Mu, Xiyan; Fang, Chunju; Zhou, Jing; Xi, Yufeng; Zhang, Li; Wei, Yuquan; Yi, Tao; Wu, Yang; Zhao, Xia
2016-01-01
Human umbilical endothelial cells (HUVECs) have been proved as an effective whole-cell vaccine inhibiting tumor angiogenesis. However, HUVECs divide a very limited number of passages before entering replicative senescence, which limits its application for clinical situation. Here, we fused HUVECs with human pulmonary adenocarcinoma cell line A549s and investigated the anti-tumor immunity of the hybrids against mice Lewis lung cancer. HUVECs were fused with A549s using polyethylene glycol and were sorted by flow cytometry. The fusion cells (HUVEC-A549s) were confirmed by testing the expression of telomerase and VE-cadherin, the senescence-associated β-galactosidase activity, and tube formation ability. HUVEC-A549s were then irradiated and injected into the C57BL/6 mice of protective, therapeutic, and metastatic models. The mechanism of the anti-tumor immunity was explored by analyzing mice sera, spleen T lymphocytes, tumor microenvironment, and histological changes. HUVEC-A549s coexpressed tumor and endothelial markers and maintained the vascular function of tube forming at passage 30 without showing signs of senescence. HUVEC-A549s could induce protective and therapeutic anti-tumor activity for LL(2) model and presented stronger activity against metastasis than HUVECs. Both humoral and cellular immunity were participated in the anti-angiogenic activity, as HUVECs-neutralizing IgG and HUVECs-toxic lymphocytes were increased. Angiogenic mediators (VEGF and TGF-β) and tumor microenvironment cells MDSCs and Tregs were also diminished. Our findings might provide a novel strategy for HUVECs-related immunotherapy, and this vaccine requires lower culture condition than primary HUVECs while enhancing the anti-tumor immunity.
NASA Astrophysics Data System (ADS)
Kao, Chia-Tze; Hsu, Tuan-Ti; Huang, Tsui-Hsien; Wu, Yu-Tin; Chen, Yi-Wen; Shie, Ming-You
2016-02-01
Angiogenesis plays an important role in determining the biostimulation of bone regeneration, in either new bone or blood vessel formation. Human umbilical cord cells (HUVECs) are important effector cells in angiogenesis and are indispensable for osteogenesis and for their heterogeneity and plasticity. However, there are very few studies about the effects of HUVECs on diode laser-stimulated/regulated osteogenesis. In this study, we used diode laser as a model biostimulation to examine the role of HUVECs on laser-stimulated osteogenesis. Several bone formation-related proteins were also significantly up-regulated by the diode laser stimulation, indicating that HUVECs may participate in diode laser-stimulated osteogenesis. Interestingly, when human mesenchymal stem cells (hMSCs) cultured with HUVECs were diode laser-treated, the osteogenesis differentiation of the hMSCs was significantly promoted, indicating the important role of HUVECs in diode laser-enhanced osteogenesis. Adequately activated HUVECs are vital for the success of diode laser-stimulated hard-tissue regeneration. These findings provided valuable insights into the mechanism of diode laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment in periodontal repair.
Wu, Chia-Ching; Chen, Yi-Chi; Chang, Ying-Chao; Wang, Lan-Wan; Lin, Yung-Chieh; Chiang, Yi-Lun; Ho, Chien-Jung; Huang, Chao-Ching
2013-05-01
Agents that protect against neurovascular damage provide a powerful neuroprotective strategy. Human umbilical vein endothelial cells (HUVECs) may be used to treat neonates with hypoxic-ischemia (HI) because of its autologous capability. We hypothesized that peripherally injected HUVECs entered the brain after HI, protected against neurovascular damage, and provided protection via stromal cell-derived factor 1/C-X-C chemokine receptor type 4 pathway in neonatal brain. Postpartum day 7 rat pups received intraperitoneal injections of low-passage HUVEC-P4, high-passage HUVEC-P8, or conditioned medium before and immediately after HI. HUVECs were transfected with adenovirus-green fluorescent protein for cell tracing. Oxygen-glucose deprivation was established by coculturing HUVEC-P4 with mouse neuroblastoma neuronal cells (Neuro-2a) and with mouse immortalized cerebral vascular endothelial cells (b.End3). HUVEC-P4-treated group had more blood levels of green fluorescent protein-positive cells than HUVEC-P8-treated group 3 hours postinjection. Intraperitoneally injected HUVEC-P4, but not HUVEC-P8, entered the cortex after HI and positioned closed to the neurons and microvessels. Compared with the condition medium-treated group, the HUVEC-P4-treated but not the HUVEC-P8-treated group showed significantly less neuronal apoptosis and blood-brain barrier damage and more preservation of microvessels in the cortex 24 hours after HI. On postpartum day 14, the HUVEC-P4-treated group showed significant neuroprotection compared with the condition medium-treated group. Stromal cell-derived factor 1 was upregulated in the ipsilateral cortex 3 hours after HI, and inhibiting the stromal cell-derived factor 1/C-X-C chemokine receptor type 4 reduced the protective effect of HUVEC-P4. In vitro transwell coculturing of HUVEC-P4 also significantly protected against oxygen-glucose deprivation cell death in neurons and endothelial cells. Cell therapy using HUVECs may provide a powerful therapeutic strategy in treating neonates with HI.
Liu, Xian; Chen, Wenchuan; Zhang, Chi; Thein-Han, Wahwah; Hu, Kevin; Reynolds, Mark A; Bao, Chongyun; Wang, Ping; Zhao, Liang; Xu, Hockin H K
2017-06-01
A major challenge in repairing large bone defects with tissue-engineered constructs is the poor vascularization in the defect. The lack of vascular networks leads to insufficient oxygen and nutrients supply, which compromises the survival of seeded cells. To achieve favorable regenerative effects, prevascularization of tissue-engineered constructs by co-culturing of endothelial cells and bone cells is a promising strategy. The aim of this study was to investigate the effects of human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs) co-cultured with human umbilical vein endothelial cells (HUVECs) for prevascularization of calcium phosphate cement (CPC) scaffold on bone regeneration in vivo for the first time. HUVECs co-cultured with hiPSC-MSCs formed microcapillary-like structures in vitro. HUVECs promoted mineralization of hiPSC-MSCs on CPC scaffolds. Four groups were tested in a cranial bone defect model in nude rats: (1) CPC scaffold alone (CPC control); (2) HUVEC-seeded CPC (CPC-HUVEC); (3) hiPSC-MSC-seeded CPC (CPC-hiPSC-MSC); and (4) HUVECs co-cultured with hiPSC-MSCs on CPC scaffolds (co-culture group). After 12 weeks, the co-culture group achieved the greatest new bone area percentage of 46.38% ± 3.8% among all groups (p < 0.05), which was more than four folds of the 10.61% ± 1.43% of CPC control. In conclusion, HUVECs co-cultured with hiPSC-MSCs substantially promoted bone regeneration. The novel construct of HUVECs co-cultured with hiPSC-MSCs delivered via CPC scaffolds is promising to enhance bone and vascular regeneration in orthopedic applications.
Zhao, Jing; Zhao, Le; Chen, Wei; He, Langchong; Li, Xu
2008-01-01
Taspine is an active component isolated from Radix et Rhizoma Leonticis with inhibiting tumor angiogenic properties. The molecular mechanism(s) of taspine on tumor angiogenic inhibition have not been well documented. The aim of this study was to elucidate in detail the effects of taspine on genetic expressions of VEGF in human umbilical vein endothelial cells, and on VEGFR2-mediated intracellular signaling of human umbilical vein endothelial cells. The genetic expression of vascular endothelial growth factor (VEGF) in the human umbilical vein endothelial cells (HUVECs) treated with taspine in vitro was measured by the ELISA and RT-PCR methods. The effects of taspine on cell proliferation of HUVECs and HUVECs induced by VEGF165 were considered by using MTT assay. And also, a western blot was used to detect Akt and Erk1/2 expressions and their phosphorylation levels in HUVECs treated with taspine. Our results show that VEGF protein and mRNA expressions in the cells treated with taspine were significantly decreased. Taspine also significantly inhibited cell proliferation of HUVECs induced by VEGF165. HUVECs treated with taspine showed decreased Akt and Erk1/2 activities.
Improved Cryopreservation of Human Umbilical Vein Endothelial Cells: A Systematic Approach
NASA Astrophysics Data System (ADS)
Sultani, A. Billal; Marquez-Curtis, Leah A.; Elliott, Janet A. W.; McGann, Locksley E.
2016-10-01
Cryopreservation of human umbilical vein endothelial cells (HUVECs) facilitated their commercial availability for use in vascular biology, tissue engineering and drug delivery research; however, the key variables in HUVEC cryopreservation have not been comprehensively studied. HUVECs are typically cryopreserved by cooling at 1 °C/min in the presence of 10% dimethyl sulfoxide (DMSO). We applied interrupted slow cooling (graded freezing) and interrupted rapid cooling with a hold time (two-step freezing) to identify where in the cooling process cryoinjury to HUVECs occurs. We found that linear cooling at 1 °C/min resulted in higher membrane integrities than linear cooling at 0.2 °C/min or nonlinear two-step freezing. DMSO addition procedures and compositions were also investigated. By combining hydroxyethyl starch with DMSO, HUVEC viability after cryopreservation was improved compared to measured viabilities of commercially available cryopreserved HUVECs and viabilities for HUVEC cryopreservation studies reported in the literature. Furthermore, HUVECs cryopreserved using our improved procedure showed high tube forming capability in a post-thaw angiogenesis assay, a standard indicator of endothelial cell function. As well as presenting superior cryopreservation procedures for HUVECs, the methods developed here can serve as a model to optimize the cryopreservation of other cells.
Xu, Maolei; Xing, Yun; Zhou, Ling; Yang, Xue; Yao, Wenjun; Xiao, Wen; Ge, Chiyu; Ma, Yanjun; Yang, Jie; Wu, Jie; Cao, Rongyue; Li, Taiming; Liu, Jingjing
2013-06-01
Vaccination with xenogeneic or syngeneic endothelial cells targeting tumor angiogenesis is effective for inhibiting tumor growth. OK432, an effective adjuvant, was mixed with viable human umbilical vein endothelial cells (HUVECs) to prepare a novel HUVECs-OK432 vaccine, which could have an improved therapeutic efficacy. In this study, HUVECs-OK432 was administrated in mice by subcutaneous injection in a therapeutic procedure. The results showed that a stronger HUVEC-specific Abs and cytotoxic T lymphocyte immune response were elicited, which resulted in significant inhibition on the growth of B16F10 melanoma and remarkably prolonged survival of B16F10 melanoma-bearing mice compared with HUVECs. Besides, parallel results were obtained in vitro showing a stronger inhibition of HUVEC proliferation by immune sera of HUVECs-OK432 than that of HUVECs. Moreover, histochemistry and immunohistochemistry analysis showed that HUVECs-OK432 induced large areas of continuous necrosis within tumors and significantly reduced the vessel density, correlating well with the extent of tumor inhibition. Our present results suggest that OK432 could be employed as an effective adjuvant for HUVEC vaccines and therefore should be useful for adjuvant immunotherapy of cancer.
Cai, Guoping; Lai, Binbin; Hong, Huaxing; Lin, Peng; Chen, Weifu; Zhu, Zhong; Chen, Haixiao
2017-07-01
Cryopreservation is widely used in regenerative medicine for tissue preservation. In the present study, the effects of cryopreservation on excretory function, cellular adhesion molecules and vessel lumen formation in human umbilical vein endothelial cells (HUVECs) were investigated. After 0, 4, 8, 12 or 24 weeks of cryopreservation in liquid nitrogen, the HUVECs were thawed. The excretory functions markers (endothelin‑1, prostaglandin E1, von Willebrand factor and nitric oxide) of HUVECs were measured by ELISA assay. The expression of intercellular adhesion molecule‑1 (ICAM‑1) in HUVECs was analyzed using flow cytometry. An angiogenesis assay was used to determine the angiogeneic capabilities of the thawed HUVECs. The results demonstrated that cryopreserved/thawed and recultivated HUVECs were unsuitable for tissue‑engineered microvascular construction. Specifically, the excretory function of the cells was significantly decreased in the post‑cryopreserved HUVECs at 24 weeks. In addition, the level of ICAM‑1 in HUVECs was significantly upregulated from the fourth week of cryopreservation. Furthermore, the tube‑like structure‑forming potential was weakened with increasing cryopreservation duration, and the numbers of lumen and the length of the pipeline were decreased in the thawed HUVECs, in a time‑dependent manner. In conclusion, the results of the present study revealed that prolonged cryopreservation may lead to HUVEC dysfunction and did not create stable cell lines for tissue‑engineered microvascular construction.
Ciechanowska, Anna; Ladyzynski, Piotr; Hoser, Grazyna; Sabalinska, Stanislawa; Kawiak, Jerzy; Foltynski, Piotr; Wojciechowski, Cezary; Chwojnowski, Andrzej
2016-09-01
Human endothelial cells are used in experimental models for studying in vitro pathophysiological mechanisms of different diseases. We developed an original bioreactor, which can simulate human blood vessel, with capillary polysulfone membranes covered with the human umbilical vein endothelial cells (HUVECs) and we characterized its properties. The elaborated cell seeding and culturing procedures ensured formation of a confluent cell monolayer on the inside surface of capillaries within 24 h of culturing under the shear stress of 6.6 dyn/cm(2). The optimal density of cells to be seeded was 60,000 cells/cm(2). Labeling HUVECs with carboxyfluorescein succinimidyl ester (CFSE) did not influence cells' metabolism. Flow cytometry-based analysis of HUVECs stained with CFSE demonstrated that in a presence of the shear stress cells' proliferation was much inhibited (after 72 h proliferation index was equal to 1.9 and 6.2 for cultures with and without shear stress, respectively) and the monolayer was formed mainly due to migration and spreading of cells that were physiologically elongated in a direction of the flow. Monitoring of cells' metabolism showed that HUVECs cultured in a presence of the shear stress preferred anaerobic metabolism and they consumed 1.5 times more glucose and produced 2.3 times more lactate than the cells cultured under static conditions. Daily von Willebrand factor production by HUVECs was near 2 times higher in a presence of the shear stress. The developed model can be used for at least 3 days in target studies under conditions mimicking the in vivo state more closely than the static HUVEC cultures.
Zheng, Lian; Fang, Chi-hua
2007-06-01
To investigate the effect of Leonurus Heterophyllus Sweet, (LHS) on tissue factor (TF) transcription and expression induced by thrombin in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with different concentrations of LHS and the TF mRNA expression was detected by reverse transcript-polymerase chain reaction (RT-PCR). LHS treatment of HUVECs at different concentrations and for different times resulted in significant differences in TF expression (Plt;0.01). The transcription of TF in LHS-treated cells was significantly different from that of the blank control group (Plt;0.01). LHS can decrease the expression of TF and intervene with TF transcription in HUVECs in vitro.
Maspin impairs the function of endothelial cells: an implying pathway of preeclampsia.
Zhang, Ying; Liu, Hao; Shi, Xinwei; Qiao, Fuyuan; Zeng, Wanjiang; Feng, Ling; Deng, Dongrui; Liu, Haiyi; Wu, Yuanyuan
2017-09-29
Widespread endothelial injury contributes to the occurrence of preeclampsia. Maspin, first identified as a tumor suppressor, plays a critical role in cell invasion and angiogenesis. Our previous studies found that the expression of maspin was increased in preeclampsic placenta. In this research, we studied the function of human umbilical vein endothelial cells (HUVECs) to explore the role and possible mechanism of maspin gene in the pathogenesis of preeclampsia. HUVECs were treated with different concentration of recombinant human maspin protein (r-maspin) during normoxia and hypoxia, we detected the proliferation, apoptosis, migration and tube formation of HUVECs. We also assessed nitride oxide (NO) synthesis and the expression of matrix metalloproteinase 2 (MMP2) to further explore the underlying molecular mechanism. There was only slight maspin expression at mRNA level in HUVECs. Treated HUVECs with r-maspin, the proliferation of HUVECs was significantly promoted both under normoxia and hypoxia. The tubes formed by HUVECs were significantly inhibited and NO synthesis was significantly reduced by r-maspin. Meantime, r-maspin also inhibited MMP2 expression and activity in HUVECs. However, there was no significant change in the migration and apoptosis of HUVECs. Maspin may be an important participant for mediating endothelial function and ultimately leads to the occurence of preeclamsia.
Chiu, Jen-Hwey; Chen, Fang-Pey; Tsai, Yi-Fang; Lin, Man-Ting; Tseng, Ling-Ming; Shyr, Yi-Ming
2017-08-12
Our previous study demonstrated that an up-regulation of the Brain-Derived Neurotrophic Factor (BDNF) signaling pathway is involved the mechanism causing the recurrence of triple negative breast cancer. The aim of this study is to investigate the effects of commonly used Chinese medicinal herbs on MDA-MB-231 and HUVEC cells and how they interact with BDNF. Human TNBC MDA-MB-231 cells and human endothelial HUVEC cells were used to explore the effect of commonly used Chinese herbal medicines on cancer cells alone, on endothelial cells alone and on cancer cell/endothelial cell interactions; this was done via functional studies, including migration and invasion assays. Furthermore, Western blot analysis and real-time PCR investigations were also used to investigate migration signal transduction, invasion signal transduction, and angiogenic signal transduction in these systems. Finally, the effect of the Chinese medicinal herbs on cancer cell/endothelial cell interactions was assessed using co-culture and ELISA. In terms of autoregulation, BDNF up-regulated TrkB gene expression in both MDA-MB-231 and HUVEC cells. Furthermore, BDNF enhanced migration by MDA-MB-231 cells via Rac, Cdc42 and MMP, while also increasing the migration of HUVEC cells via MMP and COX-2 expression. As measured by ELISA, the Chinese herbal medicinal herbs A. membranaceus, P. lactiflora, L. chuanxiong, P. suffruticosa and L. lucidum increased BDNF secretion by MDA-MB-231 cells. Similarly, using a co-culture system with MDA-MB-231 cells, A. membranaceus and L. lucidum modulated BDNF-TrkB signaling by HUVEC cells. We conclude that BDNF plays an important role in the metastatic interaction between MDA-MB-231 and HUVEC cells. Some Chinese medicinal herbs are able to enhance the BDNF-related metastatic potential of the interaction between cancer cells and endothelial cells. These findings provide important information that should help with the development of integrated medical therapies for breast cancer patients.
Xue, Lixia; Huang, Jiankang; Zhang, Ting; Wang, Xiuzhe; Fu, Jianliang; Geng, Zhi; Zhao, Yuwu; Chen, Hao
2018-06-24
Angiogenesis is an important pathophysiological response to cerebral ischemia. PTEN is a lipid phosphatase whose loss activates PI3K/Akt signaling, which is related to HIF-1α upregulation and enhanced angiogenesis in human cancer cells. However, the specific roles of PTEN in endothelial cell functions and angiogenesis after cerebral ischemia remain unknown. Therefore, we sought to examine the potential effects of PTEN inhibition on post-ischemic angiogenesis in human blood vessel cells and to determine the underlying mechanism. In this present study, human umbilical vein endothelial cells (HUVECs) were exposed to oxygen-glucose deprivation (OGD), cell proliferation, migration and apoptosis, in vitro tube formation and expression of PTEN/Akt pathway and angiogenic factors were examined in HUVECs after treatment with PTEN inhibitor bisperoxovanadium (bpV) at different doses. The results showed that bpV significantly increased the cell proliferation and reduced cell apoptosis indicating that the drug exerts a cytoprotective effect on HUVECs with OGD exposure. bpV also enhanced cell migration and tube formation in HUVECs following OGD, and upregulated HIF-1α and VEGF expressions, but attenuated endostatin expression. Additionally, western blotting analysis demonstrated that Akt phosphorylation in HUVECs was significantly increased after bpV treatment. These findings suggest that PTEN inhibition promotes post-ischemic angiogenesis in HUVECs after exposure to OGD and this enhancing effect might be achieved through activation of the Akt signal cascade.
Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki
2017-01-01
Human primary hepatocytes are able to survive in a medium without glucose and arginine that is instead supplemented with galactose and ornithine (hepatocyte selection medium; HSM). This is because the cells produce glucose and arginine by the action of galactokinase (GALK) and ornithine carbamoyltransferase (OTC), respectively. It was expected that hepatocellular carcinoma (HCC) cells do not survive in HSM. In the current study, HCC cell lines (namely HLE, HLF, PLC/PRL/5, Hep3B and HepG2) and human umbilical vascular endothelial cells (HUVECs) were cultured in HSM, and the expression levels of GALK1, GALK2 and OTC were analyzed by reverse transcription-quantitative polymerase chain reaction. HLE, HLF and PLC/PRL/5 cells died on day 11, while Hep3B, HepG2 and HUVECs died on day 7. HLF cells were further analyzed as these cells had lower expression levels of GALK1, GALK2 and OTC compared with adult liver cells, and survived until day 11. In these cells, the expression levels of GALK1, GALK2 and OTC did not change on days 3 and 7 as compared to day 0. In addition, a co-culture of HLF cells with HUVECs was established and the medium was changed to HSM. It was observed that HLF cells and HUVECs in co-culture were damaged in HSM. In summary, HCC cells and HUVECs died in a medium without glucose and arginine that was supplemented with galactose and ornithine. HCC cells and HUVECs were damaged in HSM, suggesting a potential application for treatment with the medium.
Kim, Sung-Hee; Yoon, Yeo Cho; Lee, Ae Sin; Kang, NaNa; Koo, JaeHyung; Rhyu, Mee-Ra; Park, Jae-Ho
2015-05-01
ORs are ectopically expressed in non-chemosensory tissues including muscle, kidney, and keratinocytes; however, their physiological roles are largely unknown. We found that human olfactory receptor 10J5 (OR10J5) is expressed in the human aorta, coronary artery, and umbilical vein endothelial cells (HUVEC). Lyral induces Ca(2+) and phosphorylation of AKT in HUVEC. A knockdown study showed the inhibition of the lyral-induced Ca(2+) and the phosphorylation AKT and implied that these processes are mediated by OR10J5. In addition, lyral enhanced migration of HUVEC, which were also inhibited by RNAi in a migration assay. In addition, matrigel plug assay showed that lyral enhanced angiogenesis in vivo. Together these data demonstrate the physiological role of OR10J5 in angiogenesis and represent roles of ORs in HUVEC cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Differential sex-specific effects of oxygen toxicity in human umbilical vein endothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuhao; Lingappan, Krithika
Despite the well-established sex-specific differences in the incidence of bronchopulmonary dysplasia (BPD), the molecular mechanism(s) behind these are not completely understood. Pulmonary angiogenesis is critical for alveolarization and arrest in vascular development adversely affects lung development. Human neonatal umbilical vein endothelial cells (HUVECs) provide a robust in vitro model for the study of endothelial cell physiology and function. Male and Female HUVECs were exposed to room air (21% O{sub 2}, 5% CO{sub 2}) or hyperoxia (95% O{sub 2}, 5% CO{sub 2}) for up to 72 h. Cell viability, proliferation, H{sub 2}O{sub 2} production and angiogenesis were analyzed. Sex-specific differences in the expressionmore » of VEGFR2 and modulation of NF-kappa B pathway were measured. Male HUVECs have decreased survival, greater oxidative stress and impairment in angiogenesis compared to similarly exposed female cells. There is differential expression of VEGFR2 between male and female HUVECs and greater activation of the NF-kappa B pathway in female HUVECs under hyperoxic conditions. The results indicate that sex differences exist between male and female HUVECs in vitro after hyperoxia exposure. Since endothelial dysfunction has a major role in the pathogenesis of BPD, these differences could explain in part the mechanisms behind sex-specific differences in the incidence of this disease. - Highlights: • Cellular sex effects viability and oxidative stress in HUVECs exposed to hyperoxia. • Male HUVECs show greater impairment in angiogenesis compared to female cells. • Sex-specific modulation of VEGFR2 and the NF-kappaB pathway was noted.« less
Sugano, Masahiro; Tsuchida, Keiko; Tomita, Hideharu; Makino, Naoki
2002-05-01
Vascular endothelial growth factor (VEGF) can overcome a potential anti-angiogenic effect of TNF-alpha by inhibiting endothelial apoptosis induced by this cytokine. Soluble TNF-alpha receptor I (sTNFRI) is an extracellular domain of TNFRI and antagonizes the activity of TNF-alpha. Here we report that sTNFRI is able to stimulate the growth of endothelial cells not by antagonizing TNF-alpha. Exogenously added recombinant human sTNFRI stimulated significantly more cell growth of human umbilical venous endothelial cells (HUVEC) with a low dose (50-200 pg/ml) compared with smooth muscle cells. In contrast, monoclonal antibody against TNF-alpha did not stimulate growth of human HUVEC. The sTNFRI expression plasmid (pcDNA3.1 plasmid) was introduced into the cell culture using OPTI-MEM, lipofectin and transferrin. Growth of HUVEC transfected with sTNFRI vector also increased significantly compared with those transfected with control vector. HUVEC transfected with sTNFRI vector increased the extracellular domain of TNFRI mRNA levels, but did not affect the intracellular domain of TNFRI mRNA levels. Accumulation of sTNFRI significantly increased in conditioned medium from HUVEC transfected with sTNFRI vector compared with those transfected with control vector. HUVEC transfected with sTNFRI vector not only increased sTNFRI but also prevented shedding of sTNFRI from TNFRI. The TNF-alpha -induced internucleosomic fragmentation was also significantly prevented in HUVEC transfected with sTNFRI vector compared with those transfected with control vector. These results suggest that instead of growth factors such as VEGF, local transfection of the sTNFRI gene may have potential therapeutic value in vascular diseases in which TNF-alpha is also usually highly expressed.
Li, Yan; Wang, Kai; Zou, Qing-Yun; Jiang, Yi-Zhou; Zhou, Chi; Zheng, Jing
2017-12-01
Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor is involved in regulation of many essential biological processes including vascular development and angiogenesis. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an AhR ligand, which regulates immune responses and cancer cell growth. However, the roles of the ITE/AhR pathway in mediating placental angiogenesis remains elusive. Here, we determined if ITE affected placental angiogenic responses via AhR in human umbilical vein (HUVECs) and artery endothelial (HUAECs) cells in vitro. We observed that ITE dose- and time-dependently inhibited proliferation and viability of HUAECs and HUVECs, whereas it inhibited migration of HUAECs, but not HUVECs. While AhR siRNA significantly suppressed AhR protein expression in HUVECs and HUAECs, it attenuated the ITE-inhibited angiogenic responses of HUAECs, but not HUVECs. Collectively, ITE suppressed angiogenic responses of HUAECs and HUVECs, dependent and independent of AhR, respectively. These data suggest that ITE may regulate placental angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Yanmin; He, Langchong; Zhou, Yali
2008-01-01
The present study was to evaluate the effects of taspine isolated from Radix et Rhizoma Leonticsi on the growth and apoptosis of human umbilical vein endothelial cell (HUVEC) line by MTT and flow cytometer, respectively. At the same time, a series of changes were observed in HUVEC treated by taspine, including microstructure, protein expression of bax, bcl-2 and VEGF. The change of microstructure was observed by transmission electron microscope (TEM). The protein expression of bax and bcl-2 was detected by immunohistochemistry (IHC), and VEGF protein secreted was determined by enzyme-linked immunosorbent assay (ELISA). The results showed taspine could inhibit growth and induce apoptosis of HUVEC in a dose-dependent manner. Cell cycle was significantly stopped at the S phase. Under electronic microscope, the morphology of HUVEC treated with taspine showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body. Bcl-2 and VEGF expressions were decreased and bax expression was increased. All these results demonstrate that taspine has an inhibitory effect on growth of HUVEC and can induce its apoptosis.
NASA Technical Reports Server (NTRS)
Ding, Ke-Hong; Zhong, Qing; Isales, Carlos M.; Iscules, C. M. (Principal Investigator)
2003-01-01
We have previously characterized the receptor for glucose-dependent insulinotropic polypeptide (GIPR) in vascular endothelial cells (EC). Different EC types were found to contain distinct GIPR splice variants. To determine whether activation of the GIPR splice variants resulted in different cellular responses, we examined GIP effects on human umbilical vein endothelial cells (HUVEC), which contain two GIPR splice variants, and compared them with a spontaneously transformed human umbilical vein EC line, ECV 304, which contains four GIPR splice variants. GIP dose-dependently stimulated HUVEC and ECV 304 proliferation as measured by [3H]thymidine incorporation. GIP increased endothelin-1 (ET-1) secretion from HUVEC but not from ECV 304. Use of the endothelin B receptor blocker BQ-788 resulted in an inhibition of [3H]thymidine incorporation in HUVEC but not in ECV 304. These findings suggest that, although GIP increases [3H]thymidine incorporation in both HUVEC and ECV 304, this proliferative response is mediated by ET-1 only in HUVEC. These differences in cellular response to GIP may be related to differences in activation of GIPR splice variants.
Feng, Bo; Zhao, Lihong; Wang, Wei; Wang, Jianfang; Wang, Hongyan; Duan, Huiqin; Zhang, Jianjun; Qiao, Jian
2017-11-03
Endothelial cells are believed to play an important role in response to virus infection. Our previous microarray analysis showed that H9N2 virus infection and inactivated viral particle inoculation increased the expression of interferon-inducible transmembrane protein 1 (IFITM1) in human umbilical vein endothelial cells (HUVECs). In present study, we deeply investigated the expression patterns of IFITM1 and IFITM1-mediated antiviral response induced by H9N2 virus infection and inactivated viral particle inoculation in HUVECs. Epithelial cells that are considered target cells of the influenza virus were selected as a reference control. First, we quantified the expression levels of IFITM1 in HUVECs induced by H9N2 virus infection or viral particle inoculation using quantitative real-time PCR and western blot. Second, we observed whether hemagglutinin or neuraminidase affected IFITM1 expression in HUVECs. Finally, we investigated the effect of induced-IFITM1 on the antiviral state in HUVECs by siRNA and activation plasmid transfection. Both H9N2 virus infection and viral particle inoculation increased the expression of IFITM1 without elevating the levels of interferon-ɑ/β in HUVECs. HA or NA protein binding alone is not sufficient to increase the levels of IFITM1 and interferon-ɑ/β in HUVECs. IFITM1 induced by viral particle inoculation significantly decreased the virus titers in culture supernatants of HUVECs. Our results showed that inactivated viral particle inoculation increased the expression of IFITM1 at mRNA and protein levels. Moreover, the induction of IFITM1 expression mediated the antiviral state in HUVECs.
Effects of Co-Culture Media on Hepatic Differentiation of hiPSC with or without HUVEC Co-Culture
Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin
2017-01-01
The derivation of hepatocytes from human induced pluripotent stem cells (hiPSC) is of great interest for applications in pharmacological research. However, full maturation of hiPSC-derived hepatocytes has not yet been achieved in vitro. To improve hepatic differentiation, co-cultivation of hiPSC with human umbilical vein endothelial cells (HUVEC) during hepatic differentiation was investigated in this study. In the first step, different culture media variations based on hepatocyte culture medium (HCM) were tested in HUVEC mono-cultures to establish a suitable culture medium for co-culture experiments. Based on the results, two media variants were selected to differentiate hiPSC-derived definitive endodermal (DE) cells into mature hepatocytes with or without HUVEC addition. DE cells differentiated in mono-cultures in the presence of those media variants showed a significant increase (p < 0.05) in secretion of α-fetoprotein and in activities of cytochrome P450 (CYP) isoenzymes CYP2B6 and CYP3A4 as compared with cells differentiated in unmodified HCM used as control. Co-cultivation with HUVEC did not further improve the differentiation outcome. Thus, it can be concluded that the effect of the used medium outweighed the effect of HUVEC co-culture, emphasizing the importance of the culture medium composition for hiPSC differentiation. PMID:28783133
Effects of Co-Culture Media on Hepatic Differentiation of hiPSC with or without HUVEC Co-Culture.
Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin
2017-08-07
The derivation of hepatocytes from human induced pluripotent stem cells (hiPSC) is of great interest for applications in pharmacological research. However, full maturation of hiPSC-derived hepatocytes has not yet been achieved in vitro. To improve hepatic differentiation, co-cultivation of hiPSC with human umbilical vein endothelial cells (HUVEC) during hepatic differentiation was investigated in this study. In the first step, different culture media variations based on hepatocyte culture medium (HCM) were tested in HUVEC mono-cultures to establish a suitable culture medium for co-culture experiments. Based on the results, two media variants were selected to differentiate hiPSC-derived definitive endodermal (DE) cells into mature hepatocytes with or without HUVEC addition. DE cells differentiated in mono-cultures in the presence of those media variants showed a significant increase ( p < 0.05) in secretion of α-fetoprotein and in activities of cytochrome P450 (CYP) isoenzymes CYP2B6 and CYP3A4 as compared with cells differentiated in unmodified HCM used as control. Co-cultivation with HUVEC did not further improve the differentiation outcome. Thus, it can be concluded that the effect of the used medium outweighed the effect of HUVEC co-culture, emphasizing the importance of the culture medium composition for hiPSC differentiation.
Fromer, Marc W; Chang, Shaohua; Hagaman, Ashleigh L R; Koko, Kiavash R; Nolan, Ryan S; Zhang, Ping; Brown, Spencer A; Carpenter, Jeffrey P; Caputo, Francis J
2017-07-28
Chronic wounds are a common surgical problem exacerbated by diabetes and ischemia. Although adipose-derived stem cells (ASCs) have shown promise as a wound healing therapy, their function and proliferation are hindered in diabetes. This study examines the ability of the human umbilical vein endothelial cell (HUVEC) secretome to reverse the deleterious effects of high glucose concentrations on ASCs through priming, thereby enhancing their ability to participate in angiogenesis and wound healing. Institutional review board-approved human ASCs were cultured in M199 medium with or without glucose (30 mmol/L). HUVEC were grown in 30 mmol/L glucose-containing M199 medium; the resulting conditioned medium (HUVEC-CM) was collected every 3 days and used to prime ASCs. An aliquot of HUVEC-CM was heated (85°C for 30 minutes) to produce thermal denaturation of protein. Viability, proliferation, and endothelial differentiation were measured by MTT assays, growth curves, and quantitative polymerase chain reaction, respectively. A Matrigel assay was used to assess the ability of primed ASCs to participate in capillary-like tube formation. An Institutional Animal Care and Use Committee-approved in vivo murine model of diabetic and ischemic hindlimbs was used to evaluate the angiogenic potential of primed stem cells. Human ASCs were cultured with either control M199 or HUVEC-CM. Mice were randomized to a control group, an unprimed ASC group, or a HUVEC-primed ASC group. Cellular therapies were injected into the ischemic muscle. Thirty days later, slides were made. Microvessels were counted by three blinded observers. MTT assays revealed that HUVEC-priming induced a 1.5 times increase in cell viability over diabetic controls. This promoting effect was lost with heated HUVEC-CM (P < .001), indicating that the active molecules are of protein origin. After 9 days, ASCs cultured in 30 mmol/L glucose solution showed a 14% reduction in growth from nondiabetic controls (P = .013) and exhibited atrophic morphology. Conversely, diabetic HUVEC-primed stem cells demonstrated a nearly four-fold increase in proliferation (P < .05) and took on a fusiform, endothelial-like phenotype. Polymerase chain reaction demonstrated enhanced expression of CD31 messenger RNA by 4.7-fold after 14 days in the HUVEC-primed group, and endothelial nitric oxide synthase messenger RNA messenger RNA was increased 20.1-fold from controls. Unlike unprimed controls, HUVEC-primed ASCs readily formed capillary-like tube networks on Matrigel. Diabetic mice that were injected with HUVEC-primed ASCs demonstrated greater vessel density than both controls (2.1-fold) and unprimed stem cell treatments (P < .001). HUVECs secrete protein factors that significantly increase proliferation and endothelial differentiation of ASCs under diabetic conditions. Injection of ischemic hindlimbs in diabetic mice with HUVEC-primed ASCs leads to enhanced angiogenesis. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Total alkaloids of Rubus alceifolius Poir shows anti-angiogenic activity in vivo and in vitro.
Zhao, Jinyan; Lin, Wei; Zhuang, Qunchuan; Zhong, Xiaoyong; Cao, Zhiyun; Hong, Zhenfeng; Peng, Jun
2014-11-01
Total alkaloids is an active ingredient of the natural plant Rubus alceifolius Poir, commonly used for the treatment of various cancers. Antitumor effects may be mediated through anti-angiogenic mechanisms. As such, the goal of the present study was to investigate and evaluate the effect of total alkaloids in Rubus alceifolius Poir (TARAP) on tumor angiogenesis and investigate the underlying molecular mechanisms of TARAP action in vivo and in vitro. A chick embryo chorioallantoic membrane (CAM) assay was used to assess angiogenesis in vivo. An MTT assay was performed to determine the viability of human umbilical vein endothelial cells (HUVECs) with and without treatment. Cell cycle progression of HUVECs was examined by FACS analysis with propidium iodide staining. HUVEC migration was determined using a scratch wound method. Tube formation of HUVECs was assessed with an ECMatrix gel system, and mRNA and protein expression of VEGF-A in both HUVECs and HepG2 human hepatocellular carcinoma cells were examined by RT-PCR and ELISA, respectively. Our results showed that TARAP inhibited angiogenesis in the CAM model in vivo and inhibited HUVEC proliferation via blocking cell cycle G1 to S progression in a dose- and time-dependent manners in vitro. Moreover, TARAP inhibited HUVEC migration and tube formation and downregulated mRNA and protein expression of VEGF-A in both HepG2 cells and HUVECs. Our findings suggest that the anti-angiogenic activity of TARAP may partly contribute to its antitumor properties and may be valuable for the treatment of diseases involving pathologic angiogenesis such as cancer. © The Author(s) 2014.
1993-01-01
Tumor necrosis factor alpha (TNF-alpha) is a pleiotropic cytokine triggering cell responses through two distinct membrane receptors. Stimulation of leukocyte adhesion to the endothelium is one of the many TNF-alpha activities and is explained by the upregulation of adhesion molecules on the endothelial cell surface. Human umbilical vein endothelial cells (HUVEC) were isolated, cultured, and demonstrated to express both TNF receptor types, TNF-R55 and TNF-R75. Cell adhesion to HUVEC was studied using the HL60, U937, and MOLT-4 cell lines. HUVEC were activated by either TNF-alpha, binding to both TNF-R55 and TNF- R75, and by receptor type-specific agonists, binding exclusively to TNF- R55 or to TNF-R75. The TNF-alpha-induced cell adhesion to HUVEC was found to be controlled almost exclusively by TNF-R55. This finding correlated with the exclusive activity of TNF-R55 in the TNF-alpha- dependent regulation of the expression of the intercellular adhesion molecule type 1 (ICAM-1), E-selectin, and vascular cell adhesion molecule type 1 (VCAM-1). The CD44 adhesion molecule in HUVEC was also found to be upregulated through TNF-R55. However, both TNF-R55 and TNF- R75 upregulate alpha 2 integrin expression in HUVEC. The predominant role of TNF-R55 in TNF-alpha-induced adhesion in HUVEC may correlate with its specific control of NF-kappa B activation, since kappa B elements are known to be present in ICAM-1, E-selectin, and VCAM-1 gene regulatory sequences. PMID:8386742
Oliveira, Jessica Silva Santos de; Santos, Gabriela da Silva; Moraes, João Alfredo; Saliba, Alessandra Mattos; Barja-Fidalgo, Thereza Christina; Mattos-Guaraldi, Ana Luíza; Nagao, Prescilla Emy
2018-01-01
BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis.
Zheng, Yuanyuan; Panhwar, Fazil
2016-01-01
Cryopreservation of human umbilical vein endothelial cells (HUVECs) is important to tissue engineering applications and the study of the role of endothelial cells in cardiovascular and cerebrovascular diseases. The traditional methods for cryopreservation by vitrification (cooling samples to a cryogenic temperature without apparent freezing) using high concentration of cryoprotective agents (CPAs) and slow freezing are suboptimal due to the severe toxicity of high concentration of CPAs and ice formation-induced cryoinjuries, respectively. In this study, we developed a method to cryopreserve HUVECs by vitrification with low concentration of CPAs. This is achieved by optimizing the CPAs and using highly thermally conductive quartz capillary (QC) to contain samples for vitrification. The latter minimizes the thermal mass to create ultra-fast cooling/warming rates. Our data demonstrate that HUVECs can be vitrified in the QC using 1.4 mol/L ethylene glycol and 1.1 mol/L dimethyl sulfoxide with more than 90% viability. Moreover, this method significantly improves the attachment efficiency of the cryopreserved HUVECs. The attached cells post-cryopreservation proliferate similarly to fresh cells. Therefore, this study may provide an effective vitrification technique to bank HUVECs for vascular tissue engineering and other applications. PMID:27673413
Li, Cheng-xue; Zhao, Xin; Qian, Jing; Yan, Jie
2012-07-01
To determine the distribution of integrins and calcium channels on major human and mouse host cells of Leptospira species. The expression of β1, β2 and β3 integrins was detected with immunofluorescence assay on the surface of human monocyte line THP-1, mouse mononuclear-macrophage-like cell line J774A.1, human vascular endothelial cell line HUVEC, mouse vascular endothelial cell EOMA, human hepatocyte line L-02, mouse hepatocyte line Hepa1-6, human renal tubular epithelial cell line HEK-293, mouse glomerular membrane epithelial cell line SV40-MES13, mouse collagen blast line NIH/3T3, human and mouse platelets. The distribution of voltage gate control calcium channels Cav3.1, Cav3.2, Cav3.3 and Cav2.3, and receptor gate calcium channels P(2)X(1), P(2)2X(2), P(2)X(3), P(2)X(4), P(2)X(5), P(2)X(6) and P(2)X(7) were determined with Western blot assay. β1 integrin proteins were positively expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, L-02, Hepa1-6 and HEK-239 cells as well as human and mouse platelets. β2 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, and NIH/3T3 cells. β3 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, Hepa1-6, HEK-239 and NIH/3T3 cells as well as human and mouse platelets. P(2)X(1) receptor gate calcium channel was expressed on the membrane surface of human and mouse platelets, while P(2)X(5) receptor gate calcium channel was expressed on the membrane surface of J774A.1, THP-1, L-02, Hepa1-6, HEK-239 and HUVEC cells. However, the other calcium channels were not detected on the tested cell lines or platelets. There is a large distribution diversity of integrins and calcium channel proteins on the major human and mouse host cells of Leptospira species, which may be associated with the differences of leptospira-induced injury in different host cells.
Pandula, P K C Prgeeth; Samaranayake, L P; Jin, L J; Zhang, C F
2014-06-01
To investigate the expression of osteo/odontogenic differentiation markers and vascular network formation in a 3D cell sheet with varying cell ratios of periodontal ligament stem cells (PDLSCs) and human umbilical vein endothelial cells (HUVECs). Human PDLSCs were isolated and characterized by flow cytometry, and co-cultured with HUVECs for the construction of cell sheets. Both types of cells were seeded on temperature-responsive culture dishes with PDLSCs alone, HUVECs alone and various ratios of the latter cells (1 : 1, 2 : 1, 5 : 1 and 1 : 5) to obtain confluent cell sheets. The expressions of osteo/odontogenic pathway markers, including alkaline phosphatase (ALP), bone sialoprotein (BSP) and runt-related transcription factor 2 (RUNX2), were analyzed at 3 and 7 d using RT-PCR. Further ALP protein quantification was performed at 7 and 14 d using ALP assay. The calcium nodule formation was assessed qualitatively and quantitatively by alizarin red assay. Histological evaluations of three cell sheet constructs treated with different combinations (PDLSC-PDLSC-PDLSC/PDLSC-HUVEC-PDLSC/co-culture-co-culture-co-culture) were performed with hematoxylin and eosin and immunofluorescence staining. Statistical analysis was performed using t-test (p < 0.05). Significantly higher ALP gene expression was observed at 3 d in 1 : 1 (PDLSC-HUVEC) (2.52 ± 0.67) and 5 : 1 (4.05 ± 1.07) co-culture groups compared with other groups (p < 0.05); this was consistent with ALP protein quantification. However, the expression of BSP and RUNX2 genes was higher at 7 d compared to 3 d. Significant calcium mineralization was detected as quantified by alizarin red assay at 14 d in 1 : 1 (1323.55 ± 6.54 μm) and 5 : 1 (994.67 ± 4.15 μm) co-cultures as compared with monoculture cell sheets (p < 0.05). Hematoxylin and eosin and CD31 immunostaining clearly exemplified the development of a layered cell sheet structure with endothelial cell islands within the constructed PDLSC-HUVEC-PDLSC and co-culture groups. Furthermore, HUVECs invaded the layered cell sheet, suggestive of rudimentary vascular network initiation. This study suggests that the PDLSC-HUVEC co-culture, cell sheet, model exhibits significantly high levels of osteo/odontogenic markers with signs of initial vascular formation. This novel 3D cell sheet-based approach may be potentially beneficial for periodontal regenerative therapy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Role of Hsp-70 responses in cold acclimation of HUVEC-12 cells.
Guan, Hao; Hu, Dahai; Zhao, Zhijing; Cai, Weixia; Zhou, Qin; Yang, Ximing; Yan, Ying; Zhu, Xiongxiang
2015-01-01
Endothelial recovery is a central feature of tissues after frostbite injuries. Thermo tolerance plays an important role in protecting cells against injury after frozen and thawing. The present study aimed to quantitatively assess the injury of human umbilical vein endothelial cells HUVEC-12 after repeated low temperature. Pretreatments (HUVEC-12) cells were repeatedly exposed to cold (1°C/min decrement to -20°C). Their proliferation, death, apoptosis, and protein and mRNA expressions of HSP70 were determined. Endothelial cells after repeated cold exposures were more resistant to apoptosis and necrosis than normal cells. The expressions of HSP70 in cells after repeated cold exposures were significantly higher than in normal HUVEC-12 cells (P < 0.05). Cold acclimation may induce the expression of HSP-70 which plays a protective role in the temperature tolerance.
Kavitha, Chandagirikoppal V.; Agarwal, Chapla; Agarwal, Rajesh; Deep, Gagan
2011-01-01
Malignant gliomas are one of the most devastating and incurable tumors. Sustained excessive angiogenesis by glioma cells is the major reason for their uncontrolled growth and resistance toward conventional therapies resulting in high mortality. Therefore, targeting angiogenesis should be a logical strategy to prevent or control glioma cell growth. Earlier studies have shown that Asiatic Acid (AsA), a pentacyclic triterpenoid, is effective against glioma and other cancer cells; however, its efficacy against angiogenesis remains unknown. In the present study, we examined the anti-angiogenic efficacy of AsA using human umbilical vein endothelial cells (HUVEC) and human brain microvascular endothelial cells (HBMEC). Our results showed that AsA (5–20 µM) inhibits HUVEC growth and induces apoptotic cell death by activating caspases (3 and 9) and modulating the expression of apoptosis regulators Bad, survivin and pAkt-ser473. Further, AsA showed a dose-dependent inhibition of HUVEC migration, invasion and capillary tube formation, and disintegrated preformed capillary network. AsA also inhibited the VEGF-stimulated growth and capillary tube formation by HUVEC and HBMEC. Next, we analyzed the angiogenic potential of conditioned media collected from human glioma LN18 and U87-MG cells treated with either DMSO (control conditioned media, CCM) or AsA 20 µM (AsA20 conditioned media, AsA20CM). CCM from glioma cells significantly enhanced the capillary tube formation in both HUVEC and HBMEC, while capillary tube formation in both endothelial cell lines was greatly compromised in the presence of AsA20CM. Consistent with these results, VEGF expression was lesser in AsA20CM compared to CCM, and indeed AsA strongly inhibited VEGF level (both cellular and secreted) in glioma cells. AsA also showed dose-dependent anti-angiogenic efficacy in Matrigel plug assay, and inhibited the glioma cells potential to attract HUVEC/HBMEC. Overall, the present study clearly showed the strong anti-angiogenic potential of AsA and suggests its usefulness against malignant gliomas. PMID:21826202
Bisphenol A Disrupts Transcription and Decreases Viability in Aging Vascular Endothelial Cells
Ribeiro-Varandas, Edna; Pereira, H. Sofia; Monteiro, Sara; Neves, Elsa; Brito, Luísa; Boavida Ferreira, Ricardo; Viegas, Wanda; Delgado, Margarida
2014-01-01
Bisphenol A (BPA) is a widely utilized endocrine disruptor capable of mimicking endogenous hormones, employed in the manufacture of numerous consumer products, thereby interfering with physiological cellular functions. Recent research has shown that BPA alters epigenetic cellular mechanisms in mammals and may be correlated to enhanced cellular senescence. Here, the effects of BPA at 10 ng/mL and 1 µg/mL, concentrations found in human samples, were analyzed on HT29 human colon adenocarcinona cell line and Human Umbilical Vein Endothelial Cells (HUVEC). Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) transcriptional analysis of the Long Interspersed Element-1 (LINE-1) retroelement showed that BPA induces global transcription deregulation in both cell lines, although with more pronounced effects in HUVEC cells. Whereas there was an increase in global transcription in HT29 exclusively after 24 h of exposure, this chemical had prolonged effects on HUVEC. Immunoblotting revealed that this was not accompanied by alterations in the overall content of H3K9me2 and H3K4me3 epigenetic marks. Importantly, cell viability assays and transcriptional analysis indicated that prolonged BPA exposure affects aging processes in senescent HUVEC. To our knowledge this is the first report that BPA interferes with senescence in primary vascular endothelial cells, therefore, suggesting its association to the etiology of age-related human pathologies, such as atherosclerosis. PMID:25207595
Modulation of human endothelial cell proliferation and migration by fucoidan and heparin.
Giraux, J L; Matou, S; Bros, A; Tapon-Bretaudière, J; Letourneur, D; Fischer, A M
1998-12-01
Fucoidan is a sulfated polysaccharide extracted from brown seaweeds. It has anticoagulant and antithrombotic properties and inhibits, as well as heparin, vascular smooth muscle cell growth. In this study, we investigated, in the presence of serum and human recombinant growth factors, the effects of fucoidan and heparin on the growth and migration of human umbilical vein endothelial cells (HUVEC) in culture. We found that fucoidan stimulated fetal bovine serum-induced HUVEC proliferation, whereas heparin inhibited it. In the presence of fibroblast growth factor-1 (FGF-1), both fucoidan and heparin potentiated HUVEC growth. In contrast, fucoidan and heparin inhibited HUVEC proliferation induced by FGF-2, but did not influence the mitogenic activity of vascular endothelial growth factor (VEGF). In the in vitro migration assay from a denuded area of confluent cells, the two sulfated polysaccharides markedly enhanced the migration of endothelial cells in the presence of FGF-1. Finally, a weak inhibitory effect on cell migration was found only with the two polysaccharides at high concentrations (> or = 100 micro/ml) in presence of serum or combined with FGF-2. All together, the results indicated that heparin and fucoidan can be used as tools to further investigate the cellular mechanisms regulating the proliferation and migration of human vascular cells. Moreover, the data already suggest a potential role of fucoidan as a new therapeutic agent of vegetal origin in the vascular endothelium wound repair.
Cell Spheroids with Enhanced Aggressiveness to Mimic Human Liver Cancer In Vitro and In Vivo.
Jung, Hong-Ryul; Kang, Hyun Mi; Ryu, Jea-Woon; Kim, Dae-Soo; Noh, Kyung Hee; Kim, Eun-Su; Lee, Ho-Joon; Chung, Kyung-Sook; Cho, Hyun-Soo; Kim, Nam-Soon; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok
2017-09-05
We fabricated a spheroid-forming unit (SFU) for efficient and economic production of cell spheroids. We optimized the protocol for generating large and homogenous liver cancer cell spheroids using Huh7 hepatocellular carcinoma (HCC) cells. The large Huh7 spheroids showed apoptotic and proliferative signals in the centre and at the surface, respectively. In particular, hypoxia-induced factor-1 alpha (HIF-1α) and ERK signal activation were detected in the cell spheroids. To diminish core necrosis and increase the oncogenic character, we co-cultured spheroids with 2% human umbilical vein endothelial cells (HUVECs). HUVECs promoted proliferation and gene expression of HCC-related genes and cancer stem cell markers in the Huh7 spheroidsby activating cytokine signalling, mimicking gene expression in liver cancer. HUVECs induced angiogenesis and vessel maturation in Huh7 spheroids in vivo by activating epithelial-mesenchymal transition and angiogenic pathways. The large Huh7 cell spheroids containing HUVECs survived at higher concentrations of anti-cancer drugs (doxorubicin and sorafenib) than did monolayer cells. Our large cell spheroid provides a useful in vitro HCC model to enable intuitive observation for anti-cancer drug testing.
Liu, X S; Zhang, X Q; Tian, T; Liu, L; Ming, J
2008-01-01
This study aims to explore the influence of homeobox B2 (HOXB2) antisense oligodeoxynucleotides (asodn) on the biological characteristics of in vitro cultured primary human umbilical vein endothelial cells (HUVECs). The distribution of HOXB2 asodn in the HUVECs was observed by fluorescent labelling, and the influence of different concentrations of HOXB2 asodn on the DNA synthesis of HUVECs was assessed. Flow cytometry and a reverse transcriptase-polymerase chain reaction (RT- PCR) method were employed to observe the influence of HOXB2 asodn on HOXB2 expression and the HUVEC cell cycle. After the induction of liposome, the nuclear fluorescent staining of HOXB2 asodn was weaker 15 min after transfection and the staining reached the strongest level at 4-8 h but then weakened and disappeared by 16 h after transfection. This indicated that endothelial DNA synthesis could be inhibited by HOXB2 asodn in a dose-dependent manner. Furthermore, the HUVECs could be delayed in their passage from G1 to S. Simultaneously, expression of HOXB2 mRNA had decreased significantly by 24-48 h after transfection. Clearly, HOXB2 plays important roles in the proliferation of endothelial cells and also affects the cell cycle.
Ugusman, Azizah; Zakaria, Zaiton; Hui, Chua Kien; Nordin, Nor Anita Megat Mohd
2010-07-01
Nitric oxide produced by endothelial nitric oxide synthase (eNOS) possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs). HUVECS WERE DIVIDED INTO FOUR GROUPS: control, treatment with 180 microM hydrogen peroxide (H(2)O(2)), treatment with 150 microg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H(2)O(2) for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.
Acrylamide induces accelerated endothelial aging in a human cell model.
Sellier, Cyril; Boulanger, Eric; Maladry, François; Tessier, Frédéric J; Lorenzi, Rodrigo; Nevière, Rémi; Desreumaux, Pierre; Beuscart, Jean-Baptiste; Puisieux, François; Grossin, Nicolas
2015-09-01
Acrylamide (AAM) has been recently discovered in food as a Maillard reaction product. AAM and glycidamide (GA), its metabolite, have been described as probably carcinogenic to humans. It is widely established that senescence and carcinogenicity are closely related. In vitro, endothelial aging is characterized by replicative senescence in which primary cells in culture lose their ability to divide. Our objective was to assess the effects of AAM and GA on human endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as model. HUVECs were cultured over 3 months with AAM or GA (1, 10 or 100 μM) until growth arrest. To analyze senescence, β-galactosidase activity and telomere length of HUVECs were measured by cytometry and semi-quantitative PCR, respectively. At all tested concentrations, AAM or GA reduced cell population doubling compared to the control condition (p < 0.001). β-galactosidase activity in endothelial cells was increased when exposed to AAM (≥10 μM) or GA (≥1 μM) (p < 0.05). AAM (≥10 μM) or GA (100 μM) accelerated telomere shortening in HUVECs (p < 0.05). In conclusion, in vitro chronic exposure to AAM or GA at low concentrations induces accelerated senescence. This result suggests that an exposure to AAM might contribute to endothelial aging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Weber, Dominik; Torger, Bernhard; Richter, Karsten; Nessling, Michelle; Momburg, Frank; Woltmann, Beatrice; Müller, Martin; Schwartz-Albiez, Reinhard
2018-05-23
Angiogenesis plays an important role in both soft and hard tissue regeneration, which can be modulated by therapeutic drugs. If nanoparticles (NP) are used as vectors for drug delivery, they have to encounter endothelial cells (EC) lining the vascular lumen, if applied intravenously. Herein the interaction of unloaded polyelectrolyte complex nanoparticles (PECNP) composed of cationic poly(l-lysine) (PLL) and various anionic polysaccharides with human vascular endothelial cells (HUVEC) was analyzed. In particular PECNP were tested for their cell adhesive properties, their cellular uptake and intracellular localization considering composition and net charge. PECNP may form a platform for both cell coating and drug delivery. PECNP, composed of PLL in combination with the polysaccharides dextran sulfate (DS), cellulose sulfate (CS) or heparin (HEP), either unlabeled or labeled with fluorescein isothiocyanate (FITC) and either with positive or negative net charge were prepared. PECNP were applied to human umbilical cord vein endothelial cells (HUVEC) in both, the volume phase and immobilized phase at model substrates like tissue culture dishes. The attachment of PECNP to the cell surface, their intracellular uptake, and effects on cell proliferation and growth behavior were determined. Immobilized PECNP reduced attachment of HUVEC, most prominently the systems PLL/HEP and PLL/DS. A small percentage of immobilized PECNP was taken up by cells during adhesion. PECNP in the volume phase showed no effect of the net charge sign and only minor effects of the composition on the binding and uptake of PECNP at HUVEC. PECNP were stored in endosomal vesicles in a cumulative manner without apparent further processing. During mitosis, internalized PECNP were almost equally distributed among the dividing cells. Both, in the volume phase and immobilized at the surface, PECNP composed of PLL/HEP and PLL/DS clearly reduced cell proliferation of HUVEC, however without an apparent cytotoxic effect, while PLL/CS composition showed minor impairment. PECNP have an anti-adhesive effect on HUVEC and are taken up by endothelial cells which may negatively influence the proliferation rate of HUVEC. The negative effects were less obvious with the composition PLL/CS. Since uptake and binding for PLL/HEP was more efficient than for PLL/DS, PECNP of PLL/HEP may be used to deliver growth factors to endothelial cells during vascularization of bone reconstitution material, whereas those of PLL/CS may have an advantage for substituting biomimetic bone scaffold material.
Zhang, Jiao; Guo, Ling; Zhou, Xia; Dong, Fengyun; Li, Liqun; Cheng, Zuowang; Xu, Yinghua; Liang, Jiyong; Xie, Qi; Liu, Ju
2016-01-01
Angiogenesis is required for the growth and metastasis of solid tumors. The anti-malarial agent dihydroartemisinin (DHA) demonstrates potent anti-angiogenic activity, but the underlying molecular mechanisms are not yet fully understood. During the process of angiogenesis, endothelial cells migrating from existing capillaries may undergo programmed cell death after detaching from the extracellular matrix, a process that is defined as anchorage-dependent apoptosis or anoikis. In the present study, DHA-induced cell death was compared in human umbilical vein endothelial cells (HUVECs) cultured in suspension and attached to culture plates. In suspended HUVECs, the cell viability was decreased and apoptosis was increased with the treatment of 50 µM DHA for 5 h, while the same treatment did not affect the attached HUVECs. In addition, 50 µM DHA increased the phosphorylation of c-Jun N-terminal kinase (JNK) in suspended HUVECs, but not in attached HUVECs, for up to 5 h of treatment. The JNK inhibitor, SP600125, reversed DHA-induced cell death in suspended HUVECs, suggesting that the JNK pathway may mediate DHA-induced endothelial cell anoikis. The data from the present study indicates a novel mechanism for understanding the anti-angiogenic effects of DHA, which may be used as a component for chemotherapy. PMID:27602117
Hunt, Michelle A.; Currie, Margaret J.; Robinson, Bridget A.; Dachs, Gabi U.
2010-01-01
Primary cells, such as HUVEC, are notoriously difficult to transfect and are susceptible to the toxic effects of transfection reagents. A transfection reagent with a high transfection efficiency and low cytotoxicity was sought to retain sufficient viability of transfected HUVEC for subsequent assays. Nine chemical transfection reagents, currently commercially available, were compared for their ability to transfect HUVEC in vitro. A plasmid expressing the enhanced GFP (EGFP) was used for transfection, followed by flow cytometry of transfected HUVEC to determine the proportion of EGFP-expressing cells as a measure of transfection efficiency. Lipofectamine 2000 and Lipofectamine LTX (Invitrogen, Carlsbad, CA, USA) gave the highest transfection efficiencies of the reagents tested. Lipofectamine LTX was identified as the optimal transfection reagent as a result of its higher transfection efficiency at shorter periods of time following transfection when cytotoxicity was limited, allowing sufficient yield of transfected HUVEC for use in subsequent assays. PMID:20592869
de Oliveira, Jessica Silva Santos; Santos, Gabriela da Silva; Moraes, João Alfredo; Saliba, Alessandra Mattos; Barja-Fidalgo, Thereza Christina; Mattos-Guaraldi, Ana Luíza; Nagao, Prescilla Emy
2018-01-01
BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis. PMID:29641644
Li, Yuan; Chang, Ye; Ye, Ning; Dai, Dongxue; Chen, Yintao; Zhang, Naijin; Sun, Guozhe; Sun, Yingxian
2017-02-17
We aimed to investigate the effect of advanced glycation end products (AGEs) on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs). Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT) assay, real-time cell analyzer and 5-Ethynyl-2'-deoxyuridine (EdU) staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3) II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ) could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD) expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity.
