oxide have surface feature sizes of ˜30 nm, resulting in ClAlPc/C60 donor-acceptor heterojunctions (HJs) with approximately twice the interface area of HJs grown at normal incidence. This results in nearly twice the external quantum efficiency in the ClAlPc absorption band compared with analogous, planar HJs. The efficiency increase is attributed to the increased surface area presented by the donor-acceptor junction to the incident illumination by ClAlPc protrusions lying obliquely to the substrate plane formed during deposition. The power conversion efficiency improves from (2.0±0.1)% to (2.8±0.1)% under 1 sun, AM 1.5G simulated solar illumination. Similarly, the power efficiency of copper phthalocyanine/C60 organic photovoltaic cells is increased from (1.3±0.1)% to (1.7±0.1)%.

  7. Berry extracts exert different antiproliferative effects against cervical and colon cancer cells grown in vitro.

    PubMed

    McDougall, Gordon J; Ross, Heather A; Ikeji, Magnus; Stewart, Derek

    2008-05-14

    Polyphenol-rich berry extracts were screened for their antiproliferative effectiveness using human cervical cancer (HeLa) cells grown in microtiter plates. Rowan berry, raspberry, lingonberry, cloudberry, arctic bramble, and strawberry extracts were effective but blueberry, sea buckthorn, and pomegranate extracts were considerably less effective. The most effective extracts (strawberry > arctic bramble > cloudberry > lingonberry) gave EC 50 values in the range of 25-40 microg/(mL of phenols). These extracts were also effective against human colon cancer (CaCo-2) cells, which were generally more sensitive at low concentrations but conversely less sensitive at higher concentrations. The strawberry, cloudberry, arctic bramble, and the raspberry extracts share common polyphenol constituents, especially the ellagitannins, which have been shown to be effective antiproliferative agents. However, the components underlying the effectiveness of the lingonberry extracts are not known. The lingonberry extracts were fractionated into anthocyanin-rich and tannin-rich fractions by chromatography on Sephadex LH-20. The anthocyanin-rich fraction was considerably less effective than the original extract, whereas the antiproliferative activity was retained in the tannin-rich fraction. The polyphenolic composition of the lingonberry extract was assessed by liquid chromatography-mass spectrometry and was similar to previous reports. The tannin-rich fraction was almost entirely composed of procyanidins of linkage type A and B. Therefore, the antiproliferative activity of lingonberry was caused predominantly by procyanidins.

  8. GM-CSF Grown Bone Marrow Derived Cells Are Composed of Phenotypically Different Dendritic Cells and Macrophages

    PubMed Central

    Na, Yi Rang; Jung, Daun; Gu, Gyo Jeong; Seok, Seung Hyeok

    2016-01-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) has a role in inducing emergency hematopoiesis upon exposure to inflammatory stimuli. Although GM-CSF generated murine bone marrow derived cells have been widely used as macrophages or dendritic cells in research, the exact characteristics of each cell population have not yet been defined. Here we discriminated GM-CSF grown bone marrow derived macrophages (GM-BMMs) from dendritic cells (GM-BMDCs) in several criteria. After C57BL/6J mice bone marrow cell culture for 7 days with GM-CSF supplementation, two main populations were observed in the attached cells based on MHCII and F4/80 marker expressions. GM-BMMs had MHCIIlowF4/80high as well as CD11c+CD11bhighCD80−CD64+MerTK+ phenotypes. In contrast, GM-BMDCs had MHCIIhighF4/80low and CD11chighCD8α− CD11b+CD80+CD64−MerTKlow phenotypes. Interestingly, the GM-BMM population increased but GM-BMDCs decreased in a GM-CSF dose-dependent manner. Functionally, GM-BMMs showed extremely high phagocytic abilities and produced higher IL-10 upon LPS stimulation. GM-BMDCs, however, could not phagocytose as well, but were efficient at producing TNFα, IL-1β, IL-12p70 and IL-6 as well as inducing T cell proliferation. Finally, whole transcriptome analysis revealed that GM-BMMs and GM-BMDCs are overlap with in vivo resident macrophages and dendritic cells, respectively. Taken together, our study shows the heterogeneicity of GM-CSF derived cell populations, and specifically characterizes GM-CSF derived macrophages compared to dendritic cells. PMID:27788572

  9. GaSb thermophotovoltaic cells grown on GaAs by molecular beam epitaxy using interfacial misfit arrays

    SciTech Connect

    Juang, Bor-Chau Laghumavarapu, Ramesh B.; Foggo, Brandon J.; Lin, Andrew; Simmonds, Paul J.; Liang, Baolai; Huffaker, Diana L.

    2015-03-16

    There exists a long-term need for foreign substrates on which to grow GaSb-based optoelectronic devices. We address this need by using interfacial misfit arrays to grow GaSb-based thermophotovoltaic cells directly on GaAs (001) substrates and demonstrate promising performance. We compare these cells to control devices grown on GaSb substrates to assess device properties and material quality. The room temperature dark current densities show similar characteristics for both cells on GaAs and on GaSb. Under solar simulation the cells on GaAs exhibit an open-circuit voltage of 0.121 V and a short-circuit current density of 15.5 mA/cm{sup 2}. In addition, the cells on GaAs substrates maintain 10% difference in spectral response to those of the control cells over a large range of wavelengths. While the cells on GaSb substrates in general offer better performance than the cells on GaAs substrates, the cost-savings and scalability offered by GaAs substrates could potentially outweigh the reduction in performance. By further optimizing GaSb buffer growth on GaAs substrates, Sb-based compound semiconductors grown on GaAs substrates with similar performance to devices grown directly on GaSb substrates could be realized.

  10. B-cell receptor-associated protein 31 regulates human embryonic stem cell adhesion, stemness, and survival via control of epithelial cell adhesion molecule.

    PubMed

    Kim, Won-Tae; Seo Choi, Hong; Min Lee, Hyun; Jang, Young-Joo; Ryu, Chun Jeih

    2014-10-01

    B-Cell receptor-associated protein 31 (BAP31) regulates the export of secreted membrane proteins from the endoplasmic reticulum (ER) to the downstream secretory pathway. Previously, we generated a monoclonal antibody 297-D4 against the surface molecule on undifferentiated human embryonic stem cells (hESCs). Here, we found that 297-D4 antigen was localized to pluripotent hESCs and downregulated during early differentiation of hESCs and identified that the antigen target of 297-D4 was BAP31 on the hESC-surface. To investigate the functional role of BAP31 in hESCs, BAP31 expression was knocked down by small interfering RNA. BAP31 depletion impaired hESC self-renewal and pluripotency and drove hESC differentiation into multicell lineages. BAP31 depletion hindered hESC proliferation by arresting cell cycle at G0/G1 phase and inducing caspase-independent cell death. Interestingly, BAP31 depletion reduced hESC adhesion to extracellular matrix (ECM). Analysis of cell surface molecules showed decreased expression of epithelial cell adhesion molecule (EpCAM) in BAP31-depleted hESCs, while ectopic expression of BAP31 elevated the expression of EpCAM. EpCAM depletion also reduced hESC adhesion to ECM, arrested cell cycle at G0/G1 phase and induced cell death, producing similar effects to those of BAP31 depletion. BAP31 and EpCAM were physically associated and colocalized at the ER and cell surface. Both BAP31 and EpCAM depletion decreased cyclin D1 and E expression and suppressed PI3K/Akt signaling, suggesting that BAP31 regulates hESC stemness and survival via control of EpCAM expression. These findings provide, for the first time, mechanistic insights into how BAP31 regulates hESC stemness and survival via control of EpCAM expression.

  11. ENDIVE PLANTLETS FROM FREELY SUSPENDED CELLS AND CELL GROUPS GROWN IN VITRO.

    PubMed

    VASIL, I K; HILDEBRANDT, A C; RIKER, A J

    1964-10-02

    Callus tissue derived from mature embryos of the endive, Cichorium endivia Linn. (family Compositae) grows and develops chlorophyll on a completely defined nutrient medium. The tissue breaks up into a thick suspentsion of cells and cell groups in a liquid medium kept in a flask on a shaker. Gradually, many small round masses of tissue, designated here as embryoids, are formed; these become differentiated and organized to form numnerous small plantlets having typical curled and fringed green leaves and roots.

  12. Modeling neural crest induction, melanocyte specification and disease-related pigmentation defects in hESCs and patient-specific iPSCs

    PubMed Central

    Mica, Yvonne; Lee, Gabsang; Chambers, Stuart M.; Tomishima, Mark; Studer, Lorenz

    2013-01-01

    SUMMARY Melanocytes are pigment-producing cells of neural crest origin responsible for protecting the skin against UV-irradiation. Pluripotent stem cell technology offers a novel approach for studying human melanocyte development and disease. Here we report that timed exposure to activators of WNT, BMP and EDN3 signaling triggers the sequential induction of neural crest and melanocyte precursor fates under dual-SMAD inhibition conditions. Using a SOX10::GFP hESC reporter line, we demonstrate that the temporal onset of WNT activation is particularly critical for human neural crest induction. Subsequent maturation of hESC-derived melanocytes yields pure populations matching the molecular and functional properties of adult melanocytes. Melanocytes from Hermansky-Pudlak and Chediak-Higashi Syndrome patient-specific iPSCs faithfully reproduce the ultrastructural features of disease-associated pigmentation defects. Our data define a highly specific requirement for WNT signaling during neural crest induction and enable the generation of pure populations of hiPSC-derived melanocytes for faithful modeling of human pigmentation disorders. PMID:23583175

  13. Antioxidant effectiveness of organically and non-organically grown red oranges in cell culture systems.

    PubMed

    Tarozzi, A; Hrelia, S; Angeloni, C; Morroni, F; Biagi, P; Guardigli, M; Cantelli-Forti, G; Hrelia, P

    2006-03-01

    Consumers consider plant food products from organic origin healthier than the corresponding conventional plant foods. Clear experimental evidence supporting this assumption is still lacking. To determine if the organic red oranges have a higher phyto-chemical content (i. e., phenolics, anthocyanins and ascorbic acid), total antioxidant activity and in vitro bioactivity, in terms of protective effect against oxidative damage at cellular level, than nonorganic red oranges. Total phenolics were measured using the Folin Ciocalteau assay, while total anthocyanins and ascorbic acid levels were determined by spectrophotometric and HPLC analysis, respectively. In addition, the total antioxidant activity of red orange extracts was measured by the ABTS(*+) test. The ability of red orange extracts to counteract conjugated diene containing lipids and free radical production in cultured rat cardiomyocytes and differentiated Caco-2 cells, respectively, was assessed. Organic oranges had significantly higher total phenolics, total anthocyanins and ascorbic acid levels than the corresponding non-organic oranges (all p < 0.05). Moreover, the organic orange extracts had a higher total antioxidant activity than non-organic orange extracts (p < 0.05). In addition, our results indicate that red oranges have a strong capacity of inhibiting the production of conjugated diene containing lipids and free radicals in rat cardiomyocytes and differentiated Caco-2 cells, respectively. Statistically higher levels of antioxidant activity in both cell models were found in organically grown oranges as compared to those produced by integrated agriculture practice. Our results clearly show that organic red oranges have a higher phytochemical content (i. e., phenolics, anthocyanins and ascorbic acid), total antioxidant activity and bioactivity than integrated red oranges. Further studies are needed to confirm whether the organic agriculture practice is likely to increase the antioxidant activity of

  14. Pectic Polysaccharide Breakdown of Cell Walls in Cucumber Roots Grown with Calcium Starvation 1

    PubMed Central

    Konno, Haruyoshi; Yamaya, Tomoyuki; Yamasaki, Yoshiki; Matsumoto, Hideaki

    1984-01-01

    Pectic polysaccharides from the roots of cucumber (Cucumis sativus L.) grown in liquid culture medium with or without calcium (1 mm CaCl2) were studied after extraction successively by hot water and Na hexametaphosphate solution. The Ca2+ starvation-treatment caused a striking reduction in content of extracted pectic polysaccharide; from an equivalent weight of cell walls, only 33.1% of the control level was extracted from root cell walls of plants cultured under Ca2+ deficiency. The extracted pectic polysaccharides were fractionated into neutral and acidic polymers by a DEAE-Sephadex column. The acidic polymers, which represented more than 76% of the yield, appeared to be a major fraction of extracted pectic polysaccharides. The changes of molecular size and glycosyl residue composition of this fraction were compared for the control and Ca2+-deprived samples. The results indicate that Ca2+ deficiency caused structural changes which could involve both branching pattern and extent of contiguous galacturonosyl units in the water-solubilized pectic polysaccharides. Ca2+ starvation also led to a notable decrease in molecular size of the hexametaphosphate-solubilized polysaccharides and, to a lesser extent, of the water-solubilized fraction as well. In addition, polygalacturonase activity in tissue homogenates increased remarkably with the Ca2+ deficiency, whereas β-galactosidase activity did not undergo a change. Thus, it appears that one major effect of Ca2+ deprivation was to stimulate polygalacturonase activity, an effect which could be involved in the control of the breakdown of pectic polysaccharides in the cell walls. PMID:16663897

  15. Antrodia camphorata Grown on Germinated Brown Rice Suppresses Melanoma Cell Proliferation by Inducing Apoptosis and Cell Differentiation and Tumor Growth

    PubMed Central

    Song, Minjung; Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    Antrodia camphorata grown on germinated brown rice (CBR) was prepared to suppress melanoma development. CBR extracts were divided into hexane, EtOAc, BuOH, and water fractions. Among all the fractions, EtOAc fraction showed the best suppressive effect on B16F10 melanoma cell proliferation by CCK-8 assay. It also showed the increased cell death and the changed cellular morphology after CBR treatment. Annexin V-FITC/PI, flow cytometry, and western blotting were performed to elucidate anticancer activity of CBR. The results showed that CBR induced p53-mediated apoptotic cell death of B16F10. CBR EtOAc treatment increased melanin content and melanogenesis-related proteins of MITF and TRP-1 expressions, which supports its anticancer activity. Its potential as an anticancer agent was further investigated in tumor-xenografted mouse model. In melanoma-xenografted mouse model, melanoma tumor growth was significantly suppressed under CBR EtOAc fraction treatment. HPLC analysis of CBR extract showed peak of adenosine. In conclusion, CBR extracts notably inhibited B16F10 melanoma cell proliferation through the p53-mediated apoptosis induction and increased melanogenesis. These findings suggest that CBR EtOAc fraction can act as an effective anticancer agent to treat melanoma. PMID:23533475

  16. Antrodia camphorata Grown on Germinated Brown Rice Suppresses Melanoma Cell Proliferation by Inducing Apoptosis and Cell Differentiation and Tumor Growth.

    PubMed

    Song, Minjung; Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    Antrodia camphorata grown on germinated brown rice (CBR) was prepared to suppress melanoma development. CBR extracts were divided into hexane, EtOAc, BuOH, and water fractions. Among all the fractions, EtOAc fraction showed the best suppressive effect on B16F10 melanoma cell proliferation by CCK-8 assay. It also showed the increased cell death and the changed cellular morphology after CBR treatment. Annexin V-FITC/PI, flow cytometry, and western blotting were performed to elucidate anticancer activity of CBR. The results showed that CBR induced p53-mediated apoptotic cell death of B16F10. CBR EtOAc treatment increased melanin content and melanogenesis-related proteins of MITF and TRP-1 expressions, which supports its anticancer activity. Its potential as an anticancer agent was further investigated in tumor-xenografted mouse model. In melanoma-xenografted mouse model, melanoma tumor growth was significantly suppressed under CBR EtOAc fraction treatment. HPLC analysis of CBR extract showed peak of adenosine. In conclusion, CBR extracts notably inhibited B16F10 melanoma cell proliferation through the p53-mediated apoptosis induction and increased melanogenesis. These findings suggest that CBR EtOAc fraction can act as an effective anticancer agent to treat melanoma.

  17. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells

    SciTech Connect

    Miyazaki, Takamichi; Futaki, Sugiko; Hasegawa, Kouichi; Kawasaki, Miwa; Sanzen, Noriko; Hayashi, Maria; Kawase, Eihachiro; Sekiguchi, Kiyotoshi Nakatsuji, Norio; Suemori, Hirofumi

    2008-10-10

    Human embryonic stem cells (hESCs) are thought to be a promising cell source for cell transplantation therapy. For such a clinical application, the hESCs should be manipulated using appropriate and qualified materials. In this study, we examined the efficacy of recombinant human laminin (rhLM) isoforms on the undifferentiated growth of hESCs. We first determined the major integrins expressed on the hESCs to reveal the preference of the hESCs for rhLMs, and found that the hESCs mainly expressed integrin {alpha}6{beta}1, which binds predominantly to laminin-111, -332 and -511/-521. When the hESCs were seeded onto rhLMs, the cells indeed adhered markedly to rhLM-332, and to rhLM-511 and rhLM-111 to a lesser extent. The hESCs proliferated on these three rhLMs for several passages while preserving their pluripotency. These results show that rhLM-111, -332, and -511 are good substrates to expand undifferentiated hESCs due to their high affinity to integrin {alpha}6{beta}1 expressed on hESCs.

  18. A review of the emerging potential therapy for neurological disorders: human embryonic stem cell therapy.

    PubMed

    Shroff, Geeta; Dhanda Titus, Jyoti; Shroff, Rhea

    2017-01-01

    The first human embryonic stem cell (hESC) line was developed in the late nineties. hESCs are capable of proliferating indefinitely and differentiate into all the three embryonic germ layers. Further, the differentiation of hESC lines into neural precursor cells and neurons, astrocytes and oligodendrocytes showed their potential in treating several incurable neurological disorders such as spinal cord injury (SCI), cerebral palsy (CP), Parkinson's disease (PD). In this review, we will discuss the global scenario of research and therapeutic use of hESCs in the treatment of neurological disorders. Following this, we will discuss the development of a unique hESC line, how it differs from the other available hESC lines and its use in the treatment of neurological disorders. hESCs were isolated from mixture of neuronal and non-neuronal progenitor cells in their pre progenitor state in a Good Laboratory Practices, Good Tissue Practices and Good Manufacturing Practices compliant laboratory. Blastomere cells have served as a source to derive the hESCs and the xeno-free culture was demonstrated to be more safe and effective in clinical therapeutic application of hESCs. All the patients showed a remarkable improvement in their conditions and no serious adverse events were reported. This study concluded that hESC lines could be scalable and used in the treatment of various neurological disorders such as SCI, CP, and PD.

  19. A review of the emerging potential therapy for neurological disorders: human embryonic stem cell therapy

    PubMed Central

    Shroff, Geeta; Dhanda Titus, Jyoti; Shroff, Rhea

    2017-01-01

    The first human embryonic stem cell (hESC) line was developed in the late nineties. hESCs are capable of proliferating indefinitely and differentiate into all the three embryonic germ layers. Further, the differentiation of hESC lines into neural precursor cells and neurons, astrocytes and oligodendrocytes showed their potential in treating several incurable neurological disorders such as spinal cord injury (SCI), cerebral palsy (CP), Parkinson’s disease (PD). In this review, we will discuss the global scenario of research and therapeutic use of hESCs in the treatment of neurological disorders. Following this, we will discuss the development of a unique hESC line, how it differs from the other available hESC lines and its use in the treatment of neurological disorders. hESCs were isolated from mixture of neuronal and non-neuronal progenitor cells in their pre progenitor state in a Good Laboratory Practices, Good Tissue Practices and Good Manufacturing Practices compliant laboratory. Blastomere cells have served as a source to derive the hESCs and the xeno-free culture was demonstrated to be more safe and effective in clinical therapeutic application of hESCs. All the patients showed a remarkable improvement in their conditions and no serious adverse events were reported. This study concluded that hESC lines could be scalable and used in the treatment of various neurological disorders such as SCI, CP, and PD. PMID:28533935

  20. Radiosensitivity of different human tumor cells lines grown as multicellular spheroids determined from growth curves and survival data

    SciTech Connect

    Schwachoefer, J.H.C.; Crooijmans, R.P.; van Gasteren, J.J.; Hoogenhout, J.; Jerusalem, C.R.; Kal, H.B.; Theeuwes, A.G. )

    1989-11-01

    Five human tumor cell lines were grown as multicellular tumor spheroids (MTS) to determine whether multicellular tumor spheroids derived from different types of tumors would show tumor-type dependent differences in response to single-dose irradiation, and whether these differences paralleled clinical behavior. Multicellular tumor spheroids of two neuroblastoma, one lung adenocarcinoma, one melanoma, and a squamous cell carcinoma of the oral tongue, were studied in terms of growth delay, calculated cell survival, and spheroid control dose50 (SCD50). Growth delay and cell survival analysis for the tumor cell lines showed sensitivities that correlated well with clinical behavior of the tumor types of origin. Similar to other studies on melanoma multicellular tumor spheroids our spheroid control dose50 results for the melanoma cell line deviated from the general pattern of sensitivity. This might be due to the location of surviving cells, which prohibits proliferation of surviving cells and hence growth of melanoma multicellular tumor spheroids. This study demonstrates that radiosensitivity of human tumor cell lines can be evaluated in terms of growth delay, calculated cell survival, and spheroid control dose50 when grown as multicellular tumor spheroids. The sensitivity established from these evaluations parallels clinical behavior, thus offering a unique tool for the in vitro analysis of human tumor radiosensitivity.

  1. Performance improvement for epitaxially grown SiGe on Si solar cell using a compositionally graded SiGe base

    NASA Astrophysics Data System (ADS)

    Li, Dun; Zhao, Xin; Wang, Li; Conrad, Brianna; Soeriyadi, Anastasia; Lochtefeld, Anthony; Gerger, Andrew; Perez-Wurfl, Ivan; Barnett, Allen

    2016-12-01

    Silicon germanium (SiGe) is a material with high mobility and relatively low bandgap making it an attractive candidate for the bottom subcell in a III-V tandem solar cell grown on silicon (Si) substrate. This paper reports on the performance improvement of an epitaxially grown SiGe on Si solar cell by growing a higher Ge composition SiGe layer in the base. The purpose of growing a higher Ge composition SiGe layer in the base is to improve the light absorption. The first iteration of this structure was an Si0.18Ge0.82 solar cell fabricated with a 1 μm thick Si0.12Ge0.88 layer in the base. This solar cell had a lower efficiency compared with the reference solar cell without the Si0.12Ge0.88 layer. One of the main reasons for the lower efficiency is believed to be the high threading dislocation density (TDD) caused by the abrupt change of lattice constant between Si0.18Ge0.82 and Si0.12Ge0.88 in the base. In order to reduce the TDD, the second iteration of the structure was fabricated with a compositionally graded SiGe base. With the new structure, an SiGe on Si solar cell with an efficiency of 3.1%, when filtered by a GaAs0.79P0.21 top cell, was fabricated. The Ge composition in the base of this solar cell gradually increased from 82% to 85% and then decreased again to 82%. The developed SiGe solar cell with graded base provides more flexibility for a highly efficient GaAsP/SiGe dual junction solar cell grown on an Si substrate.

  2. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions.

    PubMed

    Moraitis, Christos; Curran, Brendan P G

    2010-02-01

    We have previously demonstrated that in aerobically-grown cells of the yeast Saccharomyces cerevisiae, hydrogen peroxide (H(2)O(2)) increases and ascorbic acid decreases cellular thermosensitivity, as determined by the inducibility of a heat shock (HS)-reporter gene. In this work, we reveal that the aerobic thermosensitivity of anaerobically-grown yeast cells also increases in the presence of H(2)O(2), albeit differentially between cells with two different lipid profiles. In comparison to aerobically-grown fermenting cells treated with the same H(2)O(2) concentration, both these types of anaerobically-grown cells were found to be considerably less sensitive to aerobic heat shock and considerably more thermotolerant. Paradoxically, and in contrast to ascorbate-pretreated aerobically-grown yeast cells, when anaerobically-grown cells were heat-shocked aerobically in the presence of the same ascorbic acid concentration, they exhibited increased thermosensitivity and decreased intrinsic thermotolerance with respect to their untreated counterparts. These findings are discussed with respect to what is currently known about the redox and physiological status of yeast cells grown aerobically and cells reoxygenated following anoxic growth.

  3. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    SciTech Connect

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  4. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    PubMed

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  5. Selectively-grown InGaP/GaAs on silicon heterostructures for application to photovoltaic photoelectrolysis cells

    NASA Astrophysics Data System (ADS)

    Mauk, Michael G.; Tata, Anthony N.; Feyock, Bryan W.

    2001-05-01

    Photovoltaic-photoelectrochemical (PV-PEC) cells based on InGaP/GaAs show excellent prospects for efficient production of hydrogen by electrolysis of water using solar energy. We describe a combined close-spaced vapor transport (CSVT)/liquid-phase epitaxy (LPE) process to produce arrays of selectively-grown mesas of InGaP/GaAs on silicon substrates. Unlike other semiconductor devices, the PV-PEC cell is well suited for such selectively-grown, discontinuous heteroepitaxial films. Thus, this device application affords exploiting the potential advantages of selective epitaxy, namely, the substantial reduction of stress and defects caused by thermal expansion and lattice mismatch between the silicon substrate and III-V epilayers.

  6. The ROCK Inhibitor Y-27632 Improves Recovery of Human Embryonic Stem Cells after Fluorescence-Activated Cell Sorting with Multiple Cell Surface Markers

    PubMed Central

    Emre, Nil; Vidal, Jason G.; Elia, Jeanne; O'Connor, Eric D.; Paramban, Rosanto I.; Hefferan, Michael P.; Navarro, Roman; Goldberg, Danielle S.; Varki, Nissi M.; Marsala, Martin; Carson, Christian T.

    2010-01-01

    Background Due to the inherent sensitivity of human embryonic stem cells (hESCs) to manipulations, the recovery and survival of hESCs after fluorescence-activated cell sorting (FACS) can be low. Additionally, a well characterized and robust methodology for performing FACS on hESCs using multiple-cell surface markers has not been described. The p160-Rho-associated coiled kinase (ROCK) inhibitor, Y-27632, previously has been identified as enhancing survival of hESCs upon single-cell dissociation, as well as enhancing recovery from cryopreservation. Here we examined the application of Y-27632 to hESCs after FACS to improve survival in both feeder-dependent and feeder-independent growth conditions. Methodology/Principal Findings HESCs were sorted using markers for SSEA-3, TRA-1-81, and SSEA-1. Cells were plated after sorting for 24 hours in either the presence or the absence of Y-27632. In both feeder-dependent and feeder-independent conditions, cell survival was greater when Y-27632 was applied to the hESCs after sort. Specifically, treatment of cells with Y-27632 improved post-sort recovery up to four fold. To determine the long-term effects of sorting with and without the application of Y-27632, hESCs were further analyzed. Specifically, hESCs sorted with and without the addition of Y-27632 retained normal morphology, expressed hESC-specific markers as measured by immunocytochemistry and flow cytometry, and maintained a stable karyotype. In addition, the hESCs could differentiate into three germ layers in vitro and in vivo in both feeder-dependent and feeder-independent growth conditions. Conclusions/Significance The application of Y-27632 to hESCs after cell sorting improves cell recovery with no observed effect on pluripotency, and enables the consistent recovery of hESCs by FACS using multiple surface markers. This improved methodology for cell sorting of hESCs will aid many applications such as removal of hESCs from secondary cell types, identification and

  7. Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation.

    PubMed

    Benning, C; Huang, Z H; Gage, D A

    1995-02-20

    Cells of the photosynthetic bacterium Rhodobacter sphaeroides grown under phosphate-limiting conditions accumulated nonphosphorous glycolipids and lipids carrying head groups derived from amino acids. Concomitantly, the relative amount of phosphoglycerolipids decreased from 90 to 22 mol% of total polar lipids in the membranes. Two lipids, not detectable in cells grown under standard conditions, were synthesized during phosphate-limited growth. Fast atom bombardment mass spectroscopy, exact mass measurements, 1H NMR spectroscopy, sugar composition analysis, and methylation analysis of the predominant glycolipid led to the identification of the novel compound 1,2-di-O-acyl-3-O-[alpha-D-glucopyranosyl-(1-->4)-O-beta-D-galactopyr anosyl]glycerol. The second lipid was identified as the betaine lipid 1,2-di-O-acyl-[4'-(N,N,N-trimethyl)-homoserine]glycerol by cochromatography employing an authentic standard from Chlamydomonas reinhardtii, fast atom bombardment mass spectroscopy, exact mass measurements, and 1H NMR spectroscopy. Prior to this observation, the occurrence of this lipid was thought to be restricted to lower plants and algae. Apparently, these newly synthesized nonphosphorous lipids, in addition to the sulfo- and the ornithine lipid also found in R. sphaeroides grown under optimal conditions, take over the role of phosphoglycerolipids in phosphate-deprived cells.

  8. A new FACS approach isolates hESC derived endoderm using transcription factors.

    PubMed

    Pan, Yuqiong; Ouyang, Zhengqing; Wong, Wing Hung; Baker, Julie C

    2011-03-09

    We show that high quality microarray gene expression profiles can be obtained following FACS sorting of cells using combinations of transcription factors. We use this transcription factor FACS (tfFACS) methodology to perform a genomic analysis of hESC-derived endodermal lineages marked by combinations of SOX17, GATA4, and CXCR4, and find that triple positive cells have a much stronger definitive endoderm signature than other combinations of these markers. Additionally, SOX17(+) GATA4(+) cells can be obtained at a much earlier stage of differentiation, prior to expression of CXCR4(+) cells, providing an important new tool to isolate this earlier definitive endoderm subtype. Overall, tfFACS represents an advancement in FACS technology which broadly crosses multiple disciplines, most notably in regenerative medicine to redefine cellular populations.

  9. Effects of U0126 and MK2206 on cell growth and re-growth of endometriotic stromal cells grown on substrates of varying stiffness

    PubMed Central

    Matsuzaki, Sachiko; Pouly, Jean-Luc; Canis, Michel

    2017-01-01

    Endometriosis is a common gynecological disorder responsible for infertility and pelvic pain. A complete cure for patients with endometriosis awaits new targets and strategies. Here we show that U0126 (a MEK inhibitor) and MK2206 (an AKT inhibitor) synergistically inhibit cell growth of deep endometriotic stromal cells (DES) grown on polyacrylamide gel substrates (PGS) of varying stiffness (2 or 30 kilopascal [kPa]) or plastic in vitro. No significant differences in cell proliferation were observed among DES, endometrial stromal cells of patients with endometriosis (EES) from the proliferative phase (P), EES-S (secretory phase) and EES-M (menstrual phase) compared to cells grown on a substrate of the same stiffness at both higher (U0126 [30 μM] and MK2206 [9 μM]) and lower (U0126 [15 μM] and MK2206 [4.5 μM]) combined doses. However, cell re-growth of DES after drug discontinuation was higher than that of EES-P and EES-S when cells were grown on rigid substrates at both combined doses. Combination U0126 and MK2206 treatment is more effective than each drug alone in cell growth inhibition of DES. However, further studies are required to investigate the mechanisms underlying high cell survival and proliferation after drug discontinuation for developing target therapies that prevent recurrence. PMID:28218307

  10. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture.

    PubMed

    Hongisto, Heidi; Vuoristo, Sanna; Mikhailova, Alexandra; Suuronen, Riitta; Virtanen, Ismo; Otonkoski, Timo; Skottman, Heli

    2012-01-01

    Fibroblast feeder cells play an important role in supporting the derivation and long term culture of undifferentiated, pluripotent human embryonic stem cells (hESCs). The feeder cells secrete various growth factors and extracellular matrix (ECM) proteins into extracellular milieu. However, the roles of the feeder cell-secreted factors are largely unclear. Animal feeder cells and use of animal serum also make current feeder cell culture conditions unsuitable for derivation of clinical grade hESCs. We established xeno-free feeder cell lines using human serum (HS) and studied their function in hESC culture. While human foreskin fibroblast (hFF) feeder cells were clearly hESC supportive, none of the established xeno-free human dermal fibroblast (hDF) feeder cells were able to maintain undifferentiated hESC growth. The two fibroblast types were compared for their ECM protein synthesis, integrin receptor expression profiles and key growth factor secretion. We show that hESC supportive feeder cells produce laminin-511 and express laminin-binding integrins α3ß1, α6ß1 and α7ß1. These results indicate specific laminin isoforms and integrins in maintenance of hESC pluripotency in feeder-dependent cultures. In addition, several genes with a known or possible role for hESC pluripotency were differentially expressed in distinct feeder cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Alteration of photochemistry and protein degradation of photosystem II from Chlamydomonas reinhardtii under high salt grown cells.

    PubMed

    Neelam, Satyabala; Subramanyam, Rajagopal

    2013-07-05

    In this study, we evaluated the inhibitory effect of NaCl on cell growth, photochemistry and protein profile of photosystem (PS) II in Chlamydomonas reinhardtii. To study the effect of NaCl on the photosynthetic apparatus, the C. reinhardtii cells were grown at different concentrations (0, 50, 100 and 150 mM). NaCl induced flagellar resorption due to which the cells lost their motility, formation of palmelloids, reduced cell size and slower cell division. Chlorophyll fluorescence transients at different NaCl concentrations had decreased intensities of all peaks (OJIP) indicating the apparent inactivation energies of both donor and acceptor side of PSII. Consequently, inhibition of electron transport occurred particularly at PSII. Further, low temperature emission spectra showed that the rate of damage to the PSII was more when compared to PSI. Also, we have carried out the visible circular dichroism spectra from thylakoids where the major peaks contributed to chlorophyll a and b are equally reduced in different salt grown cells, which may explain the changes at the level of inter pigment-pigment interactions. Furthermore protein profile analysis of PSII revealed that the major subunit of light harvesting complex (LHC)II is more prone to salt stress than core proteins of PSII indicating the light harvesting funnel from LHCII to PSII core is impaired. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Evaluation of normal and metastatic mammary cells grown in different biomaterial matrices: establishing potential tissue test systems.

    PubMed

    Booth, Brian W; Park, Jang Pyo; Burg, Karen J L

    2013-01-01

    The in vitro growth and differentiation of normal mammalian cells is quite different than the growth of cells derived from tumors. Additionally, cells of the same origin (tissue) behave differently depending on the biomaterial matrix in or on which they are grown in vitro. We examined both Matrigel(TM) and a collagen/agarose blend and demonstrated that two murine mammary derived cells lines, 4T1 and NMuMG, derived from a metastatic mammary tumor or a normal mammary gland, respectively, exhibit different growth and differentiation patterns depending on the three-dimensional matrix in which they are grown. The shape and size of the colonies that formed were matrix dependent. The two cell lines produced different levels of growth factors and metalloproteinases, and expressed differentiation markers specific to a matrix. Through the classification of different cell behaviors in different growth matrices, we will be able to intelligently design and tune tissue test systems to ask and answer specific challenging scientific questions.

  13. Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Zhao, Zhenqiang; Ma, Yanlin; Chen, Zhibin; Liu, Qian; Li, Qi; Kong, Deyan; Yuan, Kunxiong; Hu, Lan; Wang, Tan; Chen, Xiaowu; Peng, Yanan; Jiang, Weimin; Yu, Yanhong; Liu, Xinfeng

    2016-01-01

    Mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (HFFs) are used for the culture of human embryonic stem cells (hESCs). MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation, two hESCs lines were cultured on mixed feeder cells (MFCs, MEFs: HFFs = 1:1) and HFFs feeder, respectively, and then were differentiated into dopaminergic (DA) neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry, quantitative fluorescent real-time PCR, transmission and scanning electron microscopy, and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However, compared to hESCs line on MFCs feeder, hESCs line on HFFs feeder had a higher proportion of tyrosine hydroxylase (TH) positive cells and expressed higher levels of FOXA2, PITX3, NURR1, and TH genes. In addition, the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion, HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons, but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore, feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines, but also electrophysiological properties of hESCs-derived DA neurons. PMID:28066186

  14. Growth and characterization of Czochralski-grown n and p-type GaAs for space solar cell substrates

    NASA Technical Reports Server (NTRS)

    Chen, R. T.

    1983-01-01

    Progress in LEC (liquid encapsulated Czochralski) crystal growth techniques for producing high-quality, 3-inch-diameter, n- and p-type GaAs crystals suitable for solar cell applications is described. The LEC crystals with low dislocation densities and background impurities, high electrical mobilities, good dopant uniformity, and long diffusion lengths were reproducibly grown through control of the material synthesis, growth and doping conditions. The capability for producing these large-area, high-quality substrates should positively impact the manufacturability of highly efficiency, low cost, radiation-hard GaAs solar cells.

  15. Epitaxial Crystal Silicon Absorber Layers and Solar Cells Grown at 1.8 Microns per Minute: Preprint

    SciTech Connect

    Bobela, D. C.; Teplin, C. W.; Young, D. L.; Branz, H. M.; Stradins, P.

    2011-07-01

    We have grown device-quality epitaxial silicon thin films at growth rates up to 1.8 μm/min, using hot-wire chemical vapor deposition from silane at substrate temperatures below 750 degrees C. At these rates, which are more than 30 times faster than those used by the amorphous and nanocrystalline Si industry, capital costs for large-scale solar cell production would be dramatically reduced, even for cell absorber layers up to 10 ?m thick. We achieved high growth rates by optimizing the three key parameters: silane flow, depletion, and filament geometry, based on our model developed earlier. Hydrogen coverage of the filament surface likely limits silane decomposition and growth rate at high system pressures. No considerable deterioration in PV device performance is observed when grown at high rate, provided that the epitaxial growth is initiated at low rate. A simple mesa device structure (wafer/epi Si/a-Si(i)/a-Si:H(p)/ITO) with a 2.3 um epitaxial silicon absorber layer was grown at 700 nm/min. The finished device had an open-circuit voltage of 0.424 V without hydrogenation treatment.

  16. Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy

    DOE PAGES

    Simon, John; Schulte, Kevin L.; Jain, Nikhil; ...

    2016-10-19

    Hydride vapor phase epitaxy (HVPE) is a low-cost alternative to conventional metal-organic vapor phase epitaxy (MOVPE) growth of III-V solar cells. In this work, we show continued improvement of the performance of HVPE-grown single-junction GaAs solar cells. We show over an order of magnitude improvement in the interface recombination velocity between GaAs and GaInP layers through the elimination of growth interrupts, leading to increased short-circuit current density and open-circuit voltage compared with cells with interrupts. One-sun conversion efficiencies as high as 20.6% were achieved with this improved growth process. Solar cells grown in an inverted configuration that were removed frommore » the substrate showed nearly identical performance to on-wafer cells, demonstrating the viability of HVPE to be used together with conventional wafer reuse techniques for further cost reduction. As a result, these devices utilized multiple heterointerfaces, showing the potential of HVPE for the growth of complex and high-quality III-V devices.« less

  17. Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy

    SciTech Connect

    Simon, John; Schulte, Kevin L.; Jain, Nikhil; Johnston, Steve; Young, Michelle; Young, Matthew R.; Young, David L.; Ptak, Aaron J.

    2016-10-19

    Hydride vapor phase epitaxy (HVPE) is a low-cost alternative to conventional metal-organic vapor phase epitaxy (MOVPE) growth of III-V solar cells. In this work, we show continued improvement of the performance of HVPE-grown single-junction GaAs solar cells. We show over an order of magnitude improvement in the interface recombination velocity between GaAs and GaInP layers through the elimination of growth interrupts, leading to increased short-circuit current density and open-circuit voltage compared with cells with interrupts. One-sun conversion efficiencies as high as 20.6% were achieved with this improved growth process. Solar cells grown in an inverted configuration that were removed from the substrate showed nearly identical performance to on-wafer cells, demonstrating the viability of HVPE to be used together with conventional wafer reuse techniques for further cost reduction. As a result, these devices utilized multiple heterointerfaces, showing the potential of HVPE for the growth of complex and high-quality III-V devices.

  18. Single Junction InGaP/GaAs Solar Cells Grown on Si Substrates using SiGe Buffer Layers

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Carlin, J. A.; Andre, C. L.; Hudait, M. K.; Gonzalez, M.; Wilt, D. M.; Clark, E. B.; Jenkins, P.; Scheiman, D.; Allerman, A.

    2002-01-01

    Single junction InGaP/GaAs solar cells displaying high efficiency and record high open circuit voltage values have been grown by metalorganic chemical vapor deposition on Ge/graded SiGe/Si substrates. Open circuit voltages as high as 980 mV under AM0 conditions have been verified to result from a single GaAs junction, with no evidence of Ge-related sub-cell photoresponse. Current AM0 efficiencies of close to 16% have been measured for a large number of small area cells, whose performance is limited by non-fundamental current losses due to significant surface reflection resulting from greater than 10% front surface metal coverage and wafer handling during the growth sequence for these prototype cells. It is shown that at the material quality currently achieved for GaAs grown on Ge/SiGe/Si substrates, namely a 10 nanosecond minority carrier lifetime that results from complete elimination of anti-phase domains and maintaining a threading dislocation density of approximately 8 x 10(exp 5) per square centimeter, 19-20% AM0 single junction GaAs cells are imminent. Experiments show that the high performance is not degraded for larger area cells, with identical open circuit voltages and higher short circuit current (due to reduced front metal coverage) values being demonstrated, indicating that large area scaling is possible in the near term. Comparison to a simple model indicates that the voltage output of these GaAs on Si cells follows ideal behavior expected for lattice mismatched devices, demonstrating that unaccounted for defects and issues that have plagued other methods to epitaxially integrate III-V cells with Si are resolved using SiGe buffers and proper GaAs nucleation methods. These early results already show the enormous and realistic potential of the virtual SiGe substrate approach for generating high efficiency, lightweight and strong III-V solar cells.

  19. Improving survival of disassociated human embryonic stem cells by mechanical stimulation using acoustic tweezing cytometry.

    PubMed

    Chen, Di; Sun, Yubing; Deng, Cheri X; Fu, Jianping

    2015-03-24

    Dissociation-induced apoptosis of human embryonic stem cells (hESCs) hampers their large-scale culture. Herein we leveraged the mechanosensitivity of hESCs and employed, to our knowledge, a novel technique, acoustic tweezing cytometry (ATC), for subcellular mechanical stimulation of disassociated single hESCs to improve their survival. By acoustically actuating integrin-bound microbubbles (MBs) to live cells, ATC increased the survival rate and cloning efficiency of hESCs by threefold. A positive correlation was observed between the increased hESC survival rate and total accumulative displacement of integrin-anchored MBs during ATC stimulation. ATC may serve as a promising biocompatible tool to improve hESC culture. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

    SciTech Connect

    Vaisman, M.; Tomasulo, S.; Masuda, T.; Lang, J. R.; Faucher, J.; Lee, M. L.

    2015-02-09

    Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE.

  1. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Vaisman, M.; Tomasulo, S.; Masuda, T.; Lang, J. R.; Faucher, J.; Lee, M. L.

    2015-02-01

    Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE.

  2. Scalable Culture and Cryopreservation of Human Embryonic Stem Cells on Microcarriers

    PubMed Central

    Nie, Ying; Bergendahl, Veit; Hei, Derek J.; Jones, Jeffrey M.; Palecek, Sean P.

    2009-01-01

    As a result of their pluripotency and potential for unlimited self-renewal, human embryonic stem cells (hESCs) hold tremendous promise in regenerative medicine. An essential prerequisite for the widespread application of hESCs is the establishment of effective and efficient protocols for large-scale cell culture, storage, and distribution. At laboratory scales hESCs are cultured adherent to tissue culture plates; these culture techniques are labor-intensive and do not scale to high cell numbers. In an effort to facilitate larger scale hESC cultivation, we investigated the feasibility of culturing hESCs adherent to microcarriers. We modified the surface of Cytodex 3 microcarriers with either Matrigel or mouse embryonic fibroblasts (MEFs). hESC colonies were effectively expanded in a pluripotent, undifferentiated state on both Matrigel-coated microcarriers and microcarriers seeded with a MEF monolayer. While the hESC expansion rate on MEF-microcarriers was less than that on MEF-plates, the doubling time of hESCs on Matrigel-microcarriers was indistinguishable from that of hESCs expanded on Matrigel-coated tissue culture plates. Standard hESC cryopreservation methodologies are plagued by poor viability and high differentiation rates upon thawing. Here, we demonstrate that cryopreservation of hESCs adherent to microcarriers in cryovials provides a higher recovery of undifferentiated cells than cryopreservation of cells in suspension. Together, these results suggest that microcarrier-based stabilization and culture may facilitate hESC expansion and storage for research and therapeutic applications. PMID:19197994

  3. Beta 1 integrin binding plays a role in the constant traction force generation in response to varying stiffness for cells grown on mature cardiac extracellular matrix.

    PubMed

    Gershlak, Joshua R; Black, Lauren D

    2015-01-15

    We have previously reported a unique response of traction force generation for cells grown on mature cardiac ECM, where traction force was constant over a range of stiffnesses. In this study we sought to further investigate the role of the complex mixture of ECM on this response and assess the potential mechanism behind it. Using traction force microscopy, we measured cellular traction forces and stresses for mesenchymal stem cells (MSCs) grown on polyacrylamide gels at a range of stiffnesses (9, 25, or 48 kPa) containing either adult rat heart ECM, different singular ECM proteins including collagen I, fibronectin, and laminin, or ECM mimics comprised of varying amounts of collagen I, fibronectin, and laminin. We also measured the expression of integrins on these different substrates as well as probed for β1 integrin binding. There was no significant change in traction force generation for cells grown on the adult ECM, as previously reported, whereas cells grown on singular ECM protein substrates had increased traction force generation with an increase in substrate stiffness. Cells grown on ECM mimics containing collagen I, fibronectin and laminin were found to be reminiscent of the traction forces generated by cells grown on native ECM. Integrin expression generally increased with increasing stiffness except for the β1 integrin, potentially implicating it as playing a role in the response to adult cardiac ECM. We inhibited binding through the β1 integrin on cells grown on the adult ECM and found that the inhibition of β1 binding led to a return to the typical response of increasing traction force generation with increasing stiffness. Our data demonstrates that cells grown on the mature cardiac ECM are able to circumvent typical stiffness related cellular behaviors, likely through β1 integrin binding to the complex composition. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Production of Newcastle Disease Virus by Vero Cells Grown on Cytodex 1 Microcarriers in a 2-Litre Stirred Tank Bioreactor

    PubMed Central

    Arifin, Mohd Azmir; Mel, Maizirwan; Abdul Karim, Mohamed Ismail; Ideris, Aini

    2010-01-01

    The aim of this study is to prepare a model for the production of Newcastle disease virus (NDV) lentogenic F strain using cell culture in bioreactor for live attenuated vaccine preparation. In this study, firstly we investigated the growth of Vero cells in several culture media. The maximum cell number was yielded by culture of Vero cells in Dulbecco's Modified Eagle Medium (DMEM) which was 1.93 × 106 cells/ml. Secondly Vero cells were grown in two-litre stirred tank bioreactor by using several commercial microcarriers. We achieved the maximum cell concentration about 7.95 × 105 cells/ml when using Cytodex 1. Later we produced Newcastle Disease virus in stirred tank bioreactor based on the design developed using Taguchi L4 method. Results reveal that higher multiplicity of infection (MOI) and size of cell inoculums can yield higher virus titer. Finally, virus samples were purified using high-speed centrifugation based on 3∗∗(3-1) Fractional Factorial Design. Statistical analysis showed that the maximum virus titer can be achieved at virus sample concentration of 58.45% (v/v), centrifugation speed of 13729 rpm, and centrifugation time of 4 hours. As a conclusion, high yield of virus titer could be achieved through optimization of cell culture in bioreactor and separation by high-speed centrifugation. PMID:20625497

  5. Expression of leukemia inhibitory factor and its receptors is increased during differentiation of human embryonic stem cells.

    PubMed

    Aghajanova, Lusine; Skottman, Heli; Strömberg, Anne-Marie; Inzunza, José; Lahesmaa, Riitta; Hovatta, Outi

    2006-10-01

    To investigate gene expression profiles during the early spontaneous differentiation of human embryonic stem cells (hESCs), with particular emphasis on leukemia inhibitory factor (LIF)-induced pathways and the ultrastructural surface morphology of the undifferentiated and spontaneously differentiated hESCs. Prospective experimental study. University laboratory. Four hESC cell lines. The effect of LIF on receptor expression level was studied in cultures. Gene expression in the hESC line HS237 was analyzed using microarrays. Real-time reverse-transcription polymerase chain reaction was used to validate the microarray results in four hESC lines (HS181, HS235, HS237, HS293). Immunohistochemistry was used to assay LIF, LIF receptor, and gp130 protein expression. Cell surface morphology was studied using scanning electron microscopy. The expression of LIF, LIF receptor, and gp130 messenger RNA and protein was increased in spontaneously differentiated HS237 cells compared with undifferentiated cells, with high expression of an inhibitor of LIF-mediated signaling, suppressor of cytokine signaling-1, in undifferentiated hESCs. Genes, those expressed specifically and those shared in undifferentiated hESCs, differentiated cells, and in fibroblasts, were identified. Supplementation with LIF did not affect the LIF receptor expression. The expression of LIF and its receptors is low in undifferentiated hESCs but increases during differentiation. Added LIF does not prevent spontaneous differentiation. Suppressor of cytokine signaling-1 may prevent LIF signaling in hESCs.

