Review of status developments of high-efficiency crystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Yao, Yao; Xiao, Shaoqing; Gu, Xiaofeng
2018-03-01
In order to further improve cell efficiency and reduce cost in achieving grid parity, a large number of PV manufacturing companies, universities and research institutes have been devoted to a variety of low-cost and high-efficiency crystalline Si solar cells. In this article, the cell structures, characteristics and efficiency progresses of several types of high-efficiency crystalline Si solar cells that have been in small scale production or are promising in mass production are presented, including passivated emitter rear cell, tunnel oxide passivated contact solar cell, interdigitated back contact cell, heterojunction with intrinsic thin-layer cell, and heterojunction solar cells with interdigitated back contacts. Both the industrialization status and future development trend of high-efficiency crystalline silicon solar cells are also pinpointed.
NASA Technical Reports Server (NTRS)
Sah, C. T.
1985-01-01
Loss mechanisms in high-efficiency solar cells were discussed. Fundamental limitations and practical solutions were stressed. Present cell efficiency is limited by many recombination sites: emitter, base, contacts, and oxide/silicon interface. Use of polysilicon passivation was suggested. After reduction of these losses, a 25% efficient cell could be built. A floating emitter cell design was shown that had the potential of low recombination losses.
NREL Inks Technology Agreement for High Efficiency Multijunction Solar
) multijunction solar cells. While high-efficiency multijunction solar cells are commonly used for space Devices is excited to now be commercializing IMM solar cells for high-performance space and UAV Cells | News | NREL Inks Technology Agreement for High Efficiency Multijunction Solar Cells
New silicon cell design concepts for 20 percent AMI efficiency
NASA Technical Reports Server (NTRS)
Wolf, M.
1982-01-01
The basic design principles for obtaining high efficiency in silicon solar cells are reviewed. They critically involve very long minority carrier lifetimes, not so much to attain high collection efficiency, but primarily for increased output voltages. Minority carrier lifetime, however, is sensitive to radiation damage, and particularly in low resistivity silicon, on which the high efficiency design is based. Radiation resistant space cells will therefore have to follow differing design principles than high efficiency terrestrial cells.
Simulation of the real efficiencies of high-efficiency silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachenko, A. V., E-mail: sach@isp.kiev.ua; Skrebtii, A. I.; Korkishko, R. M.
The temperature dependences of the efficiency η of high-efficiency solar cells based on silicon are calculated. It is shown that the temperature coefficient of decreasing η with increasing temperature decreases as the surface recombination rate decreases. The photoconversion efficiency of high-efficiency silicon-based solar cells operating under natural (field) conditions is simulated. Their operating temperature is determined self-consistently by simultaneously solving the photocurrent, photovoltage, and energy-balance equations. Radiative and convective cooling mechanisms are taken into account. It is shown that the operating temperature of solar cells is higher than the ambient temperature even at very high convection coefficients (~300 W/m{sup 2}more » K). Accordingly, the photoconversion efficiency in this case is lower than when the temperature of the solar cells is equal to the ambient temperature. The calculated dependences for the open-circuit voltage and the photoconversion efficiency of high-quality silicon solar cells under concentrated illumination are discussed taking into account the actual temperature of the solar cells.« less
Optimal design study of high efficiency indium phosphide space solar cells
NASA Technical Reports Server (NTRS)
Jain, Raj K.; Flood, Dennis J.
1990-01-01
Recently indium phosphide solar cells have achieved beginning of life AMO efficiencies in excess of 19 pct. at 25 C. The high efficiency prospects along with superb radiation tolerance make indium phosphide a leading material for space power requirements. To achieve cost effectiveness, practical cell efficiencies have to be raised to near theoretical limits and thin film indium phosphide cells need to be developed. The optimal design study is described of high efficiency indium phosphide solar cells for space power applications using the PC-1D computer program. It is shown that cells with efficiencies over 22 pct. AMO at 25 C could be fabricated by achieving proper material and process parameters. It is observed that further improvements in cell material and process parameters could lead to experimental cell efficiencies near theoretical limits. The effect of various emitter and base parameters on cell performance was studied.
High efficiency, long life terrestrial solar panel
NASA Technical Reports Server (NTRS)
Chao, T.; Khemthong, S.; Ling, R.; Olah, S.
1977-01-01
The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.
Zhang, Xiaoliang; Santra, Pralay Kanti; Tian, Lei; Johansson, Malin B; Rensmo, Håkan; Johansson, Erik M J
2017-08-22
Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZO-NC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.
High efficiency solar cell processing
NASA Technical Reports Server (NTRS)
Ho, F.; Iles, P. A.
1985-01-01
At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.
A review of high-efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Rohatgi, A.
1986-01-01
Various parameters that affect solar cell efficiency were discussed. It is not understood why solar cells produced from less expensive Czochralski (Cz) silicon are less efficient than cells fabricated from more expensive float-zone (Fz) silicon. Performance characteristics were presented for recently produced, high-efficient solar cells fabricated by Westinghouse Electric Corp., Spire Corp., University of New South Wales, and Stanford University.
NASA Technical Reports Server (NTRS)
Kachare, R.
1985-01-01
The high-efficiency crystalline silicon solar cells research forum addressed high-efficiency concepts, surface-interface effects, bulk effects, modeling and device processing. The topics were arranged into six interactive sessions, which focused on the state-of-the-art of device structures, identification of barriers to achieve high-efficiency cells and potential ways to overcome these barriers.
Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells
Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; ...
2015-09-18
Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less
Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.
Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin
2015-09-18
Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.
Basic concepts for the design of high-efficiency single-junction and multibandgap solar cells
NASA Technical Reports Server (NTRS)
Fan, J. C. C.
1985-01-01
Concepts for obtaining practical solar-cell modules with one-sun efficiencies up to 30 percent at air mass 1 are now well understood. Such high-efficiency modules utilize multibandgap structures. To achieve module efficiencies significantly above 30 percent, it is necessary to employ different concepts such as spectral compression and broad-band detection. A detailed description of concepts for the design of high-efficiency multibandgap solar cells is given.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.
1986-01-01
Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.
World's Most Efficient Solar Cell
on the cost effectiveness and revenue-generating capabilities of high-power space satellites over the ) and Spectrolab. The high efficiency makes the cells attractive for use in solar concentrator systems ." Similar high-efficiency solar cells - invented and developed over 10 years at NREL before being
SiN sub x passivation of silicon surfaces
NASA Technical Reports Server (NTRS)
Olsen, L. C.
1986-01-01
The objectives were to perform surface characterization of high efficiency n+/p and p+/n silicon cells, to relate surface density to substrate dopant concentration, and to identify dominant current loss mechanisms in high efficiency cells. The approach was to measure density of states on homogeneously doped substrates with high frequency C-V and Al/SiN sub x/Si structures; to investigate density of states and photoresponse of high efficiency N+/P and P+/N cells; and to conduct I-V-T studies to identify current loss nechanisms in high efficiency cells. Results are given in tables and graphs.
NASA Astrophysics Data System (ADS)
Mehrotra, A.; Alemu, A.; Freundlich, A.
2011-02-01
Crystalline defects (e.g. dislocations or grain boundaries) as well as electron and proton induced defects cause reduction of minority carrier diffusion length which in turn results in degradation of efficiency of solar cells. Hetro-epitaxial or metamorphic III-V devices with low dislocation density have high BOL efficiencies but electron-proton radiation causes degradation in EOL efficiencies. By optimizing the device design (emitter-base thickness, doping) we can obtain highly dislocated metamorphic devices that are radiation resistant. Here we have modeled III-V single and multi junction solar cells using drift and diffusion equations considering experimental III-V material parameters, dislocation density, 1 Mev equivalent electron radiation doses, thicknesses and doping concentration. Thinner device thickness leads to increment in EOL efficiency of high dislocation density solar cells. By optimizing device design we can obtain nearly same EOL efficiencies from high dislocation solar cells than from defect free III-V multijunction solar cells. As example defect free GaAs solar cell after optimization gives 11.2% EOL efficiency (under typical 5x1015cm-2 1 MeV electron fluence) while a GaAs solar cell with high dislocation density (108 cm-2) after optimization gives 10.6% EOL efficiency. The approach provides an additional degree of freedom in the design of high efficiency space cells and could in turn be used to relax the need for thick defect filtering buffer in metamorphic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniadis, H.
Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink highmore » efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.« less
Process and design considerations for high-efficiency solar cells
NASA Technical Reports Server (NTRS)
Rohati, A.; Rai-Choudhury, P.
1985-01-01
This paper shows that oxide surface passivation coupled with optimum multilayer anti-reflective coating can provide approx. 3% (absolute) improvement in solar cell efficiency. Use of single-layer AR coating, without passivation, gives cell efficiencies in the range of 15 to 15.5% on high-quality, 4 ohm-cm as well as 0.1 to 0.2 ohm-cm float-zone silicon. Oxide surface passivation alone raises the cell efficiency to or = 17%. An optimum double-layer AR coating on oxide-passivated cells provides an additional approx. 5 to 10% improvement over a single-layer AR-coated cell, resulting in cell efficiencies in excess of 18%. Experimentally observed improvements are supported by model calculations and an approach to or = 20% efficient cells is discussed.
Design of high-efficiency, radiation-hard, GaInP/GaAs solar cells
NASA Technical Reports Server (NTRS)
Kurtz, Sarah R.; Bertness, K. A.; Kibbler, A. E.; Kramer, C.; Olson, J. M.
1994-01-01
In recently years, Ga(0.5)In((0.5)P/GaAs cells have drawn increased attention both because of their high efficiencies and because they are well suited for space applications. They can be grown and processed as two-junction devices with roughly twice the voltage and half the current of GaAs cells. They have low temperature coefficients, and have good potential for radiation hardness. We have previously reported the effects of electron irradiation on test cells which were not optimally designed for space. From those results we estimated that an optimally designed cell could achieve 20 percent after irradiation with 10(exp 15) cm(exp -2) 1 MeV electrons. Modeling studies predicted that slightly higher efficiencies may be achievable. Record efficiencies for EOL performance of other types of cells are significantly lower. Even the best Si and InP cells have BOL efficiencies lower than the EOL efficiency we report here. Good GaAs cells have an EOL efficiency of 16 percent. The InP/Ga(0.5)In(0.5)As two-junction, two-terminal device has a BOL efficiency as high as 22.2 percent, but radiation results for these cells were limited. In this study we use the previous modeling and irradiation results to design a set of Ga(0.5)In(0.5)P/GaAs cells that will demonstrate the importance of the design parameters and result in high-efficiency devices. We report record AMO efficiencies: a BOL efficiency of 25.7 percent for a device optimized for BOL performance and two of different designs with EOL efficiencies of 19.6 percent (at 10(exp 15) cm(exp -2) 1MeV electrons). We vary the bottom-cell base doping and the top-cell thickness to show the effects of these two important design parameters. We get an unexpected result indicating that the dopant added to the bottom-cell base also increases the degradation of the top cell.
Production technology for high efficiency ion implanted solar cells
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.; Minnucci, J. A.; Greenwald, A. C.; Josephs, R. H.
1978-01-01
Ion implantation is being developed for high volume automated production of silicon solar cells. An implanter designed for solar cell processing and able to properly implant up to 300 4-inch wafers per hour is now operational. A machine to implant 180 sq m/hr of solar cell material has been designed. Implanted silicon solar cells with efficiencies exceeding 16% AM1 are now being produced and higher efficiencies are expected. Ion implantation and transient processing by pulsed electron beams are being integrated with electrostatic bonding to accomplish a simple method for large scale, low cost production of high efficiency solar cell arrays.
Laser doping of boron-doped Si paste for high-efficiency silicon solar cells
NASA Astrophysics Data System (ADS)
Tomizawa, Yuka; Imamura, Tetsuya; Soeda, Masaya; Ikeda, Yoshinori; Shiro, Takashi
2015-08-01
Boron laser doping (LD) is a promising technology for high-efficiency solar cells such as p-type passivated locally diffused solar cells and n-type Si-wafer-based solar cells. We produced a printable phosphorus- or boron-doped Si paste (NanoGram® Si paste/ink) for use as a diffuser in the LD process. We used the boron LD process to fabricate high-efficiency passivated emitter and rear locally diffused (PERL) solar cells. PERL solar cells on Czochralski Si (Cz-Si) wafers yielded a maximum efficiency of 19.7%, whereas the efficiency of a reference cell was 18.5%. Fill factors above 79% and open circuit voltages above 655 mV were measured. We found that the boron-doped area effectively performs as a local boron back surface field (BSF). The characteristics of the solar cell formed using NanoGram® Si paste/ink were better than those of the reference cell.
28 percent efficient GaAs concentrator solar cells
NASA Technical Reports Server (NTRS)
Macmillan, H. F.; Hamaker, H. C.; Kaminar, N. R.; Kuryla, M. S.; Ladle Ristow, M.
1988-01-01
AlGaAs/GaAs heteroface solar concentrator cells which exhibit efficiencies in excess of 27 percent at high solar concentrations (over 400 suns, AM1.5D, 100 mW/sq cm) have been fabricated with both n/p and p/n configurations. The best n/p cell achieved an efficiency of 28.1 percent around 400 suns, and the best p/n cell achieved an efficiency of 27.5 percent around 1000 suns. The high performance of these GaAs concentrator cells compared to earlier high-efficiency cells was due to improved control of the metal-organic chemical vapor deposition growth conditions and improved cell fabrication procedures (gridline definition and edge passivation). The design parameters of the solar cell structures and optimized grid pattern were determined with a realistic computer modeling program. An evaluation of the device characteristics and a discussion of future GaAs concentrator cell development are presented.
NASA Astrophysics Data System (ADS)
Tang, Yadong; Shi, Jian; Li, Sisi; Wang, Li; Cayre, Yvon E.; Chen, Yong
2014-08-01
Capture of circulating tumor cells (CTCs) from peripheral blood of cancer patients has major implications for metastatic detection and therapy analyses. Here we demonstrated a microfluidic device for high efficiency and high purity capture of CTCs. The key novelty of this approach lies on the integration of a microfilter with conical-shaped holes and a micro-injector with cross-flow components for size dependent capture of tumor cells without significant retention of non-tumor cells. Under conditions of constant flow rate, tumor cells spiked into phosphate buffered saline could be recovered and then cultured for further analyses. When tumor cells were spiked in blood of healthy donors, they could also be recovered at high efficiency and high clearance efficiency of white blood cells. When the same device was used for clinical validation, CTCs could be detected in blood samples of cancer patients but not in that of healthy donors. Finally, the capture efficiency of tumor cells is cell-type dependent but the hole size of the filter should be more closely correlated to the nuclei size of the tumor cells. Together with the advantage of easy operation, low-cost and high potential of integration, this approach offers unprecedented opportunities for metastatic detection and cancer treatment monitoring.
Life-cycle costs of high-performance cells
NASA Technical Reports Server (NTRS)
Daniel, R.; Burger, D.; Reiter, L.
1985-01-01
A life cycle cost analysis of high efficiency cells was presented. Although high efficiency cells produce more power, they also cost more to make and are more susceptible to array hot-spot heating. Three different computer analysis programs were used: SAMICS (solar array manufacturing industry costing standards), PVARRAY (an array failure mode/degradation simulator), and LCP (lifetime cost and performance). The high efficiency cell modules were found to be more economical in this study, but parallel redundancy is recommended.
NASA Astrophysics Data System (ADS)
Perl, Emmett Edward
Solar cells based on III-V compound semiconductors are ideally suited to convert solar energy into electricity. The highest efficiency single-junction solar cells are made of gallium arsenide, and have attained an efficiency of 28.8%. Multiple III-V materials can be combined to construct multijunction solar cells, which have reached record efficiencies greater than 45% under concentration. III-V solar cells are also well suited to operate efficiently at elevated temperatures, due in large part to their high material quality. These properties make III-V solar cells an excellent choice for use in concentrator systems. Concentrator photovoltaic systems have attained module efficiencies that exceed 40%, and have the potential to reach the lowest levelized cost of electricity in sunny places like the desert southwest. Hybrid photovoltaic-thermal solar energy systems can utilize high-temperature III-V solar cells to simultaneously achieve dispatchability and a high sunlight-to-electricity efficiency. This dissertation explores material science to advance the state of III-V multijunction solar cells for use in concentrator photovoltaic and hybrid photovoltaic-thermal solar energy systems. The first half of this dissertation describes work on advanced optical designs to improve the efficiency of multijunction solar cells. As multijunction solar cells move to configurations with four or more subcells, they utilize a larger portion of the solar spectrum. Broadband antireflection coatings are essential to realizing efficiency gains for these state-of-the-art cells. A hybrid design consisting of antireflective nanostructures placed on top of multilayer interference-based optical coatings is developed. Antireflection coatings that utilize this hybrid approach yield unparalleled performance, minimizing reflection losses to just 0.2% on sapphire and 0.6% on gallium nitride for 300-1800nm light. Dichroic mirrors are developed for bonded 5-junction solar cells that utilize InGaN as a top junction. These designs maximize reflection of high-energy light for an InGaN top junction while minimizing reflection of low-energy light that would be absorbed by the lower four junctions. Increasing the reflectivity of high-energy photons enables a second pass of light through the InGaN cell, leading to increased absorption and a higher photocurrent. These optical designs enhanced the efficiency of a 2.65eV InGaN solar cell to a value of 3.3% under the AM0 spectrum, the highest reported efficiency for a standalone InGaN solar cell. The second half of the dissertation describes the development of III-V solar cells for high-temperature applications. As the operating temperature of a solar cell is increased, the ideal bandgap of the top junction increases. AlGaInP solar cells with bandgaps ranging from 1.9eV to 2.2eV are developed. A 2.03eV AlGaInP solar cell is demonstrated with a bandgap-voltage offset of 440mV, the lowest of any AlGaInP solar cell reported to date. Single-junction AlGaInP, GaInP, and GaAs solar cells designed for high-temperature operation are characterized up to a temperature of 400°C. The cell properties are compared to an analytical drift-diffusion model, and we find that a fundamental increase in the intrinsic carrier concentration, ni, dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. These findings provide a valuable guide to the design of any system that requires high-temperature solar cell operation.
Flat-plate solar array project. Volume 4: High-efficiency solar cells
NASA Technical Reports Server (NTRS)
Leipold, M.; Cheng, L.; Daud, T.; Mokashi, A.; Burger, D.; Christensen, E. (Editor); Murry, J. (Editor); Bengelsdorf, I. (Editor)
1986-01-01
The High Efficiency Solar Cell Task was assigned the objective of understanding and developing high efficiency solar cell devices that would meet the cost and performance goals of the Flat Plate Solar Array (FSA) Project. The need for research dealing with high efficiency devices was considered important because of the role efficiency plays in reducing price per watt of generated energy. The R&D efforts conducted during the 1982 to 1986 period are summarized to provide understanding and control of energy conversion losses associated with crystalline silicon solar cells. New levels of conversion efficiency were demonstrated. Major contributions were made both to the understanding and reduction of bulk and surface losses in solar cells. For example, oxides, nitrides, and polysilicon were all shown to be potentially useful surface passivants. Improvements in measurement techniques were made and Auger coefficients and spectral absorption data were obtained for unique types of silicon sheets. New modelling software was developed including a program to optimize a device design based on input characteristics of a cell.
High efficiency solar cells for concentrator systems: silicon or multi-junction?
NASA Astrophysics Data System (ADS)
Slade, Alexander; Stone, Kenneth W.; Gordon, Robert; Garboushian, Vahan
2005-08-01
Amonix has become the first company to begin production of high concentration silicon solar cells where volumes are over 10 MW/year. Higher volumes are available due to the method of manufacture; Amonix solely uses semiconductor foundries for solar cell production. In the previous years of system and cell field testing, this method of manufacturing enabled Amonix to maintain a very low overhead while incurring a high cost for the solar cell. However, recent simplifications to the solar cell processing sequence resulted in cost reduction and increased yield. This new process has been tested by producing small qualities in very short time periods, enabling a simulation of high volume production. Results have included over 90% wafer yield, up to 100% die yield and world record performance (η =27.3%). This reduction in silicon solar cell cost has increased the required efficiency for multi-junction concentrator solar cells to be competitive / advantageous. Concentrator systems are emerging as a low-cost, high volume option for solar-generated electricity due to the very high utilization of the solar cell, leading to a much lower $/Watt cost of a photovoltaic system. Parallel to this is the onset of alternative solar cell technologies, such as the very high efficiency multi-junction solar cells developed at NREL over the last two decades. The relatively high cost of these type of solar cells has relegated their use to non-terrestrial applications. However, recent advancements in both multi-junction concentrator cell efficiency and their stability under high flux densities has made their large-scale terrestrial deployment significantly more viable. This paper presents Amonix's experience and testing results of both high-efficiency silicon rear-junction solar cells and multi-junction solar cells made for concentrated light operation.
2004-06-01
PAGE INTENTIONALLY LEFT BLANK v ABSTRACT Thermophotovoltaic cells are a good candidate for use in high efficiency radioiso- tope...ongoing in this field since the 1950’s, but the exotic materials necessary for high efficiency cells has only been recently available. Here, several...This cell was able to operate at 24% efficiency which is very high for a silicon cell [Ref. 6]. The inverted pyramids labeled in the figure are
Method for fabricating silicon cells
Ruby, Douglas S.; Basore, Paul A.; Schubert, W. Kent
1998-08-11
A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.
Status and Progress of High-efficiency Silicon Solar Cells
NASA Astrophysics Data System (ADS)
Xiao, Shaoqing; Xu, Shuyan
High-efficiency Si solar cells have attracted more and more attention from researchers, scientists, engineers of photovoltaic (PV) industry for the past few decades. Many high-quality researchers and engineers in both academia and industry seek solutions to improve the cell efficiency and reduce the cost. This desire has stimulated a growing number of major research and research infrastructure programmes, and a rapidly increasing number of publications in this filed. This chapter reviews materials, devices and physics of high-efficiency Si solar cells developed over the last 20 years. In this chapter there is a fair number of topics, not only from the material viewpoint, introducing various materials that are required for high-efficiency Si solar cells, such as base materials (FZ-Si, CZ-Si, MCZ-Si and multi-Si), emitter materials (diffused emitter and deposited emitter), passivation materials (Al-back surface field, high-low junction, SiO2, SiO x , SiN x , Al2O3 and a-Si:H), and other functional materials (antireflective layer, TCO and metal electrode), but also from the device and physics point of view, elaborating on physics, cell concept, development and status of all kinds of high-efficiency Si solar cells, such as passivated emitter and rear contact (PERC), passivated emitter and rear locally diffused (PERL), passivated emitter and rear totally diffused (PERT), Pluto, interdigitated back-contacted (IBC), emitter-wrap-through (EWT), metallization-wrap-through (MWT), Heterojunction with intrinsic thin-layer (HIT) and so on. Some representative examples of high-efficiency Si solar cell materials and devices with excellent performance and competitive advantages are presented.
2013-11-20
Graphene oxide derivatives as hole- and electron- extraction layers for high-performance polymer solar cells Jun Liu,*a Michael Durstockb and Liming...oxide (GO) and its derivatives have been used as a new class of efficient hole- and electron-extraction materials in polymer solar cells (PSCs...new class of efficient hole- and electron-extraction materials in polymer solar cells (PSCs). Highly efficient and stable PSCs have been fabricated
High-efficiency silicon solar-cell design and practical barriers
NASA Technical Reports Server (NTRS)
Mokashi, A.
1985-01-01
A numerical evaluation technique is used to study the impact of practical barriers, such as heavy doping effects (Auger recombination, band gap narrowing), surface recombination, shadowing losses and minority-carrier lifetime (Tau), on a high efficiency silicon solar cell performance. Considering a high Tau of 1 ms, efficiency of a silicon solar cell of the hypothetical case is estimated to be around 29%. This is comparable with (detailed balance limit) maximum efficiency of a p-n junction solar cell of 30%. Value of Tau is varied from 1 second to 20 micro. Heavy doping effects, and realizable values of surface recombination velocities and shadowing, are then considered in succession and their influence on cell efficiency is evaluated and quantified. These practical barriers cause the cell efficiency to reduce from the maximum value of 29% to the experimentally achieved value of about 19%. Improvement in open circuit voltage V sub oc is required to achieve cell efficiency greater than 20%. Increased value of Tau reduces reverse saturation current and, hence, improves V sub oc. Control of surface recombination losses becomes critical at higher V sub oc. Substantial improvement in Tau and considerable reduction in surface recombination velocities is essential to achieve cell efficiencies greater than 20%.
Status of multijunction solar cells
NASA Technical Reports Server (NTRS)
Yeh, Y. C. M.; Chu, C. L.
1996-01-01
This paper describes Applied Solar's present activity on Multijunction (MJ) space cells. We have worked on a variety of MJ cells, both monolithic and mechanically stacked. In recent years, most effort has been directed to GaInP2/GaAs monolithic cells, grown on Ge substrates, and the status of this cell design will be reviewed here. MJ cells are in demand to provide satellite power because of the acceptance of the overwhelming importance of high efficiency to reduce the area, weight and cost of space PV power systems. The need for high efficiencies has already accelerated the production of GaAs/Ge cells, with efficiencies 18.5-19%. When users realized that MJ cells could provide higher efficiencies (from 22% to 26%) with only fractional increase in costs, the demand for production MJ cells increased rapidly. The main purpose of the work described is to transfer the MOCVD growth technology of MJ high efficiency cells to a production environment, providing all the space requirements of users.
GaAs shallow-homojunction solar cells
NASA Technical Reports Server (NTRS)
Fan, J. C. C.
1981-01-01
The feasibility of fabricating space resistant, high efficiency, light weight, low cost GaAs shallow homojunction solar cells for space application is investigated. The material preparation of ultrathin GaAs single crystal layers, and the fabrication of efficient GaAs solar cells on bulk GaAs substrates are discussed. Considerable progress was made in both areas, and conversion efficiency about 16% AMO was obtained using anodic oxide as a single layer antireflection coating. A computer design shows that even better cells can be obtained with double layer antireflection coating. Ultrathin, high efficiency solar cells were obtained from GaAs films prepared by the CLEFT process, with conversion efficiency as high as 17% at AMI from a 10 micrometers thick GaAs film. A organometallic CVD was designed and constructed.
Fuel cell apparatus and method thereof
Cooper, John F.; Krueger, Roger; Cherepy, Nerine
2004-11-09
Highly efficient carbon fuels, exemplary embodiments of a high temperature, molten electrolyte electrochemical cell are capable of directly converting ash-free carbon fuel to electrical energy. Ash-free, turbostratic carbon particles perform at high efficiencies in certain direct carbon conversion cells.
Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min
2016-01-01
Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion. PMID:27113558
Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min
2016-04-26
Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.
NASA Astrophysics Data System (ADS)
Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min
2016-04-01
Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.
Method for fabricating silicon cells
Ruby, D.S.; Basore, P.A.; Schubert, W.K.
1998-08-11
A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.
Fiscal Year 1988 Technical Objective Document.
1987-03-01
CELLS BATTERIES PHO0TO VOL TAlC S HIGH EFFICIENCY CELLS ____: ___ HARDENING ( SCOPA, 6.3 I It LIGHTWEIGHT ARRAYS _ [ NUCLEAR I THERMAL ...QUALIFIED 0 35 WH / LB, 150 W /LB, LOW EARTH ORBIT CELLS o HIGH EFFICIENCY PHOTOVOLTAICS ( 11 - 18 % TO 30% O HARDENED ARRAY ( SMATH II) -" 0 LIGHTWEIGHT...PHOTOVOLTAICS HIGH EFFICIENCY SOLAR CELLS HIG SOLARCIE LLS ( SURVIVABLE CONCENTRATORS A; IELN D IN 1K1 Ga’s SCOPA 6 3 I .6 . 6 - E.,J-E I
Investigation of high efficiency GaAs solar cells
NASA Technical Reports Server (NTRS)
Olsen, Larry C.; Dunham, Glen; Addis, F. W.; Huber, Dan; Linden, Kurt
1989-01-01
Investigations of basic mechanisms which limit the performance of high efficiency GaAs solar cells are discussed. P/N heteroface structures have been fabricated from MOCVD epiwafers. Typical AM1 efficiencies are in the 21 to 22 percent range, with a SERI measurement for one cell being 21.5 percent. The cells are nominally 1.5 x 1.5 cm in size. Studies have involved photoresponse, T-I-V analyses, and interpretation of data in terms of appropriate models to determine key cell parameters. Results of these studies are utilized to determine future approaches for increasing GaAs solar cell efficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-09-01
NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.
Requirements for high-efficiency solar cells
NASA Technical Reports Server (NTRS)
Sah, C. T.
1986-01-01
Minimum recombination and low injection level are essential for high efficiency. Twenty percent AM1 efficiency requires a dark recombination current density of 2 x 10 to the minus 13th power A/sq cm and a recombination center density of less than 10 to the 10th power /cu cm. Recombination mechanisms at thirteen locations in a conventional single crystalline silicon cell design are reviewed. Three additional recombination locations are described at grain boundaries in polycrystalline cells. Material perfection and fabrication process optimization requirements for high efficiency are outlined. Innovative device designs to reduce recombination in the bulk and interfaces of single crystalline cells and in the grain boundary of polycrystalline cells are reviewed.
Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell.
Wang, Y; Zhang, Y; Zhang, D; He, S; Li, X
2015-12-01
In this paper, we report the electrical simulation results of a proposed GaInP nanowire (NW)/Si two-junction solar cell. The NW physical dimensions are determined for optimized solar energy absorption and current matching between each subcell. Two key factors (minority carrier lifetime, surface recombination velocity) affecting power conversion efficiency (PCE) of the solar cell are highlighted, and a practical guideline to design high-efficiency two-junction solar cell is thus provided. Considering the practical surface and bulk defects in GaInP semiconductor, a promising PCE of 27.5 % can be obtained. The results depict the usefulness of integrating NWs to construct high-efficiency multi-junction III-V solar cells.
A Short Progress Report on High-Efficiency Perovskite Solar Cells.
Tang, He; He, Shengsheng; Peng, Chuangwei
2017-12-01
Faced with the increasingly serious energy and environmental crisis in the world nowadays, the development of renewable energy has attracted increasingly more attention of all countries. Solar energy as an abundant and cheap energy is one of the most promising renewable energy sources. While high-performance solar cells have been well developed in the last couple of decades, the high module cost largely hinders wide deployment of photovoltaic devices. In the last 10 years, this urgent demand for cost-effective solar cells greatly facilitates the research of solar cells. This paper reviews the recent development of cost-effective and high-efficient solar cell technologies. This report paper covers low-cost and high-efficiency perovskite solar cells. The development and the state-of-the-art results of perovskite solar cell technologies are also introduced.
High efficiency solar panel /HESP/
NASA Technical Reports Server (NTRS)
Stella, P. M.; Gay, C.; Uno, F.; Scott-Monck, J.
1978-01-01
A family of high efficiency, weldable silicon solar cells, incorporating nearly every feature of advanced cell technology developed in the past four years, was produced and subjected to space qualification testing. This matrix contained both field and non-field cells ranging in thickness from 0.10 mm to 0.30 mm, and in base resistivity from nominal two to one hundred ohm-cm. Initial power outputs as high as 20 mW/sq cm (14.8% AM0 efficiency) were produced by certain cell types within the matrix.
High-efficiency AlGaAs-GaAs Cassegrainian concentrator cells
NASA Technical Reports Server (NTRS)
Werthen, J. G.; Hamaker, H. C.; Virshup, G. F.; Lewis, C. R.; Ford, C. W.
1985-01-01
AlGaAs-GaAs heteroface space concentrator solar cells have been fabricated by metalorganic chemical vapor deposition. AMO efficiencies as high as 21.1% have been observed both for p-n and np structures under concentration (90 to 100X) at 25 C. Both cell structures are characterized by high quantum efficiencies and their performances are close to those predicted by a realistic computer model. In agreement with the computer model, the n-p cell exhibits a higher short-circuit current density.
Integrated Fuel Cell/Coal Gasifier
NASA Technical Reports Server (NTRS)
Ferrall, J. F.
1985-01-01
Powerplant design with low-temperature coal gasifier coupled to highly-exothermic fuel cell for efficient production of dc power eliminates need for oxygen in gasifier and achieves high fuel efficiency with recycling of waste heat from fuel cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzu, Hisashi, E-mail: Hisashi.Uzu@kaneka.co.jp, E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi
2015-01-05
We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cellmore » or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.« less
High-Quality (CH3NH3)3Bi2I9 Film-Based Solar Cells: Pushing Efficiency up to 1.64.
Zhang, Zheng; Li, Xiaowei; Xia, Xiaohong; Wang, Zhuo; Huang, Zhongbing; Lei, Binglong; Gao, Yun
2017-09-07
Bismuth-based solar cells have exhibited some advantages over lead perovskite solar cells for nontoxicity and superior stability, which are currently two main concerns in the photovoltaic community. As for the perovskite-related compound (CH 3 NH 3 ) 3 Bi 2 I 9 applied for solar cells, the conversion efficiency is severely restricted by the unsatisfactory photoactive film quality. Herein we report a novel two-step approach- high-vacuum BiI 3 deposition and low-vacuum homogeneous transformation of BiI 3 to (CH 3 NH 3 ) 3 Bi 2 I 9 -for highly compact, pinhole-free, large-grained films, which are characterized with absorption coefficient, trap density of states, and charge diffusion length comparable to those of some lead perovskite analogues. Accordingly, the solar cells have realized a record power conversion of efficiency of 1.64% and also a high external quantum efficiency approaching 60%. Our work demonstrates the potential of (CH 3 NH 3 ) 3 Bi 2 I 9 for highly efficient and long-term stable solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deguchi, M.; Kawama, Y.; Matsuno, Y.
1994-12-31
The optimum design of the via-holes for the VEST cell was studied. Using a simple model, fill factors of the VEST cell were calculated. As for the via-hole distribution pattern, square grid pattern was found to be most suitable from the view points of the cell performance and the easiness of the electrode designing. It was found that the fill factor large enough (> 0.79) for the high efficiency can be obtained. A fabricated test cell showed the efficiency of 14.4%. Further improvement (efficiency over 18%) is possibly expected.
Japanese photovoltaic power generation for space application
NASA Technical Reports Server (NTRS)
Saga, T.; Kiyota, Y.; Matsutani, T.; Suzuki, A.; Kawasaki, O.; Hisamatsu, T.; Matsuda, S.
1996-01-01
This paper describes Japanese activities on mainly silicon solar cell research development and applications. The high efficiency thin silicon solar cells and the same kinds of solar cells with integrated bypass function (IBF cells) were developed and qualified for space applications. The most efficient cells (NRS/LBSF cells) showed average 18% at AMO and 28 C conditions. After electron irradiation, NRS/BSF cells showed higher efficiency than NRS/LBSF cells. The IBF cells do not suffer high reverse voltage and can survive from shadowing. The designs and characteristics of these solar cells are presented. In the last section, our future plan for the solar cell calibration is presented.
The high intensity solar cell - Key to low cost photovoltaic power
NASA Technical Reports Server (NTRS)
Sater, B. L.; Goradia, C.
1975-01-01
This paper discusses the problems associated with conventional solar cells at high intensities and presents the design considerations and performance characteristics of the 'high intensity' (HI) solar cell which appears to eliminate the major problems. Test data obtained at greater than 250 AM1 suns gave a peak output power density of 2 W per sq cm at an efficiency exceeding 6% with an unoptimized cell operating at over 100 C. It appears that operation at 1000 AM1 suns at efficiencies greater than 10% is possible. At 1000 AM1 suns and 10% efficiency, the HI cell manufacturing cost is estimated to be $0.25/watt, with multi-megawatt annual production capability already existing within the industrial sector. A high intensity solar system was also analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency.
Highly efficient light management for perovskite solar cells
Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang
2016-01-01
Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112
Highly efficient light management for perovskite solar cells
NASA Astrophysics Data System (ADS)
Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang
2016-01-01
Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.
Highly efficient light management for perovskite solar cells.
Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang
2016-01-06
Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.
High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.
Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei
2016-06-01
Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Processing technology for high efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Spitzer, M. B.; Keavney, C. J.
1985-01-01
Recent advances in silicon solar cell processing have led to attainment of conversion efficiency approaching 20%. The basic cell design is investigated and features of greatest importance to achievement of 20% efficiency are indicated. Experiments to separately optimize high efficiency design features in test structures are discussed. The integration of these features in a high efficiency cell is examined. Ion implantation has been used to achieve optimal concentrations of emitter dopant and junction depth. The optimization reflects the trade-off between high sheet conductivity, necessary for high fill factor, and heavy doping effects, which must be minimized for high open circuit voltage. A second important aspect of the design experiments is the development of a passivation process to minimize front surface recombination velocity. The manner in which a thin SiO2 layer may be used for this purpose is indicated without increasing reflection losses, if the antireflection coating is properly designed. Details are presented of processing intended to reduce recombination at the contact/Si interface. Data on cell performance (including CZ and ribbon) and analysis of loss mechanisms are also presented.
LIU, YING; YAN, JING; PRAUSNITZ, MARK R.
2012-01-01
Most applications of therapeutic ultrasound (US) for intracellular delivery of drugs, proteins, DNA/ RNA and other compounds would benefit from efficient uptake of these molecules into large numbers of cells without killing cells in the process. In this study we tested the hypothesis that efficient intracellular uptake of molecules can be achieved with high cell viability after US exposure in vitro. A search of the literature for studies with quantitative data on uptake and viability yielded 26 published papers containing 898 experimental data points. Analysis of these studies showed that just 7.7% of the data points corresponded to relatively efficient uptake (>50% of cells exhibiting uptake). Closer examination of the data showed that use of Definity US contrast agent (as opposed to Optison) and elevated sonication temperature at 37°C (as opposed to room temperature) were associated with high uptake, which we further validated through independent experiments carried out in this study. Although these factors contributed to high uptake, almost all data with efficient uptake were from studies that had not accounted for lysed cells when determining cell viability. Based on retrospective analysis of the data, we showed that not accounting for lysed cells can dramatically increase the calculated uptake efficiency. We further argue that if all the data considered in this study were re-analyzed to account for lysed cells, there would be essentially no data with efficient uptake. We therefore conclude that the literature does not support the hypothesis that efficient intracellular uptake of molecules can be achieved with high cell viability after US exposure in vitro, which poses a challenge to future applications of US that require efficient intracellular delivery. PMID:22425381
NASA Astrophysics Data System (ADS)
Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun
2012-02-01
A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies.A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11532h
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Rybicki, George C.; Raffaelle, Ryne P.; Harris, Jerry D.; Hehemann, David G.; Junek, William; Gorse, Joseph; Thompson, Tracy L.; Hollingsworth, Jennifer A.; Buhro, William E.
2000-01-01
The key to achieving high specific power (watts per kilogram) space solar arrays is the development of a high-efficiency, thin-film solar cell that can be fabricated directly on a flexible, lightweight, space-qualified durable substrate such as Kapton (DuPont) or other polyimide or suitable polymer film. Cell efficiencies approaching 20 percent at AM0 (air mass zero) are required. Current thin-film cell fabrication approaches are limited by either (1) the ultimate efficiency that can be achieved with the device material and structure or (2) the requirement for high-temperature deposition processes that are incompatible with all presently known flexible polyimide or other polymer substrate materials. Cell fabrication processes must be developed that will produce high-efficiency cells at temperatures below 400 degrees Celsius, and preferably below 300 degress Celsius to minimize the problems associated with the difference between the coefficients of thermal expansion of the substrate and thin-film solar cell and/or the decomposition of the substrate.
Advanced high efficiency wraparound contact solar cell
NASA Technical Reports Server (NTRS)
Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.
1977-01-01
A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area.
Advanced high efficiency wraparound contact solar cell
NASA Technical Reports Server (NTRS)
Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.
1977-01-01
A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area
Flexible, highly efficient all-polymer solar cells
Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.
2015-01-01
All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658
High efficiency solar photovoltaic power module concept
NASA Technical Reports Server (NTRS)
Bekey, I.
1978-01-01
The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.
Potential high efficiency solar cells: Applications from space photovoltaic research
NASA Technical Reports Server (NTRS)
Flood, D. J.
1986-01-01
NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.
Summary of high efficiency silicon solar cell meeting held at NASA-Lewis
NASA Technical Reports Server (NTRS)
Bernatowicz, D. T.
1975-01-01
Attempts made to raise the efficiency of solar cells for space use are reported. The Helios, violet, and non-reflective cells were studied and it was concluded that the maximum practical efficiency of silicon solar cells is between 17 and 20%.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.
1984-01-01
The development of high efficiency solar cells on a silicon web is discussed. Heat treatment effects on web quality; the influence of twin plane lamellae, trace impurities and stress on minority carrier lifetime; and the fabrication of cells are discussed.
A polymer tandem solar cell with 10.6% power conversion efficiency.
You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang
2013-01-01
An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2',3'-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm(-2), IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%.
A polymer tandem solar cell with 10.6% power conversion efficiency
You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang
2013-01-01
An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2′,3′-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm−2, IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%. PMID:23385590
Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi
2018-01-17
Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.
High-Efficiency Polycrystalline CdS/CdTe Solar Cells on Buffered Commercial TCO-Coated Glass
NASA Astrophysics Data System (ADS)
Colegrove, E.; Banai, R.; Blissett, C.; Buurma, C.; Ellsworth, J.; Morley, M.; Barnes, S.; Gilmore, C.; Bergeson, J. D.; Dhere, R.; Scott, M.; Gessert, T.; Sivananthan, Siva
2012-10-01
Multiple polycrystalline CdS/CdTe solar cells with efficiencies greater than 15% were produced on buffered, commercially available Pilkington TEC Glass at EPIR Technologies, Inc. (EPIR, Bolingbrook, IL) and verified by the National Renewable Energy Laboratory (NREL). n-CdS and p-CdTe were grown by chemical bath deposition (CBD) and close space sublimation, respectively. Samples with sputter-deposited CdS were also investigated. Initial results indicate that this is a viable dry-process alternative to CBD for production-scale processing. Published results for polycrystalline CdS/CdTe solar cells with high efficiencies are typically based on cells using research-grade transparent conducting oxides (TCOs) requiring high-temperature processing inconducive to low-cost manufacturing. EPIR's results for cells on commercial glass were obtained by implementing a high-resistivity SnO2 buffer layer and by optimizing the CdS window layer thickness. The high-resistivity buffer layer prevents the formation of CdTe-TCO junctions, thereby maintaining a high open-circuit voltage and fill factor, whereas using a thin CdS layer reduces absorption losses and improves the short-circuit current density. EPIR's best device demonstrated an NREL-verified efficiency of 15.3%. The mean efficiency of hundreds of cells produced with a buffer layer between December 2010 and June 2011 is 14.4%. Quantum efficiency results are presented to demonstrate EPIR's progress toward NREL's best-published results.
Poon, Ming-Wai; He, Jia; Fang, Xiaowei; Zhang, Zhao; Wang, Weixin; Wang, Junwen; Qiu, Fangfang; Tse, Hung-Fat; Li, Wei; Liu, Zuguo; Lian, Qizhou
2015-01-01
A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs) generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs) exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming) and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs). Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2) reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%). Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells) was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs) cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs). This cell type may also have advantages in retinal pigmented epithelial differentiation.
Park, Kwang-Tae; Kim, Han-Jung; Park, Min-Joon; Jeong, Jun-Ho; Lee, Jihye; Choi, Dae-Geun; Lee, Jung-Ho; Choi, Jun-Hyuk
2015-01-01
In recent years, inorganic/organic hybrid solar cell concept has received growing attention for alternative energy solution because of the potential for facile and low-cost fabrication and high efficiency. Here, we report highly efficient hybrid solar cells based on silicon nanowires (SiNWs) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) using transfer-imprinted metal mesh front electrodes. Such a structure increases the optical absorption and shortens the carrier transport distance, thus, it greatly increases the charge carrier collection efficiency. Compared with hybrid cells formed using indium tin oxide (ITO) electrodes, we find an increase in power conversion efficiency from 5.95% to 13.2%, which is attributed to improvements in both the electrical and optical properties of the Au mesh electrode. Our fabrication strategy for metal mesh electrode is suitable for the large-scale fabrication of flexible transparent electrodes, paving the way towards low-cost, high-efficiency, flexible solar cells. PMID:26174964
Communication—Electrolysis at High Efficiency with Remarkable Hydrogen Production Rates
Wood, Anthony; He, Hongpeng; Joia, Tahir; ...
2016-01-20
Solid Oxide Electrolysis (SOE) can be used to produce hydrogen with very high efficiencies at remarkable hydrogen production rates. Through microstructural and compositional modification, conventional low cost Solid Oxide Fuel Cell (SOFC) materials have been used to create a Solid Oxide Electrolysis Cell (SOEC) that can achieve remarkable current density at cell voltages allowing higher conversion efficiency than current commercial electrolysers. Current densities in excess of 6 A/cm2 have been achieved at 800°C with a cell voltage of < 1.67 V. This cell shows a more than 3-fold increase in hydrogen production rate at higher efficiency than established commercial electrolysers.
Approaches to solar cell design for pulsed laser power receivers
NASA Technical Reports Server (NTRS)
Jain, Raj K.; Landis, Geoffrey A.
1993-01-01
Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.
NASA Astrophysics Data System (ADS)
Haque, K. A. S. M. Ehteshamul; Galib, Md. Mehedi Hassan
2013-10-01
III-V single-junction solar cells have already achieved very high efficiency levels. However, their use in terrestrial applications is limited by the high fabrication cost. High-efficiency, ultrathin-film solar cells can effectively solve this problem, as their material requirement is minimum. This work presents a comparison among several III-V compounds that have high optical absorption capability as well as optimum bandgap (around 1.4 eV) for use as solar cell absorbers. The aim is to observe and compare the ability of these materials to reach a target efficiency level of 20% with minimum possible cell thickness. The solar cell considered has an n-type ZnSe window layer, an n-type Al0.1Ga0.9As emitter layer, and a p-type Ga0.5In0.5P back surface field (BSF) layer. Ge is used as the substrate. In the initial design, a p-type InP base was sandwiched between the emitter and the BSF layer, and the design parameters for the device were optimized by analyzing the simulation outcomes with ADEPT/F, a one-dimensional (1D) simulation tool. Then, the minimum cell thickness that achieves 20% efficiency was determined by observing the efficiency variation with cell thickness. Afterwards, the base material was changed to a few other selected III-V compounds, and for each case, the minimum cell thickness was determined in a similar manner. Finally, these cell thickness values were compared and analyzed to identify more effective base layer materials for III-V single-junction solar cells.
Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays.
Li, Xin; Dai, Si-Min; Zhu, Pei; Deng, Lin-Long; Xie, Su-Yuan; Cui, Qian; Chen, Hong; Wang, Ning; Lin, Hong
2016-08-24
Perovskite solar cells (PSCs) with TiO2 materials have attracted much attention due to their high photovoltaic performance. Aligned TiO2 nanorods have long been used for potential application in highly efficient perovskite solar cells, but the previously reported efficiencies of perovskite solar cells based on TiO2 nanorod arrays were underrated. Here we show a solvothermal method based on a modified ketone-HCl system with the addition of organic acids suitable for modulation of the TiO2 nanorod array films to fabricate highly efficient perovskite solar cells. Photovoltaic measurements indicated that efficient nanorod-structured perovskite solar cells can be achieved with the length of the nanorods as long as approximately 200 nm. A record efficiency of 18.22% under the reverse scan direction has been optimized by avoiding direct contact between the TiO2 nanorods and the hole transport materials, eliminating the organic residues on the nanorod surfaces using UV-ozone treatment and tuning the nanorod array morphologies through addition of different organic acids in the solvothermal process.
Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.
Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui
2015-02-18
Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-efficiency solar cell and method for fabrication
Hou, Hong Q.; Reinhardt, Kitt C.