Li, Yuan; Chang, Ye; Ye, Ning; Dai, Dongxue; Chen, Yintao; Zhang, Naijin; Sun, Guozhe; Sun, Yingxian
2017-01-01
We aimed to investigate the effect of advanced glycation end products (AGEs) on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs). Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT) assay, real-time cell analyzer and 5-Ethynyl-2′-deoxyuridine (EdU) staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3) II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ) could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD) expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity. PMID:28218663
Lu, Zhaoyu; Lu, Fuhua; Zheng, Yanqun; Zeng, Yuqun; Zou, Chuan; Liu, Xusheng
2016-01-01
To investigate the effects of grape seed proanthocyanidin extract (GSPE) on indoxyl sulfate-induced Human Umbilical Vein Endothelial Cells (HUVECs) injury in vitro and study its mechanism. HUVECs were incubated with indoxyl sulfate at concentrations in the range found in uremic patients. Then we determined the effect of indoxyl sulfate on endothelial phenotype, endothelial function, ROS (reactive oxygen species), cell apoptosis and mitochondrial function. In addition, we detected whether GSPE can suppress the injury of HUVECs induced by indoxyl sulfate and probe the mechanism underlying the protective effects of GSPE by analyzing mitochondrial dysfunction. GSPE treatment significantly attenuated indoxyl sulfate-induced HVUECs injury in a dose- and time-dependent manner. GSPE-enhanced eNOS and VE-cadherin expression, inhibited intracellular ROS level and cell apoptosis, adjust mitochondrial membrane potential and reduced 8-hydroxy-desoxyguanosine (8-OHdG) level induced by indoxyl sulfate. These results suggest that GSPE prevents HUVECs from indoxyl sulfate-induced injury by ameliorating mitochondrial dysfunction and may be a promising agent for treating uremia toxin-induced injury.
Li, Xiaofei; Nong, Qingjiao; Mao, Baoyu; Pan, Xue
2017-01-01
This study aimed to determine the metabolic profile of non-toxic cadmium (Cd)-induced dysfunctional endothelial cells using human umbilical vein endothelial cells (HUVECs). HUVECs (n = 6 per group) were treated with 0, 1, 5, or 10 μM cadmium chloride (CdCl2) for 48 h. Cell phenotypes, including nitric oxide (NO) production, the inflammatory response, and oxidative stress, were evaluated in Cd-exposed and control HUVECs. Cd-exposed and control HUVECs were analysed using gas chromatography time-of-flight/mass spectrometry. Compared to control HUVECs, Cd-exposed HUVECs were dysfunctional, exhibiting decreased NO production, a proinflammatory state, and non-significant oxidative stress. Further metabolic profiling revealed 24 significantly-altered metabolites in the dysfunctional endothelial cells. The significantly-altered metabolites were involved in the impaired tricarboxylic acid (TCA) cycle, activated pyruvate metabolism, up-regulated glucogenic amino acid metabolism, and increased pyrimidine metabolism. The current metabolic findings further suggest that the metabolic changes linked to TCA cycle dysfunction, glycosylation of the hexosamine biosynthesis pathway (HBP), and compensatory responses to genomic instability and energy deficiency may be generally associated with dysfunctional phenotypes, characterized by decreased NO production, a proinflammatory state, and non-significant oxidative stress, in endothelial cells following non-toxic Cd exposure. PMID:28872622
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Jo-Hua; Yang, Jai-Sing; Lu, Chi-Cheng
The current study aims to investigate the antiangiogenic responses and apoptotic death of human umbilical vein endothelial cells (HUVECs) by a newly synthesized compound named 2-(3′-methoxyphenyl)-6-pyrrolidinyl-4-quinazolinone (HMJ-38). This work attempted to not only explore the effects of angiogenesis on in vivo and ex vivo studies but also hypothesize the implications for HUVECs (an ideal cell model for angiogenesis in vitro) and further undermined apoptotic experiments to verify the underlying molecular signaling by HMJ-38. Our results demonstrated that HMJ-38 significantly inhibited blood vessel growth and microvessel formation by the mouse Matrigel plug assay of angiogenesis, and the suppression of microsprouting frommore » the rat aortic ring assay was observed after HMJ-38 exposure. In addition, HMJ-38 disrupted the tube formation and blocked the ability of HUVECs to migrate in response to VEGF. We also found that HMJ-38 triggered cell apoptosis of HUVECs in vitro. HMJ-38 concentration-dependently suppressed viability and induced apoptotic damage in HUVECs. HMJ-38-influenced HUVECs were performed by determining the oxidative stress (ROS production) and ATM/p53-modulated Fas and DR4/DR5 signals that were examined by flow cytometry, Western blotting, siRNA and real-time RT-PCR analyses, respectively. Our findings demonstrate that p53-regulated extrinsic pathway might fully contribute to HMJ-38-provoked apoptotic death in HUVECs. In view of these observations, we conclude that HMJ-38 reduces angiogenesis in vivo and ex vivo as well as induces apoptosis of HUVECs in vitro. Overall, HMJ-38 has a potent anti-neovascularization effect and could warrant being a vascular targeting agent in the future. - Highlights: • HMJ-38 suppresses angiogenic actions in vivo and ex vivo. • Inhibitions of blood vessel and microvessel formation by HMJ-38 are acted. • Cytotoxic effects of HUVECs occur by HMJ-38 challenge. • p53-modulated extrinsic pathway contributes to HMJ-38-provoked apoptosis in HUVECs. • Novel HMJ-38 possesses anti-angiogenic properties and pro-apoptotic processes.« less
LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells
Figarola, James L.; Singhal, Jyotsana; Rahbar, Samuel; Awasthi, Sanjay
2014-01-01
Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis. PMID:24615331
Castellino, F; Scaglione, N; Grosso, S B; Sategna-Guidetti, C
2000-01-01
Although tissue transglutaminase was recently identified as the main autoantigen recognized by endomysial antibodies in coeliac patients, anti-endomysium antibody detection still persists as the gold standard for coeliac disease screening and diagnosis. (1) To evaluate human umbilical vein cells (HUVEC) as an alternative source of endomysial antigen and to assess their suitability in the diagnosis of coeliac disease. (2) To verify whether tissue transglutaminase is one target antigen eliciting the endomysial antibody fraction of coeliac serum IgA. University teaching hospital. Sera from 123 untreated adults with biopsy-proven coeliac disease and 84 controls (40 healthy and 44 diseased) were assessed by indirect immunofluorescence, using HUVEC on glass slides prepared by cytocentrifugation and permeabilized by using Triton X (0.5%). Indirect immunofluorescence was performed: (1) using coeliac disease serum samples on HUVEC with or without prior incubation with tissue transglutaminase; and (2) incubating both HUVEC and monkey oesophagus with goat anti-guinea pig tissue transglutaminase antibody. All the coeliac patients, who were also positive on monkey oesophagus, showed the typical fluorescent homogeneous cytoplasmic stain on HUVEC. All control sera were negative both on HUVEC and on monkey oesophagus. IgA antibodies did not react with non-permeabilized cells, with intact membrane. Preincubation of coeliac sera with tissue transglutaminase abolished the typical fluorescent pattern. The incubation of anti-tissue transglutaminase antibody with monkey oesophagus and HUVEC resulted in an immunofluorescence staining pattern identical to that obtained with positive coeliac sera. (1) As a substrate for anti-endomysial antibody, HUVEC may provide the same diagnostic accuracy as monkey oesophagus, thus bypassing economical and ethical problems. The HUVEC antigen reacting with IgA from coeliac disease sera is an intracellular rather than a cell-surface antigen, as IgA antibodies reacted only with permeabilized cells. (2) Pretreatment of untreated coeliac sera with tissue transglutaminase abolished almost completely the specific staining; incubation with anti-tissue transglutaminase antibody elicited the characteristic fluorescent pattern, thus confirming that tissue transglutaminase represents the prominent autoantigen in coeliac disease.
Haidari, Mehran; Zhang, Wei; Wakame, Koji
2013-12-18
The effect of antioxidants on treatment of cancer is still controversial. Previously, we demonstrated that interaction of breast cancer cells with endothelial cells leads to tyrosine phosphorylation of VE-cadherin and disruption of endothelial adherens junction (EAJ). The molecular mechanism underlying the anti-metastatic effects of mushroom-derived active hexode correlated compound (AHCC) remains elusive. Several cellular and biochemical techniques were used to determine the contribution of oxidative stress in the disruption of EAJ and to test this hypothesis that AHCC inhibits the breast cancer cell-induced disruption of EAJ. Interaction of breast cancer cells (MDA-MB-231 cells) with human umbilical vein endothelial cells (HUVECs) leads to an increase in generation of reactive oxygen species (ROS). Treatment of HUVECs with H2O2 or phorbol myristate acetate (PMA) led to tyrosine phosphorylation of VE-cadherin, dissociation of β-catenin from VE-cadherin complex and increased transendothelial migration (TEM) of MDA-MB-231 cells. Induction of VE-cadherin tyrosine phosphorylation by PMA or by interaction of MDA-MB-231 cells with HUVECs was mediated by HRas and protein kinase C-α signaling pathways. Disruption of EAJ and phosphorylation of VE-cadherin induced by interaction of MDA-MB-231 cells with HUVECs were attenuated when HUVECs were pretreated with an antioxidant, N-acetylcysteine (NAC) or AHCC. AHCC inhibited TEM of MDA-MB-231 cells and generation of ROS induced by interaction of MDA-MB-231 cells with HUVECs. Our studies suggest that ROS contributes to disruption of EAJ induced by interaction of MDA-MB-231 cells with HUVECs and AHCC attenuates this alteration. Copyright © 2013 Elsevier Inc. All rights reserved.
Mechanisms of shock wave induced endothelial cell injury.
Sondén, Anders; Svensson, Bengt; Roman, Nils; Brismar, Bo; Palmblad, Jan; Kjellström, B Thomas
2002-01-01
Medical procedures, for example, laser angioplasty and extracorporeal lithotripsy as well as high-energy trauma expose human tissues to shock waves (SWs) that may cause tissue injury. The mechanisms for this injury, often affecting blood vessel walls, are poorly understood. Here we sought to assess the role of two suggested factors, viz., cavitation or reactive oxygen species (ROS). A laser driven flyer-plate model was used to expose human umbilical cord vein endothelial cell (HUVEC) monolayers to SWs or to SWs plus cavitation (SWC). Cell injury was quantified with morphometry, trypan blue staining, and release of (51)Cr from labeled HUVECs. HUVECs, exposed to SWs only, could not be distinguished from controls in morphological appearance or ability to exclude trypan blue. Yet, release of (51)Cr, indicated a significant cell injury (P < 0.05). HUVEC cultures exposed to SWC, exhibited cell detachment and cell membrane damage detectable with trypan blue. Release of (51)Cr was fourfold compared to SW samples (P < 0.01). Signs of cell injury were evident at 15 minutes and did not change over the next 4 hours. No protective effects of ROS scavengers were demonstrated. Independent of ROS, SWC generated an immediate cell injury, which can explain, for example, vessel wall perturbation described in relation to SW treatments and trauma. Copyright 2002 Wiley-Liss, Inc.
Jiang, Xiao Jing; Adler, Barbara; Sampaio, Kerstin Laib; Digel, Margarete; Jahn, Gerhard; Ettischer, Nicole; Stierhof, York-Dieter; Scrivano, Laura; Koszinowski, Ulrich; Mach, Michael; Sinzger, Christian
2008-01-01
The glycoprotein (g) complex gH/gL represents an essential part of the herpesvirus fusion machinery mediating entry of cell-free virions and cell-associated viral spread. In some herpesviruses additional proteins are associated with gH/gL contributing to the cell tropism of the respective virus. Human cytomegalovirus (HCMV) gH/gL forms complexes with either gO (UL74) or proteins of the UL128-131A gene locus. While a contribution of UL128-131A to endothelial cell tropism is known, the role of gO is less clear. We studied the role of gH/gL-associated proteins in HCMV replication in human foreskin fibroblasts (HFF) and human umbilical vein endothelial cells (HUVEC). Deletions of UL74 alone or in combination with mutations of the UL128-131A gene region were introduced into bacterial artificial chromosome vectors derived from the endotheliotropic strain TB40/E. Deletion of UL74 caused a profound defect regarding virus release from infected HFF and HUVEC. Large numbers of capsids accumulated in the cytoplasm of infected HFF but failed to acquire an envelope. Clear cell type differences were observed in the cell-associated spread of the UL74-defective virus. In HFF, focal growth was severely impaired, whereas it was normal in HUVEC. Deletion of UL131A abolished focal growth in endothelial cells. UL74/UL128-131A dual mutants showed severely impaired reconstitution efficiency. Our data suggest that gO plays a critical role in secondary envelopment and release of cell-free virions independent of the cell type but affects cell-associated growth specifically in HFF, whereas UL128-131A contributes to cell-associated spread in HFF and HUVEC. PMID:18184717
Yuan, Changyong; Wang, Penglai; Zhu, Shaoyue; Zou, Ting; Wang, Shuai; Xu, Jianguang; Heng, Boon Chin; Diogenes, Anibal; Zhang, Chengfei
2016-09-01
This study aimed to investigate the roles of ephrinB2 in stabilizing vascularlike structures generated by stem cells from apical papilla (SCAPs) and human umbilical vein endothelial cells (HUVECs). HUVECs were seeded alone or with SCAPs concurrently or 12 hours later. Angiogenesis and ephrinB2 phosphorylation were assayed at different time points. Additionally, ephrinB2 expression in SCAPs and HUVECs was silenced with small interfering RNA, and vascularlike structure formation within coculture was assessed; 1 × 10(5) HUVECs were seeded in transwell inserts, and 6 × 10(5) SCAPs were plated in lower wells with or without ephrinB2-Fc. Migratory cells were stained and counted. Delayed addition of ephrinB2-Fc to the coculture of HUVECs and SCAPs was performed to evaluate the role of ephrinB2 on the stabilization of vascularlike structures. Concurrent coculture of SCAPs and HUVECs yielded significantly longer tubule lengths at 4, 8, and 12 hours (P < .05). Delayed addition of SCAPs to coculture with HUVECs resulted in vascularlike structures persisting longer than the HUVEC monoculture. Western blot confirmed that ephrinB2 phosphorylation was initiated at 0.5 hours of coculture and peaked at 1 hour. Silencing ephrinB2 expression in SCAPs and HUVECs resulted in the absence of vascularlike structures. Enhanced migration of HUVECs by SCAPs could be inhibited by ephrinB2-Fc. When ephrinB2-Fc was added at 3 hours of coculture, the vascularlike structures were stabilized for more than 12 hours as compared with 9 hours in the control group. EphrinB2 plays an important role in the stabilization of vascularlike structures generated by HUVECs and SCAPs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Chang, Hsin-Ning; Pang, Jong-Hwei Su; Yang, Sien-Hung; Hung, Chi-Feng; Chiang, Chi-Hsin; Lin, Tung-Yi; Lin, Yin-Ku
2010-09-14
The use of indigo naturalis to treat psoriasis has proved effective in our previous clinical studies. The present study was designed to examine the anti-inflammatory effect of indigo naturalis in primary cultured human umbilical vein endothelial cells (HUVECs). Pretreatment of cells with indigo naturalis extract attenuated TNF-α-induced increase in Jurkat T cell adhesion to HUVECs as well as decreased the protein and messenger (m)RNA expression levels of vascular cell adhesion molecule-1 (VCAM-1) on HUVECs. Indigo naturalis extract also inhibited the protein expression of activator protein-1 (AP-1)/c-Jun, a critical transcription factor for the activation of VCAM-1 gene expression. Since the reduction of lymphocyte adhesion to vascular cells by indigo naturalis extract could subsequently reduce the inflammatory reactions caused by lymphocyte infiltration in the epidermal layer and help to improve psoriasis, this study provides a potential mechanism for the anti-inflammatory therapeutic effect of indigo naturalis extract in psoriasis.
2013-01-01
Background Vascular endothelial growth factor (VEGF) is a key regulator of physiologic and pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. It is known that cysteine proteases from plants, like bromelain and papain are capable to suppress inflammatory activation. Recent studies have demonstrated that they may interfere with angiogenesis related pathways as well. The aim of this study was to investigate the anti-angiogenic effects of papain on human umbilical vein endothelial cells (HUVEC) in vitro. Methods Cell viability after prolonged treatment with papain was investigated by life cell staining and lactate dehydrogenase release assay. Angiogenic activation was assessed by ELISA against phosphorylated proteins AKT, MEK1/2, ERK1/2, SAPK/JNK and p38-MAPK. Growth inhibition was determined by means of an MTT-assay and cell migration by means of a scratch assay. Capability to form a capillary network was investigated using a tube formation assay. Results Papain did not induce proteolysis or cell detachment of HUVEC in a concentration range between 0 and 25 μg/mL. Four hours treatment with 10 μg/mL papain resulted in a reduced susceptibility of endothelial cells to activation by VEGF as determined by phosphorylation levels of Akt, MEK1/2, SAPK/JNK. Papain exerted a distinct inhibitory effect on cell growth, cell migration and tube formation with inhibition of tube formation detectable at concentrations as low as 1 μg/mL. Bromelain and ficin displayed similar effects with regard to cell growth and tube formation. Conclusion Papain showed a strong anti-angiogenic effect in VEGF activated HUVEC. This effect may be due to interference with AKT, MEK1/2 and SAPK/JNK phosphorylation. Two other plant derived cysteine proteases displayed similar inhibition of HUVEC cell growth and tube formation. These findings indicate that plant proteolytic enzymes may have potential as preventive and therapeutic agents against angiogenesis related human diseases. PMID:24053149
Persistent Infection of Human Fetal Endothelial Cells with Rubella Virus
Perelygina, Ludmila; Zheng, Qi; Metcalfe, Maureen; Icenogle, Joseph
2013-01-01
Cardiovascular abnormalities are the leading cause of neonatal death among patients with congenital rubella syndrome (CRS). Although persistence of rubella virus (RV) in fetal endothelium has been repeatedly suggested as a possible cause of cardiovascular birth defects, evidence of the permissiveness of fetal endothelial cells to RV is lacking. In this study we evaluated the ability of RV to infect and persist in primary fetal endothelial cells derived from human umbilical vein (HUVEC). We found that wild type (wt) low passage clinical RV productively infected HUVEC cultures without producing cytopathology or ultrastructural changes. RV did not inhibit host cell protein synthesis, cell proliferation, or interfere with the cell cycle. Persistently infected cultures were easily established at low and high multiplicities of infection (MOI) with both laboratory and wt clinical RV strains. However, synchronous infections of entire HUVEC monolayers were only observed with clinical RV strains. The release of infectious virions into media remained at consistently high levels for several subcultures of infected HUVEC. The results indicate that macrovascular fetal endothelial cells are highly permissive to RV and allow slow persistent RV replication. The findings provide more evidence for the suggestion that vascular pathologies in CRS are triggered by persistent rubella virus infection of the endothelium. PMID:23940821
Polchow, Bianca; Kebbel, Kati; Schmiedeknecht, Gerno; Reichardt, Anne; Henrich, Wolfgang; Hetzer, Roland; Lueders, Cora
2012-05-16
In vitro fabricated tissue engineered vascular constructs could provide an alternative to conventional substitutes. A crucial factor for tissue engineering of vascular constructs is an appropriate cell source. Vascular cells from the human umbilical cord can be directly isolated and cryopreserved until needed. Currently no cell bank for human vascular cells is available. Therefore, the establishment of a future human vascular cell bank conforming to good manufacturing practice (GMP) conditions is desirable for therapeutic applications such as tissue engineered cardiovascular constructs. A fundamental step was the adaption of conventional research and development starting materials to GMP compliant starting materials. Human umbilical cord artery derived cells (HUCAC) and human umbilical vein endothelial cells (HUVEC) were isolated, cultivated, cryopreserved (short- and long-term) directly after primary culture and recultivated subsequently. Cell viability, expression of cellular markers and proliferation potential of fresh and cryopreserved cells were studied using trypan blue staining, flow cytometry analysis, immunofluorescence staining and proliferation assays. Statistical analyses were performed using Student's t-test. Sufficient numbers of isolated cells with acceptable viabilities and homogenous expression of cellular markers confirmed that the isolation procedure was successful using GMP compliant starting materials. The influence of cryopreservation was marginal, because cryopreserved cells mostly maintain phenotypic and functional characteristics similar to those of fresh cells. Phenotypic studies revealed that fresh cultivated and cryopreserved HUCAC were positive for alpha smooth muscle actin, CD90, CD105, CD73, CD29, CD44, CD166 and negative for smoothelin. HUVEC expressed CD31, CD146, CD105 and CD144 but not alpha smooth muscle actin. Functional analysis demonstrated acceptable viability and sufficient proliferation properties of cryopreserved HUCAC and HUVEC. Adaptation of cell isolation, cultivation and cryopreservation to GMP compliant starting materials was successful. Cryopreservation did not influence cell properties with lasting impact, confirming that the application of vascular cells from the human umbilical cord is feasible for cell banking. A specific cellular marker expression profile was established for HUCAC and HUVEC using flow cytometry analysis, applicable as a GMP compliant quality control. Use of these cells for the future fabrication of advanced therapy medicinal products GMP conditions are required by the regulatory authority.
Song, Wei; Kaufman, Dan S; Shen, Wei
2016-03-01
Although endothelial cells (ECs) have been derived from human pluripotent stem cells (hPSCs), large-scale generation of hPSC-ECs remains challenging and their functions are not well characterized. Here we report a simple and efficient three-stage method that allows generation of approximately 98 and 9500 ECs on day 16 and day 34, respectively, from each human embryonic stem cell (hESC) input. The functional properties of hESC-ECs derived in the presence and absence of a TGFβ-inhibitory molecule SB431542 were characterized and compared with those of human umbilical vein endothelial cells (HUVECs). Confluent monolayers formed by SB431542 + hESC-ECs, SB431542 - hESC-ECs, and HUVECs showed similar permeability to 10,000 Da dextran, but these cells exhibited striking differences in forming tube-like structures in 3D fibrin gels. The SB431542 + hESC-ECs were most potent in forming tube-like structures regardless of whether VEGF and bFGF were present in the medium; less potent SB431542 - hESC-ECs and HUVECs responded differently to VEGF and bFGF, which significantly enhanced the ability of HUVECs to form tube-like structures but had little impact on SB431542 - hESC-ECs. This study offers an efficient approach to large-scale hPSC-EC production and suggests that the phenotypes and functions of hPSC-ECs derived under different conditions need to be thoroughly examined before their use in technology development. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 678-687, 2016. © 2015 Wiley Periodicals, Inc.
Curty, N; Kubitschek-Barreira, P H; Neves, G W; Gomes, D; Pizzatti, L; Abdelhay, E; Souza, G H M F; Lopes-Bezerra, L M
2014-01-31
Blood vessel invasion is a key feature of invasive aspergillosis. This angioinvasion process contributes to tissue thrombosis, which can impair the access of leukocytes and antifungal drugs to the site of infection. It has been demonstrated that human umbilical vein endothelial cells (HUVECs) are activated and assume a prothrombotic phenotype following contact with Aspergillus fumigatus hyphae or germlings, a process that is independent of fungus viability. However, the molecular mechanisms by which this pathogen can activate endothelial cells, together with the endothelial pathways that are involved in this process, remain unknown. Using a label-free approach by High Definition Mass Spectrometry (HDMS(E)), differentially expressed proteins were identified during HUVEC-A. fumigatus interaction. Among these, 89 proteins were determined to be up- or down-regulated, and another 409 proteins were exclusive to one experimental condition: the HUVEC control or HUVEC:AF interaction. The in silico predictions provided a general view of which biological processes and/or pathways were regulated during HUVEC:AF interaction, and they mainly included cell signaling, immune response and hemostasis pathways. This work describes the first global proteomic analysis of HUVECs following interaction with A. fumigatus germlings, the fungus morphotype that represents the first step of invasion and dissemination within the host. A. fumigatus causes the main opportunistic invasive fungal infection related to neutropenic hematologic patients. One of the key steps during the establishment of invasive aspergillosis is angioinvasion but the mechanism associated with the interaction of A. fumigatus with the vascular endothelium remains unknown. The identification of up- and down-regulated proteins expressed by human endothelial cells in response to the fungus infection can contribute to reveal the mechanism of endothelial response and, to understand the physiopathology of this high mortality disease. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. © 2013 Elsevier B.V. All rights reserved.
Chen, Qi; Wang, Yao; Li, Ying; Zhao, Min; Nie, Guiying
2017-11-01
Podocalyxin is a glomerular podocyte protein and increased in urine of preeclampsia. However, podocalyxin is also expressed in endothelial cells of other organs. Here we investigated whether podocalyxin is detectable in pregnant serum and whether the levels are altered in preeclampsia. Podocalyxin was determined by ELISA in sera collected from normal pregnancy across gestation (n = 44) and from preeclamptic pregnancies at diagnosis (n = 34) with gestation-age-matched controls (n = 68). Immunohistochemistry examined podocalyxin in placentas and in 32 human tissues on a tissue array. Human umbilical vein endothelial cells (HUVECs) were treated with interleukin (IL)-6 and podocalyxin was analysed by ELISA and western blotting. Podocalyxin was detected in serum of normal pregnancy, with levels increasing progressively with advancing gestation. Podocalyxin serum levels were significantly elevated in preeclampsia, especially the early-onset subtype. Within the placenta, blood vessels but not trophoblasts expressed podocalyxin, and preeclampsia didn't differ from controls. Endothelial cells in all 32 human organs examined, as well as HUVECs, expressed podocalyxin. Its levels increased in the conditioned media but decreased in the lysates when HUVECs were treated with IL-6. Podocalyxin likely derived from maternal endothelial cells is present in pregnant serum and significantly increased in early-onset preeclampsia. Podocalyxin release was stimulated by IL-6 in HUVECs.
Activation of GPR4 by Acidosis Increases Endothelial Cell Adhesion through the cAMP/Epac Pathway
Leffler, Nancy R.; Asch, Adam S.; Witte, Owen N.; Yang, Li V.
2011-01-01
Endothelium-leukocyte interaction is critical for inflammatory responses. Whereas the tissue microenvironments are often acidic at inflammatory sites, the mechanisms by which cells respond to acidosis are not well understood. Using molecular, cellular and biochemical approaches, we demonstrate that activation of GPR4, a proton-sensing G protein-coupled receptor, by isocapnic acidosis increases the adhesiveness of human umbilical vein endothelial cells (HUVECs) that express GPR4 endogenously. Acidosis in combination with GPR4 overexpression further augments HUVEC adhesion with U937 monocytes. In contrast, overexpression of a G protein signaling-defective DRY motif mutant (R115A) of GPR4 does not elicit any increase of HUVEC adhesion, indicating the requirement of G protein signaling. Downregulation of GPR4 expression by RNA interference reduces the acidosis-induced HUVEC adhesion. To delineate downstream pathways, we show that inhibition of adenylate cyclase by inhibitors, 2′,5′-dideoxyadenosine (DDA) or SQ 22536, attenuates acidosis/GPR4-induced HUVEC adhesion. Consistently, treatment with a cAMP analog or a Gi signaling inhibitor increases HUVEC adhesiveness, suggesting a role of the Gs/cAMP signaling in this process. We further show that the cAMP downstream effector Epac is important for acidosis/GPR4-induced cell adhesion. Moreover, activation of GPR4 by acidosis increases the expression of vascular adhesion molecules E-selectin, VCAM-1 and ICAM-1, which are functionally involved in acidosis/GPR4-mediated HUVEC adhesion. Similarly, hypercapnic acidosis can also activate GPR4 to stimulate HUVEC adhesion molecule expression and adhesiveness. These results suggest that acidosis/GPR4 signaling regulates endothelial cell adhesion mainly through the Gs/cAMP/Epac pathway and may play a role in the inflammatory response of vascular endothelial cells. PMID:22110680
New insight into mitochondrial changes in vascular endothelial cells irradiated by gamma ray.
Hu, Shunying; Gao, Yajing; Zhou, Hao; Kong, Fanxuan; Xiao, Fengjun; Zhou, Pingkun; Chen, Yundai
2017-05-01
To investigate alterations of mitochondria in irradiated endothelial cells to further elucidate the mechanism underlying radiation-induced heart disease. Experiments were performed using human umbilical vein endothelial cells (HUVECs). HUVECs were irradiated with single gamma ray dose of 0, 5, 10 and 20 Gy, respectively. Apoptosis was assessed by flow cytometry at 24, 48 and 72 h post-irradiation, respectively. The intracellular reactive oxygen species (ROS) was measured with 2',7'-dichlorofluorescein-diacetate (DCFH-DA) at 24 h post-irradiation. Mitochondrial membrane potential (ΔΨm) by JC-1 and the opening of mitochondrial permeability transition pore (mPTP) by a calcein-cobalt quenching method were detected at 24 h post-irradiation in order to measure changes of mitochondria induced by gamma ray irradiation. Gamma ray irradiation increased HUVECs apoptosis in a dose-dependent and time-dependent manner. Irradiation also promoted ROS production in HUVECs in a dose-dependent manner. At 24 h post-irradiation, the results showed that irradiation decreases ΔΨm, however, paradoxically, flow cytometry showed green fluorescence instensity higher in irradiated HUVECs than in control HUVECs in an irradiation dose-dependent manner which indicated gamma ray irradiation inhibited mPTP opening in HUVECs. Gamma ray irradiation induces apoptosis and ROS production of endothelial cells, and decreases ΔΨm meanwhile contradictorily inhibiting the opening of mPTP.
Wang, Dong-an; Ji, Jian; Sun, Yong-hong; Shen, Jia-cong; Feng, Lin-xian; Elisseeff, Jennifer H
2002-01-01
A "CBABC"-type pentablock coupling polymer, mesylMPEO, was designed and synthesized to promote human endothelial cell growth on the surfaces of polyurethane biomaterials. The polymer was composed of a central 4,4'-methylenediphenyl diisocyanate (MDI) coupling unit and poly(ethylene oxide) (PEO) spacer arms with methanesulfonyl (mesyl) end groups pendent on both ends. As the presurface modifying additive (pre-SMA), the mesylMPEO was noncovalently introduced onto the poly(ether urethane) (PEU) surfaces by dip coating, upon which the protein/peptide factors (gelatin, albumin, and arginine-glycine-aspartic acid tripeptide [RGD]) were covalently immobilized in situ by cleavage of the original mesyl end groups. The pre-SMA synthesis and PEU surface modification were characterized using nuclear magnetic resonance spectroscopy ((1)H NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). Human umbilical vein endothelial cells (HUVEC) were harvested manually by collagenase digestion and seeded on the modified PEU surfaces. Cell adhesion ratios (CAR) and cell proliferation ratios (CPR) were measured using flow cytometry, and the individual cell viability (ICV) was determined by MTT assay. The cell morphologies were investigated by optical inverted microscopy (OIM) and scanning electrical microscopy (SEM). The gelatin- and RGD-modified surfaces were HUVEC-compatible and promoted HUVEC growth. The albumin-modified surfaces were compatible but inhibited cell adhesion. The results also indicated that, for HUVEC in vitro cultivation, the cell adhesion stage was of particular importance and had a significant impact on the cell responses to the modified surfaces.
Niu, Dan; Zhao, Gang; Liu, Xiaoli; Zhou, Ping; Cao, Yunxia
2016-03-01
High-survival-rate cryopreservation of endothelial cells plays a critical role in vascular tissue engineering, while optimization of osmotic injuries is the first step toward successful cryopreservation. We designed a low-cost, easy-to-use, microfluidics-based microperfusion chamber to investigate the osmotic responses of human umbilical vein endothelial cells (HUVECs) at different temperatures, and then optimized the protocols for using cryoprotective agents (CPAs) to minimize osmotic injuries and improve processes before freezing and after thawing. The fundamental cryobiological parameters were measured using the microperfusion chamber, and then, the optimized protocols using these parameters were confirmed by survival evaluation and cell proliferation experiments. It was revealed for the first time that HUVECs have an unusually small permeability coefficient for Me2SO. Even at the concentrations well established for slow freezing of cells (1.5 M), one-step removal of CPAs for HUVECs might result in inevitable osmotic injuries, indicating that multiple-step removal is essential. Further experiments revealed that multistep removal of 1.5 M Me2SO at 25°C was the best protocol investigated, in good agreement with theory. These results should prove invaluable for optimization of cryopreservation protocols of HUVECs.
Shear stress reduces protease activated receptor-1 expression in human endothelial cells
NASA Technical Reports Server (NTRS)
Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.
2001-01-01
Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.
Effects of phytoestrogens derived from soy bean on expression of adhesion molecules on HUVEC.
Andrade, C M de; Sá, M F Silva de; Toloi, M R Torqueti
2012-04-01
The risks of hormone replacement therapy have led to a search for new alternatives such as phytoestrogens, plant compounds with estrogen-like biological activity. Isoflavones are the phytoestrogens most extensively studied and can be found in soybean, red clover and other plants. Due to this estrogen-like activity, phytoestrogens can have some effect on atherosclerosis. Human umbilical vein endothelial cells (HUVEC) have been extensively used to study the biology and pathobiology of human endothelial cells and most of the knowledge acquired is due to experiments with cultures of these cells. To evaluate the effects of the phytoestrogen extracts from Glycine max soy bean, genistein, formononetin, biochanin A and daidzein, as well as a mixture of these extracts (Mix), on expression of adhesion molecules, VCAM-1, ICAM-1 and E-selectin, by endothelial cell HUVEC, stimulated with lipopolysaccharide. HUVEC were cultured in medium EBM(2), pretreated with isoflavones for 24 and 48 h and then stimulated with lipopolysaccharide; in addition, isoflavones were added, after stimulation by lipopolysaccharide, to HUVEC. We evaluated the production of VCAM-1, ICAM-1 and E-selectin on cell surface, by cell-based enzyme immunoassay, and of sVCAM-1, sICAM-1 and sE-selectin in culture supernatant, by ELISA. Genistein, formononetin, biochanin A and daidzein, as well as the Mix were able to reduce VCAM-1, ICAM-1 and E-selectin on cell surface and in culture supernatant. Conclusion Isoflavones extracted from Glycine max soy bean, in vitro, presented antiatherogenic effects, reducing the expression of adhesion molecules and acting as preventive agents as well as therapeutic agents.
Krüger-Genge, A; Fuhrmann, R; Jung, F; Franke, R P
2015-01-01
The evaluation of the interaction of human, venous endothelial cells (HUVEC) with body foreign materials on the cellular level cannot be performed in vivo, but is investigated in vitro under standard culture conditions. To maintain the vitality, proliferation and morphology of HUVEC seeded on body foreign substrates over days, the cell culture medium is usually exchanged every second day. It is well known, that alterations in the microenvironment of cells bear the risk of influencing cell morphology and function. In the current study the influence of cell culture medium exchange on HUVEC cytoskeletal microfilament structure and function was investigated. HUVEC in the third passage were seeded on extracellular matrix (ECM) - which was secreted from bovine corneal endothelial cells on glass- until functional confluence was reached. The experiment started 11 days after HUVEC seeding with an exchange of the cell culture medium followed by a staining of the actin microfilaments with phalloidin-rhodamin 1.5 and 5 minutes after medium exchange. The microfilaments were documented by use of an Olympus microscope (IMT-2) equipped with a UV lamp and online connected to a TV chain (Sony XC 50 ST/monochrome) implying an OPTIMAS - Image analysis system. Prostacyclin was analysed in the cell culture supernatant. 1.5 min after culture medium exchange in the functionally confluent cultures a slight disturbance of the actin microfilament structure with a broadening of the marginal filament band, a partial disconnection of cell-cell contacts and the appearance of intercellular fenestrations were observed. 5 minutes after medium exchange a redevelopment of the slightly disturbed microfilament structure with a condensation and narrowing of the marginal filament band was seen. 12 h later a further consolidation of the microfilament structure occurred. In addition, a perturbation of the cultured HUVEC occurred after cell culture medium exchange. The prostacyclin concentration in the supernatant increased significantly after 1.5 min to 466 ± 543 pg·mL-1 (p < 0.001) and after 5 min to 408 ± 458 pg·mL-1 (p < 0.001), while in control cells the prostacyclin concentration did not change remaining in the range of 50 ± 48.9 pg·mL-1. This study revealed that the exchange of the cell culture medium led to a rapid disturbance of the HUVEC with stress fiber formation, disconnection of cell-cell contacts and an altered prostacyclin secretion, which had regressed nearly completely after 12 hours. Therefore, the evaluation of HUVEC on body foreign materials should be performed not earlier than 12 hours after cell culture medium exchange to avoid a misinterpretation of the endothelial cell morphological state. This procedure minimizes the risk of a misinterpretation of the endothelial cell morphology - caused by the culture medium exchange and not by the interaction between biomaterials and HUVEC.
Zhang, Qinghao; Gerlach, Jörg C; Schmelzer, Eva; Nettleship, Ian
2017-01-01
Foamed hydroxyapatite offers a three-dimensional scaffold for the development of bone constructs, mimicking perfectly the in vivo bone structure. In vivo, calcium release at the surface is assumed to provide a locally increased gradient supporting the maintenance of the hematopoietic stem cells niche. We fabricated hydroxyapatite scaffolds with high surface calcium concentration by infiltration, and used human umbilical vein endothelial cells (HUVECs) as a model to study the effects on hematopoietic lineage direction. HUVECs are umbilical vein-derived and thus possess progenitor characteristics, with a prospective potential to give rise to hematopoietic lineages. HUVECs were cultured for long term on three-dimensional porous hydroxyapatite scaffolds, which were either infiltrated biphasic foams or untreated. Controls were cultured in two-dimensional dishes. The release of calcium into culture medium was determined, and cells were analyzed for typical hematopoietic and endothelial gene expressions, surface markers by flow cytometry, and hematopoietic potential using colony-forming unit assays. Our results indicate that the biphasic foams promoted a hematopoietic lineage direction of HUVECs, suggesting an improved in vivo-like scaffold for hematopoietic bone tissue engineering. © 2017 S. Karger AG, Basel.
Savage, C. O.; Pottinger, B. E.; Gaskin, G.; Pusey, C. D.; Pearson, J. D.
1992-01-01
The ability of vasculitis-associated anti-neutrophil cytoplasm antibodies (ANCA) to activate neutrophils and mediate release of radiolabel from 111Indium-labeled cultured human umbilical vein endothelial cells (HUVEC) was determined as a measure of the potential cytotoxicity of ANCA-activated neutrophils against vascular endothelium. Priming of neutrophils with low doses of phorbol 12-myristate 13-acetate (PMA) (1 ng/ml) and ionomycin (0.1 mumol/1) was required, together with pretreatment of endothelial cells with BCNU (1,3-bis-[2-chloroethyl]-1-nitrosourea; 0.26 mmol/l). Under these conditions and using a 4-hour serum-free assay system, mouse monoclonal antibodies (MAb) to the target autoantigens proteinase-3 (Pr-3) and myeloperoxidase (MPO) mediated enhanced release of 111Indium from HUVEC compared with control MAb. Human IgG Fab2 C-ANCA (recognizing Pr-3) and P-ANCA (recognizing MPO) did likewise. Preactivation of HUVEC with TNF (50 U/ml, 4 hr) enhanced the release of 111Indium from HUVEC generated by neutrophils activated with anti-Pr-3 and anti-MPO MAb. These data support the suggestion that activation of neutrophils by ANCA within the vascular lumen may contribute to endothelial cell injury. PMID:1323218
Turkish propolis protects human endothelial cells in vitro from homocysteine-induced apoptosis.
Darendelioglu, Ekrem; Aykutoglu, Gurkan; Tartik, Musa; Baydas, Giyasettin
2016-05-01
Chronic cardiovascular and neurodegenerative complications induced by hyperhomocysteinemia have been most relatively associated with endothelial cell injury. Elevated homocysteine (Hcy) generates reactive oxygen species (ROS) accompanying with oxidative stress which is hallmarks of the molecular mechanisms responsible for cardiovascular disease. Propolis is a natural product, obtained by honeybee from various oils, pollens, special resins and wax materials, conventionally used with the purpose of treatment by folks Propolis has various biological activities and powerful antioxidant capacity. The flavonoids and phenolic acids, most bioactive components of propolis, have superior antioxidant ability to defend cell from free radicals. This study was designed to examine the protective effects of Turkish propolis (from east of country) on Hcy induced ROS production and apoptosis in human vascular endothelial cells (HUVECs). According to results, co-treatment of HUVECs with propolis decreased Hcy-induced ROS overproduction and lipid peroxidation (LPO) levels. Furthermore, overproductions of Bax, caspase-9 and caspase-3 protein, elevation of cytochrome c release in Hcy-treated HUVECs were significantly reduced by propolis. It was concluded that propolis has cytoprotective ability against cytotoxic effects of high Hcy in HUVECs. Copyright © 2016 Elsevier GmbH. All rights reserved.
Yi, Eui-Yeun; Han, Kyung-Suk; Kim, Yung-Jin
2014-01-01
Angiogenesis is important processes for tumor growth and metastasis. Anti-angiogenesis target therapy has recently been known to be new anti-cancer therapeutic strategies. Natural products such as traditional medicine comprise a major source of angiogenesis inhibitors. Artemisia lavandulaefolia has been known to use in the traditional medical practices. However, its molecular mechanism on the tumor protection and therapy was not clearly elucidated. In this study, we investigated the possibility that extract of A. lavandulaefolia inhibits in vitro angiogenesis. Therefore, we examined the effect of extract of A. lavandulaefolia on the vascular network formation of human umbilical vein endothelial cells (HUVECs). We found that the treatment of A. lavandulaefolia extract suppressed the tube formation of HUVECs without any influence on the viability of HUVECs. In addition, extract of A. lavandulaefolia inhibited the migration and invasion of HUVECs. These results suggest that extract of A. lavandulaefolia could be act for an angiogenic inhibitor. PMID:25574458
Cui, Peilin; Yu, Minghua; Peng, Xingchun; Dong, Lv; Yang, Zhaoxu
2012-03-01
Melatonin is an important natural oncostatic agent, and our previous studies have found its inhibitory action on tumor angiogenesis, but the mechanism remains unclear. It is well known that vascular endothelial growth factor (VEGF) plays key roles in tumor angiogenesis and has become an important target for antitumor therapy. Pancreatic cancer is a representative of the most highly vascularized and angiogenic solid tumors, which responds poorly to chemotherapy and radiation. Thus, seeking new treatment strategies targeting which have anti-angiogenic capability is urgent in clinical practice. In this study, a co-culture system between human umbilical vein endothelial cells (HUVECs) and pancreatic carcinoma cells (PANC-1) was used to investigate the direct effect of melatonin on the tumor angiogenesis and its possible action on VEGF expression. We found HUVECs exhibited an increased cell proliferation and cell migration when co-cultured with PANC-1 cells, but the process was prevented when melatonin added to the incubation medium. Melatonin at concentrations of 1 μm and 1 mm inhibited the cell proliferation and migration of HUVECs and also decreased both the VEGF protein secreted to the cultured medium and the protein produced by the PANC-1 cells. In addition, the VEGF mRNA expression was also down-regulated by melatonin. Taken together, our present study shows that melatonin at pharmacological concentrations inhibited the elevated cell proliferation and cell migration of HUVECs stimulated by co-culturing them with PANC-1 cells; this was associated with a suppression of VEGF expression in PANC-1 cells. © 2011 John Wiley & Sons A/S.
Gover-Proaktor, Ayala; Granot, Galit; Pasmanik-Chor, Metsada; Pasvolsky, Oren; Shapira, Saar; Raz, Oshrat; Raanani, Pia; Leader, Avi
2018-05-09
The tyrosine kinase inhibitors (TKIs), nilotinib, ponatinib, and dasatinib (but not bosutinib or imatinib), are associated with vascular adverse events (VAEs) in chronic myeloid leukemia (CML). Though the mechanism is inadequately understood, an effect on vascular cells has been suggested. We investigated the effect of imatinib, nilotinib, dasatinib, bosutinib, and ponatinib on tube formation, cell viability, and gene expression of human vascular endothelial cells (HUVECs). We found a distinct genetic profile in HUVECs treated with dasatinib, ponatinib, and nilotinib compared to bosutinib and imatinib, who resembled untreated samples. However, unique gene expression and molecular pathway alterations were detected between dasatinib, ponatinib, and nilotinib. Angiogenesis/blood vessel-related pathways and HUVEC function (tube formation/viability) were adversely affected by dasatinib, ponatinib, and nilotinib but not by imatinib or bosutinib. These results correspond to the differences in VAE profiles of these TKIs, support a direct effect on vascular cells, and provide direction for future research.
Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji
2015-01-01
The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.
In vitro effects of ATG-Fresenius on immune cell adhesion.
Kanzler, I; Seitz-Merwald, I; Schleger, S; Kaczmarek, I; Kur, F; Beiras-Fernandez, A
2013-06-01
ATG-Fresenius, a purified rabbit polyclonal anti-human T-lymphocyte immunoglobulin is used for induction immunosuppression as well as prevention and treatment of acute rejection episodes among patients receiving solid organ transplants. The aim of this study was to investigate the in vitro activity of ATG-Fresenius upon immune cell adhesion, which may explain its activity to mitigate ischemia-reperfusion injury. Human vascular endothelial cells (HUVEC) and peripheral blood mononuclear cells (PBMCs) isolated from umbilical vein or peripheral blood were incubated 20 to 24 hours before analysis. HUVEC were incubated with 10 and 100 μg/mL ATG-Fresenius or reference polyclonal rabbit immunoglobulin G. Analysis of immune cell adhesion to endothelial cells was studied in cocultures of PBMCs and adherent HUVEC. Endothelial cell expression of adhesion molecules CD62E and CD54 was determined by flow cytometry. The numbers of T-, B- and natural killer cells attached to HUVEC were also determined by flow cytometry. Groups were compared using one-way analysis of variance. We showed that ATG-Fresenius binds to endothelial cells particularly activated ones expressing increased levels of E-selectin and ICAM-1. The increased binding of ATG-Fresenius to activated endothelial cells was consistent with its known binding to Intercellular Adhesion Molecule 1 (ICAM-1) and selectins. We also showed that ATG-Fresenius inhibited adhesion of prestimulated immune cells to activated endothelium. We demonstrated dose-dependent binding of ATG-Fresenius to activated endothelial cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhang, Songjie; Zhou, Min; Ye, Zhaoyang; Zhou, Yan; Tan, Wen-Song
2017-08-01
Slow vascularization often impedes the viability and function of engineered bone replacements. Prevascularization is a promising way to solve this problem. In this study, a new process was developed by integrating microcarrier culture and coculture to fabricate pre-vascularized bone microtissues with mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs). Initially, coculture medium and cell ratio between MSCs and HUVECs were optimized in tissue culture plates concerning cell proliferation, osteogenesis and angiogenesis. Subsequently, cells were seeded onto CultiSpher S microcarriers in spinner flasks and subjected to a two-stage (proliferative-osteogenic) culture process for four weeks. Both cells proliferated and functioned well in chosen medium and a 1 : 1 ratio between MSCs and HUVECs was chosen for better angiogenesis. After four weeks of culture in spinner flasks, the microtissues were formed with high cellularity, evenly distributed cells and tube formation ability. While coculture with HUVECs exerted an inhibitory effect on osteogenic differentiation of MSCs, with downregulated alkaline phosphatase activity, mineralization and gene expression of COLI, RUNX2 and OCN, this could be attenuated by employing a delayed seeding strategy of HUVECs against MSCs during the microtissue fabrication process. Collectively, this work established an effective method to fabricate pre-vascularized bone microtissues, which would lay a solid foundation for subsequent development of vascularized tissue grafts for bone regeneration. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oda, Masataka; Domon, Hisanori; Kurosawa, Mie; Isono, Toshihito; Maekawa, Tomoki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka
2017-01-01
The Streptococcus pyogenes phospholipase A 2 (SlaA) gene is highly conserved in the M3 serotype of group A S. pyogenes , which often involves hypervirulent clones. However, the role of SlaA in S. pyogenes pathogenesis is unclear. Herein, we report that SlaA induces the expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) via the arachidonic acid signaling cascade. Notably, recombinant SlaA induced ICAM1 and VCAM1 expression in human umbilical vein endothelial cells (HUVECs), resulting in enhanced adhesion of human monocytic leukemia (THP-1) cells. However, C134A, a variant enzyme with no enzymatic activity, did not induce such events. In addition, culture supernatants from S. pyogenes SSI-1 enhanced the adhesion of THP-1 cells to HUVECs, but culture supernatants from the Δ slaA isogenic mutant strain had limited effects. Aspirin, a cyclooxygenase 2 inhibitor, prevented the adhesion of THP-1 cells to HUVECs and did not induce ICAM1 and VCAM1 expression in HUVECs treated with SlaA. However, zileuton, a 5-lipoxygenase inhibitor, did not exhibit such effects. Furthermore, pre-administration of aspirin in mice intravenously injected with SlaA attenuated the transcriptional abundance of ICAM1 and VCAM1 in the aorta. These results suggested that SlaA from S. pyogenes stimulates the expression of adhesion molecules in vascular endothelial cells. Thus, SlaA contributes to the inflammation of vascular endothelial cells upon S. pyogenes infection.
Marampon, F; Gravina, G L; Festuccia, C; Popov, V M; Colapietro, E A; Sanità, P; Musio, D; De Felice, F; Lenzi, A; Jannini, E A; Di Cesare, E; Tombolini, V
2016-04-01
Radiotherapy toxicity is related to oxidative stress-mediated endothelial dysfunction. Here, we investigated on radioprotective properties of Vitamin D (Vit.D) on human endothelial cells (HUVEC). HUVEC, pre-treated with Vit.D, were exposed to ionizing radiation (IR): ROS production, cellular viability, apoptosis, senescence and western blot for protein detection were performed. The role of MAPKs pathway was investigated by using U0126 (10 μM) MEKs/ERKs-, SB203580 (2.5 μM) p38-inhibitor or by over/expressing MKK6 p38-upstream activator. Vit.D reduced IR-induced ROS production protecting proliferating and quiescent HUVEC from cellular apoptosis or senescence, respectively, by regulating MAPKs pathways. In proliferating HUVEC, Vit.D prevented IR-induced apoptosis by activating ERKs while in quiescent HUVEC counteracted IR-induced senescence by inhibiting the p38-IR-induced activation. MEKs&ERKs inhibition in proliferating or MKK6/mediated p38 activation in quiescent HUVEC, respectively, reverted anti-apoptotic or anti-senescent Vit.D properties. SirT1 protein expression levels were up-regulated by Vit.D. ERKs inhibition blocked Vit.D-induced SirT1 protein up-regulation in proliferating cells. In quiescent HUVEC cells, p38 inhibition counteracted the IR-induced SirT1 protein down-regulation, while MKK6 transfection abrogated the Vit.D positive effects on SirT1 protein levels after irradiation. SirT1 inhibition by sirtinol blocked the Vit.D radioprotective effects. Vit.D protects HUVEC from IR induced/oxidative stress by positively regulating the MAPKs/SirT1 axis.
Zhang, Yanmin; He, Langchong; Meng, Liang; Luo, Wenjuan; Xu, Xuemei
2008-04-08
The present study was to demonstrate the effect of taspine isolated from Radix et Rhizoma Leonticis on tumor angiogenesis and its mechanism of action. The anti-angiogenic effect in vivo was evaluated on chicken chorioallantoic membrane (CAM) neovascularisation model and CAM transplantation tumor model. Taspine exerted inhibitory influence on CAM angiogenesis and the growth and microvessel density (MVD) of CAM transplantation tumor at concentrations of 0.5-2μg/egg. The mechanism was demonstrated through detecting vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) protein secretion by enzyme-linked immunosorbent assay (ELISA), as well as mRNA expression of VEGF, Flt-1 and Flk-1/KDR by reverse transcription-polymerase chain reaction (RT-PCR). The results showed that taspine down-regulated the VEGF and bFGF secretion in human non-small cell lung cancer cell (A549 cell) and human umbilical vein endothelial cell (HUVEC), and the VEGF and Flk-1/KDR mRNA expression in HUVEC. Additionally, the effect of taspine on HUVEC migration was detected with the method of cell scrape. The result indicated that taspine inhibited HUVEC migration in a dose-dependent manner. These findings suggest that taspine might be a promising candidate as angiogenesis inhibitors.
[DNA microarray reveals changes in gene expression of endothelial cells under shear stress].
Cheng, Min; Zhang, Wensheng; Chen, Huaiqing; Wu, Wenchao; Huang, Hua
2004-04-01
cDNA microarray technology is used as a powerful tool for rapid, comprehensive, and quantitative analysis of gene profiles of cultured human umbilical vein endothelial cells(HUVECs) in the normal static group and the shear stressed (4.20 dyne/cm2, 2 h) group. The total RNA from normal static cultured HUVECs was labeled by Cy3-dCTP, and total RNA of HUVECs from the paired shear stressed experiment was labeled by Cy5-dCTP. The expression ratios reported are the average from the two separate experiments. After bioinformatics analysis, we identified a total of 108 genes (approximately 0.026%) revealing differential expression. Of these 53 genes expressions were up-regulated, the most enhanced ones being human homolog of yeast IPP isomerase, human low density lipoprotein receptor gene, Squalene epoxidase gene, 7-dehydrocholesterol reductase, and 55 were down-regulated, the most decreased ones being heat shock 70 kD protein 1, TCB gene encoding cytosolic thyroid hormone-binding protein in HUVECs exposed to low shear stress. These results indicate that the cDNA microarray technique is effective in screening the differentially expressed genes in endothelial cells induced by various experimental conditions and the data may serve as stimuli to further researches.
Zang, Mingde; Hu, Lei; Zhang, Baogui; Zhu, Zhenglun; Li, Jianfang; Zhu, Zhenggang; Yan, Min; Liu, Bingya
2017-08-26
Gastric cancer is a great threat to the health of the people worldwide and lacks effective therapeutic regimens. Luteolin is one of Chinese herbs and presents in many fruits and green plants. In our previous study, we observed that luteolin inhibited cell migration and promoted cell apoptosis in gastric cancer. In the present study, luteolin significantly inhibited tube formation of human umbilical vein endothelial cells (HUVECs) through decreasing cell migration and proliferation of HUVECs in a dose-dependent manner. Vasculogenic mimicry (VM) tubes formed by gastric cancer cells were also inhibited with luteolin treatment. To explore how luteolin inhibited tubes formation, ELISA assay for VEGF was performed. Both of the VEGF secretion from Hs-746T cells and HUVECs were significantly decreased subsequent to luteolin treatment. In addition, cell migration was increased with the interaction between gastric cancer cells and HUVECs in co-culture assays. However, the promoting effects were abolished subsequent to luteolin treatment. Furthermore, luteolin inhibited VEGF secretion through suppressing Notch1 expression in gastric cancer. Overexpression of Notch1 in gastric cancer cells partially rescued the effects on cell migration, proliferation, HUVECs tube formation, and VM formation induced by luteolin treatment. In conclusion, luteolin inhibits angiogenesis and VM formation in gastric cancer through suppressing VEGF secretion dependent on Notch1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.
Okamoto, Takayuki; Akita, Nobuyuki; Hayashi, Tatsuya; Shimaoka, Motomu; Suzuki, Koji
2014-10-01
Endothelial cell (EC) interacts with adjacent EC through gap junction, and abnormal expression or function of Cxs is associated with cardiovascular diseases. In patients with endothelial dysfunction, the up-regulation of tissue factor (TF) expression promotes the pathogenic activation of blood coagulation, however the relationship between gap junctions and TF expression in ECs remains uncharacterized. ECs express the gap junction (GJ) proteins connexin32 (Cx32), Cx37, Cx40 and Cx43. We investigated the role of endothelial gap junctions, particularly Cx32, in modulating TF expression during vascular inflammation. Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor-α (TNF-α) and TF activity was assessed in the presence of GJ blockers and an inhibitory anti-Cx32 monoclonal antibody. Treatment with GJ blockers and anti-Cx32 monoclonal antibody enhanced the TNF-α-induced TF activity and mRNA expression in HUVECs. TNF-α-activated effector HUVECs or mouse MS-1 cells were co-cultured with non-stimulated acceptor HUVECs and TF expression in acceptor HUVECs was detected. Effector EC induced TF expression in adjacent acceptor HUVECs through direct cell-cell interaction. Cell-cell interaction induced TF expression was reduced by anti-intercellular adhesion molecule-1 (ICAM1) monoclonal antibody. Soluble ICAM1-Fc fusion protein promotes TF expression. GJ blockers and anti-Cx32 monoclonal antibody enhanced TF expression induced by cell-cell interaction and ICAM1-Fc treatment. Blockade of endothelial Cx32 increased TF expression induced by TNF-α stimulation and cell-cell interaction which was at least partly dependent upon ICAM1. These results suggest that direct Cx32-mediated interaction modulates TF expression in ECs during vascular inflammation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The effect of artichoke (Cynara scolymus L.) extract on ROS generation in HUVEC cells.
Juzyszyn, Z; Czerny, B; Pawlik, A; Droździk, M
2008-09-01
The effect of an artichoke extract on induced reactive oxygen species (ROS) generation in cultured human umbilical endothelial cells (HUVECs) and its reductive properties were evaluated. Preincubation of HUVEC cells with the artichoke extract at concentrations of 25-100 microg/mL for 24 h abolished ROS generation induced by LPS and oxyLDL as evaluated by the fluorescence intensity of 2',7'-dichlorofluorescein (DCF). Potent, concentration-dependent reductive properties of the artichoke extract were demonstrated by the reduction kinetics of cytochrome c in reference to ascorbate were also revealed. The results of the present study the warrant application of artichoke extracts as endothelium protecting agents.
Vásquez, Gustavo; Sanhueza, Felipe; Vásquez, Rodrigo; González, Marcelo; Martín, Rody San; Casanello, Paola; Sobrevia, Luis
2004-01-01
Gestational diabetes is associated with increased l-arginine transport and nitric oxide (NO) synthesis, and reduced adenosine transport in human umbilical vein endothelial cells (HUVEC). Adenosine increases endothelial l-arginine/NO pathway via A2 purinoceptors in HUVEC from normal pregnancies. It is unknown whether the effect of gestational diabetes is associated with activation of these purinoceptors or altered expression of human cationic amino acid transporter 1 (hCAT-1) or human equilibrative nucleoside transporter 1 (hENT1), or endothelial NO synthase (eNOS) in HUVEC. Cells were isolated from normal or gestational diabetic pregnancies and cultured up to passage 2. Gestational diabetes increased hCAT-1 mRNA expression (2.4-fold) and activity, eNOS mRNA (2.3-fold), protein level (2.1-fold), and phosphorylation (3.8-fold), but reduced hENT1 mRNA expression (32%) and activity. Gestational diabetes increased extracellular adenosine (2.7 μm), and intracellular l-arginine (1.9 mm) and l-citrulline (0.7 mm) levels compared with normal cells (0.05 μm, 0.89 mm, 0.35 mm, respectively). Incubation of HUVEC from normal pregnancies with 1 μm nitrobenzylthioinosine (NBMPR) mimicked the effect of gestational diabetes, but NBMPR was ineffective in diabetic cells. Gestational diabetes and NBMPR effects involved eNOS, PKC and p42/44mapk activation, and were blocked by the A2a purinoceptor antagonist ZM-241385. Thus, gestational diabetes increases the l-arginine/NO pathway involving activation of mitogen-activated protein (MAP) kinases, protein kinase C (PKC) and NO cell signalling cascades following activation of A2a purinoceptors by extracellular adenosine. A functional relationship is proposed between adenosine transport and modulation of l-arginine transport and NO synthesis in HUVEC, which could be determinant in regulating vascular reactivity in diabetes mellitus. PMID:15272035
Mono-(2-Ethylhexyl) Phthalate Induces Injury in Human Umbilical Vein Endothelial Cells
Huang, Qi; Li, Bin-Feng; Chen, Chen; Zhang, Hua-Chuan; Xu, Shun-Qing
2014-01-01
Mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of di-(2-ethylhexyl) phthalate (DEHP), is a widespread environmental contaminant and has been proved to have potential adverse effects on the reproductive system, carcinogenicity, liver, kidney and developmental toxicities. However, the effect of MEHP on vascular system remains unclear. The main purpose of this study was to evaluate the cytotoxic effects of MEHP on human umbilical endothelial cells (HUVEC) and its possible molecular mechanism. HUVEC cells were treated with MEHP (0, 6.25, 12.5, 25,50 and 100 µM), and the cellular apoptosis and mitochondrial membrane potential as well as intracellular reactive oxygen species were determined. In present study, MEHP induced a dose-dependent cell injury in HUVEC cell via an apoptosis pathway as characterized by increased percentage of sub-G1, activation of caspase-3, -8and -9, and increased ratio of Bax/bcl-2 mRNA and protein expression as well as cytochrome C releasing. In addition, there was obvious oxidative stress, represented by decreased glutathione level, increased malondialdehyde level and superoxide dismutase activity. N-Acetylcysteine, as an antioxidant that is a direct reactive oxygen species scavenger, could effectively block MEHP-induced reactive oxygen species generation, mitochondrial membrane potential loss and cell apoptosis. These data indicated that MEHP induced apoptosis in HUVEC cells through a reactive oxygen species-mediated mitochondria-dependent pathway. PMID:24836450
Radiation therapy affects the mechanical behavior of human umbilical vein endothelial cells.