  6. mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft

    PubMed Central

    Magda, Darren; Lecane, Philip; Prescott, Julia; Thiemann, Patricia; Ma, Xuan; Dranchak, Patricia K; Toleno, Donna M; Ramaswamy, Krishna; Siegmund, Kimberly D; Hacia, Joseph G

    2008-01-01

    Background Interactions between the gene products encoded by the mitochondrial and nuclear genomes play critical roles in eukaryotic cellular function. However, the effects mitochondrial DNA (mtDNA) levels have on the nuclear transcriptome have not been defined under physiological conditions. In order to address this issue, we characterized the gene expression profiles of A549 lung cancer cells and their mtDNA-depleted ρ0 counterparts grown in culture and as tumor xenografts in immune-deficient mice. Results Cultured A549 ρ0 cells were respiration-deficient and showed enhanced levels of transcripts relevant to metal homeostasis, initiation of the epithelial-mesenchymal transition, and glucuronidation pathways. Several well-established HIF-regulated transcripts showed increased or decreased abundance relative to the parental cell line. Furthermore, growth in culture versus xenograft has a significantly greater influence on expression profiles, including transcripts involved in mitochondrial structure and both aerobic and anaerobic energy metabolism. However, both in vitro and in vivo, mtDNA levels explained the majority of the variance observed in the expression of transcripts in glucuronidation, tRNA synthetase, and immune surveillance related pathways. mtDNA levels in A549 xenografts also affected the expression of genes, such as AMACR and PHYH, involved in peroxisomal lipid metabolic pathways. Conclusion We have identified mtDNA-dependent gene expression profiles that are shared in cultured cells and in xenografts. These profiles indicate that mtDNA-depleted cells could provide informative model systems for the testing the efficacy of select classes of therapeutics, such as anti-angiogenesis agents. Furthermore, mtDNA-depleted cells grown culture and in xenografts provide a powerful means to investigate possible relationships between mitochondrial activity and gene expression profiles in normal and pathological cells. PMID:18980691

  7. Evaluation of multiwalled carbon nanotube cytotoxicity in cultures of human brain microvascular endothelial cells grown on plastic or basement membrane.

    PubMed

    Eldridge, Brittany N; Xing, Fei; Fahrenholtz, Cale D; Singh, Ravi N

    2017-03-09

    There is a growing interest in the use of multiwalled carbon nanotubes (MWCNTs) to treat diseases of the brain. Little is known about the effects of MWCNTs on human brain microvascular endothelial cells (HBMECs), which make up the blood vessels in the brain. In our studies, we evaluate the cytotoxicity of MWCNTs and acid oxidized MWNCTs, with or without a phospholipid-polyethylene glycol coating. We determined the cytotoxic effects of MWCNTs on both tissue-mimicking cultures of HBMECs grown on basement membrane and on monolayer cultures of HBMECs grown on plastic. We also evaluated the effects of MWCNT exposure on the capacity of HBMECs to form rings after plating on basement membrane, a commonly used assay to evaluate angiogenesis. We show that tissue-mimicking cultures of HBMECs are less sensitive to all types of MWCNTs than monolayer cultures of HBMECs. Furthermore, we found that MWCNTs have little impact on the capacity of HBMECs to form rings. Our results indicate that relative cytotoxicity of MWCNTs is significantly affected by the type of cell culture model used for testing, and supports further research into the use of tissue-mimicking endothelial cell culture models to help bridge the gap between in vitro and in vivo toxicology.

  8. Effects of Female Sex Hormones on Susceptibility to HSV-2 in Vaginal Cells Grown in Air-Liquid Interface.

    PubMed

    Lee, Yung; Dizzell, Sara E; Leung, Vivian; Nazli, Aisha; Zahoor, Muhammad A; Fichorova, Raina N; Kaushic, Charu

    2016-08-30

    The lower female reproductive tract (FRT) is comprised of the cervix and vagina, surfaces that are continuously exposed to a variety of commensal and pathogenic organisms. Sexually transmitted viruses, such as herpes simplex virus type 2 (HSV-2), have to traverse the mucosal epithelial lining of the FRT to establish infection. The majority of current culture systems that model the host-pathogen interactions in the mucosal epithelium have limitations in simulating physiological conditions as they employ a liquid-liquid interface (LLI), in which both apical and basolateral surfaces are submerged in growth medium. We designed the current study to simulate in vivo conditions by growing an immortalized vaginal epithelial cell line (Vk2/E6E7) in culture with an air-liquid interface (ALI) and examined the effects of female sex hormones on their growth, differentiation, and susceptibility to HSV-2 under these conditions, in comparison to LLI cultures. ALI conditions induced Vk2/E6E7 cells to grow into multi-layered cultures compared to the monolayers present in LLI conditions. Vk2 cells in ALI showed higher production of cytokeratin in the presence of estradiol (E2), compared to cells grown in progesterone (P4). Cells grown under ALI conditions were exposed to HSV-2-green fluorescent protein (GFP) and the highest infection and replication was observed in the presence of P4. Altogether, this study suggests that ALI cultures more closely simulate the in vivo conditions of the FRT compared to the conventional LLI cultures. Furthermore, under these conditions P4 was found to confer higher susceptibility to HSV-2 infection in vaginal cells. The vaginal ALI culture system offers a better alternative to study host-pathogen interactions.

  9. Effects of Female Sex Hormones on Susceptibility to HSV-2 in Vaginal Cells Grown in Air-Liquid Interface

    PubMed Central

    Lee, Yung; Dizzell, Sara E.; Leung, Vivian; Nazli, Aisha; Zahoor, Muhammad A.; Fichorova, Raina N.; Kaushic, Charu

    2016-01-01

    The lower female reproductive tract (FRT) is comprised of the cervix and vagina, surfaces that are continuously exposed to a variety of commensal and pathogenic organisms. Sexually transmitted viruses, such as herpes simplex virus type 2 (HSV-2), have to traverse the mucosal epithelial lining of the FRT to establish infection. The majority of current culture systems that model the host-pathogen interactions in the mucosal epithelium have limitations in simulating physiological conditions as they employ a liquid-liquid interface (LLI), in which both apical and basolateral surfaces are submerged in growth medium. We designed the current study to simulate in vivo conditions by growing an immortalized vaginal epithelial cell line (Vk2/E6E7) in culture with an air-liquid interface (ALI) and examined the effects of female sex hormones on their growth, differentiation, and susceptibility to HSV-2 under these conditions, in comparison to LLI cultures. ALI conditions induced Vk2/E6E7 cells to grow into multi-layered cultures compared to the monolayers present in LLI conditions. Vk2 cells in ALI showed higher production of cytokeratin in the presence of estradiol (E2), compared to cells grown in progesterone (P4). Cells grown under ALI conditions were exposed to HSV-2-green fluorescent protein (GFP) and the highest infection and replication was observed in the presence of P4. Altogether, this study suggests that ALI cultures more closely simulate the in vivo conditions of the FRT compared to the conventional LLI cultures. Furthermore, under these conditions P4 was found to confer higher susceptibility to HSV-2 infection in vaginal cells. The vaginal ALI culture system offers a better alternative to study host-pathogen interactions. PMID:27589787

  10. Expansion and Characterization of Human Embryonic Stem Cell-Derived Osteoblast-Like Cells

    PubMed Central

    Arpornmaeklong, Premjit; Wang, Zhuo; Pressler, Michael J.; Brown, Shelley E.

    2010-01-01

    Abstract Human embryonic stem cells (hESCs) have the potential to serve as a repository of cells for the replacement of damaged or diseased tissues and organs. However, to use hESCs in clinically relevant scenarios, a large number of cells are likely to be required. The aim of this study was to demonstrate an alternative cell culture method to increase the quantity of osteoblast-like cells directly derived from hESCs (hESCs-OS). Undifferentiated hESCs were directly cultivated and serially passaged in osteogenic medium (hESC-OS), and exhibited similar expression patterns of osteoblast-related genes to osteoblast-like cells derived from mesenchymal stem cells derived from hESCs (hESCs-MSCs-OS) and human bone marrow stromal cells (hBMSCs-OS). In comparison to hESCs-MSCs-OS, the hESCs-OS required a shorter expansion time to generate a homogenous population of osteoblast-like cells that did not contain contaminating undifferentiated hESCs. Identification of human specific nuclear antigen (HuNu) in the newly formed bone in calvarial defects verified the role of the transplanted hESCs-OS as active bone forming cells in vivo. Taken together, this study suggests that osteoblast-like cells directly derived from hESCs have the potential to serve as an alternative source of osteoprogenitors for bone tissue engineering strategies. PMID:20698777

  11. Cytotoxicity and mutagenicity of vapor-phase pollutants in rat lung epithelial cells and Chinese hamster ovary cells grown on collagen gels

    SciTech Connect

    Zamora, P.O.; Benson, J.M.; Marshall, T.C.; Mokler, B.V.; Li, A.P.; Dahl, A.R.; Brooks, A.L.; McClellan, R.O.

    1983-01-01

    Lung epithelial cell (cell line designated LEC) and Chinese hamster ovary (CHO) cells were grown on hydrated collagen gels and exposed directly to toxic vapor-phase pollutants. The cells were exposed to graded concentrations of phenol, formaldehyde, a volatile fraction of process stream material from an experimental coal gasifier, and the nonparticulate, vapor phase of diesel engine exhaust. During exposures, the cells were maintained at an air/collagen interface by removing the medium overlying the hydrated collagen gel. Morphological changes indicative of cell retraction were found in LEC cell cultures exposed to phenol, formaldehyde, or diesel exhaust. Damage following exposure to the toxicants was quantitated in LEC and CHO cells by Trypan blue dye exclusion, a measure of plasma membrane integrity. Clone-forming ability was also used to measure cell survival in CHO cells. When measured by Trypan blue dye exclusion, phenol (EC50 = 2.1 mg/l) caused membrane damage to LEC cells but not CHO cells, while formaldehyde (EC50 = 31 and 42 ..mu..g/l for LEC and CHO, respectively) and diesel exhaust (EC50 = 11 and 29% of tailpipe exhaust in LEC and CHO cells, respectively) caused damage to both cell types. No cytotoxicity was observed in LEC or CHO cells exposed to the fraction from the coal gasifier. Essentially no mutagenic activity was associated with the exposure of CHO cells to formaldehyde or the vapor phase of diesel exhaust. Mutagenic activity was found in CHO cells exposed to ethylene oxide, the positive control.

  12. Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells.

    PubMed

    Karadas, Ozge; Yucel, Deniz; Kenar, Halime; Torun Kose, Gamze; Hasirci, Vasif

    2014-07-01

    The aim of this research was to investigate the osteogenic differentiation potential of non-invasively obtained human stem cells on collagen nanocomposite scaffolds with in situ-grown calcium phosphate crystals. The foams had 70% porosity and pore sizes varying in the range 50-200 µm. The elastic modulus and compressive strength of the calcium phosphate containing collagen scaffolds were determined to be 234.5 kPa and 127.1 kPa, respectively, prior to in vitro studies. Mesenchymal stem cells (MSCs) obtained from Wharton's jelly and menstrual blood were seeded on the collagen scaffolds and proliferation and osteogenic differentiation capacities of these cells from two different sources were compared. The cells on the composite scaffold showed the highest alkaline phosphatase activity compared to the controls, cells on tissue culture polystyrene and cells on collagen scaffolds without in situ-formed calcium phosphate. MSCs isolated from both Wharton's jelly and menstrual blood showed a significant level of osteogenic activity, but those from Wharton's jelly performed better. In this study it was shown that collagen nanocomposite scaffolds seeded with cells obtained non-invasively from human tissues could represent a potential construct to be used in bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.

  13. "allometry" Deterministic Approaches in Cell Size, Cell Number and Crude Fiber Content Related to the Physical Quality of Kangkong (Ipomoea reptans) Grown Under Different Plant Density Pressures

    NASA Astrophysics Data System (ADS)

    Selamat, A.; Atiman, S. A.; Puteh, A.; Abdullah, N. A. P.; Mohamed, M. T. M.; Zulkeefli, A. A.; Othman, S.

    Kangkong, especially the upland type (Ipomoea reptans) is popularly consumed as a vegetable dish in the South East Asian countries for its quality related to Vitamins (A and C) and crude fiber contents. Higher fiber contents would prevent from the occurrence of colon cancer and diverticular disease. With young stem edible portion, its cell number and size contribute to the stem crude fiber content. The mathematical approach of allometry of cell size, number, and fiber content of stem could be used in determining the 'best' plant density pressure in producing the quality young stem to be consumed. Basically, allometry is the ratio of relative increment (growth or change) rates of two parameters, or the change rate associated to the log of measured variables relationship. Kangkog grown equal or lower than 55 plants m-2 produced bigger individual plant and good quality (physical) kangkong leafy vegetable, but with lower total yield per unit area as compared to those grown at higher densities.

  14. Matrix proteins associated with bone calcification are present in human vascular smooth muscle cells grown in vitro.

    PubMed

    Severson, A R; Ingram, R T; Fitzpatrick, L A

    1995-12-01

    Atherosclerotic lesions are composed of cellular elements that have migrated from the vessel lumen and wall to form the cellular component of the developing plaque. The cellular elements are influenced by various growth-regulatory molecules, cytokines, chemoattractants, and vasoregulatory molecules that regulate the synthesis of the extracellular matrix composing the plaque. Because vascular smooth muscle cells (VSMC) constitute the major cellular elements of the atherosclerotic plaque and are thought to be responsible for the extracellular matrix that becomes calcified in mature plaques, immunostaining for collagenous and noncollagenous proteins typically associated with bone matrix was conducted on VSMC grown in vitro. VSMC obtained from human aorta were grown in chambers on glass slides and immunostained for procollagen type I, bone sialoprotein, osteonectin, osteocalcin, osteopontin, decorin, and biglycan. VSMC demonstrated an intense staining for procollagen type I, and a moderately intense staining for the noncollagenous proteins, bone sialoprotein and osteonectin, two proteins closely associated with bone mineralization. Minimal immunostaining was noted for osteocalcin, osteopontin, decorin, and biglycan. The presence in VSMC of collagenous and noncollagenous proteins associated with bone mineralization suggest that the smooth muscle cells in the developing atherosclerotic plaque play an important role in the deposition of the extracellular matrix involved in calcification of developing lesions.

  15. High-efficiency GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy.

    PubMed

    Lu, Shulong; Ji, Lian; He, Wei; Dai, Pan; Yang, Hui; Arimochi, Masayuki; Yoshida, Hiroshi; Uchida, Shiro; Ikeda, Masao

    2011-10-31

    We report the initial results of GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy (MBE) technique. For GaAs single-junction solar cell, with the application of AlInP as the window layer and GaInP as the back surface field layer, the photovoltaic conversion efficiency of 26% at one sun concentration and air mass 1.5 global (AM1.5G) is realized. The efficiency of 16.4% is also reached for GaInP solar cell. Our results demonstrate that the MBE-grown phosphide-contained III-V compound semiconductor solar cell can be quite comparable to the metal-organic-chemical-vapor-deposition-grown high-efficiency solar cell.

  16. Physiological and morphological studies of rat pheochromocytoma cells (PC12) chemically fused and grown in culture.

    PubMed

    O'Lague, P H; Huttner, S L

    1980-03-01

    Cell fusion induced by polyethylene glycol has been used to produce in culture giant multinucleate PC12 cells (up to 300 micron in diameter compared to 10-20 micron for unfused cells). Fused cells, like their unfused counterparts, were found to express various neuronal properties. They contained catecholamines. In the presence of nerve growth factor they extended long processes and expressed Na+, Ca2+, and K+ conductances generally associated with excitable cells. In the absence of nerve growth factor these cells neither grew long processes nor generated Na+-spikes. Other neuronal properties were also observed.

  17. The use of human amniotic fluid mesenchymal stem cells as the feeder layer to establish human embryonic stem cell lines.

    PubMed

    Soong, Yung-Kwei; Huang, Shang-Yu; Yeh, Chiu-Hsiang; Wang, Tzu-Hao; Chang, Kuo-Hsuan; Cheng, Po-Jen; Shaw, S W Steven

    2015-12-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have the potential to differentiate into the three germ layers and possibly all tissues of the human body. To fulfil the clinical potentials for cell-based therapy, banks of hESC lines that express different combinations of the major histocompatibility genes should be established, preferably without exposing such cells to animal cells and proteins. In this study, we tested human amniotic fluid mesenchymal stem cells (AFMSCs) as feeder cells to support the growth of hESCs. Our results indicated that mitomycin-treated AFMSCs were able to support the newly established hESC lines CGLK-1 and CGLK-2. The hESC colonies cultured on AFMSCs expressed alkaline phosphatase (ALK-P), SSEA-4, TRA-1-60, TRA-1-81, Oct-4, Nanog and Sox-2, which are markers for undifferentiated hESCs. Chromosomal analyses of both hESC lines, CGLK-1 and CGLK-2, which were cultured on AFMSC feeders for 22 and 14 passages, respectively, were confirmed to be normal karyotypes (46, XX). The ability of AFMSCs as feeder cells to maintain the undifferentiated growth and pluripotency of hESCs was confirmed by in vivo formation of teratomas derived on AFMSC hESCs in severe combined immune-compromised mice. The use of AFMSCs for feeder cells to culture hESCs has several advantages, in that AFMSCs are not tumourigenic and can be expanded extensively with a short doubling time. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Temperature coefficients and radiation induced DLTS spectra of MOCVD grown n(+)p InP solar cells

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Statler, Richard L.; Summers, Geoffrey P.

    1991-01-01

    The effects of temperature and radiation on n(+)p InP solar cells and mesa diodes grown by metallorganic chemical vapor deposition (MOCVD) were studied. It was shown that MOCVD is capable of consistently producing good quality InP solar cells with Eff greater than 19 percent which display excellent radiation resistance due to minority carrier injection and thermal annealing. It was also shown that universal predictions of InP device performance based on measurements of a small group of test samples can be expected to be quite accurate, and that the degradation of an InP device due to any incident particle spectrum should be predictable from a measurement following a single low energy proton irradiation.

  19. A microcarrier cell culture process for propagating rabies virus in Vero cells grown in a stirred bioreactor under fully animal component free conditions.

    PubMed

    Rourou, Samia; van der Ark, Arno; van der Velden, Tiny; Kallel, Héla

    2007-05-10

    Rabies virus strain production in Vero cells grown on Cytodex 1 in a 2 L stirred tank bioreactor and in a medium free of components of human or animal origin (VP-SFM) is described. Cell banking procedure in VP-SFM supplemented with an animal components free mixture (10%DMSO+0.1%methylcellulose) was reported and cell growth after revitalization was assessed. Vero cells exhibited growth performances (specific growth rate and cell division number) similar to that obtained in serum containing medium. To design a scalable process that is totally free of animal-derived substances, two proteases: TrypLE Select and Accutase, were assessed as an alternative to trypsin which is routinely used for cell passage. Growth performance of Vero cells grown in VP-SFM and MEM+10% fetal calf serum (FCS) over four passages and subcultivated with either TrypLE Select or Accutase was evaluated. TrypLE Select showed the best performance in terms of specific growth rate and cell division number. Kinetics of cell growth and rabies virus production (LP2061/Vero strain) were investigated in spinner flask and in a 2 L bioreactor. In spinner flask, a maximal cell density level of 1.85x10(6) cells/mL was achieved when the cells were grown in VP-SFM on 2 g/L Cytodex 1. Cell infection experiments conducted at an MOI of 0.3 and without the medium exchange step, typically needed for serum containing rabies virus production, resulted in a maximal virus titer equal to 2x10(7) (Fluorescent Focus Unit) FFU/mL. In stirred tank bioreactor, Vero cell growth in VP-SFM on 3 g/L Cytodex 1 was shown to be sensitive to the aeration mode. Sparging the culture was detrimental for cell growth, whereas cell density level was greatly enhanced when only headspace aeration was used. A cell density level of 2.6x10(6) cells/mL was obtained when the cells were grown on 3g/L Cytodex 1 and in batch culture mode. Cell infection at an MOI of 0.1 without any medium exchange, yielded a maximal rabies virus titer of 2.4x10

  20. Development of a 2.0 eV AlGaInP Solar Cell Grown by OMVPE

    SciTech Connect

    Perl, Emmett E.; Simon, John; Geisz, John F.; Olavarria, Waldo; Young, Michelle; Duda, Anna; Dippo, Pat; Friedman, Daniel J.; Steiner, Myles A.

    2015-06-14

    AlGaInP solar cells with a bandgap (Eg) of ~2.0 eV are developed for use in next-generation multijunction photovoltaic devices. This material system is of great interest for both space and concentrator photovoltaics due to its high bandgap, which enables the development of high-efficiency five-junction and six-junction devices and is also useful for solar cells operated at elevated temperatures. In this work, we explore the conditions for the Organometallic Vapor Phase Epitaxy (OMVPE) growth of AlGaInP and study their effects on cell performance. A ~2.0 eV AlGaInP solar cell is demonstrated with an open circuit voltage (VOC) of 1.59V, a bandgap-voltage offset (WOC) of 420mV, a fill factor (FF) of 88.0%, and an efficiency of 14.8%. These AlGaInP cells have attained a similar FF, WOC and internal quantum efficiency (IQE) to the best upright GaInP cells grown in our lab to date.

  1. The effect of adriamycin and 4'-deoxydoxorubicin on cell survival of human lung tumour cells grown in monolayer and as spheroids.

    PubMed

    Kerr, D J; Wheldon, T E; Kerr, A M; Freshney, R I; Kaye, S B

    1986-09-01

    Using growth delay and clonogenic cell survival as end points, we have shown that the 3-dimensional structure of human lung tumour spheroids confers a degree of resistance to the anthracyclines adriamycin and 4'-deoxydoxorubicin, relative to cells grown as monolayer. 4'-deoxydoxorubicin induces a longer growth delay and greater clonogenic cell kill than adriamycin in spheroids, although it is no more cytotoxic in monolayer (exponential and plateau phase). There is a log linear relationship between clonogenic cell survival and duration of adriamycin exposure in monolayers, and biphasic curve with a lesser degree of cell kill for disaggregated spheroid cells. Using fluorescent microscopy we have demonstrated, qualitatively, that the more lipophilic analogue partitions into the spheroid more rapidly and to a greater degree than adriamycin. It is possible that adriamycin penetration is a relatively important aspect of spheroid drug resistance, which may be related to intraspheroidal pH gradients, and that we have partially overcome this by using a lipophilic analogue.

  2. Phosgene effects on F-actin in cells grown from pulmonary tissues

    SciTech Connect

    Werrlein, R.J.; Madren-Whalley, J.; Kirby, S.D.

    1993-05-13

    Confocal laser microscopy has been used to study the effects of phosgene on cells of the lung. Results suggest that the F-actin cytoskeleton is a molecular target and sensitive indicator of phosgene toxicity. Ovine pulmonary artery endothelial cells, exposed at 0.145 to 5.39 x LCT(50) for sheep (3300 ppm.min) showed dose response decreases in F-actin content. Doses of 0.145 and 0.265 LCT(50) caused a significant (p < .01) 25% and 42% decrease in average F-actin per cell. Dense peripheral bands (DPBs) became indistinct at > or = 1.2 LCT(50) and disappeared at > or = 2.3 LCT(50). Organization of stress fibers was parallel to the cell's long axis and was not disrupted by < 1.21 LCT(50). In secretory cells from rat tracheal explants, studies indicate a threshold of resistance to phosgene at doses < 0.2 LCT(50). However, phosgene in excess of 0.2 LCT(50) produced precipitous decreases in secretory cell F-actin. Mature, contiguous populations of untreated secretory cells contained well defined DPBs and tightly connected cell-to-cell boundaries. Exposures to 1.0 and 1.5 LCT(50) did not disrupt boundaries between secretory cells but did cause separation of boundaries between secretory and other cell types. We conclude that concentration and organization are separate aspects of phosgene's effects on F-actin and that the lesions produced are cell-type specific.

  3. Expand and Regularize Federal Funding for Human Pluripotent Stem Cell Research

    ERIC Educational Resources Information Center

    Owen-Smith, Jason; Scott, Christopher Thomas; McCormick, Jennifer B.

    2012-01-01

    Human embryonic stem cell (hESC) research has sparked incredible scientific and public excitement, as well as significant controversy. hESCs are pluripotent, which means, in theory, that they can be differentiated into any type of cell found in the human body. Thus, they evoke great enthusiasm about potential clinical applications. They are…

  4. Expand and Regularize Federal Funding for Human Pluripotent Stem Cell Research

    ERIC Educational Resources Information Center

    Owen-Smith, Jason; Scott, Christopher Thomas; McCormick, Jennifer B.

    2012-01-01

    Human embryonic stem cell (hESC) research has sparked incredible scientific and public excitement, as well as significant controversy. hESCs are pluripotent, which means, in theory, that they can be differentiated into any type of cell found in the human body. Thus, they evoke great enthusiasm about potential clinical applications. They are…

  5. P-doped strontium titanate grown using two target pulsed laser deposition for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Man, Hamdi

    Thin-film solar cells made of Mg-doped SrTiO3 p-type absorbers are promising candidates for clean energy generation. This material shows p-type conductivity and also demonstrates reasonable absorption of light. In addition, p-type SrTiO3 can be deposited as thin films so that the cost can be lower than the competing methods. In this work, Mg-doped SrTiO3 (STO) thin-films were synthesized and analyzed in order to observe their potential to be employed as the base semiconductor in photovoltaic applications. Mg-doped STO thin-films were grown by using pulsed laser deposition (PLD) using a frequency quadrupled Yttrium Aluminum Garnet (YAG) laser and with a substrate that was heated by back surface absorption of infrared (IR) laser light. The samples were characterized using X-ray photoelectron spectroscopy (XPS) and it was observed that Mg atoms were doped successfully in the stoichiometry. Reflection high energy electron diffraction (RHEED) spectroscopy proved that the thin films were polycrystalline. Kelvin Probe work function measurements indicated that the work function of the films were 4.167 eV after annealing. UV/Vis Reflection spectroscopy showed that Mg-doped STO thin-films do not reflect significantly except in the ultraviolet region of the spectrum where the reflection percentage increased up to 80%. Self-doped STO thin-films, Indium Tin Oxide (ITO) thin films and stainless steel foil (SSF) were studied in order to observe their characteristics before employing them in Mg-doped STO based solar cells. Self-doped STO thin films were grown using PLD and the results showed that they are capable of serving as the n-type semiconductor in solar cell applications with oxygen vacancies in their structure and low reflectivity. Indium Tin Oxide thin-films grown by PLD system showed low 25-50 ?/square sheet resistance and very low reflection features. Finally, commercially available stainless steel foil substrates were excellent substrates for the inexpensive growth of

  6. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas

    PubMed Central

    Assou, Said; Lecarrour, Tanguy; Tondeur, Sylvie; Strom, Susanne; Gabelle, Audrey; Marty, Sophie; Nadal, Laure; Pantesco, Véronique; Réme, Thierry; Hugnot, Jean-Philippe; Gasca, Stéphan; Hovatta, Outi; Hamamah, Samir; Klein, Bernard; De Vos, John

    2007-01-01

    Microarray technology provides a unique opportunity to examine gene expression patterns in human embryonic stem cells (hESCs). We performed a meta-analysis of 38 original studies reporting on the transcriptome of hESCs. We determined that 1076 genes were found overexpressed in hESCs by at least 3 studies when compared to differentiated cell types, thus composing a “consensus hESC gene list”. Only one gene was reported by all studies: the homeodomain transcription factor POU5F1/OCT3/4. The list comprised other genes critical for pluripotency such as the transcription factors NANOG and SOX2, and the growth factors TDGF1/CRIPTO and Galanin. We show that CD24 and SEMA6A, two cell surface protein-coding genes from the top of the consensus hESC gene list, display a strong and specific membrane protein expression on hESCs. Moreover, CD24 labeling permits to purify by flow cytometry hESCs co-cultured on human fibroblasts. The “consensus hESC gene list” also included the FZD7 WNT receptor, the G protein-coupled receptor GPR19, and the HELLS helicase which could play an important role in hESCs biology. Conversely, we identified 783 genes downregulated in hESCs and reported in at least three studies. This “consensus differentiation gene list” included the IL6ST/GP130 LIF receptor. We created an online hESC expression atlas, (http://amazonia.montp.inserm.fr), to provide an easy access to this public transcriptome dataset. Expression histograms comparing hESC to a broad collection of fetal and adult tissues can be retrieved with this web tool for more than 15 000 genes. PMID:17204602

  7. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas.

    PubMed

    Assou, Said; Le Carrour, Tanguy; Tondeur, Sylvie; Ström, Susanne; Gabelle, Audrey; Marty, Sophie; Nadal, Laure; Pantesco, Véronique; Réme, Thierry; Hugnot, Jean-Philippe; Gasca, Stéphan; Hovatta, Outi; Hamamah, Samir; Klein, Bernard; De Vos, John

    2007-04-01

    Microarray technology provides a unique opportunity to examine gene expression patterns in human embryonic stem cells (hESCs). We performed a meta-analysis of 38 original studies reporting on the transcriptome of hESCs. We determined that 1,076 genes were found to be overexpressed in hESCs by at least three studies when compared to differentiated cell types, thus composing a "consensus hESC gene list." Only one gene was reported by all studies: the homeodomain transcription factor POU5F1/OCT3/4. The list comprised other genes critical for pluripotency such as the transcription factors NANOG and SOX2, and the growth factors TDGF1/CRIPTO and Galanin. We show that CD24 and SEMA6A, two cell surface protein-coding genes from the top of the consensus hESC gene list, display a strong and specific membrane protein expression on hESCs. Moreover, CD24 labeling permits the purification by flow cytometry of hESCs cocultured on human fibroblasts. The consensus hESC gene list also included the FZD7 WNT receptor, the G protein-coupled receptor GPR19, and the HELLS helicase, which could play an important role in hESCs biology. Conversely, we identified 783 genes downregulated in hESCs and reported in at least three studies. This "consensus differentiation gene list" included the IL6ST/GP130 LIF receptor. We created an online hESC expression atlas, http://amazonia.montp.inserm.fr, to provide an easy access to this public transcriptome dataset. Expression histograms comparing hESCs to a broad collection of fetal and adult tissues can be retrieved with this web tool for more than 15,000 genes.

  8. Separation of SSEA-4 and TRA-1-60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS).

    PubMed

    Fong, Chui Yee; Peh, Gary S L; Gauthaman, Kalamegam; Bongso, Ariff

    2009-03-01

    A major concern in human embryonic stem cell (hESC)-derived cell replacement therapy is the risk of tumorigenesis from undifferentiated hESCs residing in the population of hESC-derived cells. Separation of these undifferentiated hESCs from the differentiated derivatives using cell sorting methods may be a plausible approach in overcoming this problem. We therefore explored magnetic activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) to separate labelled undifferentiated hESCs from a heterogeneous population of hESCs and hepatocellular carcinoma cells (HepG2) deliberately mixed respectively at different ratios (10:90, 20:80, 30:70, 40:60 and 50:50) to mimic a standard in vitro differentiation protocol, instead of using a hESC-differentiated cell population, so that we could be sure of the actual number of cells separated. HES-3 and HES-4 cells were labelled in separate experiments for the stem cell markers SSEA-4 and TRA-1-60 using primary antibodies. Anti-PE magnetic microbeads that recognize the PE-conjugated SSEA-4 labelled hESCs was added to the heterogeneous cell mixture and passed through the MACS column. The cells that passed through the column ('flow-through' fraction) and those retained ('labelled' fraction') were subsequently analysed using FACS. The maximum efficacy of hESCs retention using MACS was 81.0 +/- 2.9% (HES-3) and 83.6 +/- 4.2% (HES-4). Using FACS, all the undifferentiated hESCs labelled with the two cell-surface markers could be removed by selective gating. Both hESCs and HepG2 cells in the 'flow-through' fraction following MACS separation were viable in culture whereas by FACS separation only the HepG2 cells were viable. FACS efficiently helps to eliminate the undifferentiated hESCs based on their cell-surface antigens expressed.

  9. CD marker expression profiles of human embryonic stem cells and their neural derivatives, determined using flow-cytometric analysis, reveal a novel CD marker for exclusion of pluripotent stem cells.

    PubMed

    Sundberg, Maria; Jansson, Linda; Ketolainen, Johanna; Pihlajamäki, Harri; Suuronen, Riitta; Skottman, Heli; Inzunza, José; Hovatta, Outi; Narkilahti, Susanna

    2009-03-01

    Human embryonic stem cells (hESCs) are pluripotent cells that can differentiate into neural cell lineages. These neural populations are usually heterogeneous and can contain undifferentiated pluripotent cells that are capable of producing teratomas in cell grafts. The characterization of surface protein profiles of hESCs and their neural derivatives is important to determine the specific markers that can be used to exclude undifferentiated cells from neural populations. In this study, we analyzed the cluster of differentiation (CD) marker expression profiles of seven undifferentiated hESC lines using flow-cytometric analysis and compared their profiles to those of neural derivatives. Stem cell and progenitor marker CD133 and epithelial adhesion molecule marker CD326 were more highly expressed in undifferentiated hESCs, whereas neural marker CD56 (NCAM) and neural precursor marker (chemokine receptor) CD184 were more highly expressed in hESC-derived neural cells. CD326 expression levels were consistently higher in all nondifferentiated hESC lines than in neural cell derivatives. In addition, CD326-positive hESCs produced teratomas in SCID mouse testes, whereas CD362-negative neural populations did not. Thus, CD326 may be useful as a novel marker of undifferentiated hESCs to exclude undifferentiated hESCs from differentiated neural cell populations prior to transplantation.

  10. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy

    NASA Astrophysics Data System (ADS)

    Stringari, Chiara; Sierra, Robert; Donovan, Peter J.; Gratton, Enrico

    2012-04-01

    We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation.

  11. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy

    PubMed Central

    Stringari, Chiara; Sierra, Robert; Donovan, Peter J.

    2012-01-01

    Abstract. We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation. PMID:22559690

  12. N-Linked glycans on dengue viruses grown in mammalian and insect cells

    PubMed Central

    Hacker, Kari; White, Laura; de Silva, Aravinda M.

    2009-01-01

    This study compared the ability of mosquito and mammalian cell-derived dengue virus (DENV) to infect human dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN)-expressing cells and characterized the structure of envelope (E) protein N-linked glycans on DENV derived from the two cell types. DENVs derived from both cell types were equally effective at infecting DC-SIGN-expressing human monocytes and dendritic cells. The N-linked glycans on mosquito cell-derived virus were a mix of high-mannose and paucimannose glycans. In virus derived from mammalian cells, the N-linked glycans were a mix of high-mannose and complex glycans. These results indicate that N-linked glycans are incompletely processed during DENV egress from cells, resulting in high-mannose glycans on viruses derived from both cell types. Studies with full-length and truncated E protein demonstrated that incomplete processing was most likely a result of the poor accessibility of glycans on the membrane-anchored protein. PMID:19494052

  13. Antigenic Protein In Microgravity-Grown Human Mixed Mullerian Tumor (LN1) Cells Preserved In RNA Stabilizing Agent

    NASA Technical Reports Server (NTRS)

    Hammond, Dianne K.; Becker, Jeanne; Holubec, K.; Baker, T. L.; Love, J. E.

    2004-01-01

    Cells treated with RNAlater(TradeMark) have previously been shown to contain antigenic proteins that can be visualized using Western blot analysis. These proteins seem to be stable for several months when stored in RNA stabilizer at 4 C. Antigenic protein can be recovered from cells that have been processed using an Ambion RNAqueous(Registered TradeMark) kit to remove RNA. In this set of experiments, human mixed Mullerian tumor (LN1) cells grown on the International Space Station during Expedition 3 were examined for antigenic stability after removal of RNA. The cells were stored for three months in RNAlater(TradeMark) and RNA was extracted. The RNA filtrate Containing the protein was precipitated, washed, and suspended in buffer containing sodium dodecyl sulfate (SDS). Samples containing equal concentrations of protein were loaded onto SDS-polyacrylamide gels. Proteins were separated by electrophoresis and transferred by Western blot to polyvinylidene fluoride (PVDF) membrane. The Western blots were stained with an enhanced chemiluminescent ECL(Registered TradeMark)Plus detection kit (Amersham) and scanned using a Storm 840 gel image analyzer (Amersham, Molecular Dynamics). ImageQuant(Registered TradeMark)a software was used to quantify the densities of the protein bands. The ground control and flight LN1 cell samples showed a similar staining pattern over time with antibodies to vimentin, glyceraldehyde-3-phosphate dehydrogenase, and epithelial membrane antigens.

  14. Antigenic Protein In Microgravity-Grown Human Mixed Mullerian Tumor (LN1) Cells Preserved In RNA Stabilizing Agent

    NASA Technical Reports Server (NTRS)

    Hammond, Dianne K.; Becker, Jeanne; Elliott, T. F.; Holubec, K.; Baker, T. L.; Love, J. E.

    2004-01-01

    Cells treated with RNAlater(TradeMark) have previously been shown to contain antigenic proteins that can be visualized using Western blot analysis. These proteins seem to be stable for several months when stored in RNA stabilizer at 4 C. Antigenic protein can be recovered from cells that have been processed using an Ambion RNAqueous(Registered TradeMark) kit to remove RNA. In this set of experiments, human mixed Mullerian tumor (LNI) cells grown on the International Space Station during Expedition 3 were examined for antigenic stability after removal of RNA. The cells were stored for three months in RNAlater(TradeMark) and RNA was extracted. The RNA filtrate containing the protein was precipitated, washed, and suspended in buffer containing sodium dodecyl sulfate (SDS). Samples containing equal concentrations of protein were loaded onto SDS-polyacrylamide gels. Proteins were separated by electrophoresis and transferred by Western blot to polyvinylidene fluoride (PVDF) membrane. The Western blots were stained with an enhanced chemiluminescent ECL(Registered Trademark) Plus detection kit (Amersham) and scanned using a Storm 840 gel image analyzer (Amersham, Molecular Dynamics). ImageQuant(Registered TradeMark) software was used to quantify the densities of the protein bands. The ground control and flight LN1 cell samples showed a similar staining pattern over time with antibodies to vimentin, glyceraldehyde-3-phosphate dehydrogenase, and epithelial membrane antigens.

  15. Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon.

    PubMed

    Holm, Jeppe V; Jørgensen, Henrik I; Krogstrup, Peter; Nygård, Jesper; Liu, Huiyun; Aagesen, Martin

    2013-01-01

    Continued development of high-efficiency multi-junction solar cells requires growth of lattice-mismatched materials. Today, the need for lattice matching both restricts the bandgap combinations available for multi-junctions solar cells and prohibits monolithic integration of high-efficiency III-V materials with low-cost silicon solar cells. The use of III-V nanowires is the only known method for circumventing this lattice-matching constraint, and therefore it is necessary to develop growth of nanowires with bandgaps >1.4 eV. Here we present the first gold-free gallium arsenide phosphide nanowires grown on silicon by means of direct epitaxial growth. We demonstrate that their bandgap can be controlled during growth and fabricate core-shell nanowire solar cells. We further demonstrate that surface passivation is of crucial importance to reach high efficiencies, and present a record efficiency of 10.2% for a core-shell single-nanowire solar cell.

  16. Antigenic Protein In Microgravity-Grown Human Mixed Mullerian Tumor (LN1) Cells Preserved In RNA Stabilizing Agent

    NASA Technical Reports Server (NTRS)

    Hammond, Dianne K.; Becker, Jeanne; Elliott, T. F.; Holubec, K.; Baker, T. L.; Love, J. E.

    2004-01-01

    Cells treated with RNAlater(TradeMark) have previously been shown to contain antigenic proteins that can be visualized using Western blot analysis. These proteins seem to be stable for several months when stored in RNA stabilizer at 4 C. Antigenic protein can be recovered from cells that have been processed using an Ambion RNAqueous(Registered TradeMark) kit to remove RNA. In this set of experiments, human mixed Mullerian tumor (LNI) cells grown on the International Space Station during Expedition 3 were examined for antigenic stability after removal of RNA. The cells were stored for three months in RNAlater(TradeMark) and RNA was extracted. The RNA filtrate containing the protein was precipitated, washed, and suspended in buffer containing sodium dodecyl sulfate (SDS). Samples containing equal concentrations of protein were loaded onto SDS-polyacrylamide gels. Proteins were separated by electrophoresis and transferred by Western blot to polyvinylidene fluoride (PVDF) membrane. The Western blots were stained with an enhanced chemiluminescent ECL(Registered Trademark) Plus detection kit (Amersham) and scanned using a Storm 840 gel image analyzer (Amersham, Molecular Dynamics). ImageQuant(Registered TradeMark) software was used to quantify the densities of the protein bands. The ground control and flight LN1 cell samples showed a similar staining pattern over time with antibodies to vimentin, glyceraldehyde-3-phosphate dehydrogenase, and epithelial membrane antigens.

  17. Dye-sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers.

    PubMed

    Cai, Xin; Wu, Hongwei; Hou, Shaocong; Peng, Ming; Yu, Xiao; Zou, Dechun

    2014-02-01

    One-dimensional semiconductor TiO2 nanowires (TNWs) have received widespread attention from solar cell and related optoelectronics scientists. The controllable synthesis of ordered TNW arrays on arbitrary substrates would benefit both fundamental research and practical applications. Herein, vertically aligned TNW arrays in situ grown on carbon fiber (CF) substrates through a facile, controllable, and seed-assisted thermal process is presented. Also, hierarchical TiO2 -nanoparticle/TNW arrays were prepared that favor both the dye loading and depressed charge recombination of the CF/TNW photoanode. An impressive conversion efficiency of 2.48 % (under air mass 1.5 global illumination) and an apparent efficiency of 4.18 % (with a diffuse board) due to the 3D light harvesting of the wire solar cell were achieved. Moreover, efficient and inexpensive wire solar cells made from all-CF electrodes and completely flexible CF-based wire solar cells were demonstrated, taking into account actual application requirements. This work may provide an intriguing avenue for the pursuit of lightweight, cost-effective, and high-performance flexible/wearable solar cells.

  18. Positioning effects on quantum dot solar cells grown by molecular beam epitaxy

    SciTech Connect

    Zhou, D.; Sharma, G.; Fimland, B. O.; Vullum, P. E.; Thomassen, S. F.; Holmestad, R.; Reenaas, T. W.

    2010-02-22

    We report current-voltage and spectral response characteristics of high density InAs/GaAs quantum dot (QD) solar cells with different positions where dots are located. The short circuit current density (J{sub sc}), open circuit voltage (V{sub oc}), and external quantum efficiency of these cells under air mass 1.5 are presented and compared with a GaAs reference cell. An extended photoresponse in contrast to the GaAs reference cell was confirmed for all these cells. The effect of inserting QD layers into emitter and base region on device performance is shown. The J{sub sc} is reduced, while the V{sub oc} is maintained. The cell with QDs located toward the base side shows better performance, confirmed by both current-voltage and spectral response measurements.

  19. Effect of Hypergravity on Localization Calcium Ions in Plant Cells Grown in Vivo and in Vitro

    NASA Astrophysics Data System (ADS)

    Nedukha, Olena

    Using plant callus tissues and Arabidopsis thaliana plants as model systems we have been investigated the effect of hypergravity on the localization and relative content of calcium ions in photosynthesizing cells. The tobacco callus cells in log stage of growth and mesophyll cells from developed A. thaliana leaves were used in the experiments. Plant samples were exposed to hypergravity at 6.5 g, 10g and 14 g for 15-60 min. After centrifugation, dye Fluo-4 was loaded in the control leaves and the centrifuged samples by the standard cytochemical method. Observation of calcium fluorescence was carried out with a laser confocal microscope LSM 5 Pascal at the excitation wave 488 nm (by the argon laser), at emission wavelength 516 nm. The data of the calcium ion distribution and quantification in cells were obtained using software "Pascal" (Carl Zeiss). The effect of hypergravity on redistribution of calcium ions in plant cells has been established. This effect is depended from exposure time and from the value of hypergravity. The cells cultivated in vitro is showed fast response to hypergravity influence. Plasmolysis cells and calcium domains formation have been observed in most of callus cells. This influence was like to that, which was wrote in Funaria hygrometrica protonema cells after 8.5 g influence (Sytnik et al., 1984). Leaf cells of A. thaliana were of less responsively to hypergravity than callus cells. Sytnik K, Kordyum E, Nedukha O. et al. 1984. Plant Cell Under Change of Geophysical Factors. Kiev: Naukova Dumka, 1-134 p.

  20. The density of apical cells of dark-grown protonemata of the moss Ceratodon purpureus

    NASA Technical Reports Server (NTRS)

    Schwuchow, J. M.; Kern, V. D.; Wagner, T.; Sack, F. D.

    2000-01-01

    Determinations of plant or algal cell density (cell mass divided by volume) have rarely accounted for the extracellular matrix or shrinkage during isolation. Three techniques were used to indirectly estimate the density of intact apical cells from protonemata of the moss Ceratodon purpureus. First, the volume fraction of each cell component was determined by stereology, and published values for component density were used to extrapolate to the entire cell. Second, protonemal tips were immersed in bovine serum albumin solutions of different densities, and then the equilibrium density was corrected for the mass of the cell wall. Third, apical cell protoplasts were centrifuged in low-osmolarity gradients, and values were corrected for shrinkage during protoplast isolation. Values from centrifugation (1.004 to 1.015 g/cm3) were considerably lower than from other methods (1.046 to 1.085 g/cm3). This work appears to provide the first corrected estimates of the density of any plant cell. It also documents a method for the isolation of protoplasts specifically from apical cells of protonemal filaments.

  1. The density of apical cells of dark-grown protonemata of the moss Ceratodon purpureus.

    PubMed

    Schwuchow, J M; Kern, V D; Wagner, T; Sack, F D

    2000-01-01

    Determinations of plant or algal cell density (cell mass divided by volume) have rarely accounted for the extracellular matrix or shrinkage during isolation. Three techniques were used to indirectly estimate the density of intact apical cells from protonemata of the moss Ceratodon purpureus. First, the volume fraction of each cell component was determined by stereology, and published values for component density were used to extrapolate to the entire cell. Second, protonemal tips were immersed in bovine serum albumin solutions of different densities, and then the equilibrium density was corrected for the mass of the cell wall. Third, apical cell protoplasts were centrifuged in low-osmolarity gradients, and values were corrected for shrinkage during protoplast isolation. Values from centrifugation (1.004 to 1.015 g/cm3) were considerably lower than from other methods (1.046 to 1.085 g/cm3). This work appears to provide the first corrected estimates of the density of any plant cell. It also documents a method for the isolation of protoplasts specifically from apical cells of protonemal filaments.

  2. The density of apical cells of dark-grown protonemata of the moss Ceratodon purpureus

    NASA Technical Reports Server (NTRS)

    Schwuchow, J. M.; Kern, V. D.; Wagner, T.; Sack, F. D.

    2000-01-01

    Determinations of plant or algal cell density (cell mass divided by volume) have rarely accounted for the extracellular matrix or shrinkage during isolation. Three techniques were used to indirectly estimate the density of intact apical cells from protonemata of the moss Ceratodon purpureus. First, the volume fraction of each cell component was determined by stereology, and published values for component density were used to extrapolate to the entire cell. Second, protonemal tips were immersed in bovine serum albumin solutions of different densities, and then the equilibrium density was corrected for the mass of the cell wall. Third, apical cell protoplasts were centrifuged in low-osmolarity gradients, and values were corrected for shrinkage during protoplast isolation. Values from centrifugation (1.004 to 1.015 g/cm3) were considerably lower than from other methods (1.046 to 1.085 g/cm3). This work appears to provide the first corrected estimates of the density of any plant cell. It also documents a method for the isolation of protoplasts specifically from apical cells of protonemal filaments.

  3. Method of measuring nitric oxide release by vascular endothelial cells grown in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Hosseinpour, S.; Liu, A. C.; Barakat, A. I.; Choy, J. C.; Gray, B. L.

    2014-03-01

    In this paper, a simple and versatile method is presented which enables detection of nitric oxide (NO) released from vascular endothelial cells (ECs) cultured in microfluidic structures. The culturing system and NO measurement method allow cell shape to be controlled in a non-invasive manner using microfluidic structures while NO release is monitored for cell shape versus function studies. The culturing system consists of arrays of polydimethylsiloxane (PDMS) fluidic channels 120 micrometers in depth and ranging from 100 micrometers to 3 mm in width. The number of channels in each array is varied to yield a constant cell culture surface area (75 mm2) independent of channel width. The channel surfaces are collagen-coated and ECs are cultured to confluence within the channels. A cell scraper is then used to scrape extraneous cells cultured between channels, and NO measurements are made 18 to 24 hours later. A chemiluminescence-based sensor system (NOA 280i, Sievers NO Analyzer) is utilized to measure sample NO. Initial results indicate that NO concentrations can be measured from different microfluidic channel-containing samples using this method. It is shown that there is no significant difference in NO concentration derived from channels of different widths even though the degree of cell elongation varies due to physical constraint by microfluidic channel walls. However, cells treated with TNFα release more NO than untreated cells in fluidic channels, which is comparable to the function of ECs cultured in conventional culturing systems such as culturing dishes.

  4. Human amniotic fluid stem cells support undifferentiated propagation and pluripotency of human embryonic stem cell without b-FGF in a density dependent manner.