1999-01-01
A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).
High-efficiency solar cell and method for fabrication
Hou, H.Q.; Reinhardt, K.C.
1999-08-31
A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.
NASA Astrophysics Data System (ADS)
Various papers on photovoltaics are presented. The general topics considered include: amorphous materials and cells; amorphous silicon-based solar cells and modules; amorphous silicon-based materials and processes; amorphous materials characterization; amorphous silicon; high-efficiency single crystal solar cells; multijunction and heterojunction cells; high-efficiency III-V cells; modeling and characterization of high-efficiency cells; LIPS flight experience; space mission requirements and technology; advanced space solar cell technology; space environmental effects and modeling; space solar cell and array technology; terrestrial systems and array technology; terrestrial utility and stand-alone applications and testing; terrestrial concentrator and storage technology; terrestrial stand-alone systems applications; terrestrial systems test and evaluation; terrestrial flatplate and concentrator technology; use of polycrystalline materials; polycrystalline II-VI compound solar cells; analysis of and fabrication procedures for compound solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compaan, A. D.; Deng, X.; Bohn, R. G.
2003-10-01
This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Simore » materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.« less
NASA Astrophysics Data System (ADS)
Benítez, P.; Mohedano, R.; Buljan, M.; Miñano, J. C.; Sun, Y.; Falicoff, W.; Vilaplana, J.; Chaves, J.; Biot, G.; López, J.
2011-12-01
A novel HCPV nonimaging concentrator concept with high concentration (>500×) is presented. It uses the combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-Point-Contact (BPC) concentration silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell's reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded it, both POE and SOE performing Köhler integration to produce light homogenization. The band-pass filter sends the IR photons in the 900-1200 nm band to the silicon cell. Computer simulations predict that four-terminal terminal designs could achieve ˜46% added cell efficiencies using commercial 39% 3J and 26% Si cells. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ˜100× and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J with peak efficiency of 36.9%.
Development of a high efficiency thin silicon solar cell
NASA Technical Reports Server (NTRS)
Storti, G.; Culik, J.; Wrigley, C.
1980-01-01
Significant improvements in open-circuit voltage and conversion efficiency, even on relatively high bulk resistivity silicon, were achieved by using a screen-printed aluminum paste back surface field. A 4 sq cm 50 micron m thick cell was fabricated from textured 10 omega-cm silicon which had an open-circuit voltage of 595 mV and AMO conversion efficiency at 25 C of 14.3%. The best 4 sq cm 50 micron thick cell (2 omega-cm silicon) produced had an open-circuit voltage of 607 mV and an AMO conversion efficiency of 15%. Processing modifications are described which resulted in better front contact integrity and reduced breakage. These modifications were utilized in the thin cell pilot line to fabricate 4 sq cm cells with an average AMO conversion efficiency at 25 C of better than 12.5% and with lot yields as great as 51% of starts; a production rate of 10,000 cells per month was demonstrated. A pilot line was operated which produced large area (25 cm) ultra-thin cells with an average AMO conversion efficiency at 25 deg of better than 11.5% and a lot yield as high as 17%.
Highly efficient monolithic dye-sensitized solar cells.
Kwon, Jeong; Park, Nam-Gyu; Lee, Jun Young; Ko, Min Jae; Park, Jong Hyeok
2013-03-01
Monolithic dye-sensitized solar cells (M-DSSCs) provide an effective way to reduce the fabrication cost of general DSSCs since they do not require transparent conducting oxide substrates for the counter electrode. However, conventional monolithic devices have low efficiency because of the impediments resulting from counter electrode materials and spacer layers. Here, we demonstrate highly efficient M-DSSCs featuring a highly conductive polymer combined with macroporous polymer spacer layers. With M-DSSCs based on a PEDOT/polymer spacer layer, a power conversion efficiency of 7.73% was achieved, which is, to the best of our knowledge, the highest efficiency for M-DSSCs to date. Further, PEDOT/polymer spacer layers were applied to flexible DSSCs and their cell performance was investigated.
15.3%-Efficient GaAsP Solar Cells on GaP/Si Templates
Vaisman, Michelle; Fan, Shizhao; Nay Yaung, Kevin; ...
2017-07-26
As single-junction Si solar cells approach their practical efficiency limits, a new pathway is necessary to increase efficiency in order to realize more cost-effective photovoltaics. Integrating III-V cells onto Si in a multijunction architecture is a promising approach that can achieve high efficiency while leveraging the infrastructure already in place for Si and III-V technology. In this Letter, we demonstrate a record 15.3%-efficient 1.7 eV GaAsP top cell on GaP/Si, enabled by recent advances in material quality in conjunction with an improved device design and a high-performance antireflection coating. Furthermore, we present a separate Si bottom cell with a 1.7more » eV GaAsP optical filter to absorb most of the visible light with an efficiency of 6.3%, showing the feasibility of monolithic III-V/Si tandems with >20% efficiency. Through spectral efficiency analysis, we also compare our results to previously published GaAsP and Si devices, projecting tandem GaAsP/Si efficiencies of up to 25.6% based on current state-of-the-art individual subcells. With the aid of modeling, we further illustrate a realistic path toward 30% GaAsP/Si tandems for high-efficiency, monolithically integrated photovoltaics.« less
High-efficiency GaAs solar concentrator cells for space and terrestrial applications
NASA Technical Reports Server (NTRS)
Hamaker, H. C.; Werthen, J. G.; Ford, C. W.; Virshup, G. F.; Kaminar, N. R.
1986-01-01
High-efficiency Al(x)Ga(1-x)As/GaAs heteroface solar concentrator cells have been developed for both space and terrestrial applications. The cells, which were grown using metalorganic chemical vapor deposition, have been fabricated in both the p-n and n-p configurations. Magnesium and zinc are used as p-type dopants, and Se is used as the n-type dopant. The space cells, which are designed for use in a Cassegrainian concentrator operating at 100 suns, AMO, have a circular illuminated area 4 mm in diameter on a 5 mm x 5 mm cell. These cells have exhibited flash-tested efficiencies as high as 23.6 percent at 28 C and 21.6 percent at 80 C. The terrestrial cells have a circular illuminated area 0.2 inches in diameter and are intended for use in a module which operates at 940 suns, AM1.5. These cells have shown a peak efficiency of 26 percent at 753 suns and over 25 percent at greater than 1000 suns.
Polymer solar cells with enhanced open-circuit voltage and efficiency
NASA Astrophysics Data System (ADS)
Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang
2009-11-01
Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.
High efficiency silicon solar cell based on asymmetric nanowire.
Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M; Baek, Chang-Ki
2015-07-08
Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Meier, D. L.; Greggi, J.; Rai-Choudhury, P.
1986-01-01
Work is reported aimed at identifying and reducing sources of carrier recombination both in the starting web silicon material and in the processed cells. Cross-sectional transmission electron microscopy measurements of several web cells were made and analyzed. The effect of the heavily twinned region on cell efficiency was modeled, and the modeling results compared to measured values for processed cells. The effects of low energy, high dose hydrogen ion implantation on cell efficiency and diffusion length were examined. Cells were fabricated from web silicon known to have a high diffusion length, with a new double layer antireflection coating being applied to these cells. A new contact system, to be used with oxide passivated cells and which greatly reduces the area of contact between metal and silicon, was designed. The application of DLTS measurements to beveled samples was further investigated.
Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%
NASA Astrophysics Data System (ADS)
Kim, Ki Hyung; Park, Chang Sub; Doo Lee, Jae; Youb Lim, Jong; Yeon, Je Min; Kim, Il Hwan; Lee, Eun Joo; Cho, Young Hyun
2017-08-01
We have achieved a record high cell efficiency of 20.29% for an industrial 6-in. p-type monocrystalline silicon solar cell with a full-area aluminum back surface field (Al-BSF) by simply modifying the cell structure and optimizing the process with the existing cell production line. The cell efficiency was independently confirmed by the Solar Energy Research Institute of Singapore (SERIS). To increase the cell efficiency, for example, in four busbars, double printing, a lightly doped emitter with a sheet resistance of 90 to 100 Ω/□, and front surface passivation by using silicon oxynitride (SiON) on top of a silicon nitride (SiN x ) antireflection layer were adopted. To optimize front side processing, PC1D simulation was carried out prior to cell fabrication. The resulting efficiency gain is 0.64% compared with that in the reference cells with three busbars, a single antireflection coating layer, and a low-sheet-resistance emitter.
Alkali Metal Thermal to Electric Conversion Research.
1995-03-01
cells were not designed for high efficiency ; they are high power cells and the PL expected as much as 3 - 4 W power from each. The AMTEC voltage...watts to megawatts. 1.2 DESCRIPTION The AMTEC is a thermally regenerative electrochemical cell in which hot liquid Na is brought into contact with a...done to date has found no problems that would prevent cells from running for 10 years or more. For research cells not designed for high efficiency
Gao, Ke; Zhu, Zonglong; Xu, Bo; Jo, Sae Byeok; Kan, Yuanyuan; Peng, Xiaobin; Jen, Alex K-Y
2017-12-01
Employing a layer of bulk-heterojunction (BHJ) organic semiconductors on top of perovskite to further extend its photoresponse is considered as a simple and promising way to enhance the efficiency of perovskite-based solar cells, instead of using tandem devices or near infrared (NIR)-absorbing Sn-containing perovskites. However, the progress made from this approach is quite limited because very few such hybrid solar cells can simultaneously show high short-circuit current (J SC ) and fill factor (FF). To find an appropriate NIR-absorbing BHJ is essential for highly efficient, organic, photovoltaics (OPV)/perovskite hybrid solar cells. The materials involved in the BHJ layer not only need to have broad photoresponse to increase J SC , but also possess suitable energy levels and high mobility to afford high V OC and FF. In this work, a new porphyrin is synthesized and blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) to function as an efficient BHJ for OPV/perovskite hybrid solar cells. The extended photoresponse, well-matched energy levels, and high hole mobility from optimized BHJ morphology afford a very high power conversion efficiency (PCE) (19.02%) with high V oc , J SC , and FF achieved simultaneously. This is the highest value reported so far for such hybrid devices, which demonstrates the feasibility of further improving the efficiency of perovskite devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single-graded CIGS with narrow bandgap for tandem solar cells.
Feurer, Thomas; Bissig, Benjamin; Weiss, Thomas P; Carron, Romain; Avancini, Enrico; Löckinger, Johannes; Buecheler, Stephan; Tiwari, Ayodhya N
2018-01-01
Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se 2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe 2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.
Single-graded CIGS with narrow bandgap for tandem solar cells
Avancini, Enrico; Buecheler, Stephan; Tiwari, Ayodhya N.
2018-01-01
Abstract Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells. PMID:29707066
A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells
NASA Astrophysics Data System (ADS)
Li, Xiong; Bi, Dongqin; Yi, Chenyi; Décoppet, Jean-David; Luo, Jingshan; Zakeeruddin, Shaik Mohammed; Hagfeldt, Anders; Grätzel, Michael
2016-07-01
Metal halide perovskite solar cells (PSCs) currently attract enormous research interest because of their high solar-to-electric power conversion efficiency (PCE) and low fabrication costs, but their practical development is hampered by difficulties in achieving high performance with large-size devices. We devised a simple vacuum flash-assisted solution processing method to obtain shiny, smooth, crystalline perovskite films of high electronic quality over large areas. This enabled us to fabricate solar cells with an aperture area exceeding 1 square centimeter, a maximum efficiency of 20.5%, and a certified PCE of 19.6%. By contrast, the best certified PCE to date is 15.6% for PSCs of similar size. We demonstrate that the reproducibility of the method is excellent and that the cells show virtually no hysteresis. Our approach enables the realization of highly efficient large-area PSCs for practical deployment.
2009-09-01
semiconducting VA-SWNTs, and muiltcomponent micropatterns of VA- CNTs . We also designed and synthesized several classes of novel low bandgap...photovoltaic active polymers, and polymer-/TiO2–coated VA- CNTs , critical to developing high efficient polymer photovoltaic cells and dye-sensitized solar...an efficient solar absorption and charge separation/collection. Besides, novel N-doped CNT fuel cells, polymer/quantum dot light-emitting diodes, and
Development of High Efficiency (14%) Solar Cell Array Module
NASA Technical Reports Server (NTRS)
Iles, P. A.; Khemthong, S.; Olah, S.; Sampson, W. J.; Ling, K. S.
1979-01-01
High efficiency solar cells required for the low cost modules was developed. The production tooling for the manufacture of the cells and modules was designed. The tooling consisted of: (1) back contact soldering machine; (2) vacuum pickup; (3) antireflective coating tooling; and (4) test fixture.
NASA Astrophysics Data System (ADS)
Sheoran, Manav
The focus of this research is to investigate the potential of lower quality cast multicrystalline Si (mc-Si) as well as thin single and mc-Si cells. The overall goal of this research is to improve fundamental understanding of the hydrogen passivation of defects in low-cost Si and the fabrication of high-efficiency solar cells on thin crystalline silicon through low-cost technology development. This is addressed by a combination of five research tasks. The key results of these tasks are summarized below. A novel method was developed to determine the concentration and flux of H diffusing into the Si. The understanding of defect passivation acquired in task 1 was used to fabricate high-efficiency solar cells on cast mc-Si wafers. An optimized co-firing process was developed, which resulted in ˜17% efficient 4 cm2 screen-printed solar cells with single-layer AR coating, and no surface texturing or selective emitter. The HEM mc-Si wafer gave an average efficiency of 16.5%, with a maximum of 16.9%. The identical process applied to the un-textured Float zone (FZ) wafers gave an efficiency of 17.2%. These cells were fabricated using the same simple, manufacturable process involving POCl3 diffusion for a 45 O/sq emitter, PECVD SiNx:H deposition for single-layer antireflection coating and rapid co-firing of a Ag grid, an Al back contact, and Al-BSF formation in a belt furnace. A high-efficiency of 17.1% was achieved on high sheet-resistance HEM mc-Si with good quality contacts. The effects of changing several device parameters on the efficiency of the solar cells was modeled with PC1D and guidelines were established to improve the efficiency from ˜17% to over 20% cells on low lifetime (100 mus), thin (140 mum) silicon wafers. The understanding of enhanced defect hydrogenation and the optimized fabrication sequence was applied to fabricate high-efficiency solar cells on top, middle, and bottom regions of several mc-Si ingots. Screen-printed solar cells were fabricated on different regions of four boron doped ingots and one gallium doped ingot. High post-diffusion and post-hydrogenation lifetime values were obtained, which resulted in high-screen printed cell efficiencies of . 15.9% for wafers from all the regions and ingots, except for the bottom region of the lower-resistivity boron-doped ingot and the gallium-doped ingot. Using a lower-resistivity boron-doped mc-Si ingot did not improve the efficiency. Solar cells fabricated on the first two ingots grown by a novel process, which produced single-crystal Si wafers by HEM casting method, achieved efficiencies of 16% and 17.2% on planar and textured surfaces, respectively. Lifetime in the middle region of both the ingots exceeded 100 mus after cell processing; however top and bottom regions had lower lifetimes due to the impurities that could not be gettered or passivated. Due to the single-crystal nature of the mono-cast ingots, the wafers were textured easily, which decreased the front surface reflectance from 11.8 to 5.3% and resulted in an enhanced Jsc by ˜3mA/cm2. Large area (100 cm2) solar cells fabricated from the middle regions of this novel mono-cast material achieved an efficiency of 16.5%. The mono-cast grown by the HEM process is still under optimization, however, these results show that the material has a great potential for achieving high-efficiencies at a lower cost. Since the cost of Si material alone is ˜50% in a PV module, attempts were made to fabricate thin Si cells with full area Al-BSF and to identify the key factors responsible for efficiency loss in thin cells with conventional Al-BSF. It was found that the high BSRV (300-400 cm/s) and low back surface reflectance (BSR) (63-70%) associated with the full area Al-BSF were the major reasons for the reduced performance of thin cells. Model calculations showed that a BSRV of . 100 cm/s and BSR of ≤ 95% can virtually eliminate the efficiency gap between 300 mum and 115 mum thick cells for these ≥ 200 mus bulk lifetime wafers. Manufacturing cost modeling showed that reducing the mc-Si wafer thickness from 300 mum to 115-150 mum reduces the module manufacturing cost in spite of ˜1% lower cell efficiency. Full area Al-BSF cells suffered efficiency loss upon thinning due to a relatively higher BSRV and poor BSR of Al-BSF. Therefore, in attempts were made to fabricate, characterize and model, a device structure with local back-surface field. Thin solar cells, without any bowing, were fabricated using the dielectric passivated structure and screen-printed contacts. (Abstract shortened by UMI.)
Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping
2016-10-01
Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.
NASA Astrophysics Data System (ADS)
Sai, Hitoshi; Matsui, Takuya; Koida, Takashi; Matsubara, Koji; Kondo, Michio; Sugiyama, Shuichiro; Katayama, Hirotaka; Takeuchi, Yoshiaki; Yoshida, Isao
2015-05-01
We report a high-efficiency triple-junction thin-film silicon solar cell fabricated with the so-called substrate configuration. It was verified whether the design criteria for developing single-junction microcrystalline silicon (μc-Si:H) solar cells are applicable to multijunction solar cells. Furthermore, a notably high short-circuit current density of 32.9 mA/cm2 was achieved in a single-junction μc-Si:H cell fabricated on a periodically textured substrate with a high-mobility front transparent contacting layer. These technologies were also combined into a-Si:H/μc-Si:H/μc-Si:H triple-junction cells, and a world record stabilized efficiency of 13.6% was achieved.
High-efficiency GaAs concentrator space cells
NASA Technical Reports Server (NTRS)
Werthen, J. G.; Virshup, G. F.; Macmillan, H. F.; Ford, C. W.; Hamaker, H. C.
1987-01-01
High efficiency Al sub x Ga sub 1-x As/GaAs heteroface solar concentrator cells have been developed for space applications. The cells, which were grown using metalorganic chemical vapor deposition (MOCVD), have been fabricated in both the p-n and n-p configurations. Magnesium and zinc are used as the p-type dopants, and Se is used as the n-type dopant. The space cells, which are designed for use in a Cassegrainian concentrator operating at 100 suns, AMO, have a circular illuminated area 4 mm in diameter on a 5 mm by 5 mm cell. These cells have exhibited flash-tested efficiencies as high as 23.6 percent at 28 C and 21.6 percent at 80 C.
Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.
Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene
2015-07-27
Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.
Slot-coupled CW standing wave accelerating cavity
Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng
2017-05-16
A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.
1985-01-01
High-efficiency dendritic cells were discussed. The influence of twin planes and heat treatment on the location and effect of trace impurities was of particular interest. Proper heat treatment often increases efficiency by causing impurities to pile up at twin planes. Oxide passivation had a beneficial effect on efficiency. A very efficient antireflective (AR) coating of zinc selenide and magnesium fluoride was designed and fabricated. An aluminum back-surface reflector was also effective.
Development of the automated circulating tumor cell recovery system with microcavity array.
Negishi, Ryo; Hosokawa, Masahito; Nakamura, Seita; Kanbara, Hisashige; Kanetomo, Masafumi; Kikuhara, Yoshihito; Tanaka, Tsuyoshi; Matsunaga, Tadashi; Yoshino, Tomoko
2015-05-15
Circulating tumor cells (CTCs) are well recognized as useful biomarker for cancer diagnosis and potential target of drug discovery for metastatic cancer. Efficient and precise recovery of extremely low concentrations of CTCs from blood has been required to increase the detection sensitivity. Here, an automated system equipped with a microcavity array (MCA) was demonstrated for highly efficient and reproducible CTC recovery. The use of MCA allows selective recovery of cancer cells from whole blood on the basis of differences in size between tumor and blood cells. Intra- and inter-assays revealed that the automated system achieved high efficiency and reproducibility equal to the assay manually performed by well-trained operator. Under optimized assay workflow, the automated system allows efficient and precise cell recovery for non-small cell lung cancer cells spiked in whole blood. The automated CTC recovery system will contribute to high-throughput analysis in the further clinical studies on large cohort of cancer patients. Copyright © 2014 Elsevier B.V. All rights reserved.
1999-01-01
AMTEC cell during operation is essential to maximize the thermal -to- electric conversion efficiency of the device. The cell efficiency , rQ, is defined...the cell current is relatively high (usually above 2 A), and we found that the former thermal model of the conical evaporator wick underpredicted... high temperature, sodium vapor environment in a typical multi-tube AMTEC cell , where thermal radiation exchange is significant, an
Development of Low Cost, High Energy-Per-Unit-Area Solar Cell Modules
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.
1977-01-01
Work on the development of low cost, high energy per unit area solar cell modules was conducted. Hexagonal solar cell and module efficiencies, module packing ratio, and solar cell design calculations were made. The cell grid structure and interconnection pattern was designed and the module substrates were fabricated for the three modules to be used. It was demonstrated that surface macrostructures significantly improve cell power output and photovoltaic energy conversion efficiency.
NASA Astrophysics Data System (ADS)
Nakajima, Kazuo; Ono, Satoshi; Kaneko, Yuzuru; Murai, Ryota; Shirasawa, Katsuhiko; Fukuda, Tetsuo; Takato, Hidetaka; Jensen, Mallory A.; Youssef, Amanda; Looney, Erin E.; Buonassisi, Tonio; Martel, Benoit; Dubois, Sèbastien; Jouini, Anis
2017-06-01
The noncontact crucible (NOC) method was proposed for obtaining Si single bulk crystals with a large diameter and volume using a cast furnace and solar cells with high conversion efficiency and yield. This method has several novel characteristics that originate from its key feature that ingots can be grown inside a Si melt without contact with a crucible wall. Si ingots for solar cells were grown by utilizing the merits resulting from these characteristics. Single ingots with high quality were grown by the NOC method after furnace cleaning, and the minority carrier lifetime was measured to investigate reduction of the number of impurities. A p-type ingot with a convex growth interface in the growth direction was also grown after furnace cleaning. For p-type solar cells prepared using wafers cut from the ingot, the highest and average conversion efficiencies were 19.14% and 19.0%, respectively, which were obtained using the same solar cell structure and process as those employed to obtain a conversion efficiency of 19.1% for a p-type Czochralski (CZ) wafer. Using the cast furnace, solar cells with a conversion efficiency and yield as high as those of CZ solar cells were obtained by the NOC method.
Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun
2012-02-21
A type of highly efficient completely flexible fiber-shaped solar cell based on TiO(2) nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm(-2)) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO(2) nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. This journal is © The Royal Society of Chemistry 2012
High-efficiency GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy
2011-01-01
We report the initial results of GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy (MBE) technique. For GaAs single-junction solar cell, with the application of AlInP as the window layer and GaInP as the back surface field layer, the photovoltaic conversion efficiency of 26% at one sun concentration and air mass 1.5 global (AM1.5G) is realized. The efficiency of 16.4% is also reached for GaInP solar cell. Our results demonstrate that the MBE-grown phosphide-contained III-V compound semiconductor solar cell can be quite comparable to the metal-organic-chemical-vapor-deposition-grown high-efficiency solar cell. PMID:22040124
Fu, Fan; Feurer, Thomas; Jäger, Timo; Avancini, Enrico; Bissig, Benjamin; Yoon, Songhak; Buecheler, Stephan; Tiwari, Ayodhya N.
2015-01-01
Semi-transparent perovskite solar cells are highly attractive for a wide range of applications, such as bifacial and tandem solar cells; however, the power conversion efficiency of semi-transparent devices still lags behind due to missing suitable transparent rear electrode or deposition process. Here we report a low-temperature process for efficient semi-transparent planar perovskite solar cells. A hybrid thermal evaporation–spin coating technique is developed to allow the introduction of PCBM in regular device configuration, which facilitates the growth of high-quality absorber, resulting in hysteresis-free devices. We employ high-mobility hydrogenated indium oxide as transparent rear electrode by room-temperature radio-frequency magnetron sputtering, yielding a semi-transparent solar cell with steady-state efficiency of 14.2% along with 72% average transmittance in the near-infrared region. With such semi-transparent devices, we show a substantial power enhancement when operating as bifacial solar cell, and in combination with low-bandgap copper indium gallium diselenide we further demonstrate 20.5% efficiency in four-terminal tandem configuration. PMID:26576667
Fu, Fan; Feurer, Thomas; Jäger, Timo; Avancini, Enrico; Bissig, Benjamin; Yoon, Songhak; Buecheler, Stephan; Tiwari, Ayodhya N
2015-11-18
Semi-transparent perovskite solar cells are highly attractive for a wide range of applications, such as bifacial and tandem solar cells; however, the power conversion efficiency of semi-transparent devices still lags behind due to missing suitable transparent rear electrode or deposition process. Here we report a low-temperature process for efficient semi-transparent planar perovskite solar cells. A hybrid thermal evaporation-spin coating technique is developed to allow the introduction of PCBM in regular device configuration, which facilitates the growth of high-quality absorber, resulting in hysteresis-free devices. We employ high-mobility hydrogenated indium oxide as transparent rear electrode by room-temperature radio-frequency magnetron sputtering, yielding a semi-transparent solar cell with steady-state efficiency of 14.2% along with 72% average transmittance in the near-infrared region. With such semi-transparent devices, we show a substantial power enhancement when operating as bifacial solar cell, and in combination with low-bandgap copper indium gallium diselenide we further demonstrate 20.5% efficiency in four-terminal tandem configuration.
Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth
Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.
2014-01-01
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices. PMID:24957920
Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth.
Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y
2014-06-24
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices.
Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui
2017-11-08
Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.
Planar-Structure Perovskite Solar Cells with Efficiency beyond 21.
Jiang, Qi; Chu, Zema; Wang, Pengyang; Yang, Xiaolei; Liu, Heng; Wang, Ye; Yin, Zhigang; Wu, Jinliang; Zhang, Xingwang; You, Jingbi
2017-12-01
Low temperature solution processed planar-structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI 2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI 2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI 2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm 2 ) and 20.1% in large size (1 cm 2 ) with moderate residual PbI 2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar-structure perovskite solar cells, showing the planar-structure perovskite solar cells are very promising. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaisman, Michelle; Fan, Shizhao; Nay Yaung, Kevin
As single-junction Si solar cells approach their practical efficiency limits, a new pathway is necessary to increase efficiency in order to realize more cost-effective photovoltaics. Integrating III-V cells onto Si in a multijunction architecture is a promising approach that can achieve high efficiency while leveraging the infrastructure already in place for Si and III-V technology. In this Letter, we demonstrate a record 15.3%-efficient 1.7 eV GaAsP top cell on GaP/Si, enabled by recent advances in material quality in conjunction with an improved device design and a high-performance antireflection coating. Furthermore, we present a separate Si bottom cell with a 1.7more » eV GaAsP optical filter to absorb most of the visible light with an efficiency of 6.3%, showing the feasibility of monolithic III-V/Si tandems with >20% efficiency. Through spectral efficiency analysis, we also compare our results to previously published GaAsP and Si devices, projecting tandem GaAsP/Si efficiencies of up to 25.6% based on current state-of-the-art individual subcells. With the aid of modeling, we further illustrate a realistic path toward 30% GaAsP/Si tandems for high-efficiency, monolithically integrated photovoltaics.« less
Wang, Chenggui; Wang, Qingqing; Gao, Wendong; Zhang, Zengjie; Lou, Yiting; Jin, Haiming; Chen, Xiaofeng; Lei, Bo; Xu, Huazi; Mao, Cong
2018-03-15
Wound therapy with a rapid healing performance remains a critical clinical challenge. Cellular delivery is considered to be a promising approach to improve the efficiency of healing, yet problems such as compromised cell viability and functionality arise due to the inefficient delivery. Here, we report the efficient delivery of endothelial progenitor cells (EPCs) with a bioactive nanofibrous scaffold (composed of collagen and polycaprolactone and bioactive glass nanoparticles, CPB) for enhancing wound healing. Under the stimulation of CPB nanofibrous system, the viability and angiogenic ability of EPCs were significantly enhanced through the activation of Hif-1α/VEGF/SDF-1α signaling. In vivo, CPB/EPC constructs significantly enhanced the formation of high-density blood vessels by greatly upregulating the expressions of Hif-1α, VEGF, and SDF-1α. Moreover, owing to the increased local delivery of cells and fast neovascularization within the wound site, cell proliferative activity, granulation tissue formation, and collagen synthesis and deposition were greatly promoted by CPB/EPC constructs resulting in rapid re-epithelialization and regeneration of skin appendages. As a result, the synergistic enhancement of wound healing was observed from CPB/EPC constructs, which suggests the highly efficient delivery of EPCs. CPB/EPC constructs may become highly competitive cell-based therapeutic products for efficient impaired wound healing application. This study may also provide a novel strategy to develop bioactive cell therapy constructs for angiogenesis-related regenerative medicine. This paper reported a highly efficient local delivery of EPCs using bioactive glass-based CPB nanofibrous scaffold for enhancing angiogenesis and wound regeneration. In vitro study showed that CPB can promote the proliferation, migration, and tube formation of EPCs through upregulation of the Hif-1α/VEGF/SDF-1α signaling pathway, indicating that the bioactivity and angiogenic ability of EPCs can be highly maintained and promoted by the CPB scaffold. Moreover, CPB/EPC constructs effectively stimulated the regeneration of diabetic wounds with satisfactory vascularization and better healing outcomes in a full-thickness wound model, suggesting that the highly efficient delivery of EPCs to wound site facilitates angiogenesis and further leads to wound healing. The high angiogenic capacity and excellent healing ability make CPB/EPC constructs highly competitive in cell-based therapeutic products for efficient wound repair application. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Photovoltaic characteristics of n(+)pp(+) InP solar cells grown by OMVPE
NASA Technical Reports Server (NTRS)
Tyagi, S.; Singh, K.; Bhimnathwala, H.; Ghandhi, S. K.; Borrego, J. M.
1990-01-01
The photovoltaic characteristics of n(+)/p/p(+) homojunction InP solar cells fabricated by organometallic vapor-phase epitaxy (OMVPE) are described. The cells are characterized by I-V, C-V and quantum efficiency measurements, and simulations are used to obtain various device and material parameters. The I-V characteristics show a high recombination rate in the depletion region; this is shown to be independent of the impurity used. It is shown that cadmium is easier to use as an acceptor for the p base and p(+) buffer and is therefore beneficial. The high quantum efficiency of 98 percent at long wavelengths measured in these cells indicates a very good collection efficiency in the base. The short-wavelength quantum efficiency is poor, indicating a high surface recombination.
GaInP2/GaAs tandem cells for space applications
NASA Technical Reports Server (NTRS)
Olson, J. M.; Kurtz, S. R.; Kibbler, A. E.; Bertness, K. A.; Friedman, D. J.
1991-01-01
The monolithic, tunnel-junction-interconnected tandem combination of a GaInP2 top cell and a GaAs bottom cell has achieved a one-sun, AM1.5 efficiency of 27.3 percent. With proper design of the top cell, air mass zero (AM0) efficiencies greater than 25 percent are possible. A description and the advantages of this device for space applications are presented and discussed. The advantages include high-voltage, low-current, two-terminal operation for simple panel fabrication, and high conversion efficiency with low-temperature coefficient. Also, because the active regions of the device are Al-free, the growth of high efficiency devices is not affected by trace levels of O2 or H2O in the MOCVD growth system.
Wang, DongLin; Su, Gang
2014-01-01
Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350 nm–800 nm, the conversion efficiency of solar cells can be further enhanced. PMID:25418477
High Efficiency CdTe Ink-Based Solar Cells Using Nanocrystals (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This NREL Highlight is being developed for the 2015 February Alliance S&T Board meeting and describes a solution-processable ink to produce high-efficiency solar cells using low temperature and simple processing.
Kamalakshakurup, Gopakumar; Lee, Abraham P
2017-12-05
Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.
NASA Astrophysics Data System (ADS)
Che, Xiaozhou; Li, Yongxi; Qu, Yue; Forrest, Stephen R.
2018-05-01
Multijunction solar cells are effective for increasing the power conversion efficiency beyond that of single-junction cells. Indeed, the highest solar cell efficiencies have been achieved using two or more subcells to adequately cover the solar spectrum. However, the efficiencies of organic multijunction solar cells are ultimately limited by the lack of high-performance, near-infrared absorbing organic subcells within the stack. Here, we demonstrate a tandem cell with an efficiency of 15.0 ± 0.3% (for 2 mm2 cells) that combines a solution-processed non-fullerene-acceptor-based infrared absorbing subcell on a visible-absorbing fullerene-based subcell grown by vacuum thermal evaporation. The hydrophilic-hydrophobic interface within the charge-recombination zone that connects the two subcells leads to >95% fabrication yield among more than 130 devices, and with areas up to 1 cm2. The ability to stack solution-based on vapour-deposited cells provides significant flexibility in design over the current, all-vapour-deposited multijunction structures.
GaAsP solar cells on GaP/Si with low threading dislocation density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaung, Kevin Nay; Vaisman, Michelle; Lang, Jordan
2016-07-18
GaAsP on Si tandem cells represent a promising path towards achieving high efficiency while leveraging the Si solar knowledge base and low-cost infrastructure. However, dislocation densities exceeding 10{sup 8} cm{sup −2} in GaAsP cells on Si have historically hampered the efficiency of such approaches. Here, we report the achievement of low threading dislocation density values of 4.0–4.6 × 10{sup 6} cm{sup −2} in GaAsP solar cells on GaP/Si, comparable with more established metamorphic solar cells on GaAs. Our GaAsP solar cells on GaP/Si exhibit high open-circuit voltage and quantum efficiency, allowing them to significantly surpass the power conversion efficiency of previous devices. The resultsmore » in this work show a realistic path towards dual-junction GaAsP on Si cells with efficiencies exceeding 30%.« less
Menichella, G; Lai, M; Pierelli, L; Vittori, M; Serafini, R; Ciarli, M; Foddai, M L; Salerno, G; Sica, S; Scambia, G; Leone, G; Bizzi, B
1997-01-01
Reconstitution of hematopoiesis by means of peripheral blood stem cells is a valid alternative to autologous bone marrow transplantation. The aim of this investigation was to increase the efficiency of collection of circulating blood progenitor cells and to obtain a purer product for transplant. We carried out leukapheresis procedures with the Fresenius AS 104 blood cell separator, using two different protocols, the previously used PBSC-LYM and a new mononuclear cell collection program. Both programs were highly effective in collecting mononuclear cells (MNC) and CD34+ cells. Some differences were found, especially regarding MNC yield and efficiencies. There are remarkable differences in the efficiency of collection of CD34+ cells (62.38% with the new program as opposed to 31.69% with the older one). Linear regression analysis showed a negative correlation between blood volume processed and MNC efficiency only for the PBSC-LYM program. Differences were also observed in the degree of inverse correlation existing in both programs between patients' white blood cell precount and MNC collection efficiency. The inverse correlation was stronger for the PBSC-LYM program. Seven patients with solid tumors and hematologic malignancies received high dose chemotherapy and were subsequently transplanted with peripheral blood stem cells collected using the new protocol. All patients obtained a complete and stable engraftment with the reinfusion product collected with one or two leukapheresis procedures. High efficiencies and yields were observed in the new protocol for MNC and CD34+ cells. These were able to effect rapid and complete bone marrow recovery after myeloablative chemotherapy.
Carlsten, Mattias; Levy, Emily; Karambelkar, Amrita; Li, Linhong; Reger, Robert; Berg, Maria; Peshwa, Madhusudan V; Childs, Richard W
2016-01-01
For more than a decade, investigators have pursued methods to genetically engineer natural killer (NK) cells for use in clinical therapy against cancer. Despite considerable advances in viral transduction of hematopoietic stem cells and T cells, transduction efficiencies for NK cells have remained disappointingly low. Here, we show that NK cells can be genetically reprogramed efficiently using a cGMP-compliant mRNA electroporation method that induces rapid and reproducible transgene expression in nearly all transfected cells, without negatively influencing their viability, phenotype, and cytotoxic function. To study its potential therapeutic application, we used this approach to improve key aspects involved in efficient lymphoma targeting by adoptively infused ex vivo-expanded NK cells. Electroporation of NK cells with mRNA coding for the chemokine receptor CCR7 significantly promoted migration toward the lymph node-associated chemokine CCL19. Further, introduction of mRNA coding for the high-affinity antibody-binding receptor CD16 (CD16-158V) substantially augmented NK cell cytotoxicity against rituximab-coated lymphoma cells. Based on these data, we conclude that this approach can be utilized to genetically modify multiple modalities of NK cells in a highly efficient manner with the potential to improve multiple facets of their in vivo tumor targeting, thus, opening a new arena for the development of more efficacious adoptive NK cell-based cancer immunotherapies.
Recent progress in high-output-voltage silicon solar cells
NASA Technical Reports Server (NTRS)
Muelenberg, A.; Arndt, R. A.; Allison, J. F.; Weizer, V.
1980-01-01
The status of the technology associated with the development of high output voltage silicon solar cells is reported. The energy conversion efficiency of a double diffusion process is compared to that of a single diffusion process. The efficiency of a 0.1 ohm/cm solar cell is characterized both before and after covering.
Process in manufacturing high efficiency AlGaAs/GaAs solar cells by MO-CVD
NASA Technical Reports Server (NTRS)
Yeh, Y. C. M.; Chang, K. I.; Tandon, J.
1984-01-01
Manufacturing technology for mass producing high efficiency GaAs solar cells is discussed. A progress using a high throughput MO-CVD reactor to produce high efficiency GaAs solar cells is discussed. Thickness and doping concentration uniformity of metal oxide chemical vapor deposition (MO-CVD) GaAs and AlGaAs layer growth are discussed. In addition, new tooling designs are given which increase the throughput of solar cell processing. To date, 2cm x 2cm AlGaAs/GaAs solar cells with efficiency up to 16.5% were produced. In order to meet throughput goals for mass producing GaAs solar cells, a large MO-CVD system (Cambridge Instrument Model MR-200) with a susceptor which was initially capable of processing 20 wafers (up to 75 mm diameter) during a single growth run was installed. In the MR-200, the sequencing of the gases and the heating power are controlled by a microprocessor-based programmable control console. Hence, operator errors can be reduced, leading to a more reproducible production sequence.
High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.
Kranz, Lukas; Abate, Antonio; Feurer, Thomas; Fu, Fan; Avancini, Enrico; Löckinger, Johannes; Reinhard, Patrick; Zakeeruddin, Shaik M; Grätzel, Michael; Buecheler, Stephan; Tiwari, Ayodhya N
2015-07-16
A promising way to enhance the efficiency of CIGS solar cells is by combining them with perovskite solar cells in tandem devices. However, so far, such tandem devices had limited efficiency due to challenges in developing NIR-transparent perovskite top cells, which allow photons with energy below the perovskite band gap to be transmitted to the bottom cell. Here, a process for the fabrication of NIR-transparent perovskite solar cells is presented, which enables power conversion efficiencies up to 12.1% combined with an average sub-band gap transmission of 71% for photons with wavelength between 800 and 1000 nm. The combination of a NIR-transparent perovskite top cell with a CIGS bottom cell enabled a tandem device with 19.5% efficiency, which is the highest reported efficiency for a polycrystalline thin film tandem solar cell. Future developments of perovskite/CIGS tandem devices are discussed and prospects for devices with efficiency toward and above 27% are given.
Ates, Hatice Ceren; Ozgur, Ebru; Kulah, Haluk
2018-03-23
Methods for isolation and quantification of circulating tumor cells (CTCs) are attracting more attention every day, as the data for their unprecedented clinical utility continue to grow. However, the challenge is that CTCs are extremely rare (as low as 1 in a billion of blood cells) and a highly sensitive and specific technology is required to isolate CTCs from blood cells. Methods utilizing microfluidic systems for immunoaffinity-based CTC capture are preferred, especially when purity is the prime requirement. However, antibody immobilization strategy significantly affects the efficiency of such systems. In this study, two covalent and two bioaffinity antibody immobilization methods were assessed with respect to their CTC capture efficiency and selectivity, using an anti-epithelial cell adhesion molecule (EpCAM) as the capture antibody. Surface functionalization was realized on plain SiO 2 surfaces, as well as in microfluidic channels. Surfaces functionalized with different antibody immobilization methods are physically and chemically characterized at each step of functionalization. MCF-7 breast cancer and CCRF-CEM acute lymphoblastic leukemia cell lines were used as EpCAM positive and negative cell models, respectively, to assess CTC capture efficiency and selectivity. Comparisons reveal that bioaffinity based antibody immobilization involving streptavidin attachment with glutaraldehyde linker gave the highest cell capture efficiency. On the other hand, a covalent antibody immobilization method involving direct antibody binding by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)-N-hydroxysuccinimide (NHS) reaction was found to be more time and cost efficient with a similar cell capture efficiency. All methods provided very high selectivity for CTCs with EpCAM expression. It was also demonstrated that antibody immobilization via EDC-NHS reaction in a microfluidic channel leads to high capture efficiency and selectivity.
Photovoltaic cells for laser power beaming
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Jain, Raj K.
1992-01-01
To better understand cell response to pulsed illumination at high intensity, the PC-1DC finite-element computer model was used to analyze the response of solar cells to pulsed laser illumination. Over 50% efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modelled, and the effect of laser intensity, wavelength, and bias point was studied. Designing a cell to accommodate pulsed input can be done either by accepting the pulsed output and designing a cell to minimize adverse effects due to series resistance and inductance, or to design a cell with a long enough minority carrier lifetime, so that the output of the cell will not follow the pulse shape. Two such design possibilities are a monolithic, low-inductance voltage-adding GaAs cell, or a high-efficiency, light-trapping silicon cell. The advantages of each design will be discussed.
High-efficiency solar cells fabricated by vacuum MO-CVD
NASA Technical Reports Server (NTRS)
Fraas, L. M.; Cape, J. A.; Partain, L. D.; Mcleod, P. S.
1984-01-01
High-efficiency, monolithic, two-color, three-terminal solar cells were fabricated by a novel growth technique, vacuum metal-organic chemical vapor deposition. The technique uses the expensive metal alkyls efficiently and toxic gases sparingly. The fact that the outer chamber is constructed of nonbreakable stainless steel is an attractive safety feature associated with this deposition system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bett, Alexander J.; Schulze, Patricia S. C.; Winkler, Kristina
Silicon-based tandem solar cells can overcome the efficiency limit of single junction silicon solar cells. Perovskite solar cells are particularly promising as a top cell in monolithic tandem devices due to their rapid development towards high efficiencies, a tunable band gap with a sharp optical absorption edge and a simple production process. In monolithic tandem devices, the perovskite solar cell is deposited directly on the silicon cell, requiring low-temperature processes (< 200 °C) to maintain functionality of under-lying layers of the silicon cell in case of highly efficient silicon hetero-junction (SHJ) bottom solar cell. In this work, we present amore » complete low-temperature process for perovskite solar cells including a mesoporous titanium oxide (TiO 2) scaffold - a structure yielding the highest efficiencies for single-junction perovskite solar cells. We show that evaporation of the compact TiO 2 hole blocking layer and ultra-violet (UV) curing for the mesoporous TiO 2 layer allows for good performance, comparable to high-temperature (> 500 °C) processes. With both manufacturing routes, we obtain short-circuit current densities (J SC) of about 20 mA/cm 2, open-circuit voltages (V OC) over 1 V, fill factors (FF) between 0.7 and 0.8 and efficiencies (n) of more than 15%. We further show that the evaporated TiO 2 layer is suitable for the application in tandem devices. The series resistance of the layer itself and the contact resistance to an indium doped tin oxide (ITO) interconnection layer between the two sub-cells are low. Additionally, the low parasitic absorption for wavelengths above the perovskite band gap allow a higher absorption in the silicon bottom solar cell, which is essential to achieve high tandem efficiencies.« less
Bett, Alexander J.; Schulze, Patricia S. C.; Winkler, Kristina; ...
2017-09-21
Silicon-based tandem solar cells can overcome the efficiency limit of single junction silicon solar cells. Perovskite solar cells are particularly promising as a top cell in monolithic tandem devices due to their rapid development towards high efficiencies, a tunable band gap with a sharp optical absorption edge and a simple production process. In monolithic tandem devices, the perovskite solar cell is deposited directly on the silicon cell, requiring low-temperature processes (< 200 °C) to maintain functionality of under-lying layers of the silicon cell in case of highly efficient silicon hetero-junction (SHJ) bottom solar cell. In this work, we present amore » complete low-temperature process for perovskite solar cells including a mesoporous titanium oxide (TiO 2) scaffold - a structure yielding the highest efficiencies for single-junction perovskite solar cells. We show that evaporation of the compact TiO 2 hole blocking layer and ultra-violet (UV) curing for the mesoporous TiO 2 layer allows for good performance, comparable to high-temperature (> 500 °C) processes. With both manufacturing routes, we obtain short-circuit current densities (J SC) of about 20 mA/cm 2, open-circuit voltages (V OC) over 1 V, fill factors (FF) between 0.7 and 0.8 and efficiencies (n) of more than 15%. We further show that the evaporated TiO 2 layer is suitable for the application in tandem devices. The series resistance of the layer itself and the contact resistance to an indium doped tin oxide (ITO) interconnection layer between the two sub-cells are low. Additionally, the low parasitic absorption for wavelengths above the perovskite band gap allow a higher absorption in the silicon bottom solar cell, which is essential to achieve high tandem efficiencies.« less
High efficiency labeling of glycoproteins on living cells
Zeng, Ying; Ramya, T. N. C.; Dirksen, Anouk; Dawson, Philip E.; Paulson, James C.
2010-01-01
We describe a simple method for efficiently labeling cell surface glycans on virtually any living animal cell. The method employs mild Periodate oxidation to generate an aldehyde on sialic acids, followed by Aniline-catalyzed oxime Ligation with a suitable tag (PAL). Aniline catalysis dramatically accelerates oxime ligation, allowing use of low concentrations of aminooxy-biotin at neutral pH to label the majority of cell surface glycoproteins while maintaining high cell viability. PMID:19234450
Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells
Liu, Yuhang; Zhao, Jingbo; Li, Zhengke; Mu, Cheng; Hu, Huawei; Jiang, Kui; Lin, Haoran; Ade, Harald; Yan, He
2014-01-01
Although the field of polymer solar cell has seen much progress in device performance in the past few years, several limitations are holding back its further development. For instance, current high-efficiency (>9.0%) cells are restricted to material combinations that are based on limited donor polymers and only one specific fullerene acceptor. Here we report the achievement of high-performance (efficiencies up to 10.8%, fill factors up to 77%) thick-film polymer solar cells for multiple polymer:fullerene combinations via the formation of a near-ideal polymer:fullerene morphology that contains highly crystalline yet reasonably small polymer domains. This morphology is controlled by the temperature-dependent aggregation behaviour of the donor polymers and is insensitive to the choice of fullerenes. The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility. PMID:25382026
Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping
2015-06-04
The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke
Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period ofmore » pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8{sup +} CAR-T cells had antigen-specific cytotoxic activity. • CD4{sup +} CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.« less
Rapid, efficient charging of lead-acid and nickel-zinc traction cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1978-01-01
Lead-acid and nickel-zinc traction cells were rapidly and efficiently charged using a high rate tapered direct current (HRTDC) charge method which could possibly be used for on-the-road service recharge of electric vehicles. The HRTDC method takes advantage of initial high cell charge acceptance and uses cell gassing rate and temperature as an indicator of charging efficiency. On the average, in these preliminary tests, 300 amp-hour nickel-zinc traction cells were given a HRTDC (initial current 500 amps, final current 100 amps) to 78 percent of rated amp-hour capacity within 53 minutes at an amp-hour efficiency of 92 percent and an energy efficiency of 52 percent. Three hundred amp-hour lead-acid traction cells were charged to 69 percent of rated amp-hour capacity within 46 minutes at an amp-hour efficiency of 91 percent with an energy efficiency of 64 percent. In order to find ways to further decrease the recharge times, the effect of periodically (0 to 400 Hz) pulse discharging cells during a constant current charging process (94% duty cycle) was investigated. Preliminary data indicate no significant effect of this type of pulse discharging during charge on charge acceptance of lead-acid or nickel-zinc cells.