Mohammadkarim, Alireza; Tabatabaei, Mohammad; Parandakh, Azim; Mokhtari-Dizaji, Manijhe; Tafazzoli-Shadpour, Mohammad; Khani, Mohammad-Mehdi
2018-06-06
Radiation therapy has been widely utilized as an effective method to eliminate malignant tumors and cancerous cells. However, subjection of healthy tissues and the related networks of blood vessels adjacent to the tumor area to irradiation is inevitable. The aim of this study was to investigate the consequent effects of fractionation radiotherapy on the mechanical characteristics of human umbilical vein endothelial cells (HUVECs) through alterations in cytoskeleton organization and cell and nucleus morphology. In order to simulate the clinical condition of radiotherapy, the HUVECs were exposed to the specific dose of 2 Gy for 1-4 times among four groups with incremental total dose from 2 Gy up to 8 Gy. Fluorescence staining was performed to label F-actin filaments and nuclei. Micropipette aspiration and standard linear solid model were employed to evaluate the elastic and viscoelastic characteristics of the HUVECs. Radiotherapy significantly increased cell elastic moduli. Due to irradiation, instantaneous and equilibrium Young's modulus were also increased. Radiotherapy diminished HUVECs viscoelastic behavior and shifted their creep compliance curves downward. Furthermore, gamma irradiation elevated the nuclei sizes and to a lesser extent the cells sizes resulting in the accumulation of F-actin filaments within the rest of cell body. Endothelial stiffening correlates with endothelial dysfunction, hence the results may be helpful when the consequent effects of radiotherapy are the focus of concern. Copyright © 2018. Published by Elsevier Ltd.
Nemati, Sorour; Rezabakhsh, Aysa; Khoshfetrat, Ali Baradar; Nourazarian, Alireza; Biray Avci, Çığır; Goker Bagca, Bakiye; Alizadeh Sardroud, Hamed; Khaksar, Majid; Ahmadi, Mahdi; Delkhosh, Aref; Sokullu, Emel; Rahbarghazi, Reza
2017-12-01
Up to present, many advantages have been achieved in the field of cell-based therapies by applying sophisticated methodologies and delivery approaches. Microcapsules are capable to provide safe microenvironment for cells during transplantation in a simulated physiological 3D milieu. Here, we aimed to investigate the effect of alginate-gelatin encapsulation on angiogenic behavior of human endothelial cells over a period of 5 days. Human umbilical vein endothelial cells were encapsulated by alginate-gelatin substrate and incubated for 5 days. MTT and autophagy PCR array analysis were used to monitor cell survival rate. For in vitro angiogenesis analysis, cell distribution of Tie-1, Tie-2, VEGFR-1, and VEGFR-2 were detected by ELISA. In addition to in vitro tubulogenesis assay, we monitored the expression of VE-cadherin by Western blotting. The migration capacity of encapsulated HUVECs was studied by measuring MMP-2 and MMP-9 via gelatin zymography. The in vivo angiogenic potential of encapsulated HUVECs was analyzed in immune-compromised mouse implant model during 7 days post-transplantation. We demonstrated that encapsulation promoted HUVECs cell survival and proliferation. Compared to control, no significant differences were observed in autophagic status of encapsulated cells (p > 0.05). The level of Tie-1, Tie-2, VEGFR-1, and VEGFR-2 were increased, but did not reach to significant levels. Encapsulation decreased MMP-2, -9 activity and increased the VE-cadherin level in enclosed cells (p < 0.05). Moreover, an enhanced in vivo angiogenic response of encapsulated HUVECs was evident as compared to non-capsulated cells (p < 0.05). These observations suggest that alginate-gelatin encapsulation can induce angiogenic response in in vivo and in vitro conditions. © 2017 Wiley Periodicals, Inc.
Li, Qi; Chen, Xi; Kan, Xiao-Xi; Li, Yu-Jie; Yang, Qing; Wang, Ya-Jie; Chen, Ying; Weng, Xiao-Gang; Cai, Wei-Yan; Huang, He-Fei; Zhu, Xiao-Xin
2016-02-01
To reveal the protective and anti-apoptosis effect of compound Ginkgo biloba granules on oxidative stress injury of human umbilical vein endothelial cells (HUVEC). Negative control group, H2O2 model group and 4 drug pretreatment groups (80, 160, 320, 640 mg• L⁻¹) were established. The cell proliferation, morphological changes in each group after oxidative stress injury was detected by MTT assay and through microscope observation respectively. The content of LDH, MDA, SOD and NO and SOD activity in supernatant were detected to judge the protection effect of the drugs on endothelial cells. The protective effect on HUVEC apoptosis was analyzed by Caspase-3 activity test and Annexin V-FITC/PI staining. Western blot was used to observe the expression of apoptosis-related proteins Bcl-2 and Bax. Results showed that 1 200 μmol• L⁻¹ H2O2 can induce oxidative stress injury in endothelial cells and reduce the cell survival rate; cell proliferation inhibition degree is positively correlated with the effect time of H2O2. Besides, 80, 160, 320 640 mg•L⁻¹ compound Ginkgo biloba granules can protect HUVEC from oxidative stress injury, recover the normal proliferation level of cells, improve their state, prohibit cell apoptosis, and can up-regulate and down-regulate the expression level of Bcl-2 and Bax respectively. In conclusion, compound G. biloba granules can protect HUVEC from the oxidative stress injury induced by H2O2, its mechanism may be correlated with inhibition of the mitochondrial apoptotic pathway in HUVEC. Copyright© by the Chinese Pharmaceutical Association.
Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation.
Lekowski, R; Collard, C D; Reenstra, W R; Stahl, G L
2001-02-01
Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O(2), 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 +/- 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (< or = 100 micromol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC(50) = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC(50) approximately 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress.
Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation
Lekowski, Robert; Collard, Charles D.; Reenstra, Wende R.; Stahl, Gregory L.
2001-01-01
Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O2, 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 ± 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (≤ 100 μmol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC50 = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC50 ≈ 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress. PMID:11266613
Effect of Leptospira interrogans outer membrane proteins LipL32 on HUVEC.
Sun, Zhan; Bao, Lang; Li, DaoKun; Huang, Bi; Wu, Bingting
2010-09-01
Leptospira cause disease through a toxin-mediated process by inducing vascular injury, particularly a small-vessel vasculitis. Breakdown of vessel endothelial cell integrity may increase vessel permeability which is correlated with the changes of tight junction and/or apoptosis in vessel endothelial cells. The specific toxin responsible remains unidentified. In this study, we amplified outer membrane protein LipL32 from the genome of Leptospira interrogans serovar Lai, and it was subcloned in pET32a(+) vector to express thioredoxin(Trx)-LipL32 fusion protein in Escherichia coli BL21(DE3). The protein was expressed and purified, and Trx-LipL32 was administered to culture with human umbilical vein endothelial cells (HUVEC) to elucidate the role of leptospiral outer membrane proteins in vessel endothelial cell. The purified recombinant protein was capable to increase the permeability of HUVECs. And the protein was able to decrease the expression of ZO-1 and induce F-actin in HUVECs display thickening and clustering. Moreover, apoptosis of HUVEC was significantly accelerated. But the fusion partner had no effect in these regards. It is possible that LipL32 is involved in the vessel lesions. Copyright 2010 Elsevier Ltd. All rights reserved.
Xiao, Guohua; Wang, Zongbao; Zeng, Huaicai; Yu, Jian; Yin, Weidong; Zhang, Sujun; Wang, Yueting; Zhang, Yali
2011-10-01
Endothelial dysfunction is a key event in the onset and progression of atherosclerosis associated with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction and contribute to vascular complications. Therefore, we aimed to elucidate the possible role and mechanism of ibrolipim in preventing endothelial dysfunction induced by high glucose. Human umbilical vein endothelial cells (HUVECs) were cultured respectively under normal glucose level (5.5mM), high glucose level (33mM), and high glucose level with ibrolipim treatment. Endothelial dysfunction was identified by the expression of ET-1 and vWF through reverse transcription PCR (RT-PCR). HUVECs apoptosis was assessed by fluorescent staining with Hoechst 33258. Akt activity was analyzed by western blot. High glucose condition significantly increased the rate of apoptotic cells, weakened cell viability, and decreased the expression of ET-1 and vWF. Ibrolipim treatment significantly attenuated these alterations of endothelial dysfunction. The lower concentrations (2, 4, 8 microM) of ibrolipim inhibited apoptosis of cultured HUVECs, improved cell viability, down-regulated the mRNA levels of ET-1, vWF, and attenuated the cytotoxicity; however, higher concentration (16, 32 microM) of ibrolipim aggravated the damage of HUVECs cultured under high glucose level. Meanwhile, high glucose induced a decrease of Akt activity which led to apoptosis, and ibrolipim prevented the decrease and attenuated apoptotic effect induced by high glucose. Furthermore, the PI3K inhibitor LY294002 significantly abolished the anti-apoptotic effect of ibrolipim, and decreased Akt phosphorylation. Although, the expression of Akt mRNA and total protein were not altered in cultured HUVECs. Ibrolipim at lower concentrations can inhibit high glucose-induced apoptosis in cultured HUVECs, which might be related to the alternation of Akt activity. Ibrolipim has the potential to attenuate endothelial dysfunction and lower the risk of diabetes-associated vascular diseases. And it might be a therapeutic agent for diabetic vascular complications.
2012-01-01
Background In vitro fabricated tissue engineered vascular constructs could provide an alternative to conventional substitutes. A crucial factor for tissue engineering of vascular constructs is an appropriate cell source. Vascular cells from the human umbilical cord can be directly isolated and cryopreserved until needed. Currently no cell bank for human vascular cells is available. Therefore, the establishment of a future human vascular cell bank conforming to good manufacturing practice (GMP) conditions is desirable for therapeutic applications such as tissue engineered cardiovascular constructs. Materials and methods A fundamental step was the adaption of conventional research and development starting materials to GMP compliant starting materials. Human umbilical cord artery derived cells (HUCAC) and human umbilical vein endothelial cells (HUVEC) were isolated, cultivated, cryopreserved (short- and long-term) directly after primary culture and recultivated subsequently. Cell viability, expression of cellular markers and proliferation potential of fresh and cryopreserved cells were studied using trypan blue staining, flow cytometry analysis, immunofluorescence staining and proliferation assays. Statistical analyses were performed using Student’s t-test. Results Sufficient numbers of isolated cells with acceptable viabilities and homogenous expression of cellular markers confirmed that the isolation procedure was successful using GMP compliant starting materials. The influence of cryopreservation was marginal, because cryopreserved cells mostly maintain phenotypic and functional characteristics similar to those of fresh cells. Phenotypic studies revealed that fresh cultivated and cryopreserved HUCAC were positive for alpha smooth muscle actin, CD90, CD105, CD73, CD29, CD44, CD166 and negative for smoothelin. HUVEC expressed CD31, CD146, CD105 and CD144 but not alpha smooth muscle actin. Functional analysis demonstrated acceptable viability and sufficient proliferation properties of cryopreserved HUCAC and HUVEC. Conclusion Adaptation of cell isolation, cultivation and cryopreservation to GMP compliant starting materials was successful. Cryopreservation did not influence cell properties with lasting impact, confirming that the application of vascular cells from the human umbilical cord is feasible for cell banking. A specific cellular marker expression profile was established for HUCAC and HUVEC using flow cytometry analysis, applicable as a GMP compliant quality control. Use of these cells for the future fabrication of advanced therapy medicinal products GMP conditions are required by the regulatory authority. PMID:22591741
Effect of Granulocyte-Colony Stimulating Factor on Endothelial Cells and Osteoblasts
Liu, Xi Ling; Hu, Xiang; Cai, Wei Xin; Lu, Weijia William; Zheng, Li Wu
2016-01-01
Objectives. Some animal studies showed that granulocyte-colony stimulating factor (G-CSF) provides beneficial environment for bone healing. It has been well documented that endothelial cells and osteoblasts play critical roles in multiple phases of bone healing. However, the biological effects of G-CSF on these cells remain controversial. This study aimed to investigate the influence of G-CSF at various concentrations on endothelial cells and osteoblasts. Materials and Methods. Human umbilical vein endothelial cells (HUVECs) and human osteoblasts (hOBs) were treated with G-CSF at 1000, 100, 10, and 0 ng/mL, respectively. The capacity of cell proliferation, migration, and tube formation of HUVECs was evaluated at 72, 8, and 6 hours after treatment, respectively. The capacity of proliferation, differentiation, and mineralization of hOBs was evaluated at 24 hours, 72 hours, and 21 days after treatment, respectively. Results. HUVECs treated with 100 and 1000 ng/mL G-CSF showed a significantly higher value comparing with controls in migration assay (p < 0.001, p < 0.01, resp.); the group treated with 1000 ng/mL G-CSF showed a significantly lower value on tube formation. No significant difference was detected in groups of hOBs. Conclusions. G-CSF showed favorable effects only on the migration of HUVECs, and no direct influence was found on hOBs. PMID:27006951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Xia, E-mail: zhongxia1977@126.com; Li, Xiaonan; Liu, Fuli
2012-08-24
Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibitedmore » TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.« less
The expression and proangiogenic effect of nucleolin during the recovery of heat-denatured HUVECs.
Liang, Pengfei; Jiang, Bimei; Lv, Chunliu; Huang, Xu; Sun, Li; Zhang, Pihong; Huang, Xiaoyuan
2013-10-01
The present study aims to examine the expression patterns and roles of nucleolin during the recovery of heat-denatured human umbilical vein endothelial cells (HUVECs). Deep partial thickness burn model in Sprague-Dawley rats and the heat denatured cell model (52°C, 35s) were used. The expression of nucleolin was measured using Western blot analysis and real-time PCR. Angiogenesis was assessed using in vitro parameters including endothelial cell proliferation, transwell migration assay, and scratched wound healing. Gene transfection and RNA interference approaches were employed to investigate the roles of nucleolin. Nucleolin mRNA and protein expression showed a time-dependent increase during the recovery of heat-denatured dermis and HUVECs. Heat-denaturation time-dependently promoted cell growth, adhesion, migration, scratched wound healing and formation of tube-like structures in HUVECs. These effects of heat denaturation on endothelial wound healing and formation of tube-like structures were prevented by knockdown of nucleolin, whereas over-expression of nucleolin increased cell growth, migration, and formation of tube-like structures in cultured HUVEC endothelial cells. In addition, we found that the expression of vascular endothelial growth factor (VEGF) increased during the recovery of heat-denatured dermis and HUVECs, and nucleolin up-regulated VEGF in HUVECs. The present study reveals that the expression of nucleolin is up-regulated, and plays a pro-angiogenic role during the recovery of heat-denatured dermis and its mechanism is probably dependent on production of VEGF. We find a novel and important pro-angiogenic role of nucleolin during the recovery of heat-denatured dermis. Copyright © 2013 Elsevier B.V. All rights reserved.
de Vega, Susana; Suzuki, Nobuharu; Nonaka, Risa; Sasaki, Takako; Forcinito, Patricia; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko
2014-03-01
We have previously demonstrated that fibulin-7 (Fbln7) is expressed in teeth by pre-odontoblast and odontoblast cells, localized in the basement membrane and dentin matrices, and is an adhesion molecule for dental mesenchyme cells and odontoblasts. Fbln7 is also expressed in blood vessels by endothelial cells. In this report, we show that a recombinant C-terminal Fbln7 fragment (Fbln7-C) bound to Human Umbilical Vein Endothelial Cells (HUVECs) but did not promote cell spreading and actin stress fiber formation. Fbln7-C binding to HUVECs induced integrin clustering at cell adhesion sites with other focal adhesion molecules, and sustained activation of FAK, p130Cas, and Rac1. In addition, RhoA activation was inhibited, thereby preventing HUVEC spreading. As endothelial cell spreading is an important step for angiogenesis, we examined the effect of Fbln7-C on angiogenesis using in vitro assays for endothelial cell tube formation and vessel sprouting from aortic rings. We found that Fbln7-C inhibited the HUVEC tube formation and the vessel sprouting in aortic ring assays. Our findings suggest potential anti-angiogenic activity of the Fbln7 C-terminal region. Published by Elsevier Inc.
Ramer, Robert; Fischer, Sascha; Haustein, Maria; Manda, Katrin; Hinz, Burkhard
2014-09-15
Cannabinoids inhibit tumor neovascularization as part of their tumorregressive action. However, the underlying mechanism is still under debate. In the present study the impact of cannabinoids on potential tumor-to-endothelial cell communication conferring anti-angiogenesis was studied. Cellular behavior of human umbilical vein endothelial cells (HUVEC) associated with angiogenesis was evaluated by Boyden chamber, two-dimensional tube formation and fibrin bead assay, with the latter assessing three-dimensional sprout formation. Viability was quantified by the WST-1 test. Conditioned media (CM) from A549 lung cancer cells treated with cannabidiol, Δ(9)-tetrahydrocannabinol, R(+)-methanandamide or the CB2 agonist JWH-133 elicited decreased migration as well as tube and sprout formation of HUVEC as compared to CM of vehicle-treated cancer cells. Inhibition of sprout formation was further confirmed for cannabinoid-treated A549 cells co-cultured with HUVEC. Using antagonists to cannabinoid-activated receptors the antimigratory action was shown to be mediated via cannabinoid receptors or transient receptor potential vanilloid 1. SiRNA approaches revealed a cannabinoid-induced expression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) as well as its upstream trigger, the intercellular adhesion molecule-1, to be causally linked to the observed decrease of HUVEC migration. Comparable anti-angiogenic effects were not detected following direct exposure of HUVEC to cannabinoids, but occurred after addition of recombinant TIMP-1 to HUVEC. Finally, antimigratory effects were confirmed for CM of two other cannabinoid-treated lung cancer cell lines (H460 and H358). Collectively, our data suggest a pivotal role of the anti-angiogenic factor TIMP-1 in intercellular tumor-endothelial cell communication resulting in anti-angiogenic features of endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Jian; Zhang, Xing; Wang, Yong; Ye, Yu; Huang, Zhaoquan
2018-05-02
For postmenopausal cardiovascular disease, long-term estrogen therapy may increase the risk of breast cancer. To reduce this risk, estrogen may be replaced with the phytoestrogen formononetin, but how formononetin acts on vascular endothelial cells (ECs) and breast cancer cells is unclear. Here, we show that low concentrations of formononetin induced proliferation and inhibited apoptosis more strongly in cultured human umbilical vein endothelial cells (HUVECs) than in breast cancer cells expressing estrogen receptor α (ERα) (MCF-7, BT474) or not (MDA-MB-231), and that this differential stimulation was associated with miR-375 up-regulation in HUVECs. For the first time, we demonstrate the presence of a feedback loop involving miR-375, ras dexamethasone-induced 1 (RASD1), and ERα in normal HUVECs, and we show that formononetin stimulated this feedback loop in HUVECs but not in MCF-7 or BT474 cells. In all three cell lines, formononetin increased Akt phosphorylation and Bcl-2 expression. Inhibiting miR-375 blocked these changes and increased proliferation in HUVECs, but not in MCF-7 or BT474 cells. In ovariectomized rats, formononetin increased uterine weight and caused similar changes in levels of miR-375, RASD1, ERα, and Bcl-2 in aortic ECs as in cultured HUVECs. In mice bearing MCF-7 xenografts, tumor growth was stimulated by 17β-estradiol but not by formononetin. These results suggest selective action of formononetin in ECs (proliferation stimulation and apoptosis inhibition) relative to breast cancer cells, possibly via a feedback loop involving miR-375, RASD1, and ERα. This differential effect may explain why formononetin may not increase the risk of postmenopausal breast cancer. © 2018 Wiley Periodicals, Inc.
Lukashevich, I S; Maryankova, R; Vladyko, A S; Nashkevich, N; Koleda, S; Djavani, M; Horejsh, D; Voitenok, N N; Salvato, M S
1999-12-01
Cells of the mononuclear and endothelial lineages are targets for viruses which cause hemorrhagic fevers (HF) such as the filoviruses Marburg and Ebola, and the arenaviruses Lassa and Junin. A recent model of Marburg HF pathogenesis proposes that virus directly causes endothelial cell damage and macrophage release of TNF-alpha which increases the permeability of endothelial monolayers [Feldmann et al. , 1996]. We show that Lassa virus replicates in human monocytes/macrophages and endothelial cells without damaging them. Human endothelial cells (HUVEC) are highly susceptible to infection by both Lassa and Mopeia (a non-pathogenic Lassa-related arenavirus). Whereas monocytes must differentiate into macrophages before supporting even low level production of these viruses, the virus yields in the culture medium of infected HUVEC cells reach more than 7 log10 PFU/ml without cellular damage. In contrast to filovirus, Lassa virus replication in monocytes/macrophages fails to stimulate TNF-alpha gene expression and even down-regulates LPS-stimulated TNF-alpha mRNA synthesis. The expression of IL-8, a prototypic proinflammatory CXC chemokine, was also suppressed in Lassa virus infected monocytes/macrophages and HUVEC on both the protein and mRNA levels. This contrasts with Mopeia virus infection of HUVEC in which neither IL-8 mRNA nor protein are reduced. The cumulative down-regulation of TNF-alpha and IL-8 expression could explain the absence of inflammatory and effective immune responses in severe cases of Lassa HF. Copyright 1999 Wiley-Liss, Inc.
Tu, Fengxia; Pang, Qiongyi; Chen, Xiang; Huang, Tingting; Liu, Meixia; Zhai, Qiongxiang
2017-01-01
In the present study, we aimed to elucidate whether apigenin contributes to the induction of angiogenesis and the related mechanisms in cell hypoxia-reoxygenation injury. The role of apigenin was examined in human umbilical vein endothelial cell (HUVEC) viability, migration and tube formation in vitro. To investigate the related mechanisms, we used caveolin-1 short interfering RNA. The viability of HUVECs was measured using Cell Counting Kit-8 assays, HUVEC migration was analyzed by crystal violet staining, and a tube formation assay was performed using the branch point method. Expression of caveolin-1, vascular endothelial growth factor (VEGF), and endothelial nitric oxide synthase (eNOS) in HUVECs was examined by polymerase chain reaction and western blotting. Our data revealed that apigenin induced angiogenesis in vitro by increasing the tube formation ability of HUVECs, which was counteracted by caveolin-1 silencing. Compared to the NC group, Caveolin-1 and eNOS expression was upregulated by apigenin, whereas compared to the NC group, eNOS expression was increased upon caveolin-1 silencing. The expression of VEGF was increased by treatment with apigenin; however, compared to the NC group, caveolin-1 silencing did not affect VEGF expression, and apigenin did not increase VEGF expression in HUVECs after caveolin-1 silencing. These data suggest that apigenin may be a candidate therapeutic target for stroke recovery by promoting angiogenesis via the caveolin-1 signaling pathway. PMID:29039442
Al-Ani, Bahjat
2013-01-01
We recently reported that (i) activation of the proinflammatory receptor, proteinase-activated receptor-2 (PAR-2) caused the release of an important biomarker in preeclampsia, soluble vascular endothelial growth factor receptor-1 (sVEGFR-1, also known as sFlt-1) from human umbilical vein endothelial cells (HUVECs), and (ii) that the anti-oxidant and anti-inflammatory agent, resveratrol, is capable of inhibiting the proinflammatory cytokine-induced sVEGFR-1 release from human placenta. Based on these findings and because PAR-2 is upregulated by proinflammatory cytokines, we sought to determine whether resveratrol can inhibit PAR-2-induced sVEGFR-1 release. PAR-2 expressing cells, HUVECs and human embryonic kidney cells (HEK-293) transfected with a human VEGFR-1 promoter-luciferase reporter construct were incubated with PAR-2-activating peptide and/or resveratrol. Cell supernatants were assayed for sVEGFR-1 by enzyme-linked immunosorbent assay (ELISA), and VEGFR-1 promoter-luciferase assay was performed on the harvested cell lysates. Preincubation of HEK-293 cells with resveratrol significantly inhibited PAR-2-induced VEGFR-1 promoter activity without affecting cell viability as assessed by MTT assay. The addition of resveratrol also blocked PAR-2-mediated sVEGFR-1 release from HUVECs. The present study demonstrates that resveratrol suppressed both VEGFR-1 promoter activity and sVEGFR-1 protein release induced by PAR-2 activation, which further endorses our recent findings of a potential therapeutic role for resveratrol in preeclampsia. PMID:26933402
Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin
2016-08-05
For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC.
Wu, Qing-Qing; Xiao, Yang; Jiang, Xiao-Han; Yuan, Yuan; Yang, Zheng; Chang, Wei; Bian, Zhou-Yan; Tang, Qi-Zhu
2017-06-01
The aim of this study is to investigate the effect of evodiamine on fibroblast activation in cardiac fibroblasts and endothelial to mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Neonatal rat cardiac fibroblasts were stimulated with transforming growth factor beta 1 (TGF-β1) to induce fibroblast activation. After co-cultured with evodiamine (5, 10 μM), the proliferation and pro-fibrotic proteins expression of cardiac fibroblasts were evaluated. HUVECs were also stimulated with TGF-β1 to induce EndMT and treated with evodiamine (5, 10 μM) at the same time. The EndMT response in the HUVECs was evaluated as well as the capacity of the transitioned endothelial cells migrating to surrounding tissue. As a result, Evodiamine-blunted TGF-β1 induced activation of cardiac fibroblast into myofibroblast as assessed by the decreased expressions of α-SMA. Furthermore, evodiamine reduced the increased protein expression of fibrosis markers in neonatal and adult rat cardiac fibroblasts induced by TGF-β1. HUVECs stimulated with TGF-β1 exhibited lower expression levels of CD31, CD34, and higher levels of α-SMA, vimentin than the control cells. This phenotype was eliminated in the HUVECs treated with both 5 and 10 μM evodiamine. Evodiamine significantly reduced the increase in migration ability that occurred in response to TGF-β1 in HUVECs. In addition, the activation of Smad2, Smad3, ERK1/2, and Akt, and the nuclear translocation of Smad4 in both cardiac fibroblasts and HUVEC were blocked by evodiamine treatment. Thus, evodiamine could prevent cardiac fibroblasts from activation into myofibroblast and protect HUVEC against EndMT. These effects may be mediated by inhibition of the TGFβ pathway in both cardiac fibroblasts and HUVECs.
Cell-Responsive Hydrogel for Encapsulation of Vascular Cells
Kraehenbuehl, Thomas P.; Ferreira, Lino S.; Zammaretti, Prisca; Hubbell, Jeffrey A.; Langer, Robert
2014-01-01
The in vitro potential of a synthetic matrix metalloproteinase (MMP)-responsive polyethylene glycol) (PEG)-based hydrogel as a bioactive co-encapsulation system for vascular cells and a small bioactive peptide, thymosin β4 (Tp4), was examined. We show that the physical incorporation of Tβ4 in this bioactive matrix creates a three-dimensional (3D) environment conducive for human umbilical vein endothelial cell (HUVEC) adhesion, survival, migration and organization. Gels with entrapped Tβ4 increased the survival of HUVEC compared to gels without Tp4, and significantly up-regulated the endothelial genes vascular endothelial-cadherin and angiopoietin-2, whereas von Willebrand factor was significantly down-regulated. Incorporation of Tβ4 significantly increased MMP-2 and MMP-9 secretion of encapsulated HUVEC. The gel acts as a controlled Tβ4-release system, as MMP-2 and MMP-9 enzymes trigger the release. In addition, Tβ4 facilitated HUVEC attachment and induced vascular-like network formation upon the PEG-hydrogels. These MMP-responsive PEG-hydrogels may thus serve as controlled co-encapsulation system of vascular cells and bioactive factors for in situ regeneration of ischemic tissues. PMID:19500842
Liang, N W; Shi, L; Huang, Y; Deng, X L
2017-02-18
To study the role of different scale structure of Ti implants on the biological behaviors of human umbilical vein endothelial cell (HUVECs) and to reveal the role of material surface topographical features on peri-implant angiogenesis. Titanium (Ti) discs with different surface structures (Ti discs with smooth surface, Ti discs with nano scale structure, Ti discs with micro scale structure and Ti discs with micro/nano scale structure, named as SM-Ti, Nano-Ti, Micro-Ti and Micro/Nano-Ti, respectively) were prepared and their surface topographical features were confirmed via scanning electron microscopy (SEM) observation. HUVECs were cultured on these Ti discs. Biological outcomes of HUVECs on different surfaces were carried out, including cell adhesive capacity, proliferation, vascular endothelial growth factor (VEGF) production and intracellular expression of Ca(2+). The results of SEM images and immunofluorescence double staining of rhodamine-phalloidin and DAPI showed that compared with the SM-Ti and Nano-Ti group, the adhesive capacity and proliferation behavior of HUVECs on the surfaces of Micro-Ti and Micro/Nano-Ti was decreased. The results of culturing HUVECs on different groups of Ti discs after 24 hours showed that the cells number grew from (18±4) to (42±6)/ vision on SM-Ti, (28±6) to (52±10)/vision on Nano-Ti, (20±4) to (21±6)/vision on Micro-Ti and (16±4) to (18±6)/vision on Micro/Nano-Ti. Moreover, compared with the adhesion and proliferation of HUVECs on SM-Ti group and Nano-Ti, the adhesion and proliferation of HUVECs on Micro-Ti group and Micro/Nano-Ti group was significantly reduced (P<0.05).The results of enzyme-linked immunosorbent assay (ELISA) showed that the VEGF productions of SM-Ti, Nano-Ti, Micro-Ti and Micro/Nano-Ti were (690±35) ng/L, (560±20) ng/L, (474±43) ng/L and (517±29) ng/L, respectively. Moreover, compared with the VEGF production of HUVECs on SM-Ti group, the VEGF production of HUVECs on Micro-Ti group and Micro/Nano-Ti group was significantly reduced (P<0.05). The results of Ca(2+) ion detection showed that the Ca(2+) expression of HUVECs on Micro-Ti and Micro/Nano-Ti was significantly higher than that on the surface of SM-Ti and Nano-Ti. These results implied that the over expressed Ca(2+) might contributed to the impaired biological function of HUVECs on Micro-Ti and Micro/Nano-Ti. Different topographical features on titanium influenced the biological behaviors of the HUVECs, which may illustrate how topographical features of Ti implant affect peri-implant angiogenesis. These results also suggest that the biological behaviors of HUVECs might be relative to the changed expression of intracellular Ca(2+).
Selective Suppression of Endothelial Cell Apoptosis by the High Molecular Weight Form of Adiponectin
Kobayashi, Hideki; Ouchi, Noriyuki; Kihara, Shinji; Walsh, Kenneth; Kumada, Masahiro; Abe, Yuki; Funahashi, Tohru; Matsuzawa, Yuji
2015-01-01
Adiponectin is an adipocyte-derived, antiatherogenic protein that is present in serum as three isoforms. Total adiponectin levels are decreased in obese or diabetic humans or animal models. This study was designed to elucidate the relative isoform distribution of adiponectin in human disease states and identify the active form of adiponectin toward vascular endothelial cells. The percentage of high molecular weight form (HMW) per total adiponectin was significantly lower in patients with coronary artery disease than control subjects, whereas the hexamer form was similar and the trimer form was significantly higher. During weight reduction in obese subjects, the HMW form increased and the trimer and hexamer forms decreased. Recombinant adiponectin dose-dependently suppressed apoptosis and caspase-3 activity in human umbilical vein endothelial cells (HUVECs). Transduction with dominant-negative AMP-activated protein kinase (AMPK) abolished the suppressive effect of adiponectin on HUVECs. Gel filtration chromatography was used to separate the adiponectin isoforms, and the antiapoptotic effect toward HUVECs was only observed with the HMW form. These data suggest that HMW adiponectin specifically confers the vascular-protective activities of this adipocytokine. PMID:14752031
Liu, Shing Hwa; Sheu, Wayne Huey Herng; Lee, Maw Rong; Lee, Wen Jane; Yi, Yu Chiao; Yang, Tzung Jie; Jen, Jen Fon; Pan, Hung Chuan; Shen, Chin Chang; Chen, Wen Bao; Tien, Hsing Ru; Sheu, Meei Ling
2013-06-01
N(ε)-carboxymethyllysine (CML), a major advanced glycation end product, plays a crucial role in diabetes-induced vascular injury. The roles of protein tyrosine phosphatases and vascular endothelial growth factor (VEGF) receptors in CML-related endothelial cell injury are still unclear. Human umbilical vein endothelial cells (HUVECs) are a commonly used human EC type. Here, we tested the hypothesis that NADPH oxidase/reactive oxygen species (ROS)-mediated SH2 domain-containing tyrosine phosphatase-1 (SHP-1) activation by CML inhibits the VEGF receptor-2 (VEGFR-2, KDR/Flk-1) activation, resulting in HUVEC injury. CML significantly inhibited cell proliferation and induced apoptosis and reduced VEGFR-2 activation in parallel with the increased SHP-1 protein expression and activity in HUVECs. Adding recombinant VEGF increased forward biological effects, which were attenuated by CML. The effects of CML on HUVECs were abolished by SHP-1 siRNA transfection. Exposure of HUVECs to CML also remarkably escalated the integration of SHP-1 with VEGFR-2. Consistently, SHP-1 siRNA transfection and pharmacological inhibitors could block this interaction and elevating [(3)H]thymidine incorporation. CML also markedly activated the NADPH oxidase and ROS production. The CML-increased SHP-1 activity in HUVECs was effectively attenuated by antioxidants. Moreover, the immunohistochemical staining of SHP-1 and CML was increased, but phospho-VEGFR-2 staining was decreased in the aortic endothelium of streptozotocin-induced and high-fat diet-induced diabetic mice. We conclude that a pathway of tyrosine phosphatase SHP-1-regulated VEGFR-2 dephosphorylation through NADPH oxidase-derived ROS is involved in the CML-triggered endothelial cell dysfunction/injury. These findings suggest new insights into the development of therapeutic approaches to reduce diabetic vascular complications. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Xu, Wen-Ming; Lin, Jian-Cong; Chen, Mei-Ji; Zhang, Chang-Ran; Li, Yan-Bing
2018-05-20
To explore the role of the interaction between glycogen synthase kinase-3β (GSK-3β) and endoplasmic reticulum stress (ERS) in the high glucose (HG)-induced injury in human umbilical vein endothelial cells (HUVECs). HUVECs treated with 40 mmol/L glucose for 24 h were examined for expression levels of GSK-3β, GRP78, CHOP and cleaved caspase-3 protein using Western blotting. The cell viability was examined using CCK-8 assay and cell apoptosis was detected with Hoechst 33258 nuclear staining and photofluorography. The intracellular level of reactive oxygen species (ROS) was measured with dichlorfluoresein staining and photofluorography. Mitochondrial membrane potential (MMP) was tested by rhodamine 123 (Rh123) staining and photofluorography. Treatment of HUVECs with 40 µmol/L glucose for 3-24 h activated GSK-3β in a time-dependent manner, leading to significantly down-regulated expression of phosphorylated (p)-GSK-3β (P<0.05). HG exposure of the cells for 1-24 h induced ERS, evidenced by time-dependently up-regulated expression of GRP78 and CHOP (P<0.05). LiCl, an inhibitor of GSK-3β, attenuated HG-induced ERS and significantly lowered the expression levels of GRP78 and CHOP (P<0.01). 4-PBA, an inhibitor of ERS, obviously ameliorated the activation of GSK-3β by HG as shown by the increase in p-GSK-3β expression level (P<0.01). HG exposure for 24 h induced obvious injuries in HUVECs, which exhibited decreased cell viability, increased cell apoptosis, increased expression of cleaved caspase-3 and ROS generation, and loss of MMP. Pretreatment of the cells with LiCl or 4-PBA for 60 min before HG exposure significantly lessened the cell injuries (P<0.01). Interactions between GSK-3β and ERS occur in HUVECs exposed to HG and participate in HG-induced cell injuries.
Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells.
Izuta, Hiroshi; Shimazawa, Masamitsu; Tsuruma, Kazuhiro; Araki, Yoko; Mishima, Satoshi; Hara, Hideaki
2009-11-17
Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs). In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis > bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.
Zheng, Zeqi; Liu, Lijuan; Zhan, Yuliang; Yu, Songping; Kang, Ting
2018-06-18
To explore the potential mechanism of miRNA released from adipose-derived stem cell (ADSC)-derived micro vesicle (MV) on the modulation of proliferation, migration and invasion of endothelial cells. miR-210 level was detected by qT-PCR. Alix, VEGF and RUNX3 expressions were detected by Western blot. The proliferation, migration and invasion of human umbilical vein endothelial cells (HUVECs) were observed by MTT assay and Transwell assay. Luciferase reporter gene assay was conducted to validate the targeting activity of MVs-released miR-210 on RUNX3. Hypoxia significantly increased the expression of MVs-released miR-210. MVs released from ADSCs in hypoxic group significantly promoted the proliferation, migration and invasion of HUVECs. Overexpression of miR-210 significantly upregulated VEGF expression, and promoted the proliferation, migration and invasion of HUVECs. Besides, RUNX3 was identified as the direct of miR-210 in HUVECs. Overexpression of miR-210 decreased RUNX3 expression and promoted the proliferation, migration and invasion of HUVECs, while overexpression of RUNX3 inhibited these promotion effects. In vivo experiment showed that MVs derived from ADSCs under hypoxia increased miR-210 level and capillary density, and inhibition of miR-210 decreased capillary density. We also found MVs downregulated RUNX3 expression, and inhibition of miR-210 upregulated RUNX3 expression. miR-210 released from ADSCs-derived MVs promoted proliferation, migration and invasion of HUVECs by targeting RUNX3, which revealed one of the mechanisms of ADSCs-derived MVs on the promotion of proliferation, migration and invasion of HUVECs.
Chang, Shiwei; Zhao, Xuqi; Li, Siyu; Liao, Tuqiang; Long, Jimin; Yu, Zhiqiang; Cao, Yi
2018-06-18
Recently we found that direct exposure of human umbilical vein endothelial cells (HUVECs) to multi-walled carbon nanotubes (MWCNTs) might induce toxicological responses through the modulation of ER stress gene expression, but whether this signal could be transferred from other cells to endothelial cells (ECs) is unknown. This study investigated the toxicity of pristine and carboxylated MWCNTs to HUVECs and alveolar-endothelial co-culture, the later of which could mimic the possible signaling communications between ECs and MWCNT exposed alveolar cells. The results showed that direct contact with high levels of MWCNTs induced cytotoxicity and modulated expression of genes associated with ER stress (HSPA5, DDIT3 and XBP-1s) and autophagy (BECN1 and ATG12) both in A549-THP-1 macrophages cultured in the upper chambers as well as HUVECs. However, most of these responses were minimal or negligible in HUVECs cultured in the lower chambers. Moreover, significantly increased cytokine release (interleukin-6 and soluble vascular cell adhesion molecule-1) was only observed in MWCNT exposed HUVECs (p < 0.01) but not HUVECs cultured in the lower chambers (p > 0.05). The minimal or even absent response was likely due to relatively low translocation of MWCNTs from upper chambers to lower chambers, whereas A549-macrophages cultured in the upper chambers internalized large amount MWCNTs. The results indicated that ER stress-autophagy signaling might not be able to transfer from alveolar cells to endothelial cells unless sufficient MWCNTs are translocated. Copyright © 2018 Elsevier Inc. All rights reserved.
Pivotal role of glutathione depletion in plasma-induced endothelial oxidative stress during sepsis.
Huet, Olivier; Cherreau, Christaine; Nicco, Carole; Dupic, Laurent; Conti, Marc; Borderie, Didier; Pene, Frédéric; Vicaut, Eric; Benhamou, Dan; Mira, Jean-Paul; Duranteau, Jacques; Batteux, Frédéric
2008-08-01
Plasma from septic shock patients can induce production of reactive oxygen species (ROS) by human umbilical vein endothelial cells (HUVEC) in vitro. How endothelial cells defend themselves against ROS under increased oxidative stress has not yet been examined. This study investigates the antioxidant defenses of HUVEC exposed to plasma obtained from either septic shock patients or healthy volunteers. Prospective, observational study. Medical intensive care unit in a university hospital. Twenty-five patients with septic shock and 10 healthy volunteers. Blood samples were collected within the first 24 hrs of septic shock. In vitro HUVEC production of ROS was studied by spectrofluorimetry using 2',7'-dichlorodihydrofluorescein diacetate fluorescent dye. Reactive nitrogen species were also assessed. Intracellular reduced glutathione (GSH) levels were measured using monochlorobimane fluorescent dye. Activity of catalase and superoxide dismutase in HUVEC were also measured. Cell death was assessed using YOPRO fluorescent dye and the MTT assay. On admission, the septic shock population's mean age was 55 yrs old, the mean Sequential Organ Failure Assessment score was 12, mean simplified acute physiology score was 50, and intensive care unit mortality rate was 45%. Evaluation of HUVEC antioxidant defenses showed a significantly decreased GSH level, increased catalase activity, and unchanged superoxide dismutase activity. ROS levels and cell death were significantly reduced when cells were pretreated with N-acetylcysteine or GSH, but no changes in reactive nitrogen species were observed. This study demonstrates that plasma-induced ROS production by HUVEC is associated with an intracellular decrease in reduced GSH. Both ROS levels and cell death decreased when N-acetylcysteine or GSH were added before exposing the cells to plasma. These data suggest a pivotal role of alterations in GSH in damage caused by sepsis-generated ROS in endothelial cell.
Calcium dobesilate may alleviate diabetes-induced endothelial dysfunction and inflammation
Zhou, Yijun; Yuan, Jiangzi; Qi, Chaojun; Shao, Xinghua; Mou, Shan; Ni, Zhaohui
2017-01-01
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease. However, the pathogenesis of DKD remains unclear, and no effective treatments for the disease are available. Thus, there is an urgent need to elucidate the pathogenic mechanisms of DKD and to develop more effective therapies for this disease. Human umbilical vein endothelial cells (HUVECs) were cultured using different D-glucose concentrations to determine the effect of high glucose (HG) on the cells. Alternatively, HUVECs were incubated with 100 µmol/l calcium dobesilate (CaD) to detect its effects. The authors subsequently measured HUVEC proliferation via cell counting kit-8 assays. In addition, HUVEC angiogenesis was investigated via migration assays and fluorescein isothiocyanate (FITC)-labelled bovine serum albumin (BSA) permeability assays. The content or distribution of markers of endothelial dysfunction [vascular endothelial growth factor (VEGF), VEGF receptor (R) and endocan) or inflammation [intercellular adhesion molecule (ICAM)-1, monocyte chemotactic protein (MCP)-1 and pentraxin-related protein (PTX3)] was evaluated via reverse transcription-quantitative polymerase chain reaction and western blotting. HG treatment induced increased in VEGF, VEGFR, endocan, ICAM-1, MCP-1 and PTX3 mRNA and protein expression in HUVECs. HG treatment for 24 to 48 h increased cell proliferation in a time-dependent manner, but the cell proliferation rate was decreased at 72 h of HG treatment. Conversely, CaD inhibited abnormal cell proliferation. HG treatment also significantly enhanced HVUEC migration compared to the control treatment. In contrast, CaD treatment partially inhibited HUVEC migration compared to HG exposure. HG-treated HUVECs exhibited increased FITC-BSA permeability compared to control cells cultured in medium alone; however, CaD application prevented the HG-induced increase in FITC-BSA permeability and suppressed HG-induced overexpression of endothelial markers (VEGF, VEGFR-2, endocan) and inflammation markers (ICAM-1, MCP-1, PTX3) in HUVECs. CaD has angioprotective properties and protects endothelial cells partly by ameliorating HG-induced inflammation. The current results demonstrated the potential applicability of CaD to the treatment of diabetic nephropathy, particularly during the early stages of this disease. PMID:29039485
Kong, Ling-Jun; Liu, Xiao-Qian; Xue, Ying; Gao, Wei; Lv, Qian-Zhou
2018-03-20
Vascular endothelium dysfunction caused by oxidative stress accelerates the pathologic process of cardiovascular diseases. NOD2, an essential receptor of innate immune system, has been demonstrated to play a critical role in atherosclerosis. Here, the aim of our study was to investigate the effect and underlying molecular mechanism of muramyl dipeptide (MDP) on NOX4-mediated ROS generation in human umbilical vein endothelial cells (HUVECs). 2,7-dichlorofluorescein diacetate staining was to measure the intracellular ROS level and showed MDP promoted ROS production in a time- and dose-dependent manner. The mRNA and protein levels of NOX4 and COX-2 were detected by real-time PCR and western blot. Small interfering RNA (siRNA) was used to silence NOD2 or COX-2 gene expression and investigate the mechanism of NOD2-mediated signaling pathway in HUVECs. Data showed that MDP induced NOX4 and COX-2 expression in a time- and dose-dependent manner. NOD2 knock-down suppressed up-regulation of COX-2 and NOX4 in HUVECs treated with MDP. Furthermore, silence of COX-2 in HUVECs down-regulated the NOX4 expression after MDP stimulation. Collectively, we indicated that NOD2 played a leading role in MDP-induced COX-2/NOX4/ROS signaling pathway in HUVECs, which was a novel regulatory mechanism in the progress of ROS generation.
Li, Chen-Ye; Ma, Lan; Yu, Bo
2017-11-01
Circular RNAs (circRNAs) are a novel class of RNAs generated from back-splicing and characterized by covalently closed continuous loops. Recently, circRNAs have recently shown large regulation on cardiovascular system, including atherosclerosis. The present study aims to investigate the circRNA expression profile and identify their roles on vascular endothelial cells induced by oxLDL. Human circRNA microarray analysis revealed that total 943 differently expressed circRNAs were screened with 2 fold change. Hsa_circ_0003575 was validated to be significantly up-regulated in oxLDL induced HUVECs. Loss-of-function experiments indicated that hsa_circ_0003575 silencing promoted the proliferation and angiogenesis ability of HUVECs. Bioinformatics online programs predicted the potential circRNA-miRNA-mRNA network for hsa_circ_0003575. In summary, circRNA microarray analysis reveals the expression profiles of HUVECs and verifies the role of hsa_circ_0003575 on HUVECs, providing a therapeutic strategy for vascular endothelial cell injury of atherosclerosis. Copyright © 2017. Published by Elsevier Masson SAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, P.-Y.; Hsu, S.-P.; Liang, Y.-C.
2008-05-15
Previously, we showed that terbinafine (TB) induces cell-cycle arrest in cultured human umbilical vein endothelial cells (HUVEC) through an up-regulation of the p21 protein. The aim of this study is to delineate the molecular mechanisms underlying TB-induced increase of p21 protein. RT-PCR analysis demonstrated that the mRNA levels of p21 and p53 were increased in the TB-treated HUVEC. The p21 promoter activity was also increased by TB treatment. Transfection of HUVEC with p53 dominant negative (DN) abolished the TB-induced increases of p21 promoter activity and protein level, suggesting that the TB-induced increase of p21 is p53-dependent. Western blot analysis demonstratedmore » that TB decreased the levels of phosphorylated extracellular signal-regulated kinase (ERK). Over-expression of mitogen-activated protein kinase (MEK)-1, the immediate upstream activator kinase of ERK, abolished the TB-induced increases of p21 and p53 protein and decrease of thymidine incorporation. The ERK inhibitor (PD98059) enhanced the TB-induced inhibition of thymidine incorporation into HUVEC. Taken together, these data suggest that the decrease of ERK activity plays a role in the TB-induced up-regulation of p21 in HUVEC. On the other hand, pretreatment of the cells with geranylgeraniol (GGOH), farnesol (FOH), or Ras inhibitor peptide did not affect the TB-induced decrease of thymidine incorporation. Taken together, our results suggest that TB might cause a decrease of MEK, which in turn up-regulates p53 through the inhibition of ERK phosphorylation, and finally causes an increase of p21 expression and cell-cycle arrest.« less
Matsui, T; Nakamura, N; Ojima, A; Nishino, Y; Yamagishi, S-I
2016-09-01
Advanced glycation end products (AGEs)-receptor RAGE interaction evokes oxidative stress and inflammatory reactions, thereby being involved in endothelial cell (EC) damage in diabetes. Sulforaphane is generated from glucoraphanin, a naturally occurring isothiocyanate found in widely consumed cruciferous vegetables, by myrosinase. Sulforaphane has been reported to protect against oxidative stress-mediated cell and tissue injury. However, effects of sulforaphane on AGEs-induced vascular damage remain unclear. In this study, we investigated whether and how sulforaphane could inhibit inflammation in AGEs-exposed human umbilical vein ECs (HUVECs) and AGEs-injected rat aorta. Sulforaphane treatment for 4 or 24 h dose-dependently inhibited the AGEs-induced increase in RAGE, monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecular-1 (VCAM-1) gene expression in HUVECs. AGEs significantly stimulated MCP-1 production by, and THP-1 cell adhesion to, HUVECs, both of which were prevented by 1.6 μM sulforaphane. Sulforaphane significantly suppressed oxidative stress generation and NADPH oxidase activation evoked by AGEs in HUVECs. Furthermore, aortic RAGE, ICAM-1 and VCAM-1 expression in AGEs-injected rats were increased, which were suppressed by simultaneous infusion of sulforaphane. The present study demonstrated for the first time that sulforaphane could inhibit inflammation in AGEs-exposed HUVECs and AGEs-infused rat aorta partly by suppressing RAGE expression through its anti-oxidative properties. Inhibition of the AGEs-RAGE axis by sulforaphane might be a novel therapeutic target for vascular injury in diabetes. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chaoyun; He, Yanhao; Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Key Laboratory of Environment and Genes Related to Disease, Ministry of Education, Xi'an, Shaanxi 710061
Intracellular reactive oxygen species (ROS) are derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Angiotensin II (Ang II) can cause endothelial dysfunction by promoting intracellular ROS generation. Safflor yellow B (SYB) effectively inhibits ROS generation by upregulating Bcl-2 expression. In this study, we examined the effects of SYB on Ang II-induced injury to human umbilical vein endothelial cells (HUVECs), and elucidated the roles of NADPH oxidase and Bcl-2. We treated cultured HUVECs with Ang II, SYB, and Bcl-2 siRNA, and determined NADPH oxidase activity and ROS levels. Furthermore, cellular and mitochondrial physiological states were evaluated, and the expression levels ofmore » target proteins were analyzed. Ang II significantly enhanced intracellular ROS levels, caused mitochondrial membrane dysfunction, and decreased cell viability, leading to apoptosis. This was associated with increased expression of AT1R and p22{sup phox}, increased NADPH oxidase activity, and an increased ratio of Bax/Bcl-2, leading to decreases in antioxidant enzyme activities, which were further strengthened after blocking Bcl-2. Compared to Ang II treatment alone, co-treatment with SYB significantly reversed HUVEC injury. Taken together, these results demonstrate that SYB could significantly protect endothelial cells from Ang II-induced cell damage, and that it does so by upregulating Bcl-2 expression and inhibiting ROS generation. - Highlights: • Angiotensin II depresses mitochondria physiological function. • Angiotensin II activates NADPH oxidase via up-regulating expresion of p22{sup phox}. • Bcl-2 plays a pivotal role in improving mitochondria function and regulates ROS level. • Inhibitor of Bcl-2 promotes angiotensin II mediated HUVEC injury. • SYB attenuates angiotensin II mediated HUVEC injury via up regulating Bcl-2 expression.« less
Long, Dongping; Shang, Yunfei; Qiu, Youyi; Zhou, Bin; Yang, Peihui
2018-04-15
A novel single-cell analysis platform (SCA) was developed for the investigation of platelets adhesion to single human umbilical vein endothelial cell (HUVEC) via using the adhesion molecule (E-selectin) on the damaged HUVEC as the marker site, and integrating electrochemiluminescence (ECL) with the ultrasensitive Au@DL-ZnCQDs nanoprobes. The Au@DL-ZnCQDs nanocomposite, a kind of double layer zinc-coadsorbed carbon quantum dot (ZnCQDs) core-shell nanoprobe, was firstly constructed by using gold nanoparticles (AuNPs) as the core to load with ZnCQDs and then the citrate-modified silver nanoparticles (AgNPs) as the bridge to link AuNPs-ZnCQDs with ZnCQDs to form the core-shell with double layer ZnCQDs (DL-ZnCQDs) nanoprobe, revealed a 10-fold signal amplification. The H 2 O 2 -induced oxidative damage HUVECs were utilized as the cellular model on which anti-E-selectin functionalized nanoprobes specially recognized E-selectin, the SCA showed that the ECL signals decreased with platelets adhesion to single HUVEC. The proposed SCA could effectively and dynamically monitor the adhesion between single HUVEC and platelets in the absence and presence of collagen activation, moreover, be able to quantitatively detect the number of platelets adhesion to single HUVEC, and show a good analytical performance with linear range from 1 to 15 platelets. In contrast, the HUVEC was down-regulated the expression of adhesion molecules by treating with quercetin inhibitor, and the SCA also exhibited the feasibility for analysis of platelets adhesion to single HUVEC. Therefore, the single-cell analysis platform provided a novel and promising protocol for analysis of the single intercellular adhesion, and it will be beneficial to elucidate the pathogenesis of cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, W.-J.
2008-05-02
Agglucetin, a platelet glycoprotein (GP)Ib binding protein from Formosan Agkistrodon acutus (A. acutus) venom, could sustain human umbilical vein endothelial cell (HUVEC) proliferation and HUVEC adhering to immobilized agglucetin showed extensive spreading, which was strongly abrogated by integrin antagonists 7E3 and triflavin. Flow cytometric analyses confirmed the expression of GPIb complex on HUVEC is absent and fluorescein isothiocyanate (FITC)-agglucetin binds to HUVEC in a dose-dependent and saturable manner. Furthermore, native agglucetin specifically and dose-dependently inhibited the binding of FITC-23C6, an anti-{alpha}v{beta}3 monoclonal antibody (mAb), but not antibodies against {alpha}2 and {alpha}5, toward HUVEC and purified {alpha}v{beta}3 also bound to immobilizedmore » agglucetin-{beta} in a dose-dependent manner. Moreover, agglucetin exhibited a pro-angiogenic effect in vitro, as well as the focal adhesion kinase (FAK)-associated signaling molecules responsible for HUVEC activation were initiated by agglucetin. In conclusion, agglucetin, acting as a survival factor, promotes endothelial adhesion and angiogenesis by triggering {alpha}v{beta}3 signaling through FAK/phosphatidylinositol 3-kinase (PI3K)/Akt pathway.« less
Mahapatra, Saswati; Young, Charles Y. F.; Kohli, Manish; Karnes, R. Jeffrey; Klee, Eric W.; Holmes, Michael W.; Tindall, Donald J.; Donkena, Krishna Vanaja
2012-01-01
Azadirachta indica (common name: neem) leaves have been found to possess immunomodulatory, anti-inflammatory and anti-carcinogenic properties. The present study evaluates anti-angiogenic potential of ethanol extract of neem leaves (EENL) in human umbilical vein endothelial cells (HUVECs). Treatment of HUVECs with EENL inhibited VEGF induced angiogenic response in vitro and in vivo. The in vitro proliferation, invasion and migration of HUVECs were suppressed with EENL. Nuclear fragmentation and abnormally small mitochondria with dilated cristae were observed in EENL treated HUVECs by transmission electron microscopy. Genome-wide mRNA expression profiling after treatment with EENL revealed differentially regulated genes. Expression changes of the genes were validated by quantitative real-time polymerase chain reaction. Additionally, increase in the expression of HMOX1, ATF3 and EGR1 proteins were determined by immunoblotting. Analysis of the compounds in the EENL by mass spectrometry suggests the presence of nimbolide, 2′,3′-dehydrosalannol, 6-desacetyl nimbinene and nimolinone. We further confirmed antiproliferative activity of nimbolide and 2′,3′-dehydrosalannol in HUVECs. Our results suggest that EENL by regulating the genes involved in cellular development and cell death functions could control cell proliferation, attenuate the stimulatory effects of VEGF and exert antiangiogenic effects. EENL treatment could have a potential therapeutic role during cancer progression. PMID:22461839
Cytotoxic 2',5'-dihydroxychalcones with unexpected antiangiogenic activity.
Nam, Nguyen-Hai; Kim, Yong; You, Young-Jae; Hong, Dong-Ho; Kim, Hwan-Mook; Ahn, Byung-Zun
2003-02-01
A series of 2',5'-dihydroxychalcones were synthesized and evaluated for cytotoxicity against tumor cell lines and human umbilical venous endothelial cells (HUVEC). It was found that chalcones with electron-withdrawing substituents on the B ring exhibited potent cytotoxicity against a variety of tumor cell lines while compounds with electron-releasing groups were less potent in general. Those compounds with B ring replaced by extended or heteroaromatic rings exhibited significant bioactivity. Several compounds were shown to have marked cytotoxic selectivity towards HUVECs. Especially, among the synthesized compounds, 2-chloro-2',5'-dihydroxychalcone (2-3) showed the highest selectivity index up to 66 in comparison to HCT116 cells. This compound also exhibited strong inhibitory effects on the HUVEC tube formation in an in vitro model. When administered into BDF1 mice bearing Lewis lung carcinoma cells at 50 mg kg(-1) day(-1), 2-3 was found to inhibit the growth of tumor mass by 60.5%.
Spaceflight of HUVEC: An Integrated eXperiment- SPHINX Onboard the ISS
NASA Astrophysics Data System (ADS)
Versari, S.; Maier, J. A. M.; Norfini, A.; Zolesi, V.; Bradamante, S.
2013-02-01
The spaceflight orthostatic challenge can promote in astronauts inadequate cardiovascular responses defined as cardiovascular deconditioning. In particular, disturbance of endothelial functions are known to lead to altered vascular performances, being the endothelial cells crucial in the maintenance of the functional integrity of the vascular wall. In order to evaluate whether weightlessness affects endothelial functions, we designed, developed, and performed the experiment SPHINX - SPaceflight of HUVEC: an INtegrated eXperiment - where HUVEC (Human Umbilical Vein Endothelial Cells) were selected as a macrovascular cell model system. SPHINX arrived at the International Space Station (ISS) onboard Progress 40P, and was processed inside Kubik 6 incubator for 7 days. At the end, all of the samples were suitably fixed and preserved at 6°C until return on Earth on Soyuz 23S.
Zhang, Bing; Wei, Chun-Yan; Chang, Kai-Kai; Yu, Jia-Jun; Zhou, Wen-Jie; Yang, Hui-Li; Shao, Jun; Yu, Jin-Jin; Li, Ming-Qing; Xie, Feng
2017-12-01
Our previous study demonstrated that thymic stromal lymphopoietin (TSLP) secreted by cervical cancer cells promotes angiogenesis and recruitment, and regulates the function of eosinophils (EOS). However, the function of TSLP in the crosstalk between EOS and vascular endothelial cells in cancer lesions remains unknown. The aim of the present study was to investigate the effect of EOS caused by TSLP in in vitro angiogenesis of human umbilical vein endothelial cells (HUVECs). The results of the present study revealed that recombinant human TSLP protein (rhTSLP) increased the secretion of vascular endothelial growth factor (VEGF), but not fibroblast growth factors, in HL-60-eosinophils (HL-60E). Compared with cervical cancer cells (HeLa or CasKi cells) or HL-60E alone, there were increased levels of interleukin (IL)-8 and VEGF in the co-culture system between cervical cancer cells, and HL-60E cells. This effect was strengthened by rhTSLP, but inhibited by inhibiting the TSLP signal with anti-human TSLP or TSLP receptor neutralizing antibodies. The results of the tube formation assays revealed that treatment with the supernatant from cervical cancer cells and/or HL-60E resulted in an increase in angiogenesis in HUVECs, which could be decreased by TSLP or TSLPR inhibitors. The results of the present study suggested that TSLP derived of cervical cancer cells may indirectly stimulate angiogenesis of HUVECs, by upregulating IL-8 and VEGF production, in a co-culture model between cervical cancer cells and EOS, therefore promoting the development of cervical cancer.
Tu, Fengxia; Pang, Qiongyi; Chen, Xiang; Huang, Tingting; Liu, Meixia; Zhai, Qiongxiang
2017-12-01
In the present study, we aimed to elucidate whether apigenin contributes to the induction of angiogenesis and the related mechanisms in cell hypoxia-reoxygenation injury. The role of apigenin was examined in human umbilical vein endothelial cell (HUVEC) viability, migration and tube formation in vitro. To investigate the related mechanisms, we used caveolin-1 short interfering RNA. The viability of HUVECs was measured using Cell Counting Kit-8 assays, HUVEC migration was analyzed by crystal violet staining, and a tube formation assay was performed using the branch point method. Expression of caveolin-1, vascular endothelial growth factor (VEGF), and endothelial nitric oxide synthase (eNOS) in HUVECs was examined by polymerase chain reaction and western blotting. Our data revealed that apigenin induced angiogenesis in vitro by increasing the tube formation ability of HUVECs, which was counteracted by caveolin-1 silencing. Compared to the NC group, Caveolin-1 and eNOS expression was upregulated by apigenin, whereas compared to the NC group, eNOS expression was increased upon caveolin-1 silencing. The expression of VEGF was increased by treatment with apigenin; however, compared to the NC group, caveolin-1 silencing did not affect VEGF expression, and apigenin did not increase VEGF expression in HUVECs after caveolin-1 silencing. These data suggest that apigenin may be a candidate therapeutic target for stroke recovery by promoting angiogenesis via the caveolin-1 signaling pathway.
Wu, Wen-Bin; Hung, Dian-Kun; Chang, Fung-Wei; Ong, Eng-Thaim; Chen, Bing-Huei
2012-10-01
Anti-inflammatory and anti-angiogenic effects of flavonoids isolated from Lycium barbarum fruits, a traditional Chinese medicine, on human umbilical vein endothelial cells (HUVECs) were investigated. Initially, flavonoids were extracted with 80% ethanol and separated using a Cosmosil 140 C18-OPN column, with the acidic fraction eluted with deionized water being composed of chlorogenic acid, caffeoyl quinic acid, caffeic acid and p-coumaric acid and the neutral fraction eluted with methanol composed of quercetin-diglycoside, rutin and kaempferol-O-rutinoside. Flavonoid extract was effective in inhibiting expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) induced by TNF-α in HUVECs. The RT-PCR analysis indicated that ICAM-1 mRNA induced by TNF-α was inhibited by flavonoid extract. The flavonoid extract attenuated TNF-α-induced IκB phosphorylation as well as NF-κB, p65 and p50 translocation from cytosol to nucleus, through inhibition on TNF-α- and H(2)O(2)-induced intracellular reactive oxygen species (ROS) production. For the anti-angiogenic study, the flavonoid extract inhibited vascular endothelial growth factor (VEGF)-induced cell proliferation and migration in HUVECs, as well as angiogenesis. However, the flavonoid extract did not inhibit VEGF signaling. Surprisingly, HUVECs adhesion to the extracellular matrix was compromised and adhesion-induced signaling was retarded by the flavonoid extract.