    PubMed

    Ma, Xiaorong; Li, Huanqi; Xin, Shujia; Ma, Yueting; Ouyang, Tianxiang

    2014-01-01

    Human embryonic stem cells (hESCs) are pluripotent cells which can give rise to almost all adult cell lineages. Culture system of hESCs is complex, requiring exogenous b-FGF and feeder cell layer. Human mesenchymal stem cells (MSCs) not only synthesize soluble cytokines or factors such as b-FGF, but also provide other mechanism which might play positive role on sustaining hESCs propagation and pluripotency. Human amniotic fluid stem (AFS) cells, which share characteristics of both embryonic and adult stem cells, have been regarded as promising cells for regenerative medicine. Taking advantage by AFS cells, we studied the ability of AFS cells in supporting undifferentiated propagation and pluripotency of Chinese population derived X-01 hESCs. Human AF-type amniotic fluid stem cells (hAF-AFSCs) transcribed genes including Activin A, TGF-β1, Noggin and b-FGF, which involved in maintaining pluripotency and self-renewal of hESCs. Compared to mouse embryonic fibroblasts (MEFs), hAF-AFSCs secreted higher concentration of b-FGF which was important in hESCs culture (P < 0.05). The hESCs were propagated more than 30 passages on hAF-AFSCs layer with exogenous b-FGF supplementation, keeping undifferentiated status. While exogenous b-FGF was obviated, propagation of hESCs with undifferentiated status was dependent on density of hAF-AFSC feeder layer. Lower density of hAF-AFSCs resulted in rapid decline in undifferentiated clone number, while higher ones hindered the growth of colonies. The most appropriate hAF-AFSCs feeder density to maintain the X-01 hESC line without exogenous b-FGF was 15-20×10(4)/well. To the best of our knowledge, this is the first study demonstrating that hAF-AFSCs could support undifferentiated propagation and pluripotency of Chinese population derived hESCs without exogenous b-FGF supplementation.

  5. Heteroepitaxial film silicon solar cell grown on Ni-W foils

    SciTech Connect

    Wee, Sung Hun; Cantoni, Claudia; Fanning, Thomas; Teplin, Charles; Bogorin, Daniela Florentina; Bornstein, Jon; Bowers, Karen; Schroeter,; Hasoon, Falah; Branz, Howard; Paranthaman, Mariappan Parans; Goyal, Amit

    2013-01-01

    Today, silicon-wafer-based technology dominates the photovoltaic (PV) industry because it enables high efficiency, is produced from abundant, non-toxic materials and is proven in the PV marketplace.[1] However, costs associated with the wafer itself limit ultimate cost reductions.[1,2] PV based on absorber layers of crystalline Si with only 2 to 10 m thickness are a promising route to reduce these costs, while maintaining efficiencies above 15%.[3-5] With the goal of fabricating low-cost film crystalline Si (c-Si), recent research has explored wafer peeling,[6,7] crystallization of amorphous silicon films on glass,[4,8-10] and seed and epitaxy approaches.[3,5,11] In this third approach, one initially forms a seed layer that establishes the grain size and crystalline order. The Si layer is then grown heteroepitaxially on the seed layer, so that it replicates the seed crystal structure. In all of these film c-Si approaches, the critical challenge is to grow c-Si with adequate material quality: specifically, the diffusion length (LD) must be at least three times the film thickness.[12] In polycrystalline Si films, grain boundaries (GBs) are recombination-active and significantly reduce LD. This adverse effects of GBs motivates research into growth of large grained c-Si [13,14] (for a low density of GBs) and biaxially-textured c-Si [11] (for low-angle GBs).

  6. Antisense oligodeoxynucleotides targeting ATM strengthen apoptosis of laryngeal squamous cell carcinoma grown in nude mice.

    PubMed

    Feng, Jun; Zou, Jian; Li, Li; Zhao, Yongsheng; Liu, Shixi

    2011-04-17

    To conserve laryngeal function and elevate living quality of laryngeal squamous cell carcinoma (LSCC) patients, we designed antisense oligodeoxynucleotides (AS-ODNs) to reduce expression of ATM and to enhance the apoptosis of hep-2 (Human epidermoid laryngeal carcinoma) cells to radiation in vitro and in vivo. The expression of ATM mRNA and protein in hep-2 cells were examined by real-time quantitative PCR and western blotting respectively. Clonogenic survival assay was carried out to detect the survival ability of hep-2 cells after irradiation, and analyzed the cell apoptosis by flow cytometry. The volume of solid tumors was measured, while TUNEL assay and western blotting used to analyze cell apoptosis and protein expression after irradiation. The relative ATM mRNA and protein expression in hep-2 cells treated with ATM AS-ODNs were decreased to 11.03 ± 2.51% and 48.14 ± 5.53% of that in untreated cells respectively (P <0.05). After irradiation, the survival fraction (SF) of cells treated with ATM AS-ODNs was lower than that of other groups at the same dose of radiation (P < 0.05). The inhibition rate in hep-2 cells solid tumor exposed to X-ray alone was 5.95 ± 4.52%, while it was 34.28 ± 2.43% in the group which irradiated in combination with the treatment of ATM AS-ODNs (P < 0.05). The apoptotic index for the group irradiated in combination with ATM AS-ODNs injection was 17.12 ± 4.2%, which was significantly higher than that of others (P < 0.05). AS-ODNs of ATM reduce ATM expression and enhance hep-2 cells apoptosis to radiation in vitro and in vivo.

  7. Thyrotropin dependent and independent thyroid cell lines selected from FRTL-5 derived tumors grown in nude mice

    SciTech Connect

    Ossendorp, F.A.; Bruning, P.F.; Schuuring, E.M.; Van Den Brink, J.A.; van der Heide, D.; De Vijlder, J.J.; De Bruin, T.W. )

    1990-07-01

    FRTL-5 cells were used to set up a thyroid tumor model system in C3H nu/nu mice. FRTL-5 tumors could be grown in nude mice provided serum TSH levels were elevated. Persistent TSH elevation was obtained by administration of Na131I, rendering the mice hypothyroid. After 4 weeks FRTL-5 cells were injected sc resulting in tumor growth within 2 weeks in eight out of eight mice. Although the tumors showed an apparently undifferentiated histology, lacking normal follicular structures, they were functional since the tumors were capable of concentrating (131)iodine, as demonstrated by nuclear imaging. From one of the tumors a new cell line was isolated (FRTL-5/T) that, like the parental FRTL-5 cell line, was TSH dependent for growth. In a control group of six euthyroid nude mice FRTL-5 tumor growth could not be obtained with one exception. After 3 months one animal developed a small tumor that grew rapidly thereafter. This tumor was easily transplantable in other euthyroid nude mice, showed an undifferentiated histology, and was nonfunctional, as it could not concentrate (131)iodine. From this tumor two cell lines were derived: one cultured in the presence of TSH (FRTL-5/TP) and one in the absence of TSH (FRTL-5/TA). The cell lines were analyzed for TSH responsive functions and TSH receptor expression. Responsiveness to TSH in FRTL-5/T and the parental FRTL-5 cell line were similar for most thyroid specific functions tested. However, FRTL-5/T was less sensitive than FRTL-5 for TSH induced (3H)thymidine incorporation. Both cell lines had two classes of TSH binding sites with high and low affinity respectively. FRTL-5/TP and FRTL-5/TA were both able to grow in TSH free medium and were nonresponsive to TSH in vitro, as tested for (3H)thymidine and (3H)uridine incorporation, iodine uptake, thyroglobulin iodination, and thyroglobulin secretion.

  8. Changes in levels of cell wall constituents in wheat seedlings grown under continuous hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T.

    Effects of continuous hypergravity stimuli on the amounts and composition of cell wall constituents were investigated in wheat shoots. Hypergravity (300 g) treatment for three days after germination increased the net amount of cell wall polysaccharides such as hemicellulose and cellulose, but reduced the shoot elongation. As a result, the amount of cell wall polysaccharides per unit length of shoot increased under hypergravity. The hemicellulose fraction contained polysaccharides in the middle and low molecular mass range (5 kDa-1 MDa) and increased in response to hypergravity. Also, the amounts of arabinose (Ara) and xylose (Xyl), the major sugar components of the hemicellulose fraction, increased under hypergravity conditions. In addition to wall polysaccharides, hypergravity increased the amounts of cell wall-bound phenolic acids, such as ferulic acid (FA) and diferulic acid (DFA). Furthermore, the activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) was enhanced under hypergravity conditions. These results suggest that continuous hypergravity stimulates the synthesis of cell wall constituents, especially hemicellulosic arabinoxylans and cell wall-bound FA and DFA in wheat shoots. The increased PAL activity may promote the formation of FA and DFA. These changes in cell wall architecture may be involved in making rigid and tough cell walls under hypergravity conditions and thereby contribute to the ability of plant to sustain their structures against gravitational stimuli.

  9. Advanced APCVD-processes for high-temperature grown crystalline silicon thin film solar cells.

    PubMed

    Driessen, Marion; Merkel, Benjamin; Reber, Stefan

    2011-09-01

    Crystalline silicon thin film (cSiTF) solar cells based on the epitaxial wafer-equivalent (EpiWE) concept combine advantages of wafer-based and thin film silicon solar cells. In this paper two processes beyond the standard process sequence for cSiTF cell fabrication are described. The first provides an alternative to wet chemical saw damage removal by chemical vapor etching (CVE) with hydrogen chloride in-situ prior to epitaxial deposition. This application decreases the number of process and handling steps. Solar cells fabricated with different etching processes achieved efficiencies up to 14.7%. 1300 degrees C etching temperature led to better cell results than 1200 degrees C. The second investigated process aims for an improvement of cell efficiency by implementation of a reflecting interlayer between substrate and active solar cell. Some characteristics of epitaxial lateral overgrowth (ELO) of a patterned silicon dioxide film in a lab-type reactor constructed at Fraunhofer ISE are described and first solar cell results are presented.

  10. Role of polyamines in DNA synthesis of Catharanthus roseus cells grown in suspension culture

    Treesearch

    Rakesh Minocha; Subhash C. Minocha; Atsushi Komamine; Walter C. Shortle

    1990-01-01

    The requirement for polyamines in the proliferation of cells was first demonstrated in bacteria (3). While significant progress has been made in this field using animal cell cultures, only preliminary studies have been reported with plant tissues. Serafini-Fracassini et al. (9) showed a marked increase in polyamine synthesis early during the G 1 phase, concomitant with...

  11. Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes.

    PubMed

    Munakata, Yasuhisa; Kawahara-Miki, Ryoka; Shiratsuki, Shogo; Tasaki, Hidetaka; Itami, Nobuhiko; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2016-08-25

    Follicle development is accompanied by proliferation of granulosa cells and increasing oocyte size. To obtain high-quality oocytes in vitro, it is important to understand the processes that occur in oocytes and granulosa cells during follicle development and the differences between in vivo and in vitro follicle development. In the present study, oocytes and granulosa cells were collected from early antral follicles (EAFs, 0.5-0.7 mm in diameter), small antral follicles (SAFs, 1-3 mm in diameter), large antral follicles (LAFs, 3-7 mm in diameter), and in vitro grown oocyte-and-granulosa cell complexes (OGCs), which were cultured for 14 days after collection from EAFs. Gene expression was analyzed comprehensively using the next-generation sequencing technology. We found top upstream regulators during the in vivo follicle development and compared them with those in in vitro developed OGCs. The comparison revealed that HIF1 is among the top regulators during both in vivo and in vitro development of OGCs. In addition, we found that HIF1-mediated upregulation of glycolysis in granulosa cells is important for the growth of OGCs, but the cellular metabolism differs between in vitro and in vivo grown OGCs. Furthermore, on the basis of comparison of upstream regulators between in vivo and in vitro development of OGCs, we believe that low expression levels of FLT1 (VEGFA receptor), SPP1, and PCSK6 can be considered causal factors of the suboptimal development under in vitro culture conditions.

  12. Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes

    PubMed Central

    MUNAKATA, Yasuhisa; KAWAHARA-MIKI, Ryoka; SHIRATSUKI, Shogo; TASAKI, Hidetaka; ITAMI, Nobuhiko; SHIRASUNA, Koumei; KUWAYAMA, Takehito; IWATA, Hisataka

    2016-01-01

    Follicle development is accompanied by proliferation of granulosa cells and increasing oocyte size. To obtain high-quality oocytes in vitro, it is important to understand the processes that occur in oocytes and granulosa cells during follicle development and the differences between in vivo and in vitro follicle development. In the present study, oocytes and granulosa cells were collected from early antral follicles (EAFs, 0.5–0.7 mm in diameter), small antral follicles (SAFs, 1–3 mm in diameter), large antral follicles (LAFs, 3–7 mm in diameter), and in vitro grown oocyte-and-granulosa cell complexes (OGCs), which were cultured for 14 days after collection from EAFs. Gene expression was analyzed comprehensively using the next-generation sequencing technology. We found top upstream regulators during the in vivo follicle development and compared them with those in in vitro developed OGCs. The comparison revealed that HIF1 is among the top regulators during both in vivo and in vitro development of OGCs. In addition, we found that HIF1-mediated upregulation of glycolysis in granulosa cells is important for the growth of OGCs, but the cellular metabolism differs between in vitro and in vivo grown OGCs. Furthermore, on the basis of comparison of upstream regulators between in vivo and in vitro development of OGCs, we believe that low expression levels of FLT1 (VEGFA receptor), SPP1, and PCSK6 can be considered causal factors of the suboptimal development under in vitro culture conditions. PMID:27108636

  13. Development of an in situ detachment protocol of Vero cells grown on Cytodex1 microcarriers under animal component-free conditions in stirred bioreactor.

    PubMed

    Rourou, Samia; Riahi, Nesrine; Majoul, Samy; Trabelsi, Khaled; Kallel, Héla

    2013-08-01

    Subcultivation of Vero cells grown in a proprietary animal component-free medium named IPT-AFM, on microcarriers, was studied. TrypLE Select, a non-animal-derived protease, was used as an alternative to trypsin for cell passaging. We first studied the effect of increasing concentrations of TrypLE Select toward cell growth and then studied the inactivation of the protease using either soybean trypsin inhibitor (STI) or the soy hydrolysate Hypep 1510, in six-well plates. Data showed that cell growth was impaired by residual level of TrypLE Select; STI was identified as an efficient agent to neutralize this effect. To restore cell growth and inactivate TrypLE Select, STI should be added to the medium at least at 0.2 g L(-1). Cells were also grown in spinner flask on 2 g L(-1) Cytodex1 in IPT-AFM. In these conditions, the cell detachment yield was equal to 78 ± 8 %. Furthermore, cells exhibited a typical growth profile when using the dislodged cells to seed a new culture. A cell detachment yield of 70 ± 19 % was also achieved when the cells were grown in a 2-L stirred bioreactor in IPT-AFM, on 3 g L(-1) Cytodex1. This protocol can be of great interest to scale-up the process of Vero cells cultivation in IPT-AFM on Cytodex1 from one stirred bioreactor culture to another.

  14. MG63 Osteoblast-Like Cells Exhibit Different Behavior when Grown on Electrospun Collagen Matrix versus Electrospun Gelatin Matrix

    PubMed Central

    Tsai, Shiao-Wen; Liou, Hau-Min; Lin, Cheng-Jie; Kuo, Ko-Liang; Hung, Yi-Sheng; Weng, Ru-Chun; Hsu, Fu-Yin

    2012-01-01

    Electrospinning is a simple and efficient method of fabricating a non-woven polymeric nanofiber matrix. However, using fluorinated alcohols as a solvent for the electrospinning of proteins often results in protein denaturation. TEM and circular dichroism analysis indicated a massive loss of triple-helical collagen from an electrospun collagen (EC) matrix, and the random coils were similar to those found in gelatin. Nevertheless, from mechanical testing we found the Young's modulus and ultimate tensile stresses of EC matrices were significantly higher than electrospun gelatin (EG) matrices because matrix stiffness can affect many cell behaviors such as cell adhesion, proliferation and differentiation. We hypothesize that the difference of matrix stiffness between EC and EG will affect intracellular signaling through the mechano-transducers Rho kinase (ROCK) and focal adhesion kinase (FAK) and subsequently regulates the osteogenic phenotype of MG63 osteoblast-like cells. From the results, we found there was no significant difference between the EC and EG matrices with respect to either cell attachment or proliferation rate. However, the gene expression levels of OPN, type I collagen, ALP, and OCN were significantly higher in MG63 osteoblast-like cells grown on the EC than in those grown on the EG. In addition, the phosphorylation levels of Y397-FAK, ERK1/2, BSP, and OPN proteins, as well as ALP activity, were also higher on the EC than on the EG. We further inhibited ROCK activation with Y27632 during differentiation to investigate its effects on matrix-mediated osteogenic differentiation. Results showed the extent of mineralization was decreased with inhibition after induction. Moreover, there is no significant difference between EC and EG. From the results of the protein levels of phosphorylated Y397-FAK, ERK1/2, BSP and OPN, ALP activity and mineral deposition, we speculate that the mechanism that influences the osteogenic differentiation of MG63 osteoblast

  15. Niche-mediated control of human embryonic stem cell self-renewal and differentiation.

    PubMed

    Peerani, Raheem; Rao, Balaji M; Bauwens, Celine; Yin, Ting; Wood, Geoffrey A; Nagy, Andras; Kumacheva, Eugenia; Zandstra, Peter W

    2007-11-14

    Complexity in the spatial organization of human embryonic stem cell (hESC) cultures creates heterogeneous microenvironments (niches) that influence hESC fate. This study demonstrates that the rate and trajectory of hESC differentiation can be controlled by engineering hESC niche properties. Niche size and composition regulate the balance between differentiation-inducing and -inhibiting factors. Mechanistically, a niche size-dependent spatial gradient of Smad1 signaling is generated as a result of antagonistic interactions between hESCs and hESC-derived extra-embryonic endoderm (ExE). These interactions are mediated by the localized secretion of bone morphogenetic protein-2 (BMP2) by ExE and its antagonist, growth differentiation factor-3 (GDF3) by hESCs. Micropatterning of hESCs treated with small interfering (si) RNA against GDF3, BMP2 and Smad1, as well treatments with a Rho-associated kinase (ROCK) inhibitor demonstrate that independent control of Smad1 activation can rescue the colony size-dependent differentiation of hESCs. Our results illustrate, for the first time, a role for Smad1 in the integration of spatial information and in the niche-size-dependent control of hESC self-renewal and differentiation.

  16. Transcriptome profiling in Arabidopsis inflorescence stems grown under hypergravity in terms of cell walls and plant hormones

    NASA Astrophysics Data System (ADS)

    Tamaoki, D.; Karahara, I.; Nishiuchi, T.; De Oliveira, S.; Schreiber, L.; Wakasugi, T.; Yamada, K.; Yamaguchi, K.; Kamisaka, S.

    2009-07-01

    Land plants rely on lignified secondary cell walls in supporting their body weight on the Earth. Although gravity influences the formation of the secondary cell walls, the regulatory mechanism of their formation by gravity is not yet understood. We carried out a comprehensive analysis of gene expression in inflorescence stems of Arabidopsis thaliana L. using microarray (22 K) to identify genes whose expression is modulated under hypergravity condition (300 g). Total RNA was isolated from the basal region of inflorescence stems of plants grown for 24 h at 300 g or 1 g. Microarray analysis showed that hypergravity up-regulated the expression of 403 genes to more than 2-fold. Hypergravity up-regulated the genes responsible for the biosynthesis or modification of cell wall components such as lignin, xyloglucan, pectin and structural proteins. In addition, hypergravity altered the expression of genes related to the biosynthesis of plant hormones such as auxin and ethylene and that of genes encoding hormone-responsive proteins. Our transcriptome profiling indicates that hypergravity influences the formation of secondary cell walls by modulating the pattern of gene expression, and that auxin and/or ethylene play an important role in signaling hypergravity stimulus.

  17. Withanolides from Aeroponically Grown Physalis peruviana and Their Selective Cytotoxicity to Prostate Cancer and Renal Carcinoma Cells.

    PubMed

    Xu, Ya-Ming; Wijeratne, E M Kithsiri; Babyak, Ashley L; Marks, Hanna R; Brooks, Alan D; Tewary, Poonam; Xuan, Li-Jiang; Wang, Wen-Qiong; Sayers, Thomas J; Gunatilaka, A A Leslie

    2017-07-28

    Investigation of aeroponically grown Physalis peruviana resulted in the isolation of 11 new withanolides, including perulactones I-L (1-4), 17-deoxy-23β-hydroxywithanolide E (5), 23β-hydroxywithanolide E (6), 4-deoxyphyperunolide A (7), 7β-hydroxywithanolide F (8), 7β-hydroxy-17-epi-withanolide K (9), 24,25-dihydro-23β,28-dihydroxywithanolide G (10), and 24,25-dihydrowithanolide E (11), together with 14 known withanolides (12-25). The structures of 1-11 were elucidated by the analysis of their spectroscopic data, and 12-25 were identified by comparison of their spectroscopic data with those reported. All withanolides were evaluated for their cytotoxic activity against a panel of tumor cell lines including LNCaP (androgen-sensitive human prostate adenocarcinoma), 22Rv1 (androgen-resistant human prostate adenocarcinoma), ACHN (human renal adenocarcinoma), M14 (human melanoma), SK-MEL-28 (human melanoma), and normal human foreskin fibroblast cells. Of these, the 17β-hydroxywithanolides (17-BHWs) 6, 8, 9, 11-13, 15, and 19-22 showed selective cytotoxic activity against the two prostate cancer cell lines LNCaP and 22Rv1, whereas 13 and 20 exhibited selective toxicity for the ACHN renal carcinoma cell line. These cytotoxicity data provide additional structure-activity relationship information for the 17-BHWs.

  18. Identification of an anticancer compound against HT-29 cells from Phellinus linteus grown on germinated brown rice

    PubMed Central

    Jeon, Tae-Il; Jung, Chang-Hwa; Cho, Jeong-Yong; Park, Dong Ki; Moon, Jae-Hak

    2013-01-01

    Objective To isolate and identify the anticancer compound against proliferation of human colon cancer cells from ethyl acetate (EtOAC) extract of Phellinus linteus grown on germinated brown rice (PB). Methods EtOAC extract of PB was partitioned with n-hexane, EtOAC, and water-saturated n-butanol. Anticancer compound of n-hexane layer was isolated and identified by HPLC and NMR, respectively. Cytotoxicity against HT-29 cells was tested by SRB assay. Results The n-hexane layer obtained after solvent fractionation of PB EtOAC extracts showed a potent anticancer activity against the HT-29 cell line. Atractylenolide I, a eudesmane-type sesquiterpene lactone, a major anticancer substance of PB, was isolated from the n-hexane layer by silica gel column chromatography and preparative-HPLC. This structure was elucidated by one- and two-dimensional NMR spectroscopic data. Atractylenolide I has not been reported in mushrooms or rice as of yet. The isolated compound dose-dependently inhibited the growth of HT-29 human colon cancer cells. Conclusions Atractylenolide I might contribute to the anticancer effect of PB. PMID:24075343

  19. Scale-up of Agrobacterium-mediated transient protein expression in bioreactor-grown Nicotiana glutinosa plant cell suspension culture.

    PubMed

    O'Neill, Kristin M; Larsen, Jeffrey S; Curtis, Wayne R

    2008-01-01

    The reporter gene beta-glucuronidase was transiently expressed in a 51-L bioreactor-grown plant cell suspension culture of Nicotiana glutinosa at a yield of approximately 1.1 mg through co-culture with an auxotrophic strain of Agrobacterium tumefaciens. The three order of magnitude scale-up involved the investigation of factors contributing to transient expression including the timing of Agrobacterium inoculation relative to the plant cell growth phase, plant tissue culture hormonal triggers and plant cell cycle synchronization. The co-culture process was simplified to facilitate implementation in a pilot-scale bioreactor. At the shake flask scale it was determined that elevated concentrations of oxygen in the headspace were detrimental to transient expression levels and the addition of acetosyringone to the co-culture had a negligible effect. The bacterial preparation process was also streamlined, permitting the direct transfer of the Agrobacterium culture from a bench-scale fermentor to the pilot-scale plant cell culture bioreactor. Increasing expression levels and overcoming batch-to-batch variability despite extensive procedure systemization remain the major technical hurdles.

  20. Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals, polychlorobiphenyls and chlorobenzoates: effects on chemotaxis-, biofilm- and planktonic-grown cells.

    PubMed

    Tremaroli, Valentina; Vacchi Suzzi, Caterina; Fedi, Stefano; Ceri, Howard; Zannoni, Davide; Turner, Raymond J

    2010-11-01

    Pseudomonas pseudoalcaligenes KF707 is a polychlorinated biphenyls (PCBs) degrader, also tolerant to several toxic metals and metalloids. The work presented here examines for the first time the chemotactic response of P. pseudoalcaligenes KF707 to biphenyl and intermediates of the PCB biodegradation pathway in the presence and absence of metals. Chemotaxis analyses showed that biphenyl, benzoic acid and chlorobenzoic acids acted as chemoattractants for KF707 cells and that metal cations such as Ni(2+) and Cu(2+) strongly affected the chemotactic response. Toxicity profiles of various metals on KF707 cells grown on succinate or biphenyl as planktonic and biofilm were determined both in the presence and in the absence of PCBs. Notably, KF707 cells from both biofilms and planktonic cultures were tolerant to high amounts (up to 0.5 g L(-1)) of Aroclor 1242, a commercial mixture of PCBs. Together, the data show that KF707 cells are chemotactic and can form a biofilm in the presence of Aroclor 1242 and specific metals. These findings provide new perspectives on the effectiveness of using PCB-degrading bacterial strains in bioremediation strategies of metal-co-contaminated sites.

  1. Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films

    PubMed Central

    Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O

    2015-01-01

    We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity. PMID:25897486

  2. Embryonic Stem Cells: Isolation, Characterization and Culture

    NASA Astrophysics Data System (ADS)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  3. Promotion of glucose utilization by insulin enhances granulosa cell proliferation and developmental competence of porcine oocyte grown in vitro.

    PubMed

    Itami, Nobuhiko; Munakata, Yasuhisa; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2017-02-01

    In vitro culture of the oocyte granulosa cell complexes (OGCs) from early antral follicles (EAFs) shows granulosa cell (GC) proliferation, but to a lesser extent than that observed in vivo during follicle development. As the number of GCs closely relates to energy sufficiency of the oocytes, enhancement of GC proliferation influences oocyte development. GC proliferation depends on glycolysis and insulin-mediated AKT/mTOR signaling pathway; therefore, addition of culture medium containing insulin and glucose may potentially promote GC proliferation and hence improve oocyte development. In the present study, we assessed the effect of exogenous insulin and glucose concentration on GC proliferation and oocyte energy status as well as developmental abilities of porcine oocytes grown in vitro. In the presence of 5.5 mM of glucose (Low), a comparison of 10 versus 20 μg/ml insulin showed that high insulin enhanced GC proliferation but exhausted glucose from the medium, which resulted in low energy status including lipid and adenosine triphosphate of the oocyte. Whereas, in the presence of 20 μg/ml insulin, medium with 11 mM glucose (High) enhanced GC proliferation and oocyte energy status as well as developmental ability up to the blastocyst stage. Considering that there was no difference in OGCs development observed with medium (10 μg/ml insulin) containing 5.5 versus 11 mM glucose, we concluded that the combination of high insulin and glucose enhanced GC proliferation and energy status of oocytes as well as the developmental ability of the oocytes grown in vitro.

  4. Changes in cell wall architecture of wheat coleoptiles grown under continuous hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T.

    Modifications of cell wall structure of wheat coleoptiles in response to continuous hypergravity (300 g) treatment were investigated. Length of coleoptiles exposed to hypergravity for 2-4 days from germination stage was 60-70% of that of 1 g control. The net amounts of cell wall polysaccharides, such as hemicellulose and cellulose, of hypergravity-treated coleoptiles increased as much as those of 1 g control coleoptiles during the incubation period. As a result, the levels of cell wall polysaccharides per unit length of coleoptile, which mean the thickness of cell walls, largely increased under hypergravity conditions. Particularly, the amounts of hemicellulosic polymers with middle molecular mass (0.2-1 MDa) largely increased from day 2 to 3 under hypergravity conditions. The major sugar components of the hemicellulose fraction are arabinose, xylose and glucose. The ratios of arabinose and xylose to glucose were higher in hypergravity-treated coleoptiles than in control coleoptiles. The fractionation of hemicellulosic polymers into the neutral and acidic polymers by the anion-exchange column showed that the levels of acidic polymers (mainly composed of arabinoxylans) in cell walls of hypergravity-treated coleoptiles were higher than those of control coleoptiles. In addition to wall polysaccharides, the amounts of cell wall-bound phenolics, such as ferulic acid and diferulic acid, substantially increased during the incubation period both in 1 g control and hypergravity-treated coleoptiles. Especially, the levels of diferulic acid which cross-links hemicellulosic polymers were higher in hypergravity-treated coleoptiles than in control coleoptiles during the incubation period. These results suggest that hypergravity stimuli from the germination stage bias the type of synthesized hemicellulosic polysaccharides, although they do not restrict the net synthesis of cell wall constituents in wheat coleoptiles. The stimulation of the synthesis of arabinoxylans and of the

  5. Higher-Density Culture in Human Embryonic Stem Cells Results in DNA Damage and Genome Instability

    PubMed Central

    Jacobs, Kurt; Zambelli, Filippo; Mertzanidou, Afroditi; Smolders, Ilse; Geens, Mieke; Nguyen, Ha Thi; Barbé, Lise; Sermon, Karen; Spits, Claudia

    2016-01-01

    Summary Human embryonic stem cells (hESC) show great promise for clinical and research applications, but their well-known proneness to genomic instability hampers the development to their full potential. Here, we demonstrate that medium acidification linked to culture density is the main cause of DNA damage and genomic alterations in hESC grown on feeder layers, and this even in the short time span of a single passage. In line with this, we show that increasing the frequency of the medium refreshments minimizes the levels of DNA damage and genetic instability. Also, we show that cells cultured on laminin-521 do not present this increase in DNA damage when grown at high density, although the (long-term) impact on their genomic stability remains to be elucidated. Our results explain the high levels of genome instability observed over the years by many laboratories worldwide, and show that the development of optimal culture conditions is key to solving this problem. PMID:26923824

  6. Unique gene expression signature by human embryonic stem cells cultured under serum-free conditions correlates with their enhanced and prolonged growth in an undifferentiated stage.

    PubMed

    Skottman, Heli; Strömberg, Anne-Marie; Matilainen, Eija; Inzunza, Jose; Hovatta, Outi; Lahesmaa, Riitta

    2006-01-01

    Understanding the interaction between human embryonic stem cells (hESCs) and their microenvironment is crucial for the propagation and the differentiation of hESCs for therapeutic applications. hESCs maintain their characteristics both in serum-containing and serum-replacement (SR) media. In this study, the effects of the serum-containing and SR culture media on the gene expression profiles of hESCs were examined. Although the expression of many known embryonic stem cell markers was similar in cells cultured in either media, surprisingly, 1,417 genes were found to be differentially expressed when hESCs cultured in serum-containing medium were compared with those cultured in SR medium. Several genes upregulated in cells cultured in SR medium suggested increased metabolism and proliferation rates in this medium, providing a possible explanation for the increased growth rate of nondifferentiated cells observed in SR culture conditions compared with that in serum medium. Several genes characteristic for cells with differentiated phenotype were expressed in cells cultured in serum-containing medium. Our data clearly indicate that the manipulation of hESC culture conditions causes phenotypic changes of the cells that were reflected also at the level of gene expression. Such changes may have fundamental importance for hESCs, and gene expression changes should be monitored as a part of cell culture optimization aiming at a clinical use of hESCs for cell transplantation.

  7. Variations of X Chromosome Inactivation Occur in Early Passages of Female Human Embryonic Stem Cells

    PubMed Central

    Dvash, Tamar; Lavon, Neta; Fan, Guoping

    2010-01-01

    X chromosome inactivation (XCI) is a dosage compensation mechanism essential for embryonic development and cell physiology. Human embryonic stem cells (hESCs) derived from inner cell mass (ICM) of blastocyst stage embryos have been used as a model system to understand XCI initiation and maintenance. Previous studies of undifferentiated female hESCs at intermediate passages have shown three possible states of XCI; 1) cells in a pre-XCI state, 2) cells that already exhibit XCI, or 3) cells that never undergo XCI even upon differentiation. In this study, XCI status was assayed in ten female hESC lines between passage 5 and 15 to determine whether XCI variations occur in early passages of hESCs. Our results show that three different states of XCI already exist in the early passages of hESC. In addition, we observe one cell line with skewed XCI and preferential expression of X-linked genes from the paternal allele, while another cell line exhibits random XCI. Skewed XCI in undifferentiated hESCs may be due to clonal selection in culture instead of non-random XCI in ICM cells. We also found that XIST promoter methylation is correlated with silencing of XIST transcripts in early passages of hESCs, even in the pre-XCI state. In conclusion, XCI variations already take place in early passages of hESCs, which may be a consequence of in vitro culture selection during the derivation process. Nevertheless, we cannot rule out the possibility that XCI variations in hESCs may reflect heterogeneous XCI states in ICM cells that stochastically give rise to hESCs. PMID:20593031

  8. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells.

    PubMed

    Birket, Matthew J; Orr, Adam L; Gerencser, Akos A; Madden, David T; Vitelli, Cathy; Swistowski, Andrzej; Brand, Martin D; Zeng, Xianmin

    2011-02-01

    Here, we have investigated mitochondrial biology and energy metabolism in human embryonic stem cells (hESCs) and hESC-derived neural stem cells (NSCs). Although stem cells collectively in vivo might be expected to rely primarily on anaerobic glycolysis for ATP supply, to minimise production of reactive oxygen species, we show that in vitro this is not so: hESCs generate an estimated 77% of their ATP through oxidative phosphorylation. Upon differentiation of hESCs into NSCs, oxidative phosphorylation declines both in absolute rate and in importance relative to glycolysis. A bias towards ATP supply from oxidative phosphorylation in hESCs is consistent with the expression levels of the mitochondrial gene regulators peroxisome-proliferator-activated receptor γ coactivator (PGC)-1α, PGC-1β and receptor-interacting protein 140 (RIP140) in hESCs when compared with a panel of differentiated cell types. Analysis of the ATP demand showed that the slower ATP turnover in NSCs was associated with a slower rate of most energy-demanding processes but occurred without a reduction in the cellular growth rate. This mismatch is probably explained by a higher rate of macromolecule secretion in hESCs, on the basis of evidence from electron microscopy and an analysis of conditioned media. Taken together, our developmental model provides an understanding of the metabolic transition from hESCs to more quiescent somatic cell types, and supports important roles for mitochondria and secretion in hESC biology.

  9. Analysis of thymic stromal cell subpopulations grown in vitro on extracellular matrix in defined medium. I. Growth conditions and morphology of murine thymic epithelial and mesenchymal cells.

    PubMed

    Eshel, I; Savion, N; Shoham, J

    1990-03-01

    We report here the successful selective cultivation of murine thymic mesenchymal reticular cells (MTMC) and murine thymic epithelial cells (MTEC) grown on extracellular matrix in the presence of defined medium. The selective growth of these two cell types was based on 1) conditions of tissue disruption and 2) differential growth requirements. Both cell types were dependent on transferrin, high density lipoproteins, insulin, hydrocortisone, and epidermal growth factor, whereas MTMC was dependent also on selenium and 3,5,3'-triiodothyronine. The elimination of single factors or extracellular matrix resulted in specific and different changes in the growth pattern of each cell subpopulation. Cells of both types exhibited the ultrastructural features of high metabolic activity. The epithelial nature of MTEC cultures was defined by bundles of tonofilaments and desmosomes and by positive staining to keratins and negative to vimentin. In addition MTEC were positively stained with mAb to thymic medullary epithelial cells and by Ulex europeus agglutinin, and were able to form Hassall's corpuscles, suggesting their medullary origin. MTEC were also H-2 and Ia positive. In contrast MTMC were positive for vimentin and periodic acid-Schiff, low positive for H-2, and negative for keratin and Ia. Both cells did not contain nonspecific esterase, nor did they phagocytize latex beads. With the use of all these criteria we classified MTEC as epithelial cells from the medullary compartment of the thymus and MTMC as reticular cells of mesenchymal origin.

  10. Discrepancy between the short and long term effects of ouabain on the sodium pumps of human cells grown in culture.

    PubMed Central

    Griffiths, N. M.; Ogden, P. H.; Cormack, R.; Lamb, J. F.

    1991-01-01

    1. Human cells (HeLa) were cultured for periods up to 48 h in growth medium in the absence or presence of a range of concentrations of cardiac glycosides. In some experiments the potassium concentration of the medium was varied between 0.3 mM and the usual 5 mM. 2. For periods up to 2 h in ouabain the association and dissociation rate constants were measured and the equilibrium binding constant (KD) calculated; the apparent equilibrium binding constant (K'D) was measured after 1-2 days growth in ouabain. 3. Ouabain had a K'D after 2 days of 2-6 nM in 5 mM K+ growth medium, a 4 fold greater blocking effect on sodium pumps after 2 days than expected from the association and dissociation rate constants measured in untreated or previously ouabain-treated cells. 4. This effect was: (a) approximately the same over a range of external potassium concentrations from 0.3 to 5 mM, although the absolute effect of ouabain over this range of potassium was much different; (b) probably not due to different isoforms of pumps in cells grown in ouabain compared to untreated cells; (c) apparently not a consequence of internalisation of pump-glycoside complexes. 5. We conclude that ouabain has only a limited access to sodium pumps in whole cells; this could be because sodium pumps cycle continuously through an inaccessible region of the plasma membrane. This effect needs to be considered both in the assessment of the magnitude of the long term effects of cardiac glycosides on cells, and in the measurement of the glycoside affinities of various isoforms of the pump. PMID:1665734

  11. Photovoltaic characteristics of n(+)pp(+) InP solar cells grown by OMVPE

    NASA Technical Reports Server (NTRS)

    Tyagi, S.; Singh, K.; Bhimnathwala, H.; Ghandhi, S. K.; Borrego, J. M.

    1990-01-01

    The photovoltaic characteristics of n(+)/p/p(+) homojunction InP solar cells fabricated by organometallic vapor-phase epitaxy (OMVPE) are described. The cells are characterized by I-V, C-V and quantum efficiency measurements, and simulations are used to obtain various device and material parameters. The I-V characteristics show a high recombination rate in the depletion region; this is shown to be independent of the impurity used. It is shown that cadmium is easier to use as an acceptor for the p base and p(+) buffer and is therefore beneficial. The high quantum efficiency of 98 percent at long wavelengths measured in these cells indicates a very good collection efficiency in the base. The short-wavelength quantum efficiency is poor, indicating a high surface recombination.

  12. Biotransformation of d-Limonene to (+) trans-Carveol by Toluene-Grown Rhodococcus opacus PWD4 Cells

    PubMed Central

    Duetz, Wouter A.; Fjällman, Ann H. M.; Ren, Shuyu; Jourdat, Catherine; Witholt, Bernard

    2001-01-01

    The toluene-degrading strain Rhodococcus opacus PWD4 was found to hydroxylate d-limonene exclusively in the 6-position, yielding enantiomerically pure (+) trans-carveol and traces of (+) carvone. This biotransformation was studied using cells cultivated in chemostat culture with toluene as a carbon and energy source. The maximal specific activity of (+) trans-carveol formation was 14.7 U (g of cells [dry weight])−1, and the final yield was 94 to 97%. Toluene was found to be a strong competitive inhibitor of the d-limonene conversion. Glucose-grown cells did not form any trans-carveol from d-limonene. These results suggest that one of the enzymes involved in toluene degradation is responsible for this allylic monohydroxylation. Another toluene degrader (Rhodococcus globerulus PWD8) had a lower specific activity but was found to oxidize most of the formed trans-carveol to (+) carvone, allowing for the biocatalytic production of this flavor compound. PMID:11375201

  13. On the lattice Boltzmann method simulation of a two-phase flow bioreactor for artificially grown cartilage cells.

    PubMed

    Hussein, M A; Esterl, S; Pörtner, R; Wiegandt, K; Becker, T

    2008-12-05

    Owing to the growing demand of cartilage tissue repair and transplants, engineered cartilage cells have emerged as a prospective solution. Several bioreactors were built for artificially grown cartilage cells. In this work, a recently designed flow bed bioreactor is numerically investigated and compared with experimental results. The flow field inside the bioreactor was modelled using the lattice Boltzmann method. The flow consists of two phases which are the liquid component (nutrition supply) and gas component (oxygen supply). The flow field is simulated using the multi-phase lattice Boltzmann method, whilst the cell activity is modelled using Michaelis-Menten kinetics. The oxygen diffusion level at the exit of the nutrition phase is used as an evaluation process between the numerical and experimental results reporting the possibility of using the proposed model to fully simulate such bioreactors, though greatly saving time and money. Shear stress and pressure distributions are as well compared with published human cartilage load measurements to estimate the dynamic similarity between the bioreactor and the human knee. The predicted oxygen levels proved consistent trends with the experimental work with a 7% difference after 1h measuring time. The shear stress levels recorded 10-11 orders of magnitude lower than in humans and also one order of magnitude lower in the pressure distribution.

  14. Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11-based prototype ligament scaffold.

    PubMed

    Cristino, S; Grassi, F; Toneguzzi, S; Piacentini, A; Grigolo, B; Santi, S; Riccio, M; Tognana, E; Facchini, A; Lisignoli, G

    2005-06-01

    Ligaments are complex structures that maintain the mechanical stability of the joint. Healing of injured ligaments involves the interactions of different cell types, local cellular environment, and the use of devices. To gain new information on the complex interactions between mesenchymal stem cells (MSCs) and a specific hyaluronan-based prototype scaffold (HYAFF, useful for ligament tissue engineering, short time-course experiments were performed to analyze the proliferation, vitality, and phenotype of MSCs grown on the scaffold. MSC proliferation was analyzed using the MTT test, during the early time points (2, 4, 6, days). Viability was assessed using calcein/acetyloxymethylester immunofluorescence dye and confocal microscopy analysis. Hyaluronic acid receptor (CD44), typical matrix ligament proteins (collagen type I, type III, laminin, fibronectin, actin), and chondrogenic/osteogenic markers (collagen type II and bone sialoprotein) were evaluated by immunohistochemistry. Our data demonstrated that MSC growth and viability were cell density-dependent. MSCs completely wrapped the fibers of the scaffold, expressed CD44, collagen type I, type III, laminin, fibronectin, and actin, and were negative to collagen type II and bone sialoprotein. These data demonstrate that MSCs survive well in the hyaluronan-based prototype ligament scaffold, as assessed after 2 days from seeding, and express CD44, a receptor important for scaffold interaction, and proteins responsible for the functional characteristics of the ligaments.

  15. Human amniotic fluid cells grown in a hormone-supplemented medium: suitability for prenatal diagnosis.

    PubMed Central

    Chang, H C; Jones, O W; Masui, H

    1982-01-01

    A new supplemented medium has been developed to improve human amniotic fluid cell growth and to reduce the dependence on exogenously added serum. The medium consists of a mixture of Ham's F12 medium and Dulbecco's modified Eagle's medium supplemented with Hepes, antibiotics, and 10 growth-promoting factors at 4% fetal bovine serum. Good clonal growth is achieved consistently in 8--13 days and is associated with large numbers of metaphase cells. Primary clones may be analyzed directly, thereby reducing difficulty with interpretation of chromosomal mosaicism. This medium could also be used for cultivation of fetal solid tissues and peripheral blood cultures of lymphocytes. Images PMID:6956891

  16. High efficiency GaAs-Ge tandem solar cells grown by MOCVD

    NASA Technical Reports Server (NTRS)

    Vernon, S. M.; Tobin, S. P.; Bajgar, C.; Haven, Victor E.; Geoffroy, L. M.; Lillington, D. R.; Hart, R. E., Jr.

    1989-01-01

    High conversion efficiency and low weight are obviously desirable for solar cells intended for space applications. One promising structure is GaAs on Ge. The advantages of using Ge wafers as substrates include the following: they offer high efficiency by forming a two-junction tandem cell; low weight combined with superior strength allows usage of thin (3 mil) wafers; and they are a good substrate for GaAs, being lattice matched, thermal expansion matched, and available as large-area wafers.

  17. Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy

    SciTech Connect

    Zhou, D.; Sharma, G.; Fimland, B. O.; Thomassen, S. F.; Reenaas, T. W.

    2010-02-08

    We report high density quantum dots (QDs) formation with optimized growth temperature and V/III ratio. At lower growth temperature, QD density is increased, due to smaller surface migration length of In adatoms. With higher V/III, the QD density is higher but it results in large clusters formation and decreases the QD uniformity. The QD solar cell was fabricated and examined. An extended spectral response in contrast to the GaAs reference cell was presented but the external quantum efficiency at energies higher than GaAs band gap is reduced, resulting from the degradation for the emitter above the strained QD layers.

  18. Space concentrator solar cells based on multilayer LPE grown AlGaAs/GaAs heterostructure

    NASA Technical Reports Server (NTRS)

    Khvostikov, V. P.; Larionov, V. R.; Paleeva, E. V.; Sorokina, S. V.; Chosta, O. I.; Shvarts, M. Z.; Zimogorova, N. S.

    1995-01-01

    The high efficiency solar cells based on multilayer AlGaAs/GaAs heterostructures, prepared by low temperature liquid phase epitaxy (LPE), were developed and tested. An investigation of the low temperature LPE process for the crystallization of AlGaAs heterostructures of as high as 24.0 to 24.7 percent under AMO conditions at concentration ratios of 20 to 100x, were reached. Developed solar cells show substantial radiation resistance to the damage induced by 3.75 MeV electrons.

  19. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts.

    PubMed

    Swijnenburg, Rutger-Jan; Schrepfer, Sonja; Govaert, Johannes A; Cao, Feng; Ransohoff, Katie; Sheikh, Ahmad Y; Haddad, Munif; Connolly, Andrew J; Davis, Mark M; Robbins, Robert C; Wu, Joseph C

    2008-09-02

    Given their self-renewing and pluripotent capabilities, human embryonic stem cells (hESCs) are well poised as a cellular source for tissue regeneration therapy. However, the host immune response against transplanted hESCs is not well characterized. In fact, controversy remains as to whether hESCs have immune-privileged properties. To address this issue, we used in vivo bioluminescent imaging to track the fate of transplanted hESCs stably transduced with a double-fusion reporter gene consisting of firefly luciferase and enhanced GFP. We show that survival after transplant is significantly limited in immunocompetent as opposed to immunodeficient mice. Repeated transplantation of hESCs into immunocompetent hosts results in accelerated hESC death, suggesting an adaptive donor-specific immune response. Our data demonstrate that transplanted hESCs trigger robust cellular and humoral immune responses, resulting in intragraft infiltration of inflammatory cells and subsequent hESC rejection. Moreover, we have found CD4(+) T cells to be an important modulator of hESC immune-mediated rejection. Finally, we show that immunosuppressive drug regimens can mitigate the anti-hESC immune response and that a regimen of combined tacrolimus and sirolimus therapies significantly prolongs survival of hESCs for up to 28 days. Taken together, these data suggest that hESCs are immunogenic, trigger both cellular and humoral-mediated pathways, and, as a result, are rapidly rejected in xenogeneic hosts. This process can be mitigated by a combined immunosuppressive regimen as assessed by molecular imaging approaches.

  20. Low temperature grown ZnO@TiO{sub 2} core shell nanorod arrays for dye sensitized solar cell application

    SciTech Connect

    Goh, Gregory Kia Liang; Le, Hong Quang; Huang, Tang Jiao; Hui, Benjamin Tan Tiong

    2014-06-01

    High aspect ratio ZnO nanorod arrays were synthesized on fluorine-doped tin oxide glasses via a low temperature solution method. By adjusting the growth condition and adding polyethylenimine, ZnO nanorod arrays with tunable length were successfully achieved. The ZnO@TiO{sub 2} core shells structures were realized by a fast growth method of immersion into a (NH{sub 4}){sub 2}·TiF{sub 6} solution. Transmission electron microscopy, X-ray Diffraction and energy dispersive X-ray measurements all confirmed the existence of a titania shell uniformly covering the ZnO nanorod's surface. Results of solar cell testing showed that addition of a TiO{sub 2} shell to the ZnO nanorod significantly increased short circuit current (from 4.2 to 5.2 mA/cm{sup 2}), open circuit voltage (from 0.6 V to 0.8 V) and fill factor (from 42.8% to 73.02%). The overall cell efficiency jumped from 1.1% for bare ZnO nanorod to 3.03% for a ZnO@TiO{sub 2} core shell structured solar cell with a 18–22 nm shell thickness, a nearly threefold increase. - Graphical abstract: The synthesis process of coating TiO{sub 2} shell onto ZnO nanorod core is shown schematically. A thin, uniform, and conformal shell had been grown on the surface of the ZnO core after immersing in the (NH{sub 4}){sub 2}·TiF{sub 6} solution for 5–15 min. - Highlights: • ZnO@TiO{sub 2} core shell nanorod has been grown on FTO substrate using low temperature solution method. • TEM, XRD, EDX results confirmed the existing of titana shell, uniformly covered rod's surface. • TiO{sub 2} shell suppressed recombination, demonstrated significant enhancement in cell's efficiency. • Core shell DSSC's efficiency achieved as high as 3.03%, 3 times higher than that of ZnO nanorods.