High-efficiency screen-printed belt co-fired solar cells on cast multicrystalline silicon
NASA Astrophysics Data System (ADS)
Upadhyaya, Ajay; Sheoran, Manav; Rohatgi, Ajeet
2005-01-01
High-efficiency 4cm2 untextured screen-printed solar cells were achieved on cast multicrystalline silicon. These cells were fabricated using a simple manufacturable process involving POCl3 diffusion for emitter, PECVD SiNx:H deposition for a single-layer antireflection coating and rapid co-firing of Ag grid, Al backcontact, and Al-BSF in a belt furnace. An optimized process sequence contributed to effective impurity gettering and defect passivation, resulting in high average bulk lifetimes in the range of 100-250 μs after the cell processing. The contact firing contributed to good ohmic contacts with low series resistance of <1Ωcm2, low backsurface recombination velocity of <500cm/s, and high fill factors of ˜0.78. These parameters resulted in 16.9% and 16.8% efficient untextured screen-printed cells with a single layer AR coating on heat exchanger method (HEM) and Baysix mc-Si. The identical process applied to the untextured float zone wafers gave an efficiency of 17.2%. The same optimized co-firing cycle, when applied to HEM mc-Si wafers with starting lifetimes varying over a wide range of 4-70 μs, resulted in cell efficiencies in the range of 16.5%-17%.
A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction
Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; ...
2015-03-24
With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm 2 2-terminal monolithic perovskite/silicon multijunction solar cell with a V OC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.
Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.
Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N
2011-09-18
Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.
Thermally regenerative hydrogen/oxygen fuel cell power cycles
NASA Technical Reports Server (NTRS)
Morehouse, J. H.
1986-01-01
Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.
Bioinspired Pollen-Like Hierarchical Surface for Efficient Recognition of Target Cancer Cells.
Wang, Wenshuo; Yang, Gao; Cui, Haijun; Meng, Jingxin; Wang, Shutao; Jiang, Lei
2017-08-01
The efficient recognition and isolation of rare cancer cells holds great promise for cancer diagnosis and prognosis. In nature, pollens exploit spiky structures to realize recognition and adhesion to stigma. Herein, a bioinspired pollen-like hierarchical surface is developed by replicating the assembly of pollen grains, and efficient and specific recognition to target cancer cells is achieved. The pollen-like surface is fabricated by combining filtering-assisted assembly and soft lithography-based replication of pollen grains of wild chrysanthemum. After modification with a capture agent specific to cancer cells, the pollen-like surface enables the capture of target cancer cells with high efficiency and specificity. In addition, the pollen-like surface not only assures high viability of captured cells but also performs well in cell mixture system and at low cell density. This study represents a good example of constructing cell recognition biointerfaces inspired by pollen-stigma adhesion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultra-thin, light-trapping silicon solar cells
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
1989-01-01
Design concepts for ultra-thin (2 to 10 microns) high efficiency single-crystal silicon cells are discussed. Light trapping allows more light to be absorbed at a given thickness, or allows thinner cells of a given Jsc. Extremely thin cells require low surface recombination velocity at both surfaces, including the ohmic contacts. Reduction of surface recombination by growth of heterojunctions of ZnS and GaP on Si has been demonstrated. The effects of these improvements on AM0 efficiency is shown. The peak efficiency increases, and the optimum thickness decreases. Cells under 10 microns thickness can retain almost optimum power. The increase of absorptance due to light trapping is considered. This is not a problem if the light-trapping cells are sufficiently thin. Ultra-thin cells have high radiation tolerance. A 2 microns thick light-trapping cell remains over 18 percent efficient after the equivalent of 20 years in geosynchronous orbit. Including a 50 microns thick coverglass, the thin cells had specific power after irradiation over ten times higher than the baseline design.
Summary and Evaluation of the Strategic Defense Initiative Space Power Architecture Study
1989-03-01
coolant as fuel) and operates at high efficiency . It was also lower in vibration and dynamic effects than the combustion turbine. The fuel cell ...achievable with development. The main question with fuel cells is — can both high power density and high efficiency be achieved simultaneously? In...energy in a flywheel, fuel cell (power an electrolyzer) or battery. High power for weapon burst is obtained by discharging the storage device over a
High Efficiency, High Density Terrestrial Panel. [for solar cell modules
NASA Technical Reports Server (NTRS)
Wohlgemuth, J.; Wihl, M.; Rosenfield, T.
1979-01-01
Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.
Li, Zhong'an; Zhu, Zonglong; Chueh, Chu -Chen; ...
2016-08-08
A crosslinked organic hole-transporting layer (HTL) is developed to realize highly efficient and stable perovskite solar cells via a facile thiol-ene thermal reaction. This crosslinked HTL not only facilitates hole extraction from perovskites, but also functions as an effective protective barrier. Lastly, a high-performance (power conversion efficiency: 18.3%) device is demonstrated to show respectable photo and thermal stability without encapsulation.
Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells.
Choi, Hyosung; Lee, Jung-Pil; Ko, Seo-Jin; Jung, Jae-Woo; Park, Hyungmin; Yoo, Seungmin; Park, Okji; Jeong, Jong-Ryul; Park, Soojin; Kim, Jin Young
2013-05-08
We demonstrate high-performance polymer solar cells using the plasmonic effect of multipositional silica-coated silver nanoparticles. The location of the nanoparticles is critical for increasing light absorption and scattering via enhanced electric field distribution. The device incorporating nanoparticles between the hole transport layer and the active layer achieves a power conversion efficiency of 8.92% with an external quantum efficiency of 81.5%. These device efficiencies are the highest values reported to date for plasmonic polymer solar cells using metal nanoparticles.
Thermal modeling of high efficiency AMTEC cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenok, J.F. III; Sievers, R.K.; Crowley, C.J.
1995-12-31
Remotely condensed Alkali Metal Thermal to Electric Conversion (AMTEC) cells achieve high efficiency by thermally isolating the hot {beta} Alumina Solid Electrolyte (BASE) tube from the cold condensing region. In order to design high efficiency AMTEC cells the designer must understand the heat losses associated with the AMTEC process. The major parasitic heat losses are due to conduction and radiation, and significant coupling of the two mechanisms occurs. This paper describes an effort to characterize the thermal aspects of the model PL-6 AMTEC cell and apply this understanding to the design of a higher efficiency AMTEC cell, model PL-8. Twomore » parallel analyses were used to model the thermal characteristics of PL-6. The first was a lumped node model using the classical electric circuit analogy and the second was a detailed finite-difference model. The lumped node model provides high speed and reasonable accuracy, and the detailed finite-difference model provides a more accurate, as well as visual, description of the cell temperature profiles. The results of the two methods are compared to the as-measured PL-6 data. PL-6 was the first cell to use a micromachined condenser to lower the radiation losses to the condenser, and it achieved a conversion efficiency of 15% (3 W output/20 W Input) at a temperature of 1050 K.« less
New high-efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Daud, T.; Crotty, G. T.
1985-01-01
A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.
Lee, Kyu-Tae; Jang, Ji-Yun; Park, Sang Jin; Ok, Song Ah; Park, Hui Joon
2017-09-28
See-through perovskite solar cells with high efficiency and iridescent colors are demonstrated by employing a multilayer dielectric mirror. A certain amount of visible light is used for wide color gamut semitransparent color generation, which can be easily tuned by changing an angle of incidence, and a wide range of visible light is efficiently reflected back toward a photoactive layer of the perovskite solar cells by the dielectric mirror for highly efficient light-harvesting performance, thus achieving 10.12% power conversion efficiency. We also rigorously examine how the number of pairs in the multilayer dielectric mirror affects optical properties of the colored semitransparent perovskite solar cells. The described approach can open the door to a large number of applications such as building-integrated photovoltaics, self-powered wearable electronics and power-generating color filters for energy-efficient display systems.
NASA Astrophysics Data System (ADS)
Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong
2017-03-01
Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH3NH3PbI3). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.
Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong
2017-12-01
Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH 3 NH 3 PbI 3 ). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.
Battery cell thermal-conductive coating increases efficiency
NASA Technical Reports Server (NTRS)
Doyle, H. M.
1973-01-01
Thin coating of high-temperature epoxy resin provides necessary electrical insulation, as well as good thermal conductivity between battery cells. Insulation increases efficiency of nickel-cadmium battery, as it would any multicell battery assembly in which cell-to-cell thermal balance is critical.
Overview of processing activities aimed at higher efficiencies and economical production
NASA Technical Reports Server (NTRS)
Bickler, D. B.
1985-01-01
An overview of processing activities aimed at higher efficiencies and economical production were presented. Present focus is on low-cost process technology for higher-efficiency cells of up to 18% or higher. Process development concerns center on the use of less than optimum silicon sheet, the control of production yields, and making uniformly efficient large-area cells. High-efficiency cell factors that require process development are bulk material perfection, very shallow junction formation, front-surface passivation, and finely detailed metallization. Better bulk properties of the silicon sheet and the keeping of those qualities throughout large areas during cell processing are required so that minority carrier lifetimes are maintained and cell performance is not degraded by high doping levels. When very shallow junctions are formed, the process must be sensitive to metallizatin punch-through, series resisitance in the cell, and control of dopant leaching during surface passivation. There is a need to determine the sensitivity to processing by mathematical modeling and experimental activities.
NASA Astrophysics Data System (ADS)
Kim, Sangmo; Song, Myoung Geun; Bark, Chung Wung
2018-01-01
Dye-sensitized solar cells (DSSCs) are one of the most promising third generation solar cells that have been extensively researched over the past decade as alternative to silicon-based solar cells, due to their low production cost and high energy-conversion efficiency. In general, a DSSC consists of a transparent electrode, a counter electrode, and an electrolyte such as dye. To achieve high power-conversion efficiency in cells, many research groups have focused their efforts on developing efficient dyes for liquid electrolytes. In this work, we report on the photovoltaic properties of DSSCs fabricated using a mixture of TiO2 with nanosized Fe-doped bismuth lanthanum titanate (nFe-BLT) powder). Firstly, nFe-BLT powders were prepared using a high-energy ball milling process and then, TiO2 and nFe-BLT powders were stoichiometrically blended. Direct current (DC) bias of 20 MV/m was applied to lab-made DSSCs. With the optimal concentration of nFe-BLT doped in the electrode, their light-to-electricity conversion efficiency could be improved by ∼64% compared with DSSCs where no DC bias was applied.
Efficient CsF interlayer for high and low bandgap polymer solar cell
NASA Astrophysics Data System (ADS)
Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan
2018-02-01
Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.
NASA Astrophysics Data System (ADS)
Lu, Huijie; Peng, Zhangli
2017-11-01
We developed a high-efficiency multiscale modeling method to predict the stress and deformation of cells during the interactions with their microenvironments in microcirculation and microfluidics, including red blood cells (RBCs) and circulating tumor cells (CTCs). There are more than 1 billion people in the world suffering from RBC diseases. The mechanical properties of RBCs are changed in these diseases due to molecular structure alternations, which is not only important for understanding the disease pathology but also provides an opportunity for diagnostics. On the other hand, the mechanical properties of cancer cells are also altered compared to healthy cells. This can lead to acquired ability to cross the narrow capillary networks and endothelial gaps, which is crucial for metastasis, the leading cause of cancer mortality. Therefore, it is important to predict the deformation and stress of RBCs and CTCs in microcirculations. We develop a high-efficiency multiscale model of cell-fluid interaction. We pass the information from our molecular scale models to the cell scale to study the effect of molecular mutations. Using our high-efficiency boundary element methods of fluids, we will be able to run 3D simulations using a single CPU within several hours, which will enable us to run extensive parametric studies and optimization.
High efficiency compound semiconductor concentrator photovoltaics
NASA Technical Reports Server (NTRS)
Borden, P.; Gregory, P.; Saxena, R.; Owen, R.; Moore, O.
1980-01-01
Special emphasis was given to the high yield pilot production of packaged AlGaAs/GaAs concentrator solar cells, using organometallic VPE for materials growth, the demonstration of a concentrator module using 12 of these cells which achieved 16.4 percent conversion efficiency at 50 C coolant inlet temperature, and the demonstration of a spectral splitting converter module that achieved in excess of 20 percent efficiency. This converter employed ten silicon and ten AlGaAs cells with a dichroic filter functioning as the beam splitter. A monolithic array of AlGaAs/GaAs solar cells is described.
Separation of cancer cells from white blood cells by pinched flow fractionation.
Pødenphant, Marie; Ashley, Neil; Koprowska, Kamila; Mir, Kalim U; Zalkovskij, Maksim; Bilenberg, Brian; Bodmer, Walter; Kristensen, Anders; Marie, Rodolphe
2015-12-21
In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation is challenged by the size overlap between cancer cells and the 10(6) times more abundant WBCs. The size overlap prevents high efficiency separation, however we demonstrate that cell deformability can be exploited in PFF devices to gain higher efficiencies than expected from the size distribution of the cells.
Recent progress of Spectrolab high-efficiency space solar cells
NASA Astrophysics Data System (ADS)
Law, Daniel C.; Boisvert, J. C.; Rehder, E. M.; Chiu, P. T.; Mesropian, S.; Woo, R. L.; Liu, X. Q.; Hong, W. D.; Fetzer, C. M.; Singer, S. B.; Bhusari, D. M.; Edmondson, K. M.; Zakaria, A.; Jun, B.; Krut, D. D.; King, R. R.; Sharma, S. K.; Karam, N. H.
2013-09-01
Recent progress in III-V multijunction space solar cell has led to Spectrolab's GaInP/GaAs/Ge triple-junction, XTJ, cells with average 1-sun efficiency of 29% (AM0, 28°C) for cell size ranging from 59 to 72-cm2. High-efficiency inverted metamorphic (IMM) multijunction cells are developed as the next space solar cell architecture. Spectrolab's large-area IMM3J and IMM4J cells have achieved 33% and 34% 1-sun, AM0 efficiencies, respectively. The IMM3J and the IMM4J cells have both demonstrated normalized power retention of 0.86 at 5x1014 e-/cm2 fluence and 0.83 and 0.82 at 1x1015 e-/cm2 fluence post 1-MeV electron radiation, respectively. The IMM cells were further assembled into coverglass-interconnect-cell (CIC) strings and affixed to typical rigid aluminum honeycomb panels for thermal cycling characterization. Preliminary temperature cycling data of two coupons populated with IMM cell strings showed no performance degradation. Spectrolab has also developed semiconductor bonded technology (SBT) where highperformance component subcells were grown on GaAs and InP substrates separately then bonded directly to form the final multijunction cells. Large-area SBT 5-junction cells have achieved a 35.1% efficiency under 1-sun, AM0 condition.
Varghese, Oomman K; Paulose, Maggie; Grimes, Craig A
2009-09-01
Dye-sensitized solar cells consist of a random network of titania nanoparticles that serve both as a high-surface-area support for dye molecules and as an electron-transporting medium. Despite achieving high power conversion efficiencies, their performance is limited by electron trapping in the nanoparticle film. Electron diffusion lengths can be increased by transporting charge through highly ordered nanostructures such as titania nanotube arrays. Although titania nanotube array films have been shown to enhance the efficiencies of both charge collection and light harvesting, it has not been possible to grow them on transparent conducting oxide glass with the lengths needed for high-efficiency device applications (tens of micrometres). Here, we report the fabrication of transparent titania nanotube array films on transparent conducting oxide glass with lengths between 0.3 and 33.0 microm using a novel electrochemistry approach. Dye-sensitized solar cells containing these arrays yielded a power conversion efficiency of 6.9%. The incident photon-to-current conversion efficiency ranged from 70 to 80% for wavelengths between 450 and 650 nm.
High performance direct methanol fuel cell with thin electrolyte membrane
NASA Astrophysics Data System (ADS)
Wan, Nianfang
2017-06-01
A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.
Sather, Blythe D; Romano Ibarra, Guillermo S; Sommer, Karen; Curinga, Gabrielle; Hale, Malika; Khan, Iram F; Singh, Swati; Song, Yumei; Gwiazda, Kamila; Sahni, Jaya; Jarjour, Jordan; Astrakhan, Alexander; Wagner, Thor A; Scharenberg, Andrew M; Rawlings, David J
2015-09-30
Genetic mutations or engineered nucleases that disrupt the HIV co-receptor CCR5 block HIV infection of CD4(+) T cells. These findings have motivated the engineering of CCR5-specific nucleases for application as HIV therapies. The efficacy of this approach relies on efficient biallelic disruption of CCR5, and the ability to efficiently target sequences that confer HIV resistance to the CCR5 locus has the potential to further improve clinical outcomes. We used RNA-based nuclease expression paired with adeno-associated virus (AAV)-mediated delivery of a CCR5-targeting donor template to achieve highly efficient targeted recombination in primary human T cells. This method consistently achieved 8 to 60% rates of homology-directed recombination into the CCR5 locus in T cells, with over 80% of cells modified with an MND-GFP expression cassette exhibiting biallelic modification. MND-GFP-modified T cells maintained a diverse repertoire and engrafted in immune-deficient mice as efficiently as unmodified cells. Using this method, we integrated sequences coding chimeric antigen receptors (CARs) into the CCR5 locus, and the resulting targeted CAR T cells exhibited antitumor or anti-HIV activity. Alternatively, we introduced the C46 HIV fusion inhibitor, generating T cell populations with high rates of biallelic CCR5 disruption paired with potential protection from HIV with CXCR4 co-receptor tropism. Finally, this protocol was applied to adult human mobilized CD34(+) cells, resulting in 15 to 20% homologous gene targeting. Our results demonstrate that high-efficiency targeted integration is feasible in primary human hematopoietic cells and highlight the potential of gene editing to engineer T cell products with myriad functional properties. Copyright © 2015, American Association for the Advancement of Science.
Design, Modeling, Fabrication & Characterization of Industrial Si Solar Cells
NASA Astrophysics Data System (ADS)
Chowdhury, Ahrar Ahmed
Photovoltaic is a viable solution towards meeting the energy demand in an ecofriendly environment. To ensure the mass access in photovoltaic electricity, cost effective approach needs to be adapted. This thesis aims towards substrate independent fabrication process in order to achieve high efficiency cost effective industrial Silicon (Si) solar cells. Most cost-effective structures, such as, Al-BSF (Aluminum Back Surface Field), FSF (Front Surface Field) and bifacial cells are investigated in detail to exploit the efficiency potentials. First off, we introduced two-dimensional simulation model to design and modeling of most commonly used Si solar cells in today's PV arena. Best modelled results of high efficiency Al-BSF, FSF and bifacial cells are 20.50%, 22% and 21.68% respectively. Special attentions are given on the metallization design on all the structures in order to reduce the Ag cost. Furthermore, detail design and modeling were performed on FSF and bifacial cells. The FSF cells has potentials to gain 0.42%abs efficiency by combining the emitter design and front surface passivation. The prospects of bifacial cells can be revealed with the optimization of gridline widths and gridline numbers. Since, bifacial cells have metallization on both sides, a double fold cost saving is possible via innovative metallization design. Following modeling an effort is undertaken to reach the modelled result in fabrication the process. We proposed substrate independent fabrication process aiming towards establishing simultaneous processing sequences for both monofacial and bifacial cells. Subsequently, for the contact formation cost effective screen-printed technology is utilized throughout this thesis. The best Al-BSF cell attained efficiency ˜19.40%. Detail characterization was carried out to find a roadmap of achieving >20.50% efficiency Al-BSF cell. Since, n-type cell is free from Light Induced degradation (LID), recently there is a growing interest on FSF cell. Our best fabricated result of FSF cell achieved ˜18.40% efficiency. Characterizations on such cells provide that, cell performance can be further improved by utilizing high lifetime base wafer. We showed a step by step improvement on the device parameters to achieve ˜22% efficiency FSF cell. Finally, bifacial cells were fabricated with 13.32% front and 9.65% rear efficiency. The efficiency limitation is due to the quality of base wafer. Detail resistance breakdown was conducted on these cells to analyze parasitic resistance losses. It was found that base and gridline resistances dominated the FF loss. However, very low contact resistance of 20 mO-cm 2 at front side and 2 mO-cm2 at the rear side was observed by utilizing same Ag paste for front and rear contact formation. This might provide a pathway towards the search of an optimized Ag paste to attain high efficiency screen-printed bifacial cell. Detail investigations needs to be carried out to unveil the property of this Ag paste. In future work, more focus will be given on the metallization design to incorporate further reduction in Ag cost. Al2O3 passivation layer will be incorporated as a means to attain ˜23% screen-printed bifacial cell.
Bin, Haijun; Gao, Liang; Zhang, Zhi-Guo; Yang, Yankang; Zhang, Yindong; Zhang, Chunfeng; Chen, Shanshan; Xue, Lingwei; Yang, Changduk; Xiao, Min; Li, Yongfang
2016-01-01
Simutaneously high open circuit voltage and high short circuit current density is a big challenge for achieving high efficiency polymer solar cells due to the excitonic nature of organic semdonductors. Herein, we developed a trialkylsilyl substituted 2D-conjugated polymer with the highest occupied molecular orbital level down-shifted by Si–C bond interaction. The polymer solar cells obtained by pairing this polymer with a non-fullerene acceptor demonstrated a high power conversion efficiency of 11.41% with both high open circuit voltage of 0.94 V and high short circuit current density of 17.32 mA cm−2 benefitted from the complementary absorption of the donor and acceptor, and the high hole transfer efficiency from acceptor to donor although the highest occupied molecular orbital level difference between the donor and acceptor is only 0.11 eV. The results indicate that the alkylsilyl substitution is an effective way in designing high performance conjugated polymer photovoltaic materials. PMID:27905397
Bin, Haijun; Gao, Liang; Zhang, Zhi-Guo; Yang, Yankang; Zhang, Yindong; Zhang, Chunfeng; Chen, Shanshan; Xue, Lingwei; Yang, Changduk; Xiao, Min; Li, Yongfang
2016-12-01
Simutaneously high open circuit voltage and high short circuit current density is a big challenge for achieving high efficiency polymer solar cells due to the excitonic nature of organic semdonductors. Herein, we developed a trialkylsilyl substituted 2D-conjugated polymer with the highest occupied molecular orbital level down-shifted by Si-C bond interaction. The polymer solar cells obtained by pairing this polymer with a non-fullerene acceptor demonstrated a high power conversion efficiency of 11.41% with both high open circuit voltage of 0.94 V and high short circuit current density of 17.32 mA cm -2 benefitted from the complementary absorption of the donor and acceptor, and the high hole transfer efficiency from acceptor to donor although the highest occupied molecular orbital level difference between the donor and acceptor is only 0.11 eV. The results indicate that the alkylsilyl substitution is an effective way in designing high performance conjugated polymer photovoltaic materials.
Efficient platinum-free counter electrodes for dye-sensitized solar cell applications.
Ahmad, Shahzada; Yum, Jun-Ho; Butt, Hans-Jürgen; Nazeeruddin, Mohammad K; Grätzel, Michael
2010-09-10
Nanoporous layers of poly(3,4-propylenedioxythiophene) (PProDOT) were fabricated by electrical-field-assisted growth using hydrophobic ionic liquids as the growing medium. A series of PProDoT layers was prepared with three different ionic liquids to control the microstructure and electrochemical properties of the resulting dye-sensitized solar cells, which were highly efficient and showed a power conversion efficiency of >9% under different sunlight intensities. The current-voltage characteristics of the counter electrodes varied depending on the ionic liquids used in the synthesis of PProDOT. The most hydrophobic ionic liquids exhibited high catalytic properties, thus resulting in high power conversion efficiency and allowing the fabrication of platinum-free, stable, flexible, and cost-effective dye-sensitized solar cells.
Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J
2014-12-23
Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.
Historical perspective of barriers to achieving high-efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Lindmayer, J.
1985-01-01
Early silicon solar cells were made of metallurgical-grade silicon with very low efficiency. The single-crystal silicon introduced in the mid-50's increased the efficiency to the 5% to 10% region. Throughout the 1960s the technology of the 2 x 2 cm or 2 x 4 cm space solar cell with 10% efficiency was established. In the early 1970s work related to the violet cell upset the status quo and space solar cells and cells in general became more efficient. The rest of the decade became characterized by establishing a terrestrial photovoltaic technology to support the development of a new industry. Costs per watt became the dominant consideration and frequently the efficiency was compromised. The introduction of materials and other forms of silicon dropped the efficiency and it is now a state of mine that accomplishing 10% efficiency with some alternative combination is regarded as success. Silicon solar cells are capable of delivering efficiences much greater than 10%.
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr.
1979-01-01
Progress in space solar cell research and technology is reported. An 18 percent-AMO-efficient silicon solar cell, reduction in the radiation damage suffered by silicon solar cells in space, and high efficiency wrap-around contact and thin (50 micrometer) coplanar back contact silicon cells are among the topics discussed. Reduction in the cost of silicon cells for space use, cost effective GaAs solar cells, the feasibility of 30 percent AMO solar energy conversion, and reliable encapsulants for space blankets are also considered.
Progress in Tandem Solar Cells Based on Hybrid Organic-Inorganic Perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bo; Zheng, Xiaopeng; Bai, Yang
Owing to their high efficiency, low-cost solution-processability, and tunable bandgap, perovskite solar cells (PSCs) made of hybrid organic-inorganic perovskite (HOIP) thin films are promising top-cell candidates for integration with bottom-cells based on Si or other low-bandgap solar-cell materials to boost the power conversion efficiency (PCE) beyond the Shockley-Quiesser (S-Q) limit. In this review, recent progress in such tandem solar cells based on the emerging PSCs is summarized and reviewed critically. Notable achievements for different tandem solar cell configurations including mechanically-stacked, optical coupling, and monolithically-integrated with PSCs as top-cells are described in detail. Highly-efficient semitransparent PSC top-cells with high transmittance inmore » near-infrared (NIR) region are critical for tandem solar cells. Different types of transparent electrodes with high transmittance and low sheet-resistance for PSCs are reviewed, which presents a grand challenge for PSCs. The strategies to obtain wide-bandgap PSCs with good photo-stability are discussed. In conclusion, the PCE reduction due to reflection loss, parasitic absorption, electrical loss, and current mismatch are analyzed to provide better understanding of the performance of PSC-based tandem solar cells.« less
Progress in Tandem Solar Cells Based on Hybrid Organic-Inorganic Perovskites
Chen, Bo; Zheng, Xiaopeng; Bai, Yang; ...
2017-03-06
Owing to their high efficiency, low-cost solution-processability, and tunable bandgap, perovskite solar cells (PSCs) made of hybrid organic-inorganic perovskite (HOIP) thin films are promising top-cell candidates for integration with bottom-cells based on Si or other low-bandgap solar-cell materials to boost the power conversion efficiency (PCE) beyond the Shockley-Quiesser (S-Q) limit. In this review, recent progress in such tandem solar cells based on the emerging PSCs is summarized and reviewed critically. Notable achievements for different tandem solar cell configurations including mechanically-stacked, optical coupling, and monolithically-integrated with PSCs as top-cells are described in detail. Highly-efficient semitransparent PSC top-cells with high transmittance inmore » near-infrared (NIR) region are critical for tandem solar cells. Different types of transparent electrodes with high transmittance and low sheet-resistance for PSCs are reviewed, which presents a grand challenge for PSCs. The strategies to obtain wide-bandgap PSCs with good photo-stability are discussed. In conclusion, the PCE reduction due to reflection loss, parasitic absorption, electrical loss, and current mismatch are analyzed to provide better understanding of the performance of PSC-based tandem solar cells.« less
Development of high-performance GaInAsP solar cells for tandem solar cell applications
NASA Technical Reports Server (NTRS)
Wanlass, M. W.; Ward, J. S.; Gessert, T. A.; Emery, K. A.; Horner, G. S.
1990-01-01
Recent results in the development of high-efficiency, low-bandgap GaInAsP solar cells epitaxially grown and lattice matched on InP substrates are presented. Such cells are intended to be used as optimum bottom cell components in tandem solar cells. Assuming that a GaAs-based top cell is used, computer simulation of the potential bottom cell performance as a function of the cell bandgap and incident spectrum indicates that two particular alloys are desirable: Ga0.47In0.53As (Eg = 0.75 eV) for space applications and Ga0.25In0.75As0.54P0.46 (Eg = 0.95 eV) for terrestrial applications. In each of these materials, solar cells with new record-level efficiencies have been fabricated. The efficiency boost available to tandem configurations from these low-bandgap cells is discussed.
GaAs CLEFT solar cells for space applications. [CVD thin film growth technology
NASA Technical Reports Server (NTRS)
Fan, J. C. C.; Mcclelland, R. W.; King, B. D.
1984-01-01
Although GaAs solar cells are radiation-resistant and have high conversion efficiencies, there are two major obstacles that such cells must overcome before they can be widely adopted for space applications: GaAs wafers are too expensive and cells made from these wafers are too heavy. The CLEFT process permits the growth of thin single-crystal films on reusable substrates, resulting in a drastic reduction in both cell cost and cell weight. Recent advances in CLEFT technology have made it possible to achieve efficiencies of about 14 percent AM0 for 0.51-sq cm GaAs solar cells 5 microns thick with a 41-mil-thick coverglass. In preliminary experiments efficiencies close to 19 percent AM1 have been obtained for 10-micron-thick cells. It is suggested that the CLEFT technology should yield inexpensive, highly efficient modules with a beginning-of-life specific power close to 1 kW/kg (for a coverglass thickness of 4 mils).
Indium oxide/n-silicon heterojunction solar cells
Feng, Tom; Ghosh, Amal K.
1982-12-28
A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.
The Status and Outlook for the Photovoltaics Industry
NASA Astrophysics Data System (ADS)
Carlson, David
2006-03-01
The first silicon solar cell was made at Bell Labs in 1954, and over the following decades, shipments of photovoltaic (PV) modules increased at a rate of about 18% annually. In the last several years, the annual growth rate has increased to ˜ 35% due largely to government-supported programs in Japan and Germany. Silicon technology has dominated the PV industry since its inception, and in 2005 about 65% of all solar cells were made from polycrystalline (or multicrystalline) silicon, 24% from monocrystalline silicon and ˜ 4% from ribbon silicon. While conversion efficiencies as high as 24.7% have been obtained in the laboratory for silicon solar cells, the best efficiencies for commercial PV modules are in the range of 17 18% (the efficiency limit for a silicon solar cell is ˜ 29%). A number of companies are commercializing solar cells based on other materials such as amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-gallium-diselenide (CIGS), gallium arsenide (and related compounds) and dye- sensitized titanium oxide. Thin film CIGS solar cells have been fabricated with conversion efficiencies as high as 19.5% while efficiencies as high as 39% have been demonstrated for a GaInP/Ga(In)As/Ge triple-junction cell operating at a concentration of 236 suns. Thin film solar cells are being used in consumer products and in some building-integrated applications, while PV concentrator systems are being tested in grid-connected arrays located in high solar insolation areas. Nonetheless, crystalline silicon PV technology is likely to dominate the terrestrial market for at least the next decade with module efficiencies > 20% and module prices of < 1/Wp expected by 2020, which in turn should allow significant penetration of the utility grid market. However, crystalline silicon solar cells may be challenged in the next decade or two by new low-cost, high performance devices based on organic materials and nanotechnology.
Xiao, Zhengguo; Yuan, Yongbo; Wang, Qi; ...
2016-02-19
Organolead trihalide perovskites (OTPs) are arising as a new generation of low-cost active materials for solar cells with efficiency rocketing from 3.5% to over 20% within only five years. From “dye” in dye sensitized solar cells to “hole conductors” and “electron conductors” in mesoscopic heterojunction solar cells, there has been a dramatic conceptual evolution on the function of OTPs in photovoltaic devices. OTPs were originally used as dyes in Gratzel cells, achieving a high efficiency above 15% which, however, did not manifest the excellent charge transport properties of OTPs. An analogy of OTPs to traditional semiconductors was drawn after themore » demonstration of highly efficient planar heterojunction structure OTP devices and the observation of their excellent bipolar transport properties with a large diffusion length exceeding 100 nm in CH 3NH 3PbI 3 (MAPbI 3) polycrystalline thin films. Here, this review aims to provide the most recent advances in the understanding of the origin of the high OTP device efficiency. Specifically we will focus on reviewing the progress in understanding 1) the characterization of fantastic optoelectronic property of OTPs, 2) the unusual defect physics that originate the optoelectronic property; 3) morphology control of the perovskite film from fabrication process and film post-treatment, and 4) device interface and charge transport layers that dramatically impact device efficiency in the OTP thin film devices; 5) photocurrent hysteresis; 6) tandem solar cells; 7) stability of the perovskite materials and solar cell devices.« less
Lim, Kyung-Geun; Kim, Hak-Beom; Jeong, Jaeki; Kim, Hobeom; Kim, Jin Young; Lee, Tae-Woo
2014-10-08
A self-organized hole extraction layer (SOHEL) with high work function (WF) is designed for energy level alignment with the ionization potential level of CH3 NH3 PbI3 . The SOHEL increases the built-in potential, photocurrent, and power conversion efficiency (PCE) of CH3 NH3 PbI3 perovskite solar cells. Thus, interface engineering of the positive electrode of solution-processed planar heterojunction solar cells using a high-WF SOHEL is a very effective way to achieve high device efficiency (PCE = 11.7% on glass). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Asadpour, Reza; Chavali, Raghu V. K.; Ryyan Khan, M.; Alam, Muhammad A.
2015-06-01
As single junction photovoltaic (PV) technologies, both Si heterojunction (HIT) and perovskite based solar cells promise high efficiencies at low cost. Intuitively, a traditional tandem cell design with these cells connected in series is expected to improve the efficiency further. Using a self-consistent numerical modeling of optical and transport characteristics, however, we find that a traditional series connected tandem design suffers from low J S C due to band-gap mismatch and current matching constraints. Specifically, a traditional tandem cell with state-of-the-art HIT ( η = 24 % ) and perovskite ( η = 20 % ) sub-cells provides only a modest tandem efficiency of η T ˜ 25%. Instead, we demonstrate that a bifacial HIT/perovskite tandem design decouples the optoelectronic constraints and provides an innovative path for extraordinary efficiencies. In the bifacial configuration, the same state-of-the-art sub-cells achieve a normalized output of ηT * = 33%, exceeding the bifacial HIT performance at practical albedo reflections. Unlike the traditional design, this bifacial design is relatively insensitive to perovskite thickness variations, which may translate to simpler manufacture and higher yield.
High efficiency crystalline silicon solar cells
NASA Technical Reports Server (NTRS)
Sah, C. Tang
1986-01-01
A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Niu, Pingjuan; Li, Yuqiang; Song, Minghui; Zhang, Jianxin; Ning, Pingfan; Chen, Peizhuan
2017-12-01
Ga0.51In0.49P/In0.01Ga0.99As/Ge triple-junction solar cells for space applications were grown on 4 inch Ge substrates by metal organic chemical vapor deposition methods. The triple-junction solar cells were obtained by optimizing the subcell structure, showing a high open-circuit voltage of 2.77 V and a high conversion efficiency of 31% with 30.15 cm2 area under the AM0 spectrum at 25 °C. In addition, the In0.01Ga0.99As middle subcell structure was focused by optimizing in order to improve the anti radiation ability of triple-junction solar cells, and the remaining factor of conversion efficiency for middle subcell structure was enhanced from 84% to 92%. Finally, the remaining factor of external quantum efficiency for triple-junction solar cells was increased from 80% to 85.5%.
Yu, Jae Choul; Hong, Ji A; Jung, Eui Dae; Kim, Da Bin; Baek, Soo-Min; Lee, Sukbin; Cho, Shinuk; Park, Sung Soo; Choi, Kyoung Jin; Song, Myoung Hoon
2018-01-18
The beneficial use of a hole transport layer (HTL) as a substitution for poly(3,4-ethlyenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is regarded as one of the most important approaches for improving the stability and efficiency of inverted perovskite solar cells. Here, we demonstrate highly efficient and stable inverted perovskite solar cells by applying a GO-doped PEDOT:PSS (PEDOT:GO) film as an HTL. The high performance of this solar cell stems from the excellent optical and electrical properties of the PEDOT:GO film, including a higher electrical conductivity, a higher work function related to the reduced contact barrier between the perovskite layer and the PEDOT:GO layer, enhanced crystallinity of the perovskite crystal, and suppressed leakage current. Moreover, the device with the PEDOT:GO layer showed excellent long-term stability in ambient air conditions. Thus, the enhancement in the efficiency and the excellent stability of inverted perovskite solar cells are promising for the eventual commercialization of perovskite optoelectronic devices.
Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.
Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin
2016-07-20
There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination.
In-Situ Optical Imaging of Carrier Transport in Multilayer Solar Cells
2008-06-01
5 1. Efficiency Considerations....................................................... 5 2. Construction...improved efficiency solar cells. The need to move forward on these improvements is driven by the increasing price of oil and other traditional fuels...any improvement in material in a high efficiency multi-junction cell can be difficult to mathematically model, and much effort is involved in
Huang, Zhen; Wang, Duofa; Wang, Song; Zhang, Tianjin
2018-05-11
Perovskite solar cells have attracted great attention in recent years, due to their high conversion efficiency and solution-processable fabrication. However, most of the solar cells with high efficiency in the literature are prepared employing TiO₂ as electron transport material, which needs sintering at a temperature higher than 450 °C, and is not applicable to flexible device and low-cost fabrication. Herein, the MAPbI₃ perovskite solar cells are fabricated at a low temperature of 150 °C with SnO₂ as the electron transport layer. By dropping the antisolvent of ethyl acetate onto the perovskite precursor films during the spin coating process, compact MAPbI₃ films without pinholes are obtained. The addition of ethyl acetate is found to play an important role in regulating the nucleation, which subsequently improves the compactness of the film. The quality of MAPbI₃ films are further improved significantly through Ostwald recrystallization by optimizing the thermal treatment. The crystallinity is enhanced, the grain size is enlarged, and the defect density is reduced. Accordingly, the prepared MAPbI₃ perovskite solar cell exhibits a record-high conversion efficiency, outstanding reproducibility, and stability, owing to the reduced electron recombination. The average and best efficiency reaches 19.2% and 20.3%, respectively. The device without encapsulation maintains 94% of the original efficiency after storage in ambient air for 600 h.
Ma, Shaohua; Zhan, Xiaohui; Yang, Minggang; Lan, Fang; Wu, Yao; Gu, Zhongwei
2018-04-01
Circulating tumor cells (CTCs) played a significant role in early diagnosis and prognosis of carcinomas, and efficient capture of CTCs was highly desired to provide important and reliable evidence for clinical diagnosis. In present work, we successfully synthesized functional magnetic Fe3O4/P(MMA-AA) composite nanoparticles (FCNPs) inspired by a counterbalance concept for recognition and capture of CTCs. This counterbalance, composed of polyethylene glycol (PEG) suppressing cell adhesion and anti-epithelial-cell-adhesion-molecule (anti-EpCAM) antibody targeting tumor cells, could both enhance the specific capture of tumor cells and reduce unspecific adhesion of normal cells. The study showed that the PEG density on the surface of the FCNPs affected the specificity of the materials, and a density of ca. 15% was efficient for reducing the unspecific adhesion. After incubation with the mixture of HepG2 cells and Jurkat T cells, the FCNPs reached a capture efficiency as high as about 86.5% of the cancer cells, suggesting great potential on detection of CTCs in the diagnoses and prognoses of cancer metastasis.
Method for forming indium oxide/n-silicon heterojunction solar cells
Feng, Tom; Ghosh, Amal K.
1984-03-13
A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y. M.
2004-12-01
The key objective of this subcontract was to take the first steps to extend the radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) manufacturing technology of Energy Photovoltaics, Inc. (EPV), to the promising field of a-Si/nc-Si solar cell fabrication by demonstrating ''proof-of-concept'' devices of good efficiencies that previously were believed to be unobtainable in single-chamber reactors owing to contamination problems. A complementary goal was to find a new high-rate deposition method that can conceivably be deployed in large PECVD-type reactors. We emphasize that our goal was not to produce 'champion' devices of near-record efficiencies, but rather, to achieve modestly high efficiencies usingmore » a far simpler (cheaper) system, via practical processing methods and materials. To directly attack issues in solar-cell fabrication at EPV, the nc-Si thin films were studied almost exclusively in the p-i-n device configuration (as absorbers or i-layers), not as stand-alone films. Highly efficient, p-i-n type, nc-Si-based solar cells are generally grown on expensive, laboratory superstrates, such as custom ZnO/glass of high texture (granular surface) and low absorption. Also standard was the use of a highly effective back-reflector ZnO/Ag, where the ZnO can be surface-textured for efficient diffuse reflection. The high-efficiency ''champion'' devices made by the PECVD methods were invariably prepared in sophisticated (i.e., expensive), multi-chamber, or at least load-locked deposition systems. The electrode utilization efficiency, defined as the surface-area ratio of the powered electrode to that of the substrates, was typically low at about one (1:1). To evaluate the true potential of nc-Si absorbers for cost-competitive, commercially viable manufacturing of large-area PV modules, we took a more down-to-earth approach, based on our proven production of a-Si PV modules by a massively parallel batch process in single-chamber RF-PECVD systems, to the study of nc-Si solar cells, with the aim of producing high-efficiency a-Si/nc-Si solar cells and sub-modules.« less
CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells.
Heo, Young Tae; Quan, Xiaoyuan; Xu, Yong Nan; Baek, Soonbong; Choi, Hwan; Kim, Nam-Hyung; Kim, Jongpil
2015-02-01
Efficient and precise genetic engineering in livestock such as cattle holds great promise in agriculture and biomedicine. However, techniques that generate pluripotent stem cells, as well as reliable tools for gene targeting in livestock, are still inefficient, and thus not routinely used. Here, we report highly efficient gene targeting in the bovine genome using bovine pluripotent cells and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nuclease. First, we generate induced pluripotent stem cells (iPSCs) from bovine somatic fibroblasts by the ectopic expression of yamanaka factors and GSK3β and MEK inhibitor (2i) treatment. We observed that these bovine iPSCs are highly similar to naïve pluripotent stem cells with regard to gene expression and developmental potential in teratomas. Moreover, CRISPR/Cas9 nuclease, which was specific for the bovine NANOG locus, showed highly efficient editing of the bovine genome in bovine iPSCs and embryos. To conclude, CRISPR/Cas9 nuclease-mediated homologous recombination targeting in bovine pluripotent cells is an efficient gene editing method that can be used to generate transgenic livestock in the future.
Space Photovoltaic Research and Technology 1995
NASA Technical Reports Server (NTRS)
Landis, Geoffrey (Compiler)
1995-01-01
The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.
Space Photovoltaic Research and Technology 1995
NASA Technical Reports Server (NTRS)
Landis, Geoffrey (Compiler)
1996-01-01
The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.
Achieving high performance polymer tandem solar cells via novel materials design
NASA Astrophysics Data System (ADS)
Dou, Letian
Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10% enhancement over those based on PBDTT-DPP. Finally, in Chapter 5, I demonstrate a new polymer system based on alternating dithienopyran and benzothiadiazole units with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions, which is the first certified polymer solar cell efficiency over 10%.
Lee, Joo Hyung; Oh, Se Young
2014-08-01
In the previous work, we have reported that organic photovoltaic (OPV) cells using DMDCNQI as an n-type second dopant material showed a high power conversion efficiency (PCE). In the present work, we have synthesized a novel DHDCNQI with long alkyl chains to improve the compatibility between the DHDCNQI dopant molecule and host P3HT polymer. We have fabricated OPV cells consisting of ITO/PEDOT:PSS/P3HT:PCBM:DHDCNQI/Al. We have investigated the characteristics of theses OPV cells using DCNQI derivative dopants from the measurements of the incident photon-to-current collection efficiency and photocurrent. The OPV cell using 3 wt% DHDCNQI exhibited a high PCE of 3.29% due to the high charge separation efficiency, good compatibility and low trap site effect.
Modelling and fabrication of high-efficiency silicon solar cells
NASA Astrophysics Data System (ADS)
Rohatgi, A.; Smith, A. W.; Salami, J.
1991-10-01
This report covers the research conducted on modelling and development of high efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. The third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high efficiency silicon cells.
Vergara, Maria Natalia; Gutierrez, Christian; O’Brien, David R.; Canto-Soler, Maria Valeria
2013-01-01
Primary retinal cultures constitute valuable tools not only for basic research on retinal cell development and physiology, but also for the identification of factors or drugs that promote cell survival and differentiation. In order to take full advantage of the benefits of this system it is imperative to develop efficient and reliable techniques for the manipulation of gene expression. However, achieving appropriate transfection efficiencies in these cultures has remained challenging. The purpose of this work was to develop and optimize a technique that would allow the transfection of chick retinal cells with high efficiency and reproducibility for multiple applications. We developed an ex vivo electroporation method applied to dissociated retinal cell cultures that offers a significant improvement over other currently available transfection techniques, increasing efficiency by five-fold. In this method, eyes were enucleated, devoid of RPE, and electroporated with GFP-encoding plasmids using custom-made electrodes. Electroporated retinas were then dissociated into single cells and plated in low density conditions, to be analyzed after 4 days of incubation. Parameters such as voltage and number of electric pulses, as well as plasmid concentration and developmental stage of the animal were optimized for efficiency. The characteristics of the cultures were assessed by morphology and immunocytochemistry, and cell viability was determined by ethidium homodimer staining. Cell imaging and counting was performed using an automated high-throughput system. This procedure resulted in transfection efficiencies in the order of 22–25 % of cultured cells, encompassing both photoreceptors and non-photoreceptor neurons, and without affecting normal cell survival and differentiation. Finally, the feasibility of the technique for cell-autonomous studies of gene function in a biologically relevant context was tested by carrying out gain and loss-of-function experiments for the transcription factor PAX6. Electroporation of a plasmid construct expressing PAX6 resulted in a marked upregulation in the expression levels of this protein that could be measured in the whole culture as well as cell-intrinsically. This was accompanied by a significant decrease in the percentage of cells differentiating as photoreceptors among the transfected population. Conversely, electroporation of an RNAi construct targeting PAX6 resulted in a significant decrease in the levels of this protein, with a concomitant increase in the proportion of photoreceptors. Taken together these results provide strong proof-of-principle of the suitability of this technique for genetic studies in retinal cultures. The combination of the high transfection efficiency obtained by this method with automated high-throughput cell analysis supplies the scientific community with a powerful system for performing functional studies in a cell-autonomous manner. PMID:23370269
Vergara, M Natalia; Gutierrez, Christian; O'Brien, David R; Canto-Soler, M Valeria
2013-04-01
Primary retinal cultures constitute valuable tools not only for basic research on retinal cell development and physiology, but also for the identification of factors or drugs that promote cell survival and differentiation. In order to take full advantage of the benefits of this system it is imperative to develop efficient and reliable techniques for the manipulation of gene expression. However, achieving appropriate transfection efficiencies in these cultures has remained challenging. The purpose of this work was to develop and optimize a technique that would allow the transfection of chick retinal cells with high efficiency and reproducibility for multiple applications. We developed an ex vivo electroporation method applied to dissociated retinal cell cultures that offers a significant improvement over other currently available transfection techniques, increasing efficiency by five-fold. In this method, eyes were enucleated, devoid of RPE, and electroporated with GFP-encoding plasmids using custom-made electrodes. Electroporated retinas were then dissociated into single cells and plated in low density conditions, to be analyzed after 4 days of incubation. Parameters such as voltage and number of electric pulses, as well as plasmid concentration and developmental stage of the animal were optimized for efficiency. The characteristics of the cultures were assessed by morphology and immunocytochemistry, and cell viability was determined by ethidium homodimer staining. Cell imaging and counting was performed using an automated high-throughput system. This procedure resulted in transfection efficiencies in the order of 22-25% of cultured cells, encompassing both photoreceptors and non-photoreceptor neurons, and without affecting normal cell survival and differentiation. Finally, the feasibility of the technique for cell-autonomous studies of gene function in a biologically relevant context was tested by carrying out gain and loss-of-function experiments for the transcription factor PAX6. Electroporation of a plasmid construct expressing PAX6 resulted in a marked upregulation in the expression levels of this protein that could be measured in the whole culture as well as cell-intrinsically. This was accompanied by a significant decrease in the percentage of cells differentiating as photoreceptors among the transfected population. Conversely, electroporation of an RNAi construct targeting PAX6 resulted in a significant decrease in the levels of this protein, with a concomitant increase in the proportion of photoreceptors. Taken together these results provide strong proof-of-principle of the suitability of this technique for genetic studies in retinal cultures. The combination of the high transfection efficiency obtained by this method with automated high-throughput cell analysis supplies the scientific community with a powerful system for performing functional studies in a cell-autonomous manner. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin
2015-01-01
A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer. PMID:26339313
Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin
2015-07-01
A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer.