NASA Astrophysics Data System (ADS)
Budzisz, Elzbieta; Paneth, Piotr; Geromino, Inacrist; Muzioł, Tadeusz; Rozalski, Marek; Krajewska, Urszula; Pipiak, Paulina; Ponczek, Michał B.; Małecka, Magdalena; Kupcewicz, Bogumiła
2017-06-01
This paper examines the cytotoxic effect of nine compounds with spiropyrazoline structures, and determines the reaction mechanism between diazomethane and selected benzylideneflavanones, their lipophilicity, and their binding ability to human serum albumin. The cytotoxic effect was determined on two human leukaemia cell lines (HL-60 and NALM-6) and melanoma WM-115 cells, as well as on normal human umbilical vein endothelial cells (HUVEC). The highest cytotoxicity was exhibited by compound B7: it was found to have an IC50 of less than 10 μM for all three cancer cell lines, with five to 12-fold lower sensitivity against normal cells (HUVEC). All the compounds exhibit comparable affinity energy in human serum albumin binding (from -8.1 to -8.6 kcal mol-1) but vary in their binding sites depending on the substituent. X-ray crystallography of two derivatives confirmed their synthetic pathway, and their structures were carefully examined.
Zhang, X; Liu, X; Liu, L
2001-12-01
To explore the effects of HOXB2 anti-sense oligodeoxynucleotides (asodn) on the proliferation and the expression of human umbilical vein endothelial cells (HUVECs). Various concentrations of HOXB2 ASODN modified by thiophosphate were transfected into HUVECs by liposome mediation. MTT and RT-PCR methods were employed to determine the influence of different concentrations of ASODN on endothelial proliferation and the expression level of HOXB2 mRNA. After the transfection of HOXB2 ASODN, the endothelial proliferation was inhibited in dose-dependent manner. Simultaneously, the expression level of HOXB2 mRNA decreased significantly. HOXB2 might play important roles in the proliferation of endothelial cells.
Durán-Prado, Mario; Frontiñán, Javier; Santiago-Mora, Raquel; Peinado, Juan Ramón; Parrado-Fernández, Cristina; Gómez-Almagro, María Victoria; Moreno, María; López-Domínguez, José Alberto; Villalba, José Manuel; Alcaín, Francisco J.
2014-01-01
Neuropathological symptoms of Alzheimer's disease appear in advances stages, once neuronal damage arises. Nevertheless, recent studies demonstrate that in early asymptomatic stages, ß-amyloid peptide damages the cerebral microvasculature through mechanisms that involve an increase in reactive oxygen species and calcium, which induces necrosis and apoptosis of endothelial cells, leading to cerebrovascular dysfunction. The goal of our work is to study the potential preventive effect of the lipophilic antioxidant coenzyme Q (CoQ) against ß-amyloid-induced damage on human endothelial cells. We analyzed the protective effect of CoQ against Aβ-induced injury in human umbilical vein endothelial cells (HUVECs) using fluorescence and confocal microscopy, biochemical techniques and RMN-based metabolomics. Our results show that CoQ pretreatment of HUVECs delayed Aβ incorporation into the plasma membrane and mitochondria. Moreover, CoQ reduced the influx of extracellular Ca2+, and Ca2+ release from mitochondria due to opening the mitochondrial transition pore after β-amyloid administration, in addition to decreasing O2 .− and H2O2 levels. Pretreatment with CoQ also prevented ß-amyloid-induced HUVECs necrosis and apoptosis, restored their ability to proliferate, migrate and form tube-like structures in vitro, which is mirrored by a restoration of the cell metabolic profile to control levels. CoQ protected endothelial cells from Aβ-induced injury at physiological concentrations in human plasma after oral CoQ supplementation and thus could be a promising molecule to protect endothelial cells against amyloid angiopathy. PMID:25272163
Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin
2016-01-01
For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC. PMID:27527161
Oxidized-LDL induce morphological changes and increase stiffness of endothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chouinard, Julie A.; Research Centre on Aging, Sherbrooke Geriatric University Institute, Sherbrooke, Quebec; Grenier, Guillaume
There is increasing evidence suggesting that oxidized low-density lipoproteins (ox-LDL) play a critical role in endothelial injury contributing to the age-related physio-pathological process of atherosclerosis. In this study, the effects of native LDL and ox-LDL on the mechanical properties of living human umbilical vein endothelial cells (HUVEC) were investigated by atomic force microscopy (AFM) force measurements. The contribution of filamentous actin (F-actin) and vimentin on cytoskeletal network organization were also examined by fluorescence microscopy. Our results revealed that ox-LDL had an impact on the HUVEC shape by interfering with F-actin and vimentin while native LDL showed no effect. AFM colloidalmore » force measurements on living individual HUVEC were successfully used to measure stiffness of cells exposed to native and ox-LDL. AFM results demonstrated that the cell body became significantly stiffer when cells were exposed for 24 h to ox-LDL while cells exposed for 24 h to native LDL displayed similar rigidity to that of the control cells. Young's moduli of LDL-exposed HUVEC were calculated using two models. This study thus provides quantitative evidence on biomechanical mechanisms related to endothelial cell dysfunction and may give new insight on strategies aiming to protect endothelial function in atherosclerosis.« less
Plasma from preeclamptic women activates endothelial cells via monocyte activation in vitro.
Faas, Marijke M; van Pampus, Maria G; Anninga, Zwanine A; Salomons, Jet; Westra, Inge M; Donker, Rogier B; Aarnoudse, Jan G; de Vos, Paul
2010-12-01
In this study we tested whether plasma from preeclamptic women contains factors that can activate endothelial cells in the presence of monocytes in vitro. Plasma from preeclamptic women (n=6), healthy pregnant women (n=6) and nonpregnant women (n=6) was incubated with mono-cultures and co-cultures of human umbilical vein endothelial cells (HUVEC) and monomac-6 monocytes. Reactive oxygen species (ROS) production and ICAM-1 expression were measured using flow cytometry. Whether scavenging of ROS by superoxide dismutase and catalase inhibited HUVEC ICAM-1 expression was also investigated. We found that in HUVEC co-cultured with monomac-6 cells but not in HUVEC cultured alone, ICAM-1 was upregulated after incubation with plasma from preeclamptic women but not plasma from non-pregnant women. Also in co-cultures, monomac-6 ICAM-1 was upregulated by plasma from preeclamptic women, while in both mono- and co-cultures monomac-6 ROS production was upregulated by plasma from pregnant and preeclamptic women, compared with plasma from non-pregnant women. Scavenging of ROS by superoxide dismutase and catalase resulted in a further upregulation of HUVEC ICAM-1 after incubation with plasma from preeclamptic women, compared with incubation without superoxide dismutase and catalase. These results show that endothelial cells in vitro are activated by plasma of preeclamptic women only if they are co-cultured with monocytes. This upregulation appeared not to be due to extracellular ROS production by monocytes or HUVEC, pointing to involvement of other mechanisms. Our data suggest that plasma of preeclamptic women activates monocytes, and that these monocytes subsequently activate endothelial cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Li, Peng; Fu, Jian-hua; Li, Xin-zhi
2008-08-01
To study the effect and molecular mechanism of two haw leaf extracts, Vitexin-rhamnoside (VR) and Vitexin-glucoside (VG), and their preparation, Aoshaen injection (AI), on the polymorphonuclear leucocyte (PMN) adhesion during human umbilical vein endothelial cell (HUVEC) anoxia/reoxygenation (A/R) injury. The cell model of A/R injury duplicated by breaking off the oxygen supplying of HUVEC for 60 min followed with reoxygenating for 30 min (phase 1) or 240 min (phase 2) was taken as the experimental objective. The effects of testing drugs (VR, VG and AI) on PMN adhesion in the model cells were measured by enzyme immunoassay, and their effects on PMN superficial adhesion molecule CD11/CD18 expression were measured by flow cytometer respectively. After 60 min of anoxia, HUVEC was shrunk and deformed. The adhesion between PMN and HUVEC significantly revealed at phase 1 in the model group, but it was fewer in the normal cell group, and also lesser in the groups treated with various drugs. The condition of cell adhesion revealed at phase 2 was the similar to that at phase 1. All testing drugs, VR, VG and AI, showed inhibitory effect on the cell adhesion at either phase 1 or phase 2, showing a certain dose-effect relationship. The expression of CD11/ CD18 was also inhibited by the testing drugs, and a good dose-effect relation was shown by VG and AI. At the resting condition, there are almost no expression of CD11/CD18 molecule, but it could be enhanced by incubating PMN with supernate of A/R injured HUVEC culture, and more marked at phase 1. Adding the test drugs into the supernate could inhibit the enhancing of CD11/CD18 molecule expression and reduce the PMN-HUVEC adhesion, which may be one of the molecular mechanisms of haw leaf extracts and their preparation in protecting heart against A/R injury.
Qin, Yong; Prescott, Lauriston M; Deitch, Edwin A; Kaiser, Vicki L
2011-04-01
Experimental data have shown that mesenteric lymph from rats subjected to trauma-hemorrhagic shock (THS) but not trauma-sham shock induces neutrophil activation, cytotoxicity, decreased red blood cell (RBC) deformability, and bone marrow colony growth suppression. These data have led to the hypothesis that gut factors produced from THS enter the systemic circulation via the mesenteric lymphatics and contribute to the progression of multiple organ failure after THS. Ongoing studies designed to identify bioactive lymph agents implicated factors associated with the heparin use in the THS procedure. We investigated if heparin itself was responsible for reported toxicity to human umbilical vein endothelial cells (HUVECs). Human umbilical vein endothelial cell toxicity was not induced by lymph when alternate anticoagulants (citrate and EDTA) were used in THS. Human umbilical vein endothelial cell toxicity was induced by lymph after heparin but not saline or citrate injection into trauma-sham shock and naive animals and was dose dependent. Activities of both heparin-releasable lipases (lipoprotein and hepatic) were detected in the plasma and lymph from THS and naive animals receiving heparin but not citrate or saline. Lymph-induced HUVEC toxicity correlated with lymph lipase activities. Finally, incubation of HUVECs with purified lipoprotein lipase added to naive lymph-induced toxicity in vitro. These data show that heparin, not THS, is responsible for the reported lymph-mediated HUVEC toxicity through its release of lipases into the lymph. These findings can provide alternative explanations for several of the THS effects reported in the literature using heparin models, thus necessitating a review of previous work in this field.
Cui, Jiasen; Zhuang, Shunjiu; Qi, Shaohong; Li, Li; Zhou, Junwen; Zhang, Wan; Zhao, Yun; Qi, Ning; Yin, Yangjun; Huang, Lu
2017-11-01
Angiotensin II (Ang II) has been reported as key in inducing endothelial cell injury, and endothelial cells may produce nitric oxide (NO) to protect themselves. However, the underlying mechanism remains elusive. Human umbilical vein endothelial cells (HUVECs) were divided into five treatment groups as follows: Normal control, Ang II, Ang II + sodium hydrosulfide [NaHS; hydrogen sulfide (H2S) donor], Ang II + Akt inhibitors + NaHS, and Ang II + endothelial nitric oxide synthases (eNOS) inhibitors + NaHS. Subsequently, cell viability, apoptosis, migration, proliferation and adhesion ability were determined. In addition, tubular structure formation was observed, and the NO and phosphorylation levels of Akt and eNOS were evaluated. Compared with the normal control group, Ang II treatment reduced the viability of HUVECs and increased the level of cell apoptosis (P<0.05). Furthermore, Ang II treatment inhibited the phosphorylation level of eNOS and Akt, as well as the generation of NO (P<0.05). H2S reversed the above‑mentioned effects significantly and increased cell proliferation, adhesion ability and promoted tubular structure formation (P<0.05); however, H2S did not reverse the impact of eNOS and Akt phosphorylation levels after being processed with Akt and eNOS inhibitors, which indicates that H2S is capable of protecting HUVECs via the eNOS/Akt signaling pathway (P<0.05). Thus, H2S stimulates the production of NO and protects HUVECs via inducing the Akt/eNOS signaling pathway.
Sabra, Georges; Vermette, Patrick
2013-02-01
The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVEC) co-cultured in fibrin over INS-1 cell insulin secretion. For this purpose, a three-dimensional (3D) cell culture chamber was designed, built using micro-fabrication techniques and validated. The co-culture was successfully carried out and the effect on INS-1 cell insulin secretion was investigated. After 48 and 72 h, INS-1 cells co-cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS-1 cells cultured alone or co-cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered. Copyright © 2012 Wiley Periodicals, Inc.
Minelli, R; Serpe, L; Pettazzoni, P; Minero, V; Barrera, G; Gigliotti, CL; Mesturini, R; Rosa, AC; Gasco, P; Vivenza, N; Muntoni, E; Fantozzi, R; Dianzani, U; Zara, GP; Dianzani, C
2012-01-01
BACKGROUND AND PURPOSE Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion and migration of cancer cells. EXPERIMENTAL APPROACH Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration was detected by the scratch ‘wound-healing’ assay and the Boyden chamber invasion assay. Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-cadherin and claudin-1 was measured by RT-PCR. KEY RESULTS Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon–rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-cadherin and inhibited claudin-1 expression in HUVEC. CONCLUSION AND IMPLICATIONS These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new mechanism to the anti-tumour activity of this multifaceted preparation of butyrate. PMID:22049973
Pang, Yefei; Dong, Jing; Thomas, Peter
2015-05-15
Progesterone exerts beneficial effects on the human cardiovascular system by inducing rapid increases in nitric oxide (NO) production in vascular endothelial cells, but the receptors mediating these nongenomic progesterone actions remain unclear. Using human umbilical vein endothelial cells (HUVECs) as a model, we show that progesterone binds to plasma membranes of HUVECs with the characteristics of membrane progesterone receptors (mPRs). The selective mPR agonist Org OD 02-0 had high binding affinity for the progesterone receptor on HUVEC membranes, whereas nuclear PR (nPR) agonists R5020 and medroxyprogesterone acetate displayed low binding affinities. Immunocytochemical and Western blot analyses confirmed that mPRs are expressed in HUVECs and are localized on their plasma membranes. NO levels increased rapidly after treatment with 20 nM progesterone, Org OD 02-0, and a progesterone-BSA conjugate but not with R5020, suggesting that this progesterone action is at the cell surface and initiated through mPRs. Progesterone and Org OD 02-0 (20 nM) also significantly increased endothelial nitric oxide synthase (eNOS) activity and eNOS phosphorylation. Knockdown of mPRα expression by treatment with small-interfering RNA (siRNA) blocked the stimulatory effects of 20 nM progesterone on NO production and eNOS phosphorylation, whereas knockdown of nPR was ineffective. Treatment with PI3K/Akt and MAP kinase inhibitors blocked the stimulatory effects of progesterone, Org OD 02-0, and progesterone-BSA on NO production and eNOS phosphorylation and also prevented progesterone- and Org OD 02-0-induced increases in Akt and ERK phosphorylation. The results suggest that progesterone stimulation of NO production in HUVECs is mediated by mPRα and involves signaling through PI3K/Akt and MAP kinase pathways. Copyright © 2015 the American Physiological Society.
Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells
2009-01-01
Background Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs). Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases. PMID:19917137
Synthesis and cytotoxicity of 2,5-dihydroxychalcones and related compounds.
Nam, Nguyen-Hai; Hong, Dong-Ho; You, Young-Jae; Kim, Yong; Bang, Seong-Cheol; Kim, Hwan-Mook; Ahn, Byung-Zun
2004-06-01
A series of 2, 5-dihydroxychalcones and related compounds were synthesized, and their cytotoxicities against tumor cell lines and human umbilical venous endothelial cells (HUVEC) evaluated. It was found that chalcones, with electron-withdrawing substituents on an A ring, exhibited significant cytotoxicities. Among the synthesized compounds, 2'-chloro-2, 5-dihydroxychalcone (9) was most potent, with an IC50 value as low as 0.31 microg/mL. This compound also exhibited a significant cytotoxic selectivity toward HUVEC.
Lee, Seung Eun; Park, Yong Seek
2013-01-01
Cigarette smoke is considered a major risk factor for vascular diseases. There are many toxic compounds in cigarette smoke, including acrolein and other α,β-unsaturated aldehydes, which are regarded as mediators of inflammation and vascular dysfunction. Furthermore, recent studies have revealed that acrolein, an α,β-unsaturated aldehyde in cigarette smoke, induces inflammatory mediator expression, which is known to be related to vascular diseases. In this study, we investigated whether Korean Red Ginseng (KRG) water extract suppressed acrolein-induced cyclooxygenase (COX)-2 expression in human umbilical vein endothelial cells (HUVECs). Acrolein-induced COX-2 expression was accompanied by increased levels of phosphorylated p38 in HUVECs and KRG inhibited COX-2 expression in HUVECs. These results suggest that KRG suppresses acrolein-induced COX-2 expression via inhibition of the p38 mitogen-activated protein kinase signaling pathway. In addition, KRG exhibited an inhibitory effect on acrolein-induced apoptosis, as demonstrated by annexin V–propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Consistent with these results, KRG may exert a vasculoprotective effect through inhibition of COX-2 expression in acrolein-stimulated human endothelial cells. PMID:24558308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Haibing; Department of Ophthalmology, Anhui Provincial Hospital, Hefei; Jia Weiping
2008-05-02
Poly(ADP-ribose)polymerase (PARP) inhibitors decrease angiogenesis through reducing vascular endothelium growth factor (VEGF) induced proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). In contrast to VEGF, pigment epithelium-derived factor (PEDF) has been demonstrated to act as a strong endogenous inhibitor of angiogenesis. Here, we show that PARP inhibition with a specific inhibitor PJ-34 or specific PARP antisense oligonucleotide upregulates hyperglycemia-induced PEDF expression in HUVECs in a dose-dependent manner. This results in the retard of activation of p38 MAP kinase and the concomitant decrease in cell apoptosis. These results give the first direct demonstration that PEDF might representmore » a target for PARP inhibition treatment and the effects of PEDF on endothelial cells growth are context dependent.« less
Zhang, Lianshuang; Wei, Jialiu; Ren, Lihua; Zhang, Jin; Yang, Man; Jing, Li; Wang, Ji; Sun, Zhiwei; Zhou, Xianqing
2017-01-01
Endosulfan, an organochlorine pesticide, was found in human blood, and its possible cardiovascular toxicity has been suggested. However, the mechanism about endothelial cell injuries induced by endosulfan has remained unknown. In the present study, human umbilical vein endothelial cells (HUVECs) were chosen to explore the toxicity mechanism and were treated with 0, 1, 6, and 12 μg/mL -1 endosulfan for 24 h, respectively. The results showed that exposure to endosulfan could inhibit the cell viability, increase the release of lactate dehydrogenase (LDH), damage the ultrastructure, and lead to apoptosis and necroptosis in HUVECs. Furthermore, endosulfan upregulated the expressions of receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), mixed lineage kinase domain-like (MLKL), caspase 8, and caspase 3, which means the activation of RIPK1 pathways. In addition, endosulfan promoted the increases of ROS, IL-1α, and IL-33 levels while antioxidant N-acetyl-L-cysteine (NAC) effectively attenuated the cytotoxicity from endosulfan. Taken together, these results have demonstrated that endosulfan induces the apoptosis and necroptosis of HUVECs, where the RIPK pathway plays a pro-necroptotic role and NAC plays an anti-necroptotic role. Our results may contribute to understanding cellular mechanisms for endosulfan-induced cardiovascular toxicity.
Pannella, Micaela; Caliceti, Cristiana; Fortini, Francesca; Aquila, Giorgio; Sega, Francesco Vieceli Dalla; Pannuti, Antonio; Fortini, Cinzia; Morelli, Marco Bruno; Fucili, Alessandro; Francolini, Gloria; Voltan, Rebecca; Secchiero, Paola; Dinelli, GiovannI; Leoncini, Emanuela; Ferracin, Manuela; Hrelia, Silvana; Miele, Lucio; Rizzo, Paola
2017-01-01
It is unknown whether components present in heart failure (HF) patients' serum provide an angiogenic stimulus. We sought to determine whether serum from HF patients affects angiogenesis and its major modulator, the Notch pathway, in human umbilical vein endothelial cells (HUVECs). In cells treated with serum from healthy subjects or from patients at different HF stage we determined: (1) Sprouting angiogenesis, by measuring cells network (closed tubes) in collagen gel. (2) Protein levels of Notch receptors 1, 2, 4, and ligands Jagged1, Delta-like4. We found a higher number of closed tubes in HUVECs treated with advanced HF patients serum in comparison with cells treated with serum from mild HF patients or controls. Furthermore, as indicated by the reduction of the active form of Notch4 (N4IC) and of Jagged1, advanced HF patients serum inhibited Notch signalling in HUVECs in comparison with mild HF patients' serum and controls. The circulating levels of NT-proBNP (N-terminal of the pro-hormone brain natriuretic peptide), a marker for the detection and evalutation of HF, were positively correlated with the number of closed tubes (r = 0.485) and negatively with Notch4IC and Jagged1 levels in sera-treated cells (r = −0.526 and r = −0.604, respectively). In conclusion, we found that sera from advanced HF patients promote sprouting angiogenesis and dysregulate Notch signaling in HUVECs. Our study provides in vitro evidence of an angiogenic stimulus arising during HF progression and suggests a role for the Notch pathway in it. PMID:26987674
Protection of vascular endothelial cells from high glucose-induced cytotoxicity by emodin.
Gao, Yun; Zhang, Jun; Li, Guilin; Xu, Hong; Yi, Yun; Wu, Qin; Song, Miaomiao; Bee, Yong Mong; Huang, Liping; Tan, Mengxia; Liang, Shangdong; Li, GuoDong
2015-03-01
Induction of endothelial cytotoxicity by hyperglycemia in diabetes has been widely accepted. Emodin is a natural anthraquinone in rhubarb used for treatment of diabetes, but its mechanism of action is not fully understood. This study aimed to examine the potential beneficial effects of emodin on endothelial cytotoxicity caused by high glucose milieu. Culture of human umbilical vein endothelial cells (HUVECs) with high concentrations of glucose resulted in damage to the cells, leading to decreased formazan products by 14-27%, reduced DNA contents by 12-19%, and increased hypodiploid apoptosis by 40-109%. These adverse effects of high glucose could be prevented to a large extent by co-culture with 3 μM of emodin which per se did not affect HUVECs viability. In addition, CCL5 expression of HUVECs cultured in high glucose medium was significantly elevated at both mRNA and protein levels, an effect abolished after treatment with emodin. Moreover, the enhanced adhesion of monocytes to HUVECs (2.1-2.2 fold over control) and elevated chemotaxis activities (2.3-2.4 fold over control) in HUVECs cultured in high glucose medium were completely reversed by emodin. Emodin also suppressed activation of p38 MAPK and ERK1/2 due to high glucose. Our data demonstrated that endothelial cytotoxicity occurred clearly when HUVECs were exposed to high glucose milieu and emodin was able to alleviate the impairments. The protective effects of emodin might be related to the inhibition of CCL5 expression and subsequent cell stress/inflammatory events possibly mediated by activation of MAPK signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lukowicz, Malgorzata; Szymanska, Justyna; Goralczyk, Krzysztof; Zajac, Andrzej; Rość, Danuta
2013-01-01
Background: The main purpose of this study was to analyze the influence of power intensity and wavelength of Low Level Laser Therapy (LLLT) and HILT (High Intensity Laser Therapy) on endothelial cell proliferation. Material and methods: The tests were done on human umbilical vein endothelial cells (HUVEC). Cultures were exposed to laser irradiation of 660 nm and 670 nm at different dosages, power output was 10 - 40 mW as well as 820 nm with power 100 mW and 808 nm with power 1500 mW. Energy density was from 0.28 to 11,43 J/cm2. Cell proliferation of a control and tested culture was evaluated with a colorimetric device to detect live cells. The tests were repeated 8 times. Results: We observed good effects of LLLT on live isolated ECs and no effects in experiments on previous deep-frozen cultures. Also HILT stimulated the proliferation of HUVEC. Conclusion: Endothelial cells play a key role in vascular homeostasis in humans. We observed the stimulatory effect of LLLT and HILT on proliferation of HUVEC. Many factors influence the proliferation of EC, so is it necessary to continue the experiment with different doses, intensity and cell concentration.
Association of Plasmodium falciparum with Human Endothelial Cells in vitro
Utter, Christopher; Serrano, Adelfa E.; Glod, John W.; Leibowitz, Michael J.
2017-01-01
Endothelial abnormalities play a critical role in the pathogenesis of malaria caused by the human pathogen, Plasmodium falciparum. In serious infections and especially in cerebral malaria, red blood cells infected with the parasite are sequestered in small venules in various organs, resulting in endothelial activation and vascular occlusion, which are believed to be largely responsible for the morbidity and mortality caused by this infection, especially in children. We demonstrate that after incubation with infected red blood cells (iRBCs), cultured human umbilical vein endothelial cells (HUVECs) contain parasite protein, genomic DNA, and RNA, as well as intracellular vacuoles with apparent parasite-derived material, but not engulfed or adherent iRBCs. The association of this material with the HUVECs is observed over 96 hours after removal of iRBCs. This phenomenon may occur in endothelial cells in vivo by the process of trogocytosis, in which transfer of material between cells depends on direct cell contact. This process may contribute to the endothelial activation and disruption involved in the pathogenesis of cerebral malaria. PMID:28656007
Nhek, Sokha; Clancy, Robert; Lee, Kristen A; Allen, Nicole M; Barrett, Tessa J; Marcantoni, Emanuela; Nwaukoni, Janet; Rasmussen, Sara; Rubin, Maya; Newman, Jonathan D; Buyon, Jill P; Berger, Jeffrey S
2017-04-01
Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet-endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte-platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β-dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β-neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. Platelet activity measurements and subsequent interleukin-1β-dependent activation of the endothelium are increased in subjects with SLE. Platelet-endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE. © 2017 American Heart Association, Inc.
Nhek, Sokha; Clancy, Robert; Lee, Kristen A.; Allen, Nicole M.; Barrett, Tessa J.; Marcantoni, Emanuela; Nwaukoni, Janet; Rasmussen, Sara; Rubin, Maya; Newman, Jonathan D.; Buyon, Jill P.; Berger, Jeffrey S.
2017-01-01
Objective Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet–endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. Approach and Results Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte–platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β–dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β–neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. Conclusions Platelet activity measurements and subsequent interleukin-1β–dependent activation of the endothelium are increased in subjects with SLE. Platelet–endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE. PMID:28153882
ZHANG, ZHI; ZHANG, HANGUANG; PENG, TAO; LI, DONGDONG; XU, JING
2016-01-01
Melittin, a significant constituent of Apis mellifera (honeybee) venom, is a water-soluble toxic peptide that has traditionally been used as an antitumor agent. However, the underlying mechanisms by which it inhibits tumor cell growth and angiogenesis remain to be elucidated. In the present study, screening for increased cathepsin S (Cat S) expression levels was performed in MHCC97-H cells and various other hepatocellular carcinoma cell lines by reverse transcription-polymerase chain reaction and western blot analysis. A pcDNA3.1-small hairpin RNA (shRNA)-Cat S vector was stably transfected into MHCC97-H cells (shRNA/MHCC97-H) in order to knockdown the expression of Cat S. The effects resulting from the inhibition of Cat S-induced proliferation, invasion and angiogenesis by melittin were examined using cell proliferation, cell viability, flat plate colony formation, migration, wound healing, Transwell migration and ELISA assays. In order to substantiate the evidence for melittin-mediated inhibition of Cat S-induced angiogenesis, Cat S RNA was transfected into primary human umbilical vein endothelial cells (Cat S-HUVECs) to induce overexpression of the Cat S gene. The effects of melittin on HUVECs were examined using Transwell migration and tube formation assays. The findings demonstrated that melittin was able to significantly suppress MHCC97-H cell (Mock/MHCC97-H) proliferation, invasion and angiogenesis, as well as capillary tube formation of Cat S-HUVECs, in a dose-dependent manner. However, proliferation, invasion and angiogenesis in shRNA/MHCC97-H and in native HUVECs (Mock-HUVECs) were unaffected. In addition, melittin specifically decreased the expression of phosphorylated (activated) Cat S, and components of the vascular endothelial growth factor (VEGF)-A/VEGF receptor 2 (VEGFR-2)/mitogen-activated protein kinase kinase 1 (MEK1)/extracellular signal-regulated kinase (ERK)1/2 signaling pathway in Mock/MHCC97-H cells. In conclusion, the inhibition of tumor cell growth and anti-angiogenic activity exerted by melittin may be associated with anti-Cat S actions, via the inhibition of VEGF-A/VEGFR-2/MEK1/ERK1/2 signaling. PMID:26870255
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chen-Si; School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; He, Pei-Juin
2010-06-25
Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cellsmore » and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLC{beta}2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLC{beta}2/Ca2+ signal transduction in endothelial cells.« less
Induction of cysteine-rich motor neuron 1 mRNA expression in vascular endothelial cells.
Nakashima, Yukiko; Takahashi, Satoru
2014-08-22
Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Analysis of biological effects in human endothelial cells after stimulated microgravity
NASA Astrophysics Data System (ADS)
Min, Zhang; Sun, Yeqing; Xu, Dan
Space environment is characterized by strong radiation, ultra-high vacuum, weak magnetic field and microgravity. Among them, microgravity (10-4-10-6g) in space is different from gravity (1g) on earth, possibly causing visual disorders, muscle alterations, bone loss and dysfunction of cardiovascular systems. To study about microgravity environment, the most advanced rotary cell culture system (RCCS-1) was used to do stimulated microgravity (SMG) experiments in the ground. Up to now, most of studies focus on the biological effects under stimulated microgravity, but it is less known about the cellular response after stimulated microgravity. In the present study, we explored the subsequent effects of stimulated microgravity on human endothelial cells (HUVEC-C) after these cells were cultured on RCCS-1 for 48 hours. We co-cultured HUVEC-C cells with Hillex-microcarriers in 60-mm culture dishes for 24h, followed by transferring them to RCCS-1 so that cells remain to be the state of SMG. In parallel, HUVEC-C cells were co-cultured with microcarriers in the ground condition. We found that stimulated microgravity induced cytoskeleton remodeling, cell cycle G2/M arrest and cellular senescence, consistent with previous reports. To study the subsequent effects of stimulated microgravity, we make cells detach from microcarriers and observed various effects including cell growth, cell adhesion, cytoskeleton, cell cycle, apoptosis and senescence. The results showed that those cells undergoing stimulated microgravity appeared obvious growth inhibition, a transition from the decrease in cell adhesion ability and cytoskeleton remodeling within 24h to induction of apoptosis and senescence-like phenotype in the later time with slight changes in cell cycle. Analysis of protein expression in western blot demonstrated that apoptosis-related protein PTEN was up-regulated on the time-dependent pattern after stimulated microgravity, indicating that PTEN-PI3K-Akt pathway might play an important role in apoptosis. Our study suggests that stimulated microgravity has the subsequent biological effects of HUVEC-C, providing new insight of understanding the global effect of microgravity on cellular response in human endothelial cells.
Song, Yue; Xia, Zhijun; Shen, Keng; Zhai, Xingyue
2013-05-01
To construct recombinant adenoviruses AdHT-rev-casp3 and Ad-rev-casp3, which express autocatalysis caspase-3 driven by human telomerase reverse transcriptase promoter and cytomegalovirus promoter, respectively; and to investigate their antitumor effects on ovarian cancer in vitro and in vivo. Cell viabilities were determined using the cell counting kit 8 and flow cytometry. Reverse transcriptase polymerase chain reaction and immunoblotting assays were used to detect cellular apoptotic activities after treatments. Tumor growth and survival of mice bearing AO cells were studied. AdHT-rev-casp3 significantly suppressed the survival of AO cells in a dose-dependent modality with a viability rate of 60.45% ± 7.8% at an multiplicity of infection (MOI) of 70 and 42.18 ± 5.3% at an MOI of 100, which was somewhat lower than that of the AO cells treated with Ad-rev-casp3 (32.28% ± 5.3% and 21.84% ± 3.4%, respectively). In contrast, AdHT-rev-casp3 induced little human umbilical vein epithelial cell (HUVEC) death with a viability rate of 98.52% ± 6.9% at an MOI of 70, whereas Ad-rev-casp3 induced significant cell death in HUVEC with a viability rate of 27.14% ± 5.4%. Additionally, AdHT-rev-casp3 (MOI = 70) caused significant apoptosis in AO cells with an apoptotic rate of 25.97%, whereas it caused undetectable apoptosis in HUVECs with the rate of only 1.75%. Ad-rev-casp3 (MOI = 70) caused strong apoptosis in both AO and HUVECs, with the rate of 35.82% and 38.12%, respectively. AdHT-rev-casp3 caused markedly higher levels of active caspase-3, causing no detectable active caspase-3 expression in HUVECs. The tumor growth suppression rate of AdHT-rev-casp3 was 54.94%, significantly higher than that of phosphate-buffered saline at the end point of the study. AdHT-rev-casp3 significantly improved the survival of mice receiving intraperitoneal inoculation of AO cells with little liver damage, with the mean survival of 177 ± 12 days. AdHT-rev-casp3 causes effective apoptosis with significant tumor selectivity, suppresses tumor growth, and improves the mouse survival with little liver toxicity. It can be a potent therapeutic agent for the tumor-targeting treatment of ovarian cancer.
Ren, Jie; Xu, Yuan Yuan; Jiang, He Fei; Yang, Meng; Huang, Qian Hui; Yang, Jie; Hu, Kun; Wei, Kun
2014-01-01
Solena amplexicaulis (Lam.) Gandhi (SA) has been used as a traditional medicine for the treatment of dysentery, multiple abscess, gastralgia, urethritis, and eczema in the minority area of China. This study was aimed to examine the cell proliferation inhibitory activity of the SA extract (SACE) and its mechanism of action in human hepatoma cell line (HepG2) and evaluate its anti-angiogenesis activity in human umbilical vein endothelial cell line (HUVEC). SACE could inhibit the growth of HepG2 cells in a dose- and time-dependent manner. FCM analysis showed that SACE could induce G2/M phase arrest, cell apoptosis, the mitochondrial membrane potential loss (ΔΨm) and increase the production of intracellular ROS of HepG2 cells. After treatment with SACE, topical morphological changes of apoptotic body formation, obvious increase of apoptosis-related protein expressions, such as Bax, cytochrome c, caspase-3, PARP-1, and decrease of Bcl-2, procaspase-9 protein expressions were observed at the same time. Moreover, SACE caused the significant inhibition of endothelial cell migration and tube formation in HUVEC cells. The results suggested that SACE could act as an angiogenesis inhibitor and induce cell apoptosis via a caspase-dependent mitochondrial pathway. Therefore, SACE could be a potent candidate for the prevention and treatment of liver cancer.
Mattingly, Kathleen A.; Klinge, Carolyn M.
2011-01-01
Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1 regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17β-estradiol (E2), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription and this suppression was not ablated by concomitant treatment with E2, 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E2 increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects. PMID:22105178
Cipriano, Aaron F.; Sallee, Amy; Tayoba, Myla; Cortez Alcaraz, Mayra C.; Lin, Alan; Guan, Ren-Guo; Zhao, Zhan-Yong; Liu, Huinan
2018-01-01
Crystalline Mg-Zinc (Zn)-Strontium (Sr) ternary alloys consist of elements naturally present in the human body and provide attractive mechanical and biodegradable properties for a variety of biomedical applications. The first objective of this study was to investigate the degradation and cytocompatibility of four Mg-4Zn-xSr alloys (x = 0.15, 0.5, 1.0, 1.5 wt%; designated as ZSr41A, B, C, and D respectively) in the direct culture with human umbilical vein endothelial cells (HUVEC) in vitro. The second objective was to investigate, for the first time, the early-stage inflammatory response in cultured HUVECs as indicated by the induction of vascular cellular adhesion molecule-1 (VCAM-1). The results showed that the 24-h in vitro degradation of the ZSr41 alloys containing a β-phase with a Zn/Sr at% ratio ~1.5 was significantly faster than the ZSr41 alloys with Zn/Sr at% ~1. Additionally, the adhesion density of HUVECs in the direct culture but not in direct contact with the ZSr41 alloys for up to 24 h was not adversely affected by the degradation of the alloys. Importantly, neither culture media supplemented with up to 27.6 mM Mg2+ ions nor media intentionally adjusted up to alkaline pH 9 induced any detectable adverse effects on HUVEC responses. In contrast, the significantly higher, yet non-cytotoxic, Zn2+ ion concentration from the degradation of ZSr41D alloy was likely the cause for the initially higher VCAM-1 expression on cultured HUVECs. Lastly, analysis of the HUVEC-ZSr41 interface showed near-complete absence of cell adhesion directly on the sample surface, most likely caused by either a high local alkalinity, change in surface topography, and/or surface composition. The direct culture method used in this study was proposed as a valuable tool for studying the design aspects of Zn-containing Mg-based biomaterials in vitro, in order to engineer solutions to address current shortcomings of Mg alloys for vascular device applications. PMID:27746360
Facilitatory effects of fetuin-A on atherosclerosis.
Naito, Chisato; Hashimoto, Mio; Watanabe, Kaho; Shirai, Remina; Takahashi, Yui; Kojima, Miho; Watanabe, Rena; Sato, Kengo; Iso, Yoshitaka; Matsuyama, Taka-Aki; Suzuki, Hiroshi; Ishibashi-Ueda, Hatsue; Watanabe, Takuya
2016-03-01
Fetuin-A is a circulating glycoprotein that is produced by liver and adipose tissue. Fetuin-A is known to induce insulin resistance and suppress vascular calcification. There are conflicting reports that show increased or decreased serum fetuin-A levels in patients with coronary artery disease (CAD). Since the role of fetuin-A in atherosclerosis remains still controversial, we aimed to clarify it in this study. We investigated the expression of fetuin-A in atheromatous plaques in CAD patients and restenosis lesions in balloon-injured rat carotid arteries in vivo. We also assessed in vitro effects of fetuin-A on inflammatory molecules in human umbilical vein endothelial cells (HUVECs), oxidized low-density lipoprotein-induced foam cell formation in human monocyte-derived macrophages, and the migration, proliferation, and extracellular matrix expression in human aortic smooth muscle cells (HASMCs) in a serum-free culture system. Fetuin-A was abundantly expressed in cultured human monocytes, macrophages, fibroblasts, HASMCs, and human coronary artery SMCs, atheromatous plaques in human coronary arteries, and restenosis lesions in rat carotid arteries. In vitro experiments showed that fetuin-A stimulated interleukin-6, monocyte chemotactic protein-1, intercellular adhesion molecule-1, and E-selectin expression in HUVECs. Fetuin-A enhanced macrophage foam cell formation associated with scavenger receptors (CD36 and SR-A) and acyl-CoA:cholesterol acyltransferase-1 down-regulation and ATP-binding cassette transporter A1 up-regulation, and increased cell proliferation and collagen-1 and -3 expression via PI3K/AKT/c-Src/NF-κB/ERK1/2 pathways in HASMCs. Our results indicate that fetuin-A exerts the stimulatory effects on inflammatory responses in HUVECs, macrophage foam cell formation, and proliferation and collagen production in HASMCs, leading to the development of atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Efficacy for lung metastasis induced by the allogeneic bEnd3 vaccine in mice.
Zhao, Jun; Lu, Jing; Zhou, Lurong; Zhao, Jimin; Dong, Ziming
2018-05-04
The mouse brain microvascular endothelial cell line bEnd.3 was used to develop a vaccine and its anti-tumor effect on lung metastases was observed in immunized mice. Mouse bEnd.3 cells cultured in-vitro and then fixed with glutaraldehyde was used to immunize mice; mice were challenged with the metastatic cancer cell line U14, and changes in metastatic cancer tissues were observed through hematoxylin and eosin staining. Carboxyfluorescein succinimidyl amino ester (CSFE) and propidium iodide (PI) were used to detect cytotoxic activity of spleen T lymphocytes; the ratio of CD3 + and CD8 + T-cell sub-sets was determined by flow cytometry. Enzyme-linked immunosorbent assay (ELISA), immunocytochemistry and immunoblot were used to examine the specific response of the antisera of immunized mice. The number of metastatic nodules in bEnd.3 and human umbilical vein endothelial cell (HUVEC) vaccine groups was less than NIH3T3 vaccine group and phosphate buffered saline (PBS) control group. The bEnd.3-induced and HUVEC-induced cytotoxic T-lymphocytes (CTLs) showed significant lytic activity against bEnd.3 and HUVEC target cells, while the antisera of mice in bEnd.3 and HUVEC vaccine groups showed specific immune responses to membrane proteins and inhibited target cell proliferation in-vitro. Immunoblot results showed specific bands at 180KD and 220KD in bEnd.3 and at 130 kD and 220 kD in HUVEC lysates. Allogeneic bEnd.3 vaccine induced an active and specific immune response to tumor vascular endothelial cells that resulted in production of antibodies against the proliferation antigens VEGF-R II, integrin, Endog etc. Immunization with this vaccine inhibited lung metastasis of cervical cancer U14 cells and prolonged the survival of these mice.
Zhang, Pu; Goodrich, Chris; Fu, Changliang; Dong, Cheng
2014-01-01
Cancer metastasis involves multistep adhesive interactions between tumor cells (TCs) and endothelial cells (ECs), but the molecular mechanisms of intercellular communication in the tumor microenvironment remain elusive. Using static and flow coculture systems in conjunction with flow cytometry, we discovered that certain receptors on the ECs are upregulated on melanoma cell adhesion. Direct contact but not separate coculture between human umbilical endothelial cells (HUVECs) and a human melanoma cell line (Lu1205) increased intercellular adhesion molecule 1 (ICAM-1) and E-selectin expression on HUVECs by 3- and 1.5-fold, respectively, compared with HUVECs alone. The nonmetastatic cell line WM35 failed to promote ICAM-1 expression changes in HUVECs on contact. Enzyme-linked immunosorbent assay (ELISA) revealed that EC–TC contact has a synergistic effect on the expression of the cytokines interleukin (IL)-8, IL-6, and growth-related oncogene α (Gro-α). By using E-selectin cross-linking and beads coated with CD44 immunopurified from Lu1205 cells, we showed that CD44/selectin ligation was responsible for the ICAM-1 up-regulation on HUVECs. Protein kinase Cα (PKC-α) activation was found to be the downstream target of the CD44/selectin-initiated signaling, as ICAM-1 elevation was inhibited by siRNA targeting PKCα or a dominant negative form of PKCα (PKCα DN). Western blot analysis and electrophoretic mobility shift assays (EMSAs) showed that TC–EC contact mediated p38 phosphorylation and binding of the transcription factor SP-1 to its regulation site. In conclusion, CD44/selectin binding signals ICAM-1 up-regulation on the EC surface through a PKCα–p38–SP-1 pathway, which further enhances melanoma cell adhesion to ECs during metastasis.—Zhang, P., Goodrich, C., Fu, C., Dong, C. Melanoma upregulates ICAM-1 expression on ECs through engagement of tumor CD44 with endothelial E-selectin and activation of a PKCα–p38–SP-1 pathway. PMID:25138157
Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje
2010-01-25
Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.
Pan, Zhiguo; Shao, Yu; Geng, Yan; Chen, Jinghe; Su, Lei
2015-08-01
To study the effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell ( HUVEC ) in vitro. HUVEC was cultured in vitro in 5%CO(2) medium at 37 centigrade ( control group ) or 43 centigrade ( heat stress group ) for 1 hour. Coomassie brilliant blue R-250 staining was used to determine the effect of heat stress on the cytoskeleton. The cells in heat stress group were subsequently cultured at 37 centigradein 5%CO(2) medium after heat stress for 1 hour, and cell cycle of HUVEC was determined at 0, 6, 12, 18 and 24 hours with flow cytometry. Under light microscopy normal cytoskeleton was observed in control group, but thicker and shorter cytoskeleton was found after a rise of temperature, and stress fibers were found in heat stress group. The DNA content of HUVEC at all time points in G0/G1 stage was 38.07%-55.19% after heat stress. The DNA content in control group was 48.57%, and it was 54.06%, 55.19%, 48.23%, 38.07%, and 41.03% at 0, 6, 12, 18, 24 hours in G0/G1 stage in heat stress group. DNA content in S phase was 35.33%-48.18%. The DNA content in control group was 44.62%, and it was 35.33%, 39.50%, 42.50%, 48.18%, and 47.99% at 0, 6, 12, 18, 24 hours in S stage in heat stress group. DNA content in G2/M phase was 5.31%-13.75%. The DNA content in control group was 6.81, and it was 10.61%, 5.31%, 9.27%,13.75%, and 10.98% at 0, 6, 12, 18, 24 hours in G2/M stage in heat stress group. It was demonstrated that compared with control group, the DNA content in G0/G1 stage was significantly increased when the HUVEC were separated from heat stress within 6 hours, and it recovered at a similar level as control group at 12 hours. Heat stress can change the cytoskeleton of HUVEC, and cause stagnation at G0/G1 stage in cell cycle.
Cerda, Alvaro; Pavez, Monica; Manriquez, Victor; Luchessi, Andre Ducati; Leal, Pamela; Benavente, Felipe; Fajardo, Cristina Moreno; Salazar, Luis; Hirata, Mario Hiroyuki; Hirata, Rosario Dominguez Crespo
2017-08-01
Clopidogrel is commonly used in prevention and treatment of atherothrombosis. Some previous studies have suggested a pleiotropic effect of clopidogrel; however, when this drug causes platelet-independent effects on endothelial function remains unclear. To evaluate the influence of clopidogrel on inflammatory biomarkers and adhesion molecules in human endothelial cells and the role of nitric oxide (NO) in this process. TNF-α-induced human umbilical vein endothelial cells (HUVEC) were exposed to clopidogrel. Gene expression and protein expression of ICAM-1, P-selectin, IL-8, IL-6, and MCP-1 were evaluated by qPCR, flux cytometry, or milliplex technology. Expression of endothelial nitric oxide synthase (NOS3) and NO release were also evaluated. Influence of clopidogrel was further evaluated in NOS3 downregulated HUVEC by RNAi. Clopidogrel at 20 μmol/L induced NO release in HUVEC after 24-hours treatment. Gene expressions of inflammatory markers IL-8 and MCP1 were reduced after clopidogrel treatment (P<.05); however, only MCP-1 remained reduced at protein level. IL-6 was not modified by clopidogrel treatment. Gene expression and protein expression of ICAM-1 were diminished by 24-hours clopidogrel exposure, whereas P-selectin was not modified. NOS3 downregulated HUVEC model revealed that ICAM-1 modification by clopidogrel is dependent of this via, whereas MCP-1 is modulated in an NO-independent form. Our results support new evidence for pleiotropic effects of clopidogrel on inflammation and endothelial function. Reduction in ICAM-1 and MCP-1 in human endothelium is an important extent of the use of this drug for treatment of cardiovascular diseases, and NO has an important role in this process. © 2017 John Wiley & Sons Ltd.
Wang, Yi-xiang; An, Na; Ouyang, Xiang-ying
2015-10-18
To investigate molecular mechanism involved in nicotine in combination with Porphyromonas gingivalis (P.g) caused monocyte-endothelial cell adhesion. The effect of nicotine, P.g-lipopolysaccharide (P.g-LPS) and their combination on the proliferation of U937 cells was determined by CCK-8 method. Interleukin-6 (IL-6) expression was investigated by real-time PCR after U937 cells were treated with nicotine, P.g-LPS and their combination. In human umbilical vein endothelial cells (HUVECs), the expressions of monocyte chemoattractant protein CCL-8 and adhesion molecules including vascular cell adhesion molecule 1 (Vcam-1), very late antigen 4 alpha (VLA4α), tumor necrosis factor receptor superfamily member 4 (OX40) and OX40 ligand (OX40L) were detected by real-time PCR or Western blotting assays after HUVEC cells were treated with nicotine, P.g-LPS and their combination. Adhesion of monocytes to endothelial cells was detected after the HUVECs and U937 cells were stimulated with nicotine, P.g-LPS and their combination, respectively. P.g-LPS did not affect the proliferative ability of nicotine in U937 cells. However, the ability of P.g-LPS induced IL-6 expression was inhibited by 100 μmol/L nicotine in U937 cells. In HUVECs, the expressions of CCL-8, Vcam-1, VLA4α, OX40 and OX40L were significantly up-regulated by nicotine and P.g-LPS combination compared with nicotine alone, P.g-LPS alone and the untreated control. Adhesion of monocytes to HUVECs results showed that the two types of cells treated with nicotine in combination with P.g-LPS could markedly increase the adhesion ability of monocytes to HUVECs. P.g-LPS in combination with nicotine could recruit monocytes to endothelial lesion through up-regulation of CCL-8, and promote adhesion of monocytes to endothelial cells through enhancement of Vcam-1/VLA4α and OX40/OX40L interactions, which could be involved in the initiation and development of atherosclerosis.
N-Acetylchitooligosaccharide is a potent angiogenic inhibitor both in vivo and in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zheng; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Zheng, Lanhong
2007-05-25
N-Acetylchitooligosaccharide (N-acetyl-COs) was prepared by N-acetylation of chitooligosaccharide (COs). In vitro study using human umbilical vein endothelial cells (HUVECs) revealed that both N-acetyl-COs and COs inhibited the proliferation of HUVECs by inducing apoptosis. Treatment of HUVECs by N-acetyl-COs resulted in a significant reduction of density of the migration cells and repressed tubulogenesis process. The antiangiogenic effects of the oligosaccharides were further evaluated using in vivo zebrafish angiogenesis model, and the results showed that both oligosaccharides inhibited the growth of subintestinal vessels (SIV) of zebrafish embryos in a dose-dependent manner, as observed by endogenous alkaline phosphatase (EAP) staining assay. In contrast,more » no cytotoxicity was found when treating the NIH3T3 and several other cancer cells with the oligosaccharides. Our results also confirmed the antiangiogenic activity of N-acetyl-COs was significantly stronger than the parent oligosaccharide, COs.« less
Chang, Ye; Li, Yuan; Ye, Ning; Guo, Xiaofan; Li, Zhao; Sun, Guozhe; Sun, Yingxian
2016-09-01
This study was aimed to evaluate lysosomes-mitochondria cross-signaling in angiotensin II (Ang II)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and whether atorvastatin played a protective role via lysosomal-mitochondrial axis. Apoptosis was detected by flow cytometry, Hoechst 33342 and AO/EB assay. The temporal relationship of lysosomal and mitochondrial permeabilization was established. Activity of Cathepsin D (CTSD) was suppressed by pharmacological and genetic approaches. Proteins production were measured by western blotting. Our study showed that Ang II could induce the apoptosis of HUVECs in a dose-depended and time-depended manner. Exposure to 1 μM Ang II for 24 h resulted in mitochondrial depolarization, cytochrome c release, and increased ROS production. Lysosomal permeabilization and CTSD redistribution into the cytoplasm occurred several hours prior to mitochondrial dysfunction. These effects were all suppressed by atorvastatin. Either pharmacological or genetic inhibition of CTSD preserved mitochondrial function and decreased apoptosis in HUVECs. Most importantly, we found that the protective effect of atorvastatin was significantly greater than pharmacological or genetic inhibition of CTSD. Finally, overexpression of CTSD without exposure to Ang II had no effect on mitochondrial function and apoptosis. Our data strongly suggested that Ang II induced apoptosis through the lysosomal-mitochondrial axis in HUVECs. Furthermore, atorvastatin played an important role in the regulation of lysosomes and mitochondria stability, resulting in an antagonistic role against Ang II on HUVECs.
Ren, Yan-Ping; Zhang, Ming-Juan; Zhang, Ting; Huang, Ruo-Wen
2014-01-01
To elucidate the effect of ouabain on the regulation of proliferation and apoptosis of HUVECs and involvement of different Na(+)-K(+)-ATPase α-subunits and NF-κB. HUVECs were isolated by collagenase perfusion, and MTT assays and cell cycle analysis were performed to study proliferation. NF-κB expression and function were examined by immunohistochemical staining and western blotting. Na(+)-K(+)-ATPase activity was determined by measuring released ouabain inhibitable inorganic phosphate (Pi). The expression of different α-subunits was investigated by real RT-PCR, western blotting and cell immunofluorescence. 0.3 nM ouabain treatment for 0.5 h triggered the proliferation of HUVECs, peaking at 1-2 h. At 1.8 nM for 0.5 h, ouabain induced an increase of cell proliferation for a short time, and then triggered a decrease after 1 h. Cell cycle analysis show that 37% of HUVECs were in G2/M phase of the cell cycle following incubation with 1.8 nM ouabain, compared with 18% with 0.3 nM ouabain. NF-κB activity was assessed by western blot analysis of IκB expression, which was significantly reduced with 0.3 nM ouabain treatment; there was no different between 1.8 nM ouabain treatment and untreated cells. Na(+)-K(+)-ATPase activity in HUVECs was markedly reduced after treatment with 0.3 nM and 1.8 nM ouabain. Real RT-PCR and western blotting indicated that Na(+)-K(+)-ATPase α1-subunit mRNA expression levels increased after 0.3 nM ouabain treatment and decreased after 1.8 nM ouabain treatment. However, α2- and α3-subunit mRNA decreased after 0.3 nM ouabain treatment and increased after 1.8 nM ouabain treatment. Ouabain at different concentrations caused dual effects on proliferation and apoptosis in HUVECs.
Anamelechi, Charles C.; Clermont, Edward C.; Novak, Matthew T.; Reichert, William M.
2014-01-01
Surfaces decorated with high affinity ligands can be used to facilitate rapid attachment of endothelial cells; however, standard equilibrium cell detachment studies are poorly suited for assessing these initial adhesion events. Here, a dynamic seeding and cell retention method was used to examine the initial attachment of perfusing human umbilical vein endothelial cells (HUVECs) to bare Teflon-AF substrates, substrates pre-adsorbed with fibronectin alone, or substrates co-pre-adsorbed with two dual-function cell-adhesion ligands: biotinylated fibronectin (bFN) and RGD-streptavidin mutant (RGD-SA). Cell attachment was evaluated as a function of cell trypsinization (integrin digestion), surface protein formulation, and cell perfusion rate. Surfaces co-pre-adsorbed with bFN and RGD-SA showed the highest density of attached cells after 8 min of perfusion and the highest percent retention when subjected to shear flow at 60 dynes/cm2 for 2 min. Surfaces with no ligand treatment showed the lowest cell attachment and retention under flow in all cases. HUVECs trypsinized with mild 0.025% trypsin/ethylenediaminetetraacetic acid (EDTA) showed greater cell adhesion after perfusion and higher percent retention after shear flow than those trypsinized using harsher 0.05% trypsin/EDTA. The preferential affinities of the two dual-function ligands for α5β1 and αvβ3 integrins were also examined by surface plasmon resonance (SPR) spectroscopy. The dynamic cell seeding studies confirmed that the dual-function ligand system promotes HUVEC adhesion and retention at short time points when tested using a perfusion assay. SPR studies showed that the two ligands exhibited equal affinity for both α5β1 and αvβ3 integrins but that the combined ligands bound more total integrins than the two ligands tested separately. PMID:19348476
Human brain microvascular endothelial cells resist elongation due to shear stress.
Reinitz, Adam; DeStefano, Jackson; Ye, Mao; Wong, Andrew D; Searson, Peter C
2015-05-01
Endothelial cells in straight sections of vessels are known to elongate and align in the direction of flow. This phenotype has been replicated in confluent monolayers of bovine aortic endothelial cells and human umbilical vein endothelial cells (HUVECs) in cell culture under physiological shear stress. Here we report on the morphological response of human brain microvascular endothelial cells (HBMECs) in confluent monolayers in response to shear stress. Using a microfluidic platform we image confluent monolayers of HBMECs and HUVECs under shear stresses up to 16 dyne cm(-2). From live-cell imaging we quantitatively analyze the cell morphology and cell speed as a function of time. We show that HBMECs do not undergo a classical transition from cobblestone to spindle-like morphology in response to shear stress. We further show that under shear stress, actin fibers are randomly oriented in the cells indicating that there is no cytoskeletal remodeling. These results suggest that HBMECs are programmed to resist elongation and alignment under shear stress, a phenotype that may be associated with the unique properties of the blood-brain barrier. Copyright © 2015 Elsevier Inc. All rights reserved.
Stähli, Christoph; Muja, Naser; Nazhat, Showan N
2013-02-01
The success of tissue engineering is dependent on rapid scaffold vascularization after engraftment. Copper ions are well known to be angiogenic but exhibit cytotoxicity at elevated doses. The high sensitivity to copper concentration underlines the need of a controlled release mechanism. This study investigated the effect of copper ions released from phosphate-based glasses (PGs) on human umbilical vein endothelial cells (HUVECs) under standard growth conditions (SGC), as well as in a reduced nutrient environment (RNE) with decreased bovine serum and growth factor concentrations to approximate conditions in the core of large volume scaffolds where nutrient diffusion is limited. Initially, HUVECs were exposed to a range of CuCl(2) concentrations in order to identify an optimal response in terms of their metabolism, viability, and apoptotic activity. Under SGC, HUVEC metabolic activity and viability were reduced in a dose-dependent manner in the presence of 0.44-12 ppm Cu(2+). In contrast, HUVEC death induced by the RNE was delayed by an optimal dose of 4 ppm Cu(2+), which was associated with a down-regulation of apoptosis as evidenced by caspase-3/7 activity. Copper ion release from soluble PGs of the formulation 50P(2)O(5)-30CaO-(20-x)Na(2)O-xCuO [mol%] (x=0, 1, 5 and 10) demonstrated a controllable increase with CuO content. The presence of 4 ppm copper ions released from the 10% CuO PG composition reproduced the delay in HUVEC death in the RNE, suggesting the potential of these materials to extend survival of transplanted endothelial cells in large volume scaffolds.
The Antiangiogenesis Effect of Pirfenidone in Wound Healing In Vitro.
Liu, Xiao'an; Yang, Yangfan; Guo, Xiujuan; Liu, Liling; Wu, Kaili; Yu, Minbin
2017-11-01
Abstracts Purpose: Pirfenidone is mostly used in antifibrotic and anti-inflammatory therapies. We have previously demonstrated that pirfenidone had antifibrotic and anti-inflammatory effects on the wound healing process after glaucoma filtration surgery in vitro and in vivo. Since the wound healing and reactive scarring process simultaneously involves inflammation, fibrosis, and angiogenesis, and angiogenesis plays a more important role in chronic or prolonged wound healing, we tried to explore the antiangiogenesis effect in pirfenidone and its potential multitarget function in regulating excessive scarring. The aim of the present study was to investigate the antiangiogenesis effect of pirfenidone. The proliferation of human umbilical vein endothelial cells (HUVECs) and human Tenon's fibroblasts (HTFs) were detected by WST-1 assay. The cell viability of HUVECs was measured by Trypan Blue together with lactate dehydrogenase, Annexin 5 experiment, and Ki-67 immunofluorescence assay. The functions of HUVECs and HTFs were demonstrated using cell migration assay, transwell invasion assay, and tube formation assay. The expression levels of vascular endothelial growth factor-A (VEGF-A), VEGF receptor-2 (VEGFR-2), neuropilin-1(NRP-1), and their downstream signaling proteins p-PI3K, PI3K, p-AKT, AKT, p-mTOR, and mechanistic target of rapamycin (mTOR) were indicated by western blot assay. The secretion of VEGF-A was detected by enzyme-linked immunosorbent assay. Pirfenidone inhibited proliferation, migration, invasion, and tube formation of HUVECs in vitro, and had an equivalent antiangiogenesis effect when compared with Ranibizumab in HUVECs and HTFs. Pirfenidone downregulated VEGF-A/VEGFR-2, VEGF-A/NRP-1, and its downstream signaling pathway protein expression. Pirfenidone has an antiangiogenesis effect in the wound healing process and may become an ideal multitarget antiscarring agent after glaucoma filtration surgery.