  1. GaSb on GaAs solar cells Grown using interfacial misfit arrays (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nelson, George T.; Juang, Bor-Chau; Slocum, Michael A.; Bittner, Zachary S.; Laghumavarapu, Ramesh Babu B.; Huffaker, Diana L.; Hubbard, Seth M.

    2017-04-01

    State of the art InGaP2/GaAs/In0.28Ga0.72As inverted metamorphic (IMM) solar cells have achieved impressive results, however, the thick metamorphic buffer needed between the lattice matched GaAs and lattice mismatched InGaAs requires significant effort and time to grow and retains a fairly high defect density. One approach to this problem is to replace the bottom InGaAs junction with an Sb-based material such as 0.73 eV GaSb or 1.0 eV Al0.2Ga0.8Sb. By using interfacial misfit (IMF) arrays, the high degree of strain (7.8%) between GaAs and GaSb can be relaxed solely by laterally propagating 90° misfit dislocations that are confined to the GaAs-GaSb interface layer. We have used molecular beam epitaxy to grow GaSb single junction solar cells homoepitaxially on GaSb and heteroepitaxially on GaAs using IMF. Under 15-sun AM1.5 illumination, the control cell achieved 5% efficiency with a WOC of 366 mV, while the IMF cell was able to reach 2.1% with WOC of 546 mV. Shunting and high non-radiative dark current were main cause of FF and efficiency loss in the IMF devices. Threading dislocations or point defects were the expected source behind the losses, leading to minority carrier lifetimes less than 1ns. Deep level transient spectroscopy (DLTS) was used to search for defects electrically and two traps were found in IMF material that were not detected in the homoepitaxial GaSb device. One of these traps had a trap density of 7 × 1015 cm-3, about one order of magnitude higher than the control cell defect at 4 × 1016 cm-3.

  2. Enhanced Autophagy of Adipose-Derived Stem Cells Grown on Chitosan Substrates

    PubMed Central

    Yang, Ching-Ming; Huang, Yen-Jang; Hsu, Shan-hui

    2015-01-01

    Abstract Autophagy is an important protein quality control mechanism for cells under stress conditions to promote cell survival. Modulation of autophagy on biomaterial substrates is rarely reported. In this study, the autophagy of adipose-derived stem cells (ADSCs) cultured on chitosan (CS) substrates was examined. Compared to the traditional monolayer culture, ADSCs cultured on CS substrates showed spheroid formation as well as a prolonged upregulation of autophagosomal marker-microtubule-associated protein 1 light chain 3 (LC3) II protein expression. In addition, the green fluorescent protein tagged-LC3 (GFP-LC3) expressing ADSCs also revealed more GFP-LC3 puncta on CS substrates. The enhanced autophagy on CS substrates was associated with Ca2+, while ethylene glycol tetraacetic acid (EGTA), a Ca2+ chelator, repressed the autophagy in a dose-dependent manner. Moreover, ADSC spheroids on CS substrates demonstrated a higher survival rate and autophagy response upon H2O2 treatment. The upstream components of autophagy signal pathway-UNC51-like kinase 1 (Ulk1), autophagy-related protein 13 (Atg13), and autophagy/beclin-1 regulator 1 (Ambra1) genes were more highly expressed in ADSC spheroids before and after adding H2O2 than those in the conventional culture. EGTA also decreased the cell viability and autophagy-associated gene expression for ADSC spheroids on CS substrates after H2O2 treatment. Therefore, we suggest that three-dimensional (3D) cell culture on CS may confer ADSCs the ability to increase the autophagic flux in response to stimulations in a Ca2+-dependent manner. PMID:26309785

  3. Maintenance of human embryonic stem cells in media conditioned by human mesenchymal stem cells obviates the requirement of exogenous basic fibroblast growth factor supplementation.

    PubMed

    Sánchez, Laura; Gutierrez-Aranda, Iván; Ligero, Gertrudis; Martín, Miguel; Ayllón, Verónica; Real, Pedro J; Ramos-Mejía, Verónica; Bueno, Clara; Menendez, Pablo

    2012-05-01

    Despite the improvements in the human embryonic stem cell (hESC) culture systems, very similar conditions to those used to maintain hESCs on mouse feeders are broadly applied to culture methods based on human feeders. Indeed, basic fibroblast growth factor (bFGF), a master hESC-sustaining factor, is still added in nearly all medium formulations for hESC propagation. Human foreskin fibroblasts (HFFs) and mesenchymal stem cells (MSCs) used as feeders have recently been reported to support hESC growth without exogenous bFGF. However, whether hESCs may be maintained undifferentiated without exogenous bFGF using media conditioned (CM) by human feeders remains elusive. We hypothesize that HFFs and hMSCs are likely to be functionally different and therefore the mechanisms by which HFF-CM and MSC-CM support undifferentiated growth of hESCs may differ. We have thus determined whether HFF-CM and/or MSC-CM sustain feeder-free undifferentiated growth of hESC without exogenous supplementation of bFGF. We report that hMSCs synthesize higher levels of endogenous bFGF than HFFs. Accordingly and in contrast to HFF-CM, MSC-CM produced without the addition of exogenous bFGF supports hESC pluripotency and culture homeostasis beyond 20 passages without the need of bFGF supplementation. hESCs maintained without exogenous bFGF in MSC-CM retained hESC morphology and expression of pluripotency surface markers and transcription factors, formed teratomas, and showed spontaneous and lineage-directed in vitro differentiation capacity. Our data indicate that MSC-CM, but not HFF-CM, provides microenvironment cues supporting feeder-free long-term maintenance of pluripotent hESCs and obviates the requirement of exogenous bFGF at any time.

  4. Solar cell efficiency and high temperature processing of n-type silicon grown by the noncontact crucible method

    SciTech Connect

    Jensen, Mallory A.; LaSalvia, Vincenzo; Morishige, Ashley E.; Nakajima, Kazuo; Veschetti, Yannick; Jay, Frederic; Jouini, Anis; Youssef, Amanda; Stradins, Paul; Buonassisi, Tonio

    2016-08-01

    The capital expense (capex) of conventional crystal growth methods is a barrier to sustainable growth of the photovoltaic industry. It is challenging for innovative techniques to displace conventional growth methods due the low dislocation density and high lifetime required for high efficiency devices. One promising innovation in crystal growth is the noncontact crucible method (NOC-Si), which combines aspects of Czochralski (Cz) and conventional casting. This material has the potential to satisfy the dual requirements, with capex likely between that of Cz (high capex) and multicrystalline silicon (mc-Si, low capex). In this contribution, we observe a strong dependence of solar cell efficiency on ingot height, correlated with the evolution of swirl-like defects, for single crystalline n-type silicon grown by the NOC-Si method. We posit that these defects are similar to those observed in Cz, and we explore the response of NOC-Si to high temperature treatments including phosphorous diffusion gettering (PDG) and Tabula Rasa (TR). The highest lifetimes (2033 us for the top of the ingot and 342 us for the bottom of the ingot) are achieved for TR followed by a PDG process comprising a standard plateau and a low temperature anneal. Further improvements can be gained by tailoring the time-temperature profiles of each process. Lifetime analysis after the PDG process indicates the presence of a getterable impurity in the as-grown material, while analysis after TR points to the presence of oxide precipitates especially at the bottom of the ingot. Uniform lifetime degradation is observed after TR which we assign to a presently unknown defect. Lastly, future work includes additional TR processing to uncover the nature of this defect, microstructural characterization of suspected oxide precipitates, and optimization of the TR process to achieve the dual goals of high lifetime and spatial homogenization.

  5. Solar Cell Efficiency and High Temperature Processing of n-type Silicon Grown by the Noncontact Crucible Method

    SciTech Connect

    Jensen, Mallory A.; LaSalvia, Vincenzo; Morishige, Ashley E.; Nakajima, Kazuo; Veschetti, Yannick; Jay, Frederic; Jouini, Anis; Youssef, Amanda; Stradins, Paul; Buonassisi, Tonio

    2016-08-01

    The capital expense (capex) of conventional crystal growth methods is a barrier to sustainable growth of the photovoltaic industry. It is challenging for innovative techniques to displace conventional growth methods due the low dislocation density and high lifetime required for high efficiency devices. One promising innovation in crystal growth is the noncontact crucible method (NOC-Si), which combines aspects of Czochralski (Cz) and conventional casting. This material has the potential to satisfy the dual requirements, with capex likely between that of Cz (high capex) and multicrystalline silicon (mc-Si, low capex). In this contribution, we observe a strong dependence of solar cell efficiency on ingot height, correlated with the evolution of swirl-like defects, for single crystalline n-type silicon grown by the NOC-Si method. We posit that these defects are similar to those observed in Cz, and we explore the response of NOC-Si to high temperature treatments including phosphorous diffusion gettering (PDG) and Tabula Rasa (TR). The highest lifetimes (2033 us for the top of the ingot and 342 us for the bottom of the ingot) are achieved for TR followed by a PDG process comprising a standard plateau and a low temperature anneal. Further improvements can be gained by tailoring the time-temperature profiles of each process. Lifetime analysis after the PDG process indicates the presence of a getterable impurity in the as-grown material, while analysis after TR points to the presence of oxide precipitates especially at the bottom of the ingot. Uniform lifetime degradation is observed after TR which we assign to a presently unknown defect. Future work includes additional TR processing to uncover the nature of this defect, microstructural characterization of suspected oxide precipitates, and optimization of the TR process to achieve the dual goals of high lifetime and spatial homogenization.

  6. FOXN1GFP/w Reporter hESCs Enable Identification of Integrin-β4, HLA-DR, and EpCAM as Markers of Human PSC-Derived FOXN1+ Thymic Epithelial Progenitors

    PubMed Central

    Soh, Chew-Li; Giudice, Antonietta; Jenny, Robert A.; Elliott, David A.; Hatzistavrou, Tanya; Micallef, Suzanne J.; Kianizad, Korosh; Seach, Natalie; Zúñiga-Pflücker, Juan Carlos; Chidgey, Ann P.; Trounson, Alan; Nilsson, Susan K.; Haylock, David N.; Boyd, Richard L.; Elefanty, Andrew G.; Stanley, Edouard G.

    2014-01-01

    Summary Thymic epithelial cells (TECs) play a critical role in T cell maturation and tolerance induction. The generation of TECs from in vitro differentiation of human pluripotent stem cells (PSCs) provides a platform on which to study the mechanisms of this interaction and has implications for immune reconstitution. To facilitate analysis of PSC-derived TECs, we generated hESC reporter lines in which sequences encoding GFP were targeted to FOXN1, a gene required for TEC development. Using this FOXN1GFP/w line as a readout, we developed a reproducible protocol for generating FOXN1-GFP+ thymic endoderm cells. Transcriptional profiling and flow cytometry identified integrin-β4 (ITGB4, CD104) and HLA-DR as markers that could be used in combination with EpCAM to selectively purify FOXN1+ TEC progenitors from differentiating cultures of unmanipulated PSCs. Human FOXN1+ TEC progenitors generated from PSCs facilitate the study of thymus biology and are a valuable resource for future applications in regenerative medicine. PMID:24936476

  7. Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells.

    PubMed

    Pook, Martin; Teino, Indrek; Kallas, Ade; Maimets, Toivo; Ingerpuu, Sulev; Jaks, Viljar

    2015-01-01

    Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain-145 kDa-accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.

  8. Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Pook, Martin; Teino, Indrek; Kallas, Ade; Maimets, Toivo; Ingerpuu, Sulev; Jaks, Viljar

    2015-01-01

    Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain—145 kDa—accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation. PMID:26378917

  9. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.

    PubMed

    Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N

    2011-09-18

    Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

  10. Effects of substrate miscut on the properties of InGaP solar cells grown on GaAs(001) by solid-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Oshima, Ryuji; Nagato, Yuki; Okano, Yoshinobu; Sugaya, Takeyoshi

    2017-08-01

    The growth of ternary InGaP alloys is often susceptible to atomic ordering, which leads to an anomalous bandgap reduction as well as the formation of antiphase boundaries (APBs). The effect of substrate miscut on the performance of lattice-matched In0.52Ga0.48P solar cells grown on GaAs(001) substrates by solid-source molecular beam epitaxy (SS-MBE) is investigated. A B-type miscut enhanced single-variant atomic ordering even with SS-MBE, resulting in a bandgap (E g) reduction from 1.87 eV for an alloy grown on an exact substrate to 1.85 eV for that grown on the substrate miscut 6° toward (111)B. Conversely, an A-type miscut suppressed the formation of atomic ordering, resulting in the E g widening of the alloy grown on the substrate miscut 6° toward (111)A to 1.89 eV. With regard to solar cell performance, InGaP solar cells grown on A-type miscut substrates enhanced the open-circuit voltage (V OC) and W OC (= E g/q - V OC) because of the low degree of atomic ordering. Large improvements in W OC and efficiency to 0.58 V and 10.93%, respectively, were obtained for the cell grown on the substrate miscut 2° toward (111)B. A reduction in the number of APBs due to single-variant atomic ordering was related to this latter result.

  11. Immunobiology of naïve and genetically modified HLA-class-I-knockdown human embryonic stem cells.

    PubMed

    Deuse, Tobias; Seifert, Martina; Phillips, Neil; Fire, Andrew; Tyan, Dolly; Kay, Mark; Tsao, Philip S; Hua, Xiaoqin; Velden, Joachim; Eiermann, Thomas; Volk, Hans-Dieter; Reichenspurner, Hermann; Robbins, Robert C; Schrepfer, Sonja

    2011-09-01

    Human embryonic stem cells (hESCs) can serve as a universal cell source for emerging cell or tissue replacement strategies, but immune rejection of hESC derivatives remains an unsolved problem. Here, we sought to describe the mechanisms of rejection for naïve hESCs and upon HLA class I (HLA I) knockdown (hESC(KD)). hESCs were HLA I-positive but negative for HLA II and co-stimulatory molecules. Transplantation of naïve hESC into immunocompetent Balb/c mice induced substantial T helper cell 1 and 2 (Th1 and Th2) responses with rapid cell death, but hESCs survived in immunodeficient SCID-beige recipients. Histology revealed mainly macrophages and T cells, but only scattered natural killer (NK) cells. A surge of hESC-specific antibodies against hESC class I, but not class II antigens, was observed. Using HLA I RNA interference and intrabody technology, HLA I surface expression of hESC(KD) was 88%-99% reduced. T cell activation after hESC(KD) transplantation into Balb/c was significantly diminished, antibody production was substantially alleviated, the levels of graft-infiltrating immune cells were reduced and the survival of hESC(KD) was prolonged. Because of their very low expression of stimulatory NK ligands, NK-susceptibility of naïve hESCs and hESC(KD) was negligible. Thus, HLA I recognition by T cells seems to be the primary mechanism of hESC recognition, and T cells, macrophages and hESC-specific antibodies participate in hESC killing.

  12. Influence of activin A supplementation during human embryonic stem cell derivation on germ cell differentiation potential.

    PubMed

    Duggal, Galbha; Heindryckx, Björn; Warrier, Sharat; O'Leary, Thomas; Van der Jeught, Margot; Lierman, Sylvie; Vossaert, Liesbeth; Deroo, Tom; Deforce, Dieter; Chuva de Sousa Lopes, Susana M; De Sutter, Petra

    2013-12-01

    Human embryonic stem cells (hESCs) are more similar to "primed" mouse epiblast stem cells (mEpiSCs). mEpiSCs, which are derived in Activin A, show an increased propensity to form primordial germ cell (PGC)-like cells in response to bone morphogenic protein 4 (BMP4). Hence, we hypothesized that hESCs derived in the presence of Activin A may be more competent in differentiating towards PGC-like cells after supplementation with BMP4 compared to standard hESC lines. We were able to successfully derive two hESC lines in the presence of Activin A, which were pluripotent and showed higher base levels of STELLA and cKIT compared to standard hESC lines derived without Activin A addition. Furthermore, upon differentiation as embryoid bodies in the presence of BMP4, we observed upregulation of VASA at day 7, both at the transcript and protein level compared to standard hESC lines, which appeared to take longer time for PGC specification. Unlike other hESC lines, nuclear pSMAD2/3 presence confirmed that Activin signalling was switched on in Activin A-derived hESC lines. They were also responsive to BMP4 based on nuclear detection of pSMAD1/5/8 and showed endodermal differentiation as a result of GATA-6 expression. Hence, our results provide novel insights into the impact of hESC derivation in the presence of Activin A and its subsequent influence on germ cell differentiation potential in vitro.

  13. Cryopreservation of dissociated human embryonic stem cells in the presence of ROCK inhibitor.

    PubMed

    Martín-Ibáñez, Raquel; Strömberg, Anne Marie; Hovatta, Outi; Canals, Josep M

    2009-07-01

    Two different methods have been adopted for the cryopreservation of human embryonic stem cells (hESCs): vitrification and conventional slow freezing/rapid thawing. However, these methods present poor viability and high differentiation rates. Therefore, the development of an efficient cryopreservation protocol for hESCs is one of the major challenges for the application of these cells in clinical therapy and regenerative medicine. A novel method for the cryopreservation of dissociated hESCs in the presence of a selective Rho-associated kinase (ROCK) inhibitor that increases cell survival and the efficiency of colony formation of cryopreserved hESCs has been developed. Moreover, this protocol improves the existing methods presenting short recovery times and hardly any differentiation rates. Thus, an easy handling protocol that allows the cryopreservation of large amounts of hESCs is described.

  14. Moringa oleifera Lam. (Moringaceae) grown in Nigeria: In vitro antisickling activity on deoxygenated erythrocyte cells

    PubMed Central

    Adejumo, Olufunmilayo E.; Kolapo, Adelodun L.; Folarin, Akintomiwa O.

    2012-01-01

    Context: Traditional medicine, which is more available and affordable for the poor uses medicinal plants for the treatment and management of various ailments, including the sickle cell disease (SCD). About 24 million Nigerians are carriers of this sickled cell gene, while approximately 2.4 million are SCD patients. Moringa oleifera Lam. (Moringaceae) possesses high nutritional value and has been used in folklore medicine to treat various ailments related to pain and inflammation. Chemical, pharmacological and pharmacognostical applications of Moringa oleifera have been reported. Objective: This study investigated the antisickling potential of polar and non-polar extracts of the seed, flower and leaf of Moringa oleifera for the first time. Materials and Methods: Using crude methanol extract, aqueous extract, ethyl acetate and butanol, the in vitro antisickling activities of Moringa oleifera fractions, were evaluated using erythrocyte cells deoxygenated with 2% sodium metabisulphite. p-Hydroxybenzoic acid and normal saline were employed as positive and negative controls. Results: Phytochemical screening revealed the presence of saponins, free anthraquinones, and alkaloids. Extracts of the seed and flower demonstrated a higher (P<0.05) antisickling activity in comparison to the leaf extract. The leaf extract, as well as those of the seed and flower, equally demonstrated a (P<0.05) reversal of sickled erythrocytes. Discussions and Conclusions: These findings suggest that Moringa oleifera may play a role in the management of SCD, by incorporation of its fractions into recipes. More extensive biological evaluations and further studies will be necessary for the chemical characterization of the antisickling principles. PMID:22557922

  15. Hybrid solar cells based on dc magnetron sputtered films of n-ITO on APMOVPE grown p-InP

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.; Li, X.; Wanlass, M. W.; Emery, K. A.; Gessert, T. A.

    1988-01-01

    Hybrid indium-tin-oxide (ITO)/InP solar cells are discussed. The cells are constructed by dc magnetron sputter deposition of ITO onto high-quality InP films grown by atmospheric pressure metal-organic vapor-phase epitaxy (APMOVPE). A record efficiency of 18.9 percent, measured under standard Solar Energy Research Institute reporting conditions, has been obtained. The p-InP surface is shown to be type converted, principally by the ITO, but with the extent of conversion being modified by the nature of the sputtering gas. The deposition process, in itself, is not responsible for the type conversion. Dark currents have been suppressed by more than three orders of magnitude by the addition of hydrogen to the sputtering gas during deposition of a thin (5 nm) interface layer. Without this layer, and using only the more usual argon/oxygen mixture, the devices had poorer efficiencies and were unstable. A discussion of associated quantum efficiencies and capacitance/voltage measurements is also presented from which it is concluded that further improvements in efficiency will result from better control over the type-conversion process.

  16. Production of somatic cell nuclear transfer embryos using in vitro-grown and in vitro-matured oocytes in rabbits.

    PubMed

    Sugimoto, Hironobu; Kida, Yuta; Oh, Noriyoshi; Kitada, Kensaku; Matsumoto, Kazuya; Saeki, Kazuhiro; Taniguchi, Takeshi; Hosoi, Yoshihiko

    2015-08-01

    We examined growing oocytes collected from follicles remaining in superovulated rabbit ovaries, that were grown (in vitro growth, IVG) and matured (in vitro maturation, IVM) in vitro. We produced somatic cell nuclear transfer (SCNT) embryos using the mature oocytes and examined whether these embryos have the ability to develop to the blastocyst stage. In addition, we examined the effects of trichostatin A (TSA), a histone deacetylase inhibitor (HDACi), on the developmental competence of SCNT embryos derived from IVG-IVM oocytes. After growth for 7 days and maturation for 14-16 h in vitro, the growing oocytes reached the metaphase II stage (51.4%). After SCNT, these reconstructed embryos reached the blastocyst stage (20%). Furthermore, the rate of development to the blastocyst stage and the number of cells in the blastocysts in SCNT embryos derived from IVG-IVM oocytes were significantly higher for TSA-treated embryos compared with TSA-untreated embryos (40.6 versus 21.4% and 353.1 ± 59.1 versus 202.5 ± 54.6, P < 0.05). These results indicate that rabbit SCNT embryos using IVG-IVM oocytes have the developmental competence to reach the blastocyst stage.

  17. Hybrid solar cells based on dc magnetron sputtered films of n-ITO on APMOVPE grown p-InP

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.; Li, X.; Wanlass, M. W.; Emery, K. A.; Gessert, T. A.

    1988-01-01

    Hybrid indium-tin-oxide (ITO)/InP solar cells are discussed. The cells are constructed by dc magnetron sputter deposition of ITO onto high-quality InP films grown by atmospheric pressure metal-organic vapor-phase epitaxy (APMOVPE). A record efficiency of 18.9 percent, measured under standard Solar Energy Research Institute reporting conditions, has been obtained. The p-InP surface is shown to be type converted, principally by the ITO, but with the extent of conversion being modified by the nature of the sputtering gas. The deposition process, in itself, is not responsible for the type conversion. Dark currents have been suppressed by more than three orders of magnitude by the addition of hydrogen to the sputtering gas during deposition of a thin (5 nm) interface layer. Without this layer, and using only the more usual argon/oxygen mixture, the devices had poorer efficiencies and were unstable. A discussion of associated quantum efficiencies and capacitance/voltage measurements is also presented from which it is concluded that further improvements in efficiency will result from better control over the type-conversion process.

  18. Genetic stability and mutant selection in Sabin 2 strain of oral poliovirus vaccine grown under different cell culture conditions.

    PubMed

    Taffs, R E; Chumakov, K M; Rezapkin, G V; Lu, Z; Douthitt, M; Dragunsky, E M; Levenbook, I S

    1995-06-01

    Mutations that consistently accumulated in the attenuated Sabin 2 strain of poliovirus during propagation in cell cultures were identified by sequence heterogeneity assay and quantified by mutant analysis by PCR and restriction enzyme cleavage (MAPREC). Eight additional sites previously identified in stool isolates were also examined by MAPREC in the virus passages. The pattern of selectable mutations and the rate of their accumulation depended on the type and confluence of the cell culture and the temperature of virus growth. Five unstable genomic sites were identified in Sabin 2 virus passaged 10 times at 34 degrees in African green monkey kidney (AGMK) cells, with the mutations accumulating in the range 1 to 24%. Accumulation of these mutations did not appear to result in a loss of attenuated phenotype since the virus passaged under these conditions passed the monkey neurovirulence test (MNVT). The content of the 481-G revertant known to be related to neurovirulence in monkeys did not increase. Thus, our results suggest that upon growth of Sabin 2 virus in AGMK cells at 34 degrees, the key determinant(s) of attenuation remained stable, and the mutations that occurred did not affect monkey neurovirulence. In virus passaged 10 times at 37 degrees in AGMK cells, 4 unstable genomic sites were identified, in some of them accumulating up to 12% of the mutants. This virus sample severely failed the MNVT. Virus passaged in Vero cells at 34 and 37 degrees accumulated mutants at 7 and 14 genomic sites, respectively, including 481-G in both cases, with almost complete substitution of the original nucleotides at some of the sites. We tested 44 commercial monopools of Type 2 OPV and found out that all of them contained 481-G revertants in the range 0.4-1.1%. An increase in the 481-G revertants in passaged viruses to the level of 4% and above correlated with failure of these samples by the MNVT. Since the pattern of selectable mutations differed in viruses grown in the two

  19. Performance of microbial electrolysis cells with bioanodes grown at different external resistances.

    PubMed

    Rago, Laura; Monpart, Nuria; Cortés, Pilar; Baeza, Juan A; Guisasola, Albert

    2016-01-01

    Bioelectrochemical systems need an anode with a high abundance of exoelectrogenic bacteria for an optimal performance. Among all possible operational parameters for an efficient enrichment, the role of external resistance in microbial fuel cell (MFC) has gained a lot of interest since it indirectly poises an anode potential, a key parameter for biofilm distribution and morphology. Thus, this work aims at investigating and discussing whether bioanodes selected at different external resistances under MFC operation present different responses under both MFC and microbial electrolysis cell (MEC) operation. A better MEC performance (i.e. shorter start-up time, higher current intensity and higher H2 production rate) was obtained with an anode from an MFC developed under low external resistance. Quantitative real-time polymerase chain reaction (qPCR) confirmed that a low external resistance provides an MFC anodic biofilm with the highest content of Geobacter because it allows higher current intensity, which is correlated to exoelectrogenic activity. High external resistances such as 1,000 Ω led to a slower start-up time under MEC operation.

  20. Human embryonic stem cells: preclinical perspectives

    PubMed Central

    Deb, Kaushik Dilip; Sarda, Kanchan

    2008-01-01

    Human embryonic stem cells (hESCs) have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic. PMID:18230169

  1. Stable release of BDNF from the fibroblast cell line NIH3T3 grown on silicone elastomers enhances survival of spiral ganglion cells in vitro and in vivo.

    PubMed

    Warnecke, Athanasia; Sasse, Susanne; Wenzel, Gentiana I; Hoffmann, Andrea; Gross, Gerhard; Paasche, Gerrit; Scheper, Verena; Reich, Uta; Esser, Karl-Heinz; Lenarz, Thomas; Stöver, Timo; Wissel, Kirsten

    2012-07-01

    The treatment of choice for profound sensorineural hearing loss (SNHL) is direct electrical stimulation of spiral ganglion cells (SGC) via a cochlear implant (CI). The number and excitability of SGC seem to be critical for the success that can be achieved via CI treatment. However, SNHL is associated with degeneration of SGC. Long-term drug delivery to the inner ear for improving SGC survival may be achieved by functionalisation of CI electrodes with cells providing growth factors. Therefore, the capacity of brain-derived neurotrophic factor (BDNF)-secreting NIH3T3 cells grown on cylindrically shaped silicone elastomers (SE) to exert local and sustained neuroprotective effects was assessed in vitro and in vivo. An in vitro model to investigate adhesion and cell growth of lentivirally modified NIH3T3 cells synthesising BDNF on SE was established. The bioactivity of BDNF was characterised by co-cultivation of SGC with cell-coated SE. In addition, cell-coated SE were implanted into deafened guinea pigs. The recombinant NIH3T3 cells proliferated on silicone surfaces during 14 days of cultivation and expressed significantly increasing BDNF levels. Enhanced survival rates and neurite outgrowth of SGC demonstrated the bioactivity of BDNF in vitro. Implantation of SE with adhering BDNF-secreting NIH3T3 cells into the cochleae of systemically deafened guinea pigs induced a significant increase in SGC survival in comparison to SE without cell coating. Our data demonstrate a novel approach of cell-based long-term drug delivery to support SGC survival in vitro and in vivo. This therapeutic strategy--once transferred to cells suitable for clinical application--may improve CI performance.

  2. Dye-sensitized solar cell employing zinc oxide aggregates grown in the presence of lithium

    DOEpatents

    Zhang, Qifeng; Cao, Guozhong

    2013-10-15

    Provided are a novel ZnO dye-sensitized solar cell and method of fabricating the same. In one embodiment, deliberately added lithium ions are used to mediate the growth of ZnO aggregates. The use of lithium provides ZnO aggregates that have advantageous microstructure, morphology, crystallinity, and operational characteristics. Employing lithium during aggregate synthesis results in a polydisperse collection of ZnO aggregates favorable for porosity and light scattering. The resulting nanocrystallites forming the aggregates have improved crystallinity and more favorable facets for dye molecule absorption. The lithium synthesis improves the surface stability of ZnO in acidic dyes. The procedures developed and disclosed herein also help ensure the formation of an aggregate film that has a high homogeneity of thickness, a high packing density, a high specific surface area, and good electrical contact between the film and the fluorine-doped tin oxide electrode and among the aggregate particles.

  3. Patient-specific embryonic stem cells derived from human SCNT blastocysts.

    PubMed

    Hwang, Woo Suk; Roh, Sung Il; Lee, Byeong Chun; Kang, Sung Keun; Kwon, Dae Kee; Kim, Sue; Kim, Sun Jong; Park, Sun Woo; Kwon, Hee Sun; Lee, Chang Kyu; Lee, Jung Bok; Kim, Jin Mee; Ahn, Curie; Paek, Sun Ha; Chang, Sang Sik; Koo, Jung Jin; Yoon, Hyun Soo; Hwang, Jung Hye; Hwang, Youn Young; Park, Ye Soo; Oh, Sun Kyung; Kim, Hee Sun; Park, Jong Hyuk; Moon, Shin Yong; Schatten, Gerald

    2005-06-17

    Patient-specific, immune-matched human embryonic stem cells (hESCs) are anticipated to be of great biomedical importance for studies of disease and development and to advance clinical deliberations regarding stem cell transplantation. Eleven hESC lines were established by somatic cell nuclear transfer (SCNT) of skin cells from patients with disease or injury into donated oocytes. These lines, nuclear transfer (NT)-hESCs, grown on human feeders from the same NT donor or from genetically unrelated individuals, were established at high rates, regardless of NT donor sex or age. NT-hESCs were pluripotent, chromosomally normal, and matched the NT patient's DNA. The major histocompatibility complex identity of each NT-hESC when compared to the patient's own showed immunological compatibility, which is important for eventual transplantation. With the generation of these NT-hESCs, evaluations of genetic and epigenetic stability can be made. Additional work remains to be done regarding the development of reliable directed differentiation and the elimination of remaining animal components. Before clinical use of these cells can occur, preclinical evidence is required to prove that transplantation of differentiated NT-hESCs can be safe, effective, and tolerated.

  4. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  5. Genetic modification of human embryonic stem cells for derivation of target cells.

    PubMed

    Giudice, Antonietta; Trounson, Alan

    2008-05-08

    Directed differentiation of human embryonic stem cells (hESCs) may yield models to study organogenesis, produce cells and tissues for therapies, and identify clinically relevant compounds for disease treatment. Optimal conditions for specific differentiation of hESCs are still being determined. Incorporation of fluorescent reporter genes will enable high-throughput screening to identify fate-specifying molecules. Ectopic expression, or silencing, of key developmental genes can also direct differentiation toward specific lineages. Here, we briefly overview various genetic modifications used to generate useful hESC lines. We identify strengths and limitations to each method and propose the most suitable approaches for different applications.

  6. SEAP expression in transiently transfected mammalian cells grown in serum-free suspension culture.

    PubMed

    Schlaeger, Ernst-Jürgen; Kitas, Eric A; Dorn, Arnulf

    2003-05-01

    A transient transfection process was established using a novel 'in-house' developed transfection reagent, Ro-1539. It allows rapid production of large quantities of various recombinant proteins. Here we describe the transient expression of the secreted human placental alkaline phosphatase (SEAP) by HEK293EBNA and CHO cells in serum-free suspension culture. Unexpectedly, high expression levels of SEAP (150 mug/ml) were found 3-4 days post-transfection when placental alkaline phosphatase (AP) was used as the reference enzyme. To confirm these data, an SDS-PAGE analysis was performed and the visible SEAP protein band (MW of 65 kDa) was compared with co-migrated purified placental AP protein as reference. The scanning analysis of the gel showed that SEAP, a truncated form of AP, has a higher specific activity than the purified placental AP. A correction factor was introduced permitting a direct comparison of placental AP activity with the expression levels of SEAP. Scale-up of the transfection system from spinner flask to bioreactor was simple and straightforward, resulting in similar yields of SEAP. Finally, the effectiveness of Ro-1539 was compared to that of other transfection reagents.

  7. Dilute Nitride GaNP Wide Bandgap Solar Cells Grown by Gas-Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Sukrittanon, Supanee

    Integration of III-V semiconductors and Si is a very attractive means to achieve low-cost high-efficiency solar cells. A promising configuration is to utilize a dual-junction solar cell, in which Si is employed as the bottom junction and a wide-bandgap III-V semiconductor as the top junction. The use of a III-V semiconductor as a top junction offers the potential to achieve higher efficiencies than today's best Si solar cell. Dilute nitride GaNP is a promising candidate for the top cell in dual-junction solar cells because it possesses several extremely important attributes: a direct-bandgap that is also tunable as well as easily-attained lattice-match with Si. As a first step towards integration of GaNP solar cells onto Si, the goal of this dissertation is to optimize and demonstrate GaNP solar cells grown by gas-source molecular beam epitaxy (GSMBE) on GaP (001) substrate. The dissertation is divided into three major parts. In the first part, we demonstrate ˜ 2.05 eV ([N]˜ 1.8%) dilute nitride GaNP thin film solar cells, in which the GaNP is closely lattice-matched to Si, on GaP substrates. From transmission electron microscopy (TEM), the device exhibits defects only at the GaNP/GaP interface, and no threading dislocations in an active layer are observed. Our best GaNP solar cell achieved an efficiency of 7.9% with anti-reflection (AR) coating and no window layer. This GaNP solar cell's efficiency is higher than the most efficient GaP solar cell to date and higher than other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance using GaNP are demonstrated. In the second part, we demonstrate the successful fabrication of GaP/GaNP core/shell microwires utilizing a novel technique: top-down reactive-ion etching (RIE) to create the cores and MBE to create the shells. Systematic studies have been

  8. The effect of adriamycin and 4'-deoxydoxorubicin on cell survival of human lung tumour cells grown in monolayer and as spheroids.

    PubMed Central

    Kerr, D. J.; Wheldon, T. E.; Kerr, A. M.; Freshney, R. I.; Kaye, S. B.

    1986-01-01

    Using growth delay and clonogenic cell survival as end points, we have shown that the 3-dimensional structure of human lung tumour spheroids confers a degree of resistance to the anthracyclines adriamycin and 4'-deoxydoxorubicin, relative to cells grown as monolayer. 4'-deoxydoxorubicin induces a longer growth delay and greater clonogenic cell kill than adriamycin in spheroids, although it is no more cytotoxic in monolayer (exponential and plateau phase). There is a log linear relationship between clonogenic cell survival and duration of adriamycin exposure in monolayers, and biphasic curve with a lesser degree of cell kill for disaggregated spheroid cells. Using fluorescent microscopy we have demonstrated, qualitatively, that the more lipophilic analogue partitions into the spheroid more rapidly and to a greater degree than adriamycin. It is possible that adriamycin penetration is a relatively important aspect of spheroid drug resistance, which may be related to intraspheroidal pH gradients, and that we have partially overcome this by using a lipophilic analogue. Images Figure 7 PMID:3756078

  9. The changing landscape of European and international regulation on embryonic stem cell research.

    PubMed

    Elstner, A; Damaschun, A; Kurtz, A; Stacey, G; Arán, B; Veiga, A; Borstlap, J

    2009-03-01

    Legislation in individual member states of the European Union on human embryonic stem cell (hESC) research is as divergent as the different cultural, ethical, and religious views on the issue. On the occasion of the public launch of the European Human Embryonic Stem Cell Registry (hESCreg: www.hescreg.eu), a two-day symposium was held on 18 and 19 January 2008 in Berlin to offer participants an overview of state-of-the-art hESC research and legislation throughout Europe and in selected regions of the world. Thirty leading scientists from Europe as well as from the United States, Japan, and Australia reported on a range of aspects related to research on hESC and reviewed the key elements of the newly established hESCreg database of hESC lines. In this article we summarize and complete the information on the current status of international hESC regulation.

  10. Sub-toxic concentrations of volatile organic compounds inhibit extracellular respiration of Escherichia coli cells grown in anodic bioelectrochemical systems.

    PubMed

    Santoro, Carlo; Mohidin, Abeed Fatima; Grasso, Letizia Lo; Seviour, Thomas; Palanisamy, Kannan; Hinks, Jamie; Lauro, Federico M; Marsili, Enrico

    2016-12-01

    Low-cost and rapid detection of volatile organic compounds (VOCs) is important for the control of water quality of used water and protection of downstream used water treatment processes. In this work, the effect of sub-toxic concentration of VOCs on the current output of Escherichia coli in bioelectrochemical systems (BES) is shown, in light of environmental sensing applications for sewage and used water networks. E. coli cells were grown on carbon felt electrodes in artificial used water, to increase sensitivity and decrease response time for detection. Extracellular electron transfer was promoted by the addition of a biocompatible redox mediator, 2-hydroxy-1,4-naphthoquinone (HNQ). Among the eight VOCs investigated, toluene is the most toxic to E. coli, with a detection limit of 50±2mgL(-1) and current output of 32±1nAmg(-1)L(-1). This work offers a straightforward route to enhance the detection of organic contaminants in used water for environmental applications.

  11. Analysis of the 5'UTR of HCV genotype 3 grown in vitro in human B cells, T cells, and macrophages

    PubMed Central

    2010-01-01

    Background Previously, we have reported the isolation and molecular characterization of human Hepatitis C virus genotype 1 (HCV-1) from infected patients. We are now reporting an analysis of HCV obtained from patients infected with HCV genotype 3 (HCV-3) as diagnosed by clinical laboratories. Results HCV was cultured in vitro using our system. HCV RNA was isolated from patients' blood and from HCV cultured in various cell types for up to three months. The 5'UTR of these isolates were used for comparisons. Results revealed a number of sequence changes as compared to the serum RNA. The HCV RNA produced efficiently by infected macrophages, B-cells, and T-cells had sequences similar to HCV-1, which suggests that selection of the variants was performed at the level of macrophages. Virus with sequences similar to HCV-1 replicated better in macrophages than HCV having a 5'UTR similar to HCV-3. Conclusions Although HCV-3 replicates in cell types such as B-cells, T-cells, and macrophages, it may require a different primary cell type for the same purpose. Therefore, in our opinion, HCV-3 does not replicate efficiently in macrophages, and patients infected with HCV-3 may contain a population of HCV-1 in their blood. PMID:20626910

  12. Genetic processes in intergeneric cell hybrids Atropa + Nicotiana : 1. Genetic constitution of cells of different clonal origin grown in vitro.

    PubMed

    Gleba, Y Y; Momot, V P; Okolot, A N; Cherep, N N; Skarzhynskaya, M V; Kotov, V

    1983-06-01

    The genetic constitution of the cell hybrids Atropa belladonna + Nicotiana chinensis, obtained by cloning of individual heteroplasmic protoplast fusion products (Gleba et al. 1982) and cultured in vitro for 12 months, has been studied. The study comprised 11 hybrid cell clones of independent origin and included analysis of a) chromosome number, size, morphology, and relative position in metaphase plates, b) multiple molecular forms of the enzymes esterase and amylase, and c) relative nuclear DNA content. The data obtained permit us to conclude that, after one year of unorganized growth in vitro, the cells of most (8) clones had retained chromosomes of both parents, while species-specific elimination of nearly all Atropa chromosomes had occurred in three clones. About half of the non-segregating clones possess 120-150 chromosomes including 50-70 of Atropa and 50-90 of Nicotiana. Other clones are polyploid and possess 200-250 chromosomes with a predominance of either Atropa or Nicotiana chromosome types. Only a few chromosomal changes (reconstituted chromosomes, ring chromosomes) have been detected. In some metaphase plates, chromosomes of the two parents tend to group separately, indicating non-random arrangement of chromosomes of the two parents within the hybrid nucleus. Cytophotometric studies of the relative nuclear DNA content showed that distribution histograms for cell clones were similar to those of non-hybrid cultured cells. Cell populations were relatively homogenous and do not indicate any genetic instability as a result of hybridization between remote plant species. Biochemical analysis of isoenzyme patterns confirmed that in most cell clones, species-specific multiple molecular forms of esterase and amylase from both parents were present, i.e. genetic material of both parental species was expressed in the cell hybrids.

  13. Reversible Lineage-Specific Priming of Human Embryonic Stem Cells Can Be Exploited to Optimize the Yield of Differentiated Cells

    PubMed Central

    Lee, Jung Bok; Graham, Monica; Collins, Tony J; Lee, Jong-Hee; Hong, Seok-Ho; Mcnicol, Amie Jamie; Shapovalova, Zoya; Bhatia, Mickie

    2015-01-01

    The clinical use of human embryonic stem cells (hESCs) requires efficient cellular expansion that must be paired with an ability to generate specialized progeny through differentiation. Self-renewal and differentiation are deemed inherent hallmarks of hESCs and a growing body of evidence suggests that initial culture conditions dictate these two aspects of hESC behavior. Here, we reveal that defined culture conditions using commercial mTeSR1 media augment the expansion of hESCs and enhance their capacity for neural differentiation at the expense of hematopoietic lineage competency without affecting pluripotency. This culture-induced modification was shown to be reversible, as culture in mouse embryonic fibroblast-conditioned media (MEF-CM) in subsequent passages allowed mTeSR1-expanded hESCs to re-establish hematopoietic differentiation potential. Optimal yield of hematopoietic cells can be achieved by expansion in mTeSR1 followed by a recovery period in MEF-CM. Furthermore, the lineage propensity to hematopoietic and neural cell types could be predicted via analysis of surrogate markers expressed by hESCs cultured in mTeSR1 versus MEF-CM, thereby circumventing laborious in vitro differentiation assays. Our study reveals that hESCs exist in a range of functional states and balance expansion with differentiation potential, which can be modulated by culture conditions in a predictive and quantitative manner. Stem Cells 2015;33:1142–1152 PMID:25639500

  14. Progress in the Efficiency of Wide-Gap Cu(In1-xGax)Se2 Solar Cells Using CIGSe Layers Grown in Water Vapor

    NASA Astrophysics Data System (ADS)

    Ishizuka, Shogo; Sakurai, Keiichiro; Yamada, Akimasa; Shibata, Hajime; Matsubara, Koji; Yonemura, Minoru; Nakamura, Satoshi; Nakanishi, Hisayuki; Kojima, Takeshi; Niki, Shigeru

    2005-05-01

    Progress in the performance of wide-gap Cu(In1-xGax)Se2 (CIGSe) solar cells for x values around 0.5 has been demonstrated using CIGSe layers grown in the presence of water vapor. While CIGSe thin films deposited in the presence of water vapor showed variations in electrical properties such as increases in hole carrier density and a consequent enhancement of p-type conductivity, no significant changes in the morphology and growth orientation were observed. Both the open circuit voltages and current densities of the CIGSe solar cells were improved using CIGSe layers grown in water vapor. An 18.1%-efficient cell with an open circuit voltage of 0.744 V, a current density of 32.4 mA/cm2 and a fill factor of 0.752 was fabricated from a 1.3 eV-CIGSe (x ˜ 0.48) layer.

  15. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.

    PubMed

    Gai, Boju; Sun, Yukun; Lim, Haneol; Chen, Huandong; Faucher, Joseph; Lee, Minjoo L; Yoon, Jongseung

    2017-01-24

    Large-scale deployment of GaAs solar cells in terrestrial photovoltaics demands significant cost reduction for preparing device-quality epitaxial materials. Although multilayer epitaxial growth in conjunction with printing-based materials assemblies has been proposed as a promising route to achieve this goal, their practical implementation remains challenging owing to the degradation of materials properties and resulting nonuniform device performance between solar cells grown in different sequences. Here we report an alternative approach to circumvent these limitations and enable multilayer-grown GaAs solar cells with uniform photovoltaic performance. Ultrathin single-junction GaAs solar cells having a 300-nm-thick absorber (i.e., emitter and base) are epitaxially grown in triple-stack releasable multilayer assemblies by molecular beam epitaxy using beryllium as a p-type impurity. Microscale (∼500 × 500 μm(2)) GaAs solar cells fabricated from respective device layers exhibit excellent uniformity (<3% relative) of photovoltaic performance and contact properties owing to the suppressed diffusion of p-type dopant as well as substantially reduced time of epitaxial growth associated with ultrathin device configuration. Bifacial photon management employing hexagonally periodic TiO2 nanoposts and a vertical p-type metal contact serving as a metallic back-surface reflector together with specialized epitaxial design to minimize parasitic optical losses for efficient light trapping synergistically enable significantly enhanced photovoltaic performance of such ultrathin absorbers, where ∼17.2% solar-to-electric power conversion efficiency under simulated AM1.5G illumination is demonstrated from 420-nm-thick single-junction GaAs solar cells grown in triple-stack epitaxial assemblies.

  16. Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids

    NASA Astrophysics Data System (ADS)

    Theumer, Anja; Gräfe, Christine; Bähring, Franziska; Bergemann, Christian; Hochhaus, Andreas; Clement, Joachim H.

    2015-04-01

    The aim of this study was to investigate the interaction of superparamagnetic iron oxide nanoparticles (SPION) with human blood-brain barrier-forming endothelial cells (HBMEC) in two-dimensional cell monolayers as well as in three-dimensional multicellular spheroids. The precise nanoparticle localisation and the influence of the NP on the cellular viability and the intracellular Akt signalling were studied in detail. Long-term effects of different polymer-coated nanoparticles (neutral fluidMAG-D, anionic fluidMAG-CMX and cationic fluidMAG-PEI) and the corresponding free polymers on cellular viability of HBMEC were investigated by real time cell analysis studies. Nanoparticles exert distinct effects on HBMEC depending on the nanoparticles' surface charge and concentration, duration of incubation and cellular context. The most severe effects were caused by PEI-coated nanoparticles. Concentrations above 25 μg/ml led to increased amounts of dead cells in monolayer culture as well as in multicellular spheroids. On the level of intracellular signalling, context-dependent differences were observed. Monolayer cultures responded on nanoparticle incubation with an increase in Akt phosphorylation whereas spheroids on the whole show a decreased Akt activity. This might be due to the differential penetration and distribution of PEI-coated nanoparticles.

  17. Influence of different yeast cell-wall mutants on performance and protection against pathogenic bacteria (Vibrio campbellii) in gnotobiotically-grown Artemia.

    PubMed

    Soltanian, Siyavash; Dhont, Jean; Sorgeloos, Patrick; Bossier, Peter

    2007-07-01

    A selection of isogenic yeast strains (with deletion for genes involved in cell-wall synthesis) was used to evaluate their nutritional and immunostimulatory characteristics for gnotobiotically-grown Artemia. In the first set of experiments the nutritional value of isogenic yeast strains (effected in mannoproteins, glucan, chitin and cell-wall bound protein synthesis) for gnotobiotically-grown Artemia was studied. Yeast cell-wall mutants were always better feed for Artemia than the isogenic wild type mainly because they supported a higher survival but not a stronger individual growth. The difference in Artemia performance between WT and mutants feeding was reduced when stationary-phase grown cells were used. These results suggest that any mutation affecting the yeast cell-wall make-up is sufficient to improve the digestibility in Artemia. The second set of experiments, investigates the use of a small amount of yeast cells in gnotobiotic Artemia to overcome pathogenicity of Vibrio campbellii (VC). Among all yeast cell strains used in this study, only mnn9 yeast (less cell-wall bound mannoproteins and more glucan and chitin) seems to completely protect Artemia against the pathogen. Incomplete protection against the pathogen was obtained by the gas1 and chs3 mutants, which are lacking the gene for a particular cell-wall protein and chitin synthesis, respectively, resulting in more glucan. The result with the chs3 mutant is of particular interest, as its nutritional value for Artemia is comparable to the wild type. Hence, only with the chs3 strain, in contrast to the gas1 or mnn9 strains, the temporary protection to VC is not concomitant with a better growth performance under non-challenged conditions, suggesting non-interference of general nutritional effects.

  18. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids

    PubMed Central

    Finkbeiner, Stacy R.; Freeman, Jennifer J.; Wieck, Minna M.; El-Nachef, Wael; Altheim, Christopher H.; Tsai, Yu-Hwai; Huang, Sha; Dyal, Rachel; White, Eric S.; Grikscheit, Tracy C.; Teitelbaum, Daniel H.; Spence, Jason R.

    2015-01-01

    ABSTRACT Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs), called human intestinal organoids (HIOs), have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue. PMID:26459240

  19. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids.