High-efficiency silicon heterojunction solar cells: Status and perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Wolf, S.; Geissbuehler, J.; Loper, P.
Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups aremore » reporting devices with conversion efficiencies well over 20 % on both-sides contacted n-type cells, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short-wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long- wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metallization grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The validity of this approach was convincingly demonstrated by Panasonic, Japan in 2014, reporting on an interdigitated back-contacted HJT cell with an efficiency of 25.6%, setting the new single-junction c-Si record. Finally, given the virtually perfect surface passivation and excellent red response of HJT solar cells, we anticipate these devices will also become the preferred bottom cell in ultra-high efficiency c-Si-based tandem devices, exploiting better the solar spectrum. Such tandem cells have the potential to overcome the fundamental single-junction limit of silicon solar cells (29.4%). Combining HJT cells with perovskite solar cells as top cell appears to be particularly appealing.« less
High-Concentration III-V Multijunction Solar Cells | Photovoltaic Research
| NREL High-Concentration III-V Multijunction Solar Cells High-Concentration III-V transfer to the high-efficiency cell industry, and the invention and development of the inverted metamorphic multijunction (IMM) cell technology. PV Research Other Materials & Devices pages: High
Huang, Like; Xu, Jie; Sun, Xiaoxiang; Du, Yangyang; Cai, Hongkun; Ni, Jian; Li, Juan; Hu, Ziyang; Zhang, Jianjun
2016-04-20
Currently, most efficient perovskite solar cells (PVKSCs) with a p-i-n structure require simultaneously electron transport layers (ETLs) and hole transport layers (HTLs) to help collecting photogenerated electrons and holes for obtaining high performance. ETL free planar PVKSC is a relatively new and simple structured solar cell that gets rid of the complex and high temperature required ETL (such as compact and mesoporous TiO2). Here, we demonstrate the critical role of high coverage of perovskite in efficient ETL free PVKSCs from an energy band and equivalent circuit model perspective. From an electrical point of view, we confirmed that the low coverage of perovskite does cause localized short circuit of the device. With coverage optimization, a planar p-i-n(++) device with a power conversion efficiency of over 11% was achieved, implying that the ETL layer may not be necessary for an efficient device as long as the perovskite coverage is approaching 100%.
Lu, Luyao; Chen, Wei; Xu, Tao; ...
2015-06-04
The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. As a result, the working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less
Cui, Haijun; Wang, Binshuai; Wang, Wenshuo; Hao, Yuwei; Liu, Chuanyong; Song, Kai; Zhang, Shudong; Wang, Shutao
2018-06-13
Developing low-cost and highly efficient nanobiochips are important for liquid biopsies, real-time monitoring, and precision medicine. By in situ growth of silica nanowires on a commercial frosted slide, we develop a biochip for effective circulating tumor cells (CTCs) detection after modifying epithelial cell adhesion molecule antibody (anti-EpCAM). The biochip shows the specificity and high capture efficiency of 85.4 ± 8.3% for prostate cancer cell line (PC-3). The microsized frosted slides and silica nanowires allow enhanced efficiency in capture EpCAM positive cells by synergistic topographic interactions. And the capture efficiency of biochip increased with the increase of silica nanowires length on frosted slide. The biochip shows that micro/nanocomposite structures improve the capture efficiency of PC-3 more than 70% toward plain slide. Furthermore, the nanobiochip has been successfully applied to identify CTCs from whole blood specimens of prostate cancer patients. Thus, this frosted slide-based biochip may provide a cheap and effective way of clinical monitoring of CTCs.
Methods and analysis of factors impact on the efficiency of the photovoltaic generation
NASA Astrophysics Data System (ADS)
Tianze, Li; Xia, Zhang; Chuan, Jiang; Luan, Hou
2011-02-01
First of all, the thesis elaborates two important breakthroughs which happened In the field of the application of solar energy in the 1950s.The 21st century the development of solar photovoltaic power generation will have the following characteristics: the continued high growth of industrial development, the significantly reducing cost of the solar cell, the large-scale high-tech development of photovoltaic industries, the breakthroughs of the film battery technology, the rapid development of solar PV buildings integration and combined to the grids. The paper makes principles of solar cells the theoretical analysis. On the basis, we study the conversion efficiency of solar cells, find the factors impact on the efficiency of the photovoltaic generation, solve solar cell conversion efficiency of technical problems through the development of new technology, and open up new ways to improve the solar cell conversion efficiency. Finally, the paper connecting with the practice establishes policies and legislation to the use of encourage renewable energy, development strategy, basic applied research etc.
Highly Efficient Perovskite Solar Cells with Substantial Reduction of Lead Content.
Liu, Chong; Fan, Jiandong; Li, Hongliang; Zhang, Cuiling; Mai, Yaohua
2016-10-18
Despite organometal halide perovskite solar cells have recently exhibited a significant leap in efficiency, the Sn-based perovskite solar cells still suffer from low efficiency. Here, a series homogeneous CH 3 NH 3 Pb (1-x) Sn x I 3 (0 ≤ x ≤ 1) perovskite thin films with full coverage were obtained via solvent engineering. In particular, the intermediate complexes of PbI 2 /(SnI 2 )∙(DMSO) x were proved to retard the crystallization of CH 3 NH 3 SnI 3 , thus allowing the realization of high quality Sn-introduced perovskite thin films. The external quantum efficiency (EQE) of as-prepared solar cells were demonstrated to extend a broad absorption minimum over 50% in the wavelength range from 350 to 950 nm accompanied by a noteworthy absorption onset up to 1050 nm. The CH 3 NH 3 Pb 0.75 Sn 0.25 I 3 perovskite solar cells with inverted structure were consequently realized with maximum power conversion efficiency (PCE) of 14.12%.
Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff
2015-02-01
Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.
III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration
NASA Astrophysics Data System (ADS)
Cariou, Romain; Benick, Jan; Feldmann, Frank; Höhn, Oliver; Hauser, Hubert; Beutel, Paul; Razek, Nasser; Wimplinger, Markus; Bläsi, Benedikt; Lackner, David; Hermle, Martin; Siefer, Gerald; Glunz, Stefan W.; Bett, Andreas W.; Dimroth, Frank
2018-04-01
Silicon dominates the photovoltaic industry but the conversion efficiency of silicon single-junction solar cells is intrinsically constrained to 29.4%, and practically limited to around 27%. It is possible to overcome this limit by combining silicon with high-bandgap materials, such as III-V semiconductors, in a multi-junction device. Significant challenges associated with this material combination have hindered the development of highly efficient III-V/Si solar cells. Here, we demonstrate a III-V/Si cell reaching similar performances to standard III-V/Ge triple-junction solar cells. This device is fabricated using wafer bonding to permanently join a GaInP/GaAs top cell with a silicon bottom cell. The key issues of III-V/Si interface recombination and silicon's weak absorption are addressed using poly-silicon/SiOx passivating contacts and a novel rear-side diffraction grating for the silicon bottom cell. With these combined features, we demonstrate a two-terminal GaInP/GaAs//Si solar cell reaching a 1-sun AM1.5G conversion efficiency of 33.3%.
Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.
Hu, Renchong; Cola, Baratunde A; Haram, Nanda; Barisci, Joseph N; Lee, Sergey; Stoughton, Stephanie; Wallace, Gordon; Too, Chee; Thomas, Michael; Gestos, Adrian; Cruz, Marilou E Dela; Ferraris, John P; Zakhidov, Anvar A; Baughman, Ray H
2010-03-10
Low efficiencies and costly electrode materials have limited harvesting of thermal energy as electrical energy using thermo-electrochemical cells (or "thermocells"). We demonstrate thermocells, in practical configurations (from coin cells to cells that can be wrapped around exhaust pipes), that harvest low-grade thermal energy using relatively inexpensive carbon multiwalled nanotube (MWNT) electrodes. These electrodes provide high electrochemically accessible surface areas and fast redox-mediated electron transfer, which significantly enhances thermocell current generation capacity and overall efficiency. Thermocell efficiency is further improved by directly synthesizing MWNTs as vertical forests that reduce electrical and thermal resistance at electrode/substrate junctions. The efficiency of thermocells with MWNT electrodes is shown to be as high as 1.4% of Carnot efficiency, which is 3-fold higher than for previously demonstrated thermocells. With the cost of MWNTs decreasing, MWNT-based thermocells may become commercially viable for harvesting low-grade thermal energy.
High-Efficiency, Multijunction Solar Cells for Large-Scale Solar Electricity Generation
NASA Astrophysics Data System (ADS)
Kurtz, Sarah
2006-03-01
A solar cell with an infinite number of materials (matched to the solar spectrum) has a theoretical efficiency limit of 68%. If sunlight is concentrated, this limit increases to about 87%. These theoretical limits are calculated using basic physics and are independent of the details of the materials. In practice, the challenge of achieving high efficiency depends on identifying materials that can effectively use the solar spectrum. Impressive progress has been made with the current efficiency record being 39%. Today's solar market is also showing impressive progress, but is still hindered by high prices. One strategy for reducing cost is to use lenses or mirrors to focus the light on small solar cells. In this case, the system cost is dominated by the cost of the relatively inexpensive optics. The value of the optics increases with the efficiency of the solar cell. Thus, a concentrator system made with 35%- 40%-efficient solar cells is expected to deliver 50% more power at a similar cost when compare with a system using 25%-efficient cells. Today's markets are showing an opportunity for large concentrator systems that didn't exist 5-10 years ago. Efficiencies may soon pass 40% and ultimately may reach 50%, providing a pathway to improved performance and decreased cost. Many companies are currently investigating this technology for large-scale electricity generation. The presentation will cover the basic physics and more practical considerations to achieving high efficiency as well as describing the current status of the concentrator industry. This work has been authored by an employee of the Midwest Research Institute under Contract No. DE- AC36-99GO10337 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.
Air Force Research Laboratory Success Stories: A Review of 1997/1998
1999-03-01
one year). Assuming that 60 percent of the electrical power required for these sites could be generated with solar cells , the higher efficiency AMTEC ...engineers ability to meet the cost goal of the Mars Pathfinder program. Accomplishment High efficiency solar cells and non-rechargeable batteries developed...integrated manufacturing system to efficiently mix low volume and high volume processing. MPCL metrics have been defined in categories which reflect
Zhao, Dongbing; Zhu, Zonglong; Kuo, Ming -Yu; ...
2016-06-08
Hexaazatrinaphthylene (HATNA) derivatives have been successfully shown to function as efficient electron-transporting materials (ETMs) for perovskite solar cells (PVSCs). The cells demonstrate a superior power conversion efficiency (PCE) of 17.6% with negligible hysteresis. Furthermore, this study provides one of the first nonfullerene small-moleculebased ETMs for high-performance p–i–n PVSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Mengjin; Kim, Dong Hoe; Yu, Yue
A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se 2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA 0.83Cs 0.17Pb(I 0.6Br 0.4) 3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I.more » Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.« less
Yang, Mengjin; Kim, Dong Hoe; Yu, Yue; ...
2017-10-02
A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se 2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA 0.83Cs 0.17Pb(I 0.6Br 0.4) 3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I.more » Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.« less
Thermodynamics of photon-enhanced thermionic emission solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reck, Kasper, E-mail: kasper.reck@nanotech.dtu.dk; Hansen, Ole, E-mail: ole.hansen@nanotech.dtu.dk; CINF Center for Individual Nanoparticle Functionality, Technical University of Denmark, Kgs. Lyngby 2800
2014-01-13
Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures.
Karalis, Aristeidis; Joannopoulos, J D
2016-07-01
We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm(2) with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm(2) with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm(2) with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a 'squeezed' narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells.
‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion
Karalis, Aristeidis; Joannopoulos, J. D.
2016-01-01
We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm2 with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm2 with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm2 with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a ‘squeezed’ narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells. PMID:27363522
Werner, Jeremie; Barraud, Loris; Walter, Arnaud; ...
2016-07-30
Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm 2), is still far from standard industrial sizes. Here, we present a 1 cm 2 near-infrared transparent perovskite solar cell with 14.5% steadystate efficiency, as compared to 16.4% on 0.25 cm 2. By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency ofmore » 25.2%, with a 0.25 cm 2 top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm 2 large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify efficiency-limiting factors and discuss the potential for further performance improvement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, Jeremie; Barraud, Loris; Walter, Arnaud
Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm 2), is still far from standard industrial sizes. Here, we present a 1 cm 2 near-infrared transparent perovskite solar cell with 14.5% steadystate efficiency, as compared to 16.4% on 0.25 cm 2. By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency ofmore » 25.2%, with a 0.25 cm 2 top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm 2 large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify efficiency-limiting factors and discuss the potential for further performance improvement.« less
Pilot line report: Development of a high efficiency thin silicon solar cell
NASA Technical Reports Server (NTRS)
1978-01-01
Experimental technology advances were implemented to increase the conversion efficiency of ultrathin 2cm x 2cm cells, to demonstrate a capability for fabricating such cells at a rate of 10,000 per month, and to fabricate 200 large-area ultrathin cells to determine their feasibility of manufacture. A production rate of 10,000 50 micron m cells per month with lot average AM0 efficiencies of 11.5% was demonstrated, with peak efficiencies of 13.5% obtained. Losses in most stages of the processing were minimized, the remaining exceptions being in the photolithography and metallization steps for front contact generation and breakage handling. The 5cm x 5cm cells were fabricated with a peak yield in excess of 40% for over 10% AM0 efficiency. Greater fabrication volume is needed to fully evaluate the expected yield and efficiency levels for large cells.
Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka
2016-01-01
Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%). PMID:27527565
Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I; Maruyama, Shigeo; Matsuo, Yutaka
2016-08-16
Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via 'sandwich transfer', and MoOx thermal doping via 'bridge transfer'. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).
NASA Astrophysics Data System (ADS)
Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing
2014-06-01
Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400-800 nm) and bottom (800-1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.
Recombination phenomena in high efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Sah, C. T.
1985-01-01
The dominant recombination phenomena which limit the highest efficiency attainable in silicon solar cells under terrestrial sunlight are reviewed. The ultimate achievable efficiency is limited by the two intrinsic recombination mechanisms, the interband Auger recombination and interband Radiative recombination, both of which occur in the entire cell body but principally in the base layer. It is suggested that an optimum (26%) cell design is one with lowly doped 50 to 100 micron thick base, a perfect BSF, and zero extrinsic recombination such as the thermal mechanism at recombination centers the Shockley-Read-Hall process (SRH) in the bulk, on the surface and at the interfaces. The importance of recombination at the interfaces of a high-efficiency cell is demonstrated by the ohmic contact on the back surface whose interface recombination velocity is infinite. The importance of surface and interface recombination is demonstrated by representing the auger and radiative recombination losses by effective recombination velocities. It is demonstrated that the three highest efficiency cells may all be limited by the SRH recombination losses at recombination centers in the base layer.
NASA Astrophysics Data System (ADS)
Baran, Derya; Ashraf, Raja Shahid; Hanifi, David A.; Abdelsamie, Maged; Gasparini, Nicola; Röhr, Jason A.; Holliday, Sarah; Wadsworth, Andrew; Lockett, Sarah; Neophytou, Marios; Emmott, Christopher J. M.; Nelson, Jenny; Brabec, Christoph J.; Amassian, Aram; Salleo, Alberto; Kirchartz, Thomas; Durrant, James R.; McCulloch, Iain
2017-03-01
Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 +/- 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 +/- 0.4% efficiency and a high open-circuit voltage of 1.03 +/- 0.01 V.
NASA Astrophysics Data System (ADS)
Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo
2015-01-01
We demonstrate a high-efficiency solar-thermophotovoltaic system (STPV) using a monolithic, planar, and spectrally selective absorber/emitter. A complete STPV system using gallium antimonide (GaSb) cells was designed and fabricated to conduct power generation tests. To produce a high-efficiency STPV, it is important to match the thermal radiation spectrum with the sensitive region of the GaSb cells. Therefore, to reach high temperatures with low incident power, a planar absorber/emitter is incorporated for controlling the thermal radiation spectrum. This multilayer coating consists of thin-film tungsten sandwiched by yttria-stabilized zirconia. The system efficiency is estimated to be 16% when accounting for the optical properties of the fabricated absorber/emitter. Power generation tests using a high-concentration solar simulator show that the absorber/emitter temperature peaks at 1640 K with an incident power density of 45 W/cm2, which can be easily obtained by low-cost optics such as Fresnel lenses. The conversion efficiency became 23%, exceeding the Shockley-Queisser limit for GaSb, with a bandgap of 0.67 eV. Furthermore, a total system efficiency of 8% was obtained with the view factor between the emitter and the cell assumed to be 1.
High-efficiency, radiation-resistant GaAs space cells
NASA Technical Reports Server (NTRS)
Bertness, K. A.; Ristow, M. Ladle; Grounner, M.; Kuryla, M. S.; Werthen, J. G.
1991-01-01
Although many GaAs solar cells are intended for space applicatons, few measurements of cell degradation after radiation are available, particularly for cells with efficiencies exceeding 20 percent (one-sun, AMO). Often the cell performance is optimized for the highest beginning-of-life (BOL) efficiency, despite the unknown effect of such design on end-of-life (EOL) efficiencies. The results of a study of the radiation effects on p-n GaAs cells are presented. The EOL efficiency of GaAs space cell can be increased by adjusting materials growth parameters, resulting in a demonstration of 16 percent EOL efficiency at one-sun, AMO. Reducing base doping levels to below 3 x 10(exp 17)/cu m and decreasing emitter thickness to 0.3 to 0.5 micron for p-n cells led to significant improvements in radiation hardness as measured by EOL/BOL efficiency ratios for irradiation of 10(exp -15)/sq cm electrons at 1 MeV. BOL efficiency was not affected by changes in emitter thickness but did improve with lower base doping.
The 25 percent-efficient GaAs Cassegrainian concentrator cell
NASA Technical Reports Server (NTRS)
Hamaker, H. C.; Grounner, M.; Kaminar, N. R.; Kuryla, M. S.; Ladle, M. J.; Liu, D. D.; Macmillan, H. F.; Partain, L. D.; Virshup, G. F.; Werthen, J. G.
1989-01-01
Very high-efficiency GaAs Cassegrainian solar cells have been fabricated in both the n-p and p-n configurations. The n-p configuration exhibits the highest efficiency at concentration, the best cells having an efficiency eta of 24.5 percent (100X, AM0, temperature T = 28 C). Although the cells are designed for operation at this concentration, peak efficiency is observed near 300 suns (eta = 25.1 percent). To our knowledge, this is the highest reported solar cell efficiency for space applications. The improvement in efficiency over that reported at the previous SPRAT conference is attributed primarily to lower series resistance and improved grid-line plating procedures. Using previously measured temperature coefficients, researchers estimate that the n-p GaAs cells should deliver approximately 22.5 percent efficiency at the operating conditions of 100 suns and T = 80 C. This performance exceeds the NASA program goal of 22 percent for the Cassegrainian cell. One hundred Cassegrainian cells have been sent to NASA as deliverables, sixty-eight in the n-p configuration and thirty-two in the p-n configuration.
Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells
NASA Astrophysics Data System (ADS)
Bi, Enbing; Chen, Han; Xie, Fengxian; Wu, Yongzhen; Chen, Wei; Su, Yanjie; Islam, Ashraful; Grätzel, Michael; Yang, Xudong; Han, Liyuan
2017-06-01
Long-term stability is crucial for the future application of perovskite solar cells, a promising low-cost photovoltaic technology that has rapidly advanced in the recent years. Here, we designed a nanostructured carbon layer to suppress the diffusion of ions/molecules within perovskite solar cells, an important degradation process in the device. Furthermore, this nanocarbon layer benefited the diffusion of electron charge carriers to enable a high-energy conversion efficiency. Finally, the efficiency on a perovskite solar cell with an aperture area of 1.02 cm2, after a thermal aging test at 85 °C for over 500 h, or light soaking for 1,000 h, was stable of over 15% during the entire test. The present diffusion engineering of ions/molecules and photo generated charges paves a way to realizing long-term stable and highly efficient perovskite solar cells.
High-efficiency silicon heterojunction solar cells: Status and perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Wolf, S.
Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups aremore » reporting devices with conversion efficiencies well over 20 % on n-type wafers, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short- wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long-wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metalisation grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The validity of this approach was convincingly demonstrated by Panasonic, Japan in 2014, reporting on an interdigitated back-contacted HJT cell with an efficiency of 25.6%, setting the new single-junction c-Si record. Finally, given the virtually perfect surface passivation and excellent red response of HJT solar cells, we anticipate these devices will also become the preferred bottom cell in ultra-high efficiency c-Si-based tandem devices, exploiting better the solar spectrum. Such tandem cells have the potential to overcome the fundamental single-junction limit of silicon solar cells (29.4%). Combining HJT cells with perovskite solar cells as top cell appears to be particularly appealing.« less
Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk
2017-06-27
Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm 2 active area and 18% over a 1 cm 2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.
Polychiral semiconducting carbon nanotube-fullerene solar cells.
Gong, Maogang; Shastry, Tejas A; Xie, Yu; Bernardi, Marco; Jasion, Daniel; Luck, Kyle A; Marks, Tobin J; Grossman, Jeffrey C; Ren, Shenqiang; Hersam, Mark C
2014-09-10
Single-walled carbon nanotubes (SWCNTs) have highly desirable attributes for solution-processable thin-film photovoltaics (TFPVs), such as broadband absorption, high carrier mobility, and environmental stability. However, previous TFPVs incorporating photoactive SWCNTs have utilized architectures that have limited current, voltage, and ultimately power conversion efficiency (PCE). Here, we report a solar cell geometry that maximizes photocurrent using polychiral SWCNTs while retaining high photovoltage, leading to record-high efficiency SWCNT-fullerene solar cells with average NREL certified and champion PCEs of 2.5% and 3.1%, respectively. Moreover, these cells show significant absorption in the near-infrared portion of the solar spectrum that is currently inaccessible by many leading TFPV technologies.
Zhao, Dewei; Yu, Yue; Wang, Changlei; ...
2017-03-01
Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dewei; Yu, Yue; Wang, Changlei
Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less
Enhancing Solar Cell Efficiencies through 1-D Nanostructures
2009-01-01
The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.
Materials That Enhance Efficiency and Radiation Resistance of Solar Cells
NASA Technical Reports Server (NTRS)
Sun, Xiadong; Wang, Haorong
2012-01-01
A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.
Breakthrough: micro-electronic photovoltaics
Okandan, Murat; Gupta, Vipin
2018-01-16
Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.
Development of an improved high efficiency thin silicon solar cell
NASA Technical Reports Server (NTRS)
Lindmayer, J.
1978-01-01
Efforts were concerned with optimizing techniques for thinning silicon slices in NaOH etches, initial investigations of surface texturing, variation of furnace treatments to improve cell efficiency, initial efforts on optimization of gridline and cell sizes and Pilot Line fabrication of quantities of 2 cm x 2 cm 50 micron thick cells.
Choice of Substrate Material for Epitaxial CdTe Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Tao; Kanevce, Ana; Sites, James R.
2015-06-14
Epitaxial CdTe with high quality, low defect density, and high carrier concentration should in principle yield high-efficiency photovoltaic devices. However, insufficient effort has been given to explore the choice of substrate for high-efficiency epitaxial CdTe solar cells. In this paper, we use numerical simulations to investigate three crystalline substrates: silicon (Si), InSb, and CdTe each substrate material are generally discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnabel, Manuel; Klein, Talysa R.; Jain, Nikhil
Solar cells made from bulk crystalline silicon (c-Si) dominate the market, but laboratory efficiencies have stagnated because the current record efficiency of 26.3% is already very close to the theoretical limit of 29.4% for a single-junction c-Si cell. In order to substantially boost the efficiency of Si solar cells we have been developing stacked III-V/Si tandem cells, recently attaining efficiencies above 32% in four-terminal configuration. In this contribution, we use state-of-the-art III-V cells coupled with equivalent circuit simulations to compare four-terminal (4T) to three- and two-terminal (3T, 2T) operation. Equivalent circuit simulations are used to show that tandem cells canmore » be operated just as efficiently using three terminals as with four terminals. However, care must be taken not to overestimate 3T efficiency, as the two circuits used to extract current interact, and a method is described to accurately determine this efficiency. Experimentally, a 4T GaInP/Si tandem cell utilizing an interdigitated back contact cell is shown, exhibiting a 4T efficiency of 31.5% and a 2T efficiency of 28.1%. In 3T configuration, it is used to verify the finding from simulation that 3T efficiency is overestimated when interactions between the two circuits are neglected. Considering these, a 3T efficiency approaching the 4T efficiency is found, showing that 3T operation is efficient, and an outlook on fully integrated high-efficiency 3T and 2T tandem cells is given.« less
A polymer scaffold for self-healing perovskite solar cells
NASA Astrophysics Data System (ADS)
Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing
2016-01-01
Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ~16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.
Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%
NASA Astrophysics Data System (ADS)
Wu, Tongyue; Wu, Jihuai; Tu, Yongguang; He, Xin; Lan, Zhang; Huang, Miaoliang; Lin, Jianming
2017-10-01
The perovskite layer is the most crucial factor for the high performance perovskite solar cells. Based on solvent engineering, we develop a ternary-mixed-solvent method for the growth of high-quality [Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3] cation-anion-mixed perovskite films by introducing N-methyl-2-pyrrolidone (NMP) into the precursor mixed solution. By controlling rapid nucleation and retarding crystal growth via intermediate phase PbI2-NMP (Lewis acid-base adduct), a dense, large grain, pinhole-free and long charge carrier lifetime perovskite film is obtained. By optimizing the precursor solvent composition, the perovskite solar cell achieves an impressive power conversion efficiency of 19.61% under one-sun illumination. The research presented here provides a facile, low-cost and highly efficient way for the preparation of perovskite solar cells.
A polymer scaffold for self-healing perovskite solar cells
Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing
2016-01-01
Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization. PMID:26732479
A polymer scaffold for self-healing perovskite solar cells.
Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing
2016-01-06
Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼ 16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.
Highly Efficient Inverted Perovskite Solar Cells with CdSe QDs/LiF Electron Transporting Layer
NASA Astrophysics Data System (ADS)
Tan, Furui; Xu, Weizhe; Hu, Xiaodong; Yu, Ping; Zhang, Weifeng
2017-12-01
Organic/inorganic hybrid perovskite solar cell has emerged as a very promising candidate for the next generation of near-commercial photovoltaic devices. Here in this work, we focus on the inverted perovskite solar cells and have found that remarkable photovoltaic performance could be obtained when using cadmium selenide (CdSe) quantum dots (QDs) as electron transporting layer (ETL) and lithium fluoride (LiF) as the buffer, with respect to the traditionally applied and high-cost [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The easily processed and low-cost CdSe QDs/LiF double layer could facilitate convenient electron-transfer and collection at the perovskite/cathode interface, promoting an optoelectric conversion efficiency of as high as 15.1%, very close to that with the traditional PCBM ETL. Our work provides another promising choice on the ETL materials for the highly efficient and low-cost perovskite solar cells.
Feng, Guitao; Li, Junyu; Colberts, Fallon J M; Li, Mengmeng; Zhang, Jianqi; Yang, Fan; Jin, Yingzhi; Zhang, Fengling; Janssen, René A J; Li, Cheng; Li, Weiwei
2017-12-27
A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π-π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.
Huang, Zhen; Wang, Song; Zhang, Tianjin
2018-01-01
Perovskite solar cells have attracted great attention in recent years, due to their high conversion efficiency and solution-processable fabrication. However, most of the solar cells with high efficiency in the literature are prepared employing TiO2 as electron transport material, which needs sintering at a temperature higher than 450 °C, and is not applicable to flexible device and low-cost fabrication. Herein, the MAPbI3 perovskite solar cells are fabricated at a low temperature of 150 °C with SnO2 as the electron transport layer. By dropping the antisolvent of ethyl acetate onto the perovskite precursor films during the spin coating process, compact MAPbI3 films without pinholes are obtained. The addition of ethyl acetate is found to play an important role in regulating the nucleation, which subsequently improves the compactness of the film. The quality of MAPbI3 films are further improved significantly through Ostwald recrystallization by optimizing the thermal treatment. The crystallinity is enhanced, the grain size is enlarged, and the defect density is reduced. Accordingly, the prepared MAPbI3 perovskite solar cell exhibits a record-high conversion efficiency, outstanding reproducibility, and stability, owing to the reduced electron recombination. The average and best efficiency reaches 19.2% and 20.3%, respectively. The device without encapsulation maintains 94% of the original efficiency after storage in ambient air for 600 h. PMID:29751646
Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells
2014-09-01
High-Efficiency Solar - Cell Based on Dye-Sensitized Colloidal TiO2 Films,” a DSSC consists of four main components: a photoanode, a counter... solar cell modules. 2. Experiment and Calculations 2.1 Materials Commercial TiO2 paste was purchased from Dyesol, and additional nanophase TiO2 ...B.; Grätzel, M. A Low-Cost, High Efficiency Solar Cell Based on Dye_Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740. 2. Snaith, H. J
Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells
Yang, Zhibin; Rajagopal, Adharsh; Chueh, Chu -Chen; ...
2016-08-22
A low-bandgap (1.33 eV) Sn-based MA 0.5FA 0.5Pb 0.75Sn 0.25I 3 perovskite is developed via combined compositional, process, and interfacial engineering. It can deliver a high power conversion efficiency (PCE) of 14.19%. Lastly, a four-terminal all-perovskite tandem solar cell is demonstrated by combining this low-bandgap cell with a semitransparent MAPbI 3 cell to achieve a high efficiency of 19.08%.
Proceedings of the 14Th Space Photovoltaic Research and Technology Conference (SPRAT 14)
NASA Technical Reports Server (NTRS)
Landis, Geoffrey (Compiler)
1995-01-01
The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.
Huang, Jiang; Carpenter, Joshua H.; Li, Chang -Zhi; ...
2015-12-02
A novel, yet simple solution fabrication technique to address the trade-off between photocurrent and fill factor in thick bulk heterojunction organic solar cells is described. Lastly, the inverted off-center spinning technique promotes a vertical gradient of the donor–acceptor phase-separated morphology, enabling devices with near 100% internal quantum efficiency and a high power conversion efficiency of 10.95%.
500 Watt Solar AMTEC Power System for Small Spacecraft.
1995-03-01
Thermal Modeling of High Efficiency AMTEC Cells ," Proceedings of the 24th National Heat Transfer Conference. Journal Article 12. SPACE...power flow calculation is the power required by the AMTEC cells which is the cell output power over the cell efficiency . The system model also...Converter ( AMTEC ) cell , called the multi-tube cell , integrated with an individual Thermal Energy Storage (TES) unit. The
NASA Technical Reports Server (NTRS)
Mandelkorn, J.; Lamneck, J. H.
1975-01-01
The characteristics and behavior of p(+), p solar cells were investigated. The p(+), p cells were made by the removal of the n(+) surface layers from n(+), p p(+), BSF cells followed by application of a suitable contact to the resultant p(+), p structures. The open circuit voltage of p(+), p cells was found to increase with increasing 'p' bulk resistivity. The measured open circuit velocity-temperature coefficients were positive and increased with increasing resistivity. An outline of prior limitations in solar cell design is presented, and the removal of these limitations through use of BSF effects is pointed out. The study of BSF effects made feasible production of very thin high efficiency silicon cells as well as high resistivity-high efficiency cells, two desirable types of silicon cells which were previously impossible to make.
Tavakoli, Mohammad Mahdi; Tsui, Kwong-Hoi; Zhang, Qianpeng; He, Jin; Yao, Yan; Li, Dongdong; Fan, Zhiyong
2015-10-27
Flexible thin film solar cells have attracted a great deal of attention as mobile power sources and key components for building-integrated photovoltaics, due to their light weight and flexible features in addition to compatibility with low-cost roll-to-roll fabrication processes. Among many thin film materials, organometallic perovskite materials are emerging as highly promising candidates for high efficiency thin film photovoltaics; however, the performance, scalability, and reliability of the flexible perovskite solar cells still have large room to improve. Herein, we report highly efficient, flexible perovskite solar cells fabricated on ultrathin flexible glasses. In such a device structure, the flexible glass substrate is highly transparent and robust, with low thermal expansion coefficient, and perovskite thin film was deposited with a thermal evaporation method that showed large-scale uniformity. In addition, a nanocone array antireflection film was attached to the front side of the glass substrate in order to improve the optical transmittance and to achieve a water-repelling effect at the same time. It was found that the fabricated solar cells have reasonable bendability, with 96% of the initial value remaining after 200 bending cycles, and the power conversion efficiency was improved from 12.06 to 13.14% by using the antireflection film, which also demonstrated excellent superhydrophobicity.
Liquid-Phase Deposition of Single-Phase Alpha-Copper-Indium-Diselenide
NASA Technical Reports Server (NTRS)
Cowen, J.; Lucas, L.; Ernst, F.; Pirouz, P.; Hepp, A.; Bailey, S.
2005-01-01
The success of exploratory missions in outer space often depends on a highly efficient renewable energy supply, as provided by solar cells. Figure 1 shows a well-known example: The robotic vehicle "Rover," constructed for NASA s "Mars Pathfinder" mission. The solar cells for such applications not only need to have high conversion efficiency, but must possess a high specific power, thus a high power output per unit mass. Since future missions will demand for large aggregates of solar cells and space flights are expensive, the solar cells must furthermore be available at low costs (per unit power output) and - very important in outer space - have a long lifetime and a high resistance against structural damage introduced by irradiation with high-energy electrons and protons.
Fabrication & characterization of thin film Perovskite solar cells under ambient conditions
NASA Astrophysics Data System (ADS)
Shah, Vivek T.
High efficiency solar cells based on inorganic materials such as silicon have been commercialized and used to harness energy from the sun and convert it into electrical energy. However, they are energy-intensive and rigid. Thin film solar cells based on inorganic-organic hybrid lead halide perovskite compounds have the potential to be a disruptive technology in the field of renewable energy sector of the economy. Perovskite solar cell (PSC) technology is a viable candidate for low-cost large scale production as it is solution processable at low temperature on a flexible substrate. However, for commercialization, PSCs need to compete with the cost and efficiency of crystalline silicon solar cells. High efficiency PSCs have been fabricated under highly controlled conditions in what is known as a glove-box, which adds to the cost of fabrication of PSCs. This additional cost can be significantly reduced by eliminating the use of glove-box for fabrication. Therefore, in this work, thin film PSCs were fabricated at ambient conditions on glass substrates. A power conversion efficiency of 5.6% was achieved with optimum fabrication control and minimal exposure to moisture.
Silicon solar cells by ion implantation and pulsed energy processing
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.; Minnucci, J. A.; Shaughnessy, T. S.; Greenwald, A. C.
1976-01-01
A new method for fabrication of silicon solar cells is being developed around ion implantation in conjunction with pulsed electron beam techniques to replace conventional furnace processing. Solar cells can be fabricated totally in a vacuum environment at room temperature. Cells with 10% AM0 efficiency have been demonstrated. High efficiency cells and effective automated processing capabilities are anticipated.
High-Efficiency Thin-Film Silicon-on-GaP Solar Cell for Improved Radiation Resistance.
1987-09-01
UNCLASSIFIED MyUM 21 LIX E / 82H M D 132 11111_Lt5l1. t FILE UPI" AD-A190 268 AFWAL-TR-87-2070 HIGH-EFFICIENCY THIN- FILM SILICON-ON-GaP SOLAR CELL...EFFICIENCY THIN- FILM SILICON-ON-GaP SOLAR CELL FOR IMPROVED RADIATION RESISTANCE 12. PERSONAL AUTHOR(S) JEROME S. CULIK 13a. TYPE OF REPORT 13b. TIME...C tinue on reverse if necessary and identify by block number) 10 01 SILICONs THIN* FILM , . HETEROEPITAXIAL, RADIATION, 10 01 i GALLIUM PHOSPHIDE 19
Baran, D; Kirchartz, T; Wheeler, S; Dimitrov, S; Abdelsamie, M; Gorman, J; Ashraf, R S; Holliday, S; Wadsworth, A; Gasparini, N; Kaienburg, P; Yan, H; Amassian, A; Brabec, C J; Durrant, J R; McCulloch, I
2016-12-01
Optimization of the energy levels at the donor-acceptor interface of organic solar cells has driven their efficiencies to above 10%. However, further improvements towards efficiencies comparable with inorganic solar cells remain challenging because of high recombination losses, which empirically limit the open-circuit voltage ( V oc ) to typically less than 1 V. Here we show that this empirical limit can be overcome using non-fullerene acceptors blended with the low band gap polymer PffBT4T-2DT leading to efficiencies approaching 10% (9.95%). We achieve V oc up to 1.12 V, which corresponds to a loss of only E g / q - V oc = 0.5 ± 0.01 V between the optical bandgap E g of the polymer and V oc . This high V oc is shown to be associated with the achievement of remarkably low non-geminate and non-radiative recombination losses in these devices. Suppression of non-radiative recombination implies high external electroluminescence quantum efficiencies which are orders of magnitude higher than those of equivalent devices employing fullerene acceptors. Using the balance between reduced recombination losses and good photocurrent generation efficiencies achieved experimentally as a baseline for simulations of the efficiency potential of organic solar cells, we estimate that efficiencies of up to 20% are achievable if band gaps and fill factors are further optimized.
Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs.
Xin, Jige; Yang, Huaqiang; Fan, Nana; Zhao, Bentian; Ouyang, Zhen; Liu, Zhaoming; Zhao, Yu; Li, Xiaoping; Song, Jun; Yang, Yi; Zou, Qingjian; Yan, Quanmei; Zeng, Yangzhi; Lai, Liangxue
2013-01-01
Inbred mini-pigs are ideal organ donors for future human xenotransplantations because of their clear genetic background, high homozygosity, and high inbreeding endurance. In this study, we chose fibroblast cells from a highly inbred pig line called Banna mini-pig inbred line (BMI) as donor nuclei for nuclear transfer, combining with transcription activator-like effector nucleases (TALENs) and successfully generated α-1,3-galactosyltransferase (GGTA1) gene biallelic knockout (KO) pigs. To validate the efficiency of TALEN vectors, in vitro-transcribed TALEN mRNAs were microinjected into one-cell stage parthenogenetically activated porcine embryos. The efficiency of indel mutations at the GGTA1-targeting loci was as high as 73.1% (19/26) among the parthenogenetic blastocysts. TALENs were co-transfected into porcine fetal fibroblasts of BMI with a plasmid containing neomycin gene. The targeting efficiency reached 89.5% (187/209) among the survived cell clones after a 10 d selection. More remarkably 27.8% (58/209) of colonies were biallelic KO. Five fibroblast cell lines with biallelic KO were chosen as nuclear donors for somatic cell nuclear transfer (SCNT). Three miniature piglets with biallelic mutations of the GGTA1 gene were achieved. Gal epitopes on the surface of cells from all the three biallelic KO piglets were completely absent. The fibroblasts from the GGTA1 null piglets were more resistant to lysis by pooled complement-preserved normal human serum than those from wild-type pigs. These results indicate that a combination of TALENs technology with SCNT can generate biallelic KO pigs directly with high efficiency. The GGTA1 null piglets with inbred features created in this study can provide a new organ source for xenotransplantation research.
NASA Astrophysics Data System (ADS)
Lu, Huijie; Peng, Zhangli
2017-11-01
Our goal is to develop a high-efficiency multiscale modeling method to predict the stress and deformation of cells during the interactions with their microenvironments in microcirculation and microfluidic devices, including red blood cells (RBCs) and circulating tumor cells (CTCs). There are more than 1 billion people in the world suffering from RBC diseases, e.g. anemia, sickle cell diseases, and malaria. The mechanical properties of RBCs are changed in these diseases due to molecular structure alternations, which is not only important for understanding the disease pathology but also provides an opportunity for diagnostics. On the other hand, the mechanical properties of cancer cells are also altered compared to healthy cells. This can lead to acquired ability to cross the narrow capillary networks and endothelial gaps, which is crucial for metastasis, the leading cause of cancer mortality. Therefore, it is important to predict the deformation and stress of RBCs and CTCs in microcirculations. We are developing a high-efficiency multiscale model of cell-fluid interaction to study these two topics.
Theoretical and experimental research in space photovoltaics
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria
1995-01-01
Theoretical and experimental research is outlined for indium phosphide solar cells, other solar cells for space applications, fabrication and performance measurements of shallow homojunction InP solar cells for space applications, improved processing steps and InP material characterization with applications to fabrication of high efficiency radiation resistant InP solar cells and other opto-electronic InP devices, InP solar cells fabricated by thermal diffusion, experiment-based predicted high efficiency solar cells fabricated by closed-ampoule thermal diffusion, radiation resistance of diffused junction InP solar cells, chemical and electrochemical characterization and processing of InP diffused structures and solar cells, and progress in p(+)n InP diffused solar cells.
NASA Astrophysics Data System (ADS)
Zang, Yue; Gao, Xiumin; Xin, Qing; Lin, Jun; Zhao, Jufeng
2017-06-01
A highly efficient donor polymer, PTB7-Th, combined with acceptor fullerene PC71BM was introduced as the subcell in the series-connected tandem devices to achieve high-performance polymer tandem solar cells. Design of the device architecture was investigated using modeling and simulation methods to identify the optimal structure and to predict performance of the tandem cells. To address the challenge of current matching between the constituent subcells, the effect of active layer thickness, different device structure, and use of ultrathin Ag film were analyzed. It was found that the distribution of optical intensity in the tandem structure can be optimized through the optical spacer effect of interfacial layers and micro-cavity effect derived from the embedded ultrathin Ag film. Our results indicate that the efficient light utilization with appropriate subcells can allow achievement of power conversion efficiency of 12%, which can be 25% higher than that of a single cell of PTB7-Th.
NASA Astrophysics Data System (ADS)
Liu, Kong; Lu, Shudi; Yue, Shizhong; Ren, Kuankuan; Azam, Muhammad; Tan, Furui; Wang, Zhijie; Qu, Shengchun; Wang, Zhanguo
2016-11-01
To enable organic solar cells with a competent charge transport efficiency, reducing the thickness of active layer without sacrificing light absorption efficiency turns out to be of high feasibility. Herein, organic solar cells on wrinkled metal surface are designed. The purposely wrinkled Al/Au film with a smooth surface provides a unique scaffold for constructing thin organic photovoltaic devices by avoiding pinholes and defects around sharp edges in conventional nanostructures. The corresponding surface light trapping effect enables the thin active layer (PTB7-Th:PC71BM) with a high absorption efficiency. With the innovative MoO3/Ag/ZnS film as the top transparent electrode, the resulting Indium Tin Oxide-free wrinkled devices show a power conversion efficiency as 7.57% (50 nm active layer), higher than the planner counterparts. Thus, this paper provides a new methodology to improve the performance of organic solar cells by balancing the mutual restraint factors to a high level.
Jung, Jae Woong; Chueh, Chu-Chen; Jen, Alex K. -Y.
2015-07-06
High-performance planar heterojunction perovskite (CH3NH3PbI3) solar cell (PVSC) is demonstrated by utilizing CuSCN as a hole-transporting layer. Efficient hole-transport and hole-extraction at the CuSCN/CH3NH3PbI3 interface facilitate the PVSCs to reach 16% power conversion efficiency (PCE). In addition, excellent transparency of CuSCN enables high-performance semitransparent PVSC (10% PCE and 25% average visible transmittance) to be realized.
A robust TALENs system for highly efficient mammalian genome editing.
Feng, Yuanxi; Zhang, Siliang; Huang, Xin
2014-01-10
Recently, transcription activator-like effector nucleases (TALENs) have emerged as a highly effective tool for genomic editing. A pair of TALENs binds to two DNA recognition sites separated by a spacer sequence, and the dimerized FokI nucleases at the C terminal then cleave DNA in the spacer. Because of its modular design and capacity to precisely target almost any desired genomic locus, TALEN is a technology that can revolutionize the entire biomedical research field. Currently, for genomic editing in cultured cells, two plasmids encoding a pair of TALENs are co-transfected, followed by limited dilution to isolate cell colonies with the intended genomic manipulation. However, uncertain transfection efficiency becomes a bottleneck, especially in hard-to-transfect cells, reducing the overall efficiency of genome editing. We have developed a robust TALENs system in which each TALEN plasmid also encodes a fluorescence protein. Thus, cells transfected with both TALEN plasmids, a prerequisite for genomic editing, can be isolated by fluorescence-activated cell sorting. Our improved TALENs system can be applied to all cultured cells to achieve highly efficient genomic editing. Furthermore, an optimized procedure for genomic editing using TALENs is also presented. We expect our system to be widely adopted by the scientific community.
Chung, H.J.; Hassan, M.M.; Park, J.O.; Kim, H.J.; Hong, S.T.
2015-01-01
Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells generated their own extracellular matrix. Initially, stromal cells isolated from mice were expanded in vitro in liquid cell culture medium followed by transferring the cells into a hydrogel shell. After incubation for 1 day with mechanical agitation, the encapsulated cell mass was perforated with a thin needle and then incubated for an additional 6 days to form a quasi-natural cell block. Allograft transplantation of the cell block into C57BL/6 mice resulted in perfect adaptation of the allograft and complete integration into the tissue of the recipient. This method could be widely applied for repairing damaged cells or tissues, stem cell transplantation, ex vivo gene therapy, or plastic surgery. PMID:25742639
Liao, Weiqiang; Zhao, Dewei; Yu, Yue; ...
2016-08-29
Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI 3) perovskite solar cells (PVSCs) are demonstrated. Our FASnI 3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% ± 0.46% and a maximum PCE of 6.22% under forward voltage scan. Here, the PVSCs exhibit small photocurrent–voltage hysteresis and high reproducibility. The champion cell shows a steady-state efficiency of ≈6.00% for over 100 s.
Lei, Hongwei; Yang, Guang; Guo, Yaxiong; Xiong, Liangbin; Qin, Pingli; Dai, Xin; Zheng, Xiaolu; Ke, Weijun; Tao, Hong; Chen, Zhao; Li, Borui; Fang, Guojia
2016-06-28
Efficient planar antimony sulfide (Sb2S3) heterojunction solar cells have been made using chemical bath deposited (CBD) Sb2S3 as the absorber, low-temperature solution-processed tin oxide (SnO2) as the electron conductor and poly (3-hexylthiophene) (P3HT) as the hole conductor. A solar conversion efficiency of 2.8% was obtained at 1 sun illumination using a planar device consisting of F-doped SnO2 substrate/SnO2/CBD-Sb2S3/P3HT/Au, whereas the solar cells based on a titanium dioxide (TiO2) electron conductor exhibited a power conversion efficiency of 1.9%. Compared with conventional Sb2S3 sensitized solar cells, the high-temperature processed mesoscopic TiO2 scaffold is no longer needed. More importantly, a low-temperature solution-processed SnO2 layer was introduced for electron transportation to substitute the high-temperature sintered dense blocking TiO2 layer. Our planar solar cells not only have simple geometry with fewer steps to fabricate but also show enhanced performance. The higher efficiency of planar Sb2S3 solar cell devices based on a SnO2 electron conductor is attributed to their high transparency, uniform surface, efficient electron transport properties of SnO2, suitable energy band alignment, and reduced recombination at the interface of SnO2/Sb2S3.