Babaee, Fatemeh; Safaeian, Leila; Zolfaghari, Behzad; Haghjoo Javanmard, Shaghayegh
2016-01-01
Background: Pinus eldarica is a widely growing pine in Iran consisting of biologically active constituents with antioxidant properties. This study investigates the effect of hydroalcoholic extract of P. eldarica bark against oxidative damage induced by hydrogen peroxide (H2O2) in human umbilical vein endothelial cells (HUVECs). Methods: The total phenolic content of P. eldarica extract was determined using Folin-Ciocalteu method. The cytotoxicity of P. eldarica extract (25-1000 µg/ml) on HUVECs was assessed using 3-(4,5- Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) method. Cytoprotective effect of P. eldarica extract (25-500 µg/ml) on H2O2-induced oxidative stress was also evaluated by MTT assay. The intra- and extra-cellular hydroperoxides concentration and ferric reducing antioxidant power (FRAP) were measured in pretreated cells. Results: The total phenolic content of P. eldarica extract was estimated as 37.04±1.8% gallic acid equivalent. P. eldarica extract (25-1000 µg/ml) had no cytotoxic effect on HUVECs viability. The pretreatment of HUVECs with P. eldarica extract at the concentrations of 50-500 µg/ml significantly reduced the cytotoxicity of H2O2. P. eldarica extract decreased hydroperoxides concentration and increased FRAP value in intra-cellular fluid at the concentration range of 100-500 µg/ml and in extra-cellular fluid at the concentration range of 25-500 µg/ml. Conclusions: This study revealed the antioxidant and cytoprotective effects of P. eldarica extract against H2O2-induced oxidative stress in HUVECs. Concerning the high content of phenolic compounds in P. eldarica, more research is needed to evaluate its clinical value in endothelial dysfunction and in other oxidative conditions. PMID:26931383
NASA Astrophysics Data System (ADS)
Rudimov, Evgeny; Buravkova, Ludmila; Pogodina, Margarita; Andrianova, Irina
The layer of vascular endothelial cells (ECs) is a dynamic,disseminated organ that perform the function of an interface between the blood and vascular wall. The endothelial monolayer is able to quickly respond to changes in the microenvironment due to its synthesis of vasoactive substances, chemokines, adhesion molecules expression, etc. ECs are highly sensitive to gravitational changes and capable of short-term and long-term responses (Sangha et al., 2001; Buravkova et al., 2005; Infanger et al., 2006, 2007. However, the question remains how to reflect the impact of microgravity on endothelium under the inflammatory process. Therefore, the aim of this study was to investigate secretory and adhesive activity of human umbilical vein endothelial cells (HUVECs) during simulated microgravity and TNF-a activation. HUVECs were isolated according to Gimbrone et al. (1978) in modification A. Antonov (1981) and used for experiments at 2-4 passages. HUVECs were activated by low level of TNF-a (2 ng/ml). Microgravity was generated by Random Positioning Machine (RPM, Dutch Space, Leiden) placed into the thermostat at 37°C. After 24 hours of clinorotation we measured adhesion molecules expression on the cell surface (ICAM-1, VCAM-1, PECAM-1, E-selectin, CD144, endoglin (CD105)) and cell viability using a flow cytometry. To evaluate the level of target gene expression was used the real time RT-PCR. IL-6 and IL-8 concentration was measured in the conditioned medium of HUVECs by using the ELISA test. We found that simulated microgravity within 24 hours caused a decrease of ICAM-1, CD144, and E-selectin expression, at the same time not affect the cell viability, endoglin and PECAM-1 expression on the surface HUVEC. Furthermore, there were no changes of the level of IL-6 and IL-8 gene expression and their products in the culture medium. TNF-activated HUVECs showed an increase in gene expression of interleukins and molecules involved in the adhesion process, which also was confirmed by the higher level of cytokines in the medium and elevated share of CD144, ICAM-1 and VCAM-1-positive cells. Comparative analysis of the level TNF-induced secretion of IL-6 and IL-8, as well as the share of cells bearing ICAM-1 and VCAM-1, showed significant variability depending on the donors. Simultaneous exposure to simulated microgravity and proinflammatory activation did not potentiate and did not cancel the effect caused by TNF-a. In summary, our findings indicate that the simulated microgravity is not activating and additional pro-inflammatory stimulus to HUVEC in vitro model. This work was supported in part by Grant from RFBR No.12-04-31763 and Grant No.NSh-371.2014.4
Synthesis and preliminary biological evaluation of novel taspine derivatives as anticancer agents.
Zhang, Jie; Zhang, Yanmin; Shan, Yuanyuan; Li, Na; Ma, Wei; He, Langchong
2010-07-01
Antiangiogenic therapy might represent a new promising anticancer therapeutic strategy. Taspine can significantly inhibit cell proliferation of human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor-165, which is crucial for angiogenesis. In this study, a series of novel taspine derivatives were synthesized and screened for in vitro anticancer and antiangiogenesis activities. The majority of the derivatives demonstrated a moderate degree of cytotoxicity against human cancer cell lines. One of them (14) exhibited much better antiproliferative activity against CACO-2 (IC(50)=52.5microM) and ECV304 (IC(50)=2.67microM) cells than taspine did. Some of them were also effective in antiproliferative assays against HUVECs. The in silico estimate of solubility of title compounds were higher than that of taspine. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh.
Kim, Min Sung; Lee, Byungjun; Kim, Hong Nam; Bang, Seokyoung; Yang, Hee Seok; Kang, Seong Min; Suh, Kahp-Yang; Park, Suk-Hee; Jeon, Noo Li
2017-03-23
We present a novel approach for assembling 3D tissue by layer-by-layer stacking of cell sheets formed on aligned nanofiber mesh. A rigid frame was used to repeatedly collect aligned electrospun PCL (polycaprolactone) nanofiber to form a mesh structure with average distance between fibers 6.4 µm. When human umbilical vein endothelial cells (HUVECs), human foreskin dermal fibroblasts, and skeletal muscle cells (C2C12) were cultured on the nanofiber mesh, they formed confluent monolayers and could be handled as continuous cell sheets with areas 3 × 3 cm 2 or larger. Thicker 3D tissues have been formed by stacking multiple cell sheets collected on frames that can be nested (i.e. Matryoshka dolls) without any special tools. When cultured on the nanofiber mesh, skeletal muscle, C2C12 cells oriented along the direction of the nanofibers and differentiated into uniaxially aligned multinucleated myotube. Myotube cell sheets were stacked (upto 3 layers) in alternating or aligned directions to form thicker tissue with ∼50 µm thickness. Sandwiching HUVEC cell sheets with two dermal fibroblast cell sheets resulted in vascularized 3D tissue. HUVECs formed extensive networks and expressed CD31, a marker of endothelial cells. Cell sheets formed on nanofiber mesh have a number of advantages, including manipulation and stacking of multiple cell sheets for constructing 3D tissue and may find applications in a variety of tissue engineering applications.
NASA Technical Reports Server (NTRS)
Sawyer, S. J.; Norvell, S. M.; Ponik, S. M.; Pavalko, F. M.
2001-01-01
Disruption of microfilaments in human umbilical vein endothelial cells (HUVEC) with cytochalasin D (cytD) or latrunculin A (latA) resulted in a 3.3- to 5.7-fold increase in total synthesis of prostaglandin E(2) (PGE(2)) and a 3.4- to 6.5-fold increase in prostacyclin (PGI(2)) compared with control cells. Disruption of the microtubule network with nocodazole or colchicine increased synthesis of PGE(2) 1.7- to 1.9-fold and PGI(2) 1.9- to 2.0-fold compared with control cells. Interestingly, however, increased release of PGE(2) and PGI(2) from HUVEC into the media occurred only when microfilaments were disrupted. CytD treatment resulted in 6.7-fold more PGE(2) and 3.8-fold more PGI(2) released from HUVEC compared with control cells; latA treatment resulted in 17.7-fold more PGE(2) and 11.2-fold more PGI(2) released compared with control cells. Both increased synthesis and release of prostaglandins in response to all drug treatments were completely inhibited by NS-398, a specific inhibitor of cyclooxygenase-2 (COX-2). Disruption of either microfilaments using cytD or latA or of microtubules using nocodazole or colchicine resulted in a significant increase in COX-2 protein levels, suggesting that the increased synthesis of prostaglandins in response to drug treatments may result from increased activity of COX-2. These results, together with studies demonstrating a vasoprotective role for prostaglandins, suggest that the cytoskeleton plays an important role in maintenance of endothelial barrier function by regulating prostaglandin synthesis and release from HUVEC.
Li, Changyou; Li, Siyuan; Jia, Changkai; Yang, Lingling; Song, Zicheng; Wang, Yiqiang
2012-01-01
Previous studies showed that several members of the S100A family are involved in neovascularization and tumor development. This study checked whether low concentrations of S100A8 or S100A9 has any effect on the behaviour of vascular endothelial cells. A human umbilical vascular endothelial cell (HUVEC) line was used to measure vascular endothelial cell bioactivity related to angiogenesis, such as cell proliferation, migration, and vessel formation. In the low concentration range up to 10 μg/mL, either each alone or in combination, S100A8 and S100A9 proteins promoted proliferation of HUVEC cells in a dose-dependent manner. The presence of both proteins in culture showed additive effects over each single protein. Both proteins enhanced HUVEC cells to migrate across the transwell membrane and to form tube-like structures on the Matrigel surface. When mixed in Matrigel and injected subcutaneously in Balb/c mice, both proteins increased vessel development in the gel plugs. Microarray assay of HUVEC cells treated with 10 μg/mL S100A8 revealed that ribosome pathway, pathogenic Escherichia coli infection pathway, apoptosis, and stress response genes were modulated by S100A8 treatment. We propose that S100A8 and S100A9 proteins from either infiltrating inflammatory cells or tumor cells play an important role in the interplay among inflammation, angiogenesis, and tumorigenesis. PMID:22685372
SiO2-induced release of sVEGFRs from pulmonary macrophages.
Chao, Jie; Lv, Yan; Chen, Jin; Wang, Jing; Yao, Honghong
2018-01-01
The inhalation of silicon dioxide (SiO 2 ) particles causes silicosis, a stubborn pulmonary disease that is characterized by alveolar inflammation during the early stage. Soluble cytokine receptors (SCRs) play important roles in regulating inflammation by either attenuating or promoting cytokine signaling. However, the role of SCRs in silicosis remains unknown. Luminex assays revealed increased soluble vascular endothelial growth factor receptor (sVEGFR) family levels in the plasma of silicosis patients. In an enzyme-linked immunosorbent assay (ELISA), cells from the differentiated human monocytic cell line U937 released sVEGFR family proteins after exposure to SiO 2 (50μg/cm 2 ). Further Western blot experiments revealed that VEGFR expression was also elevated in U937 cells. In contrast, levels of sVEGFR family members did not change in the supernatants of human umbilical vein endothelial cells (HUVECs) after exposure to SiO 2 (50μg/cm 2 ). Interestingly, VEGFR expression in HUVECs decreased after SiO 2 treatment. In a scratch assay, HUVECs exhibited cell migration ability, indicating the acquisition of mesenchymal properties. Our findings highlight the important role of sVEGFRs in both inflammation and fibrosis induced by SiO 2 , suggesting a possible mechanism for the fibrogenic effects observed in pulmonary diseases associated with fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Bis-pyridinium quadrupolar derivatives. High Stokes shift selective probes for bio-imaging
NASA Astrophysics Data System (ADS)
Salice, Patrizio; Versari, Silvia; Bradamante, Silvia; Meinardi, Francesco; Macchi, Giorgio; Pagani, Giorgio A.; Beverina, Luca
2013-11-01
We describe the design, synthesis and characterization of five high Stokes shift quadrupolar heteroaryl compounds suitable as fluorescent probes in bio-imaging. In particular, we characterize the photophysical properties and the intracellular localization in Human Umbilical Vein Endothelial Cells (HUVEC) and Human Mesenchymal Stem Cells (HMSCs) for each dye. We show that, amongst all of the investigated derivatives, the 2,5-bis[1-(4-N-methylpyridinium)ethen-2-yl)]- N-methylpyrrole salt is the best candidates as selective mitochondrial tracker. Finally, we recorded the full emission spectrum of the most performing - exclusively mitochondrial selective - fluorescent probe directly from HUVEC stained cells. The emission spectrum collected from the stained mitochondria shows a remarkably more pronounced vibronic structure with respect to the emission of the free fluorophore in solution.
Ishibashi, Yuji; Matsui, Takanori; Isami, Fumiyuki; Abe, Yumi; Sakaguchi, Tatsuya; Higashimoto, Yuichiro; Yamagishi, Sho-Ichi
2017-03-04
Advanced glycation end products (AGEs), senescent macroprotein derivatives formed during a normal aging process and acceleratedly under diabetic conditions, play a role in atherosclerotic cardiovascular disease. AGEs cause endothelial cell (EC) damage, an initial trigger for atherosclerosis through the interaction with a receptor for AGEs (RAGE). We have previously shown that n-butanol extracts of Morinda citrifolia (noni), a plant belonging to the family Rubiaceae, block the binding of AGEs to RAGE in vitro. In this study, we examined the effects of n-butanol extracts of noni on reactive oxygen species (ROS) generation and inflammatory reactions on AGE-exposed human umbilical vein ECs (HUVECs). HUVECs were treated with 100 μg/ml AGE-bovine serum albumin (AGE-BSA) or non-glycated BSA in the presence or absence of 670 ng/ml n-butanol extracts of noni for 4 h. Then ROS generation and inflammatory and gene expression in HUVECs were evaluated by dihydroethidium staining and real-time reverse transcription-polymerase chain reaction analyses, respectively. THP-1 cell adhesion to HUVECs was measured after 2-day incubation of AGE-BSA or BSA in the presence or absence of 670 ng/ml n-butanol extracts of noni. N-butanol extracts of noni at 670 ng/ml significantly inhibited the AGE-induced ROS generation and RAGE, intercellular adhesion molecule-1 and plasminogen activator inhibitor-1 gene expressions in HUVECs. AGEs significantly increased monocytic THP-1 cell adhesion to HUVECs, which was also prevented by 670 ng/ml n-butanol extracts of noni. The present study demonstrated for the first time that N-butanol extracts of noni could suppress the AGE-induced inflammatory reactions in HUVECs through its anti-oxidative properties via blocking of the interaction of AGEs with RAGE. Inhibition of the AGE-RAGE axis by n-butanol extracts of noni may be a novel nutraceutical strategy for the treatment of cardiovascular disease.
Ishii, Masakazu; Nakahara, Tatsuo; Araho, Daisuke; Murakami, Juri; Nishimura, Masahiro
2017-07-01
Glycolipids are the major constituent of the thylakoid membrane of higher plants and have a variety of biological and pharmacological activities. However, anti-inflammatory effects of glycolipids on vascular endothelial cells have not been elucidated. Here, we investigated the effect of glycolipids extracted from spinach on lipopolysaccharides (LPS)-induced endothelial inflammation and evaluated the underlying molecular mechanisms. Treatment with glycolipids from spinach had no cytotoxic effects on cultured human umbilical vein endothelial cells (HUVECs) and significantly blocked the expression of LPS-induced interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) in them. Glycolipids treatment also effectively suppressed monocyte adhesion to HUVECs. Treatment with glycolipids inhibited LPS-induced NF-κB phosphorylation and nuclear translocation. In addition, glycolipids treatment significantly promoted endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production in HUVECs. Furthermore, glycolipids treatment blocked LPS-induced inducible NOS (iNOS) expression in HUVECs. Pretreatment with a NOS inhibitor attenuated glycolipids-induced suppression of NF-κB activation and adhesion molecule expression, and abolished the glycolipids-mediated suppression of monocyte adhesion to HUVECs. These results indicate that glycolipids suppress LPS-induced vascular inflammation through attenuation of the NF-κB pathway by increasing NO production in endothelial cells. These findings suggest that glycolipids from spinach may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The expression of miR-125b regulates angiogenesis during the recovery of heat-denatured HUVECs.
Zhou, Situo; Zhang, Pihong; Liang, Pengfei; Huang, Xiaoyuan
2015-06-01
In previous studies we found that miR-125b was down-regulated in denatured dermis of deep partial thickness burn patients. Moreover, miR-125b inhibited tumor-angiogenesis associated with the decrease of ERBB2 and VEGF expression in ovarian cancer cells and breast cancer cells, etc. In this study, we investigated the expression patterns and roles of miR-125b during the recovery of denatured dermis and heat-denatured human umbilical vein endothelial cells (HUVECs). Deep partial thickness burns in Sprague-Dawley rats and the heat-denatured cells (52°C, 35 s) were used for analysis. Western blot analysis and real-time PCR were applied to evaluate the expression of miR-125b and ERBB2 and VEGF. The ability of angiogenesis in heat-denatured HUVECs was analyzed by scratch wound healing and tube formation assay after pri-miR-125b or anti-miR-125b transfection. miR-125b expression was time-dependent during the recovery of heat-denatured dermis and HUVECs. Moreover, miR-125b regulated ERBB2 mRNA and Protein Expression and regulated angiogenesis association with regulating the expression of VEGF in heat-denatured HUVECs. Taken together our results show that the expression of miR-125b is time-dependent and miR-125b plays a regulatory role of angiogenesis during wound healing after burns. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Ma, Jia-Chi; Sun, Xiao-Wen; Su, He; Chen, Quan; Guo, Tian-Kang; Li, Yuan; Chen, Xiao-Chang; Guo, Jin; Gong, Zhen-Qiang; Zhao, Xiao-Dan; Qi, Jian-Bo
2017-01-01
AIM To investigate the underlying mechanism by which CXCL12 and CXCL6 influences the metastatic potential of colon cancer and internal relation of colon cancer and stromal cells. METHODS Western blotting was used to detect the expression of CXCL12 and CXCL6 in colon cancer cells and stromal cells. The co-operative effects of CXCL12 and CXCL6 on proliferation and invasion of colon cancer cells and human umbilical vein endothelial cells (HUVECs) were determined by enzyme-linked immunosorbent assay, and proliferation and invasion assays. The angiogenesis of HUVECs through interaction with cancer cells and stromal cells was examined by angiogenesis assay. We eventually investigated activation of PI3K/Akt/mTOR signaling by CXCL12 involved in the metastatic process of colon cancer. RESULTS CXCL12 was expressed in DLD-1 cancer cells and fibroblasts. The secretion level of CXCL6 by colon cancer cells and HUVECs were significantly promoted by fibroblasts derived from CXCL12. CXCL6 and CXCL2 could significantly enhance HUVEC proliferation and migration (P < 0.01). CXCL6 and CXCL2 enhanced angiogenesis by HUVECs when cultured with fibroblast cells and colon cancer cells (P < 0.01). CXCL12 also enhanced the invasion of colon cancer cells. Stromal cell-derived CXCL12 promoted the secretion level of CXCL6 and co-operatively promoted metastasis of colon carcinoma through activation of the PI3K/Akt/mTOR pathway. CONCLUSION Fibroblast-derived CXCL12 enhanced the CXCL6 secretion of colon cancer cells, and both CXCL12 and CXCL6 co-operatively regulated the metastasis via the PI3K/Akt/mTOR signaling pathway. Blocking this pathway may be a potential anti-metastatic therapeutic target for patients with colon cancer. PMID:28811711
Zhang, Rui-Li; Zhang, Jing-Ping; Wang, Qian-Qiu
2014-01-01
The recombinant Treponema pallidum protein Tp0965 (rTp0965), one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs) with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells) to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis. PMID:25514584
Expansion and cryopreservation of porcine and human corneal endothelial cells.
Marquez-Curtis, Leah A; McGann, Locksley E; Elliott, Janet A W
2017-08-01
Impairment of the corneal endothelium causes blindness that afflicts millions worldwide and constitutes the most often cited indication for corneal transplants. The scarcity of donor corneas has prompted the alternative use of tissue-engineered grafts which requires the ex vivo expansion and cryopreservation of corneal endothelial cells. The aims of this study are to culture and identify the conditions that will yield viable and functional corneal endothelial cells after cryopreservation. Previously, using human umbilical vein endothelial cells (HUVECs), we employed a systematic approach to optimize the post-thaw recovery of cells with high membrane integrity and functionality. Here, we investigated whether improved protocols for HUVECs translate to the cryopreservation of corneal endothelial cells, despite the differences in function and embryonic origin of these cell types. First, we isolated endothelial cells from pig corneas and then applied an interrupted slow cooling protocol in the presence of dimethyl sulfoxide (Me 2 SO), with or without hydroxyethyl starch (HES). Next, we isolated and expanded endothelial cells from human corneas and applied the best protocol verified using porcine cells. We found that slow cooling at 1 °C/min in the presence of 5% Me 2 SO and 6% HES, followed by rapid thawing after liquid nitrogen storage, yields membrane-intact cells that could form monolayers expressing the tight junction marker ZO-1 and cytoskeleton F-actin, and could form tubes in reconstituted basement membrane matrix. Thus, we show that a cryopreservation protocol optimized for HUVECs can be applied successfully to corneal endothelial cells, and this could provide a means to address the need for off-the-shelf cryopreserved cells for corneal tissue engineering and regenerative medicine. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Liu, Xu-sheng; Zhang, Xiao-qi; Liu, Liang; Ming, Jia; Xu, Hui; Ran, Xin-ze; Cheng, Tian-min
2004-10-01
To explore the role of HOXB2 gene in the proliferation of primary human umbilical vein endothelial cells (HUVECs) and the protective effects of VEGF on the endothelia against radiation injury. HUVECs were isolated, cultured, subcultured and identified. (1) Liposome coated oligodeoxynucleotide (odn) and homeoboxB2 antisense oligodeoxyncleotide (HOXB2asodn) were prepared prepared in the concentrations of 0.25, 0.5, 1.0 and 2.5 mg/L for the stimulation of HUVEC. (3)H-TdR incorporation test and MTT method were employed to determine the proliferation activity of HUVECs after activation. The cell cycle analysis of HUVECs was determined by flow cytometry. The expression level of HOXB2mRNA within HUVECs was detected by RT-PCR (reverse transcription polymerase chain reaction). (2) HUVECs were separately treated with the addition of VEGF in concentration of 50 microg/L, by radiation in the dose of 6 Gy or 12 Gy (60)Co gamma gamma ray, or radiation with 12 Gy (60)Co gamma gamma ray followed by the addition of VEGF in dose of 50 microg/L. The cellular morphology was observed and the cellular proliferation activity was determined by MTT method. (1) The proliferation activity of HUVECs could be markedly inhibited by liposome coated HOXB2asodn in comparison to liposome-odn (P < 0.05 or 0.001), and the inhibition effect was positively correlated with the increase in asodn concentration. The cell ratio in S phase and the expression level of the HOXB2mRNA could be lowered by asodn in dose of 2.5 mg/L (P < 0.05 or 0.001). (2) Radiation by (60)Co gamma ray could lead to the nuclear enlargement, vacuolation in the cytoplasm, multiplicity of nucleus and nuclear swelling. The proliferative activity of HUVECs was increased from 0.365 +/- 0.047 and 0.487 +/- 0.022 without radiation to 0.557 +/- 0.042 and 0.648 +/- 0.021 24 and 48 hours after 6 Gy radiation However it was decreased to 0.263 +/- 0.038 and 0.306 +/- 0.024 (P < 0.01) after 12 Gy (60)Co gamma ray radiation. Nevertheless, the cell morphology was obviously improved and the proliferation was enhanced by the addition of VEGF after 12 Gy radiation. HOXB2 gene played important roles in the biological activities of HUVECs. Small dose (6 Gy) gamma-radiation could promote, but large dose (12 Gy) could decrease the mRNA expression of HOXB2 gene in HUVECs. In addition, VEGF could protect HUVECs against radiation injury.
Okamoto, Takayuki; Akita, Nobuyuki; Nagai, Masashi; Hayashi, Tatsuya; Suzuki, Koji
2014-01-01
6-Methylsulfinylhexyl isothiocyanate (6-MSITC) is an active compound in wasabi (Wasabia japonica Matsum.), which is one of the most popular spices in Japan. 6-MSITC suppresses lipopolysaccharide-induced macrophage activation, arachidonic- or adenosine diphosphate-induced platelet activation, and tumor cell proliferation. These data indicate that 6-MSITC has several biological activities involving anti-inflammatory, anti-coagulant, and anti-apoptosis properties. Endothelial cells (ECs) maintain vascular homeostasis and play crucial roles in crosstalk between blood coagulation and vascular inflammation. In this study, we determined the anti-coagulant and anti-inflammatory effects of 6-MSITC on human umbilical vein endothelial cells (HUVECs). 6-MSITC slightly reduced tissue factor expression, but did not alter von Willebrand factor release in activated HUVECs. 6-MSITC modulated the generation of activated protein C, which is essential for negative regulation of blood coagulation, on normal ECs. In addition, 6-MSITC reduced tumor necrosis factor-α (TNF-α)-induced interleukin-6 and monocyte chemoattractant protein-1 expression. 6-MSITC markedly attenuated TNF-α-induced adhesion of human monoblast U937 cells to HUVECs and reduced vascular cell adhesion molecule-1 and E-selectin mRNA expression in activated ECs. These results showed that 6-MSITC modulates EC function and suppresses cell adhesion. This study provides new insight into the mechanism of the anti-inflammatory effect of 6-MSITC, suggesting that 6-MSITC has therapeutic potential as a treatment for vasculitis and vascular inflammation.
2012-01-01
Background Inorganic particles, such as drug carriers or contrast agents, are often introduced into the vascular system. Many key components of the in vivo vascular environment include monocyte-endothelial cell interactions, which are important in the initiation of cardiovascular disease. To better understand the effect of particles on vascular function, the present study explored the direct biological effects of particles on human umbilical vein endothelial cells (HUVECs) and monocytes (THP-1 cells). In addition, the integrated effects and possible mechanism of particle-mediated monocyte-endothelial cell interactions were investigated using a coculture model of HUVECs and THP-1 cells. Fe3O4 and SiO2 particles were chosen as the test materials in the present study. Results The cell viability data from an MTS assay showed that exposure to Fe3O4 or SiO2 particles at concentrations of 200 μg/mL and above significantly decreased the cell viability of HUVECs, but no significant loss in viability was observed in the THP-1 cells. TEM images indicated that with the accumulation of SiO2 particles in the cells, the size, structure and morphology of the lysosomes significantly changed in HUVECs, whereas the lysosomes of THP-1 cells were not altered. Our results showed that reactive oxygen species (ROS) generation; the production of interleukin (IL)-6, IL-8, monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor (TNF)-α and IL-1β; and the expression of CD106, CD62E and tissue factor in HUVECs and monocytes were significantly enhanced to a greater degree in the SiO2-particle-activated cocultures compared with the individual cell types alone. In contrast, exposure to Fe3O4 particles had no impact on the activation of monocytes or endothelial cells in monoculture or coculture. Moreover, using treatment with the supernatants of SiO2-particle-stimulated monocytes or HUVECs, we found that the enhancement of proinflammatory response by SiO2 particles was not mediated by soluble factors but was dependent on the direct contact between monocytes and HUVECs. Furthermore, flow cytometry analysis showed that SiO2 particles could markedly increase CD40L expression in HUVECs. Our data also demonstrated that the stimulation of cocultures with SiO2 particles strongly enhanced c-Jun NH2-terminal kinase (JNK) phosphorylation and NF-κB activation in both HUVECs and THP-1 cells, whereas the phosphorylation of p38 was not affected. Conclusions Our data demonstrate that SiO2 particles can significantly augment proinflammatory and procoagulant responses through CD40–CD40L-mediated monocyte-endothelial cell interactions via the JNK/NF-κB pathway, which suggests that cooperative interactions between particles, endothelial cells, and monocytes may trigger or exacerbate cardiovascular dysfunction and disease, such as atherosclerosis and thrombosis. These findings also indicate that the monocyte-endothelial cocultures represent a sensitive in vitro model system to assess the potential toxicity of particles and provide useful information that may help guide the future design and use of inorganic particles in biomedical applications. PMID:22985792
Neves, Gabriela Westerlund Peixoto; Curty, Nathália de Andrade; Kubitschek-Barreira, Paula Helena; Fontaine, Thierry; Souza, Gustavo Henrique Martins Ferreira; Cunha, Marcel Lyra; Goldman, Gustavo H; Beauvais, Anne; Latgé, Jean-Paul; Lopes-Bezerra, Leila M
2017-01-16
Aspergillus fumigatus, the main etiologic agent causing invasive aspergillosis, can induce an inflammatory response and a prothrombotic phenotype upon contact with human umbilical vein endothelial cells (HUVECs). However, the fungal molecules involved in this endothelial response remain unknown. A. fumigatus hyphae produce an extracellular matrix composed of galactomannan, galactosaminogalactan and α-(1,3)-glucan. In this study, we investigated the consequences of UGM1 gene deletion in A. fumigatus, which produces a mutant with increased galactosaminogalactan production. The ∆ugm1 mutant exhibited an HUVEC-hyperadhesive phenotype and induced increased endothelial TNF-α secretion and tissue factor mRNA overexpression in this "semi-professional" immune host cell. Using a shotgun proteomics approach, we show that the A. fumigatus ∆ugm1 strain can modulate the levels of proteins in important endothelial pathways related to the inflammatory response mediated by TNF-α and to stress response pathways. Furthermore, a purified galactosaminogalactan fraction was also able to induce TNF-α secretion and the coincident HUVEC pathways regulated by the ∆ugm1 mutant, which overexpresses this component, as demonstrated by fluorescence microscopy. This work contributes new data regarding endothelial mechanisms in response to A. fumigatus infection. Invasive aspergillosis is the main opportunistic fungal infection described in neutropenic hematologic patients. One important clinical aspect of this invasive fungal infection is vascular thrombosis, which could be related, at least in part, to the activation of endothelial cells, as shown in previous reports from our group. It is known that direct contact between the A. fumigatus hyphal cell wall and the HUVEC cell surface is necessary to induce an endothelial prothrombotic phenotype and secretion of pro-inflammatory cytokines, though the cell surface components of this angioinvasive fungus that trigger this endothelial response are unknown. The present work employs a discovery-driven proteomics approach to reveal the role of one important cell wall polysaccharide of A. fumigatus, galactosaminogalactan, in the HUVEC interaction and the consequent mechanisms of endothelial activation. This is the first report of the overall panel of proteins related to the HUVEC response to a specific and purified cell wall component of the angioinvasive fungus A. fumigatus. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Jing-Hsien; Lee, Ming-Shih; Wang, Chi-Ping; Hsu, Cheng-Chin; Lin, Hui-Hsuan
2017-08-01
Oxidized low-density lipoprotein (ox-LDL) contributes to the pathogenesis of atherosclerosis by promoting vascular endothelial cell injury. Hibiscus sabdariffa leaf polyphenols (HLP), rich in flavonoids, have been shown to possess antioxidant and antiatherosclerotic activities. In this study, we examined the protective role of HLP and its main compound (-)-epicatechin gallate (ECG) in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL in vitro. In a model of ox-LDL-impaired HUVECs, assessments of cell viability, cytotoxicity, cell proliferation, apoptosis, and autophagy were detected. To highlight the mechanisms of the antiapoptotic effects of HLP and ECG, the expressions of molecular proteins were measured by Western blotting, real-time PCR, and so on. HLP or ECG improved the survival of HUVECs from ox-LDL-induced viability loss. In addition, HLP or ECG showed potential in reducing ox-LDL-dependent apoptosis. Next, the ox-LDL-induced formation of acidic vesicular organelles and upregulation of the autophagy-related genes were increased by HLP or ECG. The HLP-triggered autophagic flux was further confirmed by increasing the LC3-II level under the pretreatment of an autophagy inhibitor chloroquine. Molecular data indicated the autophagic effect of HLP or ECG might be mediated via class III PI3K/Beclin-1 and PTEN/class I PI3K/Akt cascade signaling, as demonstrated by the usage of a class III PI3K inhibitor 3-methyladenine (3-MA) and a PTEN inhibitor SF1670. Our data imply that ECG-enriched HLP upregulates the autophagic pathway, which in turn led to reduce ox-LDL-induced HUVECs injury and apoptosis and provide a new mechanism for its antiatherosclerotic activity.
Browne, Christopher; Bishop, Julius; Yang, Yunzhi
2014-01-01
The induced membrane has been widely used in the treatment of large bone defects but continues to be limited by a relatively lengthy healing process and a requisite two stage surgical procedure. Here we report the development and characterization of a synthetic biomimetic induced membrane (BIM) consisting of an inner highly pre-vascularized cell sheet and an outer osteogenic layer using cell sheet engineering. The pre-vascularized inner layer was formed by seeding human umbilical vein endothelial cells (HUVECs) on a cell sheet comprised of a layer of undifferentiated human bone marrow-derived mesenchymal stem cells (hMSCs). The outer osteogenic layer was formed by inducing osteogenic differentiation of hMSCs. In vitro results indicated the undifferentiated hMSCs cell sheet facilitated the alignment of HUVECs and significantly promoted the formation of vascular-like networks. Furthermore, seeded HUVECs rearranged the extracellular matrix produced by hMSCs sheet. After subcutaneously implantation, the composite constructs showed rapid vascularization and anastomosis with the host vascular system, forming functional blood vessels in vivo. Osteogenic potential of the BIM was evidenced by immunohistochemistry staining of osteocalcin, tartrate-resistant acid phosphatase (TRAP) staining, and alizarin red staining. In summary, the synthetic BIM showed rapid vascularization, significant anastomoses, and osteogenic potential in vivo. This synthetic BIM has the potential for treatment of large bone defects in the absence of infection. PMID:24747351
Liu, Xusheng; Zhang, Xiaoqi
2002-02-01
To explore the effect of homeobox B2 (HOXB2) anti sense oligodeoxynucleotides (asodn) on the proliferation and expression of primary human umbilical vein endothelial cells (HUVECs). Various concentrations of HOXB2 asodn modified by thiophosphate transfected the induction of liposome into HUVECs. MTT a nd RT-PCR methods were employed to determine the effect of different conc ent rations of asodn on the endothelial proliferation and the expression level of HOXB2 mRNA. After the transfection of HOXB2 asodn, the endothelial proliferation was inhibited in a dose-dependent fashion. Simultaneously, the expression of HOXB2 mRNA decreased significantly. HOXB2 plays an important role in the proliferation of endothelia.
Hofbauer, Pablo; Riedl, Sabrina; Witzeneder, Karin; Hildner, Florian; Wolbank, Susanne; Groeger, Marion; Gabriel, Christian; Redl, Heinz; Holnthoner, Wolfgang
2014-09-01
As angiogenic and lymphangiogenic key players, endothelial cells (ECs) are promising candidates for vascular regenerative therapies. To culture ECs in vitro, fetal calf serum (FCS) is most often used. However, some critical aspects of FCS usage, such as possible internalization of xenogeneic proteins and prions, must be considered. Therefore, the aim of this project was to determine if human platelet lysate (hPL) is a suitable alternative to FCS as medium supplement for the culture of blood vascular and lymphatic endothelial cells. The usability of hPL was tested by analysis of endothelial surface marker expression, metabolic activity and vasculogenic potential of outgrowth ECs (OECs), human umbilical vein ECs (HUVECs), and lymphatic ECs (LECs). Expression of EC markers CD31, VEGFR2, VE-cadherin and CD146 did not differ significantly between the EC types cultured in FCS or hPL. In addition, OECs, HUVECs and LECs formed tube-like structures on Matrigel when cultured in hPL and FCS. With the use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid assays, we found that the metabolic activity of OECs and LECs was slightly decreased when hPL was used. However, HUVECs and LECs did not show a significant decrease in metabolic activity, and HUVECs showed a slightly higher activity at low seeding densities. The use of hPL on different EC types did not reveal any substantial negative effects on EC behavior. Thus, hPL appears to be a favorable candidate to replace FCS as a medium supplement in the culture of ECs. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Liu, Shumin; Sun, Zhengwu; Chu, Peng; Li, Hailong; Ahsan, Anil; Zhou, Ziru; Zhang, Zonghui; Sun, Bin; Wu, Jingjun; Xi, Yalin; Han, Guozhu; Lin, Yuan; Peng, Jinyong; Tang, Zeyao
2017-05-01
Homocysteine (Hcy) induced vascular endothelial injury leads to the progression of endothelial dysfunction in atherosclerosis. Epigallocatechin gallate (EGCG), a natural dietary antioxidant, has been applied to protect against atherosclerosis. However, the underlying protective mechanism of EGCG has not been clarified. The present study investigated the mechanism of EGCG protected against Hcy-induced human umbilical vein endothelial cells (HUVECs) apoptosis. Methyl thiazolyl tetrazolium assay (MTT), transmission electron microscope, fluorescent staining, flow cytometry, western blot were used in this study. The study has demonstrated that EGCG suppressed Hcy-induced endothelial cell morphological changes and reactive oxygen species (ROS) generation. Moreover, EGCG dose-dependently prevented Hcy-induced HUVECs cytotoxicity and apoptotic biochemical changes such as reducing mitochondrial membrane potential (MMP), decreasing Bcl-2/Bax protein ratio and activating caspase-9 and 3. In addition, EGCG enhanced the protein ratio of p-Akt/Akt, endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) formation in injured cells. In conclusion, the present study shows that EGCG prevents Hcy-induced HUVECs apoptosis via modulating mitochondrial apoptotic and PI3K/Akt/eNOS signaling pathways. Furthermore, the results indicate that EGCG is likely to represent a potential therapeutic strategy for atherosclerosis associated with Hyperhomocysteinemia (HHcy).
Zhang, Yan-Song; Li, Wen-Juan; Zhang, Xian-Yi; Yan, Yu-Xin; Nie, Shao-Ping; Gong, De-Ming; Tang, Xiao-Fang; He, Ming; Xie, Ming-Yong
2017-05-01
Ganoderma atrum polysaccharide (PSG-1), a main polysaccharide from Ganoderma atrum, possesses potent antioxidant capacity and cardiovascular benefits. The aim of this study was to investigate the role of PSG-1 in oxidative stress and apoptosis in human umbilical vein endothelial cells (HUVECs) under anoxia/reoxygenation (A/R) injury conditions. The results showed that exposure of HUVECs to A/R triggered cell death and apoptosis. Administration of PSG-1 significantly inhibited A/R-induced cell death and apoptosis in HUVECs. PSG-1-reduced A/R injury was mediated via mitochondrial apoptotic pathway, as evidenced by elevation of mitochondrial Bcl-2 protein and mitochondrial membrane potential, and attenuation of Bax translocation, cytochrome c release and caspases activation. Furthermore, PSG-1 enhanced the activities of superoxide dismutase, catalase and glutathione peroxidase and glutathione content, and concomitantly attenuated reactive oxygen species generation, lipid peroxidation and glutathione disulfide content. The antioxidant, N-acetyl-l-cysteine, significantly ameliorated all of these endothelial injuries caused by A/R, suggesting that antioxidant activities might play a key role in PSG-1-induced endothelial protection. Taken together, these findings suggested that PSG-1 could be as a promising adjuvant against endothelial dysfunction through ameliorating oxidative stress and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Sugano, M; Tsuchida, K; Makino, N
2000-06-16
High-density lipoproteins (HDL) levels have been shown to be inversely correlated with coronary heart disease, but the mechanisms of the direct protective effect of HDL on endothelial cells are not fully understood. The apoptosis of endothelial cells induced by cytokines and/or oxidized low-density lipoproteins, etc. may provide a mechanistic clue to the "response-to-injury" hypothesis of atherogenesis. Here we report that HDL prevent the apoptosis of human umbilical venous endothelial cells (HUVECs) induced by tumor necrosis factor-alpha (TNF-alpha) via an inhibition of CPP32-like protease activity. The incubation of HUVECs with TNF-alpha significantly increased the CPP32-like protease activity, and induced apoptosis. Preincubation of HUVECs with HDL before incubation with TNF-alpha significantly suppressed the increase in the CPP32-like protease activity, preventing apoptosis in a concentration-dependent manner. These results suggest that HDL prevent the suicide pathway leading to apoptosis of endothelial cells by decreasing the CPP32-like protease activity and that HDL thus play a protective role against the "response-to-injury" hypothesis of atherogenesis. Copyright 2000 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhengfu, He; Hu, Zhang; Huiwen, Miao
The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs.more » Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.« less
Organizational behavior of human umbilical vein endothelial cells
1982-01-01
Culture conditions that favor rapid multiplication of human umbilical vein endothelial cells (HUV-EC) also support long-term serial propagation of the cells. This is routinely achieved when HUV-EC are grown in Medium 199 (M-199) supplemented with fetal bovine serum (FBS) and endothelial cell growth factor (ECGF), on a human fibronectin (HFN) matrix. The HUV-EC can shift from a proliferative to an organized state when the in vitro conditions are changed from those favoring low density proliferation to those supporting high density survival. When ECGF and HFN are omitted, cultures fail to achieve confluence beyond the first or second passage: the preconfluent cultures organize into tubular structures after 4-6 wk. Some tubes become grossly visible and float in the culture medium, remaining tethered to the plastic dish at either end of the tube. On an ultrastructural level, the tubes consist of cells, held together by junctional complexes, arranged so as to form a lumen. The smallest lumens are formed by one cell folding over to form a junction with itself. The cells contain Weibel-Palade bodies and factor VIII-related antigen. The lumens contain granular, fibrillar and amorphous debris. Predigesting the HFN matrix with trypsin (10 min, 37 degrees C) or plasmin significantly accelerates tube formation. Thrombin and plasminogen activator had no apparent effect. Disruption of the largest tubes with trypsin/EDTA permits the cells to revert to a proliferative state if plated on HFN, in M-199, FBS, and ECGF. These observations indicate that culture conditions that do not favor proliferation permit attainment of a state of nonterminal differentiation (organization) by the endothelial cell. Furthermore, proteolytic modification of the HFN matrix may play an important role in endothelial organization. PMID:6813338
Kang, Weirong; Svirskis, Darren; Sarojini, Vijayalekshmi; McGregor, Ailsa L; Bevitt, Joseph; Wu, Zimei
2017-05-30
The efficacy of boron neutron capture therapy depends on the selective delivery of 10B to the target. Integrins αvβ3 are transmembrane receptors over-expressed in both glioblastoma cells and its neovasculature. In this study, a novel approach to dual-target glioblastoma vasculature and tumor cells was investigated. Liposomes (124 nm) were conjugated with a αvβ3 ligand, cyclic arginine-glycine-aspartic acid-tyrosine-cysteine peptide (c(RGDyC)-LP) (1% molar ratio) through thiol-maleimide coupling. Expression of αvβ3 in glioblastoma cells (U87) and human umbilical vein endothelial cells (HUVEC), representing tumor angiogenesis, was determined using Western Blotting with other cells as references. The results showed that both U87 and HUVEC had stronger expression of αvβ3 than other cell types, and the degree of cellular uptake of c(RGDyC)-LP correlated with the αvβ3-expression levels of the cells. In contrast, control liposomes without c(RGDyC) showed little cellular uptake, regardless of cell type. In an in vitro boron neutron capture therapy study, the c(RGDyC)-LP containing sodium borocaptate generated more rapid and significant lethal effects to both U87 and HUVEC than the control liposomes and drug solution. Interestingly, neutron irradiated U87 and HUVEC showed different types of subsequent cell death. In conclusion, this study has demonstrated the potential of a new dual-targeting strategy using c(RGDyC)-LP to improve boron neutron capture therapy for glioblastoma.
Kang, Weirong; Svirskis, Darren; Sarojini, Vijayalekshmi; McGregor, Ailsa L.; Bevitt, Joseph; Wu, Zimei
2017-01-01
The efficacy of boron neutron capture therapy depends on the selective delivery of 10B to the target. Integrins αvβ3 are transmembrane receptors over-expressed in both glioblastoma cells and its neovasculature. In this study, a novel approach to dual-target glioblastoma vasculature and tumor cells was investigated. Liposomes (124 nm) were conjugated with a αvβ3 ligand, cyclic arginine-glycine-aspartic acid-tyrosine-cysteine peptide (c(RGDyC)-LP) (1% molar ratio) through thiol-maleimide coupling. Expression of αvβ3 in glioblastoma cells (U87) and human umbilical vein endothelial cells (HUVEC), representing tumor angiogenesis, was determined using Western Blotting with other cells as references. The results showed that both U87 and HUVEC had stronger expression of αvβ3 than other cell types, and the degree of cellular uptake of c(RGDyC)-LP correlated with the αvβ3-expression levels of the cells. In contrast, control liposomes without c(RGDyC) showed little cellular uptake, regardless of cell type. In an in vitro boron neutron capture therapy study, the c(RGDyC)-LP containing sodium borocaptate generated more rapid and significant lethal effects to both U87 and HUVEC than the control liposomes and drug solution. Interestingly, neutron irradiated U87 and HUVEC showed different types of subsequent cell death. In conclusion, this study has demonstrated the potential of a new dual-targeting strategy using c(RGDyC)-LP to improve boron neutron capture therapy for glioblastoma. PMID:28402271
Engineering Vascularized Bone Grafts by Integrating a Biomimetic Periosteum and β-TCP Scaffold
2015-01-01
Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell sheet and human umbilical vascular endothelial cells (HUVECs) were then seeded on the undifferentiated hMSCs sheet to form vascularized cell sheet for mimicking the fibrous layer of native periosteum. A mineralized hMSCs sheet was cultured to mimic the cambium layer of native periosteum. This mineralized hMSCs sheet was first wrapped onto a cylindrical β-TCP scaffold followed by wrapping the vascularized HUVEC/hMSC sheet, thus generating a biomimetic CSEP on the β-TCP scaffold. A nonperiosteum structural cell sheets-covered β-TCP and plain β-TCP were used as controls. In vitro studies indicate that the undifferentiated hMSCs sheet facilitated HUVECs to form rich capillary-like networks. In vivo studies indicate that the biomimetic CSEP enhanced angiogenesis and functional anastomosis between the in vitro preformed human capillary networks and the mouse host vasculature. MicroCT analysis and osteocalcin staining show that the biomimetic CSEP/β-TCP graft formed more bone matrix compared to the other groups. These results suggest that the CSEP that mimics the cellular components and spatial configuration of periosteum plays a critical role in vascularization and osteogenesis. Our studies suggest that a biomimetic periosteum-covered β-TCP graft is a promising approach for bone regeneration. PMID:24858072
Lee, Changsun; Shim, Sehwan; Jang, Hyosun; Myung, Hyunwook; Lee, Janet; Bae, Chang-Hwan; Myung, Jae Kyung; Kim, Min-Jung; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Kim, Hwi-Yool; Lee, Seung-Sook; Park, Sunhoo
2017-09-01
Mesenchymal stromal cells (MSCs) are a promising agent for treating impaired wound healing, and their therapeutic potential may be enhanced by employing extracellular matrix scaffolds as cell culture scaffolds or transplant cell carriers. Here, we evaluated the effect of human umbilical cord blood-derived (hUCB)-MSCs and a porcine small intestinal submucosa (SIS)-derived extracellular matrix scaffold in a combined radiation-wound mouse model of impaired wound healing. hUCB-MSCs and SIS hydrogel composite was applied to the excisional wound of whole-body irradiated mice. Assessment of wound closing and histological evaluation were performed in vivo. We also cultured hUCB-MSCs on SIS gel and examined the angiogenic effect of conditioned medium on irradiated human umbilical vein endothelial cells (HUVECs) in vitro. hUCB-MSCs and SIS hydrogel composite treatment enhanced wound healing and angiogenesis in the wound site of mice. Conditioned medium from hUCB-MSCs cultured on SIS hydrogel promoted the chemotaxis of irradiated HUVECs more than their proliferation. The secretion of angiogenic growth factors hepatocyte growth factor, vascular endothelial growth factor-A and angiopoietin-1 from hUCB-MSCs was significantly increased by SIS hydrogel, with HGF being the predominant angiogenic factor of irradiated HUVECs. Our results suggest that the wound healing effect of hUCB-MSCs is enhanced by SIS hydrogel via a paracrine factor-mediated recruitment of vascular endothelial cells in a combined radiation-wound mouse model. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
First siRNA library screening in hard-to-transfect HUVEC cells
Zumbansen, Markus; Altrogge, Ludger M; Spottke, Nicole UE; Spicker, Sonja; Offizier, Sheila M; Domzalski, Sandra BS; St Amand, Allison L; Toell, Andrea; Leake, Devin; Mueller-Hartmann, Herbert A
2010-01-01
Meaningful RNAi-based data for target gene identification are strongly dependent on the use of a biologically relevant cell type and efficient delivery of highly functional siRNA reagents into the selected cell type. Here we report the use of the Amaxa® Nucleofector® 96-well Shuttle® System for siRNA screening in primary cells. Lonza's Clonetics® HUVEC-Human Umbilical Vein Endothelial Cells were transfected with Thermo Scientific Dharmacon siGENOME® siRNA Libraries targeting protein kinases and cell cycle related genes and screened for genes important for cell viability. Of the 37 primary hits, down-regulation of 33 led to reduced proliferation or increased cell death, while down-regulation of two allowed for better cell viability. The validated four genes out of the 16 strongest primary hits (COPB2, PYCS, CDK4 and MYC) influenced cell proliferation to varying degrees, reflecting differing importance for survival of HUVEC cells. Our results demonstrate that the Nucleofector® 96-well Shuttle® System allows the delivery of siRNA libraries in cell types previously considered to be difficult to transfect. Thus, identification and validation of gene targets can now be conducted in primary cells, as the selection of cell types is not limited to those accessible by lipid-mediated transfection. PMID:20628494
Cannabidiol inhibits angiogenesis by multiple mechanisms
Solinas, M; Massi, P; Cantelmo, AR; Cattaneo, MG; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, LM; Noonan, DM; Albini, A; Parolaro, D
2012-01-01
BACKGROUND AND PURPOSE Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. EXPERIMENTAL APPROACH Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability – through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis – and in vitro motility – both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. KEY RESULTS CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. CONCLUSIONS AND IMPLICATIONS This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. PMID:22624859
Cannabidiol inhibits angiogenesis by multiple mechanisms.
Solinas, M; Massi, P; Cantelmo, A R; Cattaneo, M G; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, L M; Noonan, D M; Albini, A; Parolaro, D
2012-11-01
Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability - through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis - and in vitro motility - both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Song, Yan; Zhao, Hongfeng; Liu, Jinyang; Fang, Chao; Miao, Renying
2016-04-01
Citral is an active compound of lemongrass oil which has been reported to have anti-inflammatory effects. In this study, we investigated the effects of citral on lipopolysaccharide (LPS)-induced inflammatory response in a rat model of peritonitis and human umbilical vein endothelial cells (HUVECs). LPS was intraperitoneally injected into rats to establish a peritonitis model. The HUVECs were treated with citral for 12 h before exposure to LPS. The levels of TNF-α and IL-8 were measured using ELISA. Western blotting was used to detect the expression of VCAM-1, ICAM-1, NF-κB, and PPAR-γ. The results showed that citral had a protective effect against LPS-induced peritonitis. Citral decreased the levels of WBCs and inflammatory cytokines TNF-α and IL-6. Citral also inhibited LPS-induced myeloperoxidase (MPO) activity in the peritoneal tissue. Treatment of HUVECs with citral significantly inhibited TNF-α and IL-8 expression induced by LPS. LPS-induced VCAM-1 and ICAM-1 expression were also suppressed by citral. Meanwhile, we found that citral inhibited LPS-induced NF-κB activation in HUVECs. Furthermore, we found that citral activated PPAR-γ and the anti-inflammatory effects of citral can be reversed by PPAR-γ antagonist GW9662. In conclusion, citral inhibits LPS-induced inflammatory response via activating PPAR-γ which attenuates NF-κB activation and inflammatory mediator production.
Lee, S K; Yang, S-H; Kwon, I; Lee, O-H; Heo, J H
2014-09-02
Tumour necrosis factor-α (TNF-α) is upregulated in many inflammatory diseases and is also a potent agent for microparticle (MP) generation. Here, we describe an essential role of TNF-α in the production of endothelial cell-derived microparticles (EMPs) in vivo and the function of TNF-α-induced EMPs in endothelial cells. We found that TNF-α rapidly increased blood levels of EMPs in mice. Treatment of human umbilical vein endothelial cells (HUVECs) with TNF-α also induced EMP formation in a time-dependent manner. Silencing of TNF receptor (TNFR)-1 or inhibition of the nuclear factor-κB (NF-κB) in HUVECs impaired the production of TNF-α-induced EMP. Incubation of HUVECs with PKH-67-stained EMPs showed that endothelial cells readily engulfed EMPs, and the engulfed TNF-α-induced EMPs promoted the expression of pro-apoptotic molecules and upregulated intercellular adhesion molecule-1 level on the cell surface, which led to monocyte adhesion. Collectively, our findings indicate that the generation of TNF-α-induced EMPs was mediated by TNFR1 or NF-κB and that EMPs can contribute to apoptosis and inflammation of endothelial cells.
Wang, Qianqian; Zhang, Hui; Liu, Guoyan; He, Qian; Zhang, Liming
2017-01-01
Wound healing is a complex biological process, and current research finds that jellyfish have a great capacity for promoting growth and healing. However, the underlying mechanisms remain unclear. Thus, this study was conducted to investigate the molecular mechanisms and effects of a tentacle extract (TE) from the jellyfish Cyanea capillata (C. capillata) on cell proliferation and migration in human umbilical vein endothelial cells (HUVECs). First, our results showed that TE at the concentration of 1 μg/ml could promote cell proliferation over various durations, induce a transition of the cells from the G1-phase to the S/G2-phase of the cell cycle, and increase the expression of cell cycle proteins (CyclinB1 and CyclinD1). Second, we found that TE could activate the PI3K/Akt, ERK1/2 and JNK MAPK signaling pathways but not the NF-κB signaling pathway or the apoptosis signaling cascade. Finally, we demonstrated that the TE-induced expression of cell cycle proteins was decreased by ERK1/2 inhibitor PD98059 but not by PI3K inhibitor LY294002 or JNK inhibitor SP600125. Similarly, the TE-enhanced migration ability of HUVECs was also markedly attenuated by PD98059. Taken together, our findings indicate that TE-induced proliferation and migration in HUVECs mainly occurred through the ERK1/2 MAPK signaling pathway. These results are instructively important for further research on the isolation and purification of growth-promoting factors from C. capillata and are hopeful as a means to improve human wound repair in unfavorable conditions. PMID:29261770
Wang, Beilei; Liu, Dan; Wang, Chao; Wang, Qianqian; Zhang, Hui; Liu, Guoyan; He, Qian; Zhang, Liming
2017-01-01
Wound healing is a complex biological process, and current research finds that jellyfish have a great capacity for promoting growth and healing. However, the underlying mechanisms remain unclear. Thus, this study was conducted to investigate the molecular mechanisms and effects of a tentacle extract (TE) from the jellyfish Cyanea capillata (C. capillata) on cell proliferation and migration in human umbilical vein endothelial cells (HUVECs). First, our results showed that TE at the concentration of 1 μg/ml could promote cell proliferation over various durations, induce a transition of the cells from the G1-phase to the S/G2-phase of the cell cycle, and increase the expression of cell cycle proteins (CyclinB1 and CyclinD1). Second, we found that TE could activate the PI3K/Akt, ERK1/2 and JNK MAPK signaling pathways but not the NF-κB signaling pathway or the apoptosis signaling cascade. Finally, we demonstrated that the TE-induced expression of cell cycle proteins was decreased by ERK1/2 inhibitor PD98059 but not by PI3K inhibitor LY294002 or JNK inhibitor SP600125. Similarly, the TE-enhanced migration ability of HUVECs was also markedly attenuated by PD98059. Taken together, our findings indicate that TE-induced proliferation and migration in HUVECs mainly occurred through the ERK1/2 MAPK signaling pathway. These results are instructively important for further research on the isolation and purification of growth-promoting factors from C. capillata and are hopeful as a means to improve human wound repair in unfavorable conditions.
Yang, Zhenyi; Yuan, Shaojun; Liang, Bin; Liu, Yang; Choong, Cleo; Pehkonen, Simo O
2014-09-01
Endothelial cell-matrix interactions play a vital role in promoting vascularization of engineered tissues. The current study reports a facile and controllable method to develop a RGD peptide-functionalized chitosan microsphere scaffolds for rapid cell expansion of human umbilical vein endothelial cells (HUVECs). Functional poly(methacrylic acid) (PMAA) brushes are grafted from the chitosan microsphere surfaces via surface-initiated ATRP. Subsequent conjugation of RGD peptides on the pendent carboxyl groups of PMAA side chain is accomplished by carbodiimide chemistry to facilitate biocompatibility of the 3D CS scaffolding system. In vitro cell-loading assay of HUVECs exhibits a significant improvment of cell adhesion, spreading, and proliferation on the RGD peptide-immobilized CS microsphere surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Xinhua; Pan, Lilong; Wang, Xianli; Gong, Qihai; Zhu, Yi Zhun
2012-05-01
Leonurine, a bioactive alkaloid compound in Herba leonuri, has various pharmacological activities, including antioxidant and anti-apoptotic capacities. This study was conducted to test the hypothesis that leonurine was able to attenuate tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) activation and the underlying molecular mechanisms. Mitogen-activated protein kinases (MAPK) activation, nuclear factor-κB (NF-κB) activation, and inflammatory mediators expression were detected by Western blot or enzyme-liked immunosorbent assay, intracellular reactive oxygen species (ROS) and NF-κB p65 translocation were measured by immunofluorescence, endothelial cell-monocyte interaction was detected by microscope. Leonurine inhibited U937 cells adhesion to TNF-α-activated HUVEC in a concentration dependent manner. Treatment with leonurine blocked TNF-α-induced mRNA and protein expression of adhesion molecules (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), cyclooxygenase-2, and monocyte chemoattractant protein-1 in endothelial cells. In addition, leonurine attenuated TNF-α-induced intracellular ROS production in HUVEC. Furthermore, leonurine also suppressed the TNF-α-activated p38 phosphorylation and IκBα degradation. Subsequently, reduced NF-κB p65 phosphorylation, nuclear translocation, and DNA-binding activity were also observed. Our results demonstrated for the first time that the anti-inflammatory properties of leonurine in endothelial cells, at least in part, through suppression of NF-κB activation, which may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Schleicher, Martina; Hansmann, Jan; Elkin, Bentsian; Kluger, Petra J.; Liebscher, Simone; Huber, Agnes J. T.; Fritze, Olaf; Schille, Christine; Müller, Michaela; Schenke-Layland, Katja; Seifert, Martina; Walles, Heike; Wendel, Hans-Peter; Stock, Ulrich A.
2012-01-01
In vivo self-endothelialization by endothelial cell adhesion on cardiovascular implants is highly desirable. DNA-oligonucleotides are an intriguing coating material with nonimmunogenic characteristics and the feasibility of easy and rapid chemical fabrication. The objective of this study was the creation of cell adhesive DNA-oligonucleotide coatings on vascular implant surfaces. DNA-oligonucleotides immobilized by adsorption on parylene (poly(monoaminomethyl-para-xylene)) coated polystyrene and ePTFE were resistant to high shear stress (9.5 N/m2) and human blood serum for up to 96 h. Adhesion of murine endothelial progenitor cells, HUVECs and endothelial cells from human adult saphenous veins as well as viability over a period of 14 days of HUVECs on oligonucleotide coated samples under dynamic culture conditions was significantly enhanced (P < 0.05). Oligonucleotide-coated surfaces revealed low thrombogenicity and excellent hemocompatibility after incubation with human blood. These properties suggest the suitability of immobilization of DNA-oligonucleotides for biofunctionalization of blood vessel substitutes for improved in vivo endothelialization. PMID:22481939
Nakahara, Risa; Makino, Junya; Kamiya, Tetsuro; Hara, Hirokazu; Adachi, Tetsuo
2016-01-01
Caffeic acid phenethyl ester (CAPE), one of the major polyphenols, exhibits anti-oxidative, anti-bacterial, and anti-cancer properties. Atherosclerosis is a chronic inflammatory disease, the progression of which is closely related to the accumulated adhesion of inflammatory monocytes/macrophages to the endothelium. We herein determined whether CAPE and its derivatives suppressed THP-1 cell adhesion to human umbilical vein endothelial cells (HUVEC). Of the four polyphenols tested, CAPE significantly suppressed the 12-O-tetradecanoylphorbol 13-acetate (TPA)-elicited expression of cluster for differentiation (CD) 11b, 14, and 36, and this was accompanied by the inhibition of THP-1 cell adhesion to HUVEC. CAPE also suppressed the activation of TPA-elicited nuclear factor-κB (NF-κB) and accumulation of NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS), but did not affect extracellular signal-regulated kinase (ERK) phosphorylation. Taken together, these results demonstrated that CAPE suppressed THP-1 cell adhesion to HUVEC through, at least in part, the NF-κB, NOX2, and ROS-derived signaling axis. PMID:27257341
Zhu, Yi; Doornebal, Ewald J; Pirtskhalava, Tamar; Giorgadze, Nino; Wentworth, Mark; Fuhrmann-Stroissnigg, Heike; Niedernhofer, Laura J; Robbins, Paul D; Tchkonia, Tamara; Kirkland, James L
2017-03-08
Senescent cells accumulate with aging and at sites of pathology in multiple chronic diseases. Senolytics are drugs that selectively promote apoptosis of senescent cells by temporarily disabling the pro-survival pathways that enable senescent cells to resist the pro-apoptotic, pro-inflammatory factors that they themselves secrete. Reducing senescent cell burden by genetic approaches or by administering senolytics delays or alleviates multiple age- and disease-related adverse phenotypes in preclinical models. Reported senolytics include dasatinib, quercetin, navitoclax (ABT263), and piperlongumine. Here we report that fisetin, a naturally-occurring flavone with low toxicity, and A1331852 and A1155463, selective BCL-X L inhibitors that may have less hematological toxicity than the less specific BCL-2 family inhibitor navitoclax, are senolytic. Fisetin selectively induces apoptosis in senescent but not proliferating human umbilical vein endothelial cells (HUVECs). It is not senolytic in senescent IMR90 cells, a human lung fibroblast strain, or primary human preadipocytes. A1331852 and A1155463 are senolytic in HUVECs and IMR90 cells, but not preadipocytes. These agents may be better candidates for eventual translation into clinical interventions than some existing senolytics, such as navitoclax, which is associated with hematological toxicity.
Solarska-Ściuk, K; Gajewska, A; Skolimowski, J; Gajek, A; Bartosz, G
2014-01-01
Diamond nanoparticles find numerous applications in pharmacy, medicine, cosmetics, and biotechnology. However, possible adverse cellular effects of diamond nanoparticle cells have been reported, which may limit their use. The aim of this study was to compare the effect of nonmodified diamond nanoparticles (D) and diamond nanoparticles modified by the Fenton reaction (D+OH) on human umbilical cord endothelial cells (HUVEC-ST). We found that both D and D+OH show time- and concentration-dependent cytotoxicity, inducing apoptosis and necrosis of HUVEC-ST. Interaction with D and D+OH also induced changes in the production of reactive oxygen and nitrogen species and changes in the level of glutathione and activities of antioxidant enzymes in the cells. These data demonstrate that diamond nanoparticles may induce oxidative stress in human endothelial cells, which contributes to their cytotoxic effects seen at higher concentrations of D and D+OH. © 2014 International Union of Biochemistry and Molecular Biology, Inc.