    PubMed

    Finkbeiner, Stacy R; Freeman, Jennifer J; Wieck, Minna M; El-Nachef, Wael; Altheim, Christopher H; Tsai, Yu-Hwai; Huang, Sha; Dyal, Rachel; White, Eric S; Grikscheit, Tracy C; Teitelbaum, Daniel H; Spence, Jason R

    2015-10-12

    Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs), called human intestinal organoids (HIOs), have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue.

  20. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell.

    PubMed

    Campbell, Alan S; Murata, Hironobu; Carmali, Sheiliza; Matyjaszewski, Krzysztof; Islam, Mohammad F; Russell, Alan J

    2016-12-15

    Enzymatic biofuel cells (EBFCs) are capable of generating electricity from physiologically present fuels making them promising power sources for the future of implantable devices. The potential application of such systems is limited, however, by inefficient current generation. Polymer-based protein engineering (PBPE) offers a unique method to tailor enzyme function through tunable modification of the enzyme surface with functional polymers. In this study, we report on the modification of glucose oxidase (GOX) with ferrocene-containing redox polymers to increase current generation efficiency in an enzyme-modified anode. Poly(N-(3-dimethyl(ferrocenyl)methylammonium bromide)propyl acrylamide) (pFcAc) was grown from covalently attached, water-soluble initiator molecules on the surface of GOX in a "grafting-from" approach using atom transfer radical polymerization (ATRP). The covalently-coupled ferrocene-containing polymers on the enzyme surface promoted the effective "wiring" of the GOX active site to an external electrode. The resulting GOX-pFcAc conjugates generated over an order of magnitude increase in current generation efficiency and a 4-fold increase in maximum EBFC power density (≈1.7µWcm(-2)) with similar open circuit voltage (0.27V) compared to native GOX when physically adsorbed onto paddle-shaped electrodes made up of electrospun polyacrylonitrile fibers coated with gold nanoparticles and multi-wall carbon nanotubes. The formation of electroactive enzyme-redox polymer conjugates using PBPE represents a powerful new tool for the improvement of mediated enzyme-based bioelectronics without the need for free redox mediators or anode/cathode compartmentalization.

  1. [Development of human embryonic stem cell model for toxicity evaluation].

    PubMed

    Yu, Guang-yan; Cao, Tong; Ouyang, Hong-wei; Peng, Shuang-qing; Deng, Xu-liang; Li, Sheng-lin; Liu, He; Zou, Xiao-hui; Fu, Xin; Peng, Hui; Wang, Xiao-ying; Zhan, Yuan

    2013-02-18

    The current international standard for toxicity screening of biomedical devices and materials recommend the use of immortalized cell lines because of their homogeneous morphologies and infinite proliferation which provide good reproducibility for in vitro cytotoxicity screening. However, most of the widely used immortalized cell lines are derived from animals and may not be representative of normal human cell behavior in vivo, in particular in terms of the cytotoxic and genotoxic response. Therefore, It is vital to develop a model for toxicity evaluation. In our studies, two Chinese human embryonic stem cell (hESC) lines as toxicity model were established. hESC derived tissue/organ cell model for tissue/organ specific toxicity evaluation were developed. The efficiency and accuracy of using hESC model for cytoxicity, embryotoxicity and genotoxicity evaluation were confirmed. The results indicated that hESCs might be good tools for toxicity testing and biosafety evaluation in vitro.

  2. Identification of Proteins Related to Epigenetic Regulation in the Malignant Transformation of Aberrant Karyotypic Human Embryonic Stem Cells by Quantitative Proteomics

    PubMed Central

    Sun, Yi; Yang, Yixuan; Zeng, Sicong; Tan, Yueqiu; Lu, Guangxiu; Lin, Ge

    2014-01-01

    Previous reports have demonstrated that human embryonic stem cells (hESCs) tend to develop genomic alterations and progress to a malignant state during long-term in vitro culture. This raises concerns of the clinical safety in using cultured hESCs. However, transformed hESCs might serve as an excellent model to determine the process of embryonic stem cell transition. In this study, ITRAQ-based tandem mass spectrometry was used to quantify normal and aberrant karyotypic hESCs proteins from simple to more complex karyotypic abnormalities. We identified and quantified 2583 proteins, and found that the expression levels of 316 proteins that represented at least 23 functional molecular groups were significantly different in both normal and abnormal hESCs. Dysregulated protein expression in epigenetic regulation was further verified in six pairs of hESC lines in early and late passage. In summary, this study is the first large-scale quantitative proteomic analysis of the malignant transformation of aberrant karyotypic hESCs. The data generated should serve as a useful reference of stem cell-derived tumor progression. Increased expression of both HDAC2 and CTNNB1 are detected as early as the pre-neoplastic stage, and might serve as prognostic markers in the malignant transformation of hESCs. PMID:24465727

  3. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions

    PubMed Central

    Quan, Yong; Jin, Yisheng; Faria, Teresa N.; Tilford, Charles A.; He, Aiqing; Wall, Doris A.; Smith, Ronald L.; Vig, Balvinder S.

    2012-01-01

    The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5–7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells. PMID:24300234

  4. Role of P13 Kinase Signaling Pathways in Polarity Determination of Human Mammary Epithelial Cells Grown in Three-Dimensional Extracellular Matrix

    DTIC Science & Technology

    2004-09-01

    because cells died once they overexpressed PTEN-GFP construct. The primary consequence of P13K activation is the generation of PIP3 in the membrane...grow in anchorage- independent assays (Figure 3). Our results are consistent with another recent study in that active Akt, when overexpressed ...grown in methyl downstream of P13K might exist to cellulose for 3 weeks and micrographs were control polarity, taken. Now came the question as to which

  5. Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose.

    PubMed

    Burton, Euan; Martin, Vincent J J

    2012-12-01

    Clostridium thermocellum is a Gram-positive thermophilic anaerobic bacterium with the ability to directly convert cellulosic biomass into useful products such as ethanol and hydrogen. In this study, a quantitative comparative proteomic analysis of the organism was performed to identify proteins and biochemical pathways that are differentially utilized by the organism after growth on cellobiose or cellulose. The cytoplasmic and membrane proteomes of C. thermocellum grown on cellulose or cellobiose were quantitatively compared using a metabolic (15)N isotope labelling method in conjunction with nanoLC-ESI-MS/MS (liquid chromatography - electrospray ionization - tandem mass spectrometry). In total, 1255 proteins were identified in the study, and 129 of those were able to have their relative abundance per cell compared in at least one cellular compartment in response to the substrate provided. This study reveals that cells grown on cellulose increase their abundance of phosphoenolpyruvate carboxykinase while decreasing the abundance of pyruvate dikinase and oxaloacetate decarboxylase, suggesting that the organism diverts carbon flow into a transhydrogenase-malate pathway that can increase the production of the biosynthetic intermediates NADPH and GTP. Glutamate dehydrogenase was also found to have increased abundance in cellulose-grown cells, suggesting that the assimilation of ammonia is upregulated in cells grown on the cellulosic substrates. The results illustrate a mechanism by which C. thermocellum can divert carbon into alternative pathways for the purpose of producing biosynthetic intermediates necessary to respond to growth on cellulose, including transhydrogenation of NADH to NADPH and increased nitrogen assimilation.

  6. Embryonic stem cells: from markers to market.

    PubMed

    Deb, Kaushik Dilip; Jayaprakash, Anitha Devi; Sharma, Vijay; Totey, Satish

    2008-02-01

    ABSTRACT Embryonic stem cells are considered the mother of all kinds of tissues and cells and it is envisioned as the holy grail of regenerative medicine. However, their use in cell replacement therapies (CRT) has so far been limited and their potentials are yet to be fully realized. The use of human embryonic stem cells (hESC) involves many safety issues pertaining to culture conditions and epigenetic changes. The role and importance of an epigenomic signature in derivation and maintenance of hESC are discussed. We provide a list of important epigenetic markers, which should be studied for evaluation of safety in hESC-based cell replacement therapies. These genes also need to be screened to determine an epigenetic signature for pluripotency in the hESCs. Finally a comprehensive list of all known stemness signature genes and the marker genes for different germ line lineages are presented. This review aims at summing up most of the intriguing molecules that can play a role in the maintenance of pluripotency and can help in determining hESC differentiation to various lineages. Extensive understanding of these markers will eventually help the researchers to transform the hESC research from bench to the bedside. The use of hESCs in CRTs is still in its infancy; much effort is warranted to turn them into the much dreamed about magic wand of regenerative medicine.

  7. Changes of Ribulose Bisphosphate Carboxylase/Oxygenase Content, Ribulose Bisphosphate Concentration, and Photosynthetic Activity during Adaptation of High-CO2 Grown Cells to Low-CO2 Conditions in Chlorella pyrenoidosa1

    PubMed Central

    Yokota, Akiho; Canvin, David T.

    1986-01-01

    Changes of some photosynthetic properties of high-CO2 grown cells of Chlorella pyrenoidosa during adaptation to low-CO2 conditions have been investigated. The Km value of photosynthesis of the high-CO2 grown cells for dissolved inorganic carbon was 3.3 millimolar and decreased to 25 to 30 micromolar within 4 hours after transferring to air. In the presence of saturating CO2 concentrations the photosynthetic activity of the high-CO2 grown cells was 1.5 times as high as that of the low-CO2 grown cells. There was a significant rise of the photosynthetic activity during adaptation of the high-CO2 grown cells to air, followed by a steady decrease. The activity of ribulose 1,5-bisphosphate carboxylase/oxygenase in both the high- and low-CO2 grown cells was close to the photosynthetic activity of the cells. The concentration of ribulose 1,5-bisphosphate (RuBP) was higher in the low-CO2 adapting and low-CO2 grown cells than in the high-CO2 grown cells regardless of the photosynthetic rate. This seems to be due to an increased RuBP regeneration activity during adaptation followed by maintenance of the new higher concentration. The RuBP level always exceeded the concentration of ribulose 1,5-bisphosphate carboxylase/oxygenase RuBP binding sites in both the high- and low-CO2 grown cells at any dissolved inorganic carbon concentration. PMID:16664623

  8. Optimizing human embryonic stem cells differentiation efficiency by screening size-tunable homogenous embryoid bodies.

    PubMed

    Moon, Sung-Hwan; Ju, Jongil; Park, Soon-Jung; Bae, Daekyeong; Chung, Hyung-Min; Lee, Sang-Hoon

    2014-07-01

    Human embryonic stem cells (hESCs) are generally induced to differentiate by forming spherical structures termed embryoid bodies (EBs) in the presence of soluble growth factors. hEBs are generated by suspending small clumps of hESC colonies; however, the resulting hEBs are heterogeneous because this method lacks the ability to control the number of cells in individual EBs. This heterogeneity affects factors that influence differentiation such as cell-cell contact and the diffusion of soluble factors, and consequently, the differentiation capacity of each EB varies. Here, we fabricated size-tunable concave microwells to control the physical environment, thereby regulating the size of EBs formed from single hESCs. Defined numbers of single hESCs were forced to aggregate and generate uniformly sized EBs with high fidelity, and the size of the EBs was controlled using concave microwells of different diameters. Differentiation patterns in H9- and CHA15-hESCs were affected by EB size in both the absence and presence of growth factors. By screening EB size in the presence of various BMP4 concentrations, a two-fold increase in endothelial cell differentiation was achieved. Because each hESC line has unique characteristics, the findings of this study demonstrate that concave microwells could be used to screen different EB sizes and growth factor concentrations to optimize differentiation for each hESC line. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Increased proteasome activity determines human embryonic stem cell identity

    PubMed Central

    Vilchez, David; Boyer, Leah; Morantte, Ianessa; Lutz, Margaret; Merkwirth, Carsten; Joyce, Derek; Spencer, Brian; Page, Lesley; Masliah, Eliezer; Berggren, W. Travis; Gage, Fred H.; Dillin, Andrew

    2016-01-01

    Embryonic stem cells are able to replicate continuously in the absence of senescence and, therefore, are immortal in culture1,2. While genome stability is central for survival of stem cells; proteome stability may play an equally important role in stem cell identity and function. Additionally, with the asymmetric divisions invoked by stem cells, the passage of damaged proteins to daughter cells could potentially destroy the resulting lineage of cells. We hypothesized that stem cells have an increased proteostasis ability compared to their differentiated counterparts and asked whether proteasome activity differed among human embryonic stem cells (hESCs). Notably, hESC populations exhibit a high proteasome activity that is correlated with increased levels of the 19S proteasome subunit PSMD11/RPN-63–5 and a corresponding increased assembly of the 26S/30S proteasome. Ectopic expression of PSMD11 is sufficient to increase proteasome assembly and activity. Proteasome inhibition affects pluripotency of hESCs inducing differentiation towards specific cell lineages. FOXO4, an insulin/IGF-1 responsive transcription factor associated with long lifespan in invertebrates6,7, regulates proteasome activity by modulating the expression of PSMD11 in hESCs. Our results establish a novel regulation of proteostasis in hESCs that links longevity and stress resistance in invertebrates with hESC function and identity. PMID:22972301

  10. Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade.

    PubMed

    Carins Murphy, Madeline R; Jordan, Gregory J; Brodribb, Timothy J

    2016-11-01

    It has been proposed that modification of leaf size, driven by epidermal cell size, balances leaf water supply (determined by veins) with transpirational demand (generated by stomata) during acclimation to local irradiance. We aimed to determine whether this is a general pattern among plant species with contrasting growth habits. We compared observed relationships between leaf minor vein density, stomatal density, epidermal cell size and leaf size in four pairs of herbs and woody species from the same families grown under sun and shade conditions with modelled relationships assuming vein and stomatal densities respond passively to epidermal cell expansion. Leaf lignin content was also quantified to assess whether construction costs of herbaceous leaf veins differ from those of woody plants and the leaf mass fraction invested in veins. Modelled relationships accurately described observed relationships, indicating that in all species, co-ordinated changes to the density of minor veins and stomata were mediated by a common relationship between epidermal cell size, vein density and stomatal density, with little or no impact from stomatal index. This co-ordination was independent of changes in leaf size and is likely to be an adaptive process driven by the significant proportion of biomass invested in veins (13·1 % of sun leaf dry weight and 21·7 % of shade leaf dry weight). Relative costs of venation increased in the shade, intensifying selective pressure towards economizing investment in vein density. Modulation of epidermal cell size appears to be a general mechanism among our experimental species to maintain a constant ratio between leaf anatomical traits that control leaf water fluxes independently of habit. We propose that this process may co-ordinate plasticity in hydraulic supply and demand in the majority of eudicot angiosperms. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For

  11. Charge photogeneration in hybrid solar cells: A comparison between quantum dots and in situ grown CdS

    NASA Astrophysics Data System (ADS)

    Reynolds, Luke X.; Lutz, Thierry; Dowland, Simon; MacLachlan, Andrew; King, Simon; Haque, Saif A.

    2012-02-01

    We demonstrate that blend films containing poly(3-hexylthiophene-2,5-diyl) and in situ grown CdS display a greater yield of photogenerated charges than a blend containing an equivalent amount of pre-synthesised CdS quantum dots. Moreover, we show that the greater charge yield in the in situ grown films leads to an improvement in device efficiency. The present findings also appear to suggest that charge photogeneration at the CdS/polymer heterojunction is facilitated by the formation of nanoparticle networks as a result of CdS aggregation.

  12. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D.

    PubMed

    Xu, Keming; Narayanan, Karthikeyan; Lee, Fan; Bae, Ki Hyun; Gao, Shujun; Kurisawa, Motoichi

    2015-09-01

    The propagation of human embryonic stem cells (hESCs) in three-dimensional (3D) scaffolds facilitates the cell expansion process and supplies pluripotent cells of high quality for broad-spectrum applications in regenerative medicine. Herein, we report an enzyme-mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. HA-Tyr hydrogels were formed by crosslinking the tyramine moieties with horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). By changing the HRP and H2O2 concentration, we prepared HA-Tyr hydrogels of different mechanical strength and studied the self-renewal properties of hESCs in these scaffolds. We observed that both the chemical composition and mechanical strength of substrates were important factors affecting cell proliferation and pluripotency. The HA-Tyr hydrogel with a compressive modulus of ∼350Pa supported the proliferation of hESCs at the pluripotent state in both mTeSR1 medium and mouse embryonic fibroblast (MEF)-conditioned medium. Immunohistochemical analyses revealed that hESCs proliferated well and formed spheroid structures in 3D, without undergoing apoptosis. The hESCs cultured in HA-Tyr hydrogels showed high expression of CD44 and pluripotency markers. These cells exhibited the capability to form cell derivatives of all three embryonic germ layers in vitro and in vivo. In addition, the genetic integrity of the hESCs was unaffected in the 3D cultivation system. The scope of this study is to provide a stable 3D cultivation system for the expansion of human embryonic stem cells (hESCs) towards clinical applications. We report an enzyme mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. Unlike other HA-based photo-crosslinked hydrogel systems reported, we investigated the effects of mechanical strength of hydrogels on the self-renewal properties of hESCs in 3D. Then, we characterized hESCs cultured in hydrogels with lower mechanical strength

  13. Propagation of Human Embryonic Stem Cells on Human Amniotic Fluid Cells as Feeder Cells in Xeno-Free Culture Conditions

    PubMed Central

    Jung, Juwon; Baek, Jin Ah; Seol, Hye Won; Choi, Young Min

    2016-01-01

    Human embryonic stem cells (hESCs) have been routinely cultured on mouse embryonic fibroblast feederlayers with a medium containing animal materials. For clinical application of hESCs, animal-derived products from the animal feeder cells, animal substrates such as gelatin or Matrigel and animal serum are strictly to be eliminated in the culture system. In this study, we performed that SNUhES32 and H1 were cultured on human amniotic fluid cells (hAFCs) with KOSR XenoFree and a humanized substrate. All of hESCs were relatively well propagated on hAFCs feeders with xeno-free conditions and they expressed pluripotent stem cell markers, alkaline phosphatase, SSEA-4, TRA1-60, TRA1-81, Oct-4, and Nanog like hESCs cultured on STO or human foreskin fibroblast feeders. In addition, we observed the expression of nonhuman N-glycolylneuraminic acid (Neu5GC) molecules by flow cytometry, which was xenotransplantation components of contamination in hESCs cultured on animal feeder conditions, was not detected in this xeno-free condition. In conclusion, SNUhES32 and H1 could be maintained on hAFCs for humanized culture conditions, therefore, we suggested that new xenofree conditions for clinical grade hESCs culture will be useful data in future clinical studies. PMID:27294211

  14. In vivo differentiated human embryonic stem cells can acquire chromosomal aberrations more frequently than in vitro during the same period.

    PubMed

    Zucchelli, Marco; Ström, Susanne; Holm, Frida; Malmgren, Helena; Sahlén, Sigrid; Religa, Piotr; Hovatta, Outi; Kere, Juha; Inzunza, José

    2012-12-10

    Human embryonic stem cells (hESCs) are regarded as a promising approach to generate transplantable cells for the treatment of several diseases. These cells offer an immense potential as a source of cells for regenerative medicine, but the possible ability of these cells to produce tumors in vivo presents a major impediment for the achievement of this potential in clinical reality. hESCs can obtain growth advantages in vitro by acquired mutations, a phenomenon called culture adaptation. The most common chromosome modifications involve chromosomes 12, 17, and X. The mechanisms that may influence chromosome modification in hESCs are not well known. We have performed a comparative in vitro and in vivo study on 3 hESC lines produced in our laboratory to see if there are changes also during in vivo growth. In vivo differentiated cells and in vitro cultured hESCs were analyzed by using a high-resolution Affymetrix SNP 6.0 array revealing DNA copy number variations. We were able, for the first time, to identify chromosomal aberrations that had occurred in vivo in one out of the 3 hESC lines. In the hESC line HS364 differentiated in vivo, an amplification of the whole X chromosome was detected, possibly due to mosaicism of XY and XX cells. In the hESC line HS366, array results showed small amplifications and gains. The third hESC line (HS368) was less altered, but contained also a new gain verified by fluorescent in situ hybridization in a teratoma in 21% of the cells. These results indicate that mutations occur during the in vivo differentiation process as well as in vitro. The potential of precancerous mutations in in-vivo conditions is important to consider for safety measures, and underlines the necessity to remove all pluripotent stem cells from the differentiated cell population that will be transplanted.

  15. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  16. Death rate in a small air-lift loop reactor of vero cells grown on solid microcarriers and in macroporous microcarriers.

    PubMed

    Martens, D E; Nollen, E A; Hardeveld, M; van der Velden-de Groot, C A; de Gooijer, C D; Beuvery, E C; Tramper, J

    1996-01-01

    The death rate of Vero cells grown on Cytodex-3 microcarriers was studied as a function of the gas flow rate in a small air-lift loop reactor. The death rate may be described by first-order death-rate kinetics. The first-order death-rate constant as calculated from the decrease in viable cells, the increase in dead cells and the increase in LDH activity is linear proportional to the gas flow rate, with a specific hypothetical killing volume in which all cells are killed of about 2·10(-3) m(3) liquid per m(3) of air bubbles. In addition, an experiment was conducted in the same air-lift reactor with Vero cells grown inside porous Asahi microcarriers. The specific hypothetical killing volume calculated from this experiment has a value of 3·10(-4) m(3) liquid per m(3) of air bubbles, which shows that the porous microcarriers were at least in part able to protect the cells against the detrimental hydrodynamic forces generated by the bubbles.

  17. Death rate in a small air-lift loop reactor of vero cells grown on solid microcarriers and in macroporous microcarriers.

    PubMed

    Martens, D E; Nollen, E A; Hardeveld, M; Velden-de Groot, C A; Gooijer, C D; Beuvery, E C; Tramper, J

    1997-01-01

    The death rate of Vero cells grown on Cytodex-3 microcarrierswas studied as a function of the gas flow rate in a smallair-lift loop reactor. The death rate may be described byfirst-order death-rate kinetics. The first-order death-rateconstant as calculated from the decrease in viable cells, theincrease in dead cells and the increase in LDH activity islinear proportional to the gas flow rate, with a specifichypothetical killing volume in which all cells are killed ofabout 2.10(-3)m(3) liquid per m(3) of air bubbles.In addition, an experiment was conducted in the sameair-lift reactor with Vero cells grown inside porous Asahimicrocarriers. The specific hypothetical killing volumecalculated from this experiment has a value of 3.10(-4)m(3) liquid per m(3) of air bubbles, which shows thatthe porous microcarriers were at least in part able to protectthe cells against the detrimental hydrodynamic forcesgenerated by the bubbles.

  18. Patents on Technologies of Human Tissue and Organ Regeneration from Pluripotent Human Embryonic Stem Cells

    PubMed Central

    Parsons, Xuejun H; Teng, Yang D; Moore, Dennis A; Snyder, Evan Y

    2011-01-01

    Human embryonic stem cells (hESCs) are genetically stable with unlimited expansion ability and unrestricted plasticity, proffering a pluripotent reservoir for in vitro derivation of a large supply of disease-targeted human somatic cells that are restricted to the lineage in need of repair. There is a large healthcare need to develop hESC-based therapeutic solutions to provide optimal regeneration and reconstruction treatment options for the damaged or lost tissue or organ that have been lacking. In spite of controversy surrounding the ownership of hESCs, the number of patent applications related to hESCs is growing rapidly. This review gives an overview of different patent applications on technologies of derivation, maintenance, differentiation, and manipulation of hESCs for therapies. Many of the published patent applications have been based on previously established methods in the animal systems and multi-lineage inclination of pluripotent cells through spontaneous germ-layer differentiation. Innovative human stem cell technologies that are safe and effective for human tissue and organ regeneration in the clinical setting remain to be developed. Our overall view on the current patent situation of hESC technologies suggests a trend towards hESC patent filings on novel therapeutic strategies of direct control and modulation of hESC pluripotent fate, particularly in a 3-dimensional context, when deriving clinically-relevant lineages for regenerative therapies. PMID:23355961

  19. A multiple p-n junction structure obtained from as-grown Czochralski silicon crystals by heat treatment - Application to solar cells

    NASA Technical Reports Server (NTRS)

    Chi, J. Y.; Gatos, H. C.; Mao, B. Y.

    1980-01-01

    Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.

  20. A multiple p-n junction structure obtained from as-grown Czochralski silicon crystals by heat treatment - Application to solar cells

    NASA Technical Reports Server (NTRS)

    Chi, J. Y.; Gatos, H. C.; Mao, B. Y.

    1980-01-01

    Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.

  1. Magnesium doping of efficient GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Ford, C. W.; Werthen, J. G.

    1984-01-01

    Magnesium has been substituted for zinc in GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition (MOCVD). Bis(cyclopentadienyl)magnesium (Cp2Mg) is used as the MOCVD transport agent for Mg. Full retention of excellent material quality and efficient cell performance results. The substitution of Mg for Zn would enhance the abruptness and reproducibility of doping profiles, and facilitate high temperature processing and operation, due to the much lower diffusion coefficient of Mg, relative to Zn, in these materials.

  2. Magnesium doping of efficient GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Ford, C. W.; Werthen, J. G.

    1984-01-01

    Magnesium has been substituted for zinc in GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition (MOCVD). Bis(cyclopentadienyl)magnesium (Cp2Mg) is used as the MOCVD transport agent for Mg. Full retention of excellent material quality and efficient cell performance results. The substitution of Mg for Zn would enhance the abruptness and reproducibility of doping profiles, and facilitate high temperature processing and operation, due to the much lower diffusion coefficient of Mg, relative to Zn, in these materials.

  3. Responses of human embryonic stem cells and their differentiated progeny to ionizing radiation

    SciTech Connect

    Zou, Ying; Zhang, Ningzhe; Ellerby, Lisa M.; Davalos, Albert R.; Zeng, Xianmin; Campisi, Judith; Desprez, Pierre-Yves

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer hESCs and their progeny, NSCs and neurons, were exposed to ionizing radiation. Black-Right-Pointing-Pointer Upon irradiation, most hESCs died within 5-7 h. Black-Right-Pointing-Pointer Surviving NSCs underwent senescence and displayed features of astrocytes. Black-Right-Pointing-Pointer Surviving NSCs did not display the secretory phenotype expressed by pure astrocytes. Black-Right-Pointing-Pointer This study is to better understand the stress-responses of hESCs and their progeny. -- Abstract: Human embryonic stem cells (hESCs) hold promise for the treatment of many human pathologies. For example, hESCs and the neuronal stem cells (NSCs) and neurons derived from them have significant potential as transplantation therapies for a variety of neurodegenerative diseases. Two concerns about the use of hESCs and their differentiated derivatives are their ability to function and their ability to resist neoplastic transformation in response to stresses that inevitably arise during their preparation for transplantation. To begin to understand how these cells handle genotoxic stress, we examined the responses of hESCs and derived NSCs and neurons to ionizing radiation (IR). Undifferentiated hESCs were extremely sensitive to IR, with nearly all the cells undergoing cell death within 5-7 h. NSCs and neurons were substantially more resistant to IR, with neurons showing the most resistant. Of interest, NSCs that survived IR underwent cellular senescence and acquired astrocytic characteristics. Unlike IR-treated astrocytes, however, the NSC-derived astrocytic cells that survived IR did not display the typical pro-inflammatory, pro-carcinogenic senescence-associated secretory phenotype. These findings suggest distinct genotoxic stress-responses of hESCs and derived NSC and neuronal populations, and suggest that damaged NSCs, while failing to function, may not cause local inflammation.

  4. MOVPE grown Ga{sub 1{minus}x}In{sub x}As solar cells for GaInP/GaInAs tandem applications

    SciTech Connect

    Dimroth, F.; Lanyi, P.; Schubert, U.; Bett, A.W.

    2000-01-01

    Lattice-mismatched Ga{sub 1{minus}x}In{sub x}As solar cells with an absorption edge between 900 and 1,150 nm have been grown on GaAs substrates. Different graded Ga{sub 1{minus}x}In{sub x}As buffer layers and solar cell structures were evaluated to achieve a good electrical performance of the device. External quantum efficiencies comparable to the best GaAs solar cells were measured. The best 1 cm{sup 2} cell with a bandgap energy of 1.18 eV has an efficient of 22.6% at AM1.5g and a short circuit current density of 36.4 mA/cm{sup 2}. To the authors knowledge, this is the highest reported efficiency for a Ga{sub 0.83}In{sub 0.17}As solar cell.

  5. InGaP/GaAs/InGaAsP triple junction solar cells grown using solid-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sugaya, T.; Makita, K.; Mizuno, H.; Mochizuki, T.; Oshima, R.; Matsubara, K.; Okano, Y.; Niki, S.

    2015-09-01

    We report mechanically stacked InGaP (1.9 eV)/GaAs (1.42 eV)/InGaAsP (1.0 eV) triple junction solar cells fabricated with an advanced bonding technique using Pd nanoparticle arrays. High quality InGaP/GaAs tandem top and InGaAsP bottom cells are grown on GaAs and InP substrates, respectively using solid-source molecular beam epitaxy (MBE). The InGaAsP bottom cell has an open circuit voltage (Voc) of 0.49 V, which indicates that high performance InGaAsP solar cells can be fabricated using solid-source MBE. A fabricated triple junction solar cell has a high efficiency of 25.6% with a high Voc of 2.66 V.

  6. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells.

    PubMed

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-06-23

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate.

  7. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells

    PubMed Central

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-01-01

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate. PMID:26099568

  8. Comparison of extravillous trophoblast cells derived from human embryonic stem cells and from first trimester human placentas.

    PubMed

    Telugu, B P; Adachi, K; Schlitt, J M; Ezashi, T; Schust, D J; Roberts, R M; Schulz, L C

    2013-07-01

    Preeclampsia and other placental pathologies are characterized by a lack of spiral artery remodeling associated with insufficient invasion by extravillous trophoblast cells (EVT). Because trophoblast invasion occurs in early pregnancy when access to human placental tissue is limited, there is a need for model systems for the study of trophoblast differentiation and invasion. Human embryonic stem cells (hESC) treated with BMP4- differentiate to trophoblast, and express HLA-G, a marker of EVT. The goals of the present study were to further characterize the HLA-G(+) cells derived from BMP4-treated hESC, and determine their suitability as a model. HESC were treated with BMP4 under 4% or 20% oxygen and tested in Matrigel invasion chambers. Both BMP4-treated hESC and primary human placental cells were separated into HLA-G(+) and HLA-G(-)/TACSTD2(+) populations with immunomagnetic beads and expression profiles analyzed by microarray. There was a 10-fold increase in invasion when hESC were BMP4-treated. There was also an independent, stimulatory effect of oxygen on this process. Invasive cells expressed trophoblast marker KRT7, and the majority were also HLA-G(+). Gene expression profiles revealed that HLA-G(+), BMP4-treated hESC were similar to, but distinct from, HLA-G(+) cells isolated from first trimester placentas. Whereas HLA-G(+) and HLA-G(-) cells from first trimester placentas had highly divergent gene expression profiles, HLA-G(+) and HLA-G(-) cells from BMP4-treated hESC had somewhat similar profiles, and both expressed genes characteristic of early trophoblast development. We conclude that hESC treated with BMP4 provide a model for studying transition to the EVT lineage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Comparison of extravillous trophoblast cells derived from human embryonic stem cells and from first trimester human placentas

    PubMed Central

    Telugu, B.P.; Adachi, K.; Schlitt, J.M.; Ezashi, T.; Schust, D.J.; Roberts, R.M.; Schulz, L.C.

    2013-01-01

    Introduction Preeclampsia and other placental pathologies are characterized by a lack of spiral artery remodeling associated with insufficient invasion by extravillous trophoblast cells (EVT). Because trophoblast invasion occurs in early pregnancy when access to human placental tissue is limited, there is a need for model systems for the study of trophoblast differentiation and invasion. Human embryonic stem cells (hESC) treated with BMP4- differentiate to trophoblast, and express HLA-G, a marker of EVT. The goals of the present study were to further characterize the HLA-G+ cells derived from BMP4-treated hESC, and determine their suitability as a model. Methods HESC were treated with BMP4 under 4% or 20% oxygen and tested in Matrigel invasion chambers. Both BMP4-treated hESC and primary human placental cells were separated into HLA-G+ and HLA-G−/TACSTD2+ populations with immunomagnetic beads and expression profiles analyzed by microarray. Results There was a 10-fold increase in invasion when hESC were BMP4-treated. There was also an independent, stimulatory effect of oxygen on this process. Invasive cells expressed trophoblast marker KRT7, and the majority were also HLA-G+. Gene expression profiles revealed that HLA-G+, BMP4-treated hESC were similar to, but distinct from, HLA-G+ cells isolated from first trimester placentas. Whereas HLA-G+ and HLA-G− cells from first trimester placentas had highly divergent gene expression profiles, HLA-G+ and HLA-G− cells from BMP4-treated hESC had somewhat similar profiles, and both expressed genes characteristic of early trophoblast development. Conclusions We conclude that hESC treated with BMP4 provide a model for studying transition to the EVT lineage. PMID:23631809

  10. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells.

    PubMed

    Zhang, Lijun; Hua, Qiuhong; Tang, Kaiyi; Shi, Changjie; Xie, Xin; Zhang, Ru

    2016-11-19

    G protein-coupled receptors (GPCRs) are involved in many fundamental cellular responses such as growth, death, movement, transcription and excitation. Their roles in human stem cell neural specialization are not well understood. In this study, we aimed to identify GPCRs that may play a role in the differentiation of human embryonic stem cells (hESCs) to neural stem cells (NSCs). Using a feeder-free hESC neural differentiation protocol, we found that the expression of several chemokine receptors changed dramatically during the hESC/NSC transition. Especially, the expression of CXCR4 increased approximately 50 folds in NSCs compared to the original hESCs. CXCR4 agonist SDF-1 promoted, whereas the antagonist AMD3100 delayed the neural induction process. In consistence with antagonizing CXCR4, knockdown of CXCR4 in hESCs also blocked the neural induction and cells with reduced CXCR4 were rarely positive for Nestin and Sox1-staining. Taken together, our results suggest that CXCR4 is involved in the neural induction process of hESC and it might be considered as a target to facilitate NSC production from hESCs in regenerative medicine.

  11. Human embryonic stem cell model of ethanol-mediated early developmental toxicity.

    PubMed

    Nash, Rodney; Krishnamoorthy, Malini; Jenkins, Andrew; Csete, Marie

    2012-03-01

    Fetal alcohol syndrome is an important clinical problem. Human embryonic stem cells (hESC) have not been widely used to study developmental alcohol toxicity. Here we document the phenotype of hESC exposed to clinically-relevant, low dose ethanol (20mM). All cultures were maintained in 3% O2 to reflect normal physiologic conditions. Undifferentiated hESC were expanded with basic fibroblast growth factor (bFGF), with or without ethanol, then differentiated without ethanol. Proliferation and apoptosis in response to ethanol were assayed, and PCR used to examine expression of GABA receptor subunits. Whole cell patch clamping was used to examine GABA(A) receptor function in undifferentiated hESC. Immunocytochemistry and western blotting were used to follow differentiation of early neurons, astrocytes, and oligodendrocytes, Exposure to 20mM ethanol resulted in larger colonies of undifferentiated hESC despite an increase in apoptosis, because proliferation of the undifferentiated cells (and neuroblasts) was significantly increased. Differentiation of hESC (following a week of ethanol exposure) resulted in decreased expression of GFAP (by western) compared to unexposed cells, suggesting that astrocyte differentiation was reduced, while markers of oligodendrocyte and neuron differentiation were unchanged. At the message level, undifferentiated hESC express all GABA(A) receptor subunits, but functional receptors were not found by whole cell patch clamping. Our results in hESC suggest a complex mix of ethanol-induced phenotypic changes when ethanol exposure occurs very early in development. Not only increased apoptosis, but inappropriate proliferation and loss of trophic astrocytes could result from low-dose ethanol exposure very early in development. More generally, these studies support a role for hESC in developing hypotheses and focusing questions to complement animal studies of developmental toxicities. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. A novel animal-component-free medium for rabies virus production in Vero cells grown on Cytodex 1 microcarriers in a stirred bioreactor.

    PubMed

    Rourou, Samia; van der Ark, Arno; Majoul, Samy; Trabelsi, Khaled; van der Velden, Tiny; Kallel, Héla

    2009-11-01

    Vero cells growth and rabies production in IPT-AF medium, a property animal-component-free medium are described in this work. Kinetics of cell growth and rabies virus (strain LP 2061) production were first conducted in spinner flasks. Over eight independent experiments, Vero cell growth in IPT-AF medium, on 2 g/l Cytodex 1 was consistent. An average Cd (cell division number) of 3.3+/-0.4 and a specific growth rate micro of 0.017+/-0.006 h(-1) were achieved. Such performances were comparable to those obtained in serum-containing medium (MEM+10% FCS). Rabies virus production on Vero cells in IPT-AF medium was also optimised in spinner flasks. The effects of multiplicity of infection (MOI), regulation of glucose level at 1 g/l and cell washing step, were investigated. The highest virus titer was achieved when the cells were infected at an MOI of 0.1; this level was equal to 10(7) FFU/ml. The step of medium exchange before cell infection can be omitted; nevertheless in this case glucose level should be maintained at 1 g/l to avoid a decrease of specific virus productivity. Process optimisation in a 2-l stirred bioreactor pointed out that the aeration mode was the prominent parameter that affected cell growth in IPT-AF medium and on Cytodex 1 microcarriers. An acceptable level of cell density (cell density level of 1.5x10(6) cells/ml) was achieved when cells were grown in batch mode and using headspace aeration. Nevertheless, this aeration mode is not optimal for large-scale culture. The addition of Pluronic F68 at 0.1% at 24 h post inoculation as well as the switch from surface aeration mode to the sparged mode, 2 days after the start of the culture, had markedly improved cell growth performance. A cell density level of 5.5x10(6) cells/ml was reached when cells were grown in a 2-l bioreactor, on 3 g/l Cytodex 1 in IPT-AF medium and using the recirculation culture mode. Cell infection at an MOI of 0.1 and using perfused culture, resulted in a maximal virus titer of 3.5x

  13. Bioluminescence imaging of human embryonic stem cells transplanted in vivo in murine and chick models.

    PubMed

    Priddle, Helen; Grabowska, Anna; Morris, Teresa; Clarke, Philip A; McKenzie, Andrew J; Sottile, Virginie; Denning, Chris; Young, Lorraine; Watson, Sue

    2009-06-01

    Research into the behavior, efficacy, and biosafety of stem cells with a view to clinical transplantation requires the development of noninvasive methods for in vivo imaging of cells transplanted into animal models. This is particularly relevant for human embryonic stem cells (hESCs), because transplantation of undifferentiated hESCs leads to tumor formation. The present study aimed to monitor hESCs in real time when injected in vivo. hESCs were stably transfected to express luciferase, and luciferase expression was clearly detected in the undifferentiated and differentiated state. When transfected hESCs were injected into chick embryos, bioluminescence could be detected both ex and in ovo. In the SCID mouse model, undifferentiated hESCs were detectable after injection either into the muscle layer of the peritoneum or the kidney capsule. Tumors became detectable between days 10-30, with approximately a 3 log increase in the luminescence signal by day 75. The growth phase occurred earlier in the kidney capsule and then reached a plateau, whilst tumors in the peritoneal wall grew steadily throughout the period analysed. These results show the widespread utility of bioluminescent for in vivo imaging of hESCs in a variety of model systems for preclinical research into regenerative medicine and cancer biology.

  14. Gene expression signatures of seven individual human embryonic stem cell lines.

    PubMed

    Skottman, Heli; Mikkola, Milla; Lundin, Karolina; Olsson, Cia; Strömberg, Anne-Marie; Tuuri, Timo; Otonkoski, Timo; Hovatta, Outi; Lahesmaa, Riitta

    2005-10-01

    Identification of molecular components that define a pluripotent human embryonic stem cell (hESC) provides the basis for understanding the molecular mechanisms regulating the maintenance of pluripotency and induction of differentiation. We compared the gene expression profiles of seven genetically independent hESC lines with those of nonlineage-differentiated cells derived from each line. A total of 8,464 transcripts were expressed in all hESC lines. More than 45% of them have no yet-known biological function, which indicates that a high number of unknown factors contribute to hESC pluripotency. Among these 8,464 transcripts, 280 genes were specific for hESCs and 219 genes were more than twofold differentially expressed in all hESC lines compared with nonlineage-differentiated cells. They represent genes implicated in the maintenance of pluripotency and those involved in early differentiation. The chromosomal distribution of these hESC-enriched genes showed over-representation in chromosome 19 and under-representation in chromosome 18. Although the overall gene expression profiles of the seven hESC lines were markedly similar, each line also had a subset of differentially expressed genes reflecting their genetic variation and possibly preferential differentiation potential. Limited overlap between gene expression profiles illustrates the importance of cross-validation of results between different ESC lines.

  15. Power-laws and the use of pluripotent stem cell lines.

    PubMed

    Schuldt, Bernhard M; Guhr, Anke; Lenz, Michael; Kobold, Sabine; MacArthur, Ben D; Schuppert, Andreas; Löser, Peter; Müller, Franz-Josef

    2013-01-01

    It is widely accepted that the (now reversed) Bush administration's decision to restrict federal funding for human embryonic stem cell (hESC) research to a few "eligible" hESC lines is responsible for the sustained preferential use of a small subset of hESC lines (principally the H1 and H9 lines) in basic and preclinical research. Yet, international hESC usage patterns, in both permissive and restrictive political environments, do not correlate with a specific type of stem cell policy. Here we conducted a descriptive analysis of hESC line usage and compared the ability of policy-driven processes and collaborative processes inherent to biomedical research to recapitulate global hESC usage patterns. We find that current global hESC usage can be modelled as a cumulative advantage process, independent of restrictive or permissive policy influence, suggesting a primarily innovation-driven (rather than policy-driven) mechanism underlying human pluripotent stem cell usage in preclinical research.

  16. The gene expression profiles of canine mammary cancer cells grown with carcinoma-associated fibroblasts (CAFs) as a co-culture in vitro

    PubMed Central

    2012-01-01

    Background It is supposed that fibroblasts present in tumour microenvironment increase cancer invasiveness and its ability to metastasize but the mechanisms have not been clearly defined yet. Thus, the current study was designed to assess changes in gene expression in five various cancer cell lines grown as a co-culture with the carcinoma-associated fibroblasts (CAFs) in vitro. Results A carcinoma-associated fibroblast cell line was isolated from a canine mammary cancer. Then, a co-culture of cancer cells with the CAFs was established and maintained for 72 hrs. Having sorted the cells, a global gene expression in cancer cells using DNA microarrays was examined. The analysis revealed an up-regulation of 100 genes and a down-regulation of 106 genes in the cancer cells grown as a co-culture with the CAFs in comparison to control conditions. The PANTHER binomial statistics tool was applied to determine statistically over-manifested pathways (p < 0.05). Bulk of the up-regulated genes are involved in the adhesion, the angiogenesis, the epithelial-mesenchymal transition (EMT) and generally take part in the developmental processes. These results were further confirmed using real-time qPCR. Moreover, a wound-healing assay and growth characteristics on Matrigel matrix showed that CAFs increase cancer cell migration and matrix invasion. Conclusion The results of the current study showed that the co-culturing of cancer cells and the CAFs caused significant changes to the cancer gene expression. The presence of the CAFs in a microenvironment of cancer cells promotes adhesion, angiogenesis and EMT. PMID:22453032

  17. InGaP/GaAs Dual-Junction Solar Cell with AlGaAs/GaAs Tunnel Diode Grown on 10° off Misoriented GaAs Substrate

    NASA Astrophysics Data System (ADS)

    Yu, Hung Wei; Chung, Chen Chen; Te Wang, Chin; Nguyen, Hong Quan; Tinh Tran, Binh; Lin, Kung Liang; Dee, Chang Fu; Yeop Majlis, Burhanuddin; Chang, Edward Yi

    2012-08-01

    InGaP/GaAs dual-junction solar cells with different tunnel diodes (TDs) grown on misoriented GaAs substrates are investigated. It is demonstrated that the solar cells with P++-AlGaAs/N++-GaAs TDs grown on 10° off GaAs substrates not only show a higher external quantum efficiency (EQE) but also generate a higher peak current density (Jpeak) at higher concentration ratios (185×) than the solar cells with P++-GaAs/N++-InGaP TDs grown on 6° off GaAs substrates. Furthermore, the cell design with P++-AlGaAs/N++-GaAs TDs grown on 10° off GaAs substrates does not generate a disordered InGaP epitaxial layer during material growth, and thus shows superior current-voltage characteristics.

  18. Production and validation of a good manufacturing practice grade human fibroblast line for supporting human embryonic stem cell derivation and culture

    PubMed Central

    2012-01-01

    Introduction The development of reproducible methods for deriving human embryonic stem cell (hESC) lines in compliance with good manufacturing practice (GMP) is essential for the development of hESC-based therapies. Although significant progress has been made toward the development of chemically defined conditions for the maintenance and differentiation of hESCs, efficient derivation of new hESCs requires the use of fibroblast feeder cells. However, GMP-grade feeder cell lines validated for hESC derivation are not readily available. Methods We derived a fibroblast cell line (NclFed1A) from human foreskin in compliance with GMP standards. Consent was obtained to use the cells for the production of hESCs and to generate induced pluripotent stem cells (iPSCs). We compared the line with a variety of other cell lines for its ability to support derivation and self-renewal of hESCs. Results NclFed1A supports efficient rates (33%) of hESC colony formation after explantation of the inner cell mass (ICM) of human blastocysts. This compared favorably with two mouse embryonic fibroblast (MEF) cell lines. NclFed1A also compared favorably with commercially available foreskin fibroblasts and MEFs in promoting proliferation and pluripotency of a number of existing and widely used hESCs. The ability of NclFed1A to maintain self-renewal remained undiminished for up to 28 population doublings from the master cell bank. Conclusions The human fibroblast line Ncl1Fed1A, produced in compliance with GMP standards and qualified for derivation and maintenance of hESCs, is a useful resource for the advancement of progress toward hESC-based therapies in regenerative medicine. PMID:22472092

  19. PROCUSTE1 Encodes a Cellulose Synthase Required for Normal Cell Elongation Specifically in Roots and Dark-Grown Hypocotyls of Arabidopsis

    PubMed Central

    Fagard, Mathilde; Desnos, Thierry; Desprez, Thierry; Goubet, Florence; Refregier, Guislaine; Mouille, Gregory; McCann, Maureen; Rayon, Catherine; Vernhettes, Samantha; Höfte, Herman

    2000-01-01

    Mutants at the PROCUSTE1 (PRC1) locus show decreased cell elongation, specifically in roots and dark-grown hypocotyls. Cell elongation defects are correlated with a cellulose deficiency and the presence of gapped walls. Map-based cloning of PRC1 reveals that it encodes a member (CesA6) of the cellulose synthase catalytic subunit family, of which at least nine other members exist in Arabidopsis. Mutations in another family member, RSW1 (CesA1), cause similar cell wall defects in all cell types, including those in hypocotyls and roots, suggesting that cellulose synthesis in these organs requires the coordinated expression of at least two distinct cellulose synthase isoforms. PMID:11148287

  20. GaAs Solar Cells Grown by Hydride Vapor-Phase Epitaxy and the Development of GaInP Cladding Layers

    SciTech Connect

    Simon, John; Schulte, Kevin L.; Young, David L.; Haegel, Nancy M.; Ptak, Aaron J.

    2016-01-01

    The high cost of high-efficiency III-V photovoltaic devices currently limits them to niche markets. Hydride vapor-phase epitaxy (HVPE) growth of III-V materials recently reemerged as a low-cost, high-throughput alternative to conventional metal- organic vapor-phase epitaxy (MOVPE) growth of high-efficiency solar cells. Previously, we demonstrated unpassivated HVPEgrown GaAs p-n junctions with good quantum efficiency and high open-circuit voltage (Voc). In this work, we demonstrate the growth of GaInPby HVPE for use as a high-quality surface passivation layer to GaAs solar cells. Solar cells grown with GaInP window layers show significantly improved quantum efficiency compared with unpassivated cells, increasing the short-circuit current (JSC) of these low-cost devices. These results show the potential of low-cost HVPE for the growth of high-quality III-V devices.

  1. Expressions of cytochrome P450, UDP-glucuronosyltranferase, and transporter genes in monolayer carcinoma cells change in subcutaneous tumors grown as xenografts in immunodeficient nude mice.

    PubMed

    Sugawara, Michiko; Okamoto, Kiyoshi; Kadowaki, Tadashi; Kusano, Kazutomi; Fukamizu, Akiyoshi; Yoshimura, Tsutomu

    2010-03-01

    Human tumors grown as xenografts in immunodeficient nude mice are widely used to investigate the pharmacological activities of anticancer drugs. Drug-metabolizing enzymes and transporters are expressed in tumor cell lines and changes in drug metabolism and pharmacokinetics (DMPK)-related gene expression after inoculation of the tumor cell may affect the pharmacological activity of the drug under consideration. The aims of the current study were to characterize DMPK-related gene expression profiles and responses to typical cytochrome P450 inducers in monolayer carcinoma cells grown in tissue culture versus those inoculated into a xenograft model. We used the human hepatocellular carcinoma cell line PLC/PRF/5 for this study and comprehensively assessed changes in DMPK-related gene expression by reverse transcription-polymerase chain reaction quantitation. CYP3A4 and UDP-glucuronosyltransferase 1A protein amounts were also analyzed by immunoprecipitation followed by immunoblotting. We found that the expression of many DMPK-related genes was elevated in the inoculated tumor compared with the monolayer carcinoma cells, indicating changes in their gene regulation pathways, presumably due to modulation of the nuclear receptor family of transcription factors. In addition, monolayer carcinoma versus inoculated tumor cells showed different responses to rifampicin, but similar responses to dexamethasone or 3-methylcholanthrene. These results suggest that inoculation of tumor cells results in the activation of drug metabolism and transport function, leading to changes in the responses to pregnane X receptor ligands and consequent discrepancies in the pharmacological activities between in vitro monolayer carcinoma cells and in vivo xenograft models.