Martí, A; Luque, A
2015-04-22
Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.
Crystal growth for high-efficiency silicon solar cells workshop: Summary
NASA Technical Reports Server (NTRS)
Dumas, K. A.
1985-01-01
The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.
Martí, A.; Luque, A.
2015-01-01
Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base–emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions. PMID:25902374
Enhancing Solar Cell Efficiency Using Photon Upconversion Materials
Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying
2015-01-01
Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed. PMID:28347095
Zhang, Huifa; Jenkins, Gareth; Zou, Yuan; Zhu, Zhi; Yang, Chaoyong James
2012-04-17
A microfluidic device for performing single copy, emulsion Reverse Transcription Polymerase Chain Reaction (RT-PCR) within agarose droplets is presented. A two-aqueous-inlet emulsion droplet generator was designed and fabricated to produce highly uniform monodisperse picoliter agarose emulsion droplets with RT-PCR reagents in carrier oil. Template RNA or cells were delivered from one inlet with RT-PCR reagents/cell lysis buffer delivered separately from the other. Efficient RNA/cell encapsulation and RT-PCR at the single copy level was achieved in agarose-in-oil droplets, which, after amplification, can be solidified into agarose beads for further analysis. A simple and efficient method to graft primer to the polymer matrix using 5'-acrydite primer was developed to ensure highly efficient trapping of RT-PCR products in agarose. High-throughput single RNA molecule/cell RT-PCR was demonstrated in stochastically diluted solutions. Our results indicate that single-molecule RT-PCR can be efficiently carried out in agarose matrix. Single-cell RT-PCR was successfully performed which showed a clear difference in gene expression level of EpCAM, a cancer biomarker gene, at the single-cell level between different types of cancer cells. This work clearly demonstrates for the first time, single-copy RT-PCR in agarose droplets. We believe this will open up new possibilities for viral RNA detection and single-cell transcription analysis.
Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells.
Aharon, Sigalit; Gamliel, Shany; El Cohen, Bat; Etgar, Lioz
2014-06-14
The inorganic-organic perovskite is currently attracting a lot of attention due to its use as a light harvester in solar cells. The large absorption coefficients, high carrier mobility and good stability of organo-lead halide perovskites present good potential for their use as light harvesters in mesoscopic heterojunction solar cells. This work concentrated on a unique property of the lead halide perovskite, its function simultaneously as a light harvester and a hole conductor in the solar cell. A two-step deposition technique was used to optimize the perovskite deposition and to enhance the solar cell efficiency. It was revealed that the photovoltaic performance of the hole conductor free perovskite solar cell is strongly dependent on the depletion layer width which was created at the TiO2-CH3NH3PbI3 junction. X-ray diffraction measurements indicate that there were no changes in the crystallographic structure of the CH3NH3PbI3 perovskite over time, which supports the high stability of these hole conductor free perovskite solar cells. Furthermore, the power conversion efficiency of the best cells reached 10.85% with a fill factor of 68%, a Voc of 0.84 V, and a Jsc of 19 mA cm(-2), the highest efficiency to date of a hole conductor free perovskite solar cell.
2017-01-01
After 60 years of research, silicon solar cell efficiency saturated close to the theoretical limit, and radically new approaches are needed to further improve the efficiency. The use of tandem systems raises this theoretical power conversion efficiency limit from 34% to 45%. We present the advantageous spectral stability of using voltage-matched tandem solar cells with respect to their traditional series-connected counterparts and experimentally demonstrate how singlet fission can be used to produce simple voltage-matched tandems. Our singlet fission silicon–pentacene tandem solar cell shows efficient photocurrent addition. This allows the tandem system to benefit from carrier multiplication and to produce an external quantum efficiency exceeding 100% at the main absorption peak of pentacene. PMID:28261671
2015-01-01
Conventional physical and chemical methods that efficiently deliver molecules into cells are often associated with low cell viability. In this study, we evaluated the cellular effects of carbon nanoparticles believed to emit photoacoustic waves due to nanosecond-pulse laser activation to test the hypothesis that this method could achieve efficient intracellular delivery while maintaining high cell viability. Suspensions of DU145 human prostate carcinoma cells, carbon black (CB) nanoparticles, and calcein were exposed to 5–9 ns long laser pulses of near-infrared (1064 nm wavelength) light and then analyzed by flow cytometry for intracellular uptake of calcein and cell viability by propidium iodide staining. We found that intracellular uptake increased and in some cases saturated at high levels with only small losses in cell viability as a result of increasing laser fluence, laser exposure time, and as a unifying parameter, the total laser energy. Changing interpulse spacing between 0.1 and 10 s intervals showed no significant change in bioeffects, suggesting that the effects of each pulse were independent when spaced by at least 0.1 s intervals. Pretreatment of CB nanoparticles to intense laser exposure followed by mixing with cells also had no significant effect on uptake or viability. Similar uptake and viability were seen when CB nanoparticles were substituted with India ink, when DU145 cells were substituted with H9c2 rat cardiomyoblast cells, and when calcein was substituted with FITC-dextran. The best laser exposure conditions tested led to 88% of cells with intracellular uptake and close to 100% viability, indicating that nanosecond-pulse laser-activated carbon nanoparticles can achieve efficient intracellular delivery while maintaining high cell viability. PMID:24547946
Gopalappa, Ramu; Song, Myungjae; Chandrasekaran, Arun Pandian; Das, Soumyadip; Haq, Saba; Koh, Hyun Chul; Ramakrishna, Suresh
2018-05-31
Targeted genome editing by clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) raised concerns over off-target effects. The use of double-nicking strategy using paired Cas9 nickase has been developed to minimize off-target effects. However, it was reported that the efficiency of paired nickases were comparable or lower than that of either corresponding nuclease alone. Recently, we conducted a systematic comparison of the efficiencies of several paired Cas9 with their corresponding Cas9 nucleases and showed that paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. However, sometimes the designed paired Cas9 nickases exhibited significantly lower mutation frequencies than nucleases, hampering the generation of cells containing paired Cas9 nickase-induced mutations. Here we implemented IRES peptide-conjugation of fluorescent protein to Cas9 nickase and subjected for fluorescence-activated cell sorting. The sorted cell populations are highly enriched with cells containing paired Cas9 nickase-induced mutations, by a factor of up to 40-fold as compared with the unsorted population. Furthermore, gene-disrupted single cell clones using paired nickases followed by FACS sorting strategy were generated highly efficiently, without compromising with its low off-target effects. We envision that our fluorescent protein coupled paired nickase-mediated gene disruption, facilitating efficient and highly specific genome editing in medical research.
Concentrating light in Cu(In,Ga)Se2 solar cells
NASA Astrophysics Data System (ADS)
Schmid, M.; Yin, G.; Song, M.; Duan, S.; Heidmann, B.; Sancho-Martinez, D.; Kämmer, S.; Köhler, T.; Manley, P.; Lux-Steiner, M. Ch.
2016-09-01
Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here we investigate light concentration for cost efficient thinfilm solar cells which show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized record efficiency of 22.6% and which - despite being a polycrystalline thin-film material - is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscale approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared to the large scale concentrators and promise compact high efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultra-thin absorbers for dielectric nanostructures) or horizontally (micro absorbers for concentrating lenses) and have significant potential for efficiency enhancement.
Concentrating light in Cu(In,Ga)Se2 solar cells
NASA Astrophysics Data System (ADS)
Schmid, Martina; Yin, Guanchao; Song, Min; Duan, Shengkai; Heidmann, Berit; Sancho-Martinez, Diego; Kämmer, Steven; Köhler, Tristan; Manley, Phillip; Lux-Steiner, Martha Ch.
2017-01-01
Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here, we investigate the light concentration for cost-efficient thin-film solar cells that show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe), which has a proven stabilized record efficiency of 22.6% and which-despite being a polycrystalline thin-film material-is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus, when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscaled approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared with the large scale concentrators and promise compact high-efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultrathin absorbers for dielectric nanostructures) or horizontally (microabsorbers for concentrating lenses) and have significant potential for efficiency enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn
Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a usefulmore » approach to improve the performance of inverted polymer solar cells.« less
Development of high efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Schmidt, D. N.; Rai-Choudhury, P.
1984-01-01
Web base material is being improved with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). Carrier loss mechanisms in web silicon was investigated, techniques were developed to reduce carrier recombination in the web, and web cells were fabricated using effective surface passivation. The effect of stress on web cell performance was also investigated.
Wei, Yuping; Ma, Liang; Zhang, Liang; Xu, Xia
2017-01-01
An effective drug delivery system requires efficient drug uptake and release inside cancer cells. Here, we report a novel drug delivery system, in which paclitaxel (PTX) interacts with a novel cell penetrating peptide (CPP) through noncovalent interaction designed based on molecular simulations. This CPP/PTX complex confers high efficiency in delivering PTX into cancer cells not by endocytosis but by an energy-independent pathway. Once inside cells, the noncovalent interaction between PTX and the CPP may allow fast release of PTX within cells due to the direct translocation of CPP/PTX. This drug delivery system exhibits strong capacity for inhibition of tumor growth and offers a new avenue for the development of advanced drug delivery systems for anticancer therapy.
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.
2015-06-01
Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.
All-Nonvacuum-Processed CIGS Solar Cells Using Scalable Ag NWs/AZO-Based Transparent Electrodes.
Wang, Mingqing; Choy, Kwang-Leong
2016-07-06
With record cell efficiency of 21.7%, CIGS solar cells have demonstrated to be a very promising photovoltaic (PV) technology. However, their market penetration has been limited due to the inherent high cost of the cells. In this work, to lower the cost of CIGS solar cells, all nonvacuum-processed CIGS solar cells were designed and developed. CIGS absorber was prepared by the annealing of electrodeposited metallic layers in a chalcogen atmosphere. Nonvacuum-deposited Ag nanowires (NWs)/AZO transparent electrodes (TEs) with good transmittance (92.0% at 550 nm) and high conductivity (sheet resistance of 20 Ω/□) were used to replace the vacuum-sputtered window layer. Additional thermal treatment after device preparation was conducted at 220 °C for a few of minutes to improve both the value and the uniformity of the efficiency of CIGS pixel cell on 5 × 5 cm substrate. The best performance of the all-nonvacuum-fabricated CIGS solar cells showed an efficiency of 14.05% with Jsc of 34.82 mA/cm(2), Voc of 0.58 V, and FF of 69.60%, respectively, which is comparable with the efficiency of 14.45% of a reference cell using a sputtered window layer.
Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12)
NASA Technical Reports Server (NTRS)
1993-01-01
The Twelfth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from 20 to 22 Oct. 1992. The papers and workshops presented in this volume report substantial progress in a variety of areas in space photovoltaics. Topics covered include: high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, flexible amorphous and thin film solar cells (in the early stages of pilot production), high efficiency multiple bandgap cells, laser power converters, solar cell and array technology, heteroepitaxial cells, betavoltaic energy conversion, and space radiation effects in InP cells. Space flight data on a variety of cells were also presented.
NASA Astrophysics Data System (ADS)
Ren, Ziqiu; Zhu, Menghua; Li, Xin; Dong, Cunku
2017-09-01
As a promising photovoltaic device, perovskite solar cells have attracted numerous attention in recent years, where forming a compact and pinhole-free perovskite film in air is of great importance. Herein, we evaluate highly efficient and air stable planar perovskite solar cells in air (relative humidity over 50%) with the modified two-step sequential deposition method by adjusting the CH3NH3I (MAI) concentrations and regulating the crystallization process of the perovskite film. The optimum MAI concentration is 60 mg mL-1 in isopropanol. With a planar structure of FTO/TiO2/MAPbI3/spiro-OMeTAD/Au, the efficient devices composed of compact and pinhole-free perovskite films are constructed in air, achieving a high efficiency of up to 15.10% and maintaining over 80% after 20 days storing without any encapsulation in air. With a facile fabrication process and high photovoltaic performance, this work represents a promising method for fabricating low-cost, highly efficient and stable photovoltaic device.
Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.
2017-06-14
We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhancemore » cell efficiency.« less
9.0% power conversion efficiency from ternary all-polymer solar cells
Li, Zhaojun; Xu, Xiaofeng; Zhang, Wei; ...
2017-01-01
High-performance ternary all-polymer solar cells with outstanding efficiency of 9.0% are realized by incorporating two donor and one acceptor polymers with complementary absorption and proper energy level alignment.
NASA Astrophysics Data System (ADS)
Venkatesan, Shanmuganathan; Hidayati, Noor; Liu, I.-Ping; Lee, Yuh-Lang
2016-12-01
Propionitrile (PPN) solvent based iodide/triiodide liquid-electrolyte is utilized to prepare highly efficient poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) polymer gel electrolytes (PGEs) of dye-sensitized solar cells, aiming at improving the energy conversion efficiency as well as the stability of gel-state DSSCs. The concentrations effect of the PVdF-HFP on the properties of PGEs and the performance of the corresponding cells are studied. The results show that the in-situ gelation is performed for the PVdF-HFP concentration range of 8-18% at room temperature. However, increasing the concentration of polymer in the PGEs triggers a decrease in the diffusivity and conductivity of the PGEs, but an increase in the phase transition temperature of the PGEs. A high phase transition temperature is obtained for the PGEs with 18 wt% PVdF-HFP, which increase the long-term stability of the gel-state DSSC. By using the 18 wt% PVdF-HFP in the presence of 5 wt% TiO2 nanofillers (NFs), gel-state cells with an efficiency of 8.38% can be obtained, which is higher than that achieved by liquid-state cells (7.55%). After 1000 h test at room temperature (RT) and 50 °C, the cell can retain 96% and 82%, respectively, of its initial efficiency.
Liquid Phase Deposition of Single-Phase Alpha-Copper-Indium-Diselenide
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Bailey, S.; Cowen, Jonathan; Lucas, L.; Ernst, Frank; Pirouz, P.
2004-01-01
The success of exploratory missions in outer space often depends on a highly efficient renewable energy supply, as provided by solar cells. Since future missions will demand large aggregates of solar cells, and space flight is expensive, the solar cells must furthermore be available at low costs and have a long lifetime and high resistance against structural damage introduced by irradiation with high energy electrons and protons. The photovoltaic materials that are presently available only partly fulfill all these requirements. Therefore, we propose to explore a new method for fabricating thin-films for cost-efficient solar cells with very high specific power,high irradiation resistance and long lifetime based on the alpha-phase of the Cu-In-Se system "alpha-CIS."
High efficiency thin-film multiple-gap photovoltaic device
Dalal, Vikram L.
1983-01-01
A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.
High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter.
Kim, Jeehwan; Hiroi, Homare; Todorov, Teodor K; Gunawan, Oki; Kuwahara, Masaru; Gokmen, Tayfun; Nair, Dhruv; Hopstaken, Marinus; Shin, Byungha; Lee, Yun Seog; Wang, Wei; Sugimoto, Hiroki; Mitzi, David B
2014-11-26
High-efficiency Cu2ZnSn(S,Se)4 solar cells are reported by applying In2S3/CdS double emitters. This new structure offers a high doping concentration within the Cu2ZnSn(S,Se)4 solar cells, resulting in a substantial enhancement in open-circuit voltage. The 12.4% device is obtained with a record open-circuit voltage deficit of 593 mV. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Free-form Fresnel RXI-RR Köhler design for high-concentration photovoltaics with spectrum-splitting
NASA Astrophysics Data System (ADS)
Buljan, M.; Benítez, P.; Mohedano, R.; Miñano, J. C.; Sun, Y.; Falicoff, W.; Vilaplana, J.; Chaves, J.; Biot, G.; López, J.
2011-10-01
Development of a novel HCPV nonimaging concentrator with high concentration (>500x) and built-in spectrum splitting concept is presented. It uses the combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-Point-Contact (BPC) silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell's reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it - Both the POE and SOE performing Köhler integration to produce light homogenization on the receiver. The band-pass filter transmits the IR photons in the 900-1200 nm band to the silicon cell. A design target of an "equivalent" cell efficiency ~46% is predicted using commercial 39% 3J and 26% Si cells. A projected CPV module efficiency of greater than 38% is achievable at a concentration level larger than 500X with a wide acceptance angle of +/-1°. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J cell with a peak efficiency of 36.9%.
Study of the Staebler-Wronski degradation effect in a-Si:H based p-i-n solar cell
NASA Technical Reports Server (NTRS)
Naseem, H. A.; Brown, W. D.; Ang, S. S.
1993-01-01
Conversion of solar energy into electricity using environmentally safe and clean photovoltaic methods to supplement the ever increasing energy needs has been a cherished goal of many scientists and engineers around the world. Photovoltaic solar cells on the other hand, have been the power source for satellites ever since their introduction in the early sixties. For widespread terrestrial applications, however, the cost of photovoltaic systems must be reduced considerably. Much progress has been made in the recent past towards developing economically viable terrestrial systems, and the future looks highly promising. Thin film solar cells offer cost reductions mainly from their low processing cost, low material cost, and choice of low cost substrates. These are also very attractive for space applications because of their high power densities (power produced per kilogram of solar cell pay load) and high radiation resistance. Amorphous silicon based solar cells are amongst the top candidates for economically viable terrestrial and space based power generation. Despite very low federal funding during the eighties, amorphous silicon solar cell efficiencies have continually been improved - from a low 3 percent to over 13 percent now. Further improvements have been made by the use of multi-junction tandem solar cells. Efficiencies close to 15 percent have been achieved in several labs. In order to be competitive with fossil fuel generated electricity, it is believed that module efficiency of 15 percent or cell efficiency of 20 percent is required. Thus, further improvements in cell performance is imperative. One major problem that was discovered almost 15 years ago in amorphous silicon devices is the well known Staebler-Wronski Effect. Efficiency of amorphous silicon solar cells was found to degrade upon exposure to sunlight. Until now their is no consensus among the scientists on the mechanism for this degradation. Efficiency may degrade anywhere from 10 percent to almost 50 percent within the first few months of operation. In order to improve solar cell efficiencies, it is clear that the cause or causes of such degradation must be found and the processing conditions altered to minimize the loss in efficiency. This project was initiated in 1987 to investigate a possible link between metallic impurities, in particular, Ag, and this degradation. Such a link was established by one of the NASA scientists for the light induced degradation of n+/p crystalline silicon solar cells.
Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.
Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H
2015-07-16
Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).
Moon, Hui-Sung; Kwon, Kiho; Kim, Seung-Il; Han, Hyunju; Sohn, Joohyuk; Lee, Soohyeon; Jung, Hyo-Il
2011-03-21
Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications. This journal is © The Royal Society of Chemistry 2011
Kulbak, Michael; Cahen, David; Hodes, Gary
2015-07-02
Hybrid organic-inorganic lead halide perovskite photovoltaic cells have already surpassed 20% conversion efficiency in the few years that they have been seriously studied. However, many fundamental questions still remain unanswered as to why they are so good. One of these is "Is the organic cation really necessary to obtain high quality cells?" In this study, we show that an all-inorganic version of the lead bromide perovskite material works equally well as the organic one, in particular generating the high open circuit voltages that are an important feature of these cells.
Cryopreservation of Human Pluripotent Stem Cells in Defined Medium
Liu, Weiwei; Chen, Guokai
2014-01-01
This protocol describes a cryopreservation procedure using an enzyme-free dissociation method to harvest cells and preserve cells in albumin-free chemically defined E8 medium for human pluripotent stem cells (hPSCs). The dissociation by EDTA/PBS produces small cell aggregates that allow high survival efficiency in passaging and cryopreservation. The preservation in E8 medium eliminates serum or other animal products, and is suitable for the increasing demand for high quality hPSCs in translational research. In combination with the special feature of EDTA/PBS dissociation, this protocol allows efficient cryopreservation in more time-saving manner. PMID:25366897
Draguta, Sergiu; Christians, Jeffrey A.; Morozov, Yurii V.; ...
2018-01-01
Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley–Queisser limit of 31%. To increase these PCE values, there is a pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic account of charge recombination processes in high efficiency (18–19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the firstmore » time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draguta, Sergiu; Christians, Jeffrey A.; Morozov, Yurii V.
Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley–Queisser limit of 31%. To increase these PCE values, there is a pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic account of charge recombination processes in high efficiency (18–19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the firstmore » time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.« less
High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell
NASA Technical Reports Server (NTRS)
Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville
2009-01-01
A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon dioxide-saturated water or bicarbonate solution. The anode side of the cell is supplied with sodium hydroxide solution. The solutions are circulated past the electrodes in the electrochemical cell using pumps. A regulated power supply provides the electrical energy required for the reactions. Photovoltaic cells can be used to better mimic the photosynthetic reaction. The current flowing through the electrochemical cell, and the cell voltage, are monitored during experimentation. The products of the electrochemical reduction of carbon dioxide are allowed to accumulate in the cathode reservoir. Samples of the cathode solution are withdrawn for product analysis. Oxygen is generated on the anode side and is allowed to vent out of the reservoir.
Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells
2014-01-01
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells. PMID:25386107
Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.
Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo
2014-01-01
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.
Development of scaffold architectures and heterotypic cell systems for hepatocyte transplantation
NASA Astrophysics Data System (ADS)
Alzebdeh, Dalia Abdelrahim
In vitro assembly of functional liver tissue is needed to enable the transplantation of tissue-engineered livers. In addition, there is an increasing demand for in vitro models that replicate complex events occurring in the liver. However, tissue engineering of sizable implantable liver systems is currently limited by the difficulty of assembling three dimensional hepatocyte cultures of a useful size, while maintaining full cell viability, an issue which is closely related to the high metabolic rate of hepatocytes. In this study, we first compared two designs of highly porous chitosan-heparin scaffolds seeded with hepatocytes in dynamic perfusion bioreactor systems. The aim was to promote cell seeding efficiency by effectively entrapping 100 million hepatocytes at high density. We found that scaffolds with radially tapering pore architecture had highly efficient cell entrapment that maximized donor hepatocyte utilization, compared to alternate pore structures. Hepatocytes showed higher seeding efficiency and metabolic function when seeded as single cell suspensions as opposed to pre-formed, 100microm aggregates. Seeding efficiency was found to increase with flow rate, with single cell and aggregate suspension exhibiting different optimal flow rates. However, metabolic performance results indicated significant shear damage to cells at high efficiency flow rates. To better maintain hepatocyte basement membrane and cell polarity, spheroid co-cultures with mesenchymal stem cells (MSC) were investigated. Hepatocytes and MSCs were seeded in three different architectures in an effort to optimize the spatial arrangement of the two cell types. MSC co-culture greatly enhanced hepatocyte metabolic function in agitated cultures. Interestingly, the effects of diffusion limitations in spheroid culture, coupled with shear damage and subsequent removal of outer hepatocyte layers produced a defined oscillation of urea production rates in certain co-culture arrangements. A mathematical model of urea synthesis in shear-exposed, co-culture spheroids reproduced the metabolic oscillations observed. This result together with culture observations suggests that MSCs can provide both physiological support and some direct shear protection to hepatocytes in perfused or shear-exposed culture environments. Finally, in order to reduce hepatocyte exposure to excessive shear forces in perfused scaffolds, a modular scaffold design based on polyelectrolyte fiber encapsulation was explored. Scaffolds with uniformly distributed, shear protected cells were achieved.
NASA Astrophysics Data System (ADS)
Sugaya, Takeyoshi; Tayagaki, Takeshi; Aihara, Taketo; Makita, Kikuo; Oshima, Ryuji; Mizuno, Hidenori; Nagato, Yuki; Nakamoto, Takashi; Okano, Yoshinobu
2018-05-01
We report high-quality dual-junction GaAs solar cells grown using solid-source molecular beam epitaxy and their application to smart stacked III–V//Si quadruple-junction solar cells with a two-terminal configuration for the first time. A high open-circuit voltage of 2.94 eV was obtained in an InGaP/GaAs/GaAs triple-junction top cell that was stacked to a Si bottom cell. The short-circuit current density of a smart stacked InGaP/GaAs/GaAs//Si solar cell was in good agreement with that estimated from external quantum efficiency measurements. An efficiency of 18.5% with a high open-circuit voltage of 3.3 V was obtained in InGaP/GaAs/GaAs//Si two-terminal solar cells.
Power Budget Analysis for High Altitude Airships
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Elliott, James R.; King, Glen C.
2006-01-01
The High Altitude Airship (HAA) has various potential applications and mission scenarios that require onboard energy harvesting and power distribution systems. The energy source considered for the HAA s power budget is solar photon energy that allows the use of either photovoltaic (PV) cells or advanced thermoelectric (ATE) converters. Both PV cells and an ATE system utilizing high performance thermoelectric materials were briefly compared to identify the advantages of ATE for HAA applications in this study. The ATE can generate a higher quantity of harvested energy than PV cells by utilizing the cascaded efficiency of a three-staged ATE in a tandem mode configuration. Assuming that each stage of ATE material has the figure of merit of 5, the cascaded efficiency of a three-staged ATE system approaches the overall conversion efficiency greater than 60%. Based on this estimated efficiency, the configuration of a HAA and the power utility modules are defined.
Huang, Jiabin; Yu, Xuegong; Xie, Jiangsheng; Li, Chang-Zhi; Zhang, Yunhai; Xu, Dikai; Tang, Zeguo; Cui, Can; Yang, Deren
2016-12-21
Organic-inorganic halide perovskite solar cells have attracted great attention in recent years. But there are still a lot of unresolved issues related to the perovskite solar cells such as the phenomenon of anomalous hysteresis characteristics and long-term stability of the devices. Here, we developed a simple three-layered efficient perovskite device by replacing the commonly employed PCBM electrical transport layer with an ultrathin fulleropyrrolidinium iodide (C 60 -bis) in an inverted p-i-n architecture. The devices with an ultrathin C 60 -bis electronic transport layer yield an average power conversion efficiency of 13.5% and a maximum efficiency of 15.15%. Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements show that the high performance is attributed to the efficient blocking of holes and high extraction efficiency of electrons by C 60 -bis, due to a favorable energy level alignment between the CH 3 NH 3 PbI 3 and the Ag electrodes. The hysteresis effect and stability of our perovskite solar cells with C 60 -bis become better under indoor humidity conditions.
Fernández-Carneado, Jimena; Van Gool, Michiel; Martos, Vera; Castel, Susanna; Prados, Pilar; de Mendoza, Javier; Giralt, Ernest
2005-01-26
Oligoguanidinium-based cell delivery systems have gained broad interest in the drug delivery field since one decade ago. Thus, arginine-containing peptides as Tat or Antp, oligoarginine peptides, and derived peptoids have been described as shuttles for delivering nonpermeant drugs inside cancer cells. Herein we report a new family of tetraguanidinium cell penetrating vectors efficiently internalized in human tumor cells. Their high internalization, studied by confocal microscopy and flow cytometry, as well as their specific accumulation in mitochondria makes these new vectors likely vehicles for the targeted delivery of anticancer drugs to mitochondria.
Efficient extravasation of tumor-repopulating cells depends on cell deformability
Chen, Junjian; Zhou, Wenwen; Jia, Qiong; Chen, Junwei; Zhang, Shuang; Yao, Wenting; Wei, Fuxiang; Zhang, Yuejin; Yang, Fang; Huang, Wei; Zhang, Yao; Zhang, Huafeng; Zhang, Yi; Huang, Bo; Zhang, Zhihong; Jia, Haibo; Wang, Ning
2016-01-01
Cancer metastasis is the most deadly stage in cancer progression. Despite significant efforts over the past decades, it remains elusive why only a very small fraction of cancer cells is able to generate micrometastasis and metastatic colonization. Recently we have shown that tumor-repopulating cells (TRCs), a highly tumorigenic subpopulation of mouse melanoma cells, can be selected by being cultured and grown in 3D soft fibrin gels. Here we show that when injected into the yolk of a 2 day-post-fertilization (dpf) embryo of Tg (fli1:EGFP or kdrl:mCherry) zebrafish, TRCs are much more efficient in surviving and growing at various secondary sites to generate micrometastasis and metastatic colonization than control melanoma cells that are grown on rigid plastic. The metastasis of TRCs is dependent on the presence of Sox2, a self-renewal gene, and silencing Sox2 leads to the inhibition of TRC metastasis. High-resolution of 3D confocal images of the TRCs at the secondary sites show that extravasation and formation of micrometastases by TRCs are more efficient than by the control cells. Remarkably, efficient extravasation of TRCs in vivo and transmigration in vitro are determined by TRC deformability, as a result of low Cdc42 and high Sox2. Our findings suggest that tumor cell deformability is a key factor in controlling extravasation dynamics during metastasis. PMID:26787224
InP/Ga0.47In0.53As monolithic, two-junction, three-terminal tandem solar cells
NASA Technical Reports Server (NTRS)
Wanlaas, M. W.; Gessert, T. A.; Horner, G. S.; Emery, K. A.; Coutts, T. J.
1991-01-01
The work presented has focussed on increasing the efficiency of InP-based solar cells through the development of a high-performance InP/Ga(0.47)In(0.53)As two-junction, three-terminal monolithic tandem cell. Such a tandem is particularly suited to space applications where a radiation-hard top cell (i.e., InP) is required. Furthermore, the InP/Ga(0.47)In(0.53)As materials system is lattice matched and offers a top cell/bottom cell bandgap differential (0.60 eV at 300 K) suitable for high tandem cell efficiencies under AMO illumination. A three-terminal configuration was chosen since it allows for independent power collection from each subcell in the monolithic stack, thus minimizing the adverse impact of radiation damage on the overall tandem efficiency. Realistic computer modeling calculations predict an efficiency boost of 7 to 11 percent from the Ga(0.47)In(0.53)As bottom cell under AMO illumination (25 C) for concentration ratios in the 1 to 1000 range. Thus, practical AMO efficiencies of 25 to 32 percent appear possible with the InP/Ga(0.47)In(0.53)As tandem cell. Prototype n/p/n InP/Ga(0.47)In(0.53)As monolithic tandem cells were fabricated and tested successfully. Using an aperture to define the illuminated areas, efficiency measurements performed on a non-optimized device under standard global illumination conditions (25 C) with no antireflection coating (ARC) give 12.2 percent for the InP top cell and 3.2 percent for the Ga(0.47)In(0.53)As bottom cell, yielding an overall tandem efficiency of 15.4 percent. With an ARC, the tandem efficiency could reach approximately 22 percent global and approximately 20 percent AMO. Additional details regarding the performance of individual InP and Ga(0.47)In(0.53)As component cells, fabrication and operation of complete tandem cells and methods for improving the tandem cell performance, are also discussed.
Yang, Lei; Gu, Wenxing; Hong, Ling; Mi, Yang; Liu, Feng; Liu, Ming; Yang, Yufei; Sharma, Bigyan; Liu, Xinfeng; Huang, Hui
2017-08-16
Nonradiative Förster resonance energy transfer (FRET) is an important mechanism of organic solar cells, which can improve the exciton migration over a long distance, resulting in improvement of efficiency of solar cells. However, the current observations of FRET are very limited, and the efficiencies are less than 9%. In this study, FRET effect was first observed between two nonfullerene acceptors in ternary solar cells, which improved both the absorption range and exciton harvesting, leading to the dramatic enhancement in the short circuit current and power conversion efficiency. Moreover, this strategy is proved to be a versatile platform for conjugated polymers with different bandgaps, resulting in a remarkable efficiency of 10.4%. These results demonstrated a novel method to enhance the efficiency of organic soar cells.
A gas circulation and purification system for gas-cell-based low-energy RI-beam production.
Sonoda, T; Tsubota, T; Wada, M; Katayama, I; Kojima, T M; Reponen, M
2016-06-01
A gas circulation and purification system was developed at the RIKEN Radioactive Isotope Beam Factory that can be used for gas-cell-based low-energy RI-beam production. A high-flow-rate gas cell filled with one atmosphere of buffer gas (argon or helium) is used for the deceleration and thermalization of high-energy RI-beams. The exhausted buffer gas is efficiently collected using a compact dry pump and returned to the gas cell with a recovery efficiency of >97%. The buffer gas is efficiently purified using two gas purifiers as well as collision cleaning, which eliminates impurities in the gas. An impurity level of one part per billion is achieved with this method.
A gas circulation and purification system for gas-cell-based low-energy RI-beam production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonoda, T.; Wada, M.; Katayama, I.
A gas circulation and purification system was developed at the RIKEN Radioactive Isotope Beam Factory that can be used for gas-cell-based low-energy RI-beam production. A high-flow-rate gas cell filled with one atmosphere of buffer gas (argon or helium) is used for the deceleration and thermalization of high-energy RI-beams. The exhausted buffer gas is efficiently collected using a compact dry pump and returned to the gas cell with a recovery efficiency of >97%. The buffer gas is efficiently purified using two gas purifiers as well as collision cleaning, which eliminates impurities in the gas. An impurity level of one part permore » billion is achieved with this method.« less
A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell.
Yan, Xin; Zhang, Chen; Wang, Jiamin; Zhang, Xia; Ren, Xiaomin
2017-12-01
A low-cost Si nanowire array/perovskite hybrid solar cell is proposed and simulated. The solar cell consists of a Si p-i-n nanowire array filled with CH 3 NH 3 PbI 3 , in which both the nanowires and perovskite absorb the incident light while the nanowires act as the channels for transporting photo-generated electrons and holes. The hybrid structure has a high absorption efficiency in a broad wavelength range of 300~800 nm. A large short-circuit current density of 28.8 mA/cm 2 and remarkable conversion efficiency of 13.3% are obtained at a thin absorber thickness of 1.6 μm, which are comparable to the best results of III-V nanowire solar cells.
Highly Efficient Plastic Crystal Ionic Conductors for Solid-state Dye-sensitized Solar Cells
Hwang, Daesub; Kim, Dong Young; Jo, Seong Mu; Armel, Vanessa; MacFarlane, Douglas R.; Kim, Dongho; Jang, Sung-Yeon
2013-01-01
We have developed highly efficient, ambient temperature, solid-state ionic conductors (SSICs) for dye-sensitized solar cells (DSSCs) by doping a molecular plastic crystal, succinonitrile (SN), with trialkyl-substituted imidazolium iodide salts. High performance SSICs with enhanced ionic conductivity (2–4 mScm−1) were obtained. High performance solid-state DSSCs with power conversion efficiency of 7.8% were fabricated using our SSICs combined with unique hierarchically nanostructured TiO2 sphere (TiO2-SP) photoelectrodes; these electrodes have significant macroporosity, which assists penetration of the solid electrolyte into the electrode. The performance of our solid-state DSSCs is, to the best of our knowledge, the highest reported thus far for cells using plastic crystal-based SSICs, and is comparable to that of the state-of-the-art DSSCs which use ionic liquid type electrolytes. This report provides a logical strategy for the development of efficient plastic crystal-based SSICs for DSSCs and other electrochemical devices. PMID:24343425
Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari
2015-01-01
Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC). PMID:26218470
Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari
2015-07-28
Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).
Gene delivery by microfluidic flow-through electroporation based on constant DC and AC field.
Geng, Tao; Zhan, Yihong; Lu, Chang
2012-01-01
Electroporation is one of the most widely used physical methods to deliver exogenous nucleic acids into cells with high efficiency and low toxicity. Conventional electroporation systems typically require expensive pulse generators to provide short electrical pulses at high voltage. In this work, we demonstrate a flow-through electroporation method for continuous transfection of cells based on disposable chips, a syringe pump, and a low-cost power supply that provides a constant voltage. We successfully transfect cells using either DC or AC voltage with high flow rates (ranging from 40 µl/min to 20 ml/min) and high efficiency (up to 75%). We also enable the entire cell membrane to be uniformly permeabilized and dramatically improve gene delivery by inducing complex migrations of cells during the flow.
Huang, Qinqin; Cai, Bo; Chen, Bolei; Rao, Lang; He, Zhaobo; He, Rongxiang; Guo, Feng; Zhao, Libo; Kondamareddy, Kiran Kumar; Liu, Wei; Guo, Shishang; Zhao, Xing-Zhong
2016-07-01
Microfluidics-based circulating tumor cell (CTC) isolation is achieved by using gelatin-coated silica microbeads conjugated to CTC-specific antibodies. Bead-binding selectively enlarges target cell size, providing efficient high-purity capture. CTCs captured can be further released non-invasively. This stratagem enables high-performance CTC isolation for subsequent studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Haishui; Sun, Mingrui; Heisler-Taylor, Tyler; Kiourti, Asimina; Volakis, John; Lafyatis, Gregory
2015-01-01
A dielectrophoresis (DEP)-based method is reported to achieve highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension (IFT) forces with no trapped oil while the encapsulated cells are free from the electrical damages due to the Faraday cage effect. PMID:26297051
Transfection microarray and the applications.
Miyake, Masato; Yoshikawa, Tomohiro; Fujita, Satoshi; Miyake, Jun
2009-05-01
Microarray transfection has been extensively studied for high-throughput functional analysis of mammalian cells. However, control of efficiency and reproducibility are the critical issues for practical use. By using solid-phase transfection accelerators and nano-scaffold, we provide a highly efficient and reproducible microarray-transfection device, "transfection microarray". The device would be applied to the limited number of available primary cells and stem cells not only for large-scale functional analysis but also reporter-based time-lapse cellular event analysis.
Kossila, Maija; Jauhiainen, Suvi; Laukkanen, Mikko O; Lehtolainen, Pauliina; Jääskeläinen, Maiju; Turunen, Päivi; Loimas, Sami; Wahlfors, Jarmo; Ylä-Herttuala, Seppo
2002-01-01
Adenovirus is a widely used vector in gene transfer experiments because it produces high transduction efficiency in vitro and in vivo by means of the coxsackie-adenovirus receptor (CAR) and major histocompatibility complex (MHC) class I alpha-2 domain. Adenoviral gene transfer efficiency has been reported to correlate with cellular CAR expression. We report here a simple method to increase adenoviral gene transfer efficiency in cells that do not express high levels of CAR: preincubation of adenovirus for 30-40 minutes at +37 degrees C significantly increased the transduction efficiency in vitro in CHO and BALB/3T3 cells, in which CAR is expressed at very low levels. Increased transduction efficiency of preincubated adenovirus was also detected in vivo in rat brain tissue. In addition, we found that adenoviruses were rapidly inactivated in human serum in a complement-independent manner, whereas fetal bovine serum (FBS) had hardly any effects on the viral infectivity. We conclude that preincubation of adenoviral vectors at +37 degrees C may substantially increase gene transfer efficiency in applications in which target cells do not express high levels of CAR.
High Efficiency Solar Integrated Roof Membrane Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partyka, Eric; Shenoy, Anil
2013-05-15
This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.
Yang, Lifei; Yu, Xuegong; Hu, Weidan; Wu, Xiaolei; Zhao, Yan; Yang, Deren
2015-02-25
Graphene-silicon (Gr-Si) heterojunction solar cells have been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the high sheet resistance of chemical vapor deposited (CVD) Gr films is still the most important limiting factor for the improvement of the power conversion efficiency of Gr-Si solar cells, especially in the case of large device-active area. In this work, we have fabricated a novel transparent conductive film by hybriding a monolayer Gr film with silver nanowires (AgNWs) network soldered by the graphene oxide (GO) flakes. This Gr-AgNWs hybrid film exhibits low sheet resistance and larger direct-current to optical conductivity ratio, quite suitable for solar cell fabrication. An efficiency of 8.68% has been achieved for the Gr-AgNWs-Si solar cell, in which the AgNWs network acts as buried contacts. Meanwhile, the Gr-AgNWs-Si solar cells have much better stability than the chemically doped Gr-Si solar cells. These results show a new route for the fabrication of high efficient and stable Gr-Si solar cells.
Achieving High Performance Perovskite Solar Cells
NASA Astrophysics Data System (ADS)
Yang, Yang
2015-03-01
Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.
2017-01-01
Perovskite/Si tandem solar cells have the potential to considerably out-perform conventional solar cells. Under standard test conditions, perovskite/Si tandem solar cells already outperform the Si single junction. Under realistic conditions, however, as we show, tandem solar cells made from current record cells are hardly more efficient than the Si cell alone. We model the performance of realistic perovskite/Si tandem solar cells under real-world climate conditions, by incorporating parasitic cell resistances, nonradiative recombination, and optical losses into the detailed-balance limit. We show quantitatively that when optimizing these parameters in the perovskite top cell, perovskite/Si tandem solar cells could reach efficiencies above 38% under realistic conditions, even while leaving the Si cell untouched. Despite the rapid efficiency increase of perovskite solar cells, our results emphasize the need for further material development, careful device design, and light management strategies, all necessary for highly efficient perovskite/Si tandem solar cells. PMID:28920081
Futscher, Moritz H; Ehrler, Bruno
2017-09-08
Perovskite/Si tandem solar cells have the potential to considerably out-perform conventional solar cells. Under standard test conditions, perovskite/Si tandem solar cells already outperform the Si single junction. Under realistic conditions, however, as we show, tandem solar cells made from current record cells are hardly more efficient than the Si cell alone. We model the performance of realistic perovskite/Si tandem solar cells under real-world climate conditions, by incorporating parasitic cell resistances, nonradiative recombination, and optical losses into the detailed-balance limit. We show quantitatively that when optimizing these parameters in the perovskite top cell, perovskite/Si tandem solar cells could reach efficiencies above 38% under realistic conditions, even while leaving the Si cell untouched. Despite the rapid efficiency increase of perovskite solar cells, our results emphasize the need for further material development, careful device design, and light management strategies, all necessary for highly efficient perovskite/Si tandem solar cells.
NASA Astrophysics Data System (ADS)
Yuwen, Lihui; Zhou, Jiajia; Zhang, Yuqian; Zhang, Qi; Shan, Jingyang; Luo, Zhimin; Weng, Lixing; Teng, Zhaogang; Wang, Lianhui
2016-01-01
Photothermal therapy (PTT) is a promising cancer treatment with both high effectiveness and fewer side effects. However, an ideal PTT agent not only needs strong absorption of near-infrared (NIR) light and high photothermal conversion efficiency, but also needs good biocompatibility, stability, and small size, which makes the design and preparation of a novel PTT agent a great challenge. In this work, we developed an ultrasonication-assisted liquid exfoliation method for the direct preparation of ultrasmall (2-3 nm) MoSe2 nanodots (NDs) in aqueous solution and demonstrated their superior properties as a PTT agent. The as-prepared MoSe2 NDs have strong absorption of NIR light and high photothermal conversion efficiency of about 46.5%. In vitro cellular experiments demonstrate that MoSe2 NDs have negligible cytotoxicity and can efficiently kill HeLa cells (human cervical cell line) under NIR laser (785 nm) irradiation.Photothermal therapy (PTT) is a promising cancer treatment with both high effectiveness and fewer side effects. However, an ideal PTT agent not only needs strong absorption of near-infrared (NIR) light and high photothermal conversion efficiency, but also needs good biocompatibility, stability, and small size, which makes the design and preparation of a novel PTT agent a great challenge. In this work, we developed an ultrasonication-assisted liquid exfoliation method for the direct preparation of ultrasmall (2-3 nm) MoSe2 nanodots (NDs) in aqueous solution and demonstrated their superior properties as a PTT agent. The as-prepared MoSe2 NDs have strong absorption of NIR light and high photothermal conversion efficiency of about 46.5%. In vitro cellular experiments demonstrate that MoSe2 NDs have negligible cytotoxicity and can efficiently kill HeLa cells (human cervical cell line) under NIR laser (785 nm) irradiation. Electronic supplementary information (ESI) available: Characterization, size distribution and EDS spectrum of MoSe2 NDs, calculation of the extinction coefficient and photothermal conversion efficiency of MoSe2 NDs. See DOI: 10.1039/c5nr08166a
Efficiency of bulk-heterojunction organic solar cells
Scharber, M.C.; Sariciftci, N.S.
2013-01-01
During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787
Jung, Jae Woong; Liu, Feng; Russell, Thomas P; Jo, Won Ho
2015-12-02
Two medium-bandgap polymers composed of benzo[1,2-b:4,5-b']dithiohpene and 2,1,3-benzothiadiazole with 6-octyl-thieno[3,2-b]thiophene as a π-bridge unit are synthesized and their photovoltaic properties are analyzed. The two polymers have deep highest occupied molecular orbital energy levels, high crystallinity, optimal bulk-heterojunction morphology, and efficient charge transport, resulting in a power conversion efficiency of as high as 9.44% for a single-junction polymer solar-cell device. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Grice, Corey R; Wang, Changlei; Cimaroli, Alexander J; Schulz, Philip; Meng, Weiwei; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa
2016-11-01
Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI 3 ) perovskite solar cells (PVSCs) are demonstrated. Our FASnI 3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% ± 0.46% and a maximum PCE of 6.22% under forward voltage scan. The PVSCs exhibit small photocurrent-voltage hysteresis and high reproducibility. The champion cell shows a steady-state efficiency of ≈6.00% for over 100 s. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luck, Kyle A; Shastry, Tejas A; Loser, Stephen; Ogien, Gabriel; Marks, Tobin J; Hersam, Mark C
2013-12-28
Organic photovoltaics have the potential to serve as lightweight, low-cost, mechanically flexible solar cells. However, losses in efficiency as laboratory cells are scaled up to the module level have to date impeded large scale deployment. Here, we report that a 3-aminopropyltriethoxysilane (APTES) cathode interfacial treatment significantly enhances performance reproducibility in inverted high-efficiency PTB7:PC71BM organic photovoltaic cells, as demonstrated by the fabrication of 100 APTES-treated devices versus 100 untreated controls. The APTES-treated devices achieve a power conversion efficiency of 8.08 ± 0.12% with histogram skewness of -0.291, whereas the untreated controls achieve 7.80 ± 0.26% with histogram skewness of -1.86. By substantially suppressing the interfacial origins of underperforming cells, the APTES treatment offers a pathway for fabricating large-area modules with high spatial performance uniformity.
NASA Astrophysics Data System (ADS)
Jeong, Ji-Ho; Noh, Yong-Jin; Kim, Seok-Soon; Kwon, Sung-Nam; Na, Seok-In
2018-03-01
We introduce a high efficiency polymeric photovoltaic cell (PPV) to be obtained by polyacrylonitrile (PAN) hole extraction layer (HEL) modification with gold chloride (AuCl3). The role of PAN HELs with AuCl3 and their effects on solar cell performances were studied with ultraviolet photoemission spectroscopy, atomic force microscopy, internal resistances in PPVs, and current-voltage power curves. The resultant PPVs with AuCl3-treated PAN HELs showed improved cell efficiency compared to PSCs with no interlayer and PAN without AuCl3. Furthermore, with AuCl3-treated PAN, we finally achieved a high efficiency of 6.91%, and a desirable PPV-stability in poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophe-ne-2,6-diyl][3-fluoro-2-[(2-thylhexyl)carbonyl]-thieno[3,4-b]thiophenediyl
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Freeh, Joshua E.; Steffen, Christopher J., Jr.; Tornabene, Robert T.; Wang, Xiao-Yen J.