Hailer, N P; Oppermann, E; Leckel, K; Cinatl, J; Markus, B H; Blaheta, R A
2000-07-15
Interaction of endothelial P-selectin with sialyl Lewis(x)-glycoprotein or P-selectin glycoprotein ligand (PSGL)-1 on leukocytes represents an early step in leukocyte recruitment. Redistribution of P-selectin to the endothelial cell surface occurs rapidly after challenge with several proinflammatory agents, for example, histamine, leucopterins, or lipopolysaccharide. We present evidence that prostaglandin E2 (PGE2) is an efficient inductor of surface P-selectin on cultured human umbilical vein endothelial cells (HUVEC). The increase in P-selectin-immunoreactivity coincided with redistribution of cytoplasmic P-selectin-reactive granulae to the endothelial cell surface, as visualized by confocal laser microscopic examination. CD4-T-cell adhesion to PGE2-stimulated HUVEC was also enhanced by a factor of 4, and blocking mAb directed against the binding site of P-selectin almost completely abrogated this increase in CD4-T-cell adhesion. In summary, our findings show that liberation of PGE2 is an important inductor of P-selectin surface expression on endothelial cells, resulting in enhanced recruitment of inflammatory cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woo Ho; Lee, Sun Hee; Jung, Myung Hwan
2009-08-01
The structure and characteristics of the tumor vasculature are known to be different from those of normal vessels. Neuropilin2 (Nrp2), which is expressed in non-endothelial cell types, such as neuronal or cancer cells, functions as a receptor for both semaphorin and vascular endothelial growth factor (VEGF). After isolating tumor and normal endothelial cells from advanced gastric cancer tissue and normal gastric mucosa tissues, respectively, we identified genes that were differentially expressed in gastric tumor endothelial (TEC) and normal endothelial cells (NEC) using DNA oligomer chips. Using reverse transcriptase-PCR, we confirmed the chip results by showing that Nrp2 gene expression ismore » significantly up-regulated in TEC. Genes that were found to be up-regulated in TEC were also observed to be up-regulated in human umbilical vein endothelial cells (HUVECs) that were co-cultured with gastric cancer cells. In addition, HUVECs co-cultured with gastric cancer cells showed an increased reactivity to VEGF-induced proliferation and migration. Moreover, overexpression of Nrp2 in HUVECs significantly enhanced the proliferation and migration induced by VEGF. Observation of an immunohistochemical analysis of various human tumor tissue arrays revealed that Nrp2 is highly expressed in the tumor vessel lining and to a lesser extent in normal tissue microvessels. From these results, we suggest that Nrp2 may function to increase the response to VEGF, which is more significant in TEC than in NEC given the differential expression, leading to gastric TEC with aggressive angiogenesis phenotypes.« less
Wei, Shihu; Fukuhara, Hideo; Chen, Guang; Kawada, Chiaki; Kurabayashi, Atsushi; Furihata, Mutsuo; Inoue, Keiji; Shuin, Taro
2014-01-01
The aim of this study was to investigate whether terrestrosin D (TED) inhibits the progression of castration-resistant prostate cancer and consider its mechanism. Cell cycle, mitochondrial membrane potential (ΔΨm) and apoptosis were determined by flow cytometry. Caspase-3 activity and vascular endothelial growth factor secretion were detected by a caspase-3 assay and human vascular endothelial growth factor kit, respectively. A PC-3 xenograft mouse model was used to evaluate the anticancer effect of TED in vivo. In vitro, TED strongly suppressed the growth of prostate cancer cells and endothelial cells in a dose-dependent manner. TED induced cell cycle arrest and apoptosis in PC-3 cells and human umbilical vascular endothelial cells (HUVECs). TED-induced apoptosis did not involve the caspase pathway. TED also decreased ΔΨm in PC-3 cells and HUVECs. In vivo, TED significantly suppressed tumor growth in nude mice bearing PC-3 cells, without any overt toxicity. Immunohistochemical analysis showed TED induced apoptotic cell death and inhibited angiogenesis in xenograft tumor cells. Cell cycle arrest and induction of apoptosis in cancer cells and endothelial cells might be plausible mechanisms of actions for the observed antitumor and antiangiogenic activities of TED. © 2014 S. Karger AG, Basel.
β-Escin Effectively Modulates HUVECS Proliferation and Tube Formation.
Varinská, Lenka; Fáber, Lenka; Kello, Martin; Petrovová, Eva; Balážová, Ľudmila; Solár, Peter; Čoma, Matúš; Urdzík, Peter; Mojžiš, Ján; Švajdlenka, Emil; Mučaji, Pavel; Gál, Peter
2018-01-17
In the present study we evaluated the anti-angiogenic activities of β-escin (the major active compound of Aesculus hippocastanum L. seeds). Human umbilical-vein endothelial cells (HUVECs) were used as an in vitro model for studying the molecular mechanism underlying the anti-angiogenic effect of β-escin. We investigated the in vitro effects on proliferation, migration, and tube formation of HUVECs and in vivo anti-angiogenic activity was evaluated in a chick chorioallantoic membrane (CAM) angiogenesis assay. Moreover, the effect on gene expressions was determined by the RT2 ProfilerTM human angiogenesis PCR Array. It was found that β-escin exerts inhibitory effect on the basic fibroblast growth factor (bFGF)-induced proliferation, migration and tube formation, as well as CAM angiogenesis in vivo. The inhibition of critical steps of angiogenic process observed with β-escin could be partially explained by suppression of Akt activation in response to bFGF. Moreover, the anti-angiogenic effects of β-escin could also be mediated via inhibition of EFNB2 and FGF-1 gene expressions in endothelial cells. In conclusion, β-escin affects endothelial cells as a negative mediator of angiogenesis in vitro and in vivo and may therefore be considered as a promising candidate for further research elucidating its underlying mechanism of action.
Chu, Maolin; Zhang, Chunying
2018-01-24
Angiogenesis plays an important role in bladder cancer (BCa). The immunosuppressive drug leflunomide has attracted worldwide attention. However, the effects of leflunomide on angiogenesis in cancer remain unclear. Here, we report the increased expression of soluble ephrin-A1 (sEphrin-A1) in supernatants of BCa cell lines (RT4, T24, and TCCSUP) co-cultured with human umbilical vein endothelial cells (HUVECs) compared with that in immortalized uroepithelial cells (SV-HUC-1) co-cultured with HUVECs. sEphrin-A1 is released from BCa cells as a monomeric protein that is a functional form of the ligand. The co-culture supernatants containing sEphrin-A1 caused the internalization and down-regulation of EphA2 on endothelial cells and dramatic functional activation of HUVECs. This sEphrin-A1/EphA2 system is mainly functional in regulating angiogenesis in BCa tissue. We showed that leflunomide (LEF) inhibited angiogenesis in a N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced bladder carcinogenesis model and a tumor xenograft model, as well as in BCa cell and HUVEC co-culture systems, via significant inhibition of the sEphrin-A1/EphA2 system. Ephrin-A1 overexpression could partially reverse LEF-induced suppression of angiogenesis and subsequent tumor growth inhibition. Thus, LEF has a significant anti-angiogenesis effect on BCa cells and BCa tissue via its inhibition of the functional angiogenic sEphrin-A1/EphA2 system and may have potential for treating BCa beyond immunosuppressive therapy.
Sgarioto, Melissa; Adhikari, Raju; Gunatillake, Pathiraja A.; Moore, Tim; Patterson, John; Nagel, Marie-Danielle; Malherbe, François
2015-01-01
We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%. PMID:26000274
Jia, Dan; Li, Tian; Chen, Xiaofei; Ding, Xuan; Chai, Yifeng; Chen, Alex F; Zhu, Zhenyu; Zhang, Chuan
2018-01-05
Salvianic acid A (Danshensu) is a major water-soluble component extracted from Salvia miltiorrhiza (Danshen), which has been widely used in clinic in China for treatment of cardiovascular diseases (CVDs). This study aimed to investigate the protective effects of salvianic acid A sodium (SAAS) against tert-butyl hydroperoxide (t-BHP) induced human umbilical vein endothelial cell (HUVEC) oxidative injury and the underlying molecular mechanisms. In the antioxidant activity-assessing model, SAAS pretreatment significantly ameliorated the cell growth inhibition and apoptosis induced by t-BHP. An ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) based-metabolic profiling was developed to investigate the metabolic changes of HUVEC cells in response to t-BHP and SAAS. The results revealed that t-BHP injury upregulated 13 metabolites mainly involved in tryptophan metabolism and phenylalanine metabolism which were highly correlated with mitochondrial function and oxidative stress, and 50 μM SAAS pretreatment effectively reversed these metabolic changes. Further biomedical research indicated that SAAS pretreatment reduced the t-BHP induced increase of lactate dehydrogenase (LDH), intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and mitochondrial membrane potential (MMP), and the decrease of key antioxidant enzymes through mitochondria antioxidative pathways via JAK2/STAT3 and PI3K/Akt/GSK-3β signalings. Taken together, our results suggested that SAAS may protect HUVEC cells against t-BHP induced oxidative injury via mitochondrial antioxidative defense system. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Jing; He, Qiuxia; Cheng, Yizhe; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying
2009-09-01
Previously, we found that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO) promoted apoptosis of human umbilical vascular endothelial cells (HUVECs) deprived of growth factors. In this study, we aimed to investigate the effect of DBO and its mechanism of action on angiogenesis and apoptosis of HUVECs in the presence of fibroblast growth factor-2 (FGF-2), which promotes angiogenesis and inhibits apoptosis in vivo and in vitro. DBO significantly inhibited capillary-like tube formation by promoting apoptosis of HUVECs in the presence of FGF-2 in vitro. Furthermore, DBO elevated the levels of reactive oxygen species (ROS) and nitric oxide (NO) and increased the activity of NADPH oxidase and inducible nitric oxide synthase (iNOS) in promoting apoptosis under this condition. Moreover, when NADPH oxidase was inhibited by its specific inhibitor, dibenziodolium chloride (DPI), DBO could not elevate ROS and NO levels in HUVECs. The data suggest that DBO is a new modulator of apoptosis in vitro, and it might function by increasing the activity of NADPH oxidase and iNOS, subsequently elevating the levels of ROS and NO in HUVECs. The findings of this study provide a new small molecule for investigating the FGF-2/NADPH oxidase/iNOS signaling pathway in apoptosis.
Evaluating the potential bioactivity of a novel compound ER1626.
Wang, Lijun; Zeng, Yanyan; Wang, Tianling; Liu, Hongyi; Xiao, Hong; Xiang, Hua
2014-01-01
ER1626, a novel compound, is a derivate of indeno-isoquinoline ketone. This study was designed to evaluate the biological activity and potential anti-tumor mechanism of ER1626. MTT assay, scratch assay and flow cytometry were used to determine cell proliferation, cell migration and cell cycle distribution as well as cell apoptosis on human breast cancer MCF-7 cells and endometrial cancer Ishikawa cells. We also explored the antiangiogenic effect of ER1626 on HUVEC cells and chicken embryos. The expression of estrogen receptor protein was investigated with western-blot analysis. ER1626 down-regulated the expression of estrogen receptor α protein and up-regulated β protein in MCF-7 and Ishikawa cells. The value of IC50 of ER1626 on MCF-7 and Ishikawa cells were respectively 8.52 and 3.08 µmol/L. Meanwhile, ER1626 decreased VEGF secretion of MCF-7 and Ishikawa cells, disturbed the formation of VEGF-stimulated tubular structure in HUVEC cells, and inhibited the angiogenesis on the chicken chorioallantoic membrane. Scratch assay revealed that ER1626 suppressed the migration of MCF-7, Ishikawa and HUVEC cells. In addition to induction tumor cell apoptosis, ER1626 arrested cell cycle in G1/G0 phase in MCF-7 cells and G2/M phase in Ishikawa cells. In conclusion, our results demonstrated that ER1626 has favorable bioactivities to be a potential candidate against breast cancer and angiogenesis.
Yi, Wei; Yang, Yang; Zhao, Dajun; Yang, Honggang; Geng, Ting; Xing, Jianzhou; Zhang, Yu; Tan, Songtao; Yi, Dinghua
2014-01-01
Ethyl pyruvate (EP) is a simple aliphatic ester of the metabolic intermediate pyruvate that has been demonstrated to be a potent anti-inflammatory agent in a variety of in vivo and in vitro model systems. However, the protective effects and mechanisms underlying the actions of EP against endothelial cell (EC) inflammatory injury are not fully understood. Previous studies have confirmed that endoplasmic reticulum stress (ERS) plays an important role in regulating the pathological process of EC inflammation. In this study, our aim was to explore the effects of EP on tumor necrosis factor-α (TNF-α)-induced inflammatory injury in human umbilical vein endothelial cells (HUVECs) and to explore the role of ERS in this process. TNF-α treatment not only significantly increased the adhesion of monocytes to HUVECs and inflammatory cytokine (sICAM1, sE-selectin, MCP-1 and IL-8) production in cell culture supernatants but it also increased ICAM and MMP9 protein expression in HUVECs. TNF-α also effectively increased the ERS-related molecules in HUVECs (GRP78, ATF4, caspase12 and p-PERK). EP treatment effectively reversed the effects of the TNF-α-induced adhesion of monocytes on HUVECs, inflammatory cytokines and ERS-related molecules. Furthermore, thapsigargin (THA, an ERS inducer) attenuated the protective effects of EP against TNF-α-induced inflammatory injury and ERS. The PERK siRNA treatment not only inhibited ERS-related molecules but also mimicked the protective effects of EP to decrease TNF-α-induced inflammatory injury. In summary, we have demonstrated for the first time that EP can effectively reduce vascular endothelial inflammation and that this effect at least in part depends on the attenuation of ERS. PMID:25470819
Role of endogenous insulin gene enhancer protein ISL-1 in angiogenesis
Xiong, Si-qi; Jiang, Hai-bo; Li, Yan-xiu; Li, Hai-bo; Xu, Hui-zhuo; Wu, Zhen-kai; Zheng, Wei
2016-01-01
Objective To elucidate the role of insulin gene enhancer protein ISL-1 (Islet-1) in angiogenesis and regulation of vascular endothelial growth factor (VEGF) expression in vitro and in vivo. Methods siRNA targeting Islet-1 was transfected to human umbilical vein endothelial cell lines (HUVECs). The expression of Islet-1 and VEGF in the cultured cells was measured using real-time PCR and immunoblotting. 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide; thiazolyl blue (MTT) assay was used to analyze the proliferation of HUVECs affected by Islet-1. Wound healing and Transwell assays were conducted to assess the motility of HUVECs. The formation of capillary-like structures was examined using growth factor–reduced Matrigel. siRNA targeting Islet-1 was intravitreally injected into the murine model of oxygen-induced retinopathy (OIR). Retinal neovascularization was evaluated with angiography using fluorescein-labeled dextran and then quantified histologically. Real-time PCR and immunoblotting were used to determine whether local Islet-1 silencing affected the expression of Islet-1 and VEGF in murine retinas. Results The expression of Islet-1 and VEGF in HUVECs was knocked down by siRNA. Reduced endogenous Islet-1 levels in cultured cells greatly inhibited the proliferation, migration, and tube formation in HUVECs in vitro. Retinal neovascularization following injection of Islet-1 siRNA was significantly reduced compared with that of the contralateral control eye. Histological analysis indicated that the neovascular nuclei protruding into the vitreous cavity were decreased. Furthermore, the Islet-1 and VEGF expression levels were downregulated in murine retinas treated with siRNA against Islet-1. Conclusions Reducing the expression of endogenous Islet-1 inhibits proliferation, migration, and tube formation in vascular endothelial cells in vitro and suppresses retinal angiogenesis in vivo. Endogenous Islet-1 regulates angiogenesis via VEGF. PMID:27994436
Qin, Yong; Prescott, Lauriston M.; Deitch, Edwin A.; Kaiser, Vicki L.
2011-01-01
Experimental data has shown that mesenteric lymph from rats subjected to trauma-hemorrhagic shock (THS) but not trauma-sham shock (TSS) induces neutrophil activation, cytotoxicity, decreased red blood cell deformability and bone marrow colony growth suppression. These data have lead to the hypothesis that gut factors produced from THS enter the systemic circulation via the mesenteric lymphatics and contribute to the progression of Multiple Organ Failure (MOF) following THS. Ongoing studies designed to identify bioactive lymph agents implicated factors associated with the heparin use in the THS procedure. We investigated if heparin itself was responsible for reported toxicity to human umbilical vein endothelial cells (HUVECs). HUVEC toxicity was not induced by lymph when alternate anti-coagulants (citrate and EDTA) were used in THS. HUVEC toxicity was induced by lymph after heparin but not saline or citrate injection into TSS and naïve animals and was dose dependent. Activities of both heparin-releasable lipases (lipoprotein (LPL) and hepatic (HL)) were detected in the plasma and lymph from THS and naïve animals receiving heparin but not citrate or saline. Lymph-induced HUVEC toxicity correlated with lymph lipase activities. Finally, incubation of HUVECs with purified LPL added to naïve lymph induced toxicity in vitro. These data show that heparin, not THS, is responsible for the reported lymph-mediated HUVEC toxicity through its release of lipases into the lymph. These findings can provide alternative explanations for several of the THS effects reported in the literature using heparin models thus necessitating a review of previous work in this field. PMID:21063238
Nicotinic acid inhibits NLRP3 inflammasome activation via SIRT1 in vascular endothelial cells.
Li, Yanxiang; Yang, Guangde; Yang, Xiaofeng; Wang, Weirong; Zhang, Jiye; He, Yanhao; Zhang, Wei; Jing, Ting; Lin, Rong
2016-11-01
Emerging evidences indicated that NLRP3 inflammasome initiates inflammatory response involved in cardiovascular disease. Nicotinic acid (NA) has been known to possess potential anti-inflammatory property. The aim of this study was to investigate the effect of NA on the activation of NLRP3 inflammasome and the underlying mechanisms. It was found that lipopolysaccharide (LPS) and adenosine triphosphate (ATP) triggered the activation of NLRP3 inflammasome in human umbilical vein endothelial cells (HUVECs). NA inhibited NLRP3 inflammasome activation and subsequent caspase-1 cleavage as well as interleukin (IL)-1β secretion. Moreover, NA administration up-regulated SIRT1 expression in HUVECs stimulated with LPS plus ATP. Importantly, knockdown of SIRT1 reversed the inhibitory effect of NA on the activation of NLRP3 inflammasome. Further study revealed that NA also decreased the generation of reactive oxygen species (ROS) in HUVECs. In addition, NA inhibited NLRP3 inflammasome activation partly through suppression of ROS. Taken together, these findings indicate that NA is able to regulate the activation of NLRP3 inflammasome in HUVECs, which may be partly mediated by SIRT1 and ROS. Copyright © 2016 Elsevier B.V. All rights reserved.
Meng, Ning; Zhao, Jing; Su, Le; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying
2012-02-01
Lipopolysaccharide (LPS)-induced vascular endothelial cell (VEC) dysfunction is an important contributing factor in vascular diseases. Recently, we found that LPS impaired VEC by inducing autophagy. Our previous researches showed that a butyrolactone derivative, 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO) selectively protected VEC function. The objective of the present study is to investigate whether and how 3BDO inhibits LPS-induced VEC autophagic injury. Our results showed that LPS induced autophagy and led to increase of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP) in Human umbilical vein vascular endothelial cells (HUVECs). Furthermore, LPS significantly increased p8 and p53 protein levels and the nuclear translocation of p53. All of these effects of LPS on HUVECs were strongly inhibited by 3BDO. Importantly, the ROS scavenger N-acetylcysteine (NAC) could inhibited LPS-induced autophagy and knockdown of p8 by RNA interference inhibited the autophagy, p53 protein level increase, the translocation of p53 into nuclei and the ROS level increase induced by LPS in HUVECs. The data suggested that 3BDO inhibited LPS-induced autophagy in HUVECs through inhibiting the ROS overproduction, the increase of p8 and p53 expression and the nuclear translocation of p53. Our findings provide a potential tool for understanding the mechanism underlying LPS-induced autophagy in HUVECs and open the door to a novel therapeutic drug for LPS-induced vascular diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, Hany A.; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514; Arafa, El-Shaimaa A.
2013-11-01
Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to studymore » the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: • The antiangiogenic activity of OSU-A9 in HUVECs was explored. • OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. • OSU-A9 targeted signaling pathways mediated by Akt-NF-kB, VEGF, and MMP-2. • The anti-angiogenic activity of OSU-A9 supports its clinical promise.« less
Li, Guilin; Xu, Yurong; Sheng, Xuan; Liu, Hua; Guo, Jingjing; Wang, Jiayue; Zhong, Qi; Jiang, Huaide; Zheng, Chaoran; Tan, Mengxia; Rao, Shenqiang; Yu, Yanling; Gao, Yun; Li, Guodong; Liang, Shangdong; Zhu, Gaochun
2017-01-01
The induction of endothelial injury by hyperglycemia in diabetes has been widely accepted. Naringin is a bio-flavonoid. Some studies showed that naringin alleviates diabetic complications, but the exact mechanisms by which naringin improves diabetic anomalies are not yet fully understood. The aim of this research was to study the protective effect of naringin on high glucose-induced injury of human umbilical vein endothelial cells (HUVECs). HUVECs were cultured with or without high glucose in the absence or presence of naringin for 5 days. The expression of CX3CL1 was determined by quantitative real-time RT-PCR (qPCR) and western blot. The cellular bioenergetic analysis oxygen consumption rate (OCR) was measured with a Seahorse Bioscience XF analyzer. The production of reactive oxygen species (ROS), the expression of CX3CL1 and the level of AKT phosphorylation were increased in HUVECs cultured with high glucose compared with controls. However, naringin rescued these increases in ROS production, CX3CL1 expression and AKT phosphorylation. Nitric oxide (NO) production and OCR were lower in the high glucose group, and naringin restored the changes induced by high glucose. Molecular docking results suggested that Naringin might interact with the CX3CL1 protein. Naringin protects HUVECs from high-glucose-induced damage through its antioxidant properties by downregulating CX3CL1 and by improving mitochondrial function. © 2017 The Author(s). Published by S. Karger AG, Basel.
Uldahl, Kristine Buch; Wu, Linping; Hall, Arnaldur; Papathanasiou, Pavlos; Peng, Xu; Moghimi, Seyed Moein
2016-01-01
Viruses from the third domain of life, Archaea, exhibit unusual features including extreme stability that allow their survival in harsh environments. In addition, these species have never been reported to integrate into human or any other eukaryotic genomes, and could thus serve for exploration of novel medical nanoplatforms. Here, we selected two archaeal viruses Sulfolobus monocaudavirus 1 (SMV1) and Sulfolobus spindle shaped virus 2 (SSV2) owing to their unique spindle shape, hyperthermostable and acid-resistant nature and studied their interaction with mammalian cells. Accordingly, we followed viral uptake, intracellular trafficking and cell viability in human endothelial cells of brain (hCMEC/D3 cells) and umbilical vein (HUVEC) origin. Whereas SMV1 is efficiently internalized into both types of human cells, SSV2 differentiates between HUVECs and hCMEC/D3 cells, thus opening a path for selective cell targeting. On internalization, both viruses localize to the lysosomal compartments. Neither SMV1, nor SSV2 induced any detrimental effect on cell morphology, plasma membrane and mitochondrial functionality. This is the first study demonstrating recognition of archaeal viruses by eukaryotic cells which provides good basis for future exploration of archaeal viruses in bioengineering and development of multifunctional vectors. PMID:27892499
Muid, S; Froemming, G R A; Ali, A M; Nawawi, H
2013-12-01
The effects of spaceflight on cardiovascular health are not necessarily seen immediately after astronauts have returned but can be delayed. It is important to investigate the long term effects of spaceflight on protein and gene expression of inflammation and endothelial activation as a predictor for the development of atherosclerosis and potential cardiovascular problems. The objectives of this study were to investigate the (a) protein and gene expression of inflammation and endothelial activation, (b) expression of nuclear factor kappa B (NFκB), signal transducer and activator of transcription-3 (STAT-3) and endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVEC) 3 months post-space flight travel compared to ground controls. HUVEC cultured on microcarriers in fluid processing apparatus were flown to the International Space Station (ISS) by the Soyuz TMA-11 rocket. After landing, the cells were detached from microcarriers and recultured in T-25 cm(2) culture flasks (Revived HUVEC). Soluble protein expression of IL-6, TNF-α, ICAM-1, VCAM-1 and e-selectin were measured by ELISA. Gene expression of these markers and in addition NFκB, STAT-3 and eNOS were measured. Spaceflight induced IL-6 and ICAM-1 remain elevated even after 3 months post spaceflight travel and this is mediated via STAT-3 pathway. The downregulation of eNOS expression in revived HUVEC cells suggests a reduced protection of the cells and the surrounding vessels against future insults that may lead to atherosclerosis. It would be crucial to explore preventive measures, in relation to atherosclerosis and its related complications.
Rempel, Lisienny C. T.; Finco, Alessandra B.; Maciel, Rayana A. P.; Bosquetti, Bruna; Alvarenga, Larissa M.; Souza, Wesley M.; Pecoits-Filho, Roberto; Stinghen, Andréa E. M.
2015-01-01
Advanced glycation end products (AGEs) are compounds classified as uremic toxins in patients with chronic kidney disease that have several pro-inflammatory effects and are implicated in the development of cardiovascular diseases. To explore the mechanisms of AGEs–endothelium interactions through the receptor for AGEs (RAGE) in the PKC-β pathway, we evaluated the production of MCP-1 and VCAM-1 in human endothelial cells (HUVECs), monocytes, and a coculture of both. AGEs were prepared by albumin glycation and characterized by absorbance and electrophoresis. The effect of AGEs on cell viability was assessed with an MTT assay. The cells were also treated with AGEs with and without a PKC-β inhibitor. MCP-1 and VCAM-1 in the cell supernatants were estimated by ELISA, and RAGE was evaluated by immunocytochemistry. AGEs exposure did not affect cell viability, but AGEs induced RAGE, MCP-1, and VCAM-1 expression in HUVECs. When HUVECs or monocytes were incubated with AGEs and a PKC-β inhibitor, MCP-1 and VCAM-1 expression significantly decreased. However, in the coculture, exposure to AGEs and a PKC-β inhibitor produced no significant effect. This study demonstrates, in vitro, the regulatory mechanisms involved in MCP-1 production in three cellular models and VCAM-1 production in HUVECs, and thus mimics the endothelial dysfunction caused by AGEs in early atherosclerosis. Such mechanisms could serve as therapeutic targets to reduce the harmful effects of AGEs in patients with chronic kidney disease. PMID:26008233
Rempel, Lisienny C T; Finco, Alessandra B; Maciel, Rayana A P; Bosquetti, Bruna; Alvarenga, Larissa M; Souza, Wesley M; Pecoits-Filho, Roberto; Stinghen, Andréa E M
2015-05-14
Advanced glycation end products (AGEs) are compounds classified as uremic toxins in patients with chronic kidney disease that have several pro-inflammatory effects and are implicated in the development of cardiovascular diseases. To explore the mechanisms of AGEs-endothelium interactions through the receptor for AGEs (RAGE) in the PKC-β pathway, we evaluated the production of MCP-1 and VCAM-1 in human endothelial cells (HUVECs), monocytes, and a coculture of both. AGEs were prepared by albumin glycation and characterized by absorbance and electrophoresis. The effect of AGEs on cell viability was assessed with an MTT assay. The cells were also treated with AGEs with and without a PKC-β inhibitor. MCP-1 and VCAM-1 in the cell supernatants were estimated by ELISA, and RAGE was evaluated by immunocytochemistry. AGEs exposure did not affect cell viability, but AGEs induced RAGE, MCP-1, and VCAM-1 expression in HUVECs. When HUVECs or monocytes were incubated with AGEs and a PKC-β inhibitor, MCP-1 and VCAM-1 expression significantly decreased. However, in the coculture, exposure to AGEs and a PKC-β inhibitor produced no significant effect. This study demonstrates, in vitro, the regulatory mechanisms involved in MCP-1 production in three cellular models and VCAM-1 production in HUVECs, and thus mimics the endothelial dysfunction caused by AGEs in early atherosclerosis. Such mechanisms could serve as therapeutic targets to reduce the harmful effects of AGEs in patients with chronic kidney disease.
Buachan, Paiwan; Chularojmontri, Linda; Wattanapitayakul, Suvara K.
2014-01-01
Endothelial injury and damage as well as accumulated reactive oxygen species (ROS) in aging play a significant role in the development of cardiovascular disease (CVD). Recent studies show an association of high citrus fruit intake with a lower risk of CVD and stroke but the mechanisms involved are not fully understood. This study investigated the effects of pummelo (Citrus maxima Merr. var. Tubtim Siam, CM) fruit extract on human umbilical vein endothelial cell (HUVECs) migration and aging. The freeze-dried powder of fruit extract was characterized for antioxidant capacity (FRAP assay) and certain natural antioxidants, including ascorbic acid, gallic acid, hesperidin, and naringin (HPLC). Short-term (48 h) co-cultivation of HUVECs with CM enhanced cell migration as evaluated by a scratch wound assay and Boyden chamber assay. A long-term treatment with CM for 35 days significantly increased HUVEC proliferation capability as indicated by population doubling level (PDL). CM also delayed the onset of aging phenotype shown by senescence-associated β-galactosidase (SA-β-gal) staining. Furthermore, CM was able to attenuate increased ROS levels in aged cells when determined by 2′,7′-dichlorodihydrofluorescein diacetate (DCDHF) while eNOS mRNA expression was increased but the eNOS protein level was not changed. Thus, further in vivo and clinical studies are warranted to support the use of pummelo as a functional fruit for endothelial health and CVD risk reduction. PMID:24763109
Buachan, Paiwan; Chularojmontri, Linda; Wattanapitayakul, Suvara K
2014-04-21
Endothelial injury and damage as well as accumulated reactive oxygen species (ROS) in aging play a significant role in the development of cardiovascular disease (CVD). Recent studies show an association of high citrus fruit intake with a lower risk of CVD and stroke but the mechanisms involved are not fully understood. This study investigated the effects of pummelo (Citrus maxima Merr. var. Tubtim Siam, CM) fruit extract on human umbilical vein endothelial cell (HUVECs) migration and aging. The freeze-dried powder of fruit extract was characterized for antioxidant capacity (FRAP assay) and certain natural antioxidants, including ascorbic acid, gallic acid, hesperidin, and naringin (HPLC). Short-term (48 h) co-cultivation of HUVECs with CM enhanced cell migration as evaluated by a scratch wound assay and Boyden chamber assay. A long-term treatment with CM for 35 days significantly increased HUVEC proliferation capability as indicated by population doubling level (PDL). CM also delayed the onset of aging phenotype shown by senescence-associated β-galactosidase (SA-β-gal) staining. Furthermore, CM was able to attenuate increased ROS levels in aged cells when determined by 2',7'-dichlorodihydrofluorescein diacetate (DCDHF) while eNOS mRNA expression was increased but the eNOS protein level was not changed. Thus, further in vivo and clinical studies are warranted to support the use of pummelo as a functional fruit for endothelial health and CVD risk reduction.
Voisard, R; Huber, N; Baur, R; Susa, M; Ickrath, O; Both, A; Koenig, W; Hombach, V
2001-01-01
Activation of nuclear factor-kappaB (NF-kappaB) is one of the key events in early atherosclerosis and restenosis. We hypothesized that tumor necrosis factor-alpha (TNF-alpha) induced and NF-kappaB mediated expression of intercellular adhesion molecule-1 (ICAM-1) can be inhibited by antisense RelA p65 and NF-kappaB1 p50 oligonucleotides (RelA p65 and NF-kappaB1 p50). Smooth muscle cells (SMC) from human coronary plaque material (HCPSMC, plaque material of 52 patients), SMC from the human coronary media (HCMSMC), human endothelial cells (EC) from umbilical veins (HUVEC), and human coronary EC (HCAEC) were successfully isolated (HCPSMC, HUVEC), identified and cultured (HCPSMC, HCMSMC, HUVEC, HCAEC). 12 hrs prior to TNF-alpha stimulus (20 ng/mL, 6 hrs) RelA p65 and NF-kappaB1 p50 (1, 2, 4, 10, 20, and 30 microM) and controls were added for a period of 18 hrs. In HUVEC and HCAEC there was a dose dependent inhibition of ICAM-1 expression after adding of both RelA p65 and NF-kappaB1 p50. No inhibitory effect was seen after incubation of HCMSMC with RelA p65 and NF-kappaB1 p50. A moderate inhibition of ICAM-1 expression was found after simultaneous addition of RelA p65 and NF-kappaB1 p50 to HCPSMC, no inhibitory effect was detected after individual addition of RelA p65 and NF-kappaB1 p50. The data point out that differences exist in the NF-kappaB mediated expression of ICAM-1 between EC and SMC. Experimental antisense strategies directed against RelA p65 and NF-kappaB1 p50 in early atherosclerosis and restenosis are promising in HCAEC but will be confronted with redundant pathways in HCMSMC and HCPSMC.
Mechanical property quantification of endothelial cells using scanning acoustic microscopy
NASA Astrophysics Data System (ADS)
Shelke, A.; Brand, S.; Kundu, T.; Bereiter-Hahn, J.; Blase, C.
2012-04-01
The mechanical properties of cells reflect dynamic changes of cellular organization which occur during physiologic activities like cell movement, cell volume regulation or cell division. Thus the study of cell mechanical properties can yield important information for understanding these physiologic activities. Endothelial cells form the thin inner lining of blood vessels in the cardiovascular system and are thus exposed to shear stress as well as tensile stress caused by the pulsatile blood flow. Endothelial dysfunction might occur due to reduced resistance to mechanical stress and is an initial step in the development of cardiovascular disease like, e.g., atherosclerosis. Therefore we investigated the mechanical properties of primary human endothelial cells (HUVEC) of different age using scanning acoustic microscopy at 1.2 GHz. The HUVECs are classified as young (tD < 90 h) and old (tD > 90 h) cells depending upon the generation time for the population doubling of the culture (tD). Longitudinal sound velocity and geometrical properties of cells (thickness) were determined using the material signature curve V(z) method for variable culture condition along spatial coordinates. The plane wave technique with normal incidence is assumed to solve two-dimensional wave equation. The size of the cells is modeled using multilayered (solid-fluid) system. The propagation of transversal wave and surface acoustic wave are neglected in soft matter analysis. The biomechanical properties of HUVEC cells are quantified in an age dependent manner.
In situ single cell detection via microfluidic magnetic bead assay.
Liu, Fan; Kc, Pawan; Zhang, Ge; Zhe, Jiang
2017-01-01
We present a single cell detection device based on magnetic bead assay and micro Coulter counters. This device consists of two successive micro Coulter counters, coupled with a high gradient magnetic field generated by an external magnet. The device can identify single cells in terms of the transit time difference of the cell through the two micro Coulter counters. Target cells are conjugated with magnetic beads via specific antibody and antigen binding. A target cell traveling through the two Coulter counters interacts with the magnetic field, and have a longer transit time at the 1st counter than that at the 2nd counter. In comparison, a non-target cell has no interaction with the magnetic field, and hence has nearly the same transit times through the two counters. Each cell passing through the two counters generates two consecutive voltage pulses one after the other; the pulse widths and magnitudes indicating the cell's transit times through the counters and the cell's size respectively. Thus, by measuring the pulse widths (transit times) of each cell through the two counters, each single target cell can be differentiated from non-target cells even if they have similar sizes. We experimentally proved that the target human umbilical vein endothelial cells (HUVECs) and non-target rat adipose-derived stem cells (rASCs) have significant different transit time distribution, from which we can determine the recognition regions for both cell groups quantitatively. We further demonstrated that within a mixed cell population of rASCs and HUVECs, HUVECs can be detected in situ and the measured HUVECs ratios agree well with the pre-set ratios. With the simple device structure and easy sample preparation, this method is expected to enable single cell detection in a continuous flow and can be applied to facilitate general cell detection applications such as stem cell identification and enumeration.
Dianzani, Chiara; Cavalli, Roberta; Zara, Gian Paolo; Gallicchio, Margherita; Lombardi, Grazia; Gasco, Maria Rosa; Panzanelli, Patrizia; Fantozzi, Roberto
2006-01-01
Adhesion of polymorphonuclear cells (PMNs) to vascular endothelial cells (EC) is a critical step in recruitment and infiltration of leukocytes into tissues during inflammation. High doses of butyric acid have been shown to ameliorate inflammation in inflammatory bowel diseases (IBD). Cholesteryl-butyrate solid lipid nanoparticles (chol-but SLN) as prodrug are a possible delivery system for butyric acid. Sodium butyrate or chol-but SLN were coincubated with human PMNs and human umbilical vein EC (HUVEC); adhesion was quantified by computerized microimaging fluorescence analysis. Both chol-but SLN and sodium butyrate displayed antiadhesive effects on FMLP- and IL-1β-stimulated cells in a concentration–response curve (10−8–10−5 M), but chol-but SLN were in all cases more active. Moreover, chol-but SLN inhibited FMLP-induced adhesion of PMNs to FCS-coated plastic wells, thus showing a direct effect on PMNs, while sodium butyrate had little effect. Confocal microscopy showed that fluorescent SLN entered PMNs and HUVEC after 10 min incubation. Chol-but SLN acted either on activated PMN or HUVEC. Chol-but SLN inhibited O2−· production and myeloperoxidase release by PMNs evoked by FMLP, in a dose-dependent, but not time-dependent, manner and were more active than sodium butyrate. In conclusion, in all tests chol-but SLN were more active than sodium butyrate. Thus, chol-but SLN might be a valid alternative to sodium butyrate in the anti-inflammatory therapy of ulcerative colitis, avoiding complications related to the administration of sodium butyrate. PMID:16702992
Characterization of Adsorbents for Cytokine Removal from Blood in an In Vitro Model.
Harm, Stephan; Gabor, Franz; Hartmann, Jens
2015-01-01
Cytokines are basic targets that have to be removed effectively in order to improve the patient's health status in treating severe inflammation, sepsis, and septic shock. Although there are different adsorbents commercially available, the success of their clinical use is limited. Here, we tested different adsorbents for their effective removal of cytokines from plasma and the resulting effect on endothelial cell activation. The three polystyrene divinylbenzene (PS-DVB) based adsorbents Amberchrom CG161c and CG300m and a clinically approved haemoperfusion adsorbent (HAC) were studied with regard to cytokine removal in human blood. To induce cytokine release from leucocytes, human blood cells were stimulated with 1 ng/ml LPS for 4 hours. Plasma was separated and adsorption experiments in a dynamic model were performed. The effect of cytokine removal on endothelial cell activation was evaluated using a HUVEC-based cell culture model. The beneficial outcome was assessed by measuring ICAM-1, E-selectin, and secreted cytokines IL-8 and IL-6. Additionally the threshold concentration for HUVEC activation by TNF-α and IL-1β was determined using this cell culture model. CG161c showed promising results in removing the investigated cytokines. Due to its pore size the adsorbent efficiently removed the key factor TNF-α, outperforming the commercially available adsorbents. The CG161c treatment reduced cytokine secretion and expression of cell adhesion molecules by HUVEC which underlines the importance of effective removal of TNF-α in inflammatory diseases. These results confirm the hypothesis that cytokine removal from the blood should approach physiological levels in order to reduce endothelial cell activation.
Brown, Michael D; Feairheller, Deborah L; Thakkar, Sunny; Veerabhadrappa, Praveen; Park, Joon-Young
2011-01-01
African Americans (AA) tend to have heightened systemic inflammation and endothelial dysfunction. Endothelial microparticles (EMP) are released from activated/apoptotic endothelial cells (EC) when stimulated by inflammation. The purpose of our study was to assess EMP responses to inflammatory cytokine (TNF-α) and antioxidant (superoxide dismutase, SOD) conditions in human umbilical vein ECs (HUVECs) obtained from AA and Caucasians. EMPs were measured under four conditions: control (basal), TNF-α, SOD, and TNF-α + SOD. Culture supernatant was collected for EMP analysis by flow cytometry and IL-6 assay by ELISA. IL-6 protein expression was assessed by Western blot. AA HUVECs had greater EMP levels under the TNF-α condition compared to the Caucasian HUVECs (6.8 ± 1.1 vs 4.7% ± 0.4%, P = 0.04). The EMP level increased by 89% from basal levels in the AA HUVECs under the TNF-α condition (P = 0.01) compared to an 8% increase in the Caucasian HUVECs (P = 0.70). Compared to the EMP level under the TNF-α condition, the EMP level in the AA HUVECs was lower under the SOD only condition (2.9% ± 0.3%, P = 0.005) and under the TNF-α + SOD condition (2.1% ± 0.4%, P = 0.001). Basal IL-6 concentrations were 56.1 ± 8.8 pg/mL/μg in the AA and 30.9 ± 14.9 pg/mL/μg in the Caucasian HUVECs (P = 0.17), while basal IL-6 protein expression was significantly greater (P < 0.05) in the AA HUVECs. These preliminary observational results suggest that AA HUVECs may be more susceptible to the injurious effects of the proinflammatory cytokine, TNF-α. PMID:21966220
Chang, Ying-ling; Chen, Chien-lin; Kuo, Chao-Lin; Chen, Bor-chyuan; You, Jyh-sheng
2010-01-01
Aim: To investigate the effects of glycyrrhetinic acid (GA), an active component extracted from the root of Glycyrrhizae glabra, on the expression of intercellular adhesion molecule-1 (ICAM-1) in tumor necrosis factor-α (TNF-α)-activated human umbilical vein endothelial cells (HUVEC). Methods: ICAM-1 mRNA and protein levels were detected using RT-PCR and cell enzyme-linked immunosorbent assays. The adherence of human monocytic THP-1 cells labeled with [3H]thymidine to HUVEC was determined by counting radioactivity with a scintillation counter. The activation of mitogen-activated protein kinases as well as the degradation of IκB and nuclear factor-κB (NF-κB) or phospho-c-Jun in the nucleus were detected by western blots. NF-κB binding activity was detected using electrophoretic mobility shift assay. Results: GA (50 and 100 μmol/L) significantly inhibits TNF-α-induced ICAM-1 mRNA and protein expressions, as well as THP-1 cell adhesiveness in HUVEC. GA selectively inhibited TNF-α-activated signal pathway of c-Jun N-terminal kinase (JNK), without affecting extracellular signal-regulated kinase 1/2 and p38. Furthermore, GA apparently inhibited IκB/NF-κB signaling system by preventing IκB degradation, NF-κB translocation, and NF-κB/DNA binding activity. Finally, pretreatment with GA or the inhibitors of NF-κB, JNK, and p38 reduced the ICAM-1 protein expression induced by TNF-α. Conclusion: GA inhibits TNF-α-stimulated ICAM-1 expression, leading to a decrease in adherent monocytes to HUVEC. This inhibition is attributed to GA interruption of both JNK/c-Jun and IκB/NF-κB signaling pathways, which decrease activator protein-1 (AP-1) and NF-κB mediated ICAM-1 expressions. The results suggest that GA may provide a beneficial effect in treating vascular diseases associated with inflammation, such as atherosclerosis. PMID:20418897
Nam, Mi-Hyun; Son, Won-Rak; Lee, Young Sik; Lee, Kwang-Won
Advanced glycation end-products (AGEs) are involved in the development of vascular smooth muscle cell (VSMC) dysfunction and the progression of atherosclerosis. However, AGEs may indirectly affect VSMCs via AGEs-induced signal transduction between monocytes and human umbilical endothelial cells (HUVECs), rather than having a direct influence. This study was designed to elucidate the signaling pathway underlying AGEs-RAGE axis influence on VSMC dysfunction using a co-culture system with monocytes, HUVECs and VSMCs. AGEs stimulated production of reactive oxygen species and pro-inflammatory mediators such as tumor necrosis factor-α and interleukin-1β via extracellular-signal-regulated kinases phosphorylation and nuclear factor-κB activation in HUVECs. It was observed that AGEs-induced pro-inflammatory cytokines increase VSMC proliferation, inflammation and vascular remodeling in the co-culture system. This result implies that RAGE plays a role in AGEs-induced VSMC dysfunction. We suggest that the regulation of signal transduction via the AGEs-RAGE axis in the endothelium can be a therapeutic target for preventing atherosclerosis.
Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng
2017-01-14
BACKGROUND Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. MATERIAL AND METHODS We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). RESULTS We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. CONCLUSIONS Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer.
Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng
2017-01-01
Background Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. Material/Methods We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). Results We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. Conclusions Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer. PMID:28087861
In situ single cell detection via microfluidic magnetic bead assay
KC, Pawan; Zhang, Ge; Zhe, Jiang
2017-01-01
We present a single cell detection device based on magnetic bead assay and micro Coulter counters. This device consists of two successive micro Coulter counters, coupled with a high gradient magnetic field generated by an external magnet. The device can identify single cells in terms of the transit time difference of the cell through the two micro Coulter counters. Target cells are conjugated with magnetic beads via specific antibody and antigen binding. A target cell traveling through the two Coulter counters interacts with the magnetic field, and have a longer transit time at the 1st counter than that at the 2nd counter. In comparison, a non-target cell has no interaction with the magnetic field, and hence has nearly the same transit times through the two counters. Each cell passing through the two counters generates two consecutive voltage pulses one after the other; the pulse widths and magnitudes indicating the cell’s transit times through the counters and the cell’s size respectively. Thus, by measuring the pulse widths (transit times) of each cell through the two counters, each single target cell can be differentiated from non-target cells even if they have similar sizes. We experimentally proved that the target human umbilical vein endothelial cells (HUVECs) and non-target rat adipose-derived stem cells (rASCs) have significant different transit time distribution, from which we can determine the recognition regions for both cell groups quantitatively. We further demonstrated that within a mixed cell population of rASCs and HUVECs, HUVECs can be detected in situ and the measured HUVECs ratios agree well with the pre-set ratios. With the simple device structure and easy sample preparation, this method is expected to enable single cell detection in a continuous flow and can be applied to facilitate general cell detection applications such as stem cell identification and enumeration. PMID:28222140
Ramírez, Marco A; Morales, Jorge; Cornejo, Marcelo; Blanco, Elias H; Mancilla-Sierpe, Edgardo; Toledo, Fernando; Beltrán, Ana R; Sobrevia, Luis
2018-04-01
l-Arginine is taken up via the cationic amino acid transporters (system y + /CATs) and system y + L in human umbilical vein endothelial cells (HUVECs). l-Arginine is the substrate for endothelial NO synthase (eNOS) which is activated by intracellular alkalization, but nothing is known regarding modulation of system y + /CATs and system y + L activity, and eNOS activity by the pHi in HUVECs. We studied whether an acidic pHi modulates l-arginine transport and eNOS activity in HUVECs. Cells loaded with a pH-sensitive probe were subjected to 0.1-20 mmol/L NH 4 Cl pulse assay to generate pHi 7.13-6.55. Before pHi started to recover, l-arginine transport (0-20 or 0-1000 μmol/L, 10 s, 37 °C) in the absence or presence of 200 μmol/L N-ethylmaleimide (NEM) (system y + /CATs inhibitor) or 2 mmol/L l-leucine (systemy + L substrate) was measured. Protein abundance for eNOS and serine 1177 or threonine 495 phosphorylated eNOS was determined. The results show that intracellular acidification reduced system y + L but not system y + /CATs mediated l-arginine maximal transport capacity due to reduced maximal velocity. Acidic pHi reduced NO synthesis and eNOS serine 1177 phosphorylation. Thus, system y + L activity is downregulated by an acidic pHi, a phenomenon that may result in reduced NO synthesis in HUVECs. Copyright © 2018 Elsevier B.V. All rights reserved.
Guo, X; Ruiz, A; Rando, R R; Bok, D; Gudas, L J
2000-11-01
When exogenous [(3)H]retinol (vitamin A) was added to culture medium, normal human epithelial cells from the oral cavity, skin, lung and breast took up and esterified essentially all of the [(3)H]retinol within a few hours. As shown by [(3)H]retinol pulse-chase experiments, normal epithelial cells then slowly hydrolyzed the [(3)H]retinyl esters to [(3)H]retinol, some of which was then oxidized to [(3)H]retinoic acid (RA) over a period of several days. In contrast, cultured normal human fibroblasts and human umbilical vein endothelial cells (HUVEC) did not esterify significant amounts of [(3)H]retinol; this lack of [(3)H]retinol esterification was correlated with a lack of expression of lecithin:retinol acyltransferase (LRAT) transcripts in normal fibroblast and HUVEC strains. These results indicate that normal, differentiated cell types differ in their ability to esterify retinol. Human carcinoma cells (neoplastically transformed epithelial cells) of the oral cavity, skin and breast did not esterify much [(3)H]retinol and showed greatly reduced LRAT expression. Transcripts of the neutral, bile salt-independent retinyl ester hydrolase and the bile salt-dependent retinyl ester hydrolase were undetectable in all of the normal cell types, including the epithelial cells. These experiments suggest that retinoid-deficiency in the tumor cells could develop because of the lack of retinyl esters, a storage form of retinol.
Chen, Cheng-Hsien; Chen, Tso-Hsiao; Wu, Mei-Yi; Chou, Tz-Chong; Chen, Jia-Rung; Wei, Meng-Jun; Lee, San-Liang; Hong, Li-Yu; Zheng, Cai-Mei; Chiu, I-Jen; Lin, Yuh-Feng; Hsu, Ching-Min; Hsu, Yung-Ho
2017-01-01
The accumulation of advanced glycation end products (AGEs) in diabetic patients induces vascular endothelial injury. Promyelocytic leukemia zinc finger protein (PLZF) is a transcription factor that can be activated by low-temperature far-infrared (FIR) irradiation to exert beneficial effects on the vascular endothelium. In the present study, we investigated the influence of FIR-induced PLZF activation on AGE-induced endothelial injury both in vitro and in vivo. FIR irradiation inhibited AGE-induced apoptosis in human umbilical vein endothelial cells (HUVECs). PLZF activation increased the expression of phosphatidylinositol-3 kinases (PI3K), which are important kinases in the autophagic signaling pathway. FIR-induced PLZF activation led to autophagy in HUVEC, which was mediated through the upregulation of PI3K. Immunofluorescence staining showed that AGEs were engulfed by HUVECs and localized to lysosomes. FIR-induced autophagy promoted AGEs degradation in HUVECs. In nicotinamide/streptozotocin-induced diabetic mice, FIR therapy reduced serum AGEs and AGEs deposition at the vascular endothelium. FIR therapy also reduced diabetes-induced inflammatory markers in the vascular endothelium and improved vascular endothelial function. These protective effects of FIR therapy were not found in PLZF-knockout mice. Our data suggest that FIR-induced PLZF activation in vascular endothelial cells protects the vascular endothelium in diabetic mice from AGE-induced injury. PMID:28071754
Park, Jun Yeon; Lee, Yun Kyung; Lee, Dong-Soo; Yoo, Jeong-Eun; Shin, Myoung-Sook; Yamabe, Noriko; Kim, Su-Nam; Lee, Seulah; Kim, Ki Hyun; Lee, Hae-Jeung; Roh, Seok Sun; Kang, Ki Sung
2017-05-05
Resin known as Resina Pini is listed in the Korean and Japanese pharmacopoeias and has been used for treating skin wounds and inflammation. Resin is composed of more than 50% abietic acid and 10% neutral substances. In the present study, the wound-healing effects of abietic acid and the possible underlying mechanism of action were investigated in various in vitro and in vivo models. The effects of abietic acid on tube formation and migration were measured in human umbilical vein vascular endothelial cells (HUVECs). Protein expression of mitogen-activated protein kinase (MAPK) activation was evaluated via Western blotting analysis. The wound-healing effects of abietic acid were assessed using a mouse model of cutaneous wounds. The results showed that abietic acid enhanced cell migration and tube formation in HUVECs. Abietic acid induced significant angiogenic potential, which is associated with upregulation of extracellular signal-regulated kinase (ERK) and p38 expression. Additionally, 0.8μM abietic acid-treated groups showed accelerated wound closure compared to the controls in a mouse model of cutaneous wounds. The current data indicate that abietic acid treatment elevated cell migration and tube formation in HUVECs by the activation of ERK and p38 MAPKs. We suggest that abietic acid can be developed as a wound-healing agent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Shao-wei; Zu, Xu-yu; Tuo, Qin-hui; Chen, Lin-xi; Lei, Xiao-yong; Li, Kai; Tang, Chao-ke; Liao, Duan-fang
2010-01-01
Aim: To explore the mechanisms involved in ox-LDL transcytosis across endothelial cells and the role of caveolae in this process. Methods: An in vitro model was established to investigate the passage of oxidized low density lipoprotein (ox-LDL) through a tight monolayer of human umbilical vein endothelial cells (HUVEC) cultured on a collagen-coated filter. Passage of DiI-labeled ox-LDL through the monolayer was measured using a fluorescence spectrophotometer. The uptake and efflux of ox-LDL by HUVEC were determined using fluorescence microscopy and HPLC. Results: Caveolae inhibitors – carrageenan (250 μg/mL), filipin (5 μg/mL), and nocodazole (33 μmol/L)–decreased the transport of ox-LDL across the monolayer by 48.9%, 72.4%, and 79.8% as compared to the control group. In addition, they effectively decreased ox-LDL uptake and inhibited the efflux of ox-LDL. Caveolin-1 and LOX-1 were up-regulated by ox-LDL in a time-dependent manner and decreased gradually after depletion of ox-LDL (P<0.05). After treatment HUVEC with ox-LDL and silencing caveolin-1, NF-κB translocation to the nucleus was blocked and LOX-1 expression decreased (P<0.05). Conclusion: Caveolae can be a carrier for ox-LDL and may be involved in the uptake and transcytosis of ox-LDL by HUVEC. PMID:20835266
Droplet Array-Based 3D Coculture System for High-Throughput Tumor Angiogenesis Assay.
Du, Xiaohui; Li, Wanming; Du, Guansheng; Cho, Hansang; Yu, Min; Fang, Qun; Lee, Luke P; Fang, Jin
2018-03-06
Angiogenesis is critical for tumor progression and metastasis, and it progresses through orchestral multicellular interactions. Thus, there is urgent demand for high-throughput tumor angiogenesis assays for concurrent examination of multiple factors. For investigating tumor angiogenesis, we developed a microfluidic droplet array-based cell-coculture system comprising a two-layer polydimethylsiloxane chip featuring 6 × 9 paired-well arrays and an automated droplet-manipulation device. In each droplet-pair unit, tumor cells were cultured in 3D in one droplet by mixing cell suspensions with Matrigel, and in the other droplet, human umbilical vein endothelial cells (HUVECs) were cultured in 2D. Droplets were fused by a newly developed fusion method, and tumor angiogenesis was assayed by coculturing tumor cells and HUVECs in the fused droplet units. The 3D-cultured tumor cells formed aggregates harboring a hypoxic center-as observed in vivo-and secreted more vascular endothelial growth factor (VEGF) and more strongly induced HUVEC tubule formation than did 2D-cultured tumor cells. Our single array supported 54 assays in parallel. The angiogenic potentials of distinct tumor cells and their differential responses to antiangiogenesis agent, Fingolimod, could be investigated without mutual interference in a single array. Our droplet-based assay is convenient to evaluate multicellular interaction in high throughput in the context of tumor sprouting angiogenesis, and we envision that the assay can be extensively implementable for studying other cell-cell interactions.
Hassanein, Wessam; Uluer, Mehmet C; Langford, John; Woodall, Jhade D; Cimeno, Arielle; Dhru, Urmil; Werdesheim, Avraham; Harrison, Joshua; Rivera-Pratt, Carlos; Klepfer, Stephen; Khalifeh, Ali; Buckingham, Bryan; Brazio, Philip S; Parsell, Dawn; Klassen, Charlie; Drachenberg, Cinthia; Barth, Rolf N; LaMattina, John C
2017-01-02
Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.
Yang, Hana; Lee, Seung Eun; Jeong, Seong Il; Park, Cheung-Seog; Jin, Young-Ho; Park, Yong Seek
2011-01-01
Korean red ginseng (KRG) is used worldwide as a popular traditional herbal medicine. KRG has shown beneficial effects on cardiovascular diseases, such as atherosclerosis, diabetes, and hypertension. Up-regulation of a cytoprotective protein, heme oxygenase (HO)-1, is considered to augment the cellular defense against various agents that may induce cytotoxic injury. In the present study, we demonstrate that KRG water extract induces HO-1 expression in human umbilical vein endothelial cells (HUVECs) and possible involvement of the anti-oxidant transcription factor nuclear factor-eythroid 2-related factor 2 (Nrf2). KRG-induced HO-1 expression was examined by western blots, reverse transcriptase polymerase chain reaction and immunofluorescence staining. Specific silencing of Nrf2 genes with Nrf2-siRNA in HUVECs abolished HO-1 expression. In addition, the HO inhibitor zinc protoporphyrin blunted the preventive effect of KRG on H2O2-induced cell death, as demonstrated by terminal transferase dUTP nick end labeling assay. Taken together, these results suggest that KRG may exert a vasculoprotective effect through Nrf2- mediated HO-1 induction in human endothelial cell by inhibition of cell death. PMID:23717080
Ma, GuoHua; Pan, Bing; Chen, Yue; Guo, CaiXia; Zhao, MingMing; Zheng, LeMin; Chen, BuXing
2017-04-30
Several studies have reported a strong association between high plasma level of trimethylamine N-oxide (TMAO) and atherosclerosis development. However, the exact mechanism underlying this correlation is unknown. In the present study, we try to explore the impact of TMAO on endothelial dysfunction. After TMAO treatment, human umbilical vein endothelial cells (HUVECs) showed significant impairment in cellular proliferation and HUVECs-extracellular matrix (ECM) adhesion compared with control. Likewise, TMAO markedly suppressed HUVECs migration in transwell migration assay and wound healing assay. In addition, we found TMAO up-regulated vascular cell adhesion molecule-1 (VCAM-1) expression, promoted monocyte adherence, activated protein kinase C (PKC) and p-NF-κB. Interestingly, TMAO-stimulated VCAM-1 expression and monocyte adherence were diminished by PKC inhibitor. These results demonstrate that TMAO promotes early pathological process of atherosclerosis by accelerating endothelial dysfunction, including decreasing endothelial self-repair and increasing monocyte adhesion. Furthermore, TMAO-induced monocyte adhesion is partly attributable to activation of PKC/NF-κB/VCAM-1. © 2017 The Author(s).
Uncaria rhynchophylla induces angiogenesis in vitro and in vivo.
Choi, Do-Young; Huh, Jeong-Eun; Lee, Jae-Dong; Cho, Eun-Mi; Baek, Yong-Hyeon; Yang, Ha-Ru; Cho, Yoon-Je; Kim, Kang-Il; Kim, Deog-Yoon; Park, Dong-Suk
2005-12-01
Angiogenesis consists of the proliferation, migration, and differentiation of endothelial cells, and angiogenic factors and matrix protein interactions modulate this process. The aim of this study was to determine the angiogenic properties of Uncaria rhynchophylla. Uncaria rhynchophylla significantly enhanced human umbilical vein endothelial cells (HUVECs) proliferation in a dose-dependent manner. Neutralization of vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) by monoclonal antibody suppressed the Uncaria rhynchophylla stimulatory effect on proliferation. In addition, Uncaria rhynchophylla significantly increased chemotactic-migration on gelatin and tubular structures on Matrigel of HUVECs in a dose-dependent manner. Interestingly, Uncaria rhynchophylla dose-dependently increased VEGF, and bFGF gene expression and protein secretion of HUVEC. The angiogenic activity of Uncaria rhynchophylla was confirmed using an in vivo Matrigel angiogenesis model, showing promotion of blood vessel formation. These results suggest that Uncaria rhynchophylla could potentially used to accelerate vascular wound healing or to promote the growth of collateral blood vessel in ischemic tissues.
Behjati, Mohaddeseh; Hashemi, Mohammad; Kazemi, Mohammad; Salehi, Mansoor; Javanmard, Shaghayegh Haghjooy
2017-01-01
Decreased high-energy phosphate level is involved in endothelial cell injury and dysfunction. Reduced telomerase activity in endothelial cells in parallel with reduced energy levels might be due to altered direction of alternative splicing machine as a complication of depleted energy during the process of atherosclerosis. Isolated human umbilical vein endothelial cells (HUVECs) were treated for 24 hours by oligomycine (OM) and 2-deoxy glucose (2-DG). After 24 hours, the effect of energy depletion on telomerase splicing pattern was evaluated using RT-PCR. Indeed, in both treated and untargeted cells, nitric oxide (NO) and von Willebrand factor (vWF) were measured. ATP was depleted in treated cells by 43.9% compared with control group. We observed a slight decrease in NO levels ( P = 0.09) and vWF ( P = 0.395) in the setting of 49.36% ATP depletion. In both groups, no telomerase gene expression was seen. Telomerase and housekeeping gene expression were found in positive control group (colon cancer tissue) and sample tissue. The absence of telomerase gene expression in HUVECs might be due to the mortality of these cells or the low level of telomerase gene expression in these cells under normal circumstances.