  2. Power recovery of radiation damaged MOCVD grown indium phosphide on silicon solar cells through argon-ion laser annealing. Master`s thesis

    SciTech Connect

    Boyer, L.L.

    1996-06-01

    This thesis reports the results of a laser annealing technique used to remove defect sites from radiation damaged indium phosphide on silicon MOCVD grown solar cells. This involves the illumination of damaged solar cells with a continuous wave laser to produce a large forward-biased current. The InP/Si cells were irradiated with 1 MeV electrons to a given fluence, and tested for degradation. Light from an argon laser was used to illuminate four cells with an irradiance of 2.5 W/sq cm, producing a current density 3 to 5 times larger than AMO conditions. Cells were annealed at 19 deg C with the laser and at 25 deg C under AMO conditions. Annealing under laser illumination of n/p-type cells resulted in recovery of 48%. P/n type cells lost 4 to 12% of the assumed degradaton. Annealing under AMO conditions resulted in power recovery of 70% in n/p type cells. P/n-type cells recovered approximately 16% of lost power. Results indicate that significant power recovery results from the annealing of defects within n/p type InP/Si solar cells.

  3. Induced overexpression of OCT4A in human embryonic stem cells increases cloning efficiency.

    PubMed

    Tsai, Steven C; Chang, David F; Hong, Chang-Mu; Xia, Ping; Senadheera, Dinithi; Trump, Lisa; Mishra, Suparna; Lutzko, Carolyn

    2014-06-15

    Our knowledge of the molecular mechanisms underlying human embryonic stem cell (hESC) self-renewal and differentiation is incomplete. The level of octamer-binding transcription factor 4 (Oct4), a critical regulator of pluripotency, is precisely controlled in mouse embryonic stem cells. However, studies of human OCT4 are often confounded by the presence of three isoforms and six expressed pseudogenes, which has complicated the interpretation of results. Using an inducible lentiviral overexpression and knockdown system to manipulate OCT4A above or below physiological levels, we specifically examine the functional role of the OCT4A isoform in hESC. (We also designed and generated a comparable series of vectors, which were not functional, for the overexpression and knockdown of OCT4B.) We show that specific knockdown of OCT4A results in hESC differentiation, as indicated by morphology changes, cell surface antigen expression, and upregulation of ectodermal genes. In contrast, inducible overexpression of OCT4A in hESC leads to a transient instability of the hESC phenotype, as indicated by changes in morphology, cell surface antigen expression, and transcriptional profile, that returns to baseline within 5 days. Interestingly, sustained expression of OCT4A past 5 days enhances hESC cloning efficiency, suggesting that higher levels of OCT4A can support self-renewal. Overall, our results indicate that high levels of OCT4A increase hESC cloning efficiency and do not induce differentiation (whereas OCT4B expression cannot be induced in hESC), highlighting the importance of isoform-specific studies in a stable and inducible expression system for human OCT4. Additionally, we demonstrate the utility of an efficient method for conditional gene expression in hESC.

  4. Synergistic effect of dual interfacial modifications with room-temperature-grown epitaxial ZnO and adsorbed indoline dye for ZnO nanorod array/P3HT hybrid solar cell.

    PubMed

    Chen, Dian-Wei; Wang, Ting-Chung; Liao, Wen-Pin; Wu, Jih-Jen

    2013-09-11

    ZnO nanorod (NR)/poly(3-hexylthiophene) (P3HT) hybrid solar cells with interfacial modifications are investigated in this work. The ZnO NR arrays are modified with room-temperature (RT)-grown epitaxial ZnO shells or/and D149 dye molecules prior to the P3HT infiltration. A synergistic effect of the dual modifications on the efficiency of the ZnO NR/P3HT solar cell is observed. The open-circuit voltage and fill factor are considerable improved through the RT-grown ZnO and D149 modifications in sequence on the ZnO NR array, which brings about a 2-fold enhancement of the efficiency of the ZnO NR/P3HT solar cell. We suggested that the more suitable surface of RT-grown ZnO for D149 adsorption, the chemical compatibility of D149 and P3HT, and the elevated conduction band edge of the RT-grown ZnO/D149-modified ZnO NR array construct the superior interfacial morphology and energetics in the RT-grown ZnO/D149-modified ZnO NR/P3HT hybrid solar cell, resulting in the synergistic effect on the cell efficiency. An efficiency of 1.16% is obtained in the RT-grown ZnO/D149-modified ZnO NR/P3HT solar cell.

  5. Human umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment.

    PubMed

    Fong, Chui-Yee; Subramanian, Arjunan; Gauthaman, Kalamegam; Venugopal, Jayarama; Biswas, Arijit; Ramakrishna, Seeram; Bongso, Ariff

    2012-03-01

    The current treatments used for osteoarthritis from cartilage damage have their disadvantages of donor site morbidity, complicated surgical interventions and risks of infection and graft rejection. Recent advances in tissue engineering have offered much promise in cartilage repair but the best cell source and in vitro system have not as yet been optimised. Human bone marrow mesenchymal stem cells (hBMSCs) have thus far been the cell of choice. However, we derived a unique stem cell from the human umbilical cord Wharton's jelly (hWJSC) that has properties superior to hBMSCs in terms of ready availability, prolonged stemness characteristics in vitro, high proliferation rates, wide multipotency, non-tumorigenicity and tolerance in allogeneic transplantation. We observed enhanced cell attachment, cell proliferation and chondrogenesis of hWJSCs over hBMSCs when grown on PCL/Collagen nanoscaffolds in the presence of a two-stage sequential complex/chondrogenic medium for 21 days. Improvement of these three parameters were confirmed via inverted optics, field emission scanning electron microscopy (FESEM), MTT assay, pellet diameters, Alcian blue histology and staining, glycosaminglycans (GAG) and hyaluronic acid production and expression of key chondrogenic genes (SOX9, Collagen type II, COMP, FMOD) using immunohistochemistry and real-time polymerase chain reaction (qRT-PCR). In separate experiments we demonstrated that the 16 ng/ml of basic fibroblast growth factor (bFGF) present in the complex medium may have contributed to driving chondrogenesis. We conclude that hWJSCs are an attractive stem cell source for inducing chondrogenesis in vitro when grown on nanoscaffolds and exposed sequentially first to complex medium and then followed by chondrogenic medium.

  6. Differential impact of science policy on subfields of human embryonic stem cell research.

    PubMed

    Moon, Seongwuk; Cho, Seong Beom

    2014-01-01

    In this research, we examine how restrictive policy influenced performance in human embryonic stem cell research (hESC) between 1998 and 2008. In previous research, researchers argued whether restrictive policy decreased the performance of stem cell research in some nations, especially in the US. Here, we hypothesize that this policy influenced specific subfields of the hESC research. To investigate the selective policy effects, we categorize hESC research publications into three subfields-derivation, differentiation, and medical application research. Our analysis shows that restrictive policy had different effects on different subfields. In general, the US outperformed in overall hESC research throughout these periods. In the derivation of hESC, however, the US almost lost its competence under restrictive policy. Interestingly, the US scientific community showed prominent resilience in hESC research through international collaboration. We concluded that the US resilience and performance stemmed from the wide breadth of research portfolio of US scientists across the hESC subfields, combined with their strategic efforts to collaborate internationally on derivation research.

  7. Differential Impact of Science Policy on Subfields of Human Embryonic Stem Cell Research

    PubMed Central

    Moon, Seongwuk; Cho, Seong Beom

    2014-01-01

    In this research, we examine how restrictive policy influenced performance in human embryonic stem cell research (hESC) between 1998 and 2008. In previous research, researchers argued whether restrictive policy decreased the performance of stem cell research in some nations, especially in the US. Here, we hypothesize that this policy influenced specific subfields of the hESC research. To investigate the selective policy effects, we categorize hESC research publications into three subfields—derivation, differentiation, and medical application research. Our analysis shows that restrictive policy had different effects on different subfields. In general, the US outperformed in overall hESC research throughout these periods. In the derivation of hESC, however, the US almost lost its competence under restrictive policy. Interestingly, the US scientific community showed prominent resilience in hESC research through international collaboration. We concluded that the US resilience and performance stemmed from the wide breadth of research portfolio of US scientists across the hESC subfields, combined with their strategic efforts to collaborate internationally on derivation research. PMID:24717403

  8. Broth versus Surface-Grown Cells: Differential Regulation of RsmY/Z Small RNAs in Pseudomonas aeruginosa by the Gac/HptB System

    PubMed Central

    Jean-Pierre, Fabrice; Tremblay, Julien; Déziel, Eric

    2017-01-01

    Two-component systems are capable of profoundly affecting genetic regulation in bacteria by detecting environmental stimuli, allowing them to quickly adapt. In Pseudomonas aeruginosa, the small RNAs (sRNAs) RsmY and RsmZ are under the control of the GacS/A system. They have been described as ones of the major key players in the control of planktonic and surface-associated behaviors. Genetic regulation by these sRNAs is achieved by the titration of the negative post-transcriptional regulator RsmA which affects the expression of over 500 genes. There is increasing evidence pinpointing the importance of RsmY and RsmZ in the planktonic-sessile P. aeruginosa lifestyles switch control. Using swarming motility as a model, we show here that these sRNA are differentially regulated depending on the selected growth conditions (i.e., planktonic versus surface grown-cells). Also, we report that opposite to planktonically grown cells, rsmZ regulation does not implicate the response regulator GacA in swarming cells. Furthermore, we present data indicating that RsmY/Z expression influence swarming motility via the protein HptB which acts as a negative regulator of these sRNAs and that they do not strictly converge to RsmA as previously reported. PMID:28119684

  9. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation.

    PubMed

    Liu, Yarong; Fox, Victoria; Lei, Yuning; Hu, Biliang; Joo, Kye-Il; Wang, Pin

    2014-07-01

    The unique self-renewal and pluripotency features of human embryonic stem cells (hESCs) offer the potential for unlimited development of novel cell therapies. Currently, hESCs are cultured and differentiated using methods, such as monolayer culture and embryoid body (EB) formation. As such, achieving efficient differentiation into higher order structures remains a challenge, as well as maintaining cell viability during differentiation into homogeneous cell populations. Here, we describe the application of highly porous polymer scaffolds as synthetic stem cell niches. Bypassing the EB formation step, these scaffolds are capable of three-dimensional culture of undifferentiated hESCs and subsequent directed differentiation into three primary germ layers. H9 hESCs were successfully maintained and proliferated in biodegradable polymer scaffolds based on poly (lactic-co-glycolic acid) (PLGA). The results showed that cells within PLGA scaffolds retained characteristics of undifferentiated pluripotent stem cells. Moreover, the scaffolds allowed differentiation towards the lineage of interest by the addition of growth factors to the culture system. The in vivo transplantation study revealed that the scaffolds could provide a microenvironment that enabled hESCs to interact with their surroundings, thereby promoting cell differentiation. Therefore, this approach, which provides a unique culture/differentiation system for hESCs, will find its utility in various stem cell-based tissue-engineering applications.

  10. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    PubMed

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  11. Synthesis and application of TiO2 single-crystal nanorod arrays grown by multicycle hydrothermal for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Jing; Zhao, Yu-Long; Zhu, Lei; Gu, Xiu-Quan; Qiang, Ying-Huai

    2014-04-01

    TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned TiO2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydrothermal synthesis process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED). It is found that dye-sensitized solar cells (DSSCs) assembled by the as-prepared TiO2 single-crystal NRs exhibit different trends under the condition of different nucleation and growth concentrations. Optimum cell performance is obtained with high nucleation concentration and low growth cycle concentration. The efficiency enhancement is mainly attributed to the improved specific surface area of the nanorod.

  12. An Efficient Method for Generation of Knockout Human Embryonic Stem Cells Using CRISPR/Cas9 System.

    PubMed

    Bohaciakova, Dasa; Renzova, Tereza; Fedorova, Veronika; Barak, Martin; Kunova Bosakova, Michaela; Hampl, Ales; Cajanek, Lukas

    2017-10-02

    Human embryonic stem cells (hESCs) represent a promising tool to study functions of genes during development, to model diseases, and to even develop therapies when combined with gene editing techniques such as CRISPR/CRISPR-associated protein-9 nuclease (Cas9) system. However, the process of disruption of gene expression by generation of null alleles is often inefficient and tedious. To circumvent these limitations, we developed a simple and efficient protocol to permanently downregulate expression of a gene of interest in hESCs using CRISPR/Cas9. We selected p53 for our proof of concept experiments. The methodology is based on series of hESC transfection, which leads to efficient downregulation of p53 expression even in polyclonal population (p53 Low cells), here proven by a loss of regulation of the expression of p53 target gene, microRNA miR-34a. We demonstrate that our approach achieves over 80% efficiency in generating hESC clonal sublines that do not express p53 protein. Importantly, we document by a set of functional experiments that such genetically modified hESCs do retain typical stem cells characteristics. In summary, we provide a simple and robust protocol to efficiently target expression of gene of interest in hESCs that can be useful for laboratories aiming to employ gene editing in their hESC applications/protocols.

  13. Production of single-cell oil from prickly-pear juice fermentation by Cryptococcus curvatus grown in batch culture.

    PubMed

    Hassan, M; Blanc, P J; Pareilleux, A; Goma, G

    1994-09-01

    The biomass of Cryptococcus curvatus, an oleaginous yeast, reached 11 g/l and accumulated 46% (w/w) lipid when grown for 35 h in batch culture on diluted (25%) prickly-pear juice. The C:N ratio of the juice was about 50 g/g. The efficiency of substrate conversion was 0.48 g/g for biomass and 0.22 g/g for lipids. The extracted lipids were mainly oleic (18:1) and palmitic (16:0) acids and the quality of pipid approached that of palm oil.

  14. Maintenance of human embryonic stem cells in animal serum- and feeder layer-free culture conditions.

    PubMed

    Amit, Michal; Itskovitz-Eldor, Joseph

    2006-01-01

    The availability of human embryonic stem cells (hESCs) reflects their outstanding potential for research areas such as human developmental biology, teratology, and cell-based therapies. To allow their continuous growth as undifferentiated cells, isolation and culturing were traditionally conducted on mouse embryonic fibroblast feeder layers, using medium supplemented with fetal bovine serum. However, these conditions allow possible exposure of the cells to animal pathogens. Because both research and future clinical application require an animal-free and well-defined culture system for hESCs, these conventional conditions would prevent the use of hESCs in human therapy. This chapter describes optional culture conditions based on either animal-free or feeder-free culture methods for hESCs.

  15. Human lung cancer cells grown in an ex vivo 3D lung model produce matrix metalloproteinases not produced in 2D culture.

    PubMed

    Mishra, Dhruva K; Sakamoto, Jason H; Thrall, Michael J; Baird, Brandi N; Blackmon, Shanda H; Ferrari, Mauro; Kurie, Jonathan M; Kim, Min P

    2012-01-01

    We compared the growth of human lung cancer cells in an ex vivo three-dimensional (3D) lung model and 2D culture to determine which better mimics lung cancer growth in patients. A549 cells were grown in an ex vivo 3D lung model and in 2D culture for 15 days. We measured the size and formation of tumor nodules and counted the cells after 15 days. We also stained the tissue/cells for Ki-67, and Caspase-3. We measured matrix metalloproteinase (MMP) levels in the conditioned media and in blood plasma from patients with adenocarcinoma of the lung. Organized tumor nodules with intact vascular space formed in the ex vivo 3D lung model but not in 2D culture. Proliferation and apoptosis were greater in the ex vivo 3D lung model compared to the 2D culture. After 15 days, there were significantly more cells in the 2D culture than the 3D model. MMP-1, MMP-9, and MMP-10 production were significantly greater in the ex vivo 3D lung model. There was no production of MMP-9 in the 2D culture. The patient samples contained MMP-1, MMP-2, MMP-9, and MMP-10. The human lung cancer cells grown on ex vivo 3D model form perfusable nodules that grow over time. It also produced MMPs that were not produced in 2D culture but seen in human lung cancer patients. The ex vivo 3D lung model may more closely mimic the biology of human lung cancer development than the 2D culture.

  16. Microenvironmental Regulation of Telomerase Isoforms in Human Embryonic Stem Cells

    PubMed Central

    Radan, Lida; Hughes, Chris S.; Teichroeb, Jonathan H.; Zamora, Flora M. Vieira; Jewer, Michael; Postovit, Lynne-Marie

    2014-01-01

    Recent evidence points to extra-telomeric, noncanonical roles for telomerase in regulating stem cell function. In this study, human embryonic stem cells (hESCs) were cultured in 20% or 2% O2 microenvironments for up to 5 days and evaluated for telomerase reverse transcriptase (TERT) expression and telomerase activity. Results showed increased cell survival and maintenance of the undifferentiated state with elevated levels of nuclear TERT in 2% O2-cultured hESCs despite no significant difference in telomerase activity compared with their high-O2-cultured counterparts. Pharmacological inhibition of telomerase activity using a synthetic tea catechin resulted in spontaneous hESC differentiation, while telomerase inhibition with a phosphorothioate oligonucleotide telomere mimic did not. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed variations in transcript levels of full-length and alternate splice variants of TERT in hESCs cultured under varying O2 atmospheres. Steric-blocking of Δα and Δβ hTERT splicing using morpholino oligonucleotides altered the hTERT splicing pattern and rapidly induced spontaneous hESC differentiation that appeared biased toward endomesodermal and neuroectodermal cell fates, respectively. Together, these results suggest that post-transcriptional regulation of TERT under varying O2 microenvironments may help regulate hESC survival, self-renewal, and differentiation capabilities through expression of extra-telomeric telomerase isoforms. PMID:24749509

  17. Epigenetics changes caused by the fusion of human embryonic stem cell and ovarian cancer cells

    PubMed Central

    He, Ke; Qu, Hu; Xu, Li-Nan; Gao, Jun; Cheng, Fu-Yi; Xiang, Peng; Zhou, Can-Quan

    2016-01-01

    To observe the effect of gene expression and tumorigenicity in hybrid cells of human embryonic stem cells (hESCs) and ovarian cancer cells in vitro and in vivo using a mouse model, and to determine its feasibility in reprogramming tumour cells growth and apoptosis, for a potential exploration of the role of hESCs and tumour cells fusion in the management of ovarian cancer. Stable transgenic hESCs (H1) and ovarian cancer cell line OVCAR-3 were established before fusion, and cell fusion system was established to analyse the related indicators. PTEN expression in HO-H1 cells was higher than those in the parental stem cells and lower than those in parental tumour cells; the growth of OV-H1 (RFP+GFP) hybrid cells with double fluorescence expressions were obviously slower than that of human embryonic stem cells and OVCAR-3 ovarian cancer cells. The apoptosis signal of the OV-H1 hybrid cells was significantly higher than that of the hESCs and OVCAR-3 ovarian cancer cells. In vivo results showed that compared with 7 days, 28 days and 35 days after inoculation of OV-H1 hybrid cells; also, apoptotic cell detection indicated that much stronger apoptotic signal was found in OV-H1 hybrid cells inoculated mouse. The hESCs can inhibit the growth of OVCAR-3 cells in vitro by suppressing p53 and PTEN expression to suppress the growth of tumour that may be achieved by inducing apoptosis of OVCAR-3 cells. The change of epigenetics after fusion of ovarian cancer cells and hESCs may become a novel direction for treatment of ovarian cancer. PMID:27377320

  18. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines.

    PubMed

    Ström, Susanne; Inzunza, José; Grinnemo, Karl-Henrik; Holmberg, Kerstin; Matilainen, Eija; Strömberg, Anne-Marie; Blennow, Elisabeth; Hovatta, Outi

    2007-12-01

    For clinical grade human embryonic stem cell (hESC) lines, a robust derivation system without any substances having animal origin would be required. We have gradually improved our hESC derivations. Human skin fibroblasts were used as feeder cells in derivation of all our 25 permanent fully characterized hESC lines. In the first four derivations, fetal calf serum was used as a supplement in the medium, thereafter, serum replacement medium was used. Immunosurgery generally used for isolation of the inner cell mass (ICM) still involves animal serum and complement. We developed a practical mechanical isolation method for the ICM. Two flexible metal needles with sharpened tips, 0.125 mm in diameter, were used to open the zona pellucida and extract the ICM under a stereomicroscope. Immunohistochemical and karyotype characterization of the new hESC lines was carried out, and pluripotency was tested in vitro (immunocytochemistry and RT-PCR) and in vivo (teratoma growth). Five hESC lines were obtained from 19 supernumerary blastocysts collected in 2005-2006 (26%), whereas in similar conditions, we obtained 16 lines from 100 blastocysts (16%) using immunosurgery in 2003-2005. The new lines had a normal karyotype and tissues originating from the three embryonic germ cell layers were present. Mechanical isolation of the ICM proved to be an effective way to derive new hESC lines. The technique is fast, does not require any extra investment and the xeno-components of immunosurgery could be avoided.

  19. Autogenic feeder free system from differentiated mesenchymal progenitor cells, maintains pluripotency of the MEL-1 human embryonic stem cells.

    PubMed

    Khoo, Tze Sean; Hamidah Hussin, Noor; Then, Sue-Mian; Jamal, Rahman

    2013-02-01

    Human embryonic stem cells (hESc) are known for its pluripotency and self renewal capability, thus possess great potential in regenerative medicine. However, the lack of suitable xenofree extracellular matrix substrate inhibits further applications or the use of hESc in cell-based therapy. In this study, we described a new differentiation method, which generates a homogeneous population of mesenchymal progenitor cells (hESc-MPC) from hESc via epithelial-mesenchymal transition. The extracellular matrix (ECM) proteins from hESc-MPC had in turn supported the undifferentiated expansion of hESc. Immunocytochemistry and flow cytometry characterization of hESc-MPC revealed the presence of early mesenchymal markers. Tandem mass spectometry analysis of ECM produced by hESc-MPC revealed the presence of a mixture of extracellular proteins which includes tenascin C, fibronectin, and vitronectin. The pluripotency of hESc (MEL-1) cultured on the ECM was maintained as shown by the expression of pluripotent genes (FoxD3, Oct-4, Tdgf1, Sox-2, Nanog, hTERT, Rex1), protein markers (SSEA-3, SSEA-4, TRA-1-81, TRA-1-60, Oct-4) and the ability to differentiate into cells representative of ectoderm, endoderm and mesoderm. In summary, we have established a xeno-free autogenic feeder free system to support undifferentiated expansion of hESc, which could be of clinical relevance.

  20. Alginate Encapsulation of Human Embryonic Stem Cells to Enhance Directed Differentiation to Pancreatic Islet-Like Cells

    PubMed Central

    Richardson, Thomas; Kumta, Prashant N.

    2014-01-01

    The pluripotent property of human embryonic stem cells (hESCs) makes them attractive for treatment of degenerative diseases such as diabetes. We have developed a stage-wise directed differentiation protocol to produce alginate-encapsulated islet-like cells derived from hESCs, which can be directly implanted for diabetes therapy. The advantage of alginate encapsulation lies in its capability to immunoisolate, along with the added possibility of scalable culture. We have evaluated the possibility of encapsulating hESCs at different stages of differentiation. Encapsulation of predifferentiated cells resulted in insufficient cellular yield and differentiation. On the other hand, encapsulation of undifferentiated hESCs followed by differentiation induction upon encapsulation resulted in the highest viability and differentiation. More striking was that alginate encapsulation resulted in a much stronger differentiation compared to parallel two-dimensional cultures, resulting in 20-fold increase in c-peptide protein synthesis. To elucidate the mechanism contributing to encapsulation-mediated enhancement in hESC maturation, investigation of the signaling pathways revealed interesting insight. While the phospho-protein levels of all the tested signaling molecules were lower under encapsulation, the ratio of pSMAD/pAKT was significantly higher, indicating a more efficient signal transduction under encapsulation. These results clearly demonstrate that alginate encapsulation of hESCs and differentiation to islet-cell types provides a potentially translatable treatment option for type 1 diabetes. PMID:24881778

  1. Alginate encapsulation of human embryonic stem cells to enhance directed differentiation to pancreatic islet-like cells.

    PubMed

    Richardson, Thomas; Kumta, Prashant N; Banerjee, Ipsita

    2014-12-01

    The pluripotent property of human embryonic stem cells (hESCs) makes them attractive for treatment of degenerative diseases such as diabetes. We have developed a stage-wise directed differentiation protocol to produce alginate-encapsulated islet-like cells derived from hESCs, which can be directly implanted for diabetes therapy. The advantage of alginate encapsulation lies in its capability to immunoisolate, along with the added possibility of scalable culture. We have evaluated the possibility of encapsulating hESCs at different stages of differentiation. Encapsulation of predifferentiated cells resulted in insufficient cellular yield and differentiation. On the other hand, encapsulation of undifferentiated hESCs followed by differentiation induction upon encapsulation resulted in the highest viability and differentiation. More striking was that alginate encapsulation resulted in a much stronger differentiation compared to parallel two-dimensional cultures, resulting in 20-fold increase in c-peptide protein synthesis. To elucidate the mechanism contributing to encapsulation-mediated enhancement in hESC maturation, investigation of the signaling pathways revealed interesting insight. While the phospho-protein levels of all the tested signaling molecules were lower under encapsulation, the ratio of pSMAD/pAKT was significantly higher, indicating a more efficient signal transduction under encapsulation. These results clearly demonstrate that alginate encapsulation of hESCs and differentiation to islet-cell types provides a potentially translatable treatment option for type 1 diabetes.

  2. Suppressing P16(Ink4a) and P14(ARF) pathways overcomes apoptosis in individualized human embryonic stem cells.

    PubMed

    Wang, Wenqian; Zhu, Yanling; Huang, Ke; Shan, Yongli; Du, Juan; Dong, Xiaoya; Ma, Ping; Wu, Penafei; Zhang, Jian; Huang, Wenhao; Zhang, Tian; Liao, Baojian; Yao, Deyang; Pan, Guangjin; Liu, Jiajun

    2017-03-01

    Dissociation-induced apoptosis is a striking phenomenon in human embryonic stem cells (hESCs), but not in naive mouse ESCs. Rho-associated kinase-dependent actin-myosin hyperactivation is an underlying mechanism that triggers apoptosis in dissociated hESCs; however, in this study, we show that the Ink4A-ARF-mediated senescence pathway is another mechanism to cause apoptosis in individualized hESCs. We show that P16(INK4A) and P14(ARF) are immediately induced in hESCs upon dissociation, but not in mouse ESCs. Overexpression of BMI1, a suppressor for Ink4A-ARF, greatly promotes survival and cloning efficiency of individualized hESCs mechanistically via direct binding the H3K27me3-marked Ink4A-ARF locus. Forced expression of BMI1 in hESCs does not reduce the actin-myosin activation that is triggered by dissociation, which indicates it is an independent pathway for hESC survival. Furthermore, dual inhibition of both Ink4A-ARF and actin-myosin hyperactivation enables successful passaging of hESCs via gelatin, a nonbioactive matrix. In sum, we provide an additional mechanism that underlies cell death in individualized hESCs that might help to fully understand the differential cell characteristics between naive and primed ESCs.-Wang, W., Zhu, Y., Huang, K., Shan, Y., Du, J., Dong, X., Ma, P., Wu, P., Zhang, J., Huang, W., Zhang, T., Liao, B., Yao, D., Pan, G., Liu, J. Suppressing P16(Ink4a) and P14(ARF) pathways overcomes apoptosis in individualized human embryonic stem cells.

  3. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    PubMed Central

    Prajumwongs, Piya; Weeranantanapan, Oratai; Jaroonwitchawan, Thiranut; Noisa, Parinya

    2016-01-01

    Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs) recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation. PMID:27239201

  4. Enhanced current collection in 1.7 eV GaInAsP solar cells grown on GaAs by metalorganic vapor phase epitaxy

    DOE PAGES

    Jain, Nikhil; Geisz, John F.; France, Ryan M.; ...

    2017-02-08

    Quaternary GaInAsP solar cells with a bandgap of ~1.7 eV offer an attractive Al-free alternative to AlGaAs solar cells for integration in next generation of III-V multijunction solar cells with five or more junctions. Development of a high quality 1.7 eV solar cell is also highly sought for III-V/Si tandem solar cells. In this work, we systematically investigate the impact of varying base thicknesses and doping concentrations on the carrier collection and performance of 1.7 eV GaInAsP solar cells. The photoresponse of these cells is found to be very sensitive to p-type zinc doping concentration in the base layer. Prototypemore » 1.7 eV GaInAsP n-i-p solar cell designs are demonstrated that leverage enhanced depletion width as an effective method to achieve peak quantum efficiency exceeding 90%. We also show the importance of optimal i-layer thickness as a critical parameter to reduce the drop in fill-factor (FF) due to field-aided collection. Furthermore, we demonstrate substantial improvement in the cell performance when the GaInAsP base layer is grown at 650 degrees C instead of 600 degrees C. The best GaInAsP solar cell (Eg ~ 1.65 eV) in this study achieved JSC of 21.1 mA/cm2, VOC of 1.18 V, FF of 83.8%, and an efficiency of 20.8 +/- 1% under AM1.5D spectrum (21.5 +/- 1% under AM1.5G spectrum). Finally, these results highlight the potential of Al-free GaInAsP solar cells for integration in the next generation of III-V multijunction solar cells.« less

  5. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

    SciTech Connect

    Masuda, T; Tomasulo, S; Lang, JR; Lee, ML

    2015-03-07

    We have investigated similar to 2.0 eV (AlxGa1-x)(0.51)In0.49P and similar to 1.9 eV Ga0.51In0.49P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (AlxGa1-x)(0.51)In0.49P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V-oc) ranging from 1.29 to 1.30 V for Ga0.51In0.49P cells, and 1.35-1.37 V for (AlxGa1-x)(0.51)In0.49P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W-oc = E-g/q - V-oc) of Ga0.51In0.49P cells to decrease from similar to 575 mV to similar to 565 mV, while that of (AlxGa1-x)(0.51)In0.49P cells remained nearly constant at 620 mV. The constant Woc as a function of substrate offcut for (AlxGa1-x)(0.51)In0.49P implies greater losses from non-radiative recombination compared with the Ga0.51In0.49P devices. In addition to larger Woc values, the (AlxGa1-x)(0.51)In0.49P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga0.51In0.49P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (AlxGa1-x)(0.51)In0.49P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells. (C) 2015 AIP Publishing LLC.

  6. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Masuda, Taizo; Tomasulo, Stephanie; Lang, Jordan R.; Lee, Minjoo Larry

    2015-03-01

    We have investigated ˜2.0 eV (AlxGa1-x)0.51In0.49P and ˜1.9 eV Ga0.51In0.49P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (AlxGa1-x)0.51In0.49P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (Voc) ranging from 1.29 to 1.30 V for Ga0.51In0.49P cells, and 1.35-1.37 V for (AlxGa1-x)0.51In0.49P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (Woc = Eg/q - Voc) of Ga0.51In0.49P cells to decrease from ˜575 mV to ˜565 mV, while that of (AlxGa1-x)0.51In0.49P cells remained nearly constant at 620 mV. The constant Woc as a function of substrate offcut for (AlxGa1-x)0.51In0.49P implies greater losses from non-radiative recombination compared with the Ga0.51In0.49P devices. In addition to larger Woc values, the (AlxGa1-x)0.51In0.49P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga0.51In0.49P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (AlxGa1-x)0.51In0.49P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells.

  7. Significant changes in cell and chloroplast development in young wheat leaves (Triticum aestivum cv Hereward) grown in elevated CO{sub 2}

    SciTech Connect

    Robertson, E.J.; Leech, R.M.

    1995-01-01

    Cell and chloroplast development were characterized in young Triticum aestivum cv Hereward leaves grown at ambient (350 {mu}L L{sup {minus}1}) or at elevated (650 {mu}L L{sup {minus}1}) CO{sub 2}. In elevated CO{sub 2}, cell and chloroplast expansion was accelerated by 10 and 25%, respectively, in the first leaf of 7-d-old wheat plants without disruption to the leaf developmental pattern. Elevated CO{sub 2} did not affect the number of chloroplasts in relation to mesophyll cell size or the linear relationship between chloroplast number or size and mesophyll cell size. No major changes in leaf anatomy or in chloroplast ultrastructure were detected as a result of growth in elevated CO{sub 2}, but there was a marked reduction in starch accumulation. In leaf sections fluorescently tagged antisera were used to visualize and quantitate the amount of cytochrome f, the {alpha}- and {beta}-subunits of the coupling factor 1 in ATP synthase, D1 protein of the photosystem II reaction center, the 33-kD protein of the extrinsic oxygen-evolving complex, subunit II of photosystem I, and ribulose-1,5-biphosphate carboxylase/oxygenase. A significant finding was that in 10 to 20% of the mesophyll cells grown in elevated CO{sub 2} the 33-kD protein of the extrinsic oxygen-evolving complex of photosystem II and cytochrome f were deficient by 75%, but the other proteins accumulated normally. 29 refs., 6 figs., 2 tabs.

  8. Progress in human embryonic stem cell research in the United States between 2001 and 2010.

    PubMed

    Vakili, Keyvan; McGahan, Anita M; Rezaie, Rahim; Mitchell, Will; Daar, Abdallah S

    2015-01-01

    On August 9th, 2001, the federal government of the United States announced a policy restricting federal funds available for research on human embryonic stem cell (hESCs) out of concern for the "vast ethical mine fields" associated with the creation of embryos for research purposes. Until the policy was repealed on March 9th, 2009, no U.S. federal funds were available for research on hESCs extracted after August 9, 2001, and only limited federal funds were available for research on a subset of hESC lines that had previously been extracted. This paper analyzes how the 2001 U.S. federal funding restrictions influenced the quantity and geography of peer-reviewed journal publications on hESC. The primary finding is that the 2001 policy did not have a significant aggregate effect on hESC research in the U.S. After a brief lag in early 2000s, U.S. hESC research maintained pace with other areas of stem cell and genetic research. The policy had several other consequences. First, it was tied to increased hESC research funding within the U.S. at the state level, leading to concentration of related activities in a relatively small number of states. Second, it stimulated increased collaborative research between US-based scientists and those in countries with flexible policies toward hESC research (including Canada, the U.K., Israel, China, Spain, and South Korea). Third, it encouraged independent hESC research in countries without restrictions.

  9. Progress in Human Embryonic Stem Cell Research in the United States between 2001 and 2010

    PubMed Central

    Vakili, Keyvan; McGahan, Anita M.; Rezaie, Rahim; Mitchell, Will; Daar, Abdallah S.

    2015-01-01

    On August 9th, 2001, the federal government of the United States announced a policy restricting federal funds available for research on human embryonic stem cell (hESCs) out of concern for the “vast ethical mine fields” associated with the creation of embryos for research purposes. Until the policy was repealed on March 9th, 2009, no U.S. federal funds were available for research on hESCs extracted after August 9, 2001, and only limited federal funds were available for research on a subset of hESC lines that had previously been extracted. This paper analyzes how the 2001 U.S. federal funding restrictions influenced the quantity and geography of peer-reviewed journal publications on hESC. The primary finding is that the 2001 policy did not have a significant aggregate effect on hESC research in the U.S. After a brief lag in early 2000s, U.S. hESC research maintained pace with other areas of stem cell and genetic research. The policy had several other consequences. First, it was tied to increased hESC research funding within the U.S. at the state level, leading to concentration of related activities in a relatively small number of states. Second, it stimulated increased collaborative research between US-based scientists and those in countries with flexible policies toward hESC research (including Canada, the U.K., Israel, China, Spain, and South Korea). Third, it encouraged independent hESC research in countries without restrictions. PMID:25812114

  10. Characteristics of high efficiency InGaP/InGaAs double junction solar cells grown on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Nguyen, H. P. T.; Kim, K. H.; Lim, H.; Lee, J. J.

    2009-09-01

    In this paper, we report on the conversion efficiency improvement in In0.50Ga0.50P/InxGa1-xAs tandem solar cells by employing metamorphic InGaAs bottom cell instead of lattice matched GaAs cell. In0.50Ga0.50P/In0.025Ga0.975As and In0.50Ga0.50P/GaAs double junction solar cells were grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD) on GaAs substrates. High-resolution transmission electron microscopy (HR-TEM) measurement reveals the dislocation in the In0.025Ga0.975AS layer which is caused by the lattice mismatch between In0.025Ga0.975AS subcell and GaAs substrate. Conversion efficiencies of these cells were measured to be 24.37% and 25.11% (AMI.5, 1 sun, 25° C) for the In0.50Ga0.50P/GaAs and In0.50Ga0.50P/In0.025Ga0.975As solar cells, respectively. The details about the solar cell characteristics will be discussed in the presentation.

  11. The Cell-Surface N-Glycome of Human Embryonic Stem Cells and Differentiated Hepatic Cells thereof.

    PubMed

    Montacir, Houda; Freyer, Nora; Knöspel, Fanny; Urbaniak, Thomas; Dedova, Tereza; Berger, Markus; Damm, Georg; Tauber, Rudolf; Zeilinger, Katrin; Blanchard, Véronique

    2017-07-04

    Human embryonic stem cells (hESCs) are pluripotent stem cells that offer a wide range of applications in regenerative medicine. In addition, they have been proposed as an appropriate alternative source of hepatocytes. In this work, hESCs were differentiated into definitive endodermal cells (DECs), followed by maturation into hepatocyte-like cells (HLCs). Their cell-surface N-glycome was profiled and also compared with that of primary human hepatocytes (PHHs). Undifferentiated hESCs contained large amounts of high-mannose N-glycans. In contrast, complex-type N-glycans such as asialylated or monosialylated biantennary and triantennary N-glycans were dominant in HLCs, and fully galactosylated structures were significantly more abundant than in undifferentiated hESCs. The cell-surface N-glycosylation of PHHs was more biologically processed than that of HLCs, with bisialylated biantennary and trisialylated triantennary structures predominant. This is the first report of the cell surface N-glycome of PHHs and of HLCs being directly generated from hESCs without embryoid body formation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Generation of Corneal Keratocytes from Human Embryonic Stem Cells

    PubMed Central

    Hertsenberg, Andrew J.; Funderburgh, James L.

    2017-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype. PMID:26026882

  13. Effects of Excess Copper Ions on Decidualization of Human Endometrial Stromal Cells.

    PubMed

    Li, Ying; Kang, Zhen-Long; Qiao, Na; Hu, Lian-Mei; Ma, Yong-Jiang; Liang, Xiao-Huan; Liu, Ji-Long; Yang, Zeng-Ming

    2017-05-01

    The aim of this study was to investigate the effects of copper ions on decidualization of human endometrial stromal cells (HESCs) cultured in vitro. Firstly, non-toxic concentrations of copper D-gluconate were screened in HESCs based on cell activity. Then, the effects of non-toxic concentrations of copper ions (0~250 μM) were examined on decidualization of human endometrial stromal cells. Our data demonstrated that the mRNA expressions of insulin-like growth factor binding protein (IGFBP-1), prolactin (PRL), Mn-SOD, and FOXO1were down-regulated during decidualization following the treatments with 100 or 250 μM copper ions. Meanwhile, the amount of malonaldehyde (MDA) in the supernatant of HESCs was increased. These results showed that in vitro decidualization of HESCs was impaired by copper treatment.

  14. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    PubMed

    Dormeyer, Wilma; van Hoof, Dennis; Braam, Stefan R; Heck, Albert J R; Mummery, Christine L; Krijgsveld, Jeroen

    2008-07-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired chromosomal abnormalities in culture are essentially indistinguishable from hECC. Direct comparison of karyotypically normal hESCs with hECCs could lead to understanding differences between their mechanisms of growth control and contribute to implementing safe therapeutic use of stem cells without the development of germ cell cancer. While several comparisons of hECCs and hESCs have been reported, their cell surface proteomes are largely unknown, partly because plasma membrane proteomics is still a major challenge. Here, we present a strategy for the identification of plasma membrane proteins that has been optimized for application to the relatively small numbers of stem cells normally available, and that does not require tedious cell fractionation. The method led to the identification of 237 and 219 specific plasma membrane proteins in the hESC line HUES-7 and the hECC line NT2/D1, respectively. In addition to known stemness-associated cell surface markers like ALP, CD9, and CTNNB, a large number of receptors, transporters, signal transducers, and cell-cell adhesion proteins were identified. Our study revealed that several Hedgehog and Wnt pathway members are differentially expressed in hESCs and hECCs including NPC1, FZD2, FZD6, FZD7, LRP6, and SEMA4D, which play a pivotal role in stem cell self-renewal and cancer growth. Various proteins encoded on chromosome 12p, duplicated in testicular cancer, were uniquely identified in hECCs. These included GAPDH, LDHB, YARS2, CLSTN3, CSDA, LRP6, NDUFA9, and NOL1, which are known to be upregulated in testicular cancer. Distinct HLA molecules were revealed on the surface of hESCs and hECCs, despite their low abundance. Results were

  15. Solar cell efficiency and high temperature processing of n-type silicon grown by the noncontact crucible method

    DOE PAGES

    Jensen, Mallory A.; LaSalvia, Vincenzo; Morishige, Ashley E.; ...

    2016-08-01

    The capital expense (capex) of conventional crystal growth methods is a barrier to sustainable growth of the photovoltaic industry. It is challenging for innovative techniques to displace conventional growth methods due the low dislocation density and high lifetime required for high efficiency devices. One promising innovation in crystal growth is the noncontact crucible method (NOC-Si), which combines aspects of Czochralski (Cz) and conventional casting. This material has the potential to satisfy the dual requirements, with capex likely between that of Cz (high capex) and multicrystalline silicon (mc-Si, low capex). In this contribution, we observe a strong dependence of solar cellmore » efficiency on ingot height, correlated with the evolution of swirl-like defects, for single crystalline n-type silicon grown by the NOC-Si method. We posit that these defects are similar to those observed in Cz, and we explore the response of NOC-Si to high temperature treatments including phosphorous diffusion gettering (PDG) and Tabula Rasa (TR). The highest lifetimes (2033 us for the top of the ingot and 342 us for the bottom of the ingot) are achieved for TR followed by a PDG process comprising a standard plateau and a low temperature anneal. Further improvements can be gained by tailoring the time-temperature profiles of each process. Lifetime analysis after the PDG process indicates the presence of a getterable impurity in the as-grown material, while analysis after TR points to the presence of oxide precipitates especially at the bottom of the ingot. Uniform lifetime degradation is observed after TR which we assign to a presently unknown defect. Lastly, future work includes additional TR processing to uncover the nature of this defect, microstructural characterization of suspected oxide precipitates, and optimization of the TR process to achieve the dual goals of high lifetime and spatial homogenization.« less

  16. Properties of Retinal Precursor Cells Grown on Vertically Aligned Multiwalled Carbon Nanotubes Generated for the Modification of Retinal Implant-Embedded Microelectrode Arrays

    PubMed Central

    Johnen, Sandra; Meißner, Frank; Krug, Mario; Baltz, Thomas; Endler, Ingolf; Mokwa, Wilfried; Walter, Peter

    2016-01-01

    Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT), used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe) or mixtures of iron-platinum (Fe-Pt) and iron-titanium (Fe-Ti) acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28) cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue. PMID:27200182

  17. Responses of human embryonic stem cells and their differentiated progeny to ionizing radiation.

    PubMed

    Zou, Ying; Zhang, Ningzhe; Ellerby, Lisa M; Davalos, Albert R; Zeng, Xianmin; Campisi, Judith; Desprez, Pierre-Yves

    2012-09-14

    Human embryonic stem cells (hESCs) hold promise for the treatment of many human pathologies. For example, hESCs and the neuronal stem cells (NSCs) and neurons derived from them have significant potential as transplantation therapies for a variety of neurodegenerative diseases. Two concerns about the use of hESCs and their differentiated derivatives are their ability to function and their ability to resist neoplastic transformation in response to stresses that inevitably arise during their preparation for transplantation. To begin to understand how these cells handle genotoxic stress, we examined the responses of hESCs and derived NSCs and neurons to ionizing radiation (IR). Undifferentiated hESCs were extremely sensitive to IR, with nearly all the cells undergoing cell death within 5-7 h. NSCs and neurons were substantially more resistant to IR, with neurons showing the most resistant. Of interest, NSCs that survived IR underwent cellular senescence and acquired astrocytic characteristics. Unlike IR-treated astrocytes, however, the NSC-derived astrocytic cells that survived IR did not display the typical pro-inflammatory, pro-carcinogenic senescence-associated secretory phenotype. These findings suggest distinct genotoxic stress-responses of hESCs and derived NSC and neuronal populations, and suggest that damaged NSCs, while failing to function, may not cause local inflammation.

  18. Responses of Human Embryonic Stem Cells and Their Differentiated Progeny to Ionizing Radiation

    PubMed Central

    Zou, Ying; Zhang, Ningzhe; Ellerby, Lisa M.; Davalos, Albert R.; Zeng, Xianmin; Campisi, Judith; Desprez, Pierre-Yves

    2012-01-01

    Human embryonic stem cells (hESCs) hold promise for the treatment of many human pathologies. For example, hESCs and the neuronal stem cells (NSCs) and neurons derived from them have significant potential as transplantation therapies for a variety of neurodegenerative diseases. Two concerns about the use of hESCs and their differentiated derivatives are their ability to function and their ability to resist neoplastic transformation in response to stresses that inevitably arise during their preparation for transplantation. To begin to understand how these cells handle genotoxic stress, we examined the responses of hESCs and derived NSCs and neurons to ionizing radiation (IR). Undifferentiated hESCs were extremely sensitive to IR, with nearly all the cells undergoing cell death within 5–7 hours. NSCs and neurons were substantially more resistant to IR, with neurons showing the most resistant. Of interest, NSCs that survived IR underwent cellular senescence and acquired astrocytic characteristics. Unlike IR-treated astrocytes, however, the NSC-derived astrocytic cells that survived IR did not display the typical pro-inflammatory, pro-carcinogenic senescence-associated secretory phenotype. These findings suggest distinct genotoxic stress-responses of hESCs and derived NSC and neuronal populations, and suggest that damaged NSCs, while failing to function, may not cause local inflammation. PMID:22917535

  19. Comparison of human nasal epithelial cells grown as explant outgrowth cultures or dissociated tissue cultures in vitro.

    PubMed

    Jiao, Jian; Meng, Na; Wang, Hong; Zhang, Luo

    2013-12-01

    The purpose of this study was to compare cell growth characteristics, ciliated cell differentiation, and function of human nasal epithelial cells established as explant outgrowth cultures or dissociated tissue cultures. Human nasal mucosa of the uncinate process was obtained by endoscopy and epithelial cell cultures were established by explant outgrowth or dissociated tissue culture methods. Epithelial cell growth characteristics were observed by inverted phase contrast microscopy. Ciliated cell differentiation was detected by β-tubulin IVand ZO-1 immunocytochemistry. Basal and ATP-stimulated ciliary beat frequency (CBF) was measured using a highspeed digital microscopic imaging system. Both the explant and dissociated tissue cultures established as monolayers with tight junctions and differentiated cell composition, with both types of cultures comprising ciliated and non-ciliated epithelial cells. Fibroblasts were also frequently found in explant cultures but rarely seen in dissociated tissue cultures. In both culture systems, the highest ciliated cell density appeared at 7th-10th culture day and declined with time, with the lifespan of ciliated cells ranging from 14 to 21 days. Overall, 10% of the cells in explant cultures and 20% of the cells in the dissociated tissue cultures were ciliated. These two cultures demonstrated similar ciliary beat frequency values at baseline (7.78 ± 1.99 Hz and 7.91 ± 2.52 Hz, respectively) and reacted equivalently following stimulation with 100 μM ATP. The results of this study indicate that both the explant outgrowth and dissociated tissue culture techniques are suitable for growing well-differentiated nasal ciliated and non-ciliated cells, which have growth characteristics and ciliary activity similar to those of nasal epithelial cells in vivo.

  20. Factors derived from Escherichia coli Nissle 1917, grown in different growth media, enhance cell death in a model of 5-fluorouracil-induced Caco-2 intestinal epithelial cell damage.