2006-01-01
A system level analysis, inclusive of mass, is carried out for a cryogenic hydrogen fueled hybrid solid oxide fuel cell and bottoming gas turbine (SOFC/GT) power system. The system is designed to provide primary or secondary electrical power for an unmanned aerial vehicle (UAV) over a high altitude, long endurance mission. The net power level and altitude are parametrically varied to examine their effect on total system mass. Some of the more important technology parameters, including turbomachinery efficiencies and the SOFC area specific resistance, are also studied for their effect on total system mass. Finally, two different solid oxide cell designs are compared to show the importance of the individual solid oxide cell design on the overall system. We show that for long mission durations of 10 days or more, the fuel mass savings resulting from the high efficiency of a SOFC/GT system more than offset the larger powerplant mass resulting from the low specific power of the SOFC/GT system. These missions therefore favor high efficiency, low power density systems, characteristics typical of fuel cell systems in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanjib, Das; Yang, Bin; Gu, Gong
Realizing the commercialization of high-performance and robust perovskite solar cells urgently requires the development of economically scalable processing techniques. Here we report a high-throughput ultrasonic spray-coating (USC) process capable of fabricating perovskite film-based solar cells on glass substrates with power conversion efficiency (PCE) as high as 13.04%. Perovskite films with high uniformity, crystallinity, and surface coverage are obtained in a single step. Moreover, we report USC processing on TiOx/ITO-coated polyethylene terephthalate (PET) substrates to realize flexible perovskite solar cells with PCE as high as 8.02% that are robust under mechanical stress. In this case, an optical curing technique was usedmore » to achieve a highly-conductive TiOx layer on flexible PET substrates for the first time. The high device performance and reliability obtained by this combination of USC processing with optical curing appears very promising for roll-to-roll manufacturing of high-efficiency, flexible perovskite solar cells.« less
Plasmonic Photovoltaic Cells with Dual-Functional Gold, Silver, and Copper Half-Shell Arrays.
Wu, Ling; Kim, Gyu Min; Nishi, Hiroyasu; Tatsuma, Tetsu
2017-09-12
Solid-state photovoltaic cells based on plasmon-induced charge separation (PICS) have attracted growing attention during the past decade. However, the power conversion efficiency (PCE) of the previously reported devices, which are generally loaded with dispersed metal nanoparticles as light absorbers, has not been sufficiently high. Here we report simpler plasmonic photovoltaic cells with interconnected Au, Ag, and Cu half-shell arrays deposited on SiO 2 @TiO 2 colloidal crystals, which serve both as a plasmonic light absorber and as a current collector. The well-controlled and easily prepared plasmonic structure allows precise comparison of the PICS efficiency between different plasmonic metal species. The cell with the Ag half-shell array has higher photovoltaic performance than the cells with Au and Cu half-shell arrays because of the high population of photogenerated energetic electrons, which gives a high electron injection efficiency and suppressed charge recombination probability, achieving the highest PCE among the solid-state PICS devices even without a hole transport layer.
GaAs nanowire array solar cells with axial p-i-n junctions.
Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu
2014-06-11
Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics.
NASA Technical Reports Server (NTRS)
Conway, E. J.
1979-01-01
A brief overview of the development of GaAs solar cell technology is provided. An 18 to 20 percent AMO efficiency, stability under radiation and elevated-temperature operation, and high power-to-weight ratio are among the factors studied. Cell cost and availability are also examined.
Materials, device, and interface engineering to improve polymer-based solar cells
NASA Astrophysics Data System (ADS)
Hau, Steven Kin
The continued depletion of fossil fuel resources has lead to the rise in energy production costs which has lead to the search for an economically viable alternative energy source. One alternative of particular interest is solar energy. A promising alternative to inorganic materials is organic semiconductor polymer solar cells due to their advantages of being cheaper, light weight, flexible and made into large areas by roll-to-roll processing. In this dissertation, an integrated approach is taken to improve the overall performance of polymer-based solar cells by the development of new polymer materials, device architectures, and interface engineering of the contacts between layers. First, a new class of metallated conjugated polymers is explored as potential solar cell materials. Systematic modifications to the molecular units on the main chain of amorphous metallated Pt-polymers show a correlation that improving charge carrier mobility also improves solar cell performance leading to mobilities as high as 1 x 10-2 cm2/V·s and efficiencies as high as 4.1%. Second, an inverted device architecture using a more air stable electrode (Ag) is demonstrated to improve the ambient stability of unencapsulated P3HT:PCBM devices showing over 80% efficiency retention after 40 days of exposure. To further demonstrate the potential for roll-to-roll processing of polymer solar cells, solution processed Ag-nanoparticles were used to replace the vacuum deposited Ag anode electrode for inverted solar cells showing efficiencies as high as 3%. In addition, solution processed polymer based electrodes were demonstrated as a replacement to the expensive and brittle indium tin oxide showing efficiencies of 3% on flexible substrate solar cells. Third, interface engineering of the n-type (high temperature sol-gel processed TiO2 or ZnO, low temperature processed ZnO nanoparticles) electron selective metal oxide contacts in inverted solar cells with self-assembled monolayers (SAM) show improved device performance. Modifying the n-type layer in inverted cells with C60-SAMs containing different anchoring groups leads to an improvement in photocurrent density and fill factor leading to efficiencies as high as 4.9%.
Lopez-Delgado, R; Zhou, Y; Zazueta-Raynaud, A; Zhao, H; Pelayo, J E; Vomiero, A; Álvarez-Ramos, M E; Rosei, F; Ayon, A
2017-10-26
Silicon solar cells have captured a large portion of the total market of photovoltaic devices mostly due to their relatively high efficiency. However, Silicon exhibits limitations in ultraviolet absorption because high-energy photons are absorbed at the surface of the solar cell, in the heavily doped region, and the photo-generated electron-hole pairs need to diffuse into the junction region, resulting in significant carrier recombination. One of the alternatives to improve the absorption range involves the use of down-shifting nano-structures able to interact with the aforementioned high energy photons. Here, as a proof of concept, we use downshifting CdSe/CdS quantum dots to improve the performance of a silicon solar cell. The incorporation of these nanostructures triggered improvements in the short circuit current density (J sc , from 32.5 to 37.0 mA/cm 2 ). This improvement led to a ∼13% increase in the power conversion efficiency (PCE), from 12.0 to 13.5%. Our results demonstrate that the application of down-shifting materials is a viable strategy to improve the efficiency of Silicon solar cells with mass-compatible techniques that could serve to promote their widespread utilization.
High-efficiency robust perovskite solar cells on ultrathin flexible substrates
Li, Yaowen; Meng, Lei; Yang, Yang (Michael); Xu, Guiying; Hong, Ziruo; Chen, Qi; You, Jingbi; Li, Gang; Yang, Yang; Li, Yongfang
2016-01-01
Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg−1, given the fact that the device is constructed on a 57-μm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells. PMID:26750664
Li, Xiang; Jin, Qiaofeng; Chen, Tan; Zhang, Baoyue; Zheng, Rongqin; Wang, Zhanhui; Zheng, Hairong
2009-01-01
Using ultrasonic contrast microbubbles as acoustic biomarkers and drug carrier vehicles by conjugating tumor specific antibody to microbubbles has shown great potential in ultrasonic tumor molecular imaging or drug-delivery and therapy. Microbubble probe targeting efficiency is one of the major challenges. In this study, we developed a novel method to evaluate the targeting capability and efficiency of microbubbles to cells, and more specifically, microbubbles binding LyP-1 (a cyclic nonapeptide acid peptide) target to cancer cell within a microfluidic system. The micro cell sieves within the microfludic channels could trap the tumor cells and enhance the microbubble's interaction with the cell. Assisted with the controllable fluid shear stress, the microbubble's targeting to the cell and the corresponding affinity efficiency could be quantitatively evaluated under a florescent microscope. The system provides a useful low-cost high efficient in vitro platform for studying microbubble-cell interaction for ultrasonic tumor molecular imaging or drug-delivery and therapy.
The intermediate band solar cell: progress toward the realization of an attractive concept.
Luque, Antonio; Martí, Antonio
2010-01-12
The intermediate band (IB) solar cell has been proposed to increase the current of solar cells while at the same time preserving the output voltage in order to produce an efficiency that ideally is above the limit established by Shockley and Queisser in 1961. The concept is described and the present realizations and acquired understanding are explained. Quantum dots are used to make the cells but the efficiencies that have been achieved so far are not yet satisfactory. Possible ways to overcome the issues involved are depicted. Alternatively, and against early predictions, IB alloys have been prepared and cells that undoubtedly display the IB behavior have been fabricated, although their efficiency is still low. Full development of this concept is not trivial but it is expected that once the development of IB solar cells is fully mastered, IB solar cells should be able to operate in tandem in concentrators with very high efficiencies or as thin cells at low cost with efficiencies above the present ones.
NASA Technical Reports Server (NTRS)
Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John
1991-01-01
The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.
Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Liao, Xinqin; Li, Yong; Zheng, Xin; Lin, Pei; Meng, Jingjing; Zhang, Yue
2017-03-01
The low-cost inorganic-organic lead halide perovskite materials become particularly promising for solar cells with high photovoltaic conversion efficiency. The uniform and pinhole-free perovskite films play an important role for high-performance solar cells. We demonstrate an antisolvent treatment by controlling the PbI 2 morphology to enhance the perovskite conversion and photophysical properties, including high absorption, crystallinity, and rapid carrier transfer. The fabricated perovskite solar cells show tremendous PCE improvement to about 16.1% from 12% with less hysteresis, and retain over 90% initial PCE after 30 days in ambient and dark atmosphere. In prospect, this antisolvent treatment will be a feasible route to prepare high-quality perovskite films including favorite photophysical properties.
Semiconductor solar cells: Recent progress in terrestrial applications
NASA Astrophysics Data System (ADS)
Avrutin, V.; Izyumskaya, N.; Morkoç, H.
2011-04-01
In the last decade, the photovoltaic industry grew at a rate exceeding 30% per year. Currently, solar-cell modules based on single-crystal and large-grain polycrystalline silicon wafers comprise more than 80% of the market. Bulk Si photovoltaics, which benefit from the highly advanced growth and fabrication processes developed for microelectronics industry, is a mature technology. The light-to-electric power conversion efficiency of the best modules offered on the market is over 20%. While there is still room for improvement, the device performance is approaching the thermodynamic limit of ˜28% for single-junction Si solar cells. The major challenge that the bulk Si solar cells face is, however, the cost reduction. The potential for price reduction of electrical power generated by wafer-based Si modules is limited by the cost of bulk Si wafers, making the electrical power cost substantially higher than that generated by combustion of fossil fuels. One major strategy to bring down the cost of electricity generated by photovoltaic modules is thin-film solar cells, whose production does not require expensive semiconductor substrates and very high temperatures and thus allows decreasing the cost per unit area while retaining a reasonable efficiency. Thin-film solar cells based on amorphous, microcrystalline, and polycrystalline Si as well as cadmium telluride and copper indium diselenide compound semiconductors have already proved their commercial viability and their market share is increasing rapidly. Another avenue to reduce the cost of photovoltaic electricity is to increase the cell efficiency beyond the Shockley-Queisser limit. A variety of concepts proposed along this avenue forms the basis of the so-called third generation photovoltaics technologies. Among these approaches, high-efficiency multi-junction solar cells based on III-V compound semiconductors, which initially found uses in space applications, are now being developed for terrestrial applications. In this article, we discuss the progress, outstanding problems, and environmental issues associated with bulk Si, thin-film, and high-efficiency multi-junction solar cells.
NASA Astrophysics Data System (ADS)
Kaneko, Toshiro
2014-10-01
Non-equilibrium atmospheric pressure plasma irradiated to the living-cell is investigated for medical applications such as gene transfection, which is expected to play an important role in molecular biology, gene therapy, and creation of induced pluripotent stem (iPS) cells. However, the conventional gene transfection using the plasma has some problems that the cell viability is low and the genes cannot be transferred into some specific lipid cells, which is attributed to the unknown mechanism of the gene transfection using the plasma. Therefore, the time-controlled atmospheric pressure plasma flow is generated and irradiated to the living-cell suspended solution for clarifying the transfection mechanism toward developing highly-efficient and minimally- invasive gene transfection system. In this experiment, fluorescent dye YOYO-1 is used as the simulated gene and LIVE/DEAD Stain is simultaneously used for cell viability assay. By the fluorescence image, the transfection efficiency is calculated as the ratio of the number of transferred and surviving cells to total cell count. It is clarified that the transfection efficiency is significantly increased by the short-time (<4 sec) and short-distance (<40 mm) plasma irradiation, and the high transfection efficiency of 53% is realized together with the high cell viability (>90%). This result indicates that the physical effects such as the electric field caused by the charged particles arriving at the surface of the cell membrane, and chemical effects associated with plasma-activated products in solution act synergistically to enhance the cell-membrane transport with low-damage. This work was supported by JSPS KAKENHI Grant Number 24108004.
Lin, Haishuang; Li, Qiang; Wang, Ou; Rauch, Jack; Harm, Braden; Viljoen, Hendrik J; Zhang, Chi; Van Wyk, Erika; Zhang, Chi; Lei, Yuguo
2018-05-11
Adoptive immunotherapy is a highly effective strategy for treating many human cancers, such as melanoma, cervical cancer, lymphoma, and leukemia. Here, a novel cell culture technology is reported for expanding primary human T cells for adoptive immunotherapy. T cells are suspended and cultured in microscale alginate hydrogel tubes (AlgTubes) that are suspended in the cell culture medium in a culture vessel. The hydrogel tubes protect cells from hydrodynamic stresses and confine the cell mass less than 400 µm (in radial diameter) to ensure efficient mass transport, creating a cell-friendly microenvironment for growing T cells. This system is simple, scalable, highly efficient, defined, cost-effective, and compatible with current good manufacturing practices. Under optimized culture conditions, the AlgTubes enable culturing T cells with high cell viability, low DNA damage, high growth rate (≈320-fold expansion over 14 days), high purity (≈98% CD3+), and high yield (≈3.2 × 10 8 cells mL -1 hydrogel). All offer considerable advantages compared to current T cell culturing approaches. This new culture technology can significantly reduce the culture volume, time, and cost, while increasing the production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lightweight, Light-Trapped, Thin GaAs Solar Cells for Spacecraft Applications.
1995-10-05
improve the efficiency of this type of cell. 2 The high efficiency and light weight of the cover glass supported GaAs solar cell can have a significant...is a 3-mil cover glass and 1-mil silicone adhesive on the front surface of the GaAs solar cell. Power Output 3000 400 -{ 2400 { N 300 S18200 W/m2...the ultra-thin, light-trapped GaAs solar ceill 3. Incorporate light trapping. 0 external quantum efficiency at 850 nm increased by 5.2% 4. Develop
Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss.
Zhang, Yinan; Stokes, Nicholas; Jia, Baohua; Fan, Shanhui; Gu, Min
2014-05-13
The cost-effectiveness of market-dominating silicon wafer solar cells plays a key role in determining the competiveness of solar energy with other exhaustible energy sources. Reducing the silicon wafer thickness at a minimized efficiency loss represents a mainstream trend in increasing the cost-effectiveness of wafer-based solar cells. In this paper we demonstrate that, using the advanced light trapping strategy with a properly designed nanoparticle architecture, the wafer thickness can be dramatically reduced to only around 1/10 of the current thickness (180 μm) without any solar cell efficiency loss at 18.2%. Nanoparticle integrated ultra-thin solar cells with only 3% of the current wafer thickness can potentially achieve 15.3% efficiency combining the absorption enhancement with the benefit of thinner wafer induced open circuit voltage increase. This represents a 97% material saving with only 15% relative efficiency loss. These results demonstrate the feasibility and prospect of achieving high-efficiency ultra-thin silicon wafer cells with plasmonic light trapping.
Xia, Yingdong; Pan, Yufeng; Zhang, Haijuan; Qiu, Jian; Zheng, Yiting; Chen, Yonghua; Huang, Wei
2017-08-09
The hole extraction layer has a significant impact on the achievement of high-efficiency polymer solar cells (PSCs). Here, we report an efficient approach to direct UV-ozone treatment by larger device performance enhancement employing graphene oxide (GO). The dramatic performance enhancement of PSCs with the P3HT:PCBM blend as an active layer was demonstrated by the UV-ozone treatment of GO for 30 min: best power conversion efficiency (PCE) of 4.18%, fill factor of 0.63, J sc of 10.94 mA cm -2 , and V oc of 0.61 V, which are significantly higher than those of the untreated GO (1.82%) and highly comparable PEDOT:PSS-based PSCs (3.73%). In addition, PSCs with UV-ozone-treated GO showed a longer stability than PSCs with PEDOT:PSS. The significant enhancement of PCEs of PSCs can be attributed to the fact that ozone molecules can oxidize GO into CO 2 and leave highly conductive graphene particles. We suggest that this simple UV-ozone treatment can provide an efficient method for highly efficient GO hole extraction in high-performance PSCs.
Yang, Zhibin; Chueh, Chu-Chen; Zuo, Fan; ...
2015-04-30
A fully printable perovskite solar cell (PVSC) is demonstrated using a blade-coating technique under ambient conditions with controlled humidity. The influence of humidity on perovskite's crystallization is systematically investigated to realize the ambient processing condition. A high power conversion efficiency of 10.44% is achieved after optimizing the blade-coating process and, more importantly, a high-performance flexible PVSC is demonstrated for the first time. A high efficiency of 7.14% is achieved.
NASA Astrophysics Data System (ADS)
Araki, Takuto; Ohba, Takahiro; Takezawa, Shinya; Onda, Kazuo; Sakaki, Yoshinori
Solid oxide fuel cells (SOFCs) can be composed of solid components for stable operation, and high power generation efficiency is obtained by using high temperature exhaust heat for fuel reforming and bottoming power generation by a gas turbine. Recently, low-temperature SOFCs, which run in the temperature range of around 600 °C or above and give high power generation efficiency, have been developed. On the other hand, a power generation system with multi-staged fuel cells has been proposed by the United States DOE to obtain high efficiency. In our present study, a power generation system consisting of two-staged SOFCs with serial connection of low and high temperature SOFCs was investigated. Overpotential data for the low-temperature SOFC used in this study are based on recently published data, while data for high-temperature SOFC are based on our previous study. The numerical results show that the power generation efficiency of the two-staged SOFCs is 50.3% and the total efficiency of power generation with gas turbine is 56.1% under standard operating conditions. These efficiencies are a little higher than those by high-temperature SOFC only.
Organic solar cells based on high dielectric constant materials: An approach to increase efficiency
NASA Astrophysics Data System (ADS)
Hamam, Khalil Jumah Tawfiq
The efficiency of organic solar cells still lags behind inorganic solar cells due to their low dielectric constant which results in a weakly screened columbic attraction between the photogenerated electron-hole system, therefore the probability of charge separating is low. Having an organic material with a high dielectric constant could be the solution to get separated charges or at least weakly bounded electron-hole pairs. Therefore, high dielectric constant materials have been investigated and studied by measuring modified metal-phthalocyanine (MePc) and polyaniline in pellets and thin films. The dielectric constant was investigated as a function of temperature and frequency in the range of 20Hz to1MHz. For MePc we found that the high dielectric constant was an extrinsic property due to water absorption and the formation of hydronuim ion allowed by the ionization of the functional groups such as sulphonated and carboxylic groups. The dielectric constant was high at low frequencies and decreasing as the frequency increase. Investigated materials were applied in fabricated bilayer heterojunction organic solar cells. The application of these materials in an organic solar cells show a significant stability under room conditions rather than improvement in their efficiency.
Huang, Haishui; Sun, Mingrui; Heisler-Taylor, Tyler; Kiourti, Asimina; Volakis, John; Lafyatis, Gregory; He, Xiaoming
2015-10-28
A dielectrophoresis (DEP)-based method achieves highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension forces with no trapped oil, while the encapsulated cells are free from electrical damage due to the Faraday cage effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Status of indium phosphide solar cell development at Spire
NASA Technical Reports Server (NTRS)
Spitzer, M. B.; Keavney, C. J.; Vernon, S. M.
1987-01-01
On-going development of indium phosphide solar cells for space applications is presented. The development is being carried out with a view towards both high conversion efficiency and simplicity of manufacture. The cell designs comprise the ion-implanted cell, the indium tin oxide top contact cell, and the epitaxial cell grown by metal organic chemical vapor deposition. Modelling data on the limit to the efficiency are presented and comparison is made to measured performance data.
NASA Technical Reports Server (NTRS)
Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.
1991-01-01
A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.
Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M. Melvin David; Yi, Junsin; Anderson, Wayne A.; Kim, Dong-Wook
2015-01-01
Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell. PMID:25787933
Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M Melvin David; Yi, Junsin; Anderson, Wayne A; Kim, Dong-Wook
2015-03-19
Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell.
NASA Astrophysics Data System (ADS)
Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.
A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.
Vahidi Ferdousi, Leyla; Rocheteau, Pierre; Chayot, Romain; Montagne, Benjamin; Chaker, Zayna; Flamant, Patricia; Tajbakhsh, Shahragim; Ricchetti, Miria
2014-11-01
The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs. Copyright © 2014. Published by Elsevier B.V.
Yoo, Chang Eun; Moon, Hui-Sung; Kim, Yeon Jeong; Park, Jong-Myeon; Park, Donghyun; Han, Kyung-Yeon; Park, Keunchil; Sun, Jong-Mu; Park, Woong-Yang
2016-01-01
Efficient isolation of circulating tumor cells (CTCs) from whole blood is a major challenge for the clinical application of CTCs. Here, we report an efficient method to isolate CTCs from whole blood using highly dense and transparent silica microbeads. The surfaces of silica microbeads were fully covered with an antibody to capture CTCs, and blocked by zwitterionic moieties to prevent the non-specific adsorption of blood cells. Owing to the high density of the silica microbeads, the complexation of CTCs with silica microbeads resulted in the efficient sedimentation of CTC-microbead complexes, which enabled their discrimination from other blood cells in density gradient media. Model CTCs (MCF-7, HCC827, and SHP-77) with various levels of epithelial cell adhesion molecule (EpCAM) were isolated efficiently, especially those with low EpCAM expression (SHP-77). Moreover, the transparency of silica microbeads enabled CTCs to be clearly identified without interference caused by microbeads. The improved sensitivity resulted in increased CTC recovery from patient samples compared with the FDA-approved CellSearch system (14/15 using our method; 5/15 using the CellSearch system). These results indicate that the isolation method described in this report constitutes a powerful tool for the isolation of CTCs from whole blood, which has important applications in clinical practice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Low-Cost III-V Solar Cells | Photovoltaic Research | NREL
Low-Cost III-V Solar Cells Low-Cost III-V Solar Cells At present, the cost of III-V solar cells is to drastically lower the cost of these devices, while maintaining their conversion efficiency, thus costs in the production of high-efficiency III-V devices: the cost of the epitaxy and the single-crystal
NASA Astrophysics Data System (ADS)
Creasey, Rhiannon; Hook, Andrew; Thissen, Helmut; Voelcker, Nicolas H.
2007-12-01
Transfection cell microarrays (TCMs) are a high-throughput, miniaturised cell-culture system utilising reverse transfection, in which cells are seeded onto a DNA array resulting in localised regions of transfected cells. TCMs are useful for the analysis of gene expression, and can be used to identify genes involved in many cellular processes. This is of significant interest in fields such as tissue engineering, diagnostic screening, and drug testing [1, 2]. Low transfection efficiency has so far limited the application and utility of this technique. Recently, the transfection efficiency of TCMs was improved by an application of a high voltage for a short period of time to the DNA array resulting in the electroporation of cells attached to the surface [3, 4]. Furthermore, application of a low voltage for a longer period of time to the DNA array was shown to improve the transfection efficiency by stimulating the desorption of attached DNA, increasing the concentration of DNA available for cellular uptake [5]. In the present study, the optimisation of the uptake of adsorbed DNA vectors by adherent cells, utilising a voltage bias without compromising cell viability was investigated. This was achieved by depositing negatively charged DNA plasmids onto a positively charged allylamine plasma polymer (ALAPP) layer deposited on highly doped p-type silicon wafers either using a pipettor or a microarray contact printer. Surface-dependant human embryonic kidney (HEK 293 line) cells were cultured onto the DNA vector loaded ALAPP spots and the plasmid transfection events were detected by fluorescence microscopy. Cell viability assays, including fluorescein diacetate (FDA) / Hoechst DNA labelling, were carried out to determine the number of live adherent cells before and after application of a voltage. A protocol was developed to screen for voltage biases and exposure times in order to optimise transfection efficiency and cell viability. Cross-contamination between the microarray spots carrying different DNA vectors was also investigated. By application of a voltage of 286 V/cm for 10 ms, transfection efficiency was doubled compared to using only transfection reagent, whilst maintaining a cell viability of 60-70% of the positive control.
Simulation analysis of a novel high efficiency silicon solar cell
NASA Technical Reports Server (NTRS)
Mokashi, Anant R.; Daud, T.; Kachare, A. H.
1985-01-01
It is recognized that crystalline silicon photovoltaic module efficiency of 15 percent or more is required for cost-effective photovoltaic energy utilization. This level of module efficiency requires large-area encapsulated production cell efficiencies in the range of 18 to 20 percent. Though the theoretical maximum of silicon solar cell efficiency for an idealized case is estimated to be around 30 percent, practical performance of cells to-date are considerably below this limit. This is understood to be largely a consequence of minority carrier losses in the bulk as well as at all surfaces including those under the metal contacts. In this paper a novel device design with special features to reduce bulk and surface recombination losses is evaluated using numerical analysis technique. Details of the numerical model, cell design, and analysis results are presented.
Whole cell entrapment techniques.
Trelles, Jorge A; Rivero, Cintia W
2013-01-01
Microbial whole cells are efficient, ecological, and low-cost catalysts that have been successfully applied in the pharmaceutical, environmental, and alimentary industries, among others. Microorganism immobilization is a good way to carry out the bioprocess under preparative conditions. The main advantages of this methodology lie in their high operational stability, easy upstream separation and bioprocess scale-up feasibility. Cell entrapment is the most widely used technique for whole cell immobilization. This technique-in which the cells are included within a rigid network-is porous enough to allow the diffusion of substrates and products, protects the selected microorganism from the reaction medium, and has high immobilization efficiency (100 % in most cases).
Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air.
Ito, Nozomi; Kamarudin, Muhammad Akmal; Hirotani, Daisuke; Zhang, Yaohong; Shen, Qing; Ogomi, Yuhei; Iikubo, Satoshi; Minemoto, Takashi; Yoshino, Kenji; Hayase, Shuzi
2018-04-05
Lead-based perovskite solar cells have gained ground in recent years, showing efficiency as high as 20%, which is on par with that of silicon solar cells. However, the toxicity of lead makes it a nonideal candidate for use in solar cells. Alternatively, tin-based perovskites have been proposed because of their nontoxic nature and abundance. Unfortunately, these solar cells suffer from low efficiency and stability. Here, we propose a new type of perovskite material based on mixed tin and germanium. The material showed a band gap around 1.4-1.5 eV as measured from photoacoustic spectroscopy, which is ideal from the perspective of solar cells. In a solar cell device with inverted planar structure, pure tin perovskite solar cell showed a moderate efficiency of 3.31%. With 5% doping of germanium into the perovskite, the efficiency improved up to 4.48% (6.90% after 72 h) when measured in air without encapsulation.
Kulkarni, Aditya; Evers, Wiel H; Tomić, Stanko; Beard, Matthew C; Vanmaekelbergh, Daniel; Siebbeles, Laurens D A
2018-01-23
Carrier multiplication (CM) is a process in which a single photon excites two or more electrons. CM is of interest to enhance the efficiency of a solar cell. Until now, CM in thin films and solar cells of semiconductor nanocrystals (NCs) has been found at photon energies well above the minimum required energy of twice the band gap. The high threshold of CM strongly limits the benefits for solar cell applications. We show that CM is more efficient in a percolative network of directly connected PbSe NCs. The CM threshold is at twice the band gap and increases in a steplike fashion with photon energy. A lower CM efficiency is found for a solid of weaker coupled NCs. This demonstrates that the coupling between NCs strongly affects the CM efficiency. According to device simulations, the measured CM efficiency would significantly enhance the power conversion efficiency of a solar cell.
InP concentrator solar cells for space applications
NASA Technical Reports Server (NTRS)
Ward, J. S.; Wanlass, M. W.; Coutts, T. J.; Emery, K. A.
1991-01-01
The design, fabrication, and characterization of high-performance, n(+)/p InP shallow-homojunction (SHJ) concentrator solar cells is described. The InP device structures were grown by atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). A preliminary assessment of the effects of grid collection distance and emitter sheet resistance on cell performance is presented. At concentration ratios of over 100, cells with AM0 efficiencies in excess of 21 percent at 25 C and 19 percent at 80 C are reported. These results indicate that high-efficiency InP concentrator cells can be fabricated using existing technologies. The performance of these cells as a function of temperature is discussed, and areas for future improvement are outlined.
High resolution, low cost solar cell contact development
NASA Technical Reports Server (NTRS)
Mardesich, N.
1981-01-01
The MIDFILM cell fabrication and encapsulation processes were demonstrated as a means of applying low-cost solar cell collector metallization. The average cell efficiency of 12.0 percent (AM1, 28 C) was achieved with fritted silver metallization with a demonstration run of 500 starting wafers. A 98 percent mechanical yield and 80 percent electrical yield were achieved through the MIDFILM process. High series resistance was responsible for over 90 percent of the electrical failures and was the major factor causing the low average cell efficiency. Environmental evaluations suggest that the MIDFILM cells do not degrade. A slight degradation in power was experienced in the MIDFILM minimodules when the AMP Solarlok connector delaminated during the environmental testing.
Xia, Zhouhui; Gao, Peng; Sun, Teng; Wu, Haihua; Tan, Yeshu; Song, Tao; Lee, Shuit-Tong; Sun, Baoquan
2018-04-25
Silicon (Si)/organic heterojunction solar cells based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and n-type Si have attracted wide interests because they promise cost-effectiveness and high-efficiency. However, the limited conductivity of PEDOT:PSS leads to an inefficient hole transport efficiency for the heterojunction device. Therefore, a high dense top-contact metal grid electrode is required to assure the efficient charge collection efficiency. Unfortunately, the large metal grid coverage ratio electrode would lead to undesirable optical loss. Here, we develop a strategy to balance PEDOT:PSS conductivity and grid optical transmittance via a buried molybdenum oxide/silver grid electrode. In addition, the grid electrode coverage ratio is optimized to reduce its light shading effect. The buried electrode dramatically reduces the device series resistance, which leads to a higher fill factor (FF). With the optimized buried electrode, a record FF of 80% is achieved for flat Si/PEDOT:PSS heterojunction devices. With further enhancement adhesion between the PEDOT:PSS film and Si substrate by a chemical cross-linkable silance, a power conversion efficiency of 16.3% for organic/textured Si heterojunction devices is achieved. Our results provide a path to overcome the inferior organic semiconductor property to enhance the organic/Si heterojunction solar cell.
NASA Astrophysics Data System (ADS)
Lang, J. R.; Neufeld, C. J.; Hurni, C. A.; Cruz, S. C.; Matioli, E.; Mishra, U. K.; Speck, J. S.
2011-03-01
High external quantum efficiency (EQE) p-i-n heterojunction solar cells grown by NH3-based molecular beam epitaxy are presented. EQE values including optical losses are greater than 50% with fill-factors over 72% when illuminated with a 1 sun AM0 spectrum. Optical absorption measurements in conjunction with EQE measurements indicate an internal quantum efficiency greater than 90% for the InGaN absorbing layer. By adjusting the thickness of the top p-type GaN window contact layer, it is shown that the short-wavelength (<365 nm) quantum efficiency is limited by the minority carrier diffusion length in highly Mg-doped p-GaN.
Baek, Se-Woong; Park, Garam; Noh, Jonghyeon; Cho, Changsoon; Lee, Chun-Ho; Seo, Min-Kyo; Song, Hyunjoon; Lee, Jung-Yong
2014-04-22
In this report, we propose a metal-metal core-shell nanocube (NC) as an advanced plasmonic material for highly efficient organic solar cells (OSCs). We covered an Au core with a thin Ag shell as a scattering enhancer to build Au@Ag NCs, which showed stronger scattering efficiency than Au nanoparticles (AuNPs) throughout the visible range. Highly efficient plasmonic organic solar cells were fabricated by embedding Au@Ag NCs into an anodic buffer layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and the power conversion efficiency was enhanced to 6.3% from 5.3% in poly[N-9-hepta-decanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71-butyric acid methyl ester (PC70BM) based OSCs and 9.2% from 7.9% in polythieno[3,4-b]thiophene/benzodithiophene (PTB7):PC70BM based OSCs. The Au@Ag NC plasmonic PCDTBT:PC70BM-based organic solar cells showed 2.2-fold higher external quantum efficiency enhancement compared to AuNPs devices at a wavelength of 450-700 nm due to the amplified plasmonic scattering effect. Finally, we proved the strongly enhanced plasmonic scattering efficiency of Au@Ag NCs embedded in organic solar cells via theoretical calculations and detailed optical measurements.
Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien
2012-03-01
Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technologymore » will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.« less
Yang, Zhanjun; Zong, Chen; Ju, Huangxian; Yan, Feng
2011-11-07
A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using α-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL(-1) and a low detection limit of 0.1 ng mL(-1). The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay. Copyright © 2011 Elsevier B.V. All rights reserved.
The efficiency of photovoltaic cells exposed to pulsed laser light
NASA Technical Reports Server (NTRS)
Lowe, R. A.; Landis, G. A.; Jenkins, P.
1993-01-01
Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.
NASA Astrophysics Data System (ADS)
Kohnehpoushi, Saman; Nazari, Pariya; Abdollahi Nejand, Bahram; Eskandari, Mehdi
2018-05-01
In this work MoS2 thin film was studied as a potential two-dimensional (2D) hole-transporting material for fabrication of low-cost, durable and efficient perovskite solar cells. The thickness of MoS2 was studied as a potential factor in reaching high power conversion efficiency in perovskite solar cells. The thickness of the perovskite layer and the different metal back contacts gave distinct photovoltaic properties to the designed cells. The results show that a single sheet of MoS2 could considerably improve the power conversion efficacy of the device from 10.41% for a hole transport material (HTM)-free device to 20.43% for a device prepared with a 0.67 nm thick MoS2 layer as a HTM. On the back, Ag and Al collected the carriers more efficiently than Au due to the value of their metal contact work function with the TiO2 conduction band. The present work proposes a new architecture for the fabrication of low-cost, durable and efficient perovskite solar cells made from a low-cost and robust inorganic HTM and electron transport material.
Kohnehpoushi, Saman; Nazari, Pariya; Nejand, Bahram Abdollahi; Eskandari, Mehdi
2018-05-18
In this work MoS 2 thin film was studied as a potential two-dimensional (2D) hole-transporting material for fabrication of low-cost, durable and efficient perovskite solar cells. The thickness of MoS 2 was studied as a potential factor in reaching high power conversion efficiency in perovskite solar cells. The thickness of the perovskite layer and the different metal back contacts gave distinct photovoltaic properties to the designed cells. The results show that a single sheet of MoS 2 could considerably improve the power conversion efficacy of the device from 10.41% for a hole transport material (HTM)-free device to 20.43% for a device prepared with a 0.67 nm thick MoS 2 layer as a HTM. On the back, Ag and Al collected the carriers more efficiently than Au due to the value of their metal contact work function with the TiO 2 conduction band. The present work proposes a new architecture for the fabrication of low-cost, durable and efficient perovskite solar cells made from a low-cost and robust inorganic HTM and electron transport material.
The effects of RPM and recycle on separation efficiency in a clinical blood cell centrifuge.
Drumheller, P D; Van Wie, B J; Petersen, J N; Oxford, R J; Schneider, G W
1987-11-01
A COBE blood cell centrifuge, model 2997 with a single stage channel, was modified to allow computer controlled sampling, and to allow recycle of red blood cells (RBCs) and plasma streams using bovine whole blood. The effects of recycle of the packed RBC and plasma product streams, and of the centrifuge RPM on platelet and white blood cell (WBC) separation efficiencies were quantified using a central composite factorial experimental design. These data were then fit using second order models. Both the model for the WBC separation efficiency and the model for the platelet separation efficiency predict that RPM has the greatest effect on separation efficiency and that RBC and plasma recycle have detrimental effects at moderate to low RPM, but have negligible impact on separation efficiency at high RPM.
Toward a III-V Multijunction Space Cell Technology on Si
NASA Technical Reports Server (NTRS)
Ringel, S. A.; Lueck, M. R.; Andre, C. L.; Fitzgerald, E. A.; Wilt, D. M.; Scheiman, D.
2007-01-01
High efficiency compound semiconductor solar cells grown on Si substrates are of growing interest in the photovoltaics community for both terrestrial and space applications. As a potential substrate for III-V compound photovoltaics, Si has many advantages over traditional Ge and GaAs substrates that include higher thermal conductivity, lower weight, lower material costs, and the potential to leverage the extensive manufacturing base of the Si industry. Such a technology that would retain high solar conversion efficiency at reduced weight and cost would result in space solar cells that simultaneously possess high specific power (W/kg) and high power density (W/m2). For terrestrial solar cells this would result in high efficiency III-V concentrators with improved thermal conductivity, reduced cost, and via the use of SiGe graded interlayers as active component layers the possibility of integrating low bandgap sub-cells that could provide for extremely high conversion efficiency.1 In addition to photovoltaics, there has been an historical interest in III-V/Si integration to provide optical interconnects in Si electronics, which has become of even greater relevance recently due to impending bottlenecks in CMOS based circuitry. As a result, numerous strategies to integrate GaAs with Si have been explored with the primary issue being the approx.4% lattice mismatch between GaAs and Si. Among these efforts, relaxed, compositionally-graded SiGe buffer layers where the substrate lattice constant is effectively tuned from Si to that of Ge so that a close lattice match to subsequent GaAs overlayers have shown great promise. With this approach, threading dislocation densities (TDDs) of approx.1 x 10(exp 6)/sq cm have been uniformly achieved in relaxed Ge layers on Si,5 leading to GaAs on Si with minority carrier lifetimes greater than 10 ns,6 GaAs single junction solar cells on Si with efficiencies greater than 18%,7 InGaAs CW laser diodes on Si,8 and room temperature GaInP red laser diodes on Si.9 Here we report on the first high performance dual junction GaInP/GaAs solar cells grown on Si using this promising SiGe engineered substrate approach.
Semi-transparent perovskite solar cells for tandems with silicon and CIGS
Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; ...
2014-12-23
A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. Furthermore, this work paves the way for integrating perovskites into a low-costmore » and high-efficiency (>25%) tandem cell.« less
Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells.
Chen, Xuguang; Nomani, Alireza; Patel, Niket; Nouri, Faranak S; Hatefi, Arash
2018-01-01
Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermally efficient and highly scalable In2Se3 nanowire phase change memory
NASA Astrophysics Data System (ADS)
Jin, Bo; Kang, Daegun; Kim, Jungsik; Meyyappan, M.; Lee, Jeong-Soo
2013-04-01
The electrical characteristics of nonvolatile In2Se3 nanowire phase change memory are reported. Size-dependent memory switching behavior was observed in nanowires of varying diameters and the reduction in set/reset threshold voltage was as low as 3.45 V/6.25 V for a 60 nm nanowire, which is promising for highly scalable nanowire memory applications. Also, size-dependent thermal resistance of In2Se3 nanowire memory cells was estimated with values as high as 5.86×1013 and 1.04×106 K/W for a 60 nm nanowire memory cell in amorphous and crystalline phases, respectively. Such high thermal resistances are beneficial for improvement of thermal efficiency and thus reduction in programming power consumption based on Fourier's law. The evaluation of thermal resistance provides an avenue to develop thermally efficient memory cell architecture.
High annealing temperature induced rapid grain coarsening for efficient perovskite solar cells.
Cao, Xiaobing; Zhi, Lili; Jia, Yi; Li, Yahui; Cui, Xian; Zhao, Ke; Ci, Lijie; Ding, Kongxian; Wei, Jinquan
2018-08-15
Thermal annealing plays multiple roles in fabricating high quality perovskite films. Generally, it might result in large perovskite grains by elevating annealing temperature, but might also lead to decomposition of perovskite. Here, we study the effects of annealing temperature on the coarsening of perovskite grains in a temperature range from 100 to 250 °C, and find that the coarsening rate of the perovskite grain increase significantly with the annealing temperature. Compared with the perovskite films annealed at 100 °C, high quality perovskite films with large columnar grains are obtained by annealing perovskite precursor films at 250 °C for only 10 s. As a result, the power conversion efficiency of best solar cell increased from 12.35% to 16.35% due to its low recombination rate and high efficient charge transportation in solar cells. Copyright © 2018. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Dumas, K. A. (Editor)
1985-01-01
A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.
Improvement of Cell Survival During Human Pluripotent Stem Cell Definitive Endoderm Differentiation
Wang, Han; Luo, Xie; Yao, Li; Lehman, Donna M.
2015-01-01
Definitive endoderm (DE) is a vital precursor for internal organs such as liver and pancreas. Efficient protocol to differentiate human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) to DE is essential for regenerative medicine and for modeling diseases; yet, poor cell survival during DE differentiation remains unsolved. In this study, our use of B27 supplement in modified differentiation protocols has led to a substantial improvement. We used an SOX17-enhanced green fluorescent protein (eGFP) reporter hESC line to compare and modify established DE differentiation protocols. Both total live cell numbers and the percentages of eGFP-positive cells were used to assess differentiation efficiency. Among tested protocols, three modified protocols with serum-free B27 supplement were developed to generate a high number of DE cells. Massive cell death was avoided during DE differentiation and the percentage of DE cells remained high. When the resulting DE cells were further differentiated toward the pancreatic lineage, the expression of pancreatic-specific markers was significantly increased. Similar high DE differentiation efficiency was observed in H1 hESCs and iPSCs through the modified protocols. In B27 components, bovine serum albumin was found to facilitate DE differentiation and cell survival. Using our modified DE differentiation protocols, satisfactory quantities of quality DE can be produced as primary material for further endoderm lineage differentiation. PMID:26132288
Status of Diffused Junction p(+)n InP Solar Cells for Space Applications
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Flood, D. J.; Brinker, D. J.; Goradia, C.; Fatemi, N. S.; Jenkins, P. P.; Wilt, D. M.; Bailey, S.
1994-01-01
Recently, we have succeeded in fabricating diffused junction p(+)n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V(sub OC)) of 887.6 mV, which, to the best of our knowledge, is higher than previously reported V(sub OC) values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3%. The maximum AMO, 25 C efficiency recorded to date on bare cells is, however, only 13.2%. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating and emitter thickness. This paper summarizes recent advances in the technology of fabrication of p(+)n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: 1) the formation of thin p(+) InP:Cd emitter layers, 2) electroplated front contacts, 3) surface passivation and 4) the design of a new native oxide/AI203/MgF2 three layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.
Lan, Liuyuan; Chen, Zhiming; Hu, Qin; ...
2016-04-25
In article 1600032, an efficient new wide-bandgap polymer based on a novel moiety of pyrrolo[3,4-f]benzotriazole-5,7-dione (TZBI) is developed by Lei Ying, Feng Lui, Thomas P. Russel, Fei Huang, and co-workers. The new chemistry enables fine electronic structure tuning and solution-processed single-junction polymer solar cells provided a remarkable power conversion efficiency of 8.63%. Full electrical and structural characterization reveales that TZBI is a promising building block for the application in highly efficient organic photovoltaics.
A new approach to high-efficiency multi-band-gap solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnham, K.W.J.; Duggan, G.
1990-04-01
The advantages of using multi-quantum-well or superlattice systems as the absorbers in concentrator solar cells are discussed. By adjusting the quantum-well width, an effective band-gap variation that covers the high-efficiency region of the solar spectrum can be obtained. Higher efficiencies should result from the ability to optimize separately current and voltage generating factors. Suitable structures to ensure good carrier separation and collection and to obtain higher open-circuit voltages are presented using the (AlGa)As/GaAs/(InGa)As system. Efficiencies above existing single-band-gap limits should be achievable, with upper limits in excess of 40%.
Strasser, Erwin F; Berger, Thomas G; Weisbach, Volker; Zimmermann, Robert; Ringwald, Jürgen; Schuler-Thurner, Beatrice; Zingsem, Jürgen; Eckstein, Reinhold
2003-09-01
Monocytes collected by leukapheresis are increasingly used for dendritic cell (DC) culture in cell factories suitable for DC vaccination in cancer. Using modified MNC programs on two apheresis systems (Cobe Spectra and Fresenius AS.TEC204), leukapheresis components collected from 84 patients with metastatic malignant melanoma and from 31 healthy male donors were investigated. MNCs, monocytes, RBCs, and platelets (PLTs) in donors and components were analyzed by cell counters, WBC differential counts, and flow cytometry. In 5-L collections, Astec showed better results regarding monocyte collection rates (11.0 vs. 7.4 x 10(6)/min, p = 0.04) and efficiencies (collection efficiency, 51.9 vs. 31.9%; p < 0.001). Both devices resulted in monocyte yields at an average of 1 x 10(9) (donors) and 2.5 x 10(9) (patients), whereas Astec components contained high residual RBCs. Compared to components with low residual PLTs, high PLT concentration resulted in higher monocyte loss (48 vs. 20%, p < 0.0001) before DC culture. The Astec is more efficient in 5-L MNC collections compared to the Spectra. Components with high residual PLTs result in high MNC loss by purification procedures. Thus, optimizing MNC programs is essential to obtain components with high MNC yields and low residual cells as prerequisite for high DC yields.
Li, Zhao-Qian; Chen, Wang-Chao; Guo, Fu-Ling; Mo, Li-E; Hu, Lin-Hua; Dai, Song-Yuan
2015-01-01
Yolk-shell TiO2 microspheres were synthesized via a one-pot template-free solvothermal method building on the aldol condensation reaction of acetylacetone. This unique structure shows superior light scattering ability resulting in power conversion efficiency as high as 11%. This work provided a new synthesis system for TiO2 microspheres from solid to hollow and a novel material platform for high performance solar cells. PMID:26384004
Pilot production and testing of high efficiency wraparound contact solar cells
NASA Technical Reports Server (NTRS)
Gillanders, M.
1981-01-01
Modifications were made to the process sequence until a device capable of high performance and satisfactory processing yields could be fabricated on a production line. Pilot production resulted in a 2 x 4 cm screen printed dielectric wraparound contact solar cell with average 28 C, Air Mass Zero (AMO) conversion efficiencies of 14.2% and reasonable process yields. This high performance was obtained with two different back contact configurations, making the device acceptable for many applications.
Edri, Eran; Kirmayer, Saar; Mukhopadhyay, Sabyasachi; Gartsman, Konstantin; Hodes, Gary; Cahen, David
2014-03-11
Developments in organic-inorganic lead halide-based perovskite solar cells have been meteoric over the last 2 years, with small-area efficiencies surpassing 15%. We address the fundamental issue of how these cells work by applying a scanning electron microscopy-based technique to cell cross-sections. By mapping the variation in efficiency of charge separation and collection in the cross-sections, we show the presence of two prime high efficiency locations, one at/near the absorber/hole-blocking-layer, and the second at/near the absorber/electron-blocking-layer interfaces, with the former more pronounced. This 'twin-peaks' profile is characteristic of a p-i-n solar cell, with a layer of low-doped, high electronic quality semiconductor, between a p- and an n-layer. If the electron blocker is replaced by a gold contact, only a heterojunction at the absorber/hole-blocking interface remains.