Wang, Jiaqiang; Chen, Daomei; Li, Bin; He, Jiao; Duan, Deliang; Shao, Dandan; Nie, Minfang
2016-01-01
Though metal-organic frameworks (MOFs) have inspired potential applications in biomedicine, cytotoxicity studies of MOFs have been relatively rare. Here we demonstrate for the first time that an easily available MOF, Fe-MIL-101, possesses intrinsic activity against human SKOV3 ovarian cancer cells and suppress the proliferation of SKOV3 cells (IC50 = 23.6 μg mL−1) and normal mouse embryonic fibroblasts (BABL-3T3, IC50 = 78.3 μg mL−1) cells. It was more effective against SKOV3 cells than typical anticancer drugs such as artesunate (ART, IC50 = 96.9 μg mL−1) and oxaliplatin (OXA, IC50 = 64.4 μg mL−1), but had less effect on normal BABL-3T3 cells compared with ART (IC50 = 36.6 μg mL−1) and OXA (IC50 = 13.8 μg mL−1). Fe-MIL-101 induced apoptosis of human umbilical vein endothelial cells (HUVECs) via G0/G1 cell cycle arrest and decreased the mitochondrial membrane potential in HUVECs and induced apoptosis. Furthermore, Fe-MIL-101 exhibited stronger antiangiogenic effects in HUVEC cells than antiangiogenic inhibitor (SU5416) via downregulation the expression of MMP-2/9. Our results reveal a new role of Fe-MIL-101 as a novel, non-toxic anti-angiogenic agent that restricted ovarian tumour growth. These findings could open a new avenue of using MOFs as potential therapeutics in angiogenesis-dependent diseases, including ovarian cancer. PMID:27188337
Vidinský, B; Gál, P; Pilátová, M; Vidová, Z; Solár, P; Varinská, L; Ivanová, L; Mojžíš, J
2012-01-01
Non-small cell lung cancer has one of the highest mortality rates among cancer-suffering patients. It is well known that the unwanted psychotropic effects of cannabinoids (CBs) are mediated via the CB(1) receptor (R), and selective targeting of the CB(2)R would thus avoid side effects in cancer treatment. Therefore, the aim of our study was to evaluate the effect of selective CB(2)R agonist, JWH-133, on A549 cells (non-small lung cancer) and human umbilical vein endothelial cells (HUVECs). Cytotoxicity assay and DNA fragmentation assay were employed to evaluate the influence of JWH-133 (3-(1,1-dimethylbutyl)- 1-deoxy-Δ8-tetrahydrocannabinol) on investigated cancer cells. In addition, migration assay and gelatinase zymography were performed in HUVECs to asses JWH-133 anti-angiogenic activity. Our study showed that JWH-133 exerted cytotoxic effect only at the highest concentration used (10(-4) mol/l), while inhibition of colony formation was also detected at the non-toxic concentrations (10(-5)-10(-8) mol/l). JWH-133 was also found to be able to induce weak DNA fragmentation in A549 cells. Furthermore, JWH-133 at non-toxic concentrations inhibited some steps in the process of angiogenesis. It significantly inhibited endothelial cell migration after 17 h of incubation at concentrations of 10(-4)-10(-6) mol/l. In addition, JWH-133 inhibited MMP-2 secretion as assessed by gelatinase zymography. The present study demonstrates the in vitro anti-proliferative and anti-angiogenic potential of CB(2)R agonist, JWH-133, in nonsmall lung cancer cells and HUVECs. Our results generate a rationale for further in vivo efficacy studies with this compound in preclinical cancer models.
Tsuneyoshi, Tadamitsu; Kanamori, Yuta; Matsutomo, Toshiaki; Morihara, Naoaki
2015-09-25
Several clinical studies have shown that the intake of aged garlic extract improves endothelial dysfunction. Lignan compounds, (+)-(2S,3R)-dehydrodiconiferyl alcohol (DDC) and (-)-(2R,3S)-dihydrodehydrodiconiferyl alcohol (DDDC), have been isolated as antioxidants in aged garlic extract. There is evidence showing the importance of oxidative stress in endothelial dysfunction. In the present study, we examined whether DDC and DDDC enhance endothelial cell function in vitro. Cell adhesion assay was performed using THP-1 monocyte and human umbilical vein endothelial cells (HUVECs) which were activated by lipopolysaccharide (LPS) or advanced glycation end products (AGEs)-BSA. Cellular ELISA method was used for the evaluation of vascular cell adhesion molecule 1 (VCAM-1) expression on HUVECs. DDC and DDDC suppressed the adhesion of THP-1 to HUVECs which was activated by LPS or AGEs-BSA. DDC and DDDC also inhibited VCAM-1 expression induced by LPS or AGEs-BSA, but DDDC was less effective than DDC. In addition, the inhibitory effect of DDC on VCAM-1 expression involved suppressing JNK/c-Jun pathway rather than NF-κB pathway. DDC has an inhibitory effect on VCAM-1 expression via JNK pathway in endothelial cells and therefore may serve as a novel pharmacological agent to improve endothelial dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.
Presence of MUC4 in human milk and at the luminal surfaces of blood vessels.
Zhang, Jin; Perez, Aymee; Yasin, Mohammad; Soto, Pedro; Rong, Min; Theodoropoulos, George; Carothers Carraway, Coralie A; Carraway, Kermit L
2005-07-01
MUC4 is a heterodimeric membrane mucin, composed of a mucin subunit ASGP-1 (MUC4alpha) and a transmembrane subunit ASGP-2 (MUC4beta), which has been implicated in the protection of epithelial cell surfaces. Surprisingly, development and characterization of a new monoclonal antibody (mAb), called 1G8, against ASGP-2 demonstrated by immunohistochemistry the presence of MUC4 at the luminal surfaces of blood vessels of both normal tissues and tumors. Muc4 was detected with 1G8 and other Muc4 antibodies in blood vessels from humans, rats and mice. This expression of MUC4 in endothelial cells was confirmed by immunoblotting with 1G8 in human umbilical vein endothelial cells (HUVECs), human iliac artery endothelial cells (HIAECs), and human microvascular endothelial cells (HMVECs). MUC4 could be observed on HUVECs grown on either plastic or Matrigel. Finally, MUC4 expression in the three types of endothelial cell lines was confirmed by reverse transcription-polymerase chain reaction (RT-PCR). These results provide, to our knowledge, the first demonstration of a member of the MUC gene family and membrane mucin in blood vessels. As a luminal surface component, the MUC4 is situated to contribute to the non-adhesive luminal surface and to act as an intrinsic protection and survival factor. (c) 2004 Wiley-Liss, Inc.
Chen, Tiam Foo; Siow, Kim Shyong; Ng, Pei Yuen; Majlis, Burhanuddin Yeop
2017-10-01
Our studies focused on improving the biocompatibility properties of two microfluidic prototyping substrates i.e. polyurethane methacrylate (PUMA) and off-stoichiometry thiol-ene (OSTE-80) polymer by Ar and N 2 plasma treatment. The contact angle (CA) measurement showed that both plasma treatments inserted oxygen and nitrogen moieties increased the surface energy and hydrophilicity of PUMA and OSTE-80 polymer which corresponded to an increase of nitrogen to carbon ratios (N/C), as measured by XPS, to provide a conducive environment for cell attachments and proliferation. Under the SEM observation, the surface topography of PUMA and OSTE-80 polymer showed minimal changes after the plasma treatments. Furthermore, ageing studies showed that plasma-treated PUMA and OSTE-80 polymer had stable hydrophilicity and nitrogen composition during storage in ambient air for 15days. After in vitro cell culture of human umbilical vein endothelial cells (HUVECs) on these surfaces for 24h and 72h, both trypan blue and alamar blue assays indicated that PUMA and OSTE-80 polymer treated with N 2 plasma had the highest viability and proliferation. The polar nitrogen moieties, specifically amide groups, encouraged the HUVECs adhesion on the plasma-treated PUMA and OSTE-80 surfaces. Interestingly, PUMA polymer treated with Ar and N 2 plasma showed different HUVECs morphology which was spindle and cobblestone-shaped respectively after 72h of incubation. On the contrary, a monolayer of well-spread HUVECs formed on the Ar and N 2 plasma-treated OSTE-80 polymers. These variable morphologies observed can be ascribed to the adherence HUVECs on the different elastic moduli of these surfaces whereby further investigation might be needed. Overall, Ar and N 2 plasma treatment had successfully altered the surface properties of PUMA and OSTE-80 polymer by increasing its surface energy, hydrophilicity and chemical functionalities to create a biocompatible surface for HUVECs adhesion and proliferation. Copyright © 2017 Elsevier B.V. All rights reserved.
MiR-216a: a link between endothelial dysfunction and autophagy
Menghini, R; Casagrande, V; Marino, A; Marchetti, V; Cardellini, M; Stoehr, R; Rizza, S; Martelli, E; Greco, S; Mauriello, A; Ippoliti, A; Martelli, F; Lauro, R; Federici, M
2014-01-01
Endothelial dysfunction and impaired autophagic activity have a crucial role in aging-related diseases such as cardiovascular dysfunction and atherosclerosis. We have identified miR-216a as a microRNA that is induced during endothelial aging and, according to the computational analysis, among its targets includes two autophagy-related genes, Beclin1 (BECN1) and ATG5. Therefore, we have evaluated the role of miR-216a as a molecular component involved in the loss of autophagic function during endothelial aging. The inverse correlation between miR-216a and autophagic genes was conserved during human umbilical vein endothelial cells (HUVECs) aging and in vivo models of human atherosclerosis and heart failure. Luciferase experiments indicated BECN1, but not ATG5 as a direct target of miR-216a. HUVECs were transfected in order to modulate miR-216a expression and stimulated with 100 μg/ml oxidized low-density lipoprotein (ox-LDL) to induce a stress repairing autophagic process. We found that in young HUVECs, miR-216a overexpression repressed BECN1 and ATG5 expression and the ox-LDL induced autophagy, as evaluated by microtubule-associated protein 1 light chain 3 (LC3B) analysis and cytofluorimetric assay. Moreover, miR-216a stimulated ox-LDL accumulation and monocyte adhesion in HUVECs. Conversely, inhibition of miR-216a in old HUVECs rescued the ability to induce a protective autophagy in response to ox-LDL stimulus. In conclusion, mir-216a controls ox-LDL induced autophagy in HUVECs by regulating intracellular levels of BECN1 and may have a relevant role in the pathogenesis of cardiovascular disorders and atherosclerosis. PMID:24481443
Zhao, Hongbo; Wu, Lanxiang; Wang, Yahui; Zhou, Jiayi; Li, Ruixia; Zhou, Jiabing; Wang, Zehua; Xu, Congjian
2017-04-01
Pre-eclampsia, characterized as defective uteroplacental vascularization, remains the major cause of maternal and fetal mortality and morbidity. Previous epidemiological studies demonstrated that cigarette smoking reduced the risk of pre-eclampsia. However, the molecular mechanism remains elusive. In the present study, it is demonstrated that a low dose of nicotine decreased soluble vascular endothelial growth factor receptor 1 (sFlt1) secretion in human trophoblast cells under hypoxic conditions. Nicotine was then observed to promote vascular endothelial growth factor (VEGF) secretion by reducing sFlt1 secretion and increasing VEGF mRNA transcription. Further data showed that nicotine enhanced hypoxia-mediated hypoxia-inducible factor-1α (HIF-1α) expression and HIF-1α small interfering RNA abrogated nicotine-induced VEGF secretion, indicating that HIF-1α may be responsible for nicotine-mediated VEGF transcription under hypoxic conditions. Moreover, conditioned medium from human trophoblast cells treated with nicotine under hypoxic conditions promoted the proliferation and tube formation capacity of human umbilical endothelial cells (HUVEC) by promoting VEGF secretion. These findings indicate that nicotine may promote VEGF secretion in human trophoblast cells under hypoxic conditions by reducing sFlt1 secretion and up-regulating VEGF transcription and improve the proliferation and tube formation of HUVEC cells, which may contribute to elucidate the protective effect of cigarette smoking against pre-eclampsia. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Moon, Chang Hoon; Lee, Seung Ju; Lee, Ho Yong; Dung, Le Thi Kim; Cho, Wha Ja; Cha, HeeJeong; Park, Jeong Woo; Min, Young Joo
2014-06-01
CKD-516 is a benzophenone analog in which the B ring is modified by replacement with a carbonyl group. The study assessed CKD-516 as a vascular disrupting agent or anti-cancer drug. To assess the effect of S516 on vascularization, we analyzed the effect on human umbilical vein endothelial cells (HUVECs). To determine the inhibition of cell proliferation of S516, we used H460 lung carcinoma cells. The alteration of microtubules was analyzed using immunoblot, RT-PCR and confocal imaging. To evaluate the anti-tumor effects of gemcitabine and/or CKD-516, H460 xenograft mice were treated with CKD-516 (2.5 mg/kg) and/or gemcitabine (40 mg/kg), and tumor growth was compared with vehicle-treated control. For histologic analysis, liver, spleen and tumor tissues from H460 xenograft mice were obtained 12 and 24 h after CKD-516 injection. Cytoskeletal changes of HUVECs treated with 10 nM S516 were assessed by immunoblot and confocal imaging. S516 disrupted tubulin assembly and resulted in microtubule dysfunction, which induced cell cycle arrest (G2/M). S516 markedly enhanced the depolymerization of microtubules, perhaps due to the vascular disrupting properties of S516. Interestingly, S516 decreased the amount of total tubulin protein in HUVECs. Especially, S516 decreased mRNA expression α-tubulin (HUVECs only) and β-tubulin (HUVECs and H460 cells) at an early time point (4 h). Immunocytochemical analysis showed that S516 changed the cellular microtubule network and inhibited the formation of polymerized microtubules. Extensive central necrosis of tumors was evident by 12 h after treatment with CKD-516 (2.5 mg/kg, i.p.). In H460 xenografts, CKD-516 combined with gemcitabine significantly delayed tumor growth up to 57 % and 36 % as compared to control and gemcitabine alone, respectively. CKD-516 is a novel agent with vascular disrupting properties and enhances anti-tumor activity in combination with chemotherapy.
Himi, N; Hamaguchi, A; Hashimoto, K; Koga, T; Narita, K; Miyamoto, O
2012-01-01
Atherosclerosis is thought to be initiated by the transendothelial migration of monocytes. In the early stage of this process, the adhesion of monocytes to endothelial cells is supported by an increase in the intracellular concentration of calcium ion ([Ca(2+)]i) in endothelial cells. However, the main source of Ca(2+) has been unclear. In this study, the changes in ionic transmittance and [Ca(2+)]i due to the adhesion of monocytes were continuously measured by an electrophysiological technique and fluorescent imaging. Especially, we focused on transient receptor potential vanilloid channel 1 (TRPV1) as a Ca(2+) channel that could influence the adhesion of monocytes. Whole-cell current was continuously recorded in human umbilical vein endothelial cells (HUVECs) by a patch electrode. The adhesion of monocytes (THP-1) induced a transient inward current in HUVECs, as well as an elevation of [Ca(2+)]i. This inward element was abolished by the application of 100 nM SB366,791, a selective antagonist of TRPV1 channel. Furthermore, SB366,791 significantly decreased the number of THP-1 cells that adhered to HUVECs (control: 231 ± 38, SB366,791: 96 ± 16 cells/mm2). These results suggest that an inward calcium current via the TRPV1 channels of endothelial cells correlates with a stronger adhesion between monocytes and endothelial cells.
Kisspeptin-10 induces endothelial cellular senescence and impaired endothelial cell growth.
Usui, Sayaka; Iso, Yoshitaka; Sasai, Masahiro; Mizukami, Takuya; Mori, Hiroyoshi; Watanabe, Takuya; Shioda, Seiji; Suzuki, Hiroshi
2014-07-01
The KPs (kisspeptins) are a family of multifunctional peptides with established roles in cancer metastasis, puberty and vasoconstriction. The effects of KPs on endothelial cells have yet to be determined. The aim of the present study was to investigate the effects of KP-10 on endothelial cell growth and the mechanisms underlying those effects. The administration of recombinant KP-10 into the hindlimbs of rats with ischaemia significantly impaired blood flow recovery, as shown by laser Doppler, and capillary growth, as shown using histology, compared with the controls. HUVECs (human umbilical vein endothelial cells) express the KP receptor and were treated with KP-10 in culture studies. KP-10 inhibited endothelial cell tube formation and proliferation in a significant and dose-dependent manner. The HUVECs treated with KP exhibited the senescent phenotype, as determined using a senescence-associated β-galactosidase assay, cell morphology analysis, and decreased Sirt1 (sirtuin 1) expression and increased p53 expression shown by Western blot analysis. Intriguingly, a pharmacological Rho kinase inhibitor, Y-27632, was found to increase the proliferation of HUVECs and to reduce the number of senescent phenotype cells affected by KP-10. In conclusion, KP-10 suppressed endothelial cells growth both in vivo and in vitro in the present study. The adverse effect of KP on endothelial cells was attributable, at least in part, to the induction of cellular senescence.
Srinivas, U; Påhlsson, P; Lundblad, A
1996-09-01
Recent studies have demonstrated that selectins, a new family of cell-adhesion molecules with similar domain structures, mediate the adhesion of peripheral blood cells to interleukin-1 (IL-1)-activated endothelium. In the present study the authors evaluated the role of E-selectin-Sialyl Lewis x (SLe(x))/ Sialyl Lewis a (SLe(a)) interaction in mediating in vitro adhesion of two colon cancer cell lines, HT-29 and COLO 201, to human umbilical cord endothelial cells (HUVEC). Colon cancer cell lines had a strong expression of blood group-related carbohydrate epitopes as evaluated by fluorescence-activated cell sorter (FACS) analysis. It was established that adhesion of HT-29 and COLO 201 cells to IL-1 stimulated HUVEC was calcium dependent and could be inhibited by a monoclonal antibody directed against E-selectin. Prior incubation of cells with two different antibodies directed against SLe(x) and antibodies directed against related Lewis epitopes, Le(x) and Le(a), had no significant effect on adhesion. Three antibodies directed against SLe(a) differed in their capacity to inhibit the adhesion of HT-29 and COLO 201 cells to HUVEC. Only one antibody directed against the SLe(a) structure was effective in inhibiting adhesion of both COLO 201 and HT-29 cells. The difference could not be attributed to titre, the type or number of glycoproteins, or to a difference in the amount of SLe(a) present on individual proteins, suggesting that presence and right presentation of SLe(a) epitope might be important for adhesion of colon cancer cells. Finally, in the in vitro system used, adhesion of HT-29 and COLO 201 cells to activated HUVEC is mediated predominantly by E-selectin/SLe(a) interaction. SLe(x) and related epitopes, Le(x) and Le(a), seem to have limited relevance for colon cancer cell recognition of E-selectin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Chun-Hsu; Lin, Wen-Hsin; Chien, Yi-Chung
Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viabilitymore » was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.« less
Bae, Yoon-Kyung; Kim, Gee-Hye; Lee, Jae Cheoun; Seo, Byoung-Moo; Joo, Kyeung-Min; Lee, Gene; Nam, Hyun
2017-06-30
Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, αsmooth muscle actin, platelet-derived growth factor receptor β, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HU-VECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the SDF-1α and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the peri-vascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.
Neutrophil activator of matrix metalloproteinase-2 (NAM).
Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley
2006-01-01
We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination.
In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs.
El-Aarag, Bishoy Y A; Kasai, Tomonari; Zahran, Magdy A H; Zakhary, Nadia I; Shigehiro, Tsukasa; Sekhar, Sreeja C; Agwa, Hussein S; Mizutani, Akifumi; Murakami, Hiroshi; Kakuta, Hiroki; Seno, Masaharu
2014-08-01
Inhibition of angiogenesis is currently perceived as a promising strategy in the treatment of cancer. The anti-angiogenicity of thalidomide has inspired a second wave of research on this teratogenic drug. The present study aimed to investigate the anti-proliferative and anti-angiogenic activities of two thalidomide dithiocarbamate analogs by studying their anti-proliferative effects on human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 human breast cancer cell lines. Their action on the expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 was also assessed. Furthermore, their effect on angiogenesis was evaluated through wound healing, migration, tube formation, and nitric oxide (NO) assays. Results illustrated that the proliferation of HUVECs and MDA-MB-231 cells was not significantly affected by thalidomide at 6.25-100μM. Thalidomide failed to block angiogenesis at similar concentrations. By contrast, thalidomide dithiocarbamate analogs exhibited significant anti-proliferative action on HUVECs and MDA-MB-231 cells without causing cytotoxicity and also showed powerful anti-angiogenicity in wound healing, migration, tube formation, and NO assays. Thalidomide analogs 1 and 2 demonstrated more potent activity to suppress expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 than thalidomide. Analog 1 consistently, showed the highest potency and efficacy in all the assays. Taken together, our results support further development and evaluation of novel thalidomide analogs as anti-tumor and anti-angiogenic agents. Copyright © 2014. Published by Elsevier B.V.
Kataoka, Hiroki; Murakami, Ryuichiro; Numaguchi, Yasushi; Okumura, Kenji; Murohara, Toyoaki
2010-06-25
Decrease in endothelial nitric oxide synthase (eNOS) expression is one of the adverse outcomes of endothelial dysfunction. Tumor necrosis factor-alpha (TNF-alpha) is known to decrease eNOS expression and is an important mediator of endothelial dysfunction. We hypothesized that an angiotensin II type 1 (AT1) receptor blocker would improve endothelial function via not only inhibition of the angiotensin II signaling but also inhibition of the TNF-alpha-mediated signaling. Therefore we investigated whether an AT1 receptor blocker would restore the TNF-alpha-induced decrease in eNOS expression in cultured human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with an antioxidant (superoxide dismutase, alpha-tocopherol) or AT1 receptor blockers (olmesartan or candesartan) restored the TNF-alpha-dependent reduction of eNOS. The AT1 receptor blocker decreased the TNF-alpha-dependent increase of 8-isoprostane. The superoxide dismutase activities in HUVEC were stable during AT1 receptor blocker treatment, and the AT1 receptor blocker did not scavenge superoxide directly. The AT1 receptor blocker also decreased TNF-alpha-induced phosphorylation of I kappaB alpha and cell death. These results suggest that AT1 receptor blockers are able to ameliorate TNF-alpha-dependent eNOS reduction or cell injury by inhibiting superoxide production or nuclear factor-kappaB activation. (c) 2010 Elsevier B.V. All rights reserved.
The ADMA/DDAH/NO pathway in human vein endothelial cells exposed to arsenite.
Osorio-Yáñez, Citlalli; Chin-Chan, Miguel; Sánchez-Peña, Luz C; Atzatzi-Aguilar, Octavio G; Olivares-Reyes, Jesus A; Segovia, José; Del Razo, Luz M
2017-08-01
Inorganic arsenic (iAs) exposure is related to cardiovascular disease, which is characterized by endothelial dysfunction and nitric oxide (NO) depletion. The mechanisms underlying NO depletion as related to iAs exposure are not fully understood. The endogenous inhibitor of nitric oxide synthase, asymmetric dimethylarginine (ADMA), might be a molecular target of iAs. ADMA concentrations are regulated by proteins involved in its synthesis (arginine methyl transferase 1 [PRMT-1]) and degradation (dimethylarginine dimethylaminohydrolase [DDAH]). Both, ADMA and NO are susceptible to oxidative stress. We aimed to determine the ADMA/DDAH/NO pathway in human vein endothelial cells (HUVEC-CS) exposed to arsenite. We exposed HUVEC-CS cells to 1, 2.5 and 5μM of arsenite for 24h. We proved that arsenite at 5μM was able to decrease NO levels with an associated increase in ADMA and depletion of l-arginine in HUVEC-CS cells. We also found a decrease in DDAH-1 protein expression with 5μM of arsenite compared to the control group. However, we did not observe significant differences in PRMT-1 protein expression at any of the concentrations of arsenite employed. Finally, arsenite (2.5 and 5μM) increased NADPH oxidase 4 protein levels compared with the control group. We conclude that ADMA, l-arginine and DDAH are involved in NO depletion produced by arsenite, and that the mechanism is related to oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Montiel-Dávalos, Angélica; Silva Sánchez, Guadalupe Jazmin; Huerta-García, Elizabeth; Rueda-Romero, Cristhiam; Soca Chafre, Giovanny; Mitre-Aguilar, Irma B.; Alfaro-Moreno, Ernesto; Pedraza-Chaverri, José
2017-01-01
Curcumin has protective effects against toxic agents and shows preventive properties for various diseases. Particulate material with an aerodynamic diameter of ≤10 μm (PM10) and titanium dioxide nanoparticles (TiO2-NPs) induce endothelial dysfunction and activation. We explored whether curcumin is able to attenuate different events related to endothelial activation. This includes adhesion, expression of adhesion molecules and oxidative stress induced by PM10 and TiO2-NPs. Human umbilical vein endothelial cells (HUVEC) were treated with 1, 10 and 100 μM curcumin for 1 h and then exposed to PM10 at 3 μg/cm2 or TiO2-NPs at 10 μg/cm2. Cell adhesion was evaluated by co-culture with U937 human myelomonocytic cells. Adhesion molecules expression was measured by flow cytometry after 3 or 24 h of exposure. Oxidative stress was determined by 2,7-dichlorodihydrofluorescein (H2DCF) oxidation. PM10 and TiO2-NPs induced the adhesion of U937 cells and the expression of E- and P-selectins, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1). The expression of E- and P-selectins matched the adhesion of monocytes to HUVEC after 3 h. In HUVEC treated with 1 or 10 μM curcumin, the expression of adhesion molecules and monocytes adhesion was significantly diminished. Curcumin also partially reduced the H2DCF oxidation induced by PM10 and TiO2-NPs. Our results suggest an anti-inflammatory and antioxidant role by curcumin attenuating the activation caused on endothelial cells by exposure to particles. Therefore, curcumin could be useful in the treatment of diseases where an inflammatory process and endothelial activation are involved. PMID:29244817
Lin, Jiaqiong; Chen, Meiji; Liu, Donghong; Guo, Ruixian; Lin, Kai; Deng, Haiou; Zhi, Ximei; Zhang, Weijie; Feng, Jianqiang; Wu, Wen
2018-03-01
Hyperglycemia is a key factor in the development of diabetic complications, including the processes of atherosclerosis. Receptor‑interacting protein 3 (RIP3), a mediator of necroptosis, is implicated in atherosclerosis development. Additionally, hydrogen sulfide (H2S) protects the vascular endothelium against hyperglycemia‑induced injury and attenuates atherosclerosis. On the basis of these findings, the present study aimed to confirm the hypothesis that necroptosis mediates high glucose (HG)‑induced injury in human umbilical vein endothelial cells (HUVECs), and that the inhibition of necroptosis contributes to the protective effect of exogenous H2S against this injury. The results revealed that exposure of HUVECs to 40 mM HG markedly enhanced the expression level of RIP3, along with multiple injuries, including a decrease in cell viability, an increase in the number of apoptotic cells, an increase in the expression level of cleaved caspase‑3, generation of reactive oxygen species (ROS), as well as dissipation of the mitochondrial membrane potential (MMP). Treatment of the cells with sodium hydrogen sulfide (NaHS; a donor of H2S) prior to exposure to HG significantly attenuated the increased RIP3 expression and the aforementioned injuries by HG. Notably, treatment of cells with necrostatin‑1 (Nec‑1), an inhibitor of necroptosis, prior to exposure to HG ameliorated the HG‑induced injuries, leading to a decrease in ROS generation and a loss of MMP. However, pre‑treatment of the cells with Nec‑1 enhanced the HG‑induced increase in the expression levels of cleaved caspases‑3 and ‑9. By contrast, pre‑treatment with Z‑VAD‑FMK, a pan ‑caspase inhibitor, promoted the increased expression of RIP3 by HG. Taken together, the findings of the present study have demonstrated, to the best of our knowledge for the first time, that exogenous H2S protects HUVECs against HG‑induced injury through inhibiting necroptosis. The present study has also provided novel evidence that there is a negative interaction between necroptosis and apoptosis in the HG‑treated HUVECs.
In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy.
Jin, Shujing; Qi, Xun; Wang, Tongmin; Ren, Ling; Yang, Ke; Zhong, Hongshan
2018-02-01
Endothelialization is an important process after stenting in coronary artery. Recovery of the injured site timely can reduce the neointima formation and platelet absorbance, leading to a lower risk of in-stent restenosis. Copper is known to be critical in vascular construction. Thus a combination of copper with stent materials is a meaningful attempt. A copper bearing L605-Cu cobalt alloy was prepared and its effect on human umbilical vein endothelial cells (HUVECs) was evaluated in vitro in this study. It was found that HUVECs attached and stretched better on the surface of L605-Cu compared with L605, and the apoptosis of cells was decreased simultaneously. The migration and tube formation of HUVECs were also enhanced by the extract of L605-Cu. Furthermore, L605-Cu increased the mRNA expression of VEGF in HUVECs significantly. However it had no effect on the secretion of NO or mRNA expression of eNOS. The result of blood clotting test indicated that L605-Cu had better blood compatibility. These results above have demonstrated that the L605-Cu alloy is promising to be a new stent material with function of accelerating endothelialization. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 561-569, 2018. © 2017 Wiley Periodicals, Inc.
Huh, Jeong-Eun; Nam, Dong-Woo; Baek, Young-Hyun; Kang, Jung Won; Park, Dong-Suk; Choi, Do-Young; Lee, Jae-Dong
2011-01-01
Formononetin, a phytoestrogen from the root of Astragalus membranaceus, is used as a blood enhancer and to improve blood microcirculation in complementary and alternative medicine. The present study investigated the influence of formononetin on the expression of early growth response factor-1 (Egr-1) and growth factors contributing to wound healing. Formononetin significantly increased growth factors such as transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) in human umbilical vein endothelial cells (HUVECs). Formononetin also increased the expression of Egr-1 transcription factor by 3.2- and 10.5-fold, compared with recombinant VEGF(125) in HUVECs. The formononetin-mediated 12%-43% increase induced endothelial cell proliferation and recovered the migration of wounded HUVECs. In an ex vivo angiogenesis assay, formononetin produced a larger capillary sprouting area than produced using recombinant VEGF(125). Cell proliferation and migration of HUVECs were also greater in the presence of formonectin than VEGF(125). Western blot analysis of scratch-wounded confluent HUVECs showed that formononetin induced the phosphorylation of extracellular signal-regulated kinase (ERK) and slightly inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The formononetin-mediated sustained activation of Egr-1 was suppressed by the ERK inhibitor PD98059 and the p38 inhibitor SB203580. PD98059 inhibited the formononetin-induced endothelial proliferation and repair in scratch-wounded HUVECs, SB203580 increased the cell proliferation and wound healing. Formononetin accelerate wound closure rate as early as day 3 after surgery and consistently observed until day 10 after in wound animal model. These data suggest that formononetin promotes endothelial repair and wound healing in a process involving the over-expression of Egr-1 transcription factor through the regulation of the ERK1/2 and p38 MAPK pathways. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Fontana, Jacopo M; Yin, Huijuan; Chen, Yun; Florez, Ricardo; Brismar, Hjalmar; Fu, Ying
2017-01-01
Colloidal semiconductor quantum dots (QDs) have been extensively researched and developed for biomedical applications, including drug delivery and biosensing assays. Hence, it is pivotal to understand their behavior in terms of intracellular transport and toxicological effects. In this study, we focused on 3-mercaptopropionic acid-coated CdSe-CdS/ZnS core-multishell quantum dots (3MPA-QDs) converted from the as-grown octadecylamine-coated quantum dots (ODA-QDs) and their direct and dynamic interactions with human umbilical vein endothelial cells (HUVECs). Live cell imaging using confocal fluorescence microscopy showed that 3MPA-QDs first attached to and subsequently aggregated on HUVEC plasma membrane ~25 min after QD deposition. The aggregated QDs started being internalized at ~2 h and reached their highest internalization degree at ~24 h. They were released from HUVECs after ~48 h. During the 48 h period, the HUVECs responded normally to external stimulations, grew, proliferated and wound healed without any perceptible apoptosis. Furthermore, 1) 3MPA-QDs were internalized in newly formed LysoTracker-stained early endosomes; 2) adenosine 5′-triphosphate-induced [Ca2+]i modulation caused a transient decrease in the fluorescence of 3MPA-QDs that were attached to the plasma membrane but a transient increase in the internalized 3MPA-QDs; and 3) fluorescence signal modulations of co-stained LysoTracker and QDs induced by the lysosomotropic agent Gly-Phe-β-naphthylamide were spatially co-localized and temporally synchronized. Our findings suggest that 3MPA-QDs converted from ODA-QDs are a potential nontoxic fluorescent probe for future use in clinical applications. Moreover, the photophysical strategy and techniques reported in this work are easily applicable to study of direct interactions between other nanoparticles and live cells; contributing to awareness and implementation of the safe applications of nanoparticles. PMID:29270011
Fontana, Jacopo M; Yin, Huijuan; Chen, Yun; Florez, Ricardo; Brismar, Hjalmar; Fu, Ying
2017-01-01
Colloidal semiconductor quantum dots (QDs) have been extensively researched and developed for biomedical applications, including drug delivery and biosensing assays. Hence, it is pivotal to understand their behavior in terms of intracellular transport and toxicological effects. In this study, we focused on 3-mercaptopropionic acid-coated CdSe-CdS/ZnS core-multishell quantum dots (3MPA-QDs) converted from the as-grown octadecylamine-coated quantum dots (ODA-QDs) and their direct and dynamic interactions with human umbilical vein endothelial cells (HUVECs). Live cell imaging using confocal fluorescence microscopy showed that 3MPA-QDs first attached to and subsequently aggregated on HUVEC plasma membrane ~25 min after QD deposition. The aggregated QDs started being internalized at ~2 h and reached their highest internalization degree at ~24 h. They were released from HUVECs after ~48 h. During the 48 h period, the HUVECs responded normally to external stimulations, grew, proliferated and wound healed without any perceptible apoptosis. Furthermore, 1) 3MPA-QDs were internalized in newly formed LysoTracker-stained early endosomes; 2) adenosine 5'-triphosphate-induced [Ca 2+ ] i modulation caused a transient decrease in the fluorescence of 3MPA-QDs that were attached to the plasma membrane but a transient increase in the internalized 3MPA-QDs; and 3) fluorescence signal modulations of co-stained LysoTracker and QDs induced by the lysosomotropic agent Gly-Phe-β-naphthylamide were spatially co-localized and temporally synchronized. Our findings suggest that 3MPA-QDs converted from ODA-QDs are a potential nontoxic fluorescent probe for future use in clinical applications. Moreover, the photophysical strategy and techniques reported in this work are easily applicable to study of direct interactions between other nanoparticles and live cells; contributing to awareness and implementation of the safe applications of nanoparticles.
Vega, José L; Puebla, Carlos; Vásquez, Rodrigo; Farías, Marcelo; Alarcón, Julio; Pastor-Anglada, Marçal; Krause, Bernardo; Casanello, Paola; Sobrevia, Luis
2009-06-01
We studied whether transforming growth factor beta1 (TGF-beta1) modulates human equilibrative nucleoside transporters 1 (hENT1) expression and activity in human umbilical vein endothelial cells (HUVECs). hENT1-mediated adenosine transport and expression are reduced in gestational diabetes and hyperglycaemia, conditions associated with increased synthesis and release of nitric oxide (NO) and TGF-beta1 in this cell type. TGF-beta1 increases NO synthesis via activation of TGF-beta receptor type II (TbetaRII), and NO inhibits hENT1 expression and activity in HUVECs. HUVECs (passage 2) were used for experiments. Total and hENT1-mediated adenosine transport was measured in the absence or presence of TGF-beta1, NG-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor), S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor), and/or KT-5823 (protein kinase G inhibitor) in control cells and cells expressing a truncated form of TGF-beta1 receptor type II (TTbetaRII). Western blot and real-time PCR were used to determine hENT1 protein abundance and mRNA expression. SLC29A1 gene promoter and specific protein 1 (Sp1) transcription factor activity was assayed. Vascular reactivity was assayed in endothelium-intact or -denuded umbilical vein rings. TGF-beta1 reduced hENT1-mediated adenosine transport, hENT1 protein abundance, hENT1 mRNA expression, and SLC29A1 gene promoter activity, but increased Sp1 binding to DNA. TGF-beta1 effect was blocked by L-NAME and KT-5823 and mimicked by SNAP in control cells. However, TGF-beta1 was ineffective in cells expressing TTbetaRII or a mutated Sp1 consensus sequence. Vasodilatation in response to TGF-beta1 and S-(4-nitrobenzyl)-6-thio-inosine (an ENT inhibitor) was endothelium-dependent and blocked by KT-5823 and ZM-241385. hENT1 is down-regulated by activation of TbetaRII by TGF-beta1 in HUVECs, a phenomenon where NO and Sp1 play key roles. These findings comprise physiological mechanisms that could be important in diseases where TGF-beta1 plasma level is increased as in gestational diabetic mothers or patients with diabetes mellitus.
Characterization of Adsorbents for Cytokine Removal from Blood in an In Vitro Model
Gabor, Franz; Hartmann, Jens
2015-01-01
Introduction. Cytokines are basic targets that have to be removed effectively in order to improve the patient's health status in treating severe inflammation, sepsis, and septic shock. Although there are different adsorbents commercially available, the success of their clinical use is limited. Here, we tested different adsorbents for their effective removal of cytokines from plasma and the resulting effect on endothelial cell activation. Methods. The three polystyrene divinylbenzene (PS-DVB) based adsorbents Amberchrom CG161c and CG300m and a clinically approved haemoperfusion adsorbent (HAC) were studied with regard to cytokine removal in human blood. To induce cytokine release from leucocytes, human blood cells were stimulated with 1 ng/ml LPS for 4 hours. Plasma was separated and adsorption experiments in a dynamic model were performed. The effect of cytokine removal on endothelial cell activation was evaluated using a HUVEC-based cell culture model. The beneficial outcome was assessed by measuring ICAM-1, E-selectin, and secreted cytokines IL-8 and IL-6. Additionally the threshold concentration for HUVEC activation by TNF-α and IL-1β was determined using this cell culture model. Results. CG161c showed promising results in removing the investigated cytokines. Due to its pore size the adsorbent efficiently removed the key factor TNF-α, outperforming the commercially available adsorbents. The CG161c treatment reduced cytokine secretion and expression of cell adhesion molecules by HUVEC which underlines the importance of effective removal of TNF-α in inflammatory diseases. Conclusion. These results confirm the hypothesis that cytokine removal from the blood should approach physiological levels in order to reduce endothelial cell activation. PMID:26770992
Garde, Seema V; Forté, André J; Ge, Michael; Lepekhin, Eugene A; Panchal, Chandra J; Rabbani, Shafaat A; Wu, Jinzi J
2007-11-01
In an effort to develop new agents and molecular targets for the treatment of cancer, aspargine-glycine-arginine (NGR)-targeted liposomal doxorubicin (TVT-DOX) is being studied. The NGR peptide on the surface of liposomal doxorubicin (DOX) targets an aminopeptidase N (CD13) isoform, specific to the tumor neovasculature, making it a promising strategy. To further understand the molecular mechanisms of action, we investigated cell binding, kinetics of internalization as well as cytotoxicity of TVT-DOX in vitro. We demonstrate the specific binding of TVT-DOX to CD13-expressing endothelial [human umbilical vein endothelial cells (HUVEC) and Kaposi sarcoma-derived endothelial cells (SLK)] and tumor (fibrosarcoma, HT-1080) cells in vitro. Following binding, the drug was shown to internalize through the endosomal pathway, eventually leading to the localization of doxorubicin in cell nuclei. TVT-DOX showed selective toxicity toward CD13-expressing HUVEC, sparing the CD13-negative colon-cancer cells, HT-29. Additionally, the nontargeted counterpart of TVT-DOX, Caelyx, was less cytotoxic to the CD13-positive HUVECs demonstrating the advantages of NGR targeting in vitro. The antitumor activity of TVT-DOX was tested in nude mice bearing human prostate-cancer xenografts (PC3). A significant growth inhibition (up to 60%) of PC3 tumors in vivo was observed. Reduction of tumor vasculature following treatment with TVT-DOX was also apparent. We further compared the efficacies of TVT-DOX and free doxorubicin in the DOX-resistant colon-cancer model, HCT-116, and observed the more pronounced antitumor effects of the TVT-DOX formulation over free DOX. The potential utility of TVT-DOX in a variety of vascularized solid tumors is promising.
Krzywanski, David M.; Moellering, Douglas R.; Westbrook, David G.; Dunham-Snary, Kimberly J.; Brown, Jamelle; Bray, Alexander W.; Feeley, Kyle P.; Sammy, Melissa J.; Smith, Matthew R.; Schurr, Theodore G.; Vita, Joseph A.; Ambalavanan, Namasivayam; Calhoun, David; Dell’Italia, Louis; Ballinger, Scott W.
2016-01-01
Background We hypothesized that endothelial cells having distinct mitochondrial genetic backgrounds would show variation in mitochondrial function and oxidative stress markers concordant with known differential cardiovascular disease susceptibilities. To test this hypothesis, mitochondrial bioenergetics were determined in endothelial cells from healthy individuals with African versus European maternal ancestries. Methods and Results Bioenergetics and mitochondrial DNA (mtDNA) damage were assessed in single donor human umbilical vein endothelial cells (HUVECs) belonging to mtDNA haplogroups H and L, representing West Eurasian and African maternal ancestry, respectively. HUVECs from haplogroup L utilized less oxygen for ATP production and had increased levels of mtDNA damage compared to those in haplogroup H. Differences in bioenergetic capacity were also observed in that HUVECs belonging to haplogroup L had decreased maximal bioenergetic capacities compared to haplogroup H. Analysis of peripheral blood mononuclear cells from age-matched healthy controls with West Eurasian or African maternal ancestries showed that haplogroups sharing an A to G mtDNA mutation at nucleotide pair (np) 10,398 had increased mtDNA damage compared to those lacking this mutation. Further study of angiographically proven coronary artery disease patients and age-matched healthy controls revealed that mtDNA damage was associated with vascular function and remodeling, and that age of disease onset was later in individuals from haplogroups lacking the A to G mutation at np 10,398. Conclusions Differences in mitochondrial bioenergetics and mtDNA damage associated with maternal ancestry may contribute to endothelial dysfunction and vascular disease. PMID:26787433
Shi, Xingxing; Zhou, Kai; Huang, Fei; Wang, Chen
2017-01-01
Nano-hydroxyapatite (nano-HAP) has been proposed as a better candidate for bone tissue engineering; however, the interactions of nano-HAP with endothelial cells are currently unclear. In this study, HAP nanoparticles (HANPs; 20 nm np20 and 80 nm np80) and micro-sized HAP particles (m-HAP; 12 μm) were employed to explore and characterize cellular internalization, subcellular distribution, effects of HANPs on endothelial cell function and underlying mechanisms using human umbilical vein endothelial cells (HUVECs) as an in vitro model. It was found that HANPs were able to accumulate in the cytoplasm, and both adhesion and uptake of the HANPs followed a function of time; compared to np80, more np20 had been uptaken at the end of the observation period. HANPs were mainly uptaken via clathrin- and caveolin-mediated endocytosis, while macropinocytosis was the main pathway for m-HAP uptake. Unexpectedly, exposure to HANPs suppressed the angiogenic ability of HUVECs in terms of cell viability, cell cycle, apoptosis response, migration and capillary-like tube formation. Strikingly, HANPs reduced the synthesis of nitric oxide (NO) in HUVECs, which was associated with the inhibition of phosphatidylinositol 3-kinase (PI3K) and phosphorylation of eNOS. These findings provide additional insights into specific biological responses as HANPs interface with endothelial cells. PMID:28848353
Gu, Jie; Chan, Lai-Sheung; Wong, Chris Kong-Chu; Wong, Ngok-Shun; Wong, Chun-Kwok; Leung, Kok-Nam; Mak, Naiki K
2011-01-01
Benzo[a]pyrene (BaP) has been shown to affect both the development and response of T and B cells in the immune system. However, the effect of BaP on other immune cells, such as eosionophils, is unknown. In this study, we investigated the effect of BaP on the production of vascular endothelial growth factor (VEGF) using an in vitro eosinophilic EoL-1 cell and human umbilical vein endothelial cell (HUVEC) co-culture system. EoL-1-conditioned medium was found to promote the growth of HUVEC in a time-dependent manner. The growth stimulating activity was due to the production of VEGF by the EoL-1 cells. The production of VEGF was correlated with the enhanced expression of the phosphorylated form of extracellular signal-regulated kinases (p-ERKs) and the upregulated expression of VEGF mRNA. Furthermore, BaP-induced expression of VEGF mRNA was reduced by the ERK inhibitor PD98059. Results from this study suggested that BaP might affect the growth of endothelial cells through the modulation of VEGF production by eosinophils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yao; Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang Key Laboratory of Diabetes, No.1 Qianjing Road, Xihu District, Nanchang 330009, Jiangxi Province; Cai, Wei
Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer therapy. The identification of new drugs from natural products has a long and successful history. In this study, we described a novel VEGFR2 inhibitor, rhamnazin, which inhibits tumor angiogenesis and growth. Rhamnazin significantly inhibited proliferation, migration and tube formation of human umbilical vascular endothelial cells (HUVECs) in vitro as well as inhibited sprouts formation of rat aorta ring. In addition, it inhibited vascular endothelial growth factor (VEGF)-induced phosphorylation of VEGFR2 and its downstream signaling regulator in HUVECs. Moreover, rhamnazin could directly inhibit proliferation ofmore » breast cancer cells MDA-MB-231 in vitro and in vivo. Oral administration of rhamnazin at a dose of 200 mg/kg/day could markedly inhibited human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that rhamnazin inhibits angiogenesis and may be a promising anticancer drug candidate. - Highlights: • Rhamnazin inhibits the response of HUVECs to VEGF in vitro. • Rhamnazin inhibits VEGFR2 kinase activity and its downstream signaling. • Rhamnazin prevents the growth of MDA-MB-231 tumor and reduces micro-vessel density in vivo.« less
Lee, Hee Doo; Kim, Yeon Hyang; Kim, Doo-Sik
2014-04-01
Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gu, Yuxiu; Cheng, Shanshan; Chen, Gui; Shen, Yuexin; Li, Xiyue; Jiang, Qin; Li, Juan; Cao, Yi
2017-03-01
It was recently shown that ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress in human umbilical vein endothelial cells (HUVECs). If ER stress is associated the toxicity of ZnO NPs, the presence of ER stress inducer thapsigargin (TG) should alter the response of HUVECs to ZnO NP exposure. In this study, we addressed this issue by assessing cytotoxicity, oxidative stress and inflammatory responses in ZnO NP exposed HUVECs with or without the presence of TG. Moreover, TiO 2 NPs were used to compare the effects. Exposure to 32 μg/mL ZnO NPs (p < 0.05), but not TiO 2 NPs (p > 0.05), significantly induced cytotoxicity as assessed by WST-1 and neutral red uptake assay, as well as intracellular ROS. ZnO NPs dose-dependently increased the accumulation of intracellular Zn ions, and ZnSO 4 induced similar cytotoxic effects as ZnO NPs, which indicated a role of Zn ions. The release of inflammatory proteins tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) or the adhesion of THP-1 monocytes to HUVECs was not significantly affected by ZnO or TiO 2 NP exposure (p > 0.05). The presence of 250 nM TG significantly induced cytotoxicity, release of IL-6 and THP-1 monocyte adhesion (p < 0.01), but did not significantly affect intracellular ROS or release of TNFα (p > 0.05). ANOVA analysis indicated no interaction between exposure to ZnO NPs and the presence of TG on almost all the endpoints (p > 0.05) except neutral red uptake assay (p < 0.01). We concluded ER stress is probably not associated with ZnO NP exposure induced oxidative stress and inflammatory responses in HUVECs.
Effect of interferon-gamma on complement gene expression in different cell types.
Lappin, D F; Guc, D; Hill, A; McShane, T; Whaley, K
1992-01-15
We have studied the expression of the complement components C2, C3, factor B, C1 inhibitor (C1-inh), C4-binding protein (C4-bp) and factor H in human peripheral blood monocytes, skin fibroblasts, umbilical vein endothelial cells (HUVEC) and the human hepatoma cell line G2 (Hep G2) in the absence and the presence of interferon-gamma (IFN-gamma). E.l.i.s.a. performed on culture fluids, run-on transcription assays, Northern blot and double-dilution dot-blot techniques confirmed that monocytes expressed all six components, whereas fibroblasts, HUVEC and HepG2 each expressed five of the six components. Fibroblasts and HUVEC did not synthesize C4-bp, and Hep G2 did not produce factor H. In addition to these differences, the synthesis rates of C3, C1-inh and factor H were not the same in all cell types. However, the synthesis rates of C2 and factor B were similar in all four cell types. The half-lives of the mRNAs were shorter in monocytes than in other cell types. Monocyte factor H mRNA had a half-life of 12 min in monocytes, compared with over 3 h in fibroblasts and HUVEC. The instability of factor H mRNA in monocytes may contribute to their low factor H secretion rate. IFN-gamma produced dose-dependent stimulation of C2, factor B, C1-inh, C4-bp and factor H synthesis by all cell types expressing these proteins, but decreased C3 synthesis in all four cell types. Cell-specific differences in the response to IFN-gamma were observed. The increased rates of transcription of the C1-inh and factor H genes in HUVEC were greater than in other cell types, while the increased rate of transcription of the C2, factor B and C1-inh genes in Hep G2 cells was less than in other cell types. IFN-gamma did not affect the stability of C3, factor H or C4 bp mRNAs, but increased the stability of factor B and C1-inh mRNAs and decreased the stability of C2 mRNA. Although these changes occurred in all four cell types studied, the half-life of C1-inh mRNA in monocytes was increased almost 4-fold, whereas the increases in the other cell types were less than 30%. These data show that the constitutive synthesis rates of complement components may vary in the different cell types. They also show that the degree of change in synthesis rates in response to IFN-gamma in each of the cell types often varies due to differences in transcriptional response, sometimes in association with changes in mRNA stability.
PlGF gene knockdown in human retinal pigment epithelial cells.
Akrami, Hassan; Soheili, Zahra-Soheila; Sadeghizadeh, Majid; Ahmadieh, Hamid; Rezaeikanavi, Mozhgan; Samiei, Shahram; Khalooghi, Keynoush
2011-04-01
To evaluate the knockdown of placental growth factor (PlGF) gene expression in human retinal pigment epithelium (RPE) cells and its effect on cell proliferation, apoptosis and angiogenic potential of RPE cells. Human RPE cells were isolated by dispase I solution and cultured in DMEM/F12 supplemented with 10% fetal calf serum (FCS). A small interfering RNA (siRNA) corresponding to PlGF mRNA and a scrambled siRNA (scRNA) were introduced into the cells. Cell proliferation and cell death were examined by ELISA. PlGF mRNA and protein were quantified by real-time polymerase chain reaction (PCR) and western blot. The levels of gene expression for human retinal pigment epithelium-specific protein 65 kDa (RPE65), cellular retinaldehyde-binding protein (CRALBP) and tyrosinase were examined by real-time PCR. The angiogenic activity of RPE cell-derived conditioned media was assayed by a tube formation assay using human umbilical vein endothelial cells (HUVECs). At a final siRNA concentration of 20 pmol/ml, the transfection efficiency was about 80%. The amount of PlGF transcripts was reduced to 10% after 36 h of incubation, and the amount of PlGF protein in culture supernatant was significantly decreased. Suppression of PlGF gene had no effect on RPE cell proliferation and survival, and there were no notable changes in the transcript levels of RPE65, CRALBP or tyrosinase for the cultures treated by siRNA cognate to PlGF. Vascular tube formation was efficiently reduced in HUVECs. Our findings present PlGF as a key modulator of angiogenic potential in RPE cells of the human retina.
Dong, Lixue; Li, Zhigang; Leffler, Nancy R.; Asch, Adam S.; Chi, Jen-Tsan; Yang, Li V.
2013-01-01
Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC) with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2) and stress response genes such as ATF3 and DDIT3 (CHOP). Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be suppressed by GPR4 small molecule inhibitors and hold potential therapeutic value. PMID:23613998
Molecular Hydrogen Alleviates Cellular Senescence in Endothelial Cells.
Hara, Fumihiko; Tatebe, Junko; Watanabe, Ippei; Yamazaki, Junichi; Ikeda, Takanori; Morita, Toshisuke
2016-08-25
Substantial evidence indicates that molecular hydrogen (H2) has beneficial vascular effects because of its antioxidant and/or anti-inflammatory effects. Thus, hydrogen-rich water may prove to be an effective anti-aging drink. This study examined the effects of H2on endothelial senescence and clarified the mechanisms involved. Hydrogen-rich medium was produced by a high-purity hydrogen gas generator. Human umbilical vein endothelial cells (HUVECs) were incubated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for various time periods in normal or hydrogen-rich medium. The baseline H2concentration in hydrogen-rich medium was 0.55±0.07 mmol/L. This concentration gradually decreased, and H2was almost undetectable in medium after 12 h. At 24 h after TCDD exposure, HUVECs treated with TCDD exhibited increased 8OHdG and acetyl-p53 expression, decreased nicotinamide adenine dinucleotide (NAD(+))/NADH ratio, impaired Sirt1 activity, and enhanced senescence-associated β-galactosidase. However, HUVECs incubated in hydrogen-rich medium did not exhibit these TCDD-induced changes accompanying Nrf2 activation, which was observed even after H2was undetectable in the medium. Chrysin, an inhibitor of Nrf2, abolished the protective effects of H2on HUVECs. H2has long-lasting antioxidant and anti-aging effects on vascular endothelial cells through the Nrf2 pathway, even after transient exposure to H2. Hydrogen-rich water may thus be a functional drink that increases longevity. (Circ J 2016; 80: 2037-2046).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhijuan, E-mail: zjlee038@163.com; Cheng, Jianxin; Wang, Liping
2015-10-30
Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuatedmore » the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.« less
Montecinos, Viviana P; Morales, Claudio H; Fischer, Thomas H; Burns, Sarah; San Francisco, Ignacio F; Godoy, Alejandro S; Smith, Gary J
2015-01-01
Androgen deprivation therapy (ADT) provides palliation for most patients with advanced prostate cancer (CaP); however, greater than 80% subsequently fail ADT. ADT has been indicated to induce an acute but transient destabilization of the prostate vasculature in animal models and humans. Human re-hydrated lyophilized platelets (hRL-P) were investigated as a prototype for therapeutic agents designed to target selectively the tumour-associated vasculature in CaP. The ability of hRL-P to bind the perturbed endothelial cells was tested using thrombin- and ADP-activated human umbilical vein endothelial cells (HUVEC), as well as primary xenografts of human prostate tissue undergoing acute vascular involution in response to ADT. hRL-P adhered to activated HUVEC in a dose-responsive manner. Systemically administered hRL-P, and hRL-P loaded with super-paramagnetic iron oxide (SPIO) nanoparticles, selectively targeted the ADT-damaged human microvasculature in primary xenografts of human prostate tissue. This study demonstrated that hRL-P pre-loaded with chemo-therapeutics or nanoparticles could provide a new paradigm for therapeutic modalities to prevent the rebound/increase in prostate vasculature after ADT, inhibiting the transition to castration-recurrent growth. PMID:25736582
Liu, Yi; Luo, Fei; Wang, Bairu; Li, Huiqiao; Xu, Yuan; Liu, Xinlu; Shi, Le; Lu, Xiaolin; Xu, Wenchao; Lu, Lu; Qin, Yu; Xiang, Quanyong; Liu, Qizhan
2016-01-01
Although microRNA (miRNA) enclosed in exosomes can mediate intercellular communication, the roles of exosomal miRNA and angiogenesis in lung cancer remain unclear. We investigated functions of STAT3-regulated exosomal miR-21 derived from cigarette smoke extract (CSE)-transformed human bronchial epithelial (HBE) cells in the angiogenesis of CSE-induced carcinogenesis. miR-21 levels in serum were higher in smokers than those in non-smokers. The medium from transformed HBE cells promoted miR-21 levels in normal HBE cells and angiogenesis of human umbilical vein endothelial cells (HUVEC). Transformed cells transferred miR-21 into normal HBE cells via exosomes. Knockdown of STAT3 reduced miR-21 levels in exosomes derived from transformed HBE cells, which blocked the angiogenesis. Exosomes derived from transformed HBE cells elevated levels of vascular endothelial growth factor (VEGF) in HBE cells and thereby promoted angiogenesis in HUVEC cells. Inhibition of exosomal miR-21, however, decreased VEGF levels in recipient cells, which blocked exosome-induced angiogenesis. Thus, miR-21 in exosomes leads to STAT3 activation, which increases VEGF levels in recipient cells, a process involved in angiogenesis and malignant transformation of HBE cells. These results, demonstrating the function of exosomal miR-21 from transformed HBE cells, provide a new perspective for intervention strategies to prevent carcinogenesis of lung cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Guo, Dongmin; Xiao, Lele; Hu, Huijun; Liu, Mihua; Yang, Lu; Lin, Xiaolong
2018-05-25
Diabetic macroangiopathy is the main cause of morbidity and mortality in patients with diabetes. Endothelial cell injury is a pathological precondition for diabetic macroangiopathy. Fibroblast growth factor 21 (FGF21) is a key metabolic regulator which has recently been suggested to protect cardiac myocytes and vascular cells against oxidative stress-induced injury in vitro and vivo. In this study, we aimed to investigate the protective capacity of FGF21 in human umbilical vein endothelial cells (HUVECs) against high glucose (HG)-induced apoptosis via phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt)/FoxO3a pathway. The cell viability was examined by CCK-8 assay, Intracellular ROS levels were measured by the detection of the fluorescent product formed by the oxidation of DCFH-DA, Apoptosis was analyzed using Hoechst 33258 nuclear staining and Flow Cytometry Analysis (FCA), the expression of protein were detected by Western blot. Results show that pretreating HUVECs with FGF21 before exposure to HG increases cell viability, while decreasing apoptosis and the generation of reactive oxygen species. Western blot analysis shows that HG reduces the phosphorylation of Akt and FoxO3a, and induces nuclear localization of FoxO3a. The effects were significantly reversed by FGF21 pre-treatment. Furthermore, the protective effects of FGF21 were prevented by PI3K/Akt inhibitor LY294002. Our data demonstrates that FGF21 protects HUVECs from HG-induced oxidative stress and apoptosis via the activation of PI3K/Akt/FoxO3a signaling pathway. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Z; Ngwa, W; Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
2016-06-15
Purpose: Cerium oxide nanoparticles (CONPs) have unique pH dependent properties such that they act as a radical modulator. These properties may be used in radiation therapy (RT) to protect normal tissue. This work investigates the selective radioprotection of CONPs in-vitro and potential for in-situ delivery of CONPs in prostate cancer RT. Methods: i) Normal human umbilical vein endothelial cells (HUVEC) and human prostate cancer cells (PC-3) were treated with 0 or 2 ng/mL CONPs (NP size: 5 nm). 2 Gy of 100 kVp radiation was delivered to the cells 4 hours after the CONP treatment. Cell viability was checked 48more » hours later using MTS assays. ii) A prostate tumor was modeled as a 2-cm diameter sphere. CONPs were proposed to be loaded in a hollow radiotherapy fiducial marker. The concentration profile for the CONPs within the tumor was modeled with a previously validated diffusion equation employed in other studies for nanoparticles 10 nm or less. Results: i) Without radiation, cell viability was above 90% when treated with 2 ng/mL CONPs for both HUVEC and PC-3. After irradiation, a slightly higher viability was observed in HUVEC with CONPs than the ones without CONPs, and this effect was not observed in PC-3. ii) Based on the calculations, 2 ng/mL of CONPs could be delivered to normal cells by diffusion with a 1 µg/mL initial concentration within two weeks. Conclusion: We conclude that CONPs can provide selective radioprotection. The delivery of needed concentrations of CONPs is feasible via in-situ release from radiotherapy biomaterials (e.g. fiducials) loaded with the CONPs.« less
Cooley-Andrade, Osvaldo; Cheung, Kelvin; Chew, An-Ning; Connor, David Ewan; Parsi, Kurosh
2016-07-01
To investigate the apoptotic effects of detergent sclerosants sodium tetradecylsulphate (STS) and polidocanol (POL) on endothelial cells at sub-lytic concentrations. Human umbilical vein endothelial cells (HUVECs) were isolated and labelled with antibodies to assess for apoptosis and examined with confocal microscopy and flow cytometry. Isolated HUVECs viability was assessed using propidium iodide staining. Early apoptosis was determined by increased phosphatidylserine exposure by lactadherin binding. Caspase 3, 8, 9 and Bax activation as well as inhibitory assays with Pan Caspase (Z-VAD-FMK) and Bax (BI-6C9) were assessed to identify apoptotic pathways. Porimin activation was used to assess cell membrane permeability. Cell lysis reached almost 100 % with STS at 0.3 % and with POL at 0.6 %. Apoptosis was seen with both STS and POL at concentrations ranging from 0.075 to 0.15 %. PS exposure increased with both STS and POL and exhibited a dose-dependent trend. Active Caspase 3, 8 and 9 but not Bax were increased in HUVECs stimulated with low concentrations of both STS and POL. Inhibitory assays demonstrated Caspase 3, 8, 9 inhibition at low concentrations (0.075 to 0.6 %) with both STS and POL. Both agents increased the activation of porimin at all concentrations. Both sclerosants induced endothelial cell (EC) apoptosis at sub-lytic concentrations through a caspase-dependant pathway. Both agents induced EC oncosis.