    PubMed

    Wang, Hanru; Bastian, Susan E P; Lawrence, Andrew; Howarth, Gordon S

    2015-01-01

    We evaluated supernatants (SNs) from Escherichia coli Nissle 1917 (EcN) grown in commonly used growth media for their capacity to affect the viability of Caco-2 colon cancer cells in the presence and absence of 5-Fluorouracil (5-FU) chemotherapy. EcN was grown in Luria-Bertani (LB), tryptone soya (TSB), Man Rogosa Sharpe (MRS), and M17 broth supplemented with 10% (v/v) lactose solution (M17). Human Caco-2 colon cancer cells were treated with DMEM (control), growth media alone (LB, TSB, MRS, and M17) or EcN SNs derived from these 4 media, in the presence and absence of 5-FU. Cell viability, reactive oxygen species (ROS), and cell monolayer permeability were determined. EcN SN in LB medium reduced Caco-2 cell viability significantly, to 51% at 48 h. The combination of this EcN SN and 5-FU further reduced cell viability to 37% at 48 h, compared to 5-FU control. MRS broth and EcN SN in MRS, together with 5-FU, generated significantly lower levels of ROS compared to 5-FU control. However, all 5-FU treatments significantly disrupted the Caco-2 cell barrier compared to control; with no significant differences observed among any of the 5-FU treatments. EcN SNs (LB+) was most effective at decreasing the viability of Caco-2 cells. This could indicate a potential role for this EcN SN in chemoprevention for colon cancer.

  1. Derivation of new human embryonic stem cell lines reveals rapid epigenetic progression in vitro that can be prevented by chemical modification of chromatin

    PubMed Central

    Diaz Perez, Silvia V.; Kim, Rachel; Li, Ziwei; Marquez, Victor E.; Patel, Sanjeet; Plath, Kathrin; Clark, Amander T.

    2012-01-01

    Human embryonic stem cells (hESCs) are pluripotent cell types derived from the inner cell mass of human blastocysts. Recent data indicate that the majority of established female XX hESC lines have undergone X chromosome inactivation (XCI) prior to differentiation, and XCI of hESCs can be either XIST-dependent (class II) or XIST-independent (class III). XCI of female hESCs precludes the use of XX hESCs as a cell-based model for examining mechanisms of XCI, and will be a challenge for studying X-linked diseases unless strategies are developed to reactivate the inactive X. In order to recover nuclei with two active X chromosomes (class I), we developed a reprogramming strategy by supplementing hESC media with the small molecules sodium butyrate and 3-deazaneplanocin A (DZNep). Our data demonstrate that successful reprogramming can occur from the XIST-dependent class II nuclear state but not class III nuclear state. To determine whether these small molecules prevent XCI, we derived six new hESC lines under normoxic conditions (UCLA1–UCLA6). We show that class I nuclei are present within the first 20 passages of hESC derivation prior to cryopreservation, and that supplementation with either sodium butyrate or DZNep preserve class I nuclei in the self-renewing state. Together, our data demonstrate that self-renewal and survival of class I nuclei are compatible with normoxic hESC derivation, and that chemical supplementation after derivation provides a strategy to prevent epigenetic progression and retain nuclei with two active X chromosomes in the self-renewing state. PMID:22058289

  2. Structural Complexity of Non-acid Glycosphingolipids in Human Embryonic Stem Cells Grown under Feeder-free Conditions*

    PubMed Central

    Barone, Angela; Benktander, John; Ångström, Jonas; Aspegren, Anders; Björquist, Petter; Teneberg, Susann; Breimer, Michael. E.

    2013-01-01

    Due to their pluripotency and growth capability, there are great expectations for human embryonic stem cells, both as a resource for functional studies of early human development and as a renewable source of cells for use in regenerative medicine and transplantation. However, to bring human embryonic stem cells into clinical applications, their cell surface antigen expression and its chemical structural complexity have to be defined. In the present study, total non-acid glycosphingolipid fractions were isolated from two human embryonic stem cell lines (SA121 and SA181) originating from leftover in vitro fertilized human embryos, using large amounts of starting material (1 × 109 cells/cell line). The total non-acid glycosphingolipid fractions were characterized by antibody and lectin binding, mass spectrometry, and proton NMR. In addition to the globo-series and type 1 core chain glycosphingolipids previously described in human embryonic stem cells, a number of type 2 core chain glycosphingolipids (neo-lactotetraosylceramide, the H type 2 pentaosylceramide, the Lex pentaosylceramide, and the Ley hexaosylceramide) were identified as well as the blood group A type 1 hexaosylceramide. Finally, the mono-, di-, and triglycosylceramides were characterized as galactosylceramide, glucosylceramide, lactosylceramide, galabiaosylceramide, globotriaosylceramide, and lactotriaosylceramide. Thus, the glycan diversity of human embryonic stem cells, including cell surface immune determinants, is more complex than previously appreciated. PMID:23404501

  3. Effect of temperature and pH on ethanol production by free and immobilized cells of Kluyveromyces marxianus grown on Jerusalem artichoke extract

    SciTech Connect

    Bajpai, P.; Margaritis, A.

    1987-01-01

    The effect of temperature and pH on the kinetics of ethanol production by free and calcium alginate immobilized cells of Kluyveromyces marxianus grown on Jerusalem artichoke extract was investigated. With the free cells, the ethanol and biomass yields were relatively constant over the temperature range 25-35 degrees C, but dropped sharply beyond 35 degrees C. Other kinetic parameters, specific growth rate, specific ethanol production rate, and specific total sugar uptake rate were maximum at 35 degrees C. However, with the immobilized cells, ethanol yield remained almost constant in the temperatue range 25-45 degrees C, and the specific ethanol production rate and specific total sugar uptake rate attained their maximum values at 40 degrees C. For the pH range between 3 and 7, the free-cell optimum for growth and product formation was found to be circa pH 5. At this pH, the specific growth rate was 0.35/h and specific ethanol production rate was 2.83 g/g/h. At values higher or lower than pH 5, a sharp decrease in specific ethanol production rate as well as specific growth rate was observed. In comparison, the immobilized cells showed a broad optimum pH profile. The best ethanol production rates were observed between pH 4 and 6. (Refs. 22).

  4. Embedded vertically aligned cadmium telluride nanorod arrays grown by one-step electrodeposition for enhanced energy conversion efficiency in three-dimensional nanostructured solar cells.

    PubMed

    Wang, Jun; Liu, Shurong; Mu, Yannan; Liu, Li; A, Runa; Yang, Jiandong; Zhu, Guijie; Meng, Xianwei; Fu, Wuyou; Yang, Haibin

    2017-11-01

    Vertically aligned CdTe nanorods (NRs) arrays are successfully grown by a simple one-step and template-free electrodeposition method, and then embedded in the CdS window layer to form a novel three-dimensional (3D) heterostructure on flexible substrates. The parameters of electrodeposition such as deposition potential and pH of the solution are varied to analyze their important role in the formation of high quality CdTe NRs arrays. The photovoltaic conversion efficiency of the solar cell based on the 3D heterojunction structure is studied in detail. In comparison with the standard planar heterojunction solar cell, the 3D heterojunction solar cell exhibits better photovoltaic performance, which can be attributed to its enhanced optical absorption ability, increased heterojunction area and improved charge carrier transport. The better photoelectric property of the 3D heterojunction solar cell suggests great application potential in thin film solar cells, and the simple electrodeposition process represents a promising technique for large-scale fabrication of other nanostructured solar energy conversion devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Global gene expression profiles of canine macrophages and canine mammary cancer cells grown as a co-culture in vitro

    PubMed Central

    2012-01-01

    Background Solid tumours comprise various cells, including cancer cells, resident stromal cells, migratory haemopoietic cells and other. These cells regulate tumour growth and metastasis. Macrophages constitute probably the most important element of all interactions within the tumour microenvironment. However, the molecular mechanism, that guides tumour environment, still remains unknown. Exploring the underlying molecular mechanisms that orchestrate these phenomena has been the aim of our study. A co-culture of canine mammary cancer cells and macrophages was established and maintained for 72 hrs. Having sorted the cells, gene expression in cancer cells and macrophages, using DNA microarrays, was examined. The results were confirmed using real-time qPCR and confocal microscopy. Moreover, their ability for migration and invasion has been assessed. Results Microarray analysis showed that the up-regulated genes in the cancer cell lines are involved in 15 highly over-manifested pathways. The pathways that drew our diligent attention included: the inflammation pathway mediated by chemokine and cytokine, the Toll receptor signalling pathway and the B cell activation. The up-regulated genes in the macrophages were involved in only 18 significantly over-manifested pathways: the angiogenesis, the p53 pathway feedback loops2 and the Wnt signalling pathway. The microarray analysis revealed that co-culturing of cancer cells with macrophages initiated the myeloid-specific antigen expression in cancer cells, as well as cytokine/chemokine genes expression. This finding was confirmed at mRNA and protein level. Moreover, we showed that macrophages increase cancer migration and invasion. Conclusions The presence of macrophages in the cancer environment induces acquisition of the macrophage phenotype (specific antigens and chemokines/cytokines expression) in cancer cells. We presumed that cancer cells also acquire other myeloid features, such as: capabilities of cell rolling

  6. Effects of taurolidine and chlorhexidine on SaOS-2 cells and human gingival fibroblasts grown on implant surfaces.

    PubMed

    John, Gordon; Becker, Jürgen; Schwarz, Frank

    2014-01-01

    The purpose of the study was the evaluation of possible cytologic effects of taurolidine to fibroblasts and osteoblast-like cells. Human gingival fibroblasts and SaOS-2 cells were seeded on samples with sand-blasted and acid-etched surfaces. Both groups were treated with taurolidine, chlorhexidine, and pure water with three different treatment times. Three dates of measurements were set to evaluate cell viability, cytotoxicity, and apoptosis. Highest cytotoxicity was measured in both cell lines in the groups treated with chlorhexidine, while cell viability was lower than in the corresponding taurolidine and pure water groups; on days 3 and 6 these differences were significant. Taurolidine showed similar results to the pure water groups. The results of this study indicate that taurolidine is biocompatible and gentle to the tested human cells for the application time of a mouthrinse.

  7. Fourier transform infrared microspectroscopy reveals that tissue culture conditions affect the macromolecular phenotype of human embryonic stem cells.

    PubMed

    Cao, Julie; Ng, Elizabeth S; McNaughton, Don; Stanley, Edouard G; Elefanty, Andrew G; Tobin, Mark J; Heraud, Philip

    2013-07-21

    We employed Fourier transform infrared (FTIR) microspectroscopy to investigate the effects of different tissue culture environments on the FTIR spectra of undifferentiated human embryonic stem cells (hESCs) and their differentiated progeny. First we tested whether there were any possible spectral artifacts resulting from the use of transflectance measurements by comparing them with transmission measurements and found no evidence of these concluding that the lack of any differences resulted from the homogeneity of the dried cytospun cellular monolayers. We found that hESCs that were enzymatically passaged onto mouse embryonic fibroblasts (MEFs) in KOSR based hESC medium, hESCs enzymatically passaged onto Matrigel in mTESR medium and hESCs mechanically passaged onto MEFs in KOSR-based hESC medium, possessed unique FTIR spectroscopic signatures that reflect differences in their macromolecular chemistry. Further, these spectroscopic differences persisted even upon differentiation towards mesendodermal lineages. Our results suggest that FTIR microspectroscopy is a powerful, objective, measurement modality that complements existing methods for studying the phenotype of hESCs and their progeny, particularly changes induced by the cellular environment.

  8. The possible impact of human embryonic stem cells on safety pharmacological and toxicological assessments in drug discovery and drug development.

    PubMed

    Stummann, Tina C; Bremer, Susanne

    2008-05-01

    The successful establishment of human embryonic stem cell (hESC) lines has raised high expectation for their future applications. The major focus of hESC research has been on their potential use in replacement therapies. However, the most immediate application of hESCs may be in establishment of humanised in vitro tests, which have potential to reduce problems of interspecies variations in safety assessments. Improved prediction of human hazard would increase patient safety and reduce the number of laboratory animals needed for toxicological and safety pharmacological testing, leading to improved efficiency of drug discovery and development in term of cost and time. The current review describes some of the newest research programmes on the use of hESCs for safety evaluations of conventional drugs. It provides an overview of the possible impact of hESCs and their derivates on regulatory drug safety assessments and discusses the potential effects on the product pipeline organisation. The review additionally summarizes initiatives in establishing quality criteria for hESC expansion and differentiation. Such criteria are necessary in order to achieve high standardisation and throughput of pharmacological and toxicological tests. Finally, it will discuss the actions needed to scientifically prove the relevance and reliability of safety tests based on hESCs.

  9. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  10. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  11. Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the northern United States.

    PubMed

    Xu, Baojun; Chang, Sam K C

    2010-02-10

    Chemical and cellular antioxidant activities and phenolic profiles of 11 lentil cultivars grown in the cool northern parts of the United States were investigated. Individual phenolic compounds, including phenolic acids, flavan-3-ols, flavones, and anthocyanins, were further quantitatively investigated by HPLC. Cellular antioxidant activities (CAA) and peroxyl radical scavenging capacity (PRSC) were evaluated by fluorescence microplate reader. Cultivar Morton exhibited the highest individual flavan-3-ols (catechin and epicatechin) and total flavonoids, as well as the highest antioxidant properties (PRSC and CAA) among all lentils tested. Five phenolic acids of the benzoic types and their derivates (gallic, protocatechuic, 2,3,4-trihydroxybenzoic, p-hydroxybenzoic acid, and protocatechualdehyde) and four phenolic acids of the cinnamic type (chlorogenic, p-coumaric, m-coumaric, and sinapic acid) were detected in all lentil cultivars. Two flavan-3-ols [(+)-catechin and (-)-epicatechin] and one flavone (luteolin) were detected in all lentil cultivars. Among all phenolic compounds detected, sinapic acid was the predominant phenolic acid, and (+)-catechin and (-)-epicatechin were the predominant flavonoids. These results showed that different phenotype lentils possessed considerable variations in their individual phenolic compounds, as well as chemical and cellular antioxidant activities. Caffeic acid, catechin, epicatechin, and total flavonoids significantly (p < 0.05) correlated with peroxyl radical scavenging assay. Cellular antioxidant assay significantly correlated with chemical antioxidant assay ORAC. The results from this study could be very interesting for breeding programs to improve lentils for use as functional foods.

  12. Molecular cytogenetics: making it safe for human embryonic stem cells to enter the clinic.

    PubMed

    Josephson, Richard

    2007-07-01

    Regenerative therapies based on transplantation of cells derived from human embryonic stem cells (hESC) are currently being prepared for clinical trials. Unfortunately, recent evidence indicates that many kinds of changes can occur to hESC during expansion in culture, and alterations to the growth control mechanisms may be required to establish hESC lines at all. Changes in the genome and epigenome can affect the validity of in vitro and animal studies, and put transplant recipients at increased risk of cancer. New molecular cytogenetic technologies enable us to examine the whole human genome with ever-finer resolution. This review describes several techniques for whole-genome analysis and the information they can provide about hESC lines. Adoption of high-resolution genotyping into routine characterization may prevent highly discouraging clinical outcomes.

  13. Excess reactive oxygen species production mediates monoclonal antibody-induced human embryonic stem cell death via oncosis.

    PubMed

    Zheng, Ji Yun; Tan, Heng Liang; Matsudaira, Paul Thomas; Choo, Andre

    2017-03-01

    Antibody-mediated cell killing has significantly facilitated the elimination of undesired cells in therapeutic applications. Besides the well-known Fc-dependent mechanisms, pathways of antibody-induced apoptosis were also extensively studied. However, with fewer studies reporting the ability of antibodies to evoke an alternative form of programmed cell death, oncosis, the molecular mechanism of antibody-mediated oncosis remains underinvestigated. In this study, a monoclonal antibody (mAb), TAG-A1 (A1), was generated to selectively kill residual undifferentiated human embryonic stem cells (hESC) so as to prevent teratoma formation upon transplantation of hESC-derived products. We revealed that A1 induces hESC death via oncosis. Aided with high-resolution scanning electron microscopy (SEM), we uncovered nanoscale morphological changes in A1-induced hESC oncosis, as well as A1 distribution on hESC surface. A1 induces hESC oncosis via binding-initiated signaling cascade, most likely by ligating receptors on surface microvilli. The ability to evoke excess reactive oxygen species (ROS) production via the Nox2 isoform of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is critical in the cell death pathway. Excess ROS production occurs downstream of microvilli degradation and homotypic adhesion, but upstream of actin reorganization, plasma membrane damage and mitochondrial membrane permeabilization. To our knowledge, this is the first mechanistic model of mAb-induced oncosis on hESC revealing a previously unrecognized role for NAPDH oxidase-derived ROS in mediating oncotic hESC death. These findings in the cell death pathway may potentially be exploited to improve the efficiency of A1 in eliminating undifferentiated hESC and to provide insights into the study of other mAb-induced cell death.

  14. Density and length of stomatal and epidermal cells in "living fossil" trees grown under elevated CO 2 and a polar light regime

    NASA Astrophysics Data System (ADS)

    Ogaya, R.; Llorens, L.; Peñuelas, J.

    2011-07-01

    During the Cretaceous and early Tertiary, when the climate was warm and the atmospheric CO 2 concentration ([CO 2]) was at least double that of the present-day, polar forests populated high latitude landmasses. We investigated the density and length of stomata and other epidermal cells of two deciduous and three evergreen "living fossil" tree species representative of these ancient forests. These tree species were grown in a simulated Cretaceous high latitude environment at either ambient (400 ppmv) or elevated (800 ppmv) [CO 2] during four years. After 4 years growing at elevated [CO 2], the leaf stomatal density and index (percentage of leaf epidermal cells that are stomata) of these plants were similar to those of their counterparts growing at ambient [CO 2]. While the CO 2 enrichment only modified the stomatal pore length in two of the five studied species, it increased significantly the overall length of the epidermal cells of all the species, reducing their density. These results revealed that leaf epidermal cells of these "living fossil" species were more sensitive than stomata to an experimental doubling of atmospheric CO 2 concentration.

  15. Recombination current in AlGaAs/GaAs superlattice solar-cells grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kawaharazuka, A.; Nishinaga, J.; Horikoshi, Y.

    2015-09-01

    We investigate the effect of the recombination current of p-i-n junction solar-cells. We develop a simple evaluation method of the recombination and diffusion current component of the solar-cells based on the measured three characteristic values: short circuit current, open circuit voltage, and fill factor without the knowledge in the details of the device structure. The advantage of the developed technique is its simplicity and wide applicability to various p-i-n junction solar-cells. We apply the method to GaAs bulk and AlGaAs/GaAs superlattice solar-cells. Obtained parameters well reproduce the whole current-voltage characteristics. The diode current is almost dominated by the recombination current at the maximum-output voltage for both GaAs bulk and superlattice cells. The higher contribution of the recombination current in the superlattice solar-cell is due to the quality of the AlGaAs barriers and the AlGaAs/GaAs interfaces. This result indicates that the good crystalline quality is important to enhance the efficiency of the solar-cells.

  16. Differing Lectin Binding Profiles among Human Embryonic Stem Cells and Derivatives Aid in the Isolation of Neural Progenitor Cells

    PubMed Central

    Dodla, Mahesh C.; Young, Amber; Venable, Alison; Hasneen, Kowser; Rao, Raj R.; Machacek, David W.; Stice, Steven L.

    2011-01-01

    Human embryonic stem cells (hESCs) and their differentiated progeny allow for investigation of important changes/events during normal embryonic development. Currently most of the research is focused on proteinacous changes occurring as a result of differentiation of stem cells and little is known about changes in cell surface glycosylation patterns. Identification of cell lineage specific glycans can help in understanding their role in maintenance, proliferation and differentiation. Furthermore, these glycans can serve as markers for isolation of homogenous populations of cells. Using a panel of eight biotinylated lectins, the glycan expression of hESCs, hESCs-derived human neural progenitors (hNP) cells, and hESCs-derived mesenchymal progenitor (hMP) cells was investigated. Our goal was to identify glycans that are unique for hNP cells and use the corresponding lectins for cell isolation. Flow cytometry and immunocytochemistry were used to determine expression and localization of glycans, respectively, in each cell type. These results show that the glycan expression changes upon differentiation of hESCs and is different for neural and mesenchymal lineage. For example, binding of PHA-L lectin is low in hESCs (14±4.4%) but significantly higher in differentiated hNP cells (99±0.4%) and hMP cells (90±3%). Three lectins: VVA, DBA and LTL have low binding in hESCs and hMP cells, but significantly higher binding in hNP cells. Finally, VVA lectin binding was used to isolate hNP cells from a mixed population of hESCs, hNP cells and hMP cells. This is the first report that compares glycan expression across these human stem cell lineages and identifies significant differences. Also, this is the first study that uses VVA lectin for isolation for human neural progenitor cells. PMID:21850265

  17. The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium

    SciTech Connect

    Brotosudarmo, Tatas H. P.; Collins, Aaron M.; Gall, Andrew; Roszak, Aleksander W.; Gardiner, Alastair T.; Blankenship, Robert E.; Cogdell, Richard J.

    2011-11-15

    The differing composition of LH2 (peripheral light-harvesting) complexes present in Rhodopseudomonas palustris 2.1.6 have been investigated when cells are grown under progressively decreasing light intensity. Analysis of the absorption spectra reveals there must be more than two types of LH2 complexes present. Purified HL (high-light) and LL (low-light) LH2 complexes have mixed apoprotein compositions. The HL complexes contain PucABa and PucABb apoproteins. The LL complexes contain PucABa, PucABd and PucBb-only apoproteins. This mixed apoprotein composition can explain their resonance Raman spectra.

  18. Development of Lattice-Matched 1.7 eV GalnAsP Solar Cells Grown on GaAs by MOVPE

    SciTech Connect

    Jain, Nikhil; Oshima, Ryuji; France, Ryan; Geisz, John; Norman, Andrew; Dippo, Pat; Levi, Dean; Young, Michelle; Olavarria, Waldo; Steiner, Myles A.

    2016-11-21

    To advance the state-of-the-art in III-V multijunction solar cells towards high concentration efficiencies approaching 50%, development of a high-quality ~1.7 eV second junction solar cell is of key interest for integration in five or more junction devices. Quaternary GalnAsP solar cells grown lattice-matched on GaAs allows bandgap tunability in the range from 1.42 to 1.92 eV and offers an attractive Al-free alternative to conventional AlGaAs solar cells. In this work, we investigate the role of growth temperature towards understanding the optimal growth window for realizing high-quality GalnAsP alloys. We demonstrate bandgap tunability from 1.6 to 1.8 eV in GalnAsP alloys for compositions close to the miscibility gap, while still maintaining lattice-matched condition to GaAs. We perform an in-depth investigation to understand the impact of varying base thickness and doping concentration on the carrier collection and performance of these 1.7 eV GalnAsP solar cells. The photo-response of these cells is found to be very sensitive to p-type zinc dopant incorporation in the base layer. We demonstrate prototype 1.7 eV GalnAsP solar cell designs that leverage enhanced depletion width as an effective method to overcome this issue and boost long-wavelength carrier collection. Short-circuit current density (JSC) measured in field-aided devices were as high as 17.25 m A/cm2. The best GalnAsP solar cell in this study achieved an efficiency of 17.2% with a JSC of 17 m A/cm2 and a fill-factor of 86.4%. The corresponding open-circuit voltage (VOC) 1.7 eV measured on this cell represents the highest Voc reported for a 1.7 eV GalnAsP solar cell. These initial cell results are encouraging and highlight the potential of Al-free GalnAsP solar cells for integration in the next generation of III-V multijunction solar cells.

  19. Growth of lattice-matched GaInAsP grown on vicinal GaAs(001) substrates within the miscibility gap for solar cells

    DOE PAGES

    Oshima, Ryuji; France, Ryan M.; Geisz, John F.; ...

    2016-10-13

    The growth of quaternary Ga0.68In0.32As0.35P0.65 by metal-organic vapor phase epitaxy is very sensitive to growth conditions because the composition is within a miscibility gap. In this investigation, we fabricated 1 um-thick lattice-matched GaInAsP films grown on GaAs(001) for application to solar cells. In order to characterize the effect of the surface diffusion of adatoms on the material quality of alloys, the growth temperature and substrate miscut are varied. Transmission electron microscopy and two-dimensional in-situ multi-beam optical stress determine that growth temperatures of 650 degrees C and below enhance the formation of the CuPtB atomic ordering and suppress material decomposition, whichmore » is found to occur at the growth surface. The root-mean-square (RMS) roughness is reduced from 33.6 nm for 750 degrees C to 1.62 nm for 650 degrees C, determined by atomic force microscopy. Our initial investigations show that the RMS roughness can be further reduced using increased miscut angle, and substrates miscut toward (111)A, leading to an RMS roughness of 0.56 nm for the sample grown at 600 degrees C on GaAs miscut 6 degrees toward (111)A. Using these conditions, we fabricate an inverted hetero-junction 1.62 eV Ga0.68In0.32As0.35P0.65 solar cell without an anti-reflection coating with a short-circuit current density, open-circuit voltage, fill factor, and efficiency of 12.23 mA/cm2, 1.12 V, 86.18%, and 11.80%, respectively.« less

  20. Growth of lattice-matched GaInAsP grown on vicinal GaAs(001) substrates within the miscibility gap for solar cells

    SciTech Connect

    Oshima, Ryuji; France, Ryan M.; Geisz, John F.; Norman, Andrew G.; Steiner, Myles A.

    2016-10-13

    The growth of quaternary Ga0.68In0.32As0.35P0.65 by metal-organic vapor phase epitaxy is very sensitive to growth conditions because the composition is within a miscibility gap. In this investigation, we fabricated 1 um-thick lattice-matched GaInAsP films grown on GaAs(001) for application to solar cells. In order to characterize the effect of the surface diffusion of adatoms on the material quality of alloys, the growth temperature and substrate miscut are varied. Transmission electron microscopy and two-dimensional in-situ multi-beam optical stress determine that growth temperatures of 650 degrees C and below enhance the formation of the CuPtB atomic ordering and suppress material decomposition, which is found to occur at the growth surface. The root-mean-square (RMS) roughness is reduced from 33.6 nm for 750 degrees C to 1.62 nm for 650 degrees C, determined by atomic force microscopy. Our initial investigations show that the RMS roughness can be further reduced using increased miscut angle, and substrates miscut toward (111)A, leading to an RMS roughness of 0.56 nm for the sample grown at 600 degrees C on GaAs miscut 6 degrees toward (111)A. Using these conditions, we fabricate an inverted hetero-junction 1.62 eV Ga0.68In0.32As0.35P0.65 solar cell without an anti-reflection coating with a short-circuit current density, open-circuit voltage, fill factor, and efficiency of 12.23 mA/cm2, 1.12 V, 86.18%, and 11.80%, respectively.

  1. Growth of lattice-matched GaInAsP grown on vicinal GaAs(001) substrates within the miscibility gap for solar cells

    NASA Astrophysics Data System (ADS)

    Oshima, Ryuji; France, Ryan M.; Geisz, John F.; Norman, Andrew G.; Steiner, Myles A.

    2017-01-01

    The growth of quaternary Ga0.68In0.32As0.35P0.65 by metal-organic vapor phase epitaxy is very sensitive to growth conditions because the composition is within a miscibility gap. In this investigation, we fabricated 1 μm-thick lattice-matched GaInAsP films grown on GaAs(001) for application to solar cells. The growth temperature and substrate miscut are varied in order to characterize the effect of the surface diffusion of adatoms on the material quality of alloys. Transmission electron microscopy and two-dimensional in-situ multi-beam optical stress determine that growth temperatures of 650 °C and below enhance the formation of the CuPtB atomic ordering and suppress material decomposition, which is found to occur at the growth surface. The root-mean-square (RMS) roughness is reduced from 33.6 nm for 750 °C to 1.62 nm for 650 °C, determined by atomic force microscopy. Initial investigations show that the RMS roughness can be further reduced using increased miscut angle, and substrates miscut toward (111)A, leading to an RMS roughness of 0.56 nm for the sample grown at 600 °C on GaAs miscut 6° toward (111)A. Using these conditions, we fabricate an inverted hetero-junction 1.62 eV Ga0.68In0.32As0.35P0.65 solar cell without an anti-reflection coating with a short-circuit current density, open-circuit voltage, fill factor, and efficiency of 12.23 mA/cm2, 1.12 V, 86.18%, and 11.80%, respectively.

  2. KEEPING AN EYE ON RETINOBLASTOMA CONTROL OF HUMAN EMBRYONIC STEM CELLS

    PubMed Central

    Conklin, Jamie F.; Sage, Julien

    2010-01-01

    Human embryonic stem cells (hESCs) hold great promise in regenerative medicine. However, before the full potential of these cells is achieved, major basic biological questions need to be addressed. In particular, there are still gaps in our knowledge of the molecular mechanisms underlying the derivation of hESCs from blastocysts, the regulation of the undifferentiated, pluripotent state, and the control of differentiation into specific lineages. Furthermore, we still do not fully understand the tumorigenic potential of hESCs, limiting their use in regenerative medicine. The RB pathway is a key signaling module that controls cellular proliferation, cell survival, chromatin structure, and cellular differentiation in mammalian cells. Members of the RB pathway are important regulators of hESC biology and manipulation of the activity of this pathway may provide novel means to control the fate of hESCs. Here we review what is known about the expression and function of members of the RB pathway in hESCs and discuss areas of interest in this field. PMID:19760644

  3. SCL/TAL1-mediated Transcriptional Network Enhances Megakaryocytic Specification of Human Embryonic Stem Cells

    PubMed Central

    Toscano, Miguel G; Navarro-Montero, Oscar; Ayllon, Veronica; Ramos-Mejia, Veronica; Guerrero-Carreno, Xiomara; Bueno, Clara; Romero, Tamara; Lamolda, Mar; Cobo, Marien; Martin, Francisco; Menendez, Pablo; Real, Pedro J

    2015-01-01

    Human embryonic stem cells (hESCs) are a unique in vitro model for studying human developmental biology and represent a potential source for cell replacement strategies. Platelets can be generated from cord blood progenitors and hESCs; however, the molecular mechanisms and determinants controlling the in vitro megakaryocytic specification of hESCs remain elusive. We have recently shown that stem cell leukemia (SCL) overexpression accelerates the emergence of hemato-endothelial progenitors from hESCs and promotes their subsequent differentiation into blood cells with higher clonogenic potential. Given that SCL participates in megakaryocytic commitment, we hypothesized that it may potentiate megakaryopoiesis from hESCs. We show that ectopic SCL expression enhances the emergence of megakaryocytic precursors, mature megakaryocytes (MKs), and platelets in vitro. SCL-overexpressing MKs and platelets respond to different activating stimuli similar to their control counterparts. Gene expression profiling of megakaryocytic precursors shows that SCL overexpression renders a megakaryopoietic molecular signature. Connectivity Map analysis reveals that trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), both histone deacetylase (HDAC) inhibitors, functionally mimic SCL-induced effects. Finally, we confirm that both TSA and SAHA treatment promote the emergence of CD34+ progenitors, whereas valproic acid, another HDAC inhibitor, potentiates MK and platelet production. We demonstrate that SCL and HDAC inhibitors are megakaryopoiesis regulators in hESCs. PMID:25292191

  4. SCL/TAL1-mediated transcriptional network enhances megakaryocytic specification of human embryonic stem cells.

    PubMed

    Toscano, Miguel G; Navarro-Montero, Oscar; Ayllon, Veronica; Ramos-Mejia, Veronica; Guerrero-Carreno, Xiomara; Bueno, Clara; Romero, Tamara; Lamolda, Mar; Cobo, Marien; Martin, Francisco; Menendez, Pablo; Real, Pedro J

    2015-01-01

    Human embryonic stem cells (hESCs) are a unique in vitro model for studying human developmental biology and represent a potential source for cell replacement strategies. Platelets can be generated from cord blood progenitors and hESCs; however, the molecular mechanisms and determinants controlling the in vitro megakaryocytic specification of hESCs remain elusive. We have recently shown that stem cell leukemia (SCL) overexpression accelerates the emergence of hemato-endothelial progenitors from hESCs and promotes their subsequent differentiation into blood cells with higher clonogenic potential. Given that SCL participates in megakaryocytic commitment, we hypothesized that it may potentiate megakaryopoiesis from hESCs. We show that ectopic SCL expression enhances the emergence of megakaryocytic precursors, mature megakaryocytes (MKs), and platelets in vitro. SCL-overexpressing MKs and platelets respond to different activating stimuli similar to their control counterparts. Gene expression profiling of megakaryocytic precursors shows that SCL overexpression renders a megakaryopoietic molecular signature. Connectivity Map analysis reveals that trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), both histone deacetylase (HDAC) inhibitors, functionally mimic SCL-induced effects. Finally, we confirm that both TSA and SAHA treatment promote the emergence of CD34(+) progenitors, whereas valproic acid, another HDAC inhibitor, potentiates MK and platelet production. We demonstrate that SCL and HDAC inhibitors are megakaryopoiesis regulators in hESCs.

  5. SIMS Characterization of Amorphous Silicon Solar Cells Grown by Hot-Wire Chemical Vapor Deposition on Stainless Steel

    SciTech Connect

    Reedy, R. C.; Wang, Q.; Moutinho, H.; Iwaniczko, E.; Mahan, A. H.

    2000-01-01

    This paper is intended to be an overview of some of the challenges that must be overcome when characterizing amourphous-silicon solar cell devices by the secondary ion mass spectrometry (SIMS) technique.

  6. Differences In Early T-Cell Signaling In Cultures Grown In a Rotating Clinostat vs. Static Controls

    NASA Technical Reports Server (NTRS)

    Alexamder. M.; Nelman-Gonzales, M.; Penkala, J.; Sams, C.

    1999-01-01

    Altered gravity has previously been demonstrated to be a stress that can influence components of the immune system. Specifically, T-cell activation has been shown to be affected by changes in gravity, exhibiting a decrease in proliferative response to in vitro stimulation in microgravity. Subsequent ground based studies utilizing a rotating clinostat to model some of the effects of microgravity have been consistent with earlier flight based experiments. These ground and flight experiments have examined T-cell activation by measuring various responses including production of cytokines, DNA synthesis and the production of various cell surface activation markers. These indicators of T-cell activation were measured anywhere from 4 to 72 hours after stimulation. Prior to the work described here, the initial signaling events in T-cell activation had not been directly examined. The goal of this project was to determine how the process of early signal transduction was affected by growth in a rotating clinostat. Here we directly show a defect in signaling from TCR to MAPK in purified peripheral T-cells activated in the clinostat by OKT3/antiCD28 coated microbeads as compared to static controls.

  7. Differences In Early T-Cell Signaling In Cultures Grown In a Rotating Clinostat vs. Static Controls

    NASA Technical Reports Server (NTRS)

    Alexamder. M.; Nelman-Gonzales, M.; Penkala, J.; Sams, C.

    1999-01-01

    Altered gravity has previously been demonstrated to be a stress that can influence components of the immune system. Specifically, T-cell activation has been shown to be affected by changes in gravity, exhibiting a decrease in proliferative response to in vitro stimulation in microgravity. Subsequent ground based studies utilizing a rotating clinostat to model some of the effects of microgravity have been consistent with earlier flight based experiments. These ground and flight experiments have examined T-cell activation by measuring various responses including production of cytokines, DNA synthesis and the production of various cell surface activation markers. These indicators of T-cell activation were measured anywhere from 4 to 72 hours after stimulation. Prior to the work described here, the initial signaling events in T-cell activation had not been directly examined. The goal of this project was to determine how the process of early signal transduction was affected by growth in a rotating clinostat. Here we directly show a defect in signaling from TCR to MAPK in purified peripheral T-cells activated in the clinostat by OKT3/antiCD28 coated microbeads as compared to static controls.

  8. Growing Stem Cells: The Impact of Federal Funding Policy on the U.S. Scientific Frontier

    ERIC Educational Resources Information Center

    Furman, Jeffrey L.; Murray, Fiona; Stern, Scott

    2012-01-01

    This paper articulates a citation-based approach to science policy evaluation and employs that approach to investigate the impact of the United States' 2001 policy regarding the federal funding of human embryonic stem cell (hESC) research. We evaluate the impact of the policy on the level of U.S. hESC research, the U.S. position at the knowledge…

  9. Growing Stem Cells: The Impact of Federal Funding Policy on the U.S. Scientific Frontier

    ERIC Educational Resources Information Center

    Furman, Jeffrey L.; Murray, Fiona; Stern, Scott

    2012-01-01

    This paper articulates a citation-based approach to science policy evaluation and employs that approach to investigate the impact of the United States' 2001 policy regarding the federal funding of human embryonic stem cell (hESC) research. We evaluate the impact of the policy on the level of U.S. hESC research, the U.S. position at the knowledge…

  10. WNT/β-Catenin signaling pathway regulates non-tumorigenesis of human embryonic stem cells co-cultured with human umbilical cord mesenchymal stem cells

    PubMed Central

    Chang, Yu-Hsun; Chu, Tang-Yuan; Ding, Dah-Ching

    2017-01-01

    Human pluripotent stem cells harbor hope in regenerative medicine, but have limited application in treating clinical diseases due to teratoma formation. Our previous study has indicated that human umbilical cord mesenchymal stem cells (HUCMSC) can be adopted as non-teratogenenic feeders for human embryonic stem cells (hESC). This work describes the mechanism of non-tumorigenesis of that feeder system. In contrast with the mouse embryonic fibroblast (MEF) feeder, HUCMSC down-regulates the WNT/β-catenin/c-myc signaling in hESC. Thus, adding β-catenin antagonist (FH535 or DKK1) down-regulates β-catenin and c-myc expressions, and suppresses tumorigenesis (3/14 vs. 4/4, p = 0.01) in hESC fed with MEF, while adding the β-catenin enhancer (LiCl or 6-bromoindirubin-3′-oxime) up-regulates the expressions, and has a trend (p = 0.056) to promote tumorigenesis (2/7 vs. 0/21) in hESC fed with HUCMSC. Furthermore, FH535 supplement does not alter the pluripotency of hESC when fed with MEF, as indicated by the differentiation capabilities of the three germ layers. Taken together, this investigation concludes that WNT/β-catenin/c-myc pathway causes the tumorigenesis of hESC on MEF feeder, and β-catenin antagonist may be adopted as a tumor suppressor. PMID:28157212

  11. The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells.

    PubMed

    Munoz, Javier; Low, Teck Y; Kok, Yee J; Chin, Angela; Frese, Christian K; Ding, Vanessa; Choo, Andre; Heck, Albert J R

    2011-11-22

    Assessing relevant molecular differences between human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) is important, given that such differences may impact their potential therapeutic use. Controversy surrounds recent gene expression studies comparing hiPSCs and hESCs. Here, we present an in-depth quantitative mass spectrometry-based analysis of hESCs, two different hiPSCs and their precursor fibroblast cell lines. Our comparisons confirmed the high similarity of hESCs and hiPSCS at the proteome level as 97.8% of the proteins were found unchanged. Nevertheless, a small group of 58 proteins, mainly related to metabolism, antigen processing and cell adhesion, was found significantly differentially expressed between hiPSCs and hESCs. A comparison of the regulated proteins with previously published transcriptomic studies showed a low overlap, highlighting the emerging notion that differences between both pluripotent cell lines rather reflect experimental conditions than a recurrent molecular signature.

  12. Does vector-free gravity simulate microgravity? Functional and morphologic attributes of clinorotated nerve and muscle grown in cell culture

    NASA Technical Reports Server (NTRS)

    Gruener, R.; Hoeger, G.

    1988-01-01

    Cocultured Xenopus neurons and myocytes were subjected to non-vectorial gravity by clinostat rotation to determine if microgravity, during space flights, may affect cell development and communications. Clinorotated cells showed changes consistent with the hypothesis that cell differentiation, in microgravity, is altered by interference with cytoskeleton-related mechanisms. We found: increases in the myocyte and its nuclear area, "fragmentation" of nucleoli, appearance of neuritic "aneurysms", decreased growth in the presence of "trophic" factors, and decreased yolk utilization. The effects were most notable at 1-10 rpm and depended on the onset and duration of rotation. Some parameters returned to near control values within 48 hrs after cessation of rotation. Cells from cultures rotated at higher speeds (>50 rpm) appeared comparable to controls. Compensation by centrifugal forces may account for this finding. Our data are consistent, in principle, with effects on other, flighted cells and suggest that "vector-free" gravity may simulate certain aspects of microgravity. The distribution of acetylcholine receptor aggregates, on myocytes, was also altered. This indicates that brain development, in microgravity, may also be affected.

  13. Changes of Photosynthetic Behaviors and Photoprotection during Cell Transformation and Astaxanthin Accumulation in Haematococcus pluvialis Grown Outdoors in Tubular Photobioreactors.

    PubMed

    Zhang, Litao; Su, Fang; Zhang, Chunhui; Gong, Fengying; Liu, Jianguo

    2016-12-26

    The cell transformation from green motile cells to non-motile cells and astaxanthin accumulation can be induced in the green alga Haematococcus pluvialis cultured outdoors. In the initial 3 d of incubation (cell transformation phase), light absorption and photosynthetic electron transport became more efficient. After five days of incubation (astaxanthin accumulation phase), the light absorption per active reaction center (ABS/RC) increased, but the efficiency of electron transport (ψo) and the quantum yield of electron transport (φEo) decreased with increased time, indicating that the capacity of photosynthetic energy utilization decreased significantly during astaxanthin accumulation, leading to an imbalance between photosynthetic light absorption and energy utilization. It would inevitably aggravate photoinhibition under high light, e.g., at midday. However, the level of photoinhibition in H. pluvialis decreased as the incubation time increased, which is reflected by the fact that Fv/Fm determined at midday decreased significantly in the initial 3 d of incubation, but was affected very little after seven days of incubation, compared with that determined at predawn. This might be because the non-photochemical quenching, plastid terminal oxidase, photosystem I cyclic electron transport, defensive enzymes and the accumulated astaxanthin can protect cells against photoinhibition.

  14. Changes of Photosynthetic Behaviors and Photoprotection during Cell Transformation and Astaxanthin Accumulation in Haematococcus pluvialis Grown Outdoors in Tubular Photobioreactors

    PubMed Central

    Zhang, Litao; Su, Fang; Zhang, Chunhui; Gong, Fengying; Liu, Jianguo

    2016-01-01

    The cell transformation from green motile cells to non-motile cells and astaxanthin accumulation can be induced in the green alga Haematococcus pluvialis cultured outdoors. In the initial 3 d of incubation (cell transformation phase), light absorption and photosynthetic electron transport became more efficient. After five days of incubation (astaxanthin accumulation phase), the light absorption per active reaction center (ABS/RC) increased, but the efficiency of electron transport (ψo) and the quantum yield of electron transport (φEo) decreased with increased time, indicating that the capacity of photosynthetic energy utilization decreased significantly during astaxanthin accumulation, leading to an imbalance between photosynthetic light absorption and energy utilization. It would inevitably aggravate photoinhibition under high light, e.g., at midday. However, the level of photoinhibition in H. pluvialis decreased as the incubation time increased, which is reflected by the fact that Fv/Fm determined at midday decreased significantly in the initial 3 d of incubation, but was affected very little after seven days of incubation, compared with that determined at predawn. This might be because the non-photochemical quenching, plastid terminal oxidase, photosystem I cyclic electron transport, defensive enzymes and the accumulated astaxanthin can protect cells against photoinhibition. PMID:28035956

  15. Does vector-free gravity simulate microgravity? Functional and morphologic attributes of clinorotated nerve and muscle grown in cell culture

    NASA Technical Reports Server (NTRS)

    Gruener, R.; Hoeger, G.

    1988-01-01

    Cocultured Xenopus neurons and myocytes were subjected to non-vectorial gravity by clinostat rotation to determine if microgravity, during space flights, may affect cell development and communications. Clinorotated cells showed changes consistent with the hypothesis that cell differentiation, in microgravity, is altered by interference with cytoskeleton-related mechanisms. We found: increases in the myocyte and its nuclear area, "fragmentation" of nucleoli, appearance of neuritic "aneurysms", decreased growth in the presence of "trophic" factors, and decreased yolk utilization. The effects were most notable at 1-10 rpm and depended on the onset and duration of rotation. Some parameters returned to near control values within 48 hrs after cessation of rotation. Cells from cultures rotated at higher speeds (>50 rpm) appeared comparable to controls. Compensation by centrifugal forces may account for this finding. Our data are consistent, in principle, with effects on other, flighted cells and suggest that "vector-free" gravity may simulate certain aspects of microgravity. The distribution of acetylcholine receptor aggregates, on myocytes, was also altered. This indicates that brain development, in microgravity, may also be affected.

  16. Upregulation of cell proliferation via Shc and ERK1/2 MAPK signaling in SaOS-2 osteoblasts grown on magnesium alloy surface coating with tricalcium phosphate.

    PubMed

    Jiang, Tianlong; Guo, Lei; Ni, Shenghui; Zhao, Yuyan

    2015-04-01

    Magnesium (Mg) alloys have been demonstrated to be viable orthopedic implants because of mechanical and biocompatible properties similar to natural bone. In order to improve its osteogenic properties, a porous β-tricalcium phosphate (β-TCP) was coated on the Mg-3AI-1Zn alloy by alkali-heat treatment technique. The human bone-derived cells (SaOS-2) were cultured on (β-TCP)-Mg-3AI-1Zn in vitro, and the osteoblast response, the morphology and the elements on this alloy surface were investigated. Also, the regulation of key intracellular signalling proteins was investigated in the SaOS-2 cells cultured on alloy surface. The results from scanning electron microscope and immunofluorescence staining demonstrated that (β-TCP)-Mg-3AI-1Zn induced significant osteogenesis. SaOS-2 cell proliferation was improved by β-TCP coating. Moreover, the (β-TCP)-Mg-3AI-1Zn surface induced activation of key intracellular signalling proteins in SaOS-2 cells. We observed an enhanced activation of Src homology and collagen (Shc), a common point of integration between bone morphogenetic protein 2, and the Ras/mitogen-activated protein kinase (MAPK) pathway. ERK1/2 MAP kinase activation was also upregulated, suggesting a role in mediating osteoblastic cell interactions with biomaterials. The signalling pathway involving c-fos (member of the activated protein-1) was also shown to be upregulated in osteoblasts cultured on the (β-TCP)-Mg-3AI-1Zn. These results suggest that β-TCP coating may contribute to successful osteoblast function on Mg alloy surface. (β-TCP)-Mg-3AI-1Zn may upregulate cell proliferation via Shc and ERK1/2 MAPK signaling in SaOS-2 osteoblasts grown on Mg alloy surface.

  17. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

    SciTech Connect

    Masuda, Taizo Tomasulo, Stephanie; Lang, Jordan R.; Lee, Minjoo Larry

    2015-03-07

    We have investigated ∼2.0 eV (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P and ∼1.9 eV Ga{sub 0.51}In{sub 0.49}P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V{sub oc}) ranging from 1.29 to 1.30 V for Ga{sub 0.51}In{sub 0.49}P cells, and 1.35–1.37 V for (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W{sub oc} = E{sub g}/q − V{sub oc}) of Ga{sub 0.51}In{sub 0.49}P cells to decrease from ∼575 mV to ∼565 mV, while that of (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P cells remained nearly constant at 620 mV. The constant W{sub oc} as a function of substrate offcut for (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P implies greater losses from non-radiative recombination compared with the Ga{sub 0.51}In{sub 0.49}P devices. In addition to larger W{sub oc} values, the (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga{sub 0.51}In{sub 0.49}P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (Al{sub x}Ga{sub 1−x}){sub 0.51}In{sub 0.49}P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells.

  18. Maslinic Acid, a Triterpene from Olive, Affects the Antioxidant and Mitochondrial Status of B16F10 Melanoma Cells Grown under Stressful Conditions

    PubMed Central

    Mokhtari, Khalida; Rufino-Palomares, Eva E.; Pérez-Jiménez, Amalia; Reyes-Zurita, Fernando J.; Figuera, Celeny; García-Salguero, Leticia; Medina, Pedro P.; Peragón, Juan; Lupiáñez, José A.

    2015-01-01

    Maslinic acid (MA) is a natural compound whose structure corresponds to a pentacyclic triterpene. It is abundant in the cuticular lipid layer of olives. MA has many biological and therapeutic properties related to health, including antitumor, anti-inflammatory, antimicrobial, antiparasitic, antihypertensive, and antioxidant activities. However, no studies have been performed to understand the molecular mechanism induced by this compound in melanoma cancer. The objective of this study was to examine the effect of MA in melanoma (B16F10) cells grown in the presence or absence of fetal bovine serum (FBS). We performed cell proliferation measurements, and the reactive oxygen species (ROS) measurements using dihydrorhodamine 123 (DHR 123) and activities of catalase, glucose 6-phosphate dehydrogenase, glutathione S-transferase, and superoxide dismutase. These changes were corroborated by expression assays. FBS absence reduced cell viability decreasing IC50 values of MA. The DHR 123 data showed an increase in the ROS level in the absence of FBS. Furthermore, MA had an antioxidant effect at lower assayed levels measured as DHR and antioxidant defense. However, at higher dosages MA induced cellular damage by apoptosis as seen in the results obtained. PMID:26236377

  19. High-Quality Perovskite Films Grown with a Fast Solvent-Assisted Molecule Inserting Strategy for Highly Efficient and Stable Solar Cells.