Design Strategies for Ultra-high Efficiency Photovoltaics
NASA Astrophysics Data System (ADS)
Warmann, Emily Cathryn
While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired lattice constant. The film is grown strained on an available wafer substrate, but the thickness is below the dislocation nucleation threshold. By removing the film from the growth substrate, allowing the strain to relax elastically, and bonding it to a supportive handle, a template with the desired lattice constant is formed. Experimental efforts towards this structure and initial proof of concept are presented. Cells with high radiative quality present the opportunity to recover a large amount of their radiative losses if they are incorporated in an ensemble that couples emission from one cell to another. This effect is well known, but has been explored previously in the context of sub cells that independently operate at their maximum power point. This analysis explicitly accounts for the system interaction and identifies ways to enhance overall performance by operating some cells in an ensemble at voltages that reduce the power converted in the individual cell. Series connected multijunctions, which by their nature facilitate strong optical coupling between sub-cells, are reoptimized with substantial performance benefit. Photovoltaic efficiency is usually measured relative to a standard incident spectrum to allow comparison between systems. Deployed in the field systems may differ in energy production due to sensitivity to changes in the spectrum. The series connection constraint in particular causes system efficiency to decrease as the incident spectrum deviates from the standard spectral composition. This thesis performs a case study comparing performance of systems over a year at a particular location to identify the energy production penalty caused by series connection relative to independent electrical connection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakagawa, Yosuke; Takahashi, Akihisa; Kajihara, Atsuhisa
Highlights: Black-Right-Pointing-Pointer High-LET radiation induces efficiently apoptosis regardless of p53 gene status. Black-Right-Pointing-Pointer We examined whether high-LET radiation depresses the Akt-survival signals. Black-Right-Pointing-Pointer High-LET radiation depresses of survival signals even in the mp53 cancer cells. Black-Right-Pointing-Pointer High-LET radiation activates Caspase-9 through depression of survival signals. Black-Right-Pointing-Pointer High-LET radiation suppresses cell growth through depression of survival signals. -- Abstract: Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggestedmore » that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G{sub 2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp53 bearing cancer cells.« less
Combining light-harvesting with detachability in high-efficiency thin-film silicon solar cells.
Ram, Sanjay K; Desta, Derese; Rizzoli, Rita; Bellettato, Michele; Lyckegaard, Folmer; Jensen, Pia B; Jeppesen, Bjarke R; Chevallier, Jacques; Summonte, Caterina; Larsen, Arne Nylandsted; Balling, Peter
2017-06-01
Efforts to realize thin-film solar cells on unconventional substrates face several obstacles in achieving good energy-conversion efficiency and integrating light-management into the solar cell design. In this report a technique to circumvent these obstacles is presented: transferability and an efficient light-harvesting scheme are combined for thin-film silicon solar cells by the incorporation of a NaCl layer. Amorphous silicon solar cells in p-i-n configuration are fabricated on reusable glass substrates coated with an interlayer of NaCl. Subsequently, the solar cells are detached from the substrate by dissolution of the sacrificial NaCl layer in water and then transferred onto a plastic sheet, with a resultant post-transfer efficiency of 9%. The light-trapping effect of the surface nanotextures originating from the NaCl layer on the overlying solar cell is studied theoretically and experimentally. The enhanced light absorption in the solar cells on NaCl-coated substrates leads to significant improvement in the photocurrent and energy-conversion efficiency in solar cells with both 350 and 100 nm thick absorber layers, compared to flat-substrate solar cells. Efficient transferable thin-film solar cells hold a vast potential for widespread deployment of off-grid photovoltaics and cost reduction.
View from ... JSAP Spring meeting 2014: Strive for efficiency
NASA Astrophysics Data System (ADS)
Horiuchi, Noriaki
2014-06-01
A high energy conversion efficiency and a low fabrication cost are required to make the widespread implementation of solar cells attractive. Researchers are striving to enhance cell performance by developing heterojunction techniques, introducing photonic-crystal structures and proposing new device designs.
Chen, Xiao; Yang, Shuang; Zheng, Yi Chu; Chen, Ying; Hou, Yu; Yang, Xiao Hua; Yang, Hua Gui
2015-09-01
A novel multifunctional inverse opal-like TiO 2 electron transport layer (IOT-ETL) is designed to replace the traditional compact layer and mesoporous scaffold layer in perovskite solar cells (PSCs). Improved light harvesting efficiency and charge transporting performance in IOT-ETL based PSCs yield high power conversion efficiency of 13.11%.
Room-Temperature Processing of TiOx Electron Transporting Layer for Perovskite Solar Cells.
Deng, Xiaoyu; Wilkes, George C; Chen, Alexander Z; Prasad, Narasimha S; Gupta, Mool C; Choi, Joshua J
2017-07-20
In order to realize high-throughput roll-to-roll manufacturing of flexible perovskite solar cells, low-temperature processing of all device components must be realized. However, the most commonly used electron transporting layer in high-performance perovskite solar cells is based on TiO 2 thin films processed at high temperature (>450 °C). Here, we demonstrate room temperature solution processing of the TiO x layer that performs as well as the high temperature TiO 2 layer in perovskite solar cells, as evidenced by a champion solar cell efficiency of 16.3%. Using optical spectroscopy, electrical measurements, and X-ray diffraction, we show that the room-temperature processed TiO x is amorphous with organic residues, and yet its optical and electrical properties are on par with the high-temperature TiO 2 . Flexible perovskite solar cells that employ a room-temperature TiO x layer with a power conversion efficiency of 14.3% are demonstrated.
Analysis of the reflective multibandgap solar cell concept
NASA Technical Reports Server (NTRS)
Stern, T. G.
1983-01-01
A new and unique approach to improving photovoltaic conversion efficiency, the reflective multiband gap solar cell concept, was examined. This concept uses back surface reflectors and light trapping with several physically separated cells of different bandgaps to make more effective use of energy from different portions of the solar spectrum. Preliminary tests performed under General Dynamics Independent Research and Development (IRAD) funding have demonstrated the capability for achieving in excess of 20% conversion efficiency with aluminum gallium arsenide and silicon. This study analyzed the ultimate potential for high conversion efficiency with 2, 3, 4, and 5 different bandgap materials, determined the appropriate bandgaps needed to achieve this optimized efficiency, and identified potential problems or constraints. The analysis indicated that an improvement in efficiency of better than 40% could be attained in this multibandgap approach, compared to a single bandgap converter under the same assumptions. Increased absorption loss on the back surface reflector was found to incur a minimal penalty on efficiency for two and three bandgap systems. Current models for bulk absorption losses in 3-5 materials were found to be inadequate for explaining laboratory observed transmission losses. Recommendations included the continued development of high bandgap back surface reflector cells and basic research on semiconductor absorption mechanisms.
Development of high efficiency (14 percent) solar cell array module
NASA Technical Reports Server (NTRS)
Iles, P. A.; Khemthong, S.; Olah, S.; Sampson, W. J.; Ling, K. S.
1980-01-01
Most effort was concentrated on development of procedures to provide large area (3 in. diameter) high efficiency (16.5 percent AM1, 28 C) P+NN+ solar cells. Intensive tests with 3 in. slices gave consistently lower efficiency (13.5 percent). The problems were identified as incomplete formation of and optimum back surface field (BSF), and interaction of the BSF process and the shallow P+ junction. The problem was shown not to be caused by reduced quality of silicon near the edges of the larger slices.
Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations.
Han, Ki-Ho; Frazier, A Bruno
2006-02-01
This paper presents the characterization of continuous single-stage and three-stage cascade paramagnetic capture (PMC) mode magnetophoretic microseparators for high efficiency separation of red and white blood cells from diluted whole blood based on their native magnetic properties. The separation mechanism for both PMC microseparators is based on a high gradient magnetic separation (HGMS) method. This approach enables separation of blood cells without the use of additives such as magnetic beads. Experimental results for the single-stage PMC microseparator show that 91.1% of red blood cells were continuously separated from the sample at a volumetric flow rate of 5 microl h-1. In addition, the three-stage cascade PMC microseparator continuously separated 93.5% of red blood cells and 97.4% of white blood cells from whole blood at a volumetric flow rate of 5 microl h-1.
Single-cell isolation by a modular single-cell pipette for RNA-sequencing.
Zhang, Kai; Gao, Min; Chong, Zechen; Li, Ying; Han, Xin; Chen, Rui; Qin, Lidong
2016-11-29
Single-cell transcriptome sequencing highly requires a convenient and reliable method to rapidly isolate a live cell into a specific container such as a PCR tube. Here, we report a modular single-cell pipette (mSCP) consisting of three modular components, a SCP-Tip, an air-displacement pipette (ADP), and ADP-Tips, that can be easily assembled, disassembled, and reassembled. By assembling the SCP-Tip containing a hydrodynamic trap, the mSCP can isolate single cells from 5-10 cells per μL of cell suspension. The mSCP is compatible with microscopic identification of captured single cells to finally achieve 100% single-cell isolation efficiency. The isolated live single cells are in submicroliter volumes and well suitable for single-cell PCR analysis and RNA-sequencing. The mSCP possesses merits of convenience, rapidness, and high efficiency, making it a powerful tool to isolate single cells for transcriptome analysis.
Xie, Yifang; Wang, Daqi; Lan, Feng; Wei, Gang; Ni, Ting; Chai, Renjie; Liu, Dong; Hu, Shijun; Li, Mingqing; Li, Dajin; Wang, Hongyan; Wang, Yongming
2017-05-24
Human pluripotent stem cells (hPSCs) represent a unique opportunity for understanding the molecular mechanisms underlying complex traits and diseases. CRISPR/Cas9 is a powerful tool to introduce genetic mutations into the hPSCs for loss-of-function studies. Here, we developed an episomal vector-based CRISPR/Cas9 system, which we called epiCRISPR, for highly efficient gene knockout in hPSCs. The epiCRISPR system enables generation of up to 100% Insertion/Deletion (indel) rates. In addition, the epiCRISPR system enables efficient double-gene knockout and genomic deletion. To minimize off-target cleavage, we combined the episomal vector technology with double-nicking strategy and recent developed high fidelity Cas9. Thus the epiCRISPR system offers a highly efficient platform for genetic analysis in hPSCs.
p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.
Ihry, Robert J; Worringer, Kathleen A; Salick, Max R; Frias, Elizabeth; Ho, Daniel; Theriault, Kraig; Kommineni, Sravya; Chen, Julie; Sondey, Marie; Ye, Chaoyang; Randhawa, Ranjit; Kulkarni, Tripti; Yang, Zinger; McAllister, Gregory; Russ, Carsten; Reece-Hoyes, John; Forrester, William; Hoffman, Gregory R; Dolmetsch, Ricardo; Kaykas, Ajamete
2018-06-11
CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells 1-3 . Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells 3-13 . Here, using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), we achieved an average insertion or deletion (indel) efficiency greater than 80%. This high efficiency of indel generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs. In previous studies, the toxicity of Cas9 in hPSCs was less apparent because of low transfection efficiency and subsequently low DSB induction 3 . The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. Our results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. Moreover, as hPSCs can acquire P53 mutations 14 , cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.
High Efficiency Large Area Polysilicon Solar Cells
NASA Technical Reports Server (NTRS)
Johnson, S. M.; Winter, C.
1985-01-01
Large area (100 sq cm) polysilicon solar cells having efficiencies of up to 14.1% (100 mW/sq cm, 25 C) were fabricated and a detailed analysis was performed to identify the efficiency loss mechanisms. The 1-5 characteristics of the best cell were dominated by recombination in the quasi-neutral base due to the combination of minority carrier diffusion length and base resistivity. An analysis of the microstructural defects present in the material and their effect on the electrical properties is presented.
Holographic spectrum-splitting optical systems for solar photovoltaics
NASA Astrophysics Data System (ADS)
Zhang, Deming
Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle-wavelength selective filters that can function as ultra-light-trapping filters. Results from an experimental reflection hologram are used to model the absorption enhancement factor for a silicon solar cell and light-trapping filter. The result shows a significant improvement in current generation for thin-film silicon solar cells under typical operating conditions.
Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-05-01
The Twelfth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from 20 to 22 Oct. 1992. The papers and workshops presented in this volume report substantial progress in a variety of areas in space photovoltaics. Topics covered include: high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, flexible amorphous and thin film solar cells (in the early stages of pilot production), high efficiency multiple bandgap cells, laser power converters, solar cell and array technology, heteroepitaxial cells, betavoltaic energy conversion, and space radiation effects in InP cells. Space flight data on amore » variety of cells were also presented. Separate abstracts have been prepared for articles from this report.« less
NASA Astrophysics Data System (ADS)
Mahpeykar, Seyed Milad; Wang, Xihua
2017-02-01
Colloidal quantum dot (CQD) solar cells have been under the spotlight in recent years mainly due to their potential for low-cost solution-processed fabrication and efficient light harvesting through multiple exciton generation (MEG) and tunable absorption spectrum via the quantum size effect. Despite the impressive advances achieved in charge carrier mobility of quantum dot solids and the cells' light trapping capabilities, the recent progress in CQD solar cell efficiencies has been slow, leaving them behind other competing solar cell technologies. In this work, using comprehensive optoelectronic modeling and simulation, we demonstrate the presence of a strong efficiency loss mechanism, here called the "efficiency black hole", that can significantly hold back the improvements achieved by any efficiency enhancement strategy. We prove that this efficiency black hole is the result of sole focus on enhancement of either light absorption or charge extraction capabilities of CQD solar cells. This means that for a given thickness of CQD layer, improvements accomplished exclusively in optic or electronic aspect of CQD solar cells do not necessarily translate into tangible enhancement in their efficiency. The results suggest that in order for CQD solar cells to come out of the mentioned black hole, incorporation of an effective light trapping strategy and a high quality CQD film at the same time is an essential necessity. Using the developed optoelectronic model, the requirements for this incorporation approach and the expected efficiencies after its implementation are predicted as a roadmap for CQD solar cell research community.
Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells.
Um, Han-Don; Choi, Deokjae; Choi, Ahreum; Seo, Ji Hoon; Seo, Kwanyong
2017-06-27
We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO 2 electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm 2 hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm 2 . This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 μm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.
Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells
NASA Astrophysics Data System (ADS)
Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei
2016-12-01
Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO2 or Al2O3) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO2 compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO2 compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol's bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl4, respectively. The morphological and micro-structural properties of the formed compact TiO2 layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO2 compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO2 film deposited via the CBD route acts as the most efficient hole-blocking layer and achieves the best performance in perovskite solar cells. The CBD-based TiO2 compact and dense layer offers a small series resistance and a large recombination resistance inside the device, and makes it possible to achieve a high power conversion efficiency of 12.80%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H. Y.; Peng, Y., E-mail: gdyuan@semi.ac.cn, E-mail: py@usst.edu.cn; Hong, M.
2014-05-12
We report an enhanced conversion efficiency of femtosecond-laser treated silicon solar cells by surface modification of anisotropic-etching. The etching improves minority carrier lifetime inside modified black silicon area substantially; moreover, after the etching, an inverted pyramids/upright pyramids mixed texture surface is obtained, which shows better photon capturing capability than that of conventional pyramid texture. Combing of these two merits, the reformed solar cells show higher conversion efficiency than that of conventional pyramid textured cells. This work presents a way for fabricating high performance silicon solar cells, which can be easily applied to mass-production.
NASA Astrophysics Data System (ADS)
Pakhanov, N. A.; Andreev, V. M.; Shvarts, M. Z.; Pchelyakov, O. P.
2018-03-01
Multi-junction solar cells based on III-V compounds are the most efficient converters of solar energy to electricity and are widely used in space solar arrays and terrestrial photovoltaic modules with sunlight concentrators. All modern high-efficiency III-V solar cells are based on the long-developed triple-junction III-V GaInP/GaInAs/Ge heterostructure and have an almost limiting efficiency for a given architecture — 30 and 41.6% for space and terrestrial concentrated radiations, respectively. Currently, an increase in efficiency is achieved by converting from the 3-junction to the more efficient 4-, 5-, and even 6-junction III-V architectures: growth technologies and methods of post-growth treatment of structures have been developed, new materials with optimal bandgaps have been designed, and crystallographic parameters have been improved. In this review, we consider recent achievements and prospects for the main directions of research and improvement of architectures, technologies, and materials used in laboratories to develop solar cells with the best conversion efficiency: 35.8% for space, 38.8% for terrestrial, and 46.1% for concentrated sunlight. It is supposed that by 2020, the efficiency will approach 40% for direct space radiation and 50% for concentrated terrestrial solar radiation. This review considers the architecture and technologies of solar cells with record-breaking efficiency for terrestrial and space applications. It should be noted that in terrestrial power plants, the use of III-V SCs is economically advantageous in systems with sunlight concentrators.
Olson, J.M.
1994-08-30
A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.
Nair, Soumya V; Witek, Małgorzata A; Jackson, Joshua M; Lindell, Maria A M; Hunsucker, Sally A; Sapp, Travis; Perry, Caroline E; Hupert, Mateusz L; Bae-Jump, Victoria; Gehrig, Paola A; Wysham, Weiya Z; Armistead, Paul M; Voorhees, Peter; Soper, Steven A
2015-02-21
We report a novel strategy to enzymatically release affinity-selected cells, such as circulating tumor cells (CTCs), from surfaces with high efficiency (∼90%) while maintaining cell viability (>85%). The strategy utilizes single-stranded DNAs that link a capture antibody to the surfaces of a CTC selection device. The DNA linkers contain a uracil residue that can be cleaved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au; Tao, Zhikuo
2015-03-02
The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high lightmore » trapping within amorphous silicon layer.« less
Caselli, Derek; Liu, Zhicheng; Shelhammer, David; Ning, Cun-Zheng
2014-10-08
Nanomaterials such as semiconductor nanowires have unique features that could enable novel optoelectronic applications such as novel solar cells. This paper aims to demonstrate one such recently proposed concept: Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells for spectrum-splitting photovoltaic systems. Two cells with different band gaps were fabricated simultaneously in the same process on a single substrate using spatially composition-graded CdSSe alloy nanowires grown by the Dual-Gradient Method in a chemical vapor deposition system. CdSSe nanowire ensemble devices tested under 1 sun AM1.5G illumination achieved open-circuit voltages up to 307 and 173 mV and short-circuit current densities as high as 0.091 and 0.974 mA/cm(2) for the CdS- and CdSe-rich cells, respectively. The open-circuit voltages were roughly three times those of similar CdSSe film cells fabricated for comparison due to the superior optical quality of the nanowires. I-V measurements were also performed using optical filters to simulate spectrum-splitting. The open-circuit voltages and fill factors of the CdS-rich subcells were uniformly larger than the corresponding CdSe-rich cells for similar photon flux, as expected. This suggests that if all wires can be contacted, the wide-gap cell is expected to have greater output power than the narrow-gap cell, which is the key to achieving high efficiencies with spectrum-splitting. This paper thus provides the first proof-of-concept demonstration of simultaneous fabrication of MILAMB solar cells. This approach to solar cell fabrication using single-crystal nanowires for spectrum-splitting photovoltaics could provide a future low-cost high-efficiency alternative to the conventional high-cost high-efficiency tandem cells.
Origin of reduced efficiency in high Ga concentration Cu(In,Ga)Se2 solar cell
NASA Astrophysics Data System (ADS)
Wei, S.-H.; Huang, B.; Deng, H.; Contreras, M. A.; Noufi, R.; Chen, S.; Wang, L. W.
2014-03-01
CuInSe2 (CIS) is one of the most attractive thin-film materials for solar cells. It is well know that alloying Ga into CIS forming Cu(In,Ga)Se2 (CIGS) alloy is crucial to achieve the high efficiency, but adding too much Ga will lead to a decline of the solar cell efficiency. The exact origin of this puzzling phenomenon is currently still under debate. Using first-principles method, we have systemically studied the structural and electronic properties of CIGS alloys. Our phase diagram calculations suggest that increasing growth temperature may not be a critical factor in enhancing the cell performance of CIGS under equilibrium growth condition. On the other hand, our defect calculations identify that high concentration of antisite defects MCu(M =In, Ga) rather than anion defects are the key deep-trap centers in CIGS. The more the Ga concentration in CIGS, the more harmful the deep-trap is. Self-compensation in CIGS, which forms 2VCu + MCudefect complexes, is found to be beneficial to quench the deep-trap levels induced by MCu in CIGS, especially at low Ga concentration. Unfortunately, the density of isolated MCu is quite high and cannot be largely converted into 2VCu + MCu complexes under thermal equilibrium condition. Thus, nonequilibrium growth conditions or low growth temperature that can suppress the formation of the deep-trap centers MCu may be necessary for improving the efficiency of CIGS solar cells with high Ga concentrations.
Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating
2012-01-01
An efficient antireflection coating is critical for the improvement of silicon solar cell performance via increased light coupling. Here, we have grown well-aligned ZnO nanowhisker (NW) arrays on Czochralski silicon solar cells by a seeding-growth two-step process. It is found that the ZnO NWs have a great effect on the macroscopic antireflection effect and, therefore, improves the solar cell performance. The ZnO NW array-coated solar cells display a broadband reflection suppression from 500 to 1,100 nm, and the minimum reflectance smaller than 3% can easily be achieved. By optimizing the time of ZnO NW growth, it has been confirmed that an increase of 3% relatively in the solar cell efficiency can be obtained. These results are quite interesting for the application of ZnO nanostructure in the fabrication of high-efficiency silicon solar cells. PMID:22704578
Innovative manufacturing technologies for low-cost, high efficiency PERC-based PV modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelundur, Vijay
2017-04-19
The goal this project was to accelerate the deployment of innovative solar cell and module technologies that reduce the cost of PERC-based modules to best-in-class. New module integration technology was to be used to reduce the cost and reliance on conventional silver bus bar pastes and enhance cell efficiency. On the cell manufacturing front, the cost of PERC solar cells was to be reduced by introducing advanced metallization approaches to increase cell efficiency. These advancements will be combined with process optimization to target cell efficiencies in the range of 21 to 21.5%. This project will also explore the viability ofmore » a bifacial PERC solar cell design to enable cost savings through the use of thin silicon wafers. This project was terminated on 4/30/17 after four months of activity due financial challenges facing the recipient.« less
The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film.
Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin
2018-03-01
Recently, lead-free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead-free double perovskite planar heterojunction solar cell with a high quality Cs 2 AgBiBr 6 film, fabricated by low-pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead-free perovskite solar cells.
Surface passivation of InP solar cells with InAlAs layers
NASA Technical Reports Server (NTRS)
Jain, Raj K.; Flood, Dennis J.; Landis, Geoffrey A.
1993-01-01
The efficiency of indium phosphide solar cells is limited by high values of surface recombination. The effect of a lattice-matched In(0.52)Al(0.48)As window layer material for InP solar cells, using the numerical code PC-1D is investigated. It was found that the use of InAlAs layer significantly enhances the p(+)n cell efficiency, while no appreciable improvement is seen for n(+)p cells. The conduction band energy discontinuity at the heterojunction helps in improving the surface recombination. An optimally designed InP cell efficiency improves from 15.4 percent to 23 percent AMO for a 10 nm thick InAlAs layer. The efficiency improvement reduces with increase in InAlAs layer thickness, due to light absorption in the window layer.
Chemical beam epitaxy for high efficiency photovoltaic devices
NASA Technical Reports Server (NTRS)
Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.
1994-01-01
InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes our recent results on PV devices and demonstrates the strength of this new technology.
Study of p-type and intrinsic materials for amorphous silicon based solar cells
NASA Astrophysics Data System (ADS)
Du, Wenhui
This dissertation summarizes the research work on the investigation and optimization of high efficiency hydrogenated amorphous silicon (a-Si:H) based thin film n-i-p single-junction and multi-junction solar cells, deposited using radio frequency (RF) and very high frequency (VHF) plasma enhanced chemical vapor deposition (PECVD) techniques. The fabrication and characterization of high quality p-type and intrinsic materials for a-Si:H based solar cells have been systematically and intensively studied. Hydrogen dilution, substrate temperature, gas flow rate, RF- or VHF-power density, and films deposition time have been optimized to obtain "on-the-edge" materials. To understand the material structure of the silicon p-layer providing a high Voc a-Si:H solar cell, hydrogenated amorphous, protocrystalline, and nanocrystalline silicon p-layers have been prepared using RF-PECVD and characterized by Raman spectroscopy and high resolution transmission electronic microscopy (HRTEM). It was found that the optimum Si:H p-layer for n-i-p a-Si:H solar cells is composed of fine-grained nanocrystals with crystallite sizes in the range of 3-5 nm embedded in an amorphous network. Using the optimized p-layer, an a-Si:H single-junction solar cell with a very high Voc value of 1.042 V and a FF value of 0.74 has been obtained. a-Si:H, a-SiGe:H and nc-Si:H i-layers have been prepared using RF- and VHF-PECVD techniques and monitored by different optical and electrical characterizations. Single-junction a-Si:H, a-SiGe and nc-Si:H cells have been developed and optimized. Intermediate bandgap a-SiGe:H solar cells achieved efficiencies over 12.5%. On the basis of optimized component cells, we achieved a-Si:Hla-SiGe:H tandem solar cells with efficiencies of ˜12.9% and a-Si:H/a-SiGe:H/a-SiGe:H triple-junction cells with efficiencies of ˜12.03%. VHF-PECVD technique was used to increase the deposition rates of the narrow bandgap materials. The deposition rate for a-SiGe:H i-layer attained 9 A/sec and the solar cell had a V oc of 0.588 V, Jsc of 20.4 mA/cm2, FF of 0.63, and efficiency of 7.6%. Preliminary research on the preparation of a-Si:Hlnc-Si:H tandem solar cells and a-Si:Hla-SiGe:Hlnc-Si:H triple-junction cells has also been undertaken using VHF nc-Si:H bottom cells with deposition rates of 6 A/sec. All I-V measurements were carried out under AM1.5G (100 MW/cm2) and the cell area was 0.25 cm2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohite, Aditya; Blancon, Jean-Christophe
In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are gaining an extra degree of freedom in designing and fabricating efficient optoelectronic devices based on 2D layered hybrid perovskites. Industrial applications could include low cost solar cells, LEDs, laser diodes, detectors, and other nano-optoelectronic devices. The 2D, near-single-crystalline “Ruddlesden-Popper” thin films have an out-of-plane orientation so that uninhibited charge transport occurs through the perovskite layers in planar devices. The new research finds the existence of “layer-edge-states” at the edges of the perovskite layers which are key to bothmore » high efficiency of solar cells (greater than 12 percent) and high fluorescence efficiency (a few tens of percent) for LEDs. The spontaneous conversion of excitons (bound electron-hole pairs) to free carriers via these layer-edge states appears to be the key to the improvement of the photovoltaic and light-emitting thin film layered materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Jeffery A.; Young, David; Lee, Benjamin
2016-11-21
The key attributes for achieving high efficiency crystalline silicon solar cells include class leading developments in the ability to approach the theoretical limits of silicon solar technology (29.4% efficiency). The push for high efficiency devices is further compounded with the clear need for passivation to reduce recombination at the metal contacts. At the same time there is stringent requirement to retain the same material device quality, surface passivation, and performance characteristics following subsequent processing. The development of passivated silicon cell structures that retain active front and rear surface passivation and overall material cell quality is therefore a relevant and activemore » area of development. To address the potential outcomes of metallization on passivated silicon stack, we report on some common microstructural features of degradation due to metallization for a series of silicon device stacks. A fundamental materials understanding of the metallization process on retaining high-efficiency passivated Si devices is therefore gained over these series of results.« less
Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu
2016-08-10
Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.
N/P GaAs concentrator solar cells with an improved grid and bushbar contact design
NASA Technical Reports Server (NTRS)
Desalvo, G. C.; Mueller, E. H.; Barnett, A. M.
1985-01-01
The major requirements for a solar cell used in space applications are high efficiency at AMO irradiance and resistance to high energy radiation. Gallium arsenide, with a band gap of 1.43 eV, is one of the most efficient sunlight to electricity converters (25%) when the the simple diode model is used to calculate efficiencies at AMO irradiance, GaAs solar cells are more radiation resistant than silicon solar cells and the N/P GaAs device has been reported to be more radiation resistant than similar P/N solar cells. This higher resistance is probably due to the fact that only 37% of the current is generated in the top N layer of the N/P cell compared to 69% in the top layer of a P/N solar cell. This top layer of the cell is most affected by radiation. It has also been theoretically calculated that the optimized N/P device will prove to have a higher efficiency than a similar P/N device. The use of a GaP window layer on a GaAs solar cell will avoid many of the inherent problems normally associated with a GaAlAs window while still proving good passivation of the GaAs surface. An optimized circular grid design for solar cell concentrators has been shown which incorporates a multi-layer metallization scheme. This multi-layer design allows for a greater current carrying capacity for a unit area of shading, which results in a better output efficiency.
Electrolyte for high voltage Li/LiMn 1.9Co 0.1O 4 cells
NASA Astrophysics Data System (ADS)
Hayashi, Katsuya; Nemoto, Yasue; Tobishima, Shin-ichi; Yamaki, Jun-ichi
An electrolyte for high voltage lithium metal anode cells must simultaneously satisfy at least the following requirements; (i) high cycling efficiency on the lithium metal anode; (ii) higher oxidation potential than the charging voltage, and (iii) high specific conductivity. We have examined various electrolytes for lithium metal anode cells using a high voltage cathode, LiMn 1.9Co 0.1O 4. Of the electrolytes resistant to high voltage that we used, a system containing 60 to 90 vol.% of dimethyl carbonate (DMC) mixed with ethylene carbonate (EC) and 1.0 M lithium hexafluorophosphate (LiPF 6) provided the best cycling efficiency on a lithium metal anode, as well as a high specific conductivity around 10 mS cm -1 at 20 °C.
Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system.
Takayama, Kazuo; Igai, Keisuke; Hagihara, Yasuko; Hashimoto, Rina; Hanawa, Morifumi; Sakuma, Tetsushi; Tachibana, Masashi; Sakurai, Fuminori; Yamamoto, Takashi; Mizuguchi, Hiroyuki
2017-05-19
Genome editing research of human ES/iPS cells has been accelerated by clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) and transcription activator-like effector nucleases (TALEN) technologies. However, the efficiency of biallelic genetic engineering in transcriptionally inactive genes is still low, unlike that in transcriptionally active genes. To enhance the biallelic homologous recombination efficiency in human ES/iPS cells, we performed screenings of accessorial genes and compounds. We found that RAD51 overexpression and valproic acid treatment enhanced biallelic-targeting efficiency in human ES/iPS cells regardless of the transcriptional activity of the targeted locus. Importantly, RAD51 overexpression and valproic acid treatment synergistically increased the biallelic homologous recombination efficiency. Our findings would facilitate genome editing study using human ES/iPS cells. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Xu, Weizhe; Tan, Furui; Liu, Xiansheng; Zhang, Weifeng; Qu, Shengchun; Wang, Zhijie; Wang, Zhanguo
2017-12-01
Constructing a highly efficient bulk-heterojunction is of critical importance to the hybrid organic/inorganic solar cells. Here in this work, we introduce a novel hybrid architecture containing P3HT nanowire and CdSe nanotetrapod as bicontinuous charge channels for holes and electrons, respectively. Compared to the traditionally applied P3HT molecules, the well crystallized P3HT nanowires qualify an enhanced light absorption at the long wavelength as well as strengthened charge carrier transport in the hybrid active layer. Accordingly, based on efficient dissociation of photogenerated excitons, the interpercolation of these two nano-building blocks allows a photovoltaic conversion efficiency of 1.7% in the hybrid solar cell, up to 42% enhancement compared to the reference solar cell with traditional P3HT molecules as electron donor. Our work provides a promising hybrid structure for efficient organic/inorganic bulk-heterojunction solar cells.
Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis
2015-01-01
Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.
Holmboe, Sif; Hansen, Pernille Lund; Thisgaard, Helge; Block, Ines; Müller, Carolin; Langkjær, Niels; Høilund-Carlsen, Poul Flemming; Olsen, Birgitte Brinkmann; Mollenhauer, Jan
2017-01-01
Cancer stem cells represent the putative tumor-driving subpopulation thought to account for drug resistance, relapse, and metastatic spread of epithelial and other cancer types. Accordingly, cell surface markers for therapeutic delivery to cancer stem cells are subject of intense research. Somatostatin receptor 2 and nucleolin are known to be overexpressed by various cancer types, which have elicited comprehensive efforts to explore their therapeutic utilization. Here, we evaluated somatostatin receptor 2 targeting and nucleolin targeting for therapeutic delivery to cancer stem cells from lung cancer. Nucleolin is expressed highly but not selectively, while somatostatin receptor 2 is expressed selectively but not highly by cancer cells. The non-small cell lung cancer cell lines A549 and H1299, displayed average levels of both surface molecules as judged based on analysis of a larger cell line panel. H1299 compared to A549 cells showed significantly elevated sphere-forming capacity, indicating higher cancer stem cell content, thus qualifying as suitable test system. Nucleolin-targeting 57Co-DOTA-AS1411 aptamer showed efficient internalization by cancer cells and, remarkably, at even higher efficiency by cancer stem cells. In contrast, somatostatin receptor 2 expression levels were not sufficiently high in H1299 cells to confer efficient uptake by either non-cancer stem cells or cancer stem cells. The data provides indication that the nucleolin-targeting AS1411 aptamer might be used for therapeutic delivery to non-small cell lung cancer stem cells.
Development of high efficiency thin film polycrystalline silicon solar cells using VEST process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, T.; Arimoto, S.; Morikawa, H.
1998-12-31
Thin film Si solar cell has been developed using Via-hole Etching for the Separation of Thin films (VEST) process. The process is based on SOI technology of zone-melting recrystallization (ZMR) followed by chemical vapor deposition (CVD), separation of thin film, and screen printing. Key points for achieving high efficiency are (1) quality of Si films, (2) back surface emitter (BSE), (3) front surface emitter etch-back process, (4) back surface field (BSF) layer thickness and its resistivity, and (5) defect passivation by hydrogen implantation. As a result of experiments, the authors have achieved 16% efficiency (V{sub oc}:0.589V, J{sub sc}:35.6mA/cm{sup 2}, F,F:0.763)more » with a cell size of 95.8cm{sup 2} and the thickness of 77 {micro}m. It is the highest efficiency ever reported for large area thin film Si solar cells.« less
Development, Qualification and Production of Space Solar Cells with 30% EOL Efficiency
NASA Astrophysics Data System (ADS)
Guter, Wolfgang; Ebel, Lars; Fuhrmann, Daniel; Kostler, Wolfgang; Meusel, Matthias
2014-08-01
AZUR SPACE's latest qualified solar cell product 3G30-advanced provides a high end-of-life (EOL) efficiency of 27.8% for 5E14 (1 MeV e-/cm2) at low production costs. In order to further reduce the mass, the 3G30-advanced was thinned down to as thin as 20 μm and tested in space. Next generation solar cells must exceed the EOL efficiency of the 3G30-advanced and therefore will utilize the excess current of the Ge subcell. This can be achieved by a metamorphic cell concept. While average beginning-of-life efficiencies above 31% have already been demonstrated with upright metamorphic triple-junction cells, AZUR's next generation product will comprise a metamorphic 4- junction device targeting 30% EOL.
Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells
Gupta, Vinay; Kyaw, Aung Ko Ko; Wang, Dong Hwan; Chand, Suresh; Bazan, Guillermo C.; Heeger, Alan J.
2013-01-01
We report Barium (Ba) cathode layer for bulk-heterojunction solar cells which enhanced the fill factor (FF) of p-DTS(FBTTh2)2/PC71BM BHJ solar cell up to 75.1%, one of the highest value reported for an organic solar cell. The external quantum efficiency exceeds 80%. Analysis of recombination mechanisms using the current-voltage (J–V) characteristics at various light intensities in the BHJ solar cell layer reveals that Ba prevents trap assisted Shockley-Read-Hall (SRH) recombination at the interface and with different thicknesses of the Ba, the recombination shifts towards bimolecular from monomolecular. Moreover, Ba increases shunt resistance and decreases the series resistance significantly. This results in an increase in the charge collection probability leading to high FF. This work identifies a new cathode interlayer which outclasses the all the reported interlayers in increasing FF leading to high power conversion efficiency and have significant implications in improving the performance of BHJ solar cells. PMID:23752562
Hybrid solar cells composed of perovskite and polymer photovoltaic structures
NASA Astrophysics Data System (ADS)
Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn
2018-06-01
Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.
Sanchez-Antequera, Yolanda; Mykhaylyk, Olga; van Til, Niek P; Cengizeroglu, Arzu; de Jong, J Henk; Huston, Marshall W; Anton, Martina; Johnston, Ian C D; Pojda, Zygmunt; Wagemaker, Gerard; Plank, Christian
2011-04-21
Research applications and cell therapies involving genetically modified cells require reliable, standardized, and cost-effective methods for cell manipulation. We report a novel nanomagnetic method for integrated cell separation and gene delivery. Gene vectors associated with magnetic nanoparticles are used to transfect/transduce target cells while being passaged and separated through a high gradient magnetic field cell separation column. The integrated method yields excellent target cell purity and recovery. Nonviral and lentiviral magselectofection is efficient and highly specific for the target cell population as demonstrated with a K562/Jurkat T-cell mixture. Both mouse and human enriched hematopoietic stem cell pools were effectively transduced by lentiviral magselectofection, which did not affect the hematopoietic progenitor cell number determined by in vitro colony assays. Highly effective reconstitution of T and B lymphocytes was achieved by magselectofected murine wild-type lineage-negative Sca-1(+) cells transplanted into Il2rg(-/-) mice, stably expressing GFP in erythroid, myeloid, T-, and B-cell lineages. Furthermore, nonviral, lentiviral, and adenoviral magselectofection yielded high transfection/transduction efficiency in human umbilical cord mesenchymal stem cells and was fully compatible with their differentiation potential. Upscaling to a clinically approved automated cell separation device was feasible. Hence, once optimized, validated, and approved, the method may greatly facilitate the generation of genetically engineered cells for cell therapies.
Graded bandgap perovskite solar cells.
Ergen, Onur; Gilbert, S Matt; Pham, Thang; Turner, Sally J; Tan, Mark Tian Zhi; Worsley, Marcus A; Zettl, Alex
2017-05-01
Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ∼75% and high short-circuit current densities up to 42.1 mA cm -2 . The cells are based on an architecture of two perovskite layers (CH 3 NH 3 SnI 3 and CH 3 NH 3 PbI 3-x Br x ), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.
Yoo, Hyun Deog; Liang, Yanliang; Li, Yifei; Yao, Yan
2015-04-01
Hybrid magnesium-lithium-ion batteries (MLIBs) featuring dendrite-free deposition of Mg anode and Li-intercalation cathode are safe alternatives to Li-ion batteries for large-scale energy storage. Here we report for the first time the excellent stability of a high areal capacity MLIB cell and dendrite-free deposition behavior of Mg under high current density (2 mA cm(-2)). The hybrid cell showed no capacity loss for 100 cycles with Coulombic efficiency as high as 99.9%, whereas the control cell with a Li-metal anode only retained 30% of its original capacity with Coulombic efficiency well below 90%. The use of TiS2 as a cathode enabled the highest specific capacity and one of the best rate performances among reported MLIBs. Postmortem analysis of the cycled cells revealed dendrite-free Mg deposition on a Mg anode surface, while mossy Li dendrites were observed covering the Li surface and penetrated into separators in the Li cell. The energy density of a MLIB could be further improved by developing electrolytes with higher salt concentration and wider electrochemical window, leading to new opportunities for its application in large-scale energy storage.
Optimization of active cell area on the dye-sensitized solar cell efficiency
NASA Astrophysics Data System (ADS)
Putri, A. W.; Nurosyid, F.; Supriyanto, Agus
2017-11-01
This study is aimed to obtain optimal active area producing high efficiency of DSSC module. The DSSC structure is constructed of TiO2 as working electrode, dye as photosensitizer, platinum as counter electrode, and electrolyte as electron transfer media. TiO2 paste was deposited on Fluorine-doped Tin Oxide (FTO) by screen printing method. Meanwhile, platinum was also coated on FTO via brush painting method. Keithley I-V meter was performed to characterize DSSC electrical property. The active area of each cell was varied of 4.5 cm2, 9 cm2, and 13.5 cm2. Each cell was assembled into a module using an external series connection of Z type. The module was consisted of 12 cells, 6 cells, and 4 cells with module active area of 54 cm2. The optimal active area of DSSC cell is 4.5 cm2 resulting 0.4149% efficiency. In addition, the highest efficiency of DSSC module is 0.2234% acquired by 6 cells assembling.
NASA Astrophysics Data System (ADS)
Zhao, Jing; Ma, Fa-Jun; Ding, Ke; Zhang, Hao; Jie, Jiansheng; Ho-Baillie, Anita; Bremner, Stephen P.
2018-03-01
In graphene/silicon solar cells, it is crucial to understand the transport mechanism of the graphene/silicon interface to further improve power conversion efficiency. Until now, the transport mechanism has been predominantly simplified as an ideal Schottky junction. However, such an ideal Schottky contact is never realised experimentally. According to literature, doped graphene shows the properties of a semiconductor, therefore, it is physically more accurate to model graphene/silicon junction as a Heterojunction. In this work, HNO3-doped graphene/silicon solar cells were fabricated with the power conversion efficiency of 9.45%. Extensive characterization and first-principles calculations were carried out to establish an advanced technology computer-aided design (TCAD) model, where p-doped graphene forms a straddling heterojunction with the n-type silicon. In comparison with the simple Schottky junction models, our TCAD model paves the way for thorough investigation on the sensitivity of solar cell performance to graphene properties like electron affinity. According to the TCAD heterojunction model, the cell performance can be improved up to 22.5% after optimizations of the antireflection coatings and the rear structure, highlighting the great potentials for fabricating high efficiency graphene/silicon solar cells and other optoelectronic devices.
van Dam, Dick; van Hoof, Niels J J; Cui, Yingchao; van Veldhoven, Peter J; Bakkers, Erik P A M; Gómez Rivas, Jaime; Haverkort, Jos E M
2016-12-27
Photovoltaic cells based on arrays of semiconductor nanowires promise efficiencies comparable or even better than their planar counterparts with much less material. One reason for the high efficiencies is their large absorption cross section, but until recently the photocurrent has been limited to less than 70% of the theoretical maximum. Here we enhance the absorption in indium phosphide (InP) nanowire solar cells by employing broadband forward scattering of self-aligned nanoparticles on top of the transparent top contact layer. This results in a nanowire solar cell with a photovoltaic conversion efficiency of 17.8% and a short-circuit current of 29.3 mA/cm 2 under 1 sun illumination, which is the highest reported so far for nanowire solar cells and among the highest reported for III-V solar cells. We also measure the angle-dependent photocurrent, using time-reversed Fourier microscopy, and demonstrate a broadband and omnidirectional absorption enhancement for unpolarized light up to 60° with a wavelength average of 12% due to Mie scattering. These results unambiguously demonstrate the potential of semiconductor nanowires as nanostructures for the next generation of photovoltaic devices.
Tano, Keiko; Yasuda, Satoshi; Kuroda, Takuya; Saito, Hirohisa; Umezawa, Akihiro; Sato, Yoji
2014-01-01
Innovative applications of cell therapy products (CTPs) derived from human pluripotent stem cells (hPSCs) in regenerative medicine are currently being developed. The presence of residual undifferentiated hPSCs in CTPs is a quality concern associated with tumorigencity. However, no simple in vitro method for direct detection of undifferentiated hPSCs that contaminate CTPs has been developed. Here, we show a novel approach for direct and sensitive detection of a trace amount of undifferentiated human induced pluripotent stem cells (hiPSCs) using a highly efficient amplification method in combination with laminin-521 and Essential 8 medium. Essential 8 medium better facilitated the growth of hiPSCs dissociated into single cells on laminin-521 than in mTeSR1 medium. hiPSCs cultured on laminin-521 in Essential 8 medium were maintained in an undifferentiated state and they maintained the ability to differentiate into various cell types. Essential 8 medium allowed robust hiPSC proliferation plated on laminin-521 at low cell density, whereas mTeSR1 did not enhance the cell growth. The highly efficient culture system using laminin-521 and Essential 8 medium detected hiPSCs spiked into primary human mesenchymal stem cells (hMSCs) or human neurons at the ratio of 0.001%–0.01% as formed colonies. Moreover, this assay method was demonstrated to detect residual undifferentiated hiPSCs in cell preparations during the process of hMSC differentiation from hiPSCs. These results indicate that our highly efficient amplification system using a combination of laminin-521 and Essential 8 medium is able to detect a trace amount of undifferentiated hPSCs contained as impurities in CTPs and would contribute to quality assessment of hPSC-derived CTPs during the manufacturing process. PMID:25347300
NASA Astrophysics Data System (ADS)
Kim, Yoonji; Bu, Jiyoon; Cho, Young-Ho; Son, Il Tae; Kang, Sung-Bum
2017-02-01
Circulating tumor cells (CTCs) contain prognostic information of the tumor, since they shed from the primary tumor and invade into the bloodstream. Therefore, the viable isolation is necessary for a consequent analysis of CTCs. Here, we present a device for the viable isolation and efficient retrieval of CTCs using slanted slot filters, formed by a reversibly deformable membrane barrier. Conventional filters have difficulties in retrieving captured cells, since they easily clog the slots. Moreover, large stress concentration at the sharp edges of squared slots, causes cell lysis. In contrast, the present device shows over 94% of high retrieval efficiency, since the slots can be opened simply by relieving the pressure. Furthermore, the inflated membrane barrier naturally forms the slanted slots, thus reducing the cell damage. By using cancer cell lines, we verified that the present device successfully isolate targeted cells, even at an extremely low concentrations (~10 cells/0.1 ml). In the clinical study, 85.7% of patients initially showed CTC positive while the numbers generally decreased after the surgery. We have also proved that the number of CTCs were highly correlated with tumour invasiveness. Therefore, the present device has potential for use in cancer diagnosis, surgical validation, and invasiveness analysis.
Tan, Zhe; Dhande, Yogesh K; Reineke, Theresa M
2017-12-20
A series of 3-guanidinopropyl methacrylamide (GPMA)-based polymeric gene delivery vehicles were developed via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers have been evaluated for their cellular internalization ability, transfection efficiency, and cytotoxicity. Two homopolymers: P(GPMA 20 ), P(GPMA 34 ), were synthesized to study the effect of guanidium polymer length on delivery efficiency and toxicity. In addition, an N-acetyl-d-galactosamine (GalNAc)-based hydrophilic block was incorporated to produce diblock polymers, which provides a neutral hydrophilic block that sterically protects plasmid-polymer complexes (polyplexes) from colloidal aggregation and aids polyplex targeting to hepatocytes via binding to asialoglycoprotein receptors (ASGPRs). Polyplexes formed with P(GPMA x ) (x = 20, 34) homopolymers were shown to be internalized via both energy-dependent and independent pathways, whereas polyplexes formed with block polymers were internalized through endocytosis. Notably, P(GPMA x ) polyplexes enter cells very efficiently but are also very toxic to human hepatocellular carcinoma (HepG2) cells and triggered cell apoptosis. In comparison, the presence of a carbohydrate block in the polymer structures reduced the cytotoxicity of the polyplex formulations and increased gene delivery efficiency with HepG2 cells. Transfection efficiency and toxicity studies were also carried out with HEK 293T (human embryonic kidney) cells for comparison. Results showed that polyplexes formed with the P(GPMA x ) homopolymers exhibit much higher transfection efficiency and lower toxicity with HEK 293T cells. The presence of the carbohydrate block did not further increase transfection efficiency in comparison to the homopolymers with HEK 293T cells, likely due to the lack of ASGPRs on the HEK 293T cell line. This study revealed that although guanidinium-based polymers have high membrane permeability, their application as plasmid delivery vehicles may be limited by their high cytotoxicity to certain cell types. Thus, the use of cell penetrating structures in polyplex formulations should be used with caution and carefully tailored toward individual cell/tissue types.
Zhu, Zonglong; Bai, Yang; Liu, Xiao; ...
2016-05-11
Here highly crystalline SnO 2 is demonstrated to serve as a stable and robust electron-transporting layer for high-performance perovskite solar cells. Benefiting from its high crystallinity, the relatively thick SnO 2 electron-transporting layer (≈120 nm) provides a respectable electron-transporting property to yield a promising power conversion efficiency (PCE)(18.8%) Over 90% of the initial PCE can be retained after 30 d storage in ambient with ≈70% relative humidity.
Chemical modification of chitosan for efficient gene therapy.
Jiang, Hu-Lin; Cui, Peng-Fei; Xie, Rong-Lin; Cho, Chong-Su
2014-01-01
Gene therapy involves the introduction of foreign genetic material into cells in order to exert a therapeutic effect. Successful gene therapy relies on effective vector system. Viral vectors are highly efficient in transfecting cells, but the undesirable complications limit their therapeutic applications. As a natural biopolymer, chitosan has been considered to be a good gene carrier candidate due to its ideal character which combines biocompatibility, low toxicity with high cationic density together. However, the low cell specificity and low transfection efficiency of chitosan as a gene carrier need to be overcome before undertaking clinical trials. This chapter is principally on those endeavors such as chemical modifications using cell-specific ligands and stimuli-response groups as well as penetrating modifications that have been done to increase the performances of chitosan in gene therapy. © 2014 Elsevier Inc. All rights reserved.
Ultrashort laser pulse cell manipulation using nano- and micro- materials
NASA Astrophysics Data System (ADS)
Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Diebold, Eric; Mazur, Eric; Bintig, Willem; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo; Junghanß, Christian; Lubatschowski, Holger; Heisterkamp, Alexander
2010-08-01
The delivery of extra cellular molecules into cells is essential for cell manipulation. For this purpose genetic materials (DNA/RNA) or proteins have to overcome the impermeable cell membrane. To increase the delivery efficiency and cell viability of common methods different nano- and micro material based approaches were applied. To manipulate the cells, the membrane is in contact with the biocompatible material. Due to a field enhancement of the laser light at the material and the resulting effect the cell membrane gets perforated and extracellular molecules can diffuse into the cytoplasm. Membrane impermeable dyes, fluorescent labelled siRNA, as well as plasmid vectors encoded for GFP expression were used as an indicator for successful perforation or transfection, respectively. Dependent on the used material, perforation efficiencies over 90 % with a cell viability of about 80 % can be achieved. Additionally, we observed similar efficiencies for siRNA transfection. Due to the larger molecule size and the essential transport of the DNA into the nucleus cells are more difficult to transfect with GFP plasmid vectors. Proof of principle experiments show promising and adequate efficiencies by applying micro materials for plasmid vector transfection. For all methods a weakly focused fs laser beam is used to enable a high manipulation throughput for adherent and suspension cells. Furthermore, with these alternative optical manipulation methods it is possible to perforate the membrane of sensitive cell types such as primary and stem cells with a high viability.
Gach, Philip C; Attayek, Peter J; Whittlesey, Rebecca L; Yeh, Jen Jen; Allbritton, Nancy L
2014-04-15
Circulating tumor cells (CTCs) are important biomarkers of cancer progression and metastatic potential. The rarity of CTCs in peripheral blood has driven the development of technologies to isolate these tumor cells with high specificity; however, there are limited techniques available for isolating target CTCs following enumeration. A strategy is described to capture and isolate viable tumor cells from whole blood using an array of releasable microstructures termed micropallets. Specific capture of nucleated cells or cells expressing epithelial cell adhesion molecules (EpCAM) was achieved by functionalizing micropallet surfaces with either fibronectin, Matrigel or anti-EpCAM antibody. Surface grafting of poly(acrylic acid) followed by covalent binding of protein A/G enabled efficient capture of EpCAM antibody on the micropallet surface. MCF-7 cells, a human breast adenocarcinoma, were retained on the array surface with 90±8% efficiency when using an anti-EpCAM-coated array. To demonstrate the efficiency of tumor cell retention on micropallet arrays in the presence of blood, MCF-7 cells were mixed into whole blood and added to small arrays (71 mm(2)) coated with fibronectin, Matrigel or anti-EpCAM. These approaches achieved MCF-7 cell capture from ≤10 µL of whole blood with efficiencies greater than 85%. Furthermore, MCF-7 cells intermixed with 1 mL blood and loaded onto large arrays (7171 mm(2)) were captured with high efficiencies (≥97%), could be isolated from the array by a laser-based approach and were demonstrated to yield a high rate of colony formation (≥85%) after removal from the array. Clinical utility of this technology was shown through the capture, isolation and successful culture of CTCs from the blood of mice engrafted with primary human pancreatic tumors. Direct capture and isolation of living tumor cells from blood followed by analysis or culture will be a valuable tool for cancer cell characterization. © 2013 Elsevier B.V. All rights reserved.
Physics of grain boundaries in polycrystalline photovoltaic semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu; Yin, Wan-Jian; Wu, Yelong
2015-03-21
Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can bemore » chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.« less
Physics of grain boundaries in polycrystalline photovoltaic semiconductors
Yan, Yanfa; Yin, Wan-Jian; Wu, Yelong; ...
2015-03-16
Thin-film solar cells based on polycrystalline Cu(In,Ga)Se 2 (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this study, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. Although, in each solar cell device, the GBs can bemore » chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. In conclusion, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.« less
High-throughput analysis of yeast replicative aging using a microfluidic system
Jo, Myeong Chan; Liu, Wei; Gu, Liang; Dang, Weiwei; Qin, Lidong
2015-01-01
Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction. PMID:26170317
Flat-plate solar array project process development area process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
1985-01-01
Three sets of samples were laser processed and then cell processed. The laser processing was carried out on P-type and N-type web at laser power levels from 0.5 joule/sq cm to 2.5 joule/sq cm. Six different liquid dopants were tested (3 phosphorus dopants, 2 boron dopants, 1 aluminum dopant). The laser processed web strips were fabricated into solar cells immediately after laser processing and after various annealing cycles. Spreading resistance measurements made on a number of these samples indicate that the N(+)P (phosphorus doped) junction is approx. 0.2 micrometers deep and suitable for solar cells. However, the P(+)N (or P(+)P) junction is very shallow ( 0.1 micrometers) with a low surface concentration and resulting high resistance. Due to this effect, the fabricated cells are of low efficiency. The maximum efficiency attained was 9.6% on P-type web after a 700 C anneal. The main reason for the low efficiency was a high series resistance in the cell due to a high resistance back contact.
Glynn, Macdara; Kirby, Daniel; Chung, Danielle; Kinahan, David J; Kijanka, Gregor; Ducrée, Jens
2014-06-01
In medical diagnostics, detection of cells exhibiting specific phenotypes constitutes a paramount challenge. Detection technology must ensure efficient isolation of (often rare) targets while eliminating nontarget background cells. Technologies exist for such investigations, but many require high levels of expertise, expense, and multistep protocols. Increasing automation, miniaturization, and availability of such technologies is an aim of microfluidic lab-on-a-chip strategies. To this end, we present an integrated, dual-force cellular separation strategy using centrifugo-magnetophoresis. Whole blood spiked with target cells is incubated with (super-)paramagnetic microparticles that specifically bind phenotypic markers on target cells. Under rotation, all cells sediment into a chamber located opposite a co-rotating magnet. Unbound cells follow the radial vector, but under the additional attraction of the lateral magnetic field, bead-bound target cells are deflected to a designated reservoir. This multiforce separation is continuous and low loss. We demonstrate separation efficiently up to 92% for cells expressing the HIV/AIDS relevant epitope (CD4) from whole blood. Such highly selective separation systems may be deployed for accurate diagnostic cell isolations from biological samples such as blood. Furthermore, this high efficiency is delivered in a cheap and simple device, thus making it an attractive option for future deployment in resource-limited settings. © 2013 Society for Laboratory Automation and Screening.
Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; Li, Zhen; Li, Ge; Kim, Dong Hoe; Guo, Nanjie; Berry, Joseph J.; Zhu, Kai; Zhao, Yixin
2016-01-01
Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH3NH3PbI3−xBrx (MAPbI3−xBrx) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI3−xBrx thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I–Br anion exchange reaction, yielding poorer device performance. This MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability. PMID:27477212
NASA Astrophysics Data System (ADS)
Seneviratne, Sashieka
With the growth of smart phones, the demand for more broadband, data centric technologies are being driven higher. As mobile operators worldwide plan and deploy 4th generation (4G) networks such as LTE to support the relentless growth in mobile data demand, the need for strategically positioned pico-sized cellular base stations known as 'pico-cells' are gaining traction. In addition to having to design a transceiver in a much compact footprint, pico-cells must still face the technical challenges presented by the new 4G systems, such as reduced power consumptions and linear amplification of the signals. The RF power amplifier (PA) that amplifies the output signals of 4G pico-cell systems face challenges to minimize size, achieve high average efficiencies and broader bandwidths while maintaining linearity and operating at higher frequencies. 4G standards as LTE use non-constant envelope modulation techniques with high peak to average ratios. Power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to reduce power consumption, a design of a high efficiency PA that can maintain the efficiency for a wider range of radio frequency signals is required. The primary focus of this thesis is to enhance the efficiency of a compact RF amplifier suitable for a 4G pico-cell base station. For this aim, an integrated two way Doherty amplifier design in a compact 10mm x 11.5mm2 monolithic microwave integrated circuit using GaN device technology is presented. Using non-linear GaN HFETs models, the design achieves high effi-ciencies of over 50% at both back-off and peak power regions without compromising on the stringent linearity requirements of 4G LTE standards. This demonstrates a 17% increase in power added efficiency at 6 dB back off from peak power compared to conventional Class AB amplifier performance. Performance optimization techniques to select between high efficiency and high linearity operation are also presented. Overall, this thesis demonstrates the feasibility of an integrated HFET Doherty amplifier for LTE band 7 which entails the frequencies from 2.62-2.69GHz. The realization of the layout and various issues related to the PA design is discussed and attempted to be solved.
High efficiency silicon solar cell review
NASA Technical Reports Server (NTRS)
Godlewski, M. P. (Editor)
1975-01-01
An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jinjin; Kong, Guoli; Chen, Shulin
In this work, we developed an innovative approach to self-grow single crystalline CH 3NH 3PbI 3 directly on polycrystalline FTO/TiO 2 substrate, with which n-i-p type of perovskite solar cells were fabricated. The single crystalline nature of CH 3NH 3PbI 3 has been confirmed by X-ray diffraction and high resolution transmission electron microscopy, and it is observed that they possess smaller optic band gap and longer carrier life time. Highly efficient charge extractions occur at the interface between electron collecting TiO 2 and photo-harvesting CH 3NH 3PbI 3, resulting in a maximum short-circuit current density of 24.40 mA/cm 2. Themore » champion cell possesses a photovoltaic conversion efficiency of 8.78%, and there are still substantial room for further improvement, making it promising for the perovskite solar cell applications.« less
18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.
Kim, Namwoo; Um, Han-Don; Choi, Inwoo; Kim, Ka-Hyun; Seo, Kwanyong
2016-05-11
We optimize the thickness of a transparent conducting oxide (TCO) layer, and apply a microscale mesh-pattern metal electrode for high-efficiency a-Si/c-Si heterojunction solar cells. A solar cell equipped with the proposed microgrid metal electrode demonstrates a high short-circuit current density (JSC) of 40.1 mA/cm(2), and achieves a high efficiency of 18.4% with an open-circuit voltage (VOC) of 618 mV and a fill factor (FF) of 74.1% as result of the shortened carrier path length and the decreased electrode area of the microgrid metal electrode. Furthermore, by optimizing the process sequence for electrode formation, we are able to effectively restore the reduction in VOC that occurs during the microgrid metal electrode formation process. This work is expected to become a fundamental study that can effectively improve current loss in a-Si/c-Si heterojunction solar cells through the optimization of transparent and metal electrodes.
Zhao, Jinjin; Kong, Guoli; Chen, Shulin; ...
2017-08-21
In this work, we developed an innovative approach to self-grow single crystalline CH 3NH 3PbI 3 directly on polycrystalline FTO/TiO 2 substrate, with which n-i-p type of perovskite solar cells were fabricated. The single crystalline nature of CH 3NH 3PbI 3 has been confirmed by X-ray diffraction and high resolution transmission electron microscopy, and it is observed that they possess smaller optic band gap and longer carrier life time. Highly efficient charge extractions occur at the interface between electron collecting TiO 2 and photo-harvesting CH 3NH 3PbI 3, resulting in a maximum short-circuit current density of 24.40 mA/cm 2. Themore » champion cell possesses a photovoltaic conversion efficiency of 8.78%, and there are still substantial room for further improvement, making it promising for the perovskite solar cell applications.« less
Ke, Weijun; Priyanka, Pragya; Vegiraju, Sureshraju; Stoumpos, Constantinos C; Spanopoulos, Ioannis; Soe, Chan Myae Myae; Marks, Tobin J; Chen, Ming-Chou; Kanatzidis, Mercouri G
2018-01-10
Developing dopant-free hole transporting layers (HTLs) is critical in achieving high-performance and robust state-of-the-art perovskite photovoltaics, especially for the air-sensitive tin-based perovskite systems. The commonly used HTLs require hygroscopic dopants and additives for optimal performance, which adds extra cost to manufacturing and limits long-term device stability. Here we demonstrate the use of a novel tetrakis-triphenylamine (TPE) small molecule prepared by a facile synthetic route as a superior dopant-free HTL for lead-free tin-based perovskite solar cells. The best-performing tin iodide perovskite cells employing the novel mixed-cation ethylenediammonium/formamidinium with the dopant-free TPE HTL achieve a power conversion efficiency as high as 7.23%, ascribed to the HTL's suitable band alignment and excellent hole extraction/collection properties. This efficiency is one of the highest reported so far for tin halide perovskite systems, highlighting potential application of TPE HTL material in low-cost high-performance tin-based perovskite solar cells.
Simplified Perovskite Solar Cell with 4.1% Efficiency Employing Inorganic CsPbBr3 as Light Absorber.
Duan, Jialong; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei
2018-05-01
Perovskite solar cells with cost-effectiveness, high power conversion efficiency, and improved stability are promising solutions to the energy crisis and environmental pollution. However, a wide-bandgap inorganic-semiconductor electron-transporting layer such as TiO 2 can harvest ultraviolet light to photodegrade perovskite halides, and the high cost of a state-of-the-art hole-transporting layer is an economic burden for commercialization. Here, the building of a simplified cesium lead bromide (CsPbBr 3 ) perovskite solar cell with fluorine-doped tin oxide (FTO)/CsPbBr 3 /carbon architecture by a multistep solution-processed deposition technology is demonstrated, achieving an efficiency as high as 4.1% and improved stability upon interfacial modification by graphene quantum dots and CsPbBrI 2 quantum dots. This work provides new opportunities of building next-generation solar cells with significantly simplified processes and reduced production costs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling of defect-tolerant thin multi-junction solar cells for space application
NASA Astrophysics Data System (ADS)
Mehrotra, A.; Alemu, A.; Freundlich, A.
2012-02-01
Using drift-diffusion model and considering experimental III-V material parameters, AM0 efficiencies of lattice-matched multijunction solar cells have been calculated and the effects of dislocations and radiation damage have been analyzed. Ultrathin multi-junction devices perform better in presence of dislocations or/and radiation harsh environment compared to conventional thick multijunction devices. Our results show that device design optimization of Ga0.51In0.49P/GaAs multijunction devices leads to an improvement in EOL efficiency from 4.8%, for the conventional thick device design, to 12.7%, for the EOL optimized thin devices. In addition, an optimized defect free lattice matched Ga0.51In0.49P/GaAs solar cell under 1016cm-2 1Mev equivalent electron fluence is shown to give an EOL efficiency of 12.7%; while a Ga0.51In0.49P/GaAs solar cell with 108 cm-2 dislocation density under 1016cm-2 electron fluence gives an EOL efficiency of 12.3%. The results suggest that by optimizing the device design, we can obtain nearly the same EOL efficiencies for high dislocation metamorphic solar cells and defect filtered metamorphic multijunction solar cells. The findings relax the need for thick or graded buffer used for defect filtering in metamorphic devices. It is found that device design optimization allows highly dislocated devices to be nearly as efficient as defect free devices for space applications.
Recent advancements in monolithic AlGaAs/GaAs solar cells for space applications
NASA Technical Reports Server (NTRS)
Wickham, K. R.; Chung, B.-C.; Klausmeier-Brown, M.; Kuryla, M. S.; Ristow, M. Ladle; Virshup, G. F.; Werthen, J. G.
1991-01-01
High efficiency, two terminal, multijunction AlGaAs/GaAs solar cells were reproducibly made with areas of 0.5 sq cm. The multiple layers in the cells were grown by Organo Metallic Vapor Phase Epitaxy (OMVPE) on GaAs substrates in the n-p configuration. The upper AlGaAs cell has a bandgap of 1.93 eV and is connected in series to the lower GaAs cell (1.4 eV) via a metal interconnect deposited during post-growth processing. A prismatic coverglass is installed on top of the cell to reduce obscuration caused by the gridlines. The best 0.5 sq cm cell has a two terminal efficiency of 23.0 pct. at 1 sun, air mass zero (AM0) and 25 C. To date, over 300 of these cells were grown and processed for a manufacturing demonstration. Yield and efficiency data for this demonstration are presented. As a first step toward the goal of a 30 pct. efficient cell, a mechanical stack of the 0.5 sq cm cells described above, and InGaAsP (0.95 eV) solar cells was made. The best two terminal measurement to date yields an efficiency of 25.2 pct. AM0. This is the highest reported efficiency of any two terminal, 1 sun space solar cell.
Dual-reporter surrogate systems for efficient enrichment of genetically modified cells.
Ren, Chonghua; Xu, Kun; Liu, Zhongtian; Shen, Juncen; Han, Furong; Chen, Zhilong; Zhang, Zhiying
2015-07-01
Isolation of genetically modified cells generated by designed nucleases are challenging, since they are often phenotypically indistinguishable from their parental cells. To efficiently enrich genetically modified cells, we developed two dual-reporter surrogate systems, namely NHEJ-RPG and SSA-RPG based on NHEJ and SSA repair mechanisms, respectively. Repair and enrichment efficiencies of these two systems were compared using different nucleases. In both CRISPR-Cas9- and ZFNs-induced DSB repair studies, we found that the efficiency and sensitivity of the SSA-RPG reporter with direct repeat length more than 200 bp were much higher than the NHEJ-RPG reporter. By utilizing the SSA-RPG reporter, we achieved the enrichment for indels in several endogenous loci with 6.3- to 34.8-fold of non-selected cells. Thus, the highly sensitive SSA-RPG reporter can be used for activity validation of designed nucleases and efficient enrichment of genetically modified cells. Besides, our systems offer alternative enrichment choices either by puromycin selection or FACS.
Qin, Yunpeng; Chen, Yu; Cui, Yong; Zhang, Shaoqing; Yao, Huifeng; Huang, Jiang; Li, Wanning; Zheng, Zhong; Hou, Jianhui
2017-06-01
Tandem organic solar cells (TOSCs), which integrate multiple organic photovoltaic layers with complementary absorption in series, have been proved to be a strong contender in organic photovoltaic depending on their advantages in harvesting a greater part of the solar spectrum and more efficient photon utilization than traditional single-junction organic solar cells. However, simultaneously improving open circuit voltage (V oc ) and short current density (J sc ) is a still particularly tricky issue for highly efficient TOSCs. In this work, by employing the low-bandgap nonfullerene acceptor, IEICO, into the rear cell to extend absorption, and meanwhile introducing PBDD4T-2F into the front cell for improving V oc , an impressive efficiency of 12.8% has been achieved in well-designed TOSC. This result is also one of the highest efficiencies reported in state-of-the-art organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Bo; Bai, Yang; Yu, Zhengshan; ...
2016-07-19
Here, we have investigated semi-transparent perovskite solar cells and infrared enhanced silicon heterojunction cells for high-efficiency tandem devices. A semi-transparent metal electrode with good electrical conductivity and optical transparency has been fabricated by thermal evaporation of 7 nm of Au onto a 1-nm-thick Cu seed layer. For this electrode to reach its full potential, MAPbI3 thin films were formed by a modified one-step spin-coating method, resulting in a smooth layer that allowed the subsequent metal thin film to remain continuous. The fabricated semi-transparent perovskite solar cells demonstrated 16.5% efficiency under one-sun illumination, and were coupled with infrared-enhanced silicon heterojunction cellsmore » tuned specifically for perovskite/Si tandem devices. A double-layer antireflection coating at the front side and MgF2 reflector at rear side of the silicon heterojunction cells reduced parasitic absorption of near-infrared light, leading to 6.5% efficiency after filtering with a perovskite device and 23.0% summed efficiency for the perovskite/Si tandem device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bo; Bai, Yang; Yu, Zhengshan
Here, we have investigated semi-transparent perovskite solar cells and infrared enhanced silicon heterojunction cells for high-efficiency tandem devices. A semi-transparent metal electrode with good electrical conductivity and optical transparency has been fabricated by thermal evaporation of 7 nm of Au onto a 1-nm-thick Cu seed layer. For this electrode to reach its full potential, MAPbI3 thin films were formed by a modified one-step spin-coating method, resulting in a smooth layer that allowed the subsequent metal thin film to remain continuous. The fabricated semi-transparent perovskite solar cells demonstrated 16.5% efficiency under one-sun illumination, and were coupled with infrared-enhanced silicon heterojunction cellsmore » tuned specifically for perovskite/Si tandem devices. A double-layer antireflection coating at the front side and MgF2 reflector at rear side of the silicon heterojunction cells reduced parasitic absorption of near-infrared light, leading to 6.5% efficiency after filtering with a perovskite device and 23.0% summed efficiency for the perovskite/Si tandem device.« less
Chou, Bin-Kuan; Gu, Haihui; Gao, Yongxing; Dowey, Sarah N.; Wang, Ying; Shi, Jun; Li, Yanxin; Ye, Zhaohui; Cheng, Tao
2015-01-01
Reprogramming human adult blood mononuclear cells (MNCs) cells by transient plasmid expression is becoming increasingly popular as an attractive method for generating induced pluripotent stem (iPS) cells without the genomic alteration caused by genome-inserting vectors. However, its efficiency is relatively low with adult MNCs compared with cord blood MNCs and other fetal cells and is highly variable among different adult individuals. We report highly efficient iPS cell derivation under clinically compliant conditions via three major improvements. First, we revised a combination of three EBNA1/OriP episomal vectors expressing five transgenes, which increased reprogramming efficiency by ≥10–50-fold from our previous vectors. Second, human recombinant vitronectin proteins were used as cell culture substrates, alleviating the need for feeder cells or animal-sourced proteins. Finally, we eliminated the previously critical step of manually picking individual iPS cell clones by pooling newly emerged iPS cell colonies. Pooled cultures were then purified based on the presence of the TRA-1-60 pluripotency surface antigen, resulting in the ability to rapidly expand iPS cells for subsequent applications. These new improvements permit a consistent and reliable method to generate human iPS cells with minimal clonal variations from blood MNCs, including previously difficult samples such as those from patients with paroxysmal nocturnal hemoglobinuria. In addition, this method of efficiently generating iPS cells under feeder-free and xeno-free conditions allows for the establishment of clinically compliant iPS cell lines for future therapeutic applications. PMID:25742692
NASA Astrophysics Data System (ADS)
Xie, Yahong; Zhou, Xiaofeng; Mi, Hongyu; Ma, Junhong; Yang, Jianya; Cheng, Jian
2018-03-01
Charge recombination at the ZnO photoanode/electrolyte interface is one of the major limitations for high performance dye-sensitized solar cells (DSSCs) toward their theoretical power conversion efficiency (PCE). Here, we proposed an efficient approach for reducing this interfacial losses and consequently facilitating charge transfer by decorating a hydrophobic thin-film on the surface of the dye-coated zinc oxide photoanode via 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) hexane solution immersing. As a result, a high PCE of 8.22% was obtained, which far exceeded the efficiency of 5.40% in a conventional DSSC without PFDTES treatment. Furthermore, PFDTES treatment also largely elongated the lifetime of photogenerated electrons, and maintained a good photo-response at the photoelectrode. This work provides a comprehensive explanation of electron injection, transfer and recombination at the ZnO photoanode/electrolyte interface, and a promising strategy to explore high efficiency ZnO-based DSSCs.
Carbon Nanotube Arrays for Intracellular Delivery and Biological Applications
NASA Astrophysics Data System (ADS)
Golshadi, Masoud
Introducing nucleic acids into mammalian cells is a crucial step to elucidate biochemical pathways, modify gene expression in immortalized cells, primary cells, and stem cells, and intoduces new approaches for clinical diagnostics and therapeutics. Current gene transfer technologies, including lipofection, electroporation, and viral delivery, have enabled break-through advances in basic and translational science to enable derivation and programming of embryonic stem cells, advanced gene editing using CRISPR (Clustered regularly interspaced short palindromic repeats), and development of targeted anti-tumor therapy using chimeric antigen receptors in T-cells (CAR-T). Despite these successes, current transfection technologies are time consuming and limited by the inefficient introduction of test molecules into large populations of target cells, and the cytotoxicity of the techniques. Moreover, many cell types cannot be consistently transfected by lipofection or electroporation (stem cells, T-cells) and viral delivery has limitations to the size of experimental DNA that can be packaged. In this dissertation, a novel coverslip-like platform consisting of an array of aligned hollow carbon nanotubes (CNTs) embedded in a sacrificial template is developed that enhances gene transfer capabilities, including high efficiency, low toxicity, in an expanded range of target cells, with the potential to transfer mixed combinations of protein and nucleic acids. The CNT array devices are fabricated by a scalable template-based manufacturing method using commercially available membranes, eliminating the need for nano-assembly. High efficient transfection has been demonstrated by delivering various cargos (nanoparticles, dye and plasmid DNA) into populations of cells, achieving 85% efficiency of plasmid DNA delivery into immortalized cells. Moreover, the CNT-mediated transfection of stem cells shows 3 times higher efficiency compared to current lipofection methods. Evaluating the cell-CNT interaction elucidates the importance of the geometrical properties of CNT arrays (CNT exposed length and surface morphology) on transfection efficiency. The results indicate that densely-packed and shortly-exposed CNT arrays with planar surface will enhance gene delivery using this new platform. This technology offers a significant increase in efficiency and cell viability, along with the ease of use compared to current standard methods, which demonstrates its potential to accelerate the development of new cell models to study intractable diseases, decoding the signaling pathways, and drug discovery.
Los Alamos Discovers Super Efficient Solar Using Perovskite Crystals
Mohite, Aditya; Nie, Wanyi
2018-05-11
State-of-the-art photovoltaics using high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high temperature crystal-growth processes offer promising routes for developing low-cost, solar-based clean global energy solutions for the future. Solar cells composed of the recently discovered material organic-inorganic perovskites offer the efficiency of silicon, yet suffer from a variety of deficiencies limiting the commercial viability of perovskite photovoltaic technology. In research to appear in Science, Los Alamos National Laboratory researchers reveal a new solution-based hot-casting technique that eliminates these limitations, one that allows for the growth of high-quality, large-area, millimeter-scale perovskite crystals and demonstrates that highly efficient and reproducible solar cells with reduced trap assisted recombination can be realized.
Myers, Jeremy N.; Rekhadevi, Perumalla V.; Ramesh, Aramandla
2011-01-01
Lysis and extraction of cells are essential sample processing steps for investigations pertaining to metabolism of xenobiotics in cell culture studies. Of particular importance to these procedures are maintaining high lysis efficiency and analyte integrity as they influence the qualitative and quantitative distribution of drug and toxicant metabolites in the intra- and extracellular milieus. In this study we have compared the efficiency of different procedures viz. homogenization, sonication, bead beating, and molecular grinding resin treatment for disruption of HT-29 colon cells exposed to benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH) compound and a suspected colon carcinogen. Also, we have evaluated the efficiency of various procedures for extracting BaP parent compound/metabolites from colon cells and culture media prior to High Performance Liquid Chromatography (HPLC) analyses. The extraction procedures include solid phase extraction, solid-supported liquid- liquid extraction, liquid-liquid extraction, and homogeneous liquid- liquid extraction. Our findings showed that bead-beating in combination with detergent treatment of cell pellet coupled with liquid-liquid extraction yielded greater concentrations of BaP metabolites compared to the other methods employed. Our method optimization strategy revealed that disruption of HT-29 colon cells by a combination of mechanical and chemical lysis followed by liquid-liquid extraction is efficient and robust enough for analyzing BaP metabolites from cell culture studies. PMID:21865728
Yoshii, Yukie; Furukawa, Takako; Waki, Atsuo; Okuyama, Hiroaki; Inoue, Masahiro; Itoh, Manabu; Zhang, Ming-Rong; Wakizaka, Hidekatsu; Sogawa, Chizuru; Kiyono, Yasushi; Yoshii, Hiroshi; Fujibayashi, Yasuhisa; Saga, Tsuneo
2015-05-01
Anti-cancer drug development typically utilizes high-throughput screening with two-dimensional (2D) cell culture. However, 2D culture induces cellular characteristics different from tumors in vivo, resulting in inefficient drug development. Here, we report an innovative high-throughput screening system using nanoimprinting 3D culture to simulate in vivo conditions, thereby facilitating efficient drug development. We demonstrated that cell line-based nanoimprinting 3D screening can more efficiently select drugs that effectively inhibit cancer growth in vivo as compared to 2D culture. Metabolic responses after treatment were assessed using positron emission tomography (PET) probes, and revealed similar characteristics between the 3D spheroids and in vivo tumors. Further, we developed an advanced method to adopt cancer cells from patient tumor tissues for high-throughput drug screening with nanoimprinting 3D culture, which we termed Cancer tissue-Originated Uniformed Spheroid Assay (COUSA). This system identified drugs that were effective in xenografts of the original patient tumors. Nanoimprinting 3D spheroids showed low permeability and formation of hypoxic regions inside, similar to in vivo tumors. Collectively, the nanoimprinting 3D culture provides easy-handling high-throughput drug screening system, which allows for efficient drug development by mimicking the tumor environment. The COUSA system could be a useful platform for drug development with patient cancer cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Predicting efficiency of solar cells based on transparent conducting electrodes
NASA Astrophysics Data System (ADS)
Kumar, Ankush
2017-01-01
Efficiency of a solar cell is directly correlated with the performance of its transparent conducting electrodes (TCEs) which dictates its two core processes, viz., absorption and collection efficiencies. Emerging designs of a TCE involve active networks of carbon nanotubes, silver nanowires and various template-based techniques providing diverse structures; here, voids are transparent for optical transmittance while the conducting network acts as a charge collector. However, it is still not well understood as to which kind of network structure leads to an optimum solar cell performance; therefore, mostly an arbitrary network is chosen as a solar cell electrode. Herein, we propose a new generic approach for understanding the role of TCEs in determining the solar cell efficiency based on analysis of shadowing and recombination losses. A random network of wires encloses void regions of different sizes and shapes which permit light transmission; two terms, void fraction and equivalent radius, are defined to represent the TCE transmittance and wire spacings, respectively. The approach has been applied to various literature examples and their solar cell performance has been compared. To obtain high-efficiency solar cells, optimum density of the wires and their aspect ratio as well as active layer thickness are calculated. Our findings show that a TCE well suitable for one solar cell may not be suitable for another. For high diffusion length based solar cells, the void fraction of the network should be low while for low diffusion length based solar cells, the equivalent radius should be lower. The network with less wire spacing compared to the diffusion length behaves similar to continuous film based TCEs (such as indium tin oxide). The present work will be useful for architectural as well as material engineering of transparent electrodes for improvisation of solar cell performance.
Application of mixed-organic-cation for high performance hole-conductor-free perovskite solar cells.
Xiao, Meng; Zhao, Li; Wei, Shoubin; Li, Yanyan; Dong, Binghai; Xu, Zuxun; Wan, Li; Wang, Shimin
2018-01-15
ABX 3 -type organic lead halide perovskites have gained increasing attention as light harvester for solar cells due to their high power conversion efficiency (PCE). Recently, it has become a trend to avoid the use of expensive hole-transport materials (HTMs) and precious metals, such as Au, to be competitive in future commercial development. In this study, we fabricated mixed-cation perovskite-based solar cells through one-step spin-coating using methylammonium (CH 3 NH 3 + ) and formamidinium (HN=CHNH 3 + ) cations to extend the optical absorption range into the red region and enhance the utilization of solar light. The synthesized hole-conductor-free cells with carbon electrode and mixed cations exhibited increased short-circuit current, outperforming the cells prepared with pure methylammonium, and PCE of 10.55%. This paper proposes an efficient approach for fabricating high-performance and low-cost perovskite solar cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Qingduan; Yang, Jianwei; Chen, Shuangshuang; Zou, Jizhao; Xie, Weiguang; Zeng, Xierong
2017-08-23
Efficient Si/organic hybrid solar cells were fabricated with dimethyl sulfoxide (DMSO) and surfactant-doped poly(3,4-ethylenedioxythiophene): polystyrene (PEDOT:PSS). A post-treatment on PEDOT:PSS films with polar solvent was performed to increase the device performance. We found that the performance of hybrid solar cells increase with the polarity of solvent. A high conductivity of 1105 S cm - 1 of PEDOT:PSS was achieved by adopting methanol treatment, and the best efficiency of corresponding hybrid solar cells reaches 12.22%. X-ray photoelectron spectroscopy (XPS) and RAMAN spectroscopy were utilized to conform to component changes of PEDOT:PSS films after solvent treatment. It was found that the removal of the insulator PSS from the film and the conformational changes are the determinants for the device performance enhancement. Electrochemical impedance spectroscopy (EIS) was used to investigate the recombination resistance and capacitance of methanol-treated and untreated hybrid solar cells, indicating that methanol-treated devices had a larger recombination resistance and capacitance. Our findings bring a simple and efficient way for improving the performance of hybrid solar cell.
Puttini, Stefania; Ouvrard-Pascaud, Antoine; Palais, Gael; Beggah, Ahmed T; Gascard, Philippe; Cohen-Tannoudji, Michel; Babinet, Charles; Blot-Chabaud, Marcel; Jaisser, Frederic
2005-03-16
Functional genomic analysis is a challenging step in the so-called post-genomic field. Identification of potential targets using large-scale gene expression analysis requires functional validation to identify those that are physiologically relevant. Genetically modified cell models are often used for this purpose allowing up- or down-expression of selected targets in a well-defined and if possible highly differentiated cell type. However, the generation of such models remains time-consuming and expensive. In order to alleviate this step, we developed a strategy aimed at the rapid and efficient generation of genetically modified cell lines with conditional, inducible expression of various target genes. Efficient knock-in of various constructs, called targeted transgenesis, in a locus selected for its permissibility to the tet inducible system, was obtained through the stimulation of site-specific homologous recombination by the meganuclease I-SceI. Our results demonstrate that targeted transgenesis in a reference inducible locus greatly facilitated the functional analysis of the selected recombinant cells. The efficient screening strategy we have designed makes possible automation of the transfection and selection steps. Furthermore, this strategy could be applied to a variety of highly differentiated cells.
Aqueous-Containing Precursor Solutions for Efficient Perovskite Solar Cells.
Liu, Dianyi; Traverse, Christopher J; Chen, Pei; Elinski, Mark; Yang, Chenchen; Wang, Lili; Young, Margaret; Lunt, Richard R
2018-01-01
Perovskite semiconductors have emerged as competitive candidates for photovoltaic applications due to their exceptional optoelectronic properties. However, the impact of moisture instability on perovskite films is still a key challenge for perovskite devices. While substantial effort is focused on preventing moisture interaction during the fabrication process, it is demonstrated that low moisture sensitivity, enhanced crystallization, and high performance can actually be achieved by exposure to high water content (up to 25 vol%) during fabrication with an aqueous-containing perovskite precursor. The perovskite solar cells fabricated by this aqueous method show good reproducibility of high efficiency with average power conversion efficiency (PCE) of 18.7% and champion PCE of 20.1% under solar simulation. This study shows that water-perovskite interactions do not necessarily negatively impact the perovskite film preparation process even at the highest efficiencies and that exposure to high contents of water can actually enable humidity tolerance during fabrication in air.
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Thomas, Ralph D.; Brinker, David J.; Fatemi, Navid S.; Honecy, Frank S.
1991-01-01
Preliminary results indicate that Cd-doped substrates are better candidates for achieving high efficiency solar cells fabricated by closed-ampoule sulfur (S) diffusion than Zn-doped substrates. The differences in performance parameters (i.e., 14.3 percent efficiency for Cd-doped vs. 11.83 percent in the case of Zn-doped substrates of comparable doping and etch pit densities) were explained in terms of a large increase in dislocation density as a result of S diffusion in the case of Zn-doped as compared to Cd-doped substrates. The In(x)S(y) and probably Zn(S) precipitates in the case of Zn-doped substrates, produce a dead layer which extends deep below the surface and strongly affects the performance parameters. It should be noted that the cells had an unoptimized single layer antireflective coating of SiO, a grid shadowing of 6.25 percent, and somewhat poor contacts, all contributing to a reduction in efficiency. It is believed that by reducing the external losses and further improvement in cell design, efficiencies approaching 17 percent at 1 AMO, 25 degrees should be possible for cells fabricated on these relatively high defect density Cd-doped substrates. Even higher efficiencies, 18 to 19 percent should be possible by using long-lifetime substrates and further improving front surface passivation. If solar cells fabricated on Cd-doped substrates turn out to have comparable radiation tolerance as those reported in the case of cells fabricated on Zn-doped substrates, then for certain space missions 18 to 19 percent efficient cells made by this method of fabrication would be viable.
Single Grain Boundary Modeling and Design of Microcrystalline Si Solar Cells.
Lin, Chu-Hsuan; Hsu, Wen-Tzu; Tai, Cheng-Hung
2013-01-21
For photovoltaic applications, microcrystalline silicon has a lot of advantages, such as the ability to absorb the near-infrared part of the solar spectrum. However, there are many dangling bonds at the grain boundary in microcrystalline Si. These dangling bonds would lead to the recombination of photo-generated carriers and decrease the conversion efficiency. Therefore, we included the grain boundary in the numerical study in order to simulate a microcrystalline Si solar cell accurately, designing new three-terminal microcrystalline Si solar cells. The 3-μm-thick three-terminal cell achieved a conversion efficiency of 10.8%, while the efficiency of a typical two-terminal cell is 9.7%. The three-terminal structure increased the J SC but decreased the V OC , and such phenomena are discussed. High-efficiency and low-cost Si-based thin film solar cells can now be designed based on the information provided in this paper.
Single Grain Boundary Modeling and Design of Microcrystalline Si Solar Cells
Lin, Chu-Hsuan; Hsu, Wen-Tzu; Tai, Cheng-Hung
2013-01-01
For photovoltaic applications, microcrystalline silicon has a lot of advantages, such as the ability to absorb the near-infrared part of the solar spectrum. However, there are many dangling bonds at the grain boundary in microcrystalline Si. These dangling bonds would lead to the recombination of photo-generated carriers and decrease the conversion efficiency. Therefore, we included the grain boundary in the numerical study in order to simulate a microcrystalline Si solar cell accurately, designing new three-terminal microcrystalline Si solar cells. The 3-μm-thick three-terminal cell achieved a conversion efficiency of 10.8%, while the efficiency of a typical two-terminal cell is 9.7%. The three-terminal structure increased the JSC but decreased the VOC, and such phenomena are discussed. High-efficiency and low-cost Si-based thin film solar cells can now be designed based on the information provided in this paper. PMID:28809309
Horii, Takuro; Tamura, Daiki; Morita, Sumiyo; Kimura, Mika; Hatada, Izuho
2013-09-30
Genome manipulation of human induced pluripotent stem (iPS) cells is essential to achieve their full potential as tools for regenerative medicine. To date, however, gene targeting in human pluripotent stem cells (hPSCs) has proven to be extremely difficult. Recently, an efficient genome manipulation technology using the RNA-guided DNase Cas9, the clustered regularly interspaced short palindromic repeats (CRISPR) system, has been developed. Here we report the efficient generation of an iPS cell model for immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF) syndrome using the CRISPR system. We obtained iPS cells with mutations in both alleles of DNA methyltransferase 3B (DNMT3B) in 63% of transfected clones. Our data suggest that the CRISPR system is highly efficient and useful for genome engineering of human iPS cells.
Genetic engineering of stem cells for enhanced therapy.
Nowakowski, Adam; Andrzejewska, Anna; Janowski, Miroslaw; Walczak, Piotr; Lukomska, Barbara
2013-01-01
Stem cell therapy is a promising strategy for overcoming the limitations of current treatment methods. The modification of stem cell properties may be necessary to fully exploit their potential. Genetic engineering, with an abundance of methodology to induce gene expression in a precise and well-controllable manner, is particularly attractive for this purpose. There are virus-based and non-viral methods of genetic manipulation. Genome-integrating viral vectors are usually characterized by highly efficient and long-term transgene expression, at a cost of safety. Non-integrating viruses are also highly efficient in transduction, and, while safer, offer only a limited duration of transgene expression. There is a great diversity of transfectable forms of nucleic acids; however, for efficient shuttling across cell membranes, additional manipulation is required. Both physical and chemical methods have been employed for this purpose. Stem cell engineering for clinical applications is still in its infancy and requires further research. There are two main strategies for inducing transgene expression in therapeutic cells: transient and permanent expression. In many cases, including stem cell trafficking and using cell therapy for the treatment of rapid-onset disease with a short healing process, transient transgene expression may be a sufficient and optimal approach. For that purpose, mRNA-based methods seem ideally suited, as they are characterized by a rapid, highly efficient transfection, with outstanding safety. Permanent transgene expression is primarily based on the application of viral vectors, and, due to safety concerns, these methods are more challenging. There is active, ongoing research toward the development of non-viral methods that would induce permanent expression, such as transposons and mammalian artificial chromosomes.
Zhang, Xin; Li, Weiping; Yao, Jiannian; Zhan, Chuanlang
2016-06-22
Carrier mobility is a vital factor determining the electrical performance of organic solar cells. In this paper we report that a high-efficiency nonfullerene organic solar cell (NF-OSC) with a power conversion efficiency of 6.94 ± 0.27% was obtained by optimizing the hole and electron transportations via following judicious selection of polymer donor and engineering of film-morphology and cathode interlayers: (1) a combination of solvent annealing and solvent vapor annealing optimizes the film morphology and hence both hole and electron mobilities, leading to a trade-off of fill factor and short-circuit current density (Jsc); (2) the judicious selection of polymer donor affords a higher hole and electron mobility, giving a higher Jsc; and (3) engineering the cathode interlayer affords a higher electron mobility, which leads to a significant increase in electrical current generation and ultimately the power conversion efficiency (PCE).
High-energy redox-flow batteries with hybrid metal foam electrodes.
Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun
2014-07-09
A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.
Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency
Essig, Stephanie; Steiner, Myles A.; Allebe, Christophe; ...
2016-04-27
Combining a Si solar cell with a high-bandgap top cell reduces the thermalization losses in the short wavelength and enables theoretical 1-sun efficiencies far over 30%. We have investigated the fabrication and optimization of Si-based tandem solar cells with 1.8-eV rear-heterojunction GaInP top cells. The III-V and Si heterojunction subcells were fabricated separately and joined by mechanical stacking using electrically insulating optically transparent interlayers. Our GaInP/Si dual-junction solar cells have achieved a certified cumulative 1-sun efficiency of 29.8% ± 0.6% (AM1.5g) in four-terminal operation conditions, which exceeds the record 1-sun efficiencies achieved with both III-V and Si single-junction solar cells.more » Furthermore, the effect of luminescent coupling between the subcells has been investigated, and optical losses in the solar cell structure have been addressed.« less
NASA Astrophysics Data System (ADS)
Baba, Masaaki; Makita, Kikuo; Mizuno, Hidenori; Takato, Hidetaka; Sugaya, Takeyoshi; Yamada, Noboru
2017-12-01
This paper describes a method that remarkably reduces the bonding resistance of mechanically stacked two-terminal GaAs/Si and InGaP/Si tandem solar cells, where the top and bottom cells are bonded using a Pd nanoparticle array. A transparent conductive oxide (TCO) layer, which partially covers the surface of the Si bottom cell below the electrodes of the III-V top cell, significantly enhances the fill factor (FF) and cell conversion efficiency. The partial TCO layer reduces the bonding resistance and thus, increases the FF and efficiency of InGaP/Si by factors of 1.20 and 1.11, respectively. Eventually, the efficiency exceeds 15%. Minimizing the optical losses at the bonding interfaces of the TCO layer is important in the fabrication of high-efficiency solar cells. To help facilitate this, the optical losses in the tandem solar cells are thoroughly characterized through optical simulations and experimental verifications.
Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essig, Stephanie; Steiner, Myles A.; Allebe, Christophe
Combining a Si solar cell with a high-bandgap top cell reduces the thermalization losses in the short wavelength and enables theoretical 1-sun efficiencies far over 30%. We have investigated the fabrication and optimization of Si-based tandem solar cells with 1.8-eV rear-heterojunction GaInP top cells. The III-V and Si heterojunction subcells were fabricated separately and joined by mechanical stacking using electrically insulating optically transparent interlayers. Our GaInP/Si dual-junction solar cells have achieved a certified cumulative 1-sun efficiency of 29.8% ± 0.6% (AM1.5g) in four-terminal operation conditions, which exceeds the record 1-sun efficiencies achieved with both III-V and Si single-junction solar cells.more » Furthermore, the effect of luminescent coupling between the subcells has been investigated, and optical losses in the solar cell structure have been addressed.« less
Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu
2015-11-11
Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.
Kulkarni, Aditya; Evers, Wiel H.; Tomic, Stanko; ...
2017-12-14
Here, carrier multiplication (CM) is a process in which a single photon excites two or more electrons. CM is of interest to enhance the efficiency of a solar cell. Until now, CM in thin films and solar cells of semiconductor nanocrystals (NCs) has been found at photon energies well above the minimum required energy of twice the band gap. The high threshold of CM strongly limits the benefits for solar cell applications. We show that CM is more efficient in a percolative network of directly connected PbSe NCs. The CM threshold is at twice the band gap and increases inmore » a steplike fashion with photon energy. A lower CM efficiency is found for a solid of weaker coupled NCs. This demonstrates that the coupling between NCs strongly affects the CM efficiency. According to device simulations, the measured CM efficiency would significantly enhance the power conversion efficiency of a solar cell.« less
Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation.
Zhu, Xuejie; Yang, Dong; Yang, Ruixia; Yang, Bin; Yang, Zhou; Ren, Xiaodong; Zhang, Jian; Niu, Jinzhi; Feng, Jiangshan; Liu, Shengzhong Frank
2017-08-31
Chemical composition and film quality are two key figures of merit for large-area high-efficiency perovskite solar cells. To date, all studies on mixed perovskites have used solution-processing, which results in imperfect surface coverage and pin-holes generated during solvent evaporation, execrably influencing the stability and efficiency of perovskite solar cells. Herein, we report our development using a vacuum co-evaporation deposition method to fabricate pin-hole-free cesium (Cs)-substituted perovskite films with complete surface coverage. Apart from the simplified procedure, the present method also promises tunable band gap, reduced trap-state density and longer carrier lifetime, leading to solar cell efficiency as high as 20.13%, which is among the highest reported for planar perovskite solar cells. The splendid performance is attributed to superior merits of the Cs-substituted perovskite film including tunable band gap, reduced trap-state density and longer carrier lifetime. Moreover, the Cs-substituted perovskite device without encapsulation exhibits significantly higher stability in ambient air compared with the single-component counterpart. When the Cs-substituted perovskite solar cells are stored in dark for one year, the PCE remains at 19.25%, degrading only 4.37% of the initial efficiency. The excellent stability originates from reduced lattice constant and relaxed strain in perovskite lattice by incorporating Cs cations into the crystal lattice, as demonstrated by the positive peak shifts and reduced peak width in X-ray diffraction analysis.