    PubMed

    Yuan, Shuai; Qiu, Zhiwen; Gao, Chaomin; Zhang, Hailiang; Jiang, Yanan; Li, Cuncheng; Yu, Jinghua; Cao, Bingqiang

    2016-08-31

    The performance of organolead halide perovskites based solar cells has been enhanced dramatically due to the morphology control of the perovskite films. In this paper, we present a fast solvent-assisted molecule inserting (S-AMI) strategy to grow high-quality perovskite film, in which the methylammonium iodide/2-propanol (MAI/IPA) solution is spin-coated onto a dimethylformamide (DMF) wetted mixed lead halide (PbX2) precursor film. The DMF can help the inserting of MAI molecules into the PbX2 precursor film and provide a solvent environment to help the grain growth of the perovskite film. The perovskite film grown by the S-AMI approach shows large and well-oriented grains and long carrier lifetime due to the reduced grain boundary. Solar cells constructed with these perovskite films yield an average efficiency over 17% along with a high average fill factor of 80%. Moreover, these unsealed solar cell devices exhibit good stability in an ambient atmosphere.

  20. Concise Review: Human Embryonic Stem Cells-What Have We Done? What Are We Doing? Where Are We Going?

    PubMed

    Ilic, Dusko; Ogilvie, Caroline

    2017-01-01

    Human pluripotent stem cells possess remarkable proliferative and developmental capacity and thus have great potential for advancement of cellular therapy, disease modeling, and drug discovery. Twelve years have passed since the first reported isolation of human embryonic stem cell lines (hESC), followed in October 2010 by the first treatment of a patient with hESC-based cellular therapy at the Shepherd Center in Atlanta. Despite seemingly insurmountable challenges and obstacles in the early days, hESC clinical potential reached application in an extraordinarily short time. Eight currently ongoing clinical trials are yielding encouraging results, and these are likely to lead to new trials for other diseases. However, with the discovery of induced pluripotent stem cells (iPSC), disease-specific hESC lines derived from patients undergoing preimplantation genetic diagnosis for single gene disorders fell short of expectations. Lack of ethical controversy made human iPSC (hiPSC) with specific genotypes/phenotypes more appealing than hESC for drug discovery and toxicology-related studies, and in time, lines from HLA-homologous hiPSC banks are likely to take over from hESC in clinical applications. Currently, hESC are indispensable; the results of hESC-based clinical trials will set a gold standard for future iPSC-based cellular therapy. Stem Cells 2017;35:17-25. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. Relationship between acid tolerance and cell membrane in Bifidobacterium, revealed by comparative analysis of acid-resistant derivatives and their parental strains grown in medium with and without Tween 80.

    PubMed

    Yang, Xu; Hang, Xiaomin; Zhang, Min; Liu, Xianglong; Yang, Hong

    2015-06-01

    The acid tolerance is particularly important for bifidobacteria to function as probiotics because they usually encounter acidic environments in food products and gastrointestinal tract passage. In this study, two acid-resistant derivatives Bifidobacterium longum JDY1017dpH and Bifidobacterium breve BB8dpH, which displayed a stable acid-resistant phenotype, were generated. The relationship between acid tolerance and cell membrane was investigated by comparing the two acid-resistant derivatives and their parental strains grown in medium with and without Tween 80. The fold increase in acid tolerance of the two acid-resistant derivatives relative to their parental strains was much higher when cells were grown in medium with Tween 80 (10(4) ~ 10(5)-fold) than without Tween 80 (181- and 245-fold). Moreover, when cells were grown in medium with Tween 80, the two acid-resistant derivatives exhibited more C18:1 and cycC19:0, higher mean fatty acid chain length, lower membrane fluidity, and higher expression of cfa gene encoding cyclopropane fatty acid synthase than their parental strains. No significant differences in cell membrane were observed between the two acid-resistant derivatives and their parental strains when cells were grown in medium without Tween 80. The present study revealed that, when cells were grown in medium with Tween 80, the significant fold increase in acid tolerance of the two acid-resistant derivatives was mainly ascribed to the pronounced changes in cell membrane compared with their parental strains. Results presented here could provide a basis for developing new strategies of cell membrane modification to enhance acid tolerance in bifidobacteria.

  2. Comparative Analysis of Whole-Genome Gene Expression Changes in Cultured Human Embryonic Stem Cells in Response to Low, Clinical Diagnostic Relevant, and High Doses of Ionizing Radiation Exposure.

    PubMed

    Sokolov, Mykyta; Nguyen, Van; Neumann, Ronald

    2015-06-30

    The biological effects of low-dose ionizing radiation (LDIR) exposure in humans are not comprehensively understood, generating a high degree of controversy in published literature. The earliest stages of human development are known to be among the most sensitive to stress exposures, especially genotoxic stresses. However, the risks stemming from exposure to LDIR, particularly within the clinical diagnostic relevant dose range, have not been directly evaluated in human embryonic stem cells (hESCs). Here, we describe the dynamics of the whole genome transcriptional responses of different hESC lines to both LDIR and, as a reference, high-dose IR (HDIR). We found that even doses as low as 0.05 Gy could trigger statistically significant transient changes in a rather limited subset of genes in all hESCs lines examined. Gene expression signatures of hESCs exposed to IR appear to be highly dose-, time-, and cell line-dependent. We identified 50 genes constituting consensus gene expression signature as an early response to HDIR across all lines of hESC examined. We observed substantial differences in biological pathways affected by either LDIR or HDIR in hESCs, suggesting that the molecular mechanisms underpinning the responses of hESC may fundamentally differ depending on radiation doses.

  3. Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state

    PubMed Central

    Lascaris, Romeo; Bussemaker, Harmen J; Boorsma, André; Piper, Matt; van der Spek, Hans; Grivell, Les; Blom, Jolanda

    2003-01-01

    Background Metabolic and regulatory gene networks generally tend to be stable. However, we have recently shown that overexpression of the transcriptional activator Hap4p in yeast causes cells to move to a state characterized by increased respiratory activity. To understand why overexpression of HAP4 is able to override the signals that normally result in glucose repression of mitochondrial function, we analyzed in detail the changes that occur in these cells. Results Whole-genome expression profiling and fingerprinting of the regulatory activity network show that HAP4 overexpression provokes changes that also occur during the diauxic shift. Overexpression of HAP4, however, primarily acts on mitochondrial function and biogenesis. In fact, a number of nuclear genes encoding mitochondrial proteins are induced to a greater extent than in cells that have passed through a normal diauxic shift: in addition to genes required for mitochondrial energy conservation they include genes encoding mitochondrial ribosomal proteins. Conclusions We show that overproduction of a single nuclear transcription factor enables cells to move to a novel state that displays features typical of, but clearly not identical to, other derepressed states. PMID:12537548

  4. Role of surface-electrical properties on the cell-viability of carbon thin films grown in nanodomain morphology

    NASA Astrophysics Data System (ADS)

    Javid, Amjed; Kumar, Manish; Yoon, Seokyoung; Lee, Jung Heon; Tajima, Satomi; Hori, Masaru; Geon Han, Jeon

    2016-07-01

    Carbon thin films, having a combination of unique physical and chemical properties, exhibit an interesting biocompatibility and biological response to living entities. Here, the carbon films are developed in the morphology form of nano-domains with nanoscale inter-domain separations, tuned by plasma conditions in the facing target magnetron sputtering process. The wettability and surface energy are found to have a close relation to the inter-domain separations. The chemical structure of carbon films exhibited the relative enhancement of sp3 in comparison to sp2 with the increase of domain separations. The cell-viability of these films shows promising results for L929 mouse fibroblast and Saos-2 bone cells, when inter-domain separation is increased. Electrical conductivity and surface energy are identified to play the key role in different time-scales during the cell-proliferation process. The contribution from electrical conductivity is dominant in the beginning of the cultivation, whereas with the passage of time (~3-5 d) the surface energy takes control over conductivity to enhance the cell proliferation.

  5. Resveratrol promotes human embryonic stem cells self-renewal by targeting SIRT1-ERK signaling pathway.

    PubMed

    Safaeinejad, Zahra; Nabiuni, Mohammad; Peymani, Maryam; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein

    2017-08-26

    Resveratrol (RSV), a natural polyphenol component, has diverse biological properties. It has been shown that RSV regulated the self-renewal and differentiation of several types of stem cells, but the precise role of this compound on regulation of human embryonic stem cells (hESCs) self- renewal remained to be elucidated. Here we have shown that RSV promoted hESCs proliferation through cell cycle modulation and up-regulation of anti-apoptotic markers, without affecting pluripotency. Furthermore, inhibition of SIRT1 by EX-527 resulted in suppression of RSV-induced enhancement of hESCs self-renewal. RSV exerted its beneficial effects by activation of MEK/ERK signaling pathway as verified by application of specific MEK inhibitor, PD0325901. In conclusion, RSV elevated self-renewal of hESCs at least partly via "SIRT1-MEK/ERK" axis. These findings provide a novel application of RSV for developing a defined medium for hESCs culture which could help to better understanding of the signaling events that govern self-renewal of hESCs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Alternative Routes to Induce Naïve Pluripotency in Human Embryonic Stem Cells.

    PubMed

    Duggal, Galbha; Warrier, Sharat; Ghimire, Sabitri; Broekaert, Dorien; Van der Jeught, Margot; Lierman, Sylvie; Deroo, Tom; Peelman, Luc; Van Soom, Ann; Cornelissen, Ria; Menten, Björn; Mestdagh, Pieter; Vandesompele, Jo; Roost, Matthias; Slieker, Roderick C; Heijmans, Bastiaan T; Deforce, Dieter; De Sutter, Petra; De Sousa Lopes, Susana Chuva; Heindryckx, Björn

    2015-09-01

    Human embryonic stem cells (hESCs) closely resemble mouse epiblast stem cells exhibiting primed pluripotency unlike mouse ESCs (mESCs), which acquire a naïve pluripotent state. Efforts have been made to trigger naïve pluripotency in hESCs for subsequent unbiased lineage-specific differentiation, a common conundrum faced by primed pluripotent hESCs due to heterogeneity in gene expression existing within and between hESC lines. This required either ectopic expression of naïve genes such as NANOG and KLF2 or inclusion of multiple pluripotency-associated factors. We report here a novel combination of small molecules and growth factors in culture medium (2i/LIF/basic fibroblast growth factor + Ascorbic Acid + Forskolin) facilitating rapid induction of transgene-free naïve pluripotency in hESCs, as well as in mESCs, which has not been shown earlier. The converted naïve hESCs survived long-term single-cell passaging, maintained a normal karyotype, upregulated naïve pluripotency genes, and exhibited dependence on signaling pathways similar to naïve mESCs. Moreover, they undergo global DNA demethylation and show a distinctive long noncoding RNA profile. We propose that in our medium, the FGF signaling pathway via PI3K/AKT/mTORC induced the conversion of primed hESCs toward naïve pluripotency. Collectively, we demonstrate an alternate route to capture naïve pluripotency in hESCs that is fast, reproducible, supports naïve mESC derivation, and allows efficient differentiation. © 2015 AlphaMed Press.

  7. Development of high-bandgap AlGaInP solar cells grown by organometallic vapor-phase epitaxy

    DOE PAGES

    Perl, Emmett E.; Simon, John; Geisz, John F.; ...

    2016-03-29

    AlGaInP solar cells with bandgaps between 1.9 and 2.2 eV are investigated for use in next-generation multijunction photovoltaic devices. This quaternary alloy is of great importance to the development of III-V solar cells with five or more junctions and for cells optimized for operation at elevated temperatures because of the high bandgaps required in these designs. In this work, we explore the conditions for the organometallic vapor-phase epitaxy growth of AlGaInP and study their effects on cell performance. Initial efforts focused on developing ~2.0-eV AlGaInP solar cells with a nominal aluminum composition of 12%. Under the direct spectrum at 1000more » W/m2 (AM1.5D), the best of these samples had an open-circuit voltage of 1.59 V, a bandgap-voltage offset of 440 mV, a fill factor of 88.0%, and an efficiency of 14.8%. We then varied the aluminum composition of the alloy from 0% to 24% and were able to tune the bandgap of the AlGaInP layers from ~1.9 to ~2.2 eV. Furthermore, while the samples with a higher aluminum composition exhibited a reduced quantum efficiency and increased bandgap-voltage offset, the bandgap-voltage offset remained at 500 mV or less, up to a bandgap of ~2.1 eV.« less

  8. Development of high-bandgap AlGaInP solar cells grown by organometallic vapor-phase epitaxy

    SciTech Connect

    Perl, Emmett E.; Simon, John; Geisz, John F.; Olavarria, Waldo; Young, Michelle; Duda, Anna; Friedman, Daniel J.; Steiner, Myles A.

    2016-03-29

    AlGaInP solar cells with bandgaps between 1.9 and 2.2 eV are investigated for use in next-generation multijunction photovoltaic devices. This quaternary alloy is of great importance to the development of III-V solar cells with five or more junctions and for cells optimized for operation at elevated temperatures because of the high bandgaps required in these designs. In this work, we explore the conditions for the organometallic vapor-phase epitaxy growth of AlGaInP and study their effects on cell performance. Initial efforts focused on developing ~2.0-eV AlGaInP solar cells with a nominal aluminum composition of 12%. Under the direct spectrum at 1000 W/m2 (AM1.5D), the best of these samples had an open-circuit voltage of 1.59 V, a bandgap-voltage offset of 440 mV, a fill factor of 88.0%, and an efficiency of 14.8%. We then varied the aluminum composition of the alloy from 0% to 24% and were able to tune the bandgap of the AlGaInP layers from ~1.9 to ~2.2 eV. Furthermore, while the samples with a higher aluminum composition exhibited a reduced quantum efficiency and increased bandgap-voltage offset, the bandgap-voltage offset remained at 500 mV or less, up to a bandgap of ~2.1 eV.

  9. Biofilm-Grown Burkholderia cepacia Complex Cells Survive Antibiotic Treatment by Avoiding Production of Reactive Oxygen Species

    PubMed Central

    Van Acker, Heleen; Sass, Andrea; Bazzini, Silvia; De Roy, Karen; Udine, Claudia; Messiaen, Thomas; Riccardi, Giovanna; Boon, Nico; Nelis, Hans J.; Mahenthiralingam, Eshwar; Coenye, Tom

    2013-01-01

    The presence of persister cells has been proposed as a factor in biofilm resilience. In the present study we investigated whether persister cells are present in Burkholderia cepacia complex (Bcc) biofilms, what the molecular basis of antimicrobial tolerance in Bcc persisters is, and how persisters can be eradicated from Bcc biofilms. After treatment of Bcc biofilms with high concentrations of various antibiotics often a small subpopulation survived. To investigate the molecular mechanism of tolerance in this subpopulation, Burkholderia cenocepacia biofilms were treated with 1024 µg/ml of tobramycin. Using ROS-specific staining and flow cytometry, we showed that tobramycin increased ROS production in treated sessile cells. However, approximately 0.1% of all sessile cells survived the treatment. A transcriptome analysis showed that several genes from the tricarboxylic acid cycle and genes involved in the electron transport chain were downregulated. In contrast, genes from the glyoxylate shunt were upregulated. These data indicate that protection against ROS is important for the survival of persisters. To confirm this, we determined the number of persisters in biofilms formed by catalase mutants. The persister fraction in ΔkatA and ΔkatB biofilms was significantly reduced, confirming the role of ROS detoxification in persister survival. Pretreatment of B. cenocepacia biofilms with itaconate, an inhibitor of isocitrate lyase (ICL), the first enzyme in the glyoxylate shunt, reduced the persister fraction approx. 10-fold when the biofilms were subsequently treated with tobramycin. In conclusion, most Bcc biofilms contain a significant fraction of persisters that survive treatment with high doses of tobramycin. The surviving persister cells downregulate the TCA cycle to avoid production of ROS and at the same time activate an alternative pathway, the glyoxylate shunt. This pathway may present a novel target for combination therapy. PMID:23516582

  10. Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells.

    PubMed

    Ohgushi, Masatoshi; Minaguchi, Maki; Sasai, Yoshiki

    2015-10-01

    Human embryonic stem cells (hESCs) can survive and proliferate for an extended period of time in culture, but unlike that of tumor-derived cells, this form of cellular immortality does not depend on genomic aberrations. In this study, we sought to elucidate the molecular basis of this long-term growth property of hESCs. We found that the survival of hESCs depends on the small GTPase Rho and its activator AKAP-Lbc. We show that AKAP-Lbc/Rho signaling sustains the nuclear function of the transcriptional cofactors YAP and TAZ by modulating actin microfilament organization. By inducing reprogramming and differentiation, we found that dependency on this Rho signaling pathway is associated with the pluripotent state. Thus, our findings show that the capacity of hESCs to undergo long-term expansion in vitro is intrinsically coupled to their cellular identity through interconnected molecular circuits that link cell survival to pluripotency.

  11. Transcriptional activation of human CDCA8 gene regulated by transcription factor NF-Y in embryonic stem cells and cancer cells.

    PubMed

    Dai, Can; Miao, Cong-Xiu; Xu, Xiao-Ming; Liu, Lv-Jun; Gu, Yi-Fan; Zhou, Di; Chen, Lian-Sheng; Lin, Ge; Lu, Guang-Xiu

    2015-09-11

    The cell division cycle associated 8 (CDCA8) gene plays an important role in mitosis. Overexpression of CDCA8 was reported in some human cancers and is required for cancer growth and progression. We found CDCA8 expression was also high in human ES cells (hESCs) but dropped significantly upon hESC differentiation. However, the regulation of CDCA8 expression has not yet been studied. Here, we characterized the CDCA8 promoter and identified its cis-elements and transcription factors. Three transcription start sites were identified. Reporter gene assays revealed that the CDCA8 promoter was activated in hESCs and cancer cell lines. The promoter drove the reporter expression specifically to pluripotent cells during early mouse embryo development and to tumor tissues in tumor-bearing mice. These results indicate that CDCA8 is transcriptionally activated in hESCs and cancer cells. Mechanistically, two key activation elements, bound by transcription factor NF-Y and CREB1, respectively, were identified in the CDCA8 basic promoter by mutation analyses and electrophoretic motility shift assays. NF-Y binding is positively correlated with promoter activities in different cell types. Interestingly, the NF-YA subunit, binding to the promoter, is primarily a short isoform in hESCs and a long isoform in cancer cells, indicating a different activation mechanism of the CDCA8 transcription between hESCs and cancer cells. Finally, enhanced CDCA8 promoter activities by NF-Y overexpression and reduced CDCA8 transcription by NF-Y knockdown further verified that NF-Y is a positive regulator of CDCA8 transcription. Our study unearths the molecular mechanisms underlying the activation of CDCA8 expression in hESCs and cancer cells, which provides a better understanding of its biological functions.

  12. Thin, high quality GaInP compositionally graded buffer layers grown at high growth rates for metamorphic III-V solar cell applications

    NASA Astrophysics Data System (ADS)

    Garcia, I.; France, R. M.; Geisz, J. F.; Simon, J.

    2014-05-01

    The metamorphic growth of lattice-mismatched materials has allowed optimizing the bandgap combination in multijunction solar cells for the solar spectrum under consideration. Buffer structures are used to accommodate the lattice-mismatch by introducing dislocations and relaxing the material in a controlled way. However, the metamorphic buffers typically involve significant growth time and material usage, which increases the cost of these solar cells. In this work, the thinning of buffer structures with continuously, linearly graded misfit is addressed with the goal of increasing the cost-effectiveness of metamorphic multijunction solar cells. The relaxation dynamics and quality of the buffer layers analyzed were assessed by in-situ stress measurements and ex-situ measurements of residual strain, threading dislocation density and surface roughness. Their ultimate quality has been tested using these buffers as templates for the growth of 1 eV Ga0.73In0.27As solar cells. The deleterious effect of thinning the grade layer of these buffer structures from 2 to 1 μm was investigated. It is shown that prompting the relaxation of the buffer by using a stepwise misfit jump at the beginning of the grade layer improves the quality of the thinned buffer structure. The residual threading dislocation density of the optimized thin buffers, grown at a high growth rate of 7 μm/h, is 3×106 cm-2, and solar cells on these buffers exhibit near-ideal carrier collection efficiency and a Voc of 0.62 V at 1-sun direct terrestrial spectrum.

  13. Microfibrous substrate geometry as a critical trigger for organization, self-renewal, and differentiation of human embryonic stem cells within synthetic 3-dimensional microenvironments.

    PubMed

    Carlson, Aaron L; Florek, Charles A; Kim, Joseph J; Neubauer, Thomas; Moore, Jennifer C; Cohen, Rick I; Kohn, Joachim; Grumet, Martin; Moghe, Prabhas V

    2012-08-01

    Substrates used to culture human embryonic stem cells (hESCs) are typically 2-dimensional (2-D) in nature, with limited ability to recapitulate in vivo-like 3-dimensional (3-D) microenvironments. We examined critical determinants of hESC self-renewal in poly-d-lysine-pretreated synthetic polymer-based substrates with variable microgeometries, including planar 2-D films, macroporous 3-D sponges, and microfibrous 3-D fiber mats. Completely synthetic 2-D substrates and 3-D macroporous scaffolds failed to retain hESCs or support self-renewal or differentiation. However, synthetic microfibrous geometries made from electrospun polymer fibers were found to promote cell adhesion, viability, proliferation, self-renewal, and directed differentiation of hESCs in the absence of any exogenous matrix proteins. Mechanistic studies of hESC adhesion within microfibrous scaffolds indicated that enhanced cell confinement in such geometries increased cell-cell contacts and altered colony organization. Moreover, the microfibrous scaffolds also induced hESCs to deposit and organize extracellular matrix proteins like laminin such that the distribution of laminin was more closely associated with the cells than the Matrigel treatment, where the laminin remained associated with the coated fibers. The production of and binding to laminin was critical for formation of viable hESC colonies on synthetic fibrous scaffolds. Thus, synthetic substrates with specific 3-D microgeometries can support hESC colony formation, self-renewal, and directed differentiation to multiple lineages while obviating the stringent needs for complex, exogenous matrices. Similar scaffolds could serve as tools for developmental biology studies in 3-D and for stem cell differentiation in situ and transplantation using defined humanized conditions.

  14. Does vector-free gravity simulate microgravity? Functional and morphologic attributes of clinorotated nerve and muscle grown in cell culture

    NASA Technical Reports Server (NTRS)

    Gruener, Raphael; Hoeger, Glenn

    1988-01-01

    Cocultured Xenopus neurons and myocytes were subjected to nonvectorial gravity by clinostat rotation to determine the effects of microgravity on cell development and communications. Observed effects included increases in the myocyte and its nuclear area, fragmentation of nucleoli, the appearance of neuritic aneurysms, decreased growth in the presence of trophic factors, and decreased yolk utilization. These effects were most notable at 1-10 rpm and depended on the onset and duration of rotation. It is found that, in microgravity, cell differentiation is altered by interference with cytoskeleton-related mechanisms. It is suggested that the alteration of the distribution of acetylcholine receptor aggregates on myocytes which occurs might indicate that microgravity affects brain development.

  15. Does vector-free gravity simulate microgravity? Functional and morphologic attributes of clinorotated nerve and muscle grown in cell culture

    NASA Technical Reports Server (NTRS)

    Gruener, Raphael; Hoeger, Glenn

    1988-01-01

    Cocultured Xenopus neurons and myocytes were subjected to nonvectorial gravity by clinostat rotation to determine the effects of microgravity on cell development and communications. Observed effects included increases in the myocyte and its nuclear area, fragmentation of nucleoli, the appearance of neuritic aneurysms, decreased growth in the presence of trophic factors, and decreased yolk utilization. These effects were most notable at 1-10 rpm and depended on the onset and duration of rotation. It is found that, in microgravity, cell differentiation is altered by interference with cytoskeleton-related mechanisms. It is suggested that the alteration of the distribution of acetylcholine receptor aggregates on myocytes which occurs might indicate that microgravity affects brain development.

  16. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology.

    PubMed

    Moralli, Daniela; Monaco, Zoia L

    2015-02-01

    De novo artificial chromosomes expressing genes have been generated in human embryonic stem cells (hESc) and are maintained following differentiation into other cell types. Human artificial chromosomes (HAC) are small, functional, extrachromosomal elements, which behave as normal chromosomes in human cells. De novo HAC are generated following delivery of alpha satellite DNA into target cells. HAC are characterized by high levels of mitotic stability and are used as models to study centromere formation and chromosome organisation. They are successful and effective as gene expression vectors since they remain autonomous and can accommodate larger genes and regulatory regions for long-term expression studies in cells unlike other viral gene delivery vectors currently used. Transferring the essential DNA sequences for HAC formation intact across the cell membrane has been challenging for a number of years. A highly efficient delivery system based on HSV-1 amplicons has been used to target DNA directly to the ES cell nucleus and HAC stably generated in human embryonic stem cells (hESc) at high frequency. HAC were detected using an improved protocol for hESc chromosome harvesting, which consistently produced high-quality metaphase spreads that could routinely detect HAC in hESc. In tumour cells, the input DNA often integrated in the host chromosomes, but in the host ES genome, it remained intact. The hESc containing the HAC formed embryoid bodies, generated teratoma in mice, and differentiated into neuronal cells where the HAC were maintained. The HAC structure and chromatin composition was similar to the endogenous hESc chromosomes. This review will discuss the technological advances in HAC vector delivery using HSV-1 amplicons and the improvements in the identification of de novo HAC in hESc.

  17. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo

    PubMed Central

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention. PMID:27217750

  18. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo.

    PubMed

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention.

  19. Aquaporin functionality in relation to H+-ATPase activity in root cells of Capsicum annuum grown under salinity.

    PubMed

    Martínez-Ballesta, M. Carmen; Martínez, Vicente; Carvajal, Micaela

    2003-03-01

    As water and nutrient uptake should be related in the response of plants to salinity, the aim of this paper is to establish whether or not aquaporin functionality is related to H+-ATPase activity in root cells of pepper (Capsicum annuum L.) plants. Thus, H+-ATPase activity was measured in plasma membrane vesicles isolated from roots and aquaporin functionality was measured using a cell pressure probe in intact roots. Salinity was applied as 60 mM NaCl or 60 mM KCl, to determine which ion (Na+, K+ or Cl-) is producing the effects. We also investigated whether the effects of both salts were ameliorated by Ca2+. Similar results were obtained for cell hydraulic conductivity, Lpc, and H+-ATPase activity, large reductions in the presence at NaCl or KCl and an ameliorative effect of Ca2+. However, fusicoccin (an activator of H+-ATPase) did not alter osmotic water permeability of protoplasts isolated from roots. Addition of Hg2+ inhibited both ATPase and aquaporins, but ATPase also contains Hg-binding sites. Therefore, the results indicate that H+-ATPase and aquaporin activities may not be related in pepper plants.

  20. Reflectivity and topography of cells grown on glass-coverslips measured with phase-shifted laser feedback interference microscopy

    PubMed Central

    Atılgan, Erdinç; Ovryn, Ben

    2011-01-01

    In spite of the advantages associated with the molecular specificity of fluorescence imaging, there is still a significant need to augment these approaches with label-free imaging. Therefore, we have implemented a form of interference microscopy based upon phase-shifted, laser-feedback interferometry and developed an algorithm that can be used to separate the contribution of the elastically scattered light by sub-cellular structures from the reflection at the coverslip-buffer interface. The method offers an opportunity to probe protein aggregation, index of refraction variations and structure. We measure the topography and reflection from calibration spheres and from stress fibers and adhesions in both fixed and motile cells. Unlike the data acquired with reflection interference contrast microscopy, where the reflection from adhesions can appear dark, our approach demonstrates that these regions have high reflectivity. The data acquired from fixed and live cells show the presence of a dense actin layer located ≈ 100 nm above the coverslip interface. Finally, the measured dynamics of filopodia and the lamella in a live cell supports retrograde flow as the dominate mechanism responsible for filopodia retraction. PMID:21833378

  1. Reflectivity and topography of cells grown on glass-coverslips measured with phase-shifted laser feedback interference microscopy.

    PubMed

    Atılgan, Erdinç; Ovryn, Ben

    2011-08-01

    In spite of the advantages associated with the molecular specificity of fluorescence imaging, there is still a significant need to augment these approaches with label-free imaging. Therefore, we have implemented a form of interference microscopy based upon phase-shifted, laser-feedback interferometry and developed an algorithm that can be used to separate the contribution of the elastically scattered light by sub-cellular structures from the reflection at the coverslip-buffer interface. The method offers an opportunity to probe protein aggregation, index of refraction variations and structure. We measure the topography and reflection from calibration spheres and from stress fibers and adhesions in both fixed and motile cells. Unlike the data acquired with reflection interference contrast microscopy, where the reflection from adhesions can appear dark, our approach demonstrates that these regions have high reflectivity. The data acquired from fixed and live cells show the presence of a dense actin layer located ≈ 100 nm above the coverslip interface. Finally, the measured dynamics of filopodia and the lamella in a live cell supports retrograde flow as the dominate mechanism responsible for filopodia retraction.

  2. Development of Scalable Culture Systems for Human Embryonic Stem Cells

    PubMed Central

    Azarin, Samira M.; Palecek, Sean P.

    2009-01-01

    The use of human pluripotent stem cells, including embryonic and induced pluripotent stem cells, in therapeutic applications will require the development of robust, scalable culture technologies for undifferentiated cells. Advances made in large-scale cultures of other mammalian cells will facilitate expansion of undifferentiated human embryonic stem cells (hESCs), but challenges specific to hESCs will also have to be addressed, including development of defined, humanized culture media and substrates, monitoring spontaneous differentiation and heterogeneity in the cultures, and maintaining karyotypic integrity in the cells. This review will describe our current understanding of environmental factors that regulate hESC self-renewal and efforts to provide these cues in various scalable bioreactor culture systems. PMID:20161686

  3. Using Human Stem Cells to Study the Role of the Stroma in the Initiation of Prostate Cancer

    DTIC Science & Technology

    2011-03-01

    hESCs to pre- differentiate into endoderm, or use for recombination experiments . All routine karyotyping and identification of pluripotent cell...these experimental procedures as outlined in the r esearch plan, previously published by D’Amour and colleagues (4, 5). This challenging procedure...staining and flow cytometry for use in recombination experiments . c. Generation of tissue recombinants of endoderm-derived hESCs together with

  4. Biomimetically grown apatite spheres from aggregated bioglass nanoparticles with ultrahigh porosity and surface area imply potential drug delivery and cell engineering applications.

    PubMed

    El-Fiqi, Ahmed; Buitrago, Jennifer O; Yang, Sung Hee; Kim, Hae-Won

    2017-09-15

    Here we communicate the generation of biomimetically grown apatite spheres from aggregated bioglass nanoparticles and the potential properties applicable for drug delivery and cell/tissue engineering. Ion releasing nanoparticulates of bioglass (85%SiO2-15%CaO) in a mineralizing medium show an intriguing dynamic phenomenon - aggregation, mineralization to apatite, integration and growth into micron-sized (1.5-3μm) spheres. During the progressive ionic dissolution/precipitation reactions, nano-to-micro-morphology, glass-to-crystal composition, and the physico-chemical properties (porosity, surface area, and charge) change dynamically. With increasing reaction period, the apatite becomes more crystallized with increased crystallinity and crystal size, and gets a composition closer to the stoichiometry. The developed microspheres exhibit hierarchical surface nanostructure, negative charge (ς-potential of -20mV), and ultrahigh mesoporosity (mesopore size of 6.1nm, and the resultant surface area of 63.7m(2)/g and pore volume of 0.153cm(3)/g) at 14days of mineralization, which are even higher than those of its precursor bioglass nanoparticles. Thanks to these properties, the biomimetic mineral microspheres take up biological molecules effectively, i.e., loading capacity of positive-charged protein is over 10%. Of note, the release is highly sustainable at a constant rate, i.e., profiling almost 'zero-order' kinetics for 4weeks, suggesting the potential usefulness as protein delivery systems. The biomimetic mineral microspheres hold some remnant Si in the core region, and release calcium, phosphate, and silicate ions over the test period, implying the long-term ionic-related therapeutic functions. The mesenchymal stem cells favour the biomimetic spheres with an excellent viability. Due to the merit of sizes (a few micrometers), the spheres can be intercalated into cells, mediating cellular interactions in 3D cell-spheroid engineering, and also can stimulate osteogenic

  5. A scalable label-free approach to separate human pluripotent cells from differentiated derivatives.

    PubMed

    Willoughby, N A; Bock, H; Hoeve, M A; Pells, S; Williams, C; McPhee, G; Freile, P; Choudhury, D; De Sousa, P A

    2016-01-01

    The broad capacity of pluripotent human embryonic stem cells (hESC) to grow and differentiate demands the development of rapid, scalable, and label-free methods to separate living cell populations for clinical and industrial applications. Here, we identify differences in cell stiffness, expressed as cell elastic modulus (CEM), for hESC versus mesenchymal progenitors, osteoblast-like derivatives, and fibroblasts using atomic force microscopy and data processing algorithms to characterize the stiffness of cell populations. Undifferentiated hESC exhibited a range of CEMs whose median was nearly three-fold lower than those of differentiated cells, information we exploited to develop a label-free separation device based on the principles of tangential flow filtration. To test the device's utility, we segregated hESC mixed with fibroblasts and hESC-mesenchymal progenitors induced to undergo osteogenic differentiation. The device permitted a throughput of 10(6)-10(7) cells per min and up to 50% removal of specific cell types per single pass. The level of enrichment and depletion of soft, pluripotent hESC in the respective channels was found to rise with increasing stiffness of the differentiating cells, suggesting CEM can serve as a major discriminator. Our results demonstrate the principle of a scalable, label-free, solution for separation of heterogeneous cell populations deriving from human pluripotent stem cells.

  6. A scalable label-free approach to separate human pluripotent cells from differentiated derivatives

    PubMed Central

    Willoughby, N. A.; Hoeve, M. A.; Pells, S.; Williams, C.; McPhee, G.

    2016-01-01

    The broad capacity of pluripotent human embryonic stem cells (hESC) to grow and differentiate demands the development of rapid, scalable, and label-free methods to separate living cell populations for clinical and industrial applications. Here, we identify differences in cell stiffness, expressed as cell elastic modulus (CEM), for hESC versus mesenchymal progenitors, osteoblast-like derivatives, and fibroblasts using atomic force microscopy and data processing algorithms to characterize the stiffness of cell populations. Undifferentiated hESC exhibited a range of CEMs whose median was nearly three-fold lower than those of differentiated cells, information we exploited to develop a label-free separation device based on the principles of tangential flow filtration. To test the device's utility, we segregated hESC mixed with fibroblasts and hESC-mesenchymal progenitors induced to undergo osteogenic differentiation. The device permitted a throughput of 106–107 cells per min and up to 50% removal of specific cell types per single pass. The level of enrichment and depletion of soft, pluripotent hESC in the respective channels was found to rise with increasing stiffness of the differentiating cells, suggesting CEM can serve as a major discriminator. Our results demonstrate the principle of a scalable, label-free, solution for separation of heterogeneous cell populations deriving from human pluripotent stem cells. PMID:26858819

  7. Molecular analysis of LEFTY-expressing cells in early human embryoid bodies.

    PubMed

    Dvash, Tamar; Sharon, Nadav; Yanuka, Ofra; Benvenisty, Nissim

    2007-02-01

    Human ESCs (HESCs) are self-renewing pluripotent cell lines that are derived from the inner cell mass of blastocyst-stage embryos. These cells can produce terminally differentiated cells representing the three embryonic germ layers. We thus hypothesized that during the course of in vitro differentiation of HESCs, progenitor-like cells are transiently formed. We demonstrated that LEFTY proteins, which are known to play a major role during mouse gastrulation, are transiently expressed during HESC differentiation. Moreover, LEFTY proteins seemed to be exclusively expressed by a certain population of cells in the early human embryoid bodies that does not overlap with the population expressing the ESC marker OCT4. We also showed that LEFTY expression is regulated at the cellular transcription level by molecular labeling of LEFTY-positive cells. A DNA microarray analysis of LEFTY-overexpressing cells revealed a signature of cell surface markers such as CADHERIN 2 and 11. Expression of LEFTY controlled by NODAL appears to have a substantial role in mesodermal origin cell population establishment, since inhibition of NODAL activity downregulated expression not only of LEFTY A and LEFTY B but also of BRACHYURY, an early mesodermal marker. In addition, other mesodermal lineage-related genes were downregulated, and this was accompanied by an upregulation in ectoderm-related genes. We propose that during the initial step of HESC differentiation, mesoderm progenitor-like cells appear via activation of the NODAL pathway. Our analysis suggests that in vitro differentiation of HESCs can model early events in human development.

  8. Symbiodinium transcriptome and global responses of cells to immediate changes in light intensity when grown under autotrophic or mixotrophic conditions.

    PubMed

    Xiang, Tingting; Nelson, William; Rodriguez, Jesse; Tolleter, Dimitri; Grossman, Arthur R

    2015-04-01

    Symbiosis between unicellular dinoflagellates (genus Symbiodinium) and their cnidarian hosts (e.g. corals, sea anemones) is the foundation of coral reef ecosystems. Dysfunction of this symbiosis under changing environmental conditions has led to global reef decline. Little information is known about Symbiodinium gene expression and mechanisms by which light impacts host-symbiont associations. To address these issues, we generated a transcriptome from axenic Symbiodinium strain SSB01. Here we report features of the transcriptome, including occurrence and length distribution of spliced leader sequences, the functional landscape of encoded proteins and the impact of light on gene expression. Expression of many Symbiodinium genes appears to be significantly impacted by light. Transcript encoding cryptochrome 2 declined in high light while some transcripts for Regulators of Chromatin Condensation (RCC1) declined in the dark. We also identified a transcript encoding a light harvesting AcpPC protein with homology to Chlamydomonas LHCSR2. The level of this transcript increased in high light autotrophic conditions, suggesting that it is involved in photo-protection and the dissipation of excess absorbed light energy. The most extensive changes in transcript abundances occurred when the algae were transferred from low light to darkness. Interestingly, transcripts encoding several cell adhesion proteins rapidly declined following movement of cultures to the dark, which correlated with a dramatic change in cell surface morphology, likely reflecting the complexity of the extracellular matrix. Thus, light-sensitive cell adhesion proteins may play a role in establishing surface architecture, which may in turn alter interactions between the endosymbiont and its host.

  9. Effect of pH, aeration and sucrose feeding on the invertase activity of intact S. cerevisiae cells grown in sugarcane blackstrap molasses.

    PubMed

    Vitolo, M; Duranti, M A; Pellegrim, M B

    1995-08-01

    S. cerevisiae was grown in a blackstrap molasses containing medium in batch and fed-batch cultures. The following parameters were varied: pH (from 4.0 to 6.5), dissolved oxygen (DO) (from 0 to 5.0 mg O2 L-1) and sucrose feeding rate. When glucose concentration (S) was higher than 0.5 g L-1 a reduction in the specific invertase activity of intact cells (v) and an oscillatory behavior of v values during fermentation were observed. Both the invertase reduction and the oscillatory behavior of v values could be related to the glucose inhibitory effect on invertase biosynthesis. The best culture conditions for attaining S. cerevisiae cells suitable for invertase production were: temperature = 30 degrees C; pH = 5.0; DO = 3.3 mg O2 L-1; (S) = 0.5 g L-1 and sucrose added into the fermenter according to the equations: (V-Vo) = t2/16 or (V - Vo) = (Vf - Vo).(e0.6t-1)/10.

  10. Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals.

    PubMed

    Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan; Mulligan, Padhraic; Qiu, Jie; Cao, Lei; Huang, Jinsong

    2015-02-27

    Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH3NH3PbI3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm(-2)) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smaller trap densities in the single crystals than in polycrystalline thin films. The long carrier diffusion lengths enabled the use of CH3NH3PbI3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source. Copyright © 2015, American Association for the Advancement of Science.

  11. Metformin Induces Apoptosis and Downregulates Pyruvate Kinase M2 in Breast Cancer Cells Only When Grown in Nutrient-Poor Conditions

    PubMed Central

    Silvestri, Alessandra; Palumbo, Francesco; Rasi, Ignazio; Posca, Daniela; Pavlidou, Theodora; Paoluzi, Serena; Castagnoli, Luisa; Cesareni, Giovanni

    2015-01-01

    Introduction Metformin is proposed as adjuvant therapy in cancer treatment because of its ability to limit cancer incidence by negatively modulating the PI3K/AKT/mTOR pathway. In vitro, in addition to inhibiting cancer cell proliferation, metformin can also induce apoptosis. The molecular mechanism underlying this second effect is still poorly characterized and published data are often contrasting. We investigated how nutrient availability can modulate metformin-induced apoptosis in three breast cancer cell lines. Material and Methods MCF7, SKBR3 and MDA-MB-231 cells were plated in MEM medium supplemented with increasing glucose concentrations or in DMEM medium and treated with 10 mM metformin. Cell viability was monitored by Trypan Blue assay and treatment effects on Akt/mTOR pathway and on apoptosis were analysed by Western Blot. Moreover, we determined the level of expression of pyruvate kinase M2 (PKM2), a well-known glycolytic enzyme expressed in cancer cells. Results Our results showed that metformin can induce apoptosis in breast cancer cells when cultured at physiological glucose concentrations and that the pro-apoptotic effect was completely abolished when cells were grown in high glucose/high amino acid medium. Induction of apoptosis was found to be dependent on AMPK activation but, at least partially, independent of TORC1 inactivation. Finally, we showed that, in nutrient-poor conditions, metformin was able to modulate the intracellular glycolytic equilibrium by downregulating PKM2 expression and that this mechanism was mediated by AMPK activation. Conclusion We demonstrated that metformin induces breast cancer cell apoptosis and PKM2 downregulation only in nutrient-poor conditions. Not only glucose levels but also amino acid concentration can influence the observed metformin inhibitory effect on the mTOR pathway as well as its pro-apoptotic effect. These data demonstrate that the reduction of nutrient supply in tumors can increase metformin efficacy and

  12. GaInP/GaAs tandem solar cells with highly Te- and Mg-doped GaAs tunnel junctions grown by MBE

    NASA Astrophysics Data System (ADS)

    Zheng, Xin-He; Liu, San-Jie; Xia, Yu; Gan, Xing-Yuan; Wang, Hai-Xiao; Wang, Nai-Ming; Yang, Hui

    2015-10-01

    We report a GaInP/GaAs tandem solar cell with a novel GaAs tunnel junction (TJ) with using tellurium (Te) and magnesium (Mg) as n- and p-type dopants via dual-filament low temperature effusion cells grown by molecular beam epitaxy (MBE) at low temperature. The test Te/Mg-doped GaAs TJ shows a peak current density of 21 A/cm2. The tandem solar cell by the Te/Mg TJ shows a short-circuit current density of 12 mA/cm2, but a low open-circuit voltage range of 1.4 V˜1.71 V under AM1.5 illumination. The secondary ion mass spectroscopy (SIMS) analysis reveals that the Te doping is unexpectedly high and its doping profile extends to the Mg doping region, thus possibly resulting in a less abrupt junction with no tunneling carriers effectively. Furthermore, the tunneling interface shifts from the intended GaAs n++/p++ junction to the AlGaInP/GaAs junction with a higher bandgap AlGaInP tunneling layers, thereby reducing the tunneling peak. The Te concentration of ˜ 2.5 × 1020 in GaAs could cause a lattice strain of 10-3 in magnitude and thus a surface roughening, which also negatively influences the subsequent growth of the top subcell and the GaAs contacting layers. The doping features of Te and Mg are discussed to understand the photovoltaic response of the studied tandem cell. Project supported by the SINANO-SONY Joint Program (Grant No. Y1AAQ11001), the National Natural Science Foundation of China (Grant No. 61274134), the USCB Start-up Program (Grant No. 06105033), and the International Cooperation Projects of Suzhou City, China (Grant No. SH201215).

  13. Multi-stacked InAs/GaAs quantum dots grown with different growth modes for quantum dot solar cells

    SciTech Connect

    Kim, Yeongho; Ban, Keun-Yong Honsberg, Christiana B.

    2015-06-01

    We have studied the material properties and device performance of InAs/GaAs quantum dot solar cells (QDSCs) made using three different QD growth modes: Stranski-Krastanov (S-K), quasi-monolayer (QML), and sub-monolayer (SML) growth modes. All QDSCs show an extended external quantum efficiency (EQE) at near infrared wavelengths of 950–1070 nm from the QD absorption. Compared to the S-K and SML QDSCs, the QML QDSC with a higher strain exhibits a poor EQE response in the wavelength region of 300–880 nm due to increased non-radiative recombination. The conversion efficiency of the S-K and SML QDSCs exceeds that of the reference cell (13.4%) without QDs due to an enhanced photocurrent (>16% increase) produced by the silicon doped QD stacks. However, as expected from the EQE of the QML QDSC, the increase of strain-induced crystalline defects greatly degrades the photocurrent and open-circuit voltage, leading to the lowest conversion efficiency (8.9%)

  14. Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

    PubMed Central

    Katerski, Atanas; Oja Acik, Ilona; Mere, Arvo; Mikli, Valdek; Krunks, Malle

    2016-01-01

    Chemical spray pyrolysis (CSP) is a fast wet-chemical deposition method in which an aerosol is guided by carrier gas onto a hot substrate where the decomposition of the precursor chemicals occurs. The aerosol is produced using an ultrasonic oscillator in a bath of precursor solution and guided by compressed air. The use of the ultrasonic CSP resulted in the growth of homogeneous and well-adhered layers that consist of submicron crystals of single-phase Sb2S3 with a bandgap of 1.6 eV if an abundance of sulfur source is present in the precursor solution (SbCl3/SC(NH2)2 = 1:6) sprayed onto the substrate at 250 °C in air. Solar cells with glass-ITO-TiO2-Sb2S3-P3HT-Au structure and an active area of 1 cm2 had an open circuit voltage of 630 mV, short circuit current density of 5 mA/cm2, a fill factor of 42% and a conversion efficiency of 1.3%. Conversion efficiencies up to 1.9% were obtained from solar cells with smaller areas. PMID:28144515

  15. Multi-stacked InAs/GaAs quantum dots grown with different growth modes for quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Yeongho; Ban, Keun-Yong; Honsberg, Christiana B.

    2015-06-01

    We have studied the material properties and device performance of InAs/GaAs quantum dot solar cells (QDSCs) made using three different QD growth modes: Stranski-Krastanov (S-K), quasi-monolayer (QML), and sub-monolayer (SML) growth modes. All QDSCs show an extended external quantum efficiency (EQE) at near infrared wavelengths of 950-1070 nm from the QD absorption. Compared to the S-K and SML QDSCs, the QML QDSC with a higher strain exhibits a poor EQE response in the wavelength region of 300-880 nm due to increased non-radiative recombination. The conversion efficiency of the S-K and SML QDSCs exceeds that of the reference cell (13.4%) without QDs due to an enhanced photocurrent (>16% increase) produced by the silicon doped QD stacks. However, as expected from the EQE of the QML QDSC, the increase of strain-induced crystalline defects greatly degrades the photocurrent and open-circuit voltage, leading to the lowest conversion efficiency (8.9%).

  16. Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell.

    PubMed

    Kärber, Erki; Katerski, Atanas; Oja Acik, Ilona; Mere, Arvo; Mikli, Valdek; Krunks, Malle

    2016-01-01

    Chemical spray pyrolysis (CSP) is a fast wet-chemical deposition method in which an aerosol is guided by carrier gas onto a hot substrate where the decomposition of the precursor chemicals occurs. The aerosol is produced using an ultrasonic oscillator in a bath of precursor solution and guided by compressed air. The use of the ultrasonic CSP resulted in the growth of homogeneous and well-adhered layers that consist of submicron crystals of single-phase Sb2S3 with a bandgap of 1.6 eV if an abundance of sulfur source is present in the precursor solution (SbCl3/SC(NH2)2 = 1:6) sprayed onto the substrate at 250 °C in air. Solar cells with glass-ITO-TiO2-Sb2S3-P3HT-Au structure and an active area of 1 cm(2) had an open circuit voltage of 630 mV, short circuit current density of 5 mA/cm(2), a fill factor of 42% and a conversion efficiency of 1.3%. Conversion efficiencies up to 1.9% were obtained from solar cells with smaller areas.

  17. Adenosine accelerates the healing of diabetic ischemic ulcers by improving autophagy of endothelial progenitor cells grown on a biomaterial

    PubMed Central

    Chen, Wen; Wu, Yangxiao; Li, Li; Yang, Mingcan; Shen, Lei; Liu, Ge; Tan, Ju; Zeng, Wen; Zhu, Chuhong

    2015-01-01

    Endothelial progenitor cells (EPCs) seeded on biomaterials can effectively promote diabetic ischemic wound healing. However, the function of transplanted EPCs is negatively affected by a high-glucose and ischemic microenvironment. Our experiments showed that EPC autophagy was inhibited and mitochondrial membrane potential (MMP) was increased in diabetic patients, while adenosine treatment decreased the energy requirements and increased the autophagy levels of EPCs. In animal experiments, we transplanted a biomaterial seeded with EPCs onto the surface of diabetic wounds and found that adenosine-stimulated EPCs effectively promoted wound healing. Increased microvascular genesis and survival of the transplanted cells were also observed in the adenosine-stimulated groups. Interestingly, our study showed that adenosine increased the autophagy of the transplanted EPCs seeded onto the biomaterial and maintained EPC survival at 48 and 96 hours. Moreover, we observed that adenosine induced EPC differentiation through increasing the level of autophagy. In conclusion, our study indicated that adenosine-stimula