Khanmohammadi, Mehdi; Sakai, Shinji; Taya, Masahito
2017-04-01
The hydrogels having the ability to promote migration and morphogenesis of endothelial cells (ECs) are useful for fabricating vascularized dense tissues in vitro. The present study explores the immobilization of low molecular weight hyaluronic acid (LMWHA) derivative within gelatin-based hydrogel to stimulate migration of ECs. The LMWHA derivative possessing phenolic hydroxyl moieties (LMWHA-Ph) was bound to gelatin-based derivative hydrogel through the horseradish peroxidase-catalyzed reaction. The motility of ECs was analyzed by scratch migration assay and microparticle-based cell migration assay. The incorporated LMWHA-Ph molecules within hydrogel was found to be preserved stably through covalent bonds during incubation. The free and immobilized LMWHA-Ph did not lose an inherent stimulatory effect on human umbilical vein endothelial cells (HUVECs). The immobilized LMWHA-Ph within gelatin-based hydrogel induced the high motility of HUVECs, accompanied by robust cytoskeleton extension, and cell subpopulation expressing CD44 cell receptor. In the presence of immobilized LMWHA-Ph, the migration distance and the number of existing HUVECs were demonstrated to be encouraged in dose-dependent and time-dependent manners. Based on the results obtained in this work, it was concluded that the enzymatic immobilization of LMWHA-Ph within gelatin-based hydrogel represents a promising approach to promote ECs' motility and further exploitation for vascular tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Hana; Lee, Seung Eun; Kim, Gun-Dong; Park, Hye Rim; Park, Yong Seek
2013-01-01
Spermidine (SPD) is a ubiquitous polycation that is commonly distributed in living organisms. Intracellular levels of SPD are tightly regulated, and SPD controls cell proliferation and death. However, SPD undergoes oxidation in the presence of serum, producing aldehydes, hydrogen peroxide, and ammonia, which exert cytotoxic effect on cells. Hemeoxygenase-1 (HO-1) is thought to have a protective effect against oxidative stress. Upregulation of HO-1 in endothelial cells is considered to be beneficial in the cardiovascular disease. In the present study, we demonstrate that the ubiquitous polyamine, SPD, induces HO-1 in human umbilical vein endothelial cells (HUVECs). SPD-induced HO-1 expression was examined by Western blot and reverse transcription-polymerase chain reaction (RT-PCR). Involvement of reactive oxygen species, serum amine oxidase, PI3K/Akt signaling pathway, and transcription factor Nrf2 in the induction of HO-1 by SPD was also investigated. Furthermore, small interfering RNA knockdown of Nrf2 or HO-1 and treatment with the specific HO-1 inhibitor ZnPP exhibited a noteworthy increase of death of SPD-stimulated HUVECs. In conclusion, these results suggest that SPD induces PI3K/Akt-Nrf2-mediated HO-1 expression in human endothelial cells, which may have a role in cytoprotection of the cells against oxidative stress-induced death. PMID:23983896
Zhou, Ai-Yi; Bai, Yu-Jing; Zhao, Min; Yu, Wen-Zhen; Huang, Lv-Zhen; Li, Xiao-Xin
2014-08-01
Clinical trials have revealed that the antivascular endothelial growth factor (VEGF) therapies are effective in retinopathy of prematurity (ROP). But the low level of VEGF was necessary as a survival signal in healthy conditions, and endogenous placental growth factor (PIGF) is redundant for development. The purpose of this study was to elucidate the PIGF expression under hypoxia as well as the influence of anti-VEGF therapy on PIGF. CoCl2-induced hypoxic human umbilical vein endothelial cells (HUVECs) were used for an in vitro study, and oxygen-induced retinopathy (OIR) mice models were used for an in vivo study. The expression patterns of PIGF under hypoxic conditions and the influence of anti-VEGF therapy on PIGF were evaluated by quantitative reverse transcription-polymerase chain reaction (RTPCR). The retinal avascular areas and neovascularization (NV) areas of anti-VEGF, anti-PIGF and combination treatments were calculated. Retina PIGF concentration was evaluated by ELISA after treatment. The vasoactive effects of exogenous PIGF on HUVECs were investigated by proliferation and migration studies. PIGF mRNA expression was reduced by hypoxia in OIR mice, in HUVECs under hypoxia and anti-VEGF treatment. However, PIGF expression was reversed by anti-VEGF therapy in the OIR model and in HUVECs under hypoxia. Exogenous PIGF significantly inhibited HUVECs proliferation and migration under normal conditions, but it stimulated cell proliferation and migration under hypoxia. Anti-PIGF treatment was effective for neovascular tufts in OIR mice (P<0.05). The finding that PIGF expression is iatrogenically up-regulated by anti-VEGF therapy provides a consideration to combine it with anti-PIGF therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Hiroyasu; Kuroda, Nana; Uekita, Hiromi
Background: Adiponectin (APN) is an adipocyte-derived bioactive molecule with anti-diabetic and anti-atherogenic properties. Although anti-diabetic effects are mostly mediated by the adiponectin receptors AdipoR1 and AdipoR2, the anti-atherogenic mechanisms have not been fully elucidated. Methods and Results: In this study, we identified E-selectin ligand (ESL)-1 as a novel APN-binding protein by mass spectrometry analysis of HepG2 cell-derived immunoprecipitant with an anti-APN antibody. Cell adhesion assays using fluorescence-labelled monocyte cell line THP-1 cells and human umbilical vein endothelial cells (HUVECs) revealed that APN-pre-treated THP-1 cells had reduced binding ability to HUVECs. This APN-mediated suppressive effect on monocyte binding to endothelial cells was partiallymore » abrogated by targeting ESL-1 with shRNA in THP-1 cells. In addition, serial mutagenesis analysis disclosed that five extracellular amino acids close to the N-terminus of ESL-1 were essential for binding with APN. Conclusion: Our results highlight the fact that interaction between APN and ESL-1 could provide a fundamental mechanism underlying the anti-atherogenic properties of APN. - Highlights: • E-selectin ligand (ESL)-1 was identified as an adiponectin (APN)-binding protein. • ESL-1 bound to APN at its N-terminal 6th-10th amino acids. • shESL-1 reduced the suppressive effect of APN on adhesion of THP-1 cells to HUVECs. • Interaction with ESL may be involved in the anti-atherogenic effects of APN.« less
NASA Astrophysics Data System (ADS)
Sukmana, I.; Djuansjah, J. R. P.
2013-04-01
We present here a three-dimensional (3D) sandwich system made by poly(ethylene terephthalate) (PET) fibre and fibrin extracellular matrix (ECM) for endothelial cell dictation and angiogenesis guidance. In this three-dimensional system, Human Umbilical Vein Endothelial cells (HUVECs) were firstly cultured for 2 (two) days to cover the PET fibre before sandwiched in two layer fibrin gel containing HUVECs. After 4 (four) days of culture, cel-to-cel connection, tube-like structure and multi-cellular lumen formation were then assessed and validated. Phase contrast and fluorescence imaging using an inverted microscope were used to determine cell-to-cell and cell-ECM interactions. Laser scanning confocal microscopy and histological techniques were used to confirm the development of tube-like structure and multi-cellular lumen formation. This study shows that polymer fibres sandwiched in fibrin gel can be used to dictate endothelial cells undergoing angiogenesis with potential application in cancer and cardiovascular study and tissue engineering vascularisation.
Yao, Wenjuan; Gu, Chengjing; Shao, Haoran; Meng, Guoliang; Wang, Huiming; Jing, Xiang; Zhang, Wei
2015-01-01
Endothelial dysfunction plays an important role in the pathogenesis of atherogenesis. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum (PM), exhibits significant anti-atherosclerotic activity. Here, we used human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-α (TNF-α) in vitro to investigate the cytoprotective effects of TSG on TNF-α-induced endothelial injury and the related mechanisms. Pretreatment with 50 and 100 μM TSG markedly attenuated TNF-α-induced loss of cell viability and release of lactate dehydrogenase (LDH) and inhibited TNF-α-induced cell apoptosis. The inhibition of vimentin expression was involved in the cytoprotection afforded by TSG. Using inhibitors for PI3K and TGFβ or siRNA for Akt and Smad2, we found that vimentin production in HUVECs is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG protects HUVECs against TNF-α-induced cell damage by inhibiting vimentin expression via the interruption of the TGFβ/Smad signaling pathway.
Sun, Xinjuan; Chen, Jin'an; Zhang, Jie; Wang, Wei; Sun, Jinshan; Wang, Aiping
2016-03-01
To determine the role of maggot debridement therapy (MDT) on diabetic foot wound healing, we compared growth related factors in wounds before and after treatment. Furthermore, we utilized human umbilical vein endothelial cells (HUVECs) to explore responses to maggot excretions/secretions on markers of angiogenesis and proliferation. The results showed that there was neo-granulation and angiogenesis in diabetic foot wounds after MDT. Moreover, significant elevation in CD34 and CD68 levels was also observed in treated wounds. In vitro, ES increased HUVEC proliferation, improved tube formation, and increased expression of vascular endothelial growth factor receptor 2 in a dose dependent manner. These results demonstrate that MDT and maggot ES can promote diabetic foot wound healing by up-regulating endothelial cell activity. Copyright © 2016. Published by Elsevier Inc.
Bhat, Tariq A; Moon, Jung S; Lee, Sookyeon; Yim, Dongsool; Singh, Rana P
2011-11-01
The present study was undertaken to observe the inhibition of angiogenesis by decursin. It was the first time to show that decursin offered strong anti-angiogenic activities under the biologically relevant growth (with serum) conditions. Decursin significantly inhibited human umbilical vein endothelial cell (HUVEC) proliferation concomitant with G1 phase cell cycle arrest. Decursin also inhibited HUVEC-capillary tube formation and invasion/migration in a dose-dependant manner which was associated with the suppression of matrix metalloproteinase (MMP) -2 and -9 activities. Decursin suppressed angiogenesis in ex vivo rat aortic ring angiogenesis model where it significantly inhibited blood capillary-network sprouting from rat aortic sections. Taken together, these findings suggested anti-angiogenic activity of decursin in biologically relevant condition, and warrants further pre-clinical studies for its potential clinical usefulness.
Li, Meng-yuan; Lv, Yong-cong; Tong, Lin-jiang; Peng, Ting; Qu, Rong; Zhang, Tao; Sun, Yi-ming; Chen, Yi; Wei, Li-xin; Geng, Mei-yu; Duan, Wen-hu; Xie, Hua; Ding, Jian
2016-01-01
Aim: Targeting the VEGF/VEGF receptor (VEGFR) pathway has proved to be an effective antiangiogenic approach for cancer treatment. Here, we identified 6-((2-((3-acetamidophenyl)amino)pyrimidin-4-yl)oxy)-N-phenyl-1-naphthamide (designated herein as DW10075) as a novel and highly selective inhibitor of VEGFRs. Methods: In vitro tyrosine kinase activity was measured using ELISA, and intracellular signaling pathway proteins were detected by Western blot analysis. Endothelial cell proliferation was examined with CCK-8 assays, and tumor cell proliferation was determined with SRB assays. Cell migration, tube formation and rat aortic ring assays were used to detect antiangiogenic activity. Antitumor efficacy was further evaluated in U87-MG human glioblastoma xenograft tumors in nude mice receiving DW10075 (500 mg·kg−1·d−1, po) for two weeks. Results: Among a panel of 21 kinases tested, DW10075 selectively inhibited VEGFR-1, VEGFR-2 and VEGFR-3 (the IC50 values were 6.4, 0.69 and 5.5 nmol/L, respectively), but did not affect 18 other kinases including FGFR and PDGFR at 10 μmol/L. DW10075 significantly blocked VEGF-induced activation of VEGFR and its downstream signaling transduction in primary human umbilical vein endothelial cells (HUVECs), thus inhibited VEGF-induced HUVEC proliferation. DW10075 (1–100 nmol/L) dose-dependently inhibited VEGF-induced HUVEC migration and tube formation and suppressed angiogenesis in both the rat aortic ring model and the chicken chorioallantoic membrane model. Furthermore, DW10075 exhibited anti-proliferative activity against 22 different human cancer cell lines with IC50 values ranging from 2.2 μmol/L (for U87-MG human glioblastoma cells) to 22.2 μmol/L (for A375 melanoma cells). In U87-MG xenograft tumors in nude mice, oral administration of DW10075 significantly suppressed tumor growth, and reduced the expression of CD31 and Ki67 in the tumor tissues. Conclusion: DW10075 is a potent and highly selective inhibitor of VEGFR that deserves further development. PMID:26806300
Electrophoretic coating of amphiphilic chitosan colloids on regulating cellular behaviour
Wang, Yen-Jen; Lo, Teng-Yuan; Wu, Chieh-Hsi; Liu, Dean-Mo
2013-01-01
In this communication, we report a facile nanotopographical control over a stainless steel surface via an electrophoretic deposition of colloidal amphiphilic chitosan for preferential growth, proliferation or migration of vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs). Atomic force microscopy revealed that the colloidal surface exhibited a deposition time-dependent nanotopographical evolution, wherein two different nanotopographic textures indexed by ‘kurtosis’ (Rkur) value were easily designed, which were termed as ‘sharp’ (i.e. high peak-to-valley texture) surface and ‘flat’ (i.e. low peak-to-valley texture) surface. Cellular behaviour of VSMCs and HUVECs on both surfaces demonstrated topographically dependent morphogenesis, adherent responses and biochemical properties in comparison with bare stainless steel. The formation of a biofunctionalized surface upon a facile colloidal chitosan deposition envisions the potential application towards numerous biomedical devices, and this is especially promising for cardiovascular stents wherein a new surface with optimized texture can be designed and is expected to create an advantageous environment to stimulate HUVEC growth for improved healing performance. PMID:23804439
Li, Chao; Jiang, Feng; Li, Yun-Lun; Jiang, Yue-Hua; Yang, Wen-Qing; Sheng, Jie; Xu, Wen-Juan; Zhu, Qing-Jun
2018-03-01
Autophagy plays an important role in alleviating oxidative stress and stabilizing atherosclerotic plaques. However, the potential role of autophagy in endothelial vasodilation function has rarely been studied. This study aimed to investigate whether rhynchophylla total alkaloid (RTA) has a positive role in enhancing autophagy through decreasing oxidative stress, and improving endothelial vasodilation. In oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs), RTA (200 mg/L) significantly suppressed ox-LDL-induced oxidative stress through rescuing autophagy, and decreased cell apoptosis. In spontaneous hypertensive rats (SHR), administration of RTA (50 mg·kg -1 ·d -1 , ip, for 6 weeks) improved endothelin-dependent vasodilation of thoracic aorta rings. Furthermore, RTA administration significantly increased the antioxidant capacity and alleviated oxidative stress through enhancing autophagy in SHR. In ox-LDL-treated HUVECs, we found that the promotion of autophagy by RTA resulted in activation of the AMP-activated protein kinase (AMPK) signaling pathway. Our results show that RTA treatment rescues the ox-LDL-induced autophagy impairment in HUVECs and improves endothelium-dependent vasodilation function in SHR.
NASA Astrophysics Data System (ADS)
Xiong, Gordon M.; Foord, John S.; Griffiths, Jon-Paul; Parker, Emily M.; Moloney, Mark G.; Choong, Cleo
2014-08-01
This work reports the effects of introducing diverse chemical functionalities onto the surface of polystyrene microcarrier beads on their ability to function as injectable cell carriers. Cellular adhesion and proliferation, as well as cellular outgrowths from microcarrier surfaces, using human umbilical vein endothelial cells (HUVECs), were examined in detail. It was observed that initial cell adhesion appeared to be most significantly decreased by hydrophobicity, whilst cell proliferation appeared to be improved in most chemical functional groups over unmodified polystyrene. Overall, our study highlights the importance of surface chemistry in directing the growth and function of human endothelial cells.
NASA Astrophysics Data System (ADS)
Fadlallah, Hicham
Developing vascular prostheses of small diameter to replace vessels closed by atherosclerosis remains a challenge because of the risk of thrombosis. Seeding of endothelial cells, which have antithrombogenic properties, is a promising solution, but we must create surfaces which promote their adhesion and retention to resist shear stresses created by the blood flow on the surface. This master's project aimed at investigating the effect of a plasma polymerized coating rich in primary amines (called LP), with or without elements of the extracellular matrix (Fibronectin (FN) or chondroitin sulphate (CS)) on the endothelial cells and hemocompatibility of polyethylene terephthalate (PET). The adhesion, growth and retention of human umbilical vein endothelial cells (HUVECs) on PET and LP, in the presence and absence of FN or CS, have been studied. In addition, platelet adhesion on different surfaces was evaluated by a perfusion test with whole blood, platelets being previously labeled with rhodamine. Finally a double fluorescent labeling (using Cellview Maroon to mark the HUVECs and CD61 antibody for platelets) was developed to study the retention of endothelial cells, under blood flow and verify their non thrombogenic character. The results obtained show that both the LP coating and the adsorbed FN, strongly increase both the cellular adhesion and growth on PET; however they have no additional effect when the two are combined. They also augment cellular retention to surface, but this remains incomplete. Moreover we observed that the plasma coating (LP) greatly increases the thrombogenicity of the surface, with strong platelet adhesion and activation. This thrombogenicity is extremely reduced when endothelial cells cover the surface, but cell loss under the effect of shear produced by the perfusion creates significant areas of platelet adhesion. The grafting of CS on LP also permits good HUVECs adhesion, growth and retention under shear stress on HUVEC, with no difference from the LP alone. In addition, the CS sharply decreases the platelet adhesion, which is found below the value observed for PET. The double cell labeling also showed that cells adhered on LP+CS has an anti-thrombotic phenotype and can resist blood flow. These studies suggest that a coating of CS is a promising strategy for vascular prosthesis given the combination of the good adhesion of endothelial cells and the low thrombogenicity of the underlying surface. Keywords: vascular prostheses, polymers, bioactive coating, thrombogenicity, HUVECs.
Ohtsuki, Sumio; Ikeda, Chiemi; Uchida, Yasuo; Sakamoto, Yumi; Miller, Florence; Glacial, Fabienne; Decleves, Xavier; Scherrmann, Jean-Michel; Couraud, Pierre-Olivier; Kubo, Yoshiyuki; Tachikawa, Masanori; Terasaki, Tetsuya
2013-01-07
Human cerebral microvascular endothelial cell line hCMEC/D3 is an established model of the human blood-brain barrier (BBB). The purpose of the present study was to determine, by means of quantitative targeted absolute proteomics, the protein expression levels in hCMEC/D3 cells of multiple transporters, receptors and junction proteins for comparison with our previously reported findings in isolated human brain microvessels. Among 91 target molecules, 12 transporters, 2 receptors, 1 junction protein and 1 membrane marker were present at quantifiable levels in plasma membrane fraction of hCMEC/D3 cells. ABCA2, MDR1, MRP4, BCRP, GLUT1, 4F2hc, MCT1, ENT1, transferrin and insulin receptors and claudin-5 were detected in both hCMEC/D3 cells and human brain microvessels. After normalization based on Na(+)/K(+) ATPase expression, the differences in protein expression levels between hCMEC/D3 cells and human brain microvessels were within 4-fold for these proteins, with the exceptions of ENT1, transferrin receptor and claudin-5. ABCA8, LAT1, LRP1 and γ-GTP were below the limit of quantification in the cells, but were found in human brain microvessels. ABCA3, ABCA6, MRP1 and ATA1 were found only in hCMEC/D3 cells. Furthermore, compared with human umbilical vein endothelial cells (HUVECs) as reference nonbrain endothelial cells, MDR1 was found only in hCMEC/D3 cells, and GLUT1 expression was 15-fold higher in hCMEC/D3 cells than in HUVECs. In conclusion, this is the first study to examine the suitability and limitations of the hCMEC/D3 cell line as a BBB functional model in terms of quantitative expression levels of transporters, receptors and tight junction proteins.
González, Alicia; Martínez-Campa, Carlos; Alonso-González, Carolina; Cos, Samuel
2015-12-01
Melatonin is known to reduce the growth of endocrine-responsive breast cancers by interacting with estrogen signaling pathways. Estrogens play an important role in breast cancer, but also in various types of tissues, including vascular tissue. Estrogen sulfatase (STS) converts inactive estrogen sulfates into active estrogens, whereas estrogen sulfotransferase (EST) sulfonates estrogens to estrogen sulfates. Therefore, STS and EST are considered to be involved in the regulation of local estrogen levels in hormone‑dependent tumors and in non-pathologic tissues, such as those of the vascular system. Estrogens have a major impact on the vasculature, influencing vascular function, the expression of adhesion proteins, angiogenesis and the inflammatory state. In this study, we investigated the status of STS and EST in human umbilical vein endothelial cells (HUVECs) and the modulatory effects of melatonin. Both STS and EST were highly expressed in the HUVECs. The enzymatic activity correlated with the expression levels in these cells. Our findings also demonstrated that melatonin, at physiological concentrations, modulated the synthesis and transformation of biologically active estrogens in HUVECs through the inhibition of STS activity and expression, and the stimulation of EST activity and expression. Since melatonin decreased the STS levels and increased the EST levels, it modified the dynamic steady‑state equilibrium of estrogen sulfates by increasing the inactive estrogen levels and decreasing the active estrogen levels. Therefore, melatonin may modulate the known different biological actions of estrogens in endothelial cells, as well as in estrogen-dependent tumors and non-pathologic tissues.
Chen, Zhibo; Wang, Mian; He, Qiong; Li, Zilun; Zhao, Yang; Wang, Wenjian; Ma, Jieyi; Li, Yongxin; Chang, Guangqi
2017-01-01
Oxidized low-density lipoprotein (ox-LDL) is a major and critical mediator of atherosclerosis, and the underlying mechanism is thought to involve the ox-LDL-induced dysfunction of endothelial cells (ECs). MicroRNAs (miRNAs), which are a group of small non-coding RNA molecules that post-transcriptionally regulate the expression of target genes, have been associated with diverse cellular functions and the pathogenesis of various diseases, including atherosclerosis. miRNA-98 (miR-98) has been demonstrated to be involved in the regulation of cellular apoptosis; however, the role of miR-98 in ox-LDL-induced dysfunction of ECs and atherosclerosis has yet to be elucidated. Therefore, the present study aimed to investigate the role of miR-98 in ox-LDL-induced dysfunction of ECs and the underlying mechanism. It was demonstrated that miR-98 expression was markedly downregulated in ox-LDL-treated human umbilical vein ECs (HUVECs) and that miR-98 promoted the proliferation and alleviated apoptosis of HUVECs exposed to ox-LDL. In addition, the results demonstrated that lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) was a direct target of miR-98 in HUVECs, as indicated by a luciferase assay. The results of the present study suggested that miR-98 may inhibit the uptake of toxic ox-LDL, maintain HUVEC proliferation and protect HUVECs against apoptosis via the suppression of LOX-1. PMID:28565756
Unoki, H; Fan, J; Watanabe, T
1999-01-01
We investigated the structural and functional properties of human umbilical vein endothelial cells (HUVECs) cultured on a two-chamber culture model system using an amnion membrane. Compared to HUVECs cultured on a plastic dish, HUVECs cultured on the model system exhibited several features similar to those of in vivo vessels, including formation of the intercellular junctional devices and expression of tight junction-associated protein ZO-1 and adherence junction-associated protein alpha-catenin. Furthermore, we found that HUVECs had a property of polar secretion of endothelin-1 (ET-1). About 90% of the total amount of synthesized ET-1 was found in the lower well, designated as the basal side. When HUVECs were incubated with either native low-density lipoproteins (nLDLs) or oxidized LDLs (oxLDLs) at a concentration of 100 microgram/ml, ET-1 secretion was significantly increased, dependent on the cell side (apical vs basal) on which the nLDLs or oxLDLs were loaded. When the LDLs were loaded on the apical side, the secretion of ET-1 from HUVECs on the apical side was increased by 48% (nLDL) and 61% (oxLDL), whereas it was accompanied by a concomitant decrease of ET-1 on the basal side (45% by nLDLs and 38% by oxLDLs). When loaded on the basal side, however, ET-1 was increased by 23% (nLDLs) and 53% (oxLDLs) on the basal side, with a 26% simultaneous decrease of ET-1 on the opposite side for both nLDLs and oxLDLs. On the contrary, high-density lipoproteins (HDLs) inhibited ET-1 secretion from HUVECs on the opposite side of the well on which HDLs were loaded; there was a 57% decrease on the basal side when HDLs were loaded on the apical side, and a 46% decrease on the apical side when loaded on the basal side. These results indicate that modulation of ET-1 secretion from ECs by lipoproteins is virtually dependent on the place (apical vs basal) where these proteins are present. The finding that nLDLs and oxLDLs enhance ET-1 secretion by ECs in a polarized pattern suggests that ET-1 may be involved in pathophysiological processes such as atherogenesis.
Two cyclic hexapeptides from Penicillium sp. FN070315 with antiangiogenic activities.
Jang, Jun-Pil; Jung, Hye Jin; Han, Jang Mi; Jung, Narae; Kim, Yonghyo; Kwon, Ho Jeong; Ko, Sung-Kyun; Soung, Nak-Kyun; Jang, Jae-Hyuk; Ahn, Jong Seog
2017-01-01
In the course of searching for angiogenesis inhibitors from microorganisms, two cyclic peptides, PF1171A (1) and PF1171C (2) were isolated from the soil fungus Penicillium sp. FN070315. In the present study, we investigated the antiangiogenic efficacy and associated mechanisms of 1 and 2 in vitro using human umbilical vein endothelial cells (HUVECs). Compounds 1 and 2 inhibited the proliferation of HUVECs at concentrations not exhibiting cytotoxicity. Moreover, 1 and 2 significantly suppressed vascular endothelial growth factor (VEGF)-induced migration, invasion, proliferation and tube formation of HUVECs as well as neovascularization of the chorioallantoic membrane in developing chick embryos. We also identified an association between the antiangiogenic activity of 1 and 2 and the downregulation of both the phosphorylation of VEGF receptor 2 and the expression of hypoxia inducible factor-1α at the protein level. Taken together, these results further suggest that compounds 1 and 2 will be promising angiogenesis inhibitors.
Foglieni, C; Scabini, S; Belloni, D; Broccolo, F; Lusso, P; Malnati, M S; Ferrero, E
2005-01-01
Kaposi's Sarcoma (KS) is an angioproliferative disease associated with human herpesvirus 8 (HHV-8) infection. We have characterized the morphologic and phenotypic modifications of HUVEC in a model of productive HHV-8 infection. HHV-8 replication was associated with ultra-structural changes, flattened soma and a loss of marginal folds and intercellular contacts, and morphologic features, spindle cell conversion and cordon-like structures formation. Phenotypic changes observed on cordon-like structures included partial loss and redistribution of CD31/PECAM-1 and VE-cadherin, uPAR up-regulation and de novo expression of CD13/APN. Such changes demonstrate the induction, in HUVEC, of an angiogenic profile. Most of these findings are directly linked to HHV-8-encoded proteins expression, suggesting that HHV-8 itself may participate to the initial steps of the angiogenic transformation in KS.
[In vitro anti-angiogenic action of lambda-carrageenan oligosaccharides].
Chen, Hai-Min; Yan, Xiao-Jun; Wang, Feng; Lin, Jing; Xu, Wei-Feng
2007-06-01
This study was designed to evaluate the inhibition effect of lambda-carrageenan oligosaccharides on neovascularization in vitro by chick chorioallantoic membrane (CAM) model and human umbilical vein endothelial cell ( HUVEC). lambda-Carrageenan oligosaccharides caused a dose-dependent decrease of the vascular density of CAM, and adversely affected capillary plexus formation. At a high concentration of 1 mg x mL(-1), this compound inhibited the endothelial cell proliferation, while low concentration of lambda-carrageenan oligosaccharides (< 250 microg x mL(-1)) affected the cell survival slightly (> 95%). Different cytotoxic sensitivity of lambda-carrageenan oligosaccharides in three kinds of cells was observed, of which HUVEC is the most sensitive to this oligosaccharides. The inhibitory action of lambda-carrageenan oligosaccharides on the endothelial cell invasion and migration was also observed at relatively low concentration (150 - 300 microg x mL(-1)) through down-regulation of intracellular matrix metalloproteinases-2 (MMP-2) expression on endothelial cells. Current observations demonstrated that lambda-carrageenan oligosaccharides are potential angiogenesis inhibitor with combined effects of inhibiting invasion, migration and proliferation.
Jung, Hye-Jin; Im, Seung-Soon; Song, Dae-Kyu; Bae, Jae-Hoon
2017-06-01
Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ([Ca 2+ ] i ) by releasing Ca 2+ from intracellular stores and via Ca 2+ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced Ca 2+ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated Ca 2+ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis. [BMB Reports 2017; 50(6): 323-328].
Jung, Hye-Jin; Im, Seung-Soon; Song, Dae-Kyu; Bae, Jae-Hoon
2017-01-01
Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ([Ca2+]i) by releasing Ca2+ from intracellular stores and via Ca2+ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced Ca2+ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated Ca2+ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis. PMID:28088946
Wang, Xinyu; Bynum, James A; Stavchansky, Solomon; Bowman, Phillip D
2014-07-05
Cellular damage from oxidative stress, in particular following ischemic injury, occurs during heart attack, stroke, or traumatic injury, and is potentially reducible with appropriate drug treatment. We previously reported that caffeic acid phenethyl ester (CAPE), a plant-derived polyphenolic compound, protected human umbilical vein endothelial cells (HUVEC) from menadione-induced oxidative stress and that this cytoprotective effect was correlated with the capacity to induce heme oxygenase-1 (HMOX1) and its protein product, a phase II cytoprotective enzyme. To further improve this cytoprotective effect, we studied a synthetic triterpenoid, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), which is known as a potent phase II enzyme inducer with antitumor and anti-inflammatory activities, and compared it to CAPE. CDDO-Im at 200nM provided more protection to HUVEC against oxidative stress than 20μM CAPE. We explored the mechanism of CDDO-Im cytoprotection with gene expression profiling and pathway analysis and compared to that of CAPE. In addition to potent up-regulation of HMOX1, heat shock proteins (HSP) were also found to be highly induced by CDDO-Im in HUVEC. Pathway analysis results showed that transcription factor Nrf2-mediated oxidative stress response was among the top canonical pathways commonly activated by both CDDO-Im and CAPE. Compared to CAPE, CDDO-Im up-regulated more HSP and some of them to a much higher extent. In addition, CDDO-Im treatment affected Nrf2 pathway more significantly. These findings may provide an explanation why CDDO-Im is a more potent cytoprotectant than CAPE against oxidative stress in HUVEC. Copyright © 2014 Elsevier B.V. All rights reserved.
Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Beom Su; Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830; Park, Ji-Yun
2014-08-08
Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biologicalmore » process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and AKT. MMP-2 activation was also significantly increased. Specific inhibitors of p38 (SB203580) and JNK (SP600125) inhibited tube formation and wound healing, while an ERK inhibitor (PD98059) did not. MMP-2 activation and AKT phosphorylation were also attenuated and associated with the suppression of p38 and JNK phosphorylation, but not with that of ERK. These results indicate that fucoidan, in the presence of FGF-2, induces angiogenesis through AKT/MMP-2 signalling by activating p38 and JNK. These findings provide basic molecular information on the effect of fucoidan on angiogenesis in the presence of FGF-2.« less
Canosa, S; Moggio, A; Brossa, A; Pittatore, G; Marchino, G L; Leoncini, S; Benedetto, C; Revelli, A; Bussolati, B
2017-03-01
Can endometrial mesenchymal stromal cells (E-MSCs) differentiate into endothelial cells in an in vitro co-culture system with human umbilical vein endothelial cells (HUVECs)? E-MSCs can acquire endothelial markers and function in a direct co-culture system with HUVECs. E-MSCs have been identified in the human endometrium as well as in endometriotic lesions. E-MSCs appear to be involved in formation of the endometrial stromal vascular tissue and the support of tissue growth and vascularization. The use of anti-angiogenic drugs appears as a possible therapeutic strategy against endometriosis. This is an in vitro study comprising patients receiving surgical treatment of ovarian endometriosis (n = 9). E-MSCs were isolated from eutopic and ectopic endometrial tissue and were characterized for the expression of mesenchymal and endothelial markers by FACS analysis and Real-Time PCR. CD31 acquisition was evaluated by FACS analysis and immunofluorescence after a 48 h-direct co-culture with green fluorescent protein +-HUVECs. A tube-forming assay was set up in order to analyze the functional potential of their interaction. Finally, co-cultures were treated with the anti-angiogenic agent Cabergoline. A subpopulation of E-MSCs acquired CD31 expression and integrated into tube-like structures when directly in contact with HUVECs, as observed by both FACS analysis and immunofluorescence. The isolation of CD31+ E-MSCs revealed significant increases in CD31, vascular endothelial growth factor receptor 2, TEK receptor tyrosine kinase and vascular endothelial-Cadherin mRNA expression levels with respect to basal and to CD31neg cells (P < 0.05). On the other hand, the expression of mesenchymal genes such as c-Myc, Vimentin, neuronal-Cadherin and sushi domain containing 2 remained unchanged. Cabergoline treatment induced a significant reduction of the E-MSC angiogenic potential (P < 0.05 versus control). Not applicable. Further studies are necessary to investigate the cellular and molecular mechanisms underlying the endothelial cell differentiation. E-MSCs may undergo endothelial differentiation, and be potentially involved in the development of endometriotic implants. Cell culture systems that more closely mimic the cellular complexity typical of endometriotic tissues in vivo are required to develop novel strategies for treatment. This study was supported by the 'Research Fund ex-60%', University of Turin, Turin, Italy. All authors declare that their participation in the study did not involve actual or potential conflicts of interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Reconfigurable microfluidic device with discretized sidewall
Oono, Masahiro; Yamaguchi, Keisuke; Rasyid, Amirul; Takano, Atsushi; Tanaka, Masato
2017-01-01
Various microfluidic features, such as traps, have been used to manipulate flows, cells, and other particles within microfluidic systems. However, these features often become undesirable in subsequent steps requiring different fluidic configurations. To meet the changing needs of various microfluidic configurations, we developed a reconfigurable microfluidic channel with movable sidewalls using mechanically discretized sidewalls of laterally aligned rectangular pins. The user can deform the channel sidewall at any time after fabrication by sliding the pins. We confirmed that the flow resistance of the straight microchannel could be reversibly adjusted in the range of 101–105 Pa s/μl by manually displacing one of the pins comprising the microchannel sidewall. The reconfigurable microchannel also made it possible to manipulate flows and cells by creating a segmented patterned culture of COS-7 cells and a coculture of human umbilical vein endothelial cells (HUVECs) and human lung fibroblasts (hLFs) inside the microchannel. The reconfigurable microfluidic device successfully maintained a culture of COS-7 cells in a log phase throughout the entire period of 216 h. Furthermore, we performed a migration assay of cocultured HUVEC and hLF spheroids within one microchannel and observed their migration toward each other. PMID:28503247
NASA Astrophysics Data System (ADS)
Orlando, Antonina; Colombo, Miriam; Prosperi, Davide; Gregori, Maria; Panariti, Alice; Rivolta, Ilaria; Masserini, Massimo; Cazzaniga, Emanuela
2015-09-01
Engineered iron oxide nanoparticles (IONP) offer the possibility of a wide range of medical uses, from clinical imaging to magnetically based hyperthermia for tumor treatment. These applications require their systemic administration in vivo. An important property of nanoparticles is their stability in biological media. For this purpose, a multicomponent nanoconstruct combining high colloidal stability and improved physical properties was synthesized and characterized. IONP were coated with an amphiphilic polymer (PMA), which confers colloidal stability, and were pegylated in order to obtain the nanoconstruct PEG-IONP-PMA. The aim of this study was to utilize cultured human endothelial cells (HUVEC) and murine macrophages, taken as model of cells exposed to NP after systemic administration, to assess the biocompatibility of PEG-IONP-PMA (23.1 ± 1.4 nm) or IONP-PMA (15.6 ± 3.4 nm). PEG-IONP-PMA, tested at different concentrations as high as 20 μg mL-1, exhibited no cytotoxicity or inflammatory responses. By contrast, IONP-PMA showed a concentration-dependent increase of cytotoxicity and of TNF-α production by macrophages and NO production by HUVECs. Cell uptake analysis suggested that after PEGylation, IONP were less internalized either by macrophages or by HUVEC. These results suggest that the choice of the polymer and the chemistry of surface functionalization are a crucial feature to confer to IONP biocompatibility.
Hayashi, Toshio; Matsui-Hirai, Hisako; Miyazaki-Akita, Asaka; Fukatsu, Akiko; Funami, Jun; Ding, Qun-Fang; Kamalanathan, Sumitra; Hattori, Yuichi; Ignarro, Louis J.; Iguchi, Akihisa
2006-01-01
Senescence may contribute to the pathogenesis of atherosclerosis. Although the bioavailability of nitric oxide (NO) is limited in senescence, the effect of NO on senescence and its relationship to cardiovascular risk factors have not been investigated fully. We studied these factors by investigating senescence-associated β-galactosidase (SA-β-gal) and human telomerase activity in human umbilical venous endothelial cells (HUVECs). Treatment with NO donor (Z)-1-[2-(2-aminoethyl)-N-(2-aminoethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) and transfection with endothelial NO synthase (eNOS) into HUVECs each decreased the number of SA-β-gal positive cells and increased telomerase activity. The NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME) abolished the effect of eNOS transfection. The physiological concentration of 17β-estradiol activated hTERT, decreased SA-β-gal-positive cells, and caused cell proliferation. However, ICI 182780, an estrogen receptor-specific antagonist, and l-NAME each inhibited these effects. Finally, we investigated the effect of NO bioavailability on high glucose-promoted cellular senescence of HUVECs. Inhibition by eNOS transfection of this cellular senescence under high glucose conditions was less pronounced. Treatment with l-arginine or l-citrulline of eNOS-transfected cells partially inhibited, and combination of l-arginine and l-citrulline with antioxidants strongly prevented, high glucose-induced cellular senescence. These data demonstrate that NO can prevent endothelial senescence, thereby contributing to the anti-senile action of estrogen. The ingestion of NO-boosting substances, including l-arginine, l-citrulline, and antioxidants, can delay endothelial senescence under high glucose. We suggest that the delay in endothelial senescence through NO and/or eNOS activation may have clinical utility in the treatment of atherosclerosis in the elderly. PMID:17075048
Tseng, Shih-Ya; Chao, Ting-Hsing; Li, Yi-Heng; Liu, Ping-Yen; Lee, Cheng-Han; Cho, Chung-Lung; Wu, Hua-Lin; Chen, Jyh-Hong
2016-04-01
Cilostazol is an antiplatelet agent with vasodilatory effects that works by increasing intracellular concentrations of cyclic adenosine monophosphate (cAMP). This study investigated the effects of cilostazol in preventing high glucose (HG)-induced impaired angiogenesis and examined the potential mechanisms involving activation of AMP-activated protein kinase (AMPK). Assays for colony formation, adhesion, proliferation, migration, and vascular tube formation were used to determine the effect of cilostazol in HG-treated endothelial progenitor cells (EPCs) or human umbilical vein endothelial cells (HUVECs). Animal-based assays were performed in hyperglycemic ICR mice undergoing hind limb ischemia. An immnunoblotting assay was used to identify the expression and activation of signaling molecules in vitro and in vivo. Cilostazol treatment significantly restored endothelial function in EPCs and HUVECs through activation of AMPK/acetyl-coenzyme A carboxylase (ACC)-dependent pathways and cAMP/protein kinase A (PKA)-dependent pathways. Recovery of blood flow in the ischemic hind limb and the population of circulating CD34(+) cells were significantly improved in cilostazol-treated mice, and these effects were abolished by local AMPK knockdown. Cilostazol increased the phosphorylation of AMPK/ACC and Akt/endothelial nitric oxide synthase signaling molecules in parallel with or downstream of the cAMP/PKA-dependent signaling pathway in vitro and in vivo. Cilostazol prevents HG-induced endothelial dysfunction in EPCs and HUVECs and enhances angiogenesis in hyperglycemic mice by interactions with a broad signaling network, including activation of AMPK/ACC and probably cAMP/PKA pathways. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Deep, Gagan; Gangar, Subhash Chander; Rajamanickam, Subapriya; Raina, Komal; Gu, Mallikarjuna; Agarwal, Chapla; Oberlies, Nicholas H; Agarwal, Rajesh
2012-01-01
The role of neo-angiogenesis in prostate cancer (PCA) growth and metastasis is well established, but the development of effective and non-toxic pharmacological inhibitors of angiogenesis remains an unaccomplished goal. In this regard, targeting aberrant angiogenesis through non-toxic phytochemicals could be an attractive angiopreventive strategy against PCA. The rationale of the present study was to compare the anti-angiogenic potential of four pure diastereoisomeric flavonolignans, namely silybin A, silybin B, isosilybin A and isosilybin B, which we established previously as biologically active constituents in Milk Thistle extract. Results showed that oral feeding of these flavonolignans (50 and 100 mg/kg body weight) effectively inhibit the growth of advanced human PCA DU145 xenografts. Immunohistochemical analyses revealed that these flavonolignans inhibit tumor angiogenesis biomarkers (CD31 and nestin) and signaling molecules regulating angiogenesis (VEGF, VEGFR1, VEGFR2, phospho-Akt and HIF-1α) without adversely affecting the vessel-count in normal tissues (liver, lung, and kidney) of tumor bearing mice. These flavonolignans also inhibited the microvessel sprouting from mouse dorsal aortas ex vivo, and the VEGF-induced cell proliferation, capillary-like tube formation and invasiveness of human umbilical vein endothelial cells (HUVEC) in vitro. Further studies in HUVEC showed that these diastereoisomers target cell cycle, apoptosis and VEGF-induced signaling cascade. Three dimensional growth assay as well as co-culture invasion and in vitro angiogenesis studies (with HUVEC and DU145 cells) suggested the differential effectiveness of the diastereoisomers toward PCA and endothelial cells. Overall, these studies elucidated the comparative anti-angiogenic efficacy of pure flavonolignans from Milk Thistle and suggest their usefulness in PCA angioprevention.
Guzmán-Gutiérrez, Enrique; Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Pardo, Fabián; Leiva, Andrea; Sobrevia, Luis
2012-01-01
Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1). This process involves the activation of A2A adenosine receptors (A2AAR) in human umbilical vein endothelial cells (HUVECs). Insulin increases hCAT-1 activity and expression in HUVECs, and A2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C) in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor) and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR), and SLC7A1 (for hCAT-1) reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1−1606 or pGL3-hCAT-1−650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1−1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes. PMID:22844517
NASA Astrophysics Data System (ADS)
Wu, Qinghua; Meng, Ning; Zhang, Yanru; Han, Lei; Su, Le; Zhao, Jing; Zhang, Shangli; Zhang, Yun; Zhao, Baoxiang; Miao, Junying
2014-09-01
Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles.
Leckel, K; Beecken, W-D; Jonas, D; Oppermann, E; Coman, M C; Beck, K-F; Cinatl, J; Hailer, N P; Auth, M K H; Bechstein, W O; Shipkova, M; Blaheta, R A
2003-11-01
Immunosuppression correlates with the development and recurrence of cancer. Mycophenolate mofetil (MMF) has been shown to reduce adhesion molecule expression and leucocyte recruitment into the donor organ. We have hypothesized that MMF might also prevent receptor-dependent tumour dissemination. Therefore, we have investigated the effects of MMF on tumour cell adhesion to human umbilical vein endothelial cells (HUVEC) and compared them with the effects on T cell-endothelial cell interactions. Influence of MMF on cellular adhesion to HUVEC was analysed using isolated CD4+ and CD8+ T cells, or WiDr colon adenocarcinoma cells as the model tumour. HUVEC receptors ICAM-1, VCAM-1, E-selectin and P-selectin were detected by flow cytometry, Western blot or Northern blot analysis. Binding activity of T cells or WiDr cells in the presence of MMF were measured using immobilized receptor globulin chimeras. MMF potently blocked both T cell and WiDr cell binding to endothelium by 80%. Surface expression of the endothelial cell receptors was reduced by MMF in a dose-dependent manner. E-selectin mRNA was concurrently reduced with a maximum effect at 1 microm. Interestingly, MMF acted differently on T cells and WiDr cells. Maximum efficacy of MMF was reached at 10 and 1 microm, respectively. Furthermore, MMF specifically suppressed T cell attachment to ICAM-1, VCAM-1 and P-selectin. In contrast, MMF prevented WiDr cell attachment to E-selectin. In conclusion, our data reveal distinct effects of MMF on both T cell adhesion and tumour cell adhesion to endothelial cells. This suggests that MMF not only interferes with the invasion of alloactivated T cells, but might also be of value in managing post-transplantation malignancy.
Dissanayaka, Waruna Lakmal; Hargreaves, Kenneth M.; Jin, Lijian; Samaranayake, Lakshman P.
2015-01-01
Securing an adequate blood supply for the survival of cell transplants is critical for a successful outcome in tissue engineering. Interactions between endothelial and progenitor/stem cells are important for vascularization of regenerating tissue. Recently, self-assembling peptide nanofibers were described as a promising environment for pulp regeneration due to their synthetic nature and controlled physicochemical properties. In this study, the peptide hydrogel PuraMatrix™ was used as a scaffold system to investigate the role of dental pulp stem cells (DPSCs) in triggering angiogenesis and the potential for regenerating vascularized pulp in vivo. Human umbilical vein endothelial cells (HUVECs), DPSCs, or cocultures of both cell types were encapsulated in three-dimensional PuraMatrix. The peptide nanofiber microenvironment supported cell survival, cell migration, and capillary network formation in the absence of exogenous growth factors. DPSCs increased early vascular network formation by facilitating the migration of HUVECs and by increasing vascular endothelial growth factor (VEGF) expression. Both the DPSC-monoculture and coculture groups exhibited vascularized pulp-like tissue with patches of osteodentin after transplantation in mice. The cocultured groups exhibited more extracellular matrix, vascularization, and mineralization than the DPSC-monocultures in vivo. The DPSCs play a critical role in initial angiogenesis, whereas coordinated efforts by the HUVECs and DPSCs are required to achieve a balance between extracellular matrix deposition and mineralization. The findings of this study also highlighted the importance of a microenvironment that supports cell–cell interactions and cell migration, which contribute to successful dental pulp regeneration. PMID:25203774
Li, Liming; Pan, Shuang; Zhou, Xiaohang; Meng, Xin; Han, Xiaoxi; Ren, Yibin; Yang, Ke; Guan, Yifu
2013-01-01
High nitrogen nickel-free austenitic stainless steel (HNNF SS) is one of the biomaterials developed recently for circumventing the in-stent restenosis (ISR) in coronary stent applications. To understand the ISR-resistance mechanism, we have conducted a comparative study of cellular and molecular responses of human umbilical vein endothelial cells (HUVECs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel) which is the stent material used currently. CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profile of HUVECs exposed to HNNF SS and 316L SS, respectively. Flow cytometry analysis revealed that 316L SS could activate the cellular apoptosis more efficiently and initiate an earlier entry into the S-phase of cell cycle than HNNF SS. At the molecular level, qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were overexpressed on 316L SS. Further examination indicated that nickel released from 316L SS triggered the cell apoptosis via Fas-Caspase8-Caspase3 exogenous pathway. These molecular mechanisms of HUVECs present a good model for elucidating the observed cellular responses. The findings in this study furnish valuable information for understanding the mechanism of ISR-resistance on the cellular and molecular basis as well as for developing new biomedical materials for stent applications. PMID:23638002
The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Jie; Zhu, Chao; Hong, Yali
2017-05-15
Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR)more » or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.« less
LECKEL, K; BEECKEN, W-D; JONAS, D; OPPERMANN, E; COMAN, M C; BECK, K-F; CINATL, J; HAILER, N P; AUTH, M K H; BECHSTEIN, W O; SHIPKOVA, M; BLAHETA, R A
2003-01-01
Immunosuppression correlates with the development and recurrence of cancer. Mycophenolate mofetil (MMF) has been shown to reduce adhesion molecule expression and leucocyte recruitment into the donor organ. We have hypothesized that MMF might also prevent receptor-dependent tumour dissemination. Therefore, we have investigated the effects of MMF on tumour cell adhesion to human umbilical vein endothelial cells (HUVEC) and compared them with the effects on T cell–endothelial cell interactions. Influence of MMF on cellular adhesion to HUVEC was analysed using isolated CD4+ and CD8+ T cells, or WiDr colon adenocarcinoma cells as the model tumour. HUVEC receptors ICAM-1, VCAM-1, E-selectin and P-selectin were detected by flow cytometry, Western blot or Northern blot analysis. Binding activity of T cells or WiDr cells in the presence of MMF were measured using immobilized receptor globulin chimeras. MMF potently blocked both T cell and WiDr cell binding to endothelium by 80%. Surface expression of the endothelial cell receptors was reduced by MMF in a dose-dependent manner. E-selectin mRNA was concurrently reduced with a maximum effect at 1 µm. Interestingly, MMF acted differently on T cells and WiDr cells. Maximum efficacy of MMF was reached at 10 and 1 µm, respectively. Furthermore, MMF specifically suppressed T cell attachment to ICAM-1, VCAM-1 and P-selectin. In contrast, MMF prevented WiDr cell attachment to E-selectin. In conclusion, our data reveal distinct effects of MMF on both T cell adhesion and tumour cell adhesion to endothelial cells. This suggests that MMF not only interferes with the invasion of alloactivated T cells, but might also be of value in managing post-transplantation malignancy. PMID:14616783
Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang
2015-04-29
The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the mechanical properties and bioactivities of the scaffolds, might have great potential in vascular tissue engineering application.
Beecken, Wolf-Dietrich C; Ringel, Eva Maria; Babica, Jan; Oppermann, Elsie; Jonas, Dietger; Blaheta, Roman A
2010-10-28
beta(2)-Glycoprotein-I (beta(2)gpI), an abundant plasma glycoprotein, functions as a regulator of thrombosis. Previously, we demonstrated that plasmin-clipped beta(2)gpI (cbeta(2)gpI) exerts an anti-angiogenic effect on human umbilical vein endothelial cells (HUVEC). The present study was focused on the molecular background responsible for this phenomenon. cbeta(2)gpI strongly reduced HUVEC growth and proliferation as evidenced by the MTT and BrdU assay and delayed cell cycle progression arresting HUVEC in the S-and G2/M-phase. Western blot analysis indicated that cbeta(2)gpI inhibited cyclin A, B and D1, and enhanced p21 and p27 expression. Activity of p38 was down-regulated independently from the cbeta(2)gpI incubation time. Phosphorylation of ERK1/2 was not changed early (30 and 60 min) but became enhanced later (90 min, 4h). JNK activity was reduced rapidly after cbeta(2)gpI treatment but compared to controls, increased thereafter. Annexin II blockade prevented growth inhibition and cell cycle delay evoked by cbeta(2)gpI. We assume that cbeta(2)gpI's effects on HUVEC growth is mediated via cyclin A, B and D1 suppression, up-regulation of p21 and p27 and coupled to modifications of the mitogen-activated protein (MAP) kinase signalling pathway. cbeta(2)gpI may represent a potential endogenous angiogenesis-targeted compound, opening the possibility of a novel tool to treat cancer. 2010 Elsevier Ireland Ltd. All rights reserved.
Liu, Dan; Wu, Mengqing; Lu, Yi; Xian, Tao; Wang, Yupeng; Huang, Bowei; Zeng, Guohua; Huang, Qiren
2017-09-01
6-Gingerol (6-Gin), an active constituent of Zingiber officinale, has been reported to have anti-inflammatory, anti-oxidative, anti-cancerous etc. bioactivities. However, little is known about its endothelial protective effects and the underlying mechanisms. In this study, our purpose was to investigate the protective effects of 6-Gin and its underlying mechanisms. HUVECs were exposed to high glucose (HG, 33mM glucose) for 48h, followed by 50μM 6-Gin with or without LY294002 (10μM), AKT inhibitor IV (0.5μM) or L-NAME (5mM) for another 24h. Cell viability, levels of NO, LDH and ROS were detected. In addition, the expression levels of IKK, IRS-1, PI3K, AKT, eNOS and their phosphorylated proteins were measured by western blots. Compared with the control, HUVECs were significantly impaired by HG, characterized by decreased levels of the cell viability, NO, pY458-PI3K, pS473-AKT and pS1177-eNOS while increased levels of LDH, pS176-IKK, and p-S312-IRS-1. Conversely, 6-Gin remarkably protected HUVECs against HG-induced injury in a concentration- and time-dependent manner. However, the protective effects of 6-Gin were abolished by co-treatment with LY294002, AKT inhibitor IV or L-NAME at the HG state. Collectively, 6-Gin attenuated the injury of HUVECs induced by HG through the activation of PI3K-AKT-eNOS signal pathway. The findings provide a novel potential for 6-Gin to prevent and treat the angiopathy resulting from diabetes mellitus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability
Cui, Yun-Liang; Zhang, Sheng; Tian, Zhao-Tao; Lin, Zhao-Fen; Chen, De-Chang
2016-01-01
Background: Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis. Dysfunction of the latter is an underlying cause of various organ pathologies. In a previous study, we showed that rhubarb, a traditional Chinese medicine, protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia. In this study, we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability. Methods: Rhubarb monomers were extracted and purified by a series of chromatography approaches. The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR), carbon-13 NMR, and distortionless enhancement by polarization transfer magnetic resonance spectroscopy. We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert. We measured the HUVEC permeability, proliferation, and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and enzyme-linked immunosorbent assay, respectively, in response to treatment with MMP9 and/or rhubarb monomers. Results: A total of 21 rhubarb monomers were extracted and identified. MMP9 significantly increased the permeability of the HUVEC monolayer, which was significantly reduced by five individual rhubarb monomer (emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein) or a combination of all five monomers (1 μmol/L for each monomer). Mechanistically, the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation. In addition, MMP9 stimulated the secretion of VE-cadherin into the culture medium, which was significantly inhibited by the five-monomer mixture. Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein, at a low concentration, antagonized the MMP9-induced HUVEC monolayer permeability by promoting HUVEC proliferation and reducing extracellular VE-cadherin concentrations. PMID:27411464
Noh, Hyung Jun; Yang, Hyo Hyun; Kim, Geum Soog; Lee, Seung Eun; Lee, Dae Young; Choi, Je Hun; Kim, Seung Yu; Lee, Eun Suk; Ji, Seung Heon; Kang, Ki Sung; Park, Hye-Jin; Kim, Jae-Ryong; Kim, Ki Hyun
2015-12-01
Hericium erinaceum is an edible and medicinal mushroom widely used in Korea, Japan, and China. On the search for biologically active compounds supporting the medicinal usage, the MeOH extract of the fruiting bodies of H. erinaceum was investigated for its chemical constituents. Six compounds were isolated and identified as hericenone D (1), (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-ol (2), erinacerin B (3), hericenone E (4), hericenone F (5) and isohericerin (6) by comparing their spectroscopic data with previously reported values. The inhibitory effects on adriamycin-induced cellular senescence in human dermal fibroblasts (HDFs) and human umbilical vein endothelial cells (HUVECs) of the isolates (1-6) were studied. Among the isolated compounds, ergosterol peroxide (2) reduced senescence associated β-galactosidase (SA-β-gal) activity increased in HUVECs treated with adriamycin. According to experimental data obtained, the active compound may inspire the development of a new pharmacologically useful substance to be used in the treatment and prevention of age-related diseases.
Poblete-Naredo, Irais; Rodríguez-Yáñez, Yury; Corona-Núñez, Rogelio O; González-Monroy, Stuart; Salinas, Juan E; Albores, Arnulfo
2018-05-17
Hypertension disorders (HD) and pre-eclampsia (PRE) are leading causes of maternal deaths worldwide. PRE is associated with vascular endothelial dysfunction and with deregulation of the fibrinolysis pathway genes. Fibrinolysis is the fibrin clot hydrolysis process catalyzed by plasmin, a proteolytic enzyme formed from plasminogen. Plasminogen is cleaved by tissue-type (tPA) and urokinase-type (uPA) activators and inhibited by the plasminogen activator inhibitors type-1 (PAI-1) and type-2 (PAI-2). The whole process maintains blood hemostasis. This study aims to assess PAI-1, PAI-2, tPA and uPA mRNA expression in primary cultured human umbilical vein endothelial cells (HUVEC) isolated and cultured from healthy, HD and PRE women. Results show that PAI-1 and PAI-2 mRNA decreased in HD-HUVEC, whereas PAI-1 and uPA decreased in PRE-HUVEC cultures compared to control ones. Notably, the expression ratio between pro- and anti-fibrinolytic actors remained unchanged among the studied groups. It seems that newborn's hemostasis is maintained balanced probably by a compensatory mechanism that involves changes in the fibrinolysis gene expression profile. The real impact of these changes in mRNA expression is unknown, however, it is suggested that these changes could be associated with an increased predisposition to vascular disease development in the progeny. Copyright © 2018. Published by Elsevier Ltd.
Gómez, Ricardo M; Vieira, Monica L; Schattner, Mirta; Malaver, Elisa; Watanabe, Monica M; Barbosa, Angela S; Abreu, Patricia A E; de Morais, Zenaide M; Cifuente, Javier O; Atzingen, Marina V; Oliveira, Tatiane R; Vasconcellos, Silvio A; Nascimento, Ana L T O
2008-01-01
Cell adhesion molecules (CAMs) are surface receptors present in eukaryotic cells that mediate cell-cell or cell-extracellular matrix interactions. Vascular endothelium stimulation in vitro that lead to the upregulation of CAMs was reported for the pathogenic spirochaetes, including rLIC10365 of Leptospira interrogans. In this study, we report the cloning of LIC10507, LIC10508, LIC10509 genes of L. interrogans using Escherichia coli as a host system. The rational for selecting these sequences is due to their location in L. interrogans serovar Copenhageni genome that has a potential involvement in pathogenesis. The genes encode for predicted lipoproteins with no assigned functions. The purified recombinant proteins were capable to promote the upregulation of intercellular adhesion molecule 1 (ICAM-1) and E-selectin on monolayers of human umbilical vein endothelial cells (HUVECS). In addition, the coding sequences are expressed in the renal tubules of animal during bacterial experimental infection. The proteins are probably located at the outer membrane of the bacteria since they are detected in detergent-phase of L. interrogans Triton X-114 extract. Altogether our data suggest a possible involvement of these proteins during bacterial infection and provide new insights into the role of this region in the pathogenesis of Leptospira.
Novel mechanism of gene transfection by low-energy shock wave.
Ha, Chang Hoon; Lee, Seok Cheol; Kim, Sunghyen; Chung, Jihwa; Bae, Hasuk; Kwon, Kihwan
2015-08-05
Extracorporeal shock wave (SW) therapy has been studied in the transfection of naked nucleic acids into various cell lines through the process of sonoporation, a process that affects the permeation of cell membranes, which can be an effect of cavitation. In this study, siRNAs were efficiently transfected into primary cultured cells and mouse tumor tissue via SW treatment. Furthermore SW-induced siRNA transfection was not mediated by SW-induced sonoporation, but by microparticles (MPs) secreted from the cells. Interestingly, the transfection effect of the siRNAs was transferable through the secreted MPs from human umbilical vein endothelial cell (HUVEC) culture medium after treatment with SW, into HUVECs in another culture plate without SW treatment. In this study, we suggest for the first time a mechanism of gene transfection induced by low-energy SW through secreted MPs, and show that it is an efficient physical gene transfection method in vitro and represents a safe therapeutic strategy for site-specific gene delivery in vivo.
Li, Zhijuan; Cheng, Jianxin; Wang, Liping
2015-10-30
Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. Copyright © 2015. Published by Elsevier Inc.
ADAM-17 regulates endothelial cell morphology, proliferation, and in vitro angiogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goeoz, Pal; Goeoz, Monika; Baldys, Aleksander
2009-02-27
Modulation of angiogenesis is a promising approach for treating a wide variety of human diseases including ischemic heart disease and cancer. In this study, we show that ADAM-17 is an important regulator of several key steps during angiogenesis. Knocking down ADAM-17 expression using lentivirus-delivered siRNA in HUVECs inhibited cell proliferation and the ability of cells to form close contact in two-dimensional cultures. Similarly, ADAM-17 depletion inhibited the ability of HUVECs to form capillary-like networks on top of three-dimensional Matrigel as well as in co-culture with fibroblasts within a three-dimensional scaffold. In mechanistic studies, both baseline and VEGF-induced MMP-2 activation andmore » Matrigel invasion were inhibited by ADAM-17 depletion. Based on our findings we propose that ADAM-17 is part of a novel pro-angiogenic pathway leading to MMP-2 activation and vessel formation.« less
Zheng, Jiao; Liu, Binglin; Lun, Qixing; Gu, Xiaopan; Pan, Bo; Zhao, Yunfang; Xiao, Wei; Li, Jun; Tu, Pengfei
2016-12-01
Chinese dragon's blood has been used to treat blood stasis for thousands of years. Its total phenolic extract (Longxuetongluo capsule, LTC) is used for the treatment of ischemic stroke; however, its protective effect against atherosclerosis remains poorly understood. This paper aims to investigate the antiatherosclerotic effect of LTC and the underlying mechanisms in high-fat diet (HFD)-induced ApoE -/- mice. The levels of plasma lipid and areas of atherosclerotic lesions in the aortic sinus in ApoE -/- mice were evaluated. The effect of LTC on the nitric oxide (NO) production in oxidized low-density lipoprotein (ox-LDL)-stimulated human umbilical vein endothelial cells (HUVECs) was determined. The adhesion of monocytes to ox-LDL-stimulated HUVECs was further studied. LTC at low, medium, and high doses markedly decreased the atherosclerotic lesion areas of the aortic sinus in HFD-induced ApoE -/- mice by 26.4% (p < 0.05), 30.1% (p < 0.05), and 46.5% (p < 0.01), respectively, although it did not improve the dyslipidemia. Furthermore, LTC restored the diminished NO production of ox-LDL-stimulated HUVECs (p < 0.001) and inhibited the adhesion between monocytes and endothelial cells (p < 0.01). LTC appeared to alleviate ox-LDL-stimulated dysfunction of HUVECs, and inhibit the adhesion of monocytes to HUVECs via the MAPK/IKK/IκB/NF-κB signaling pathway, thus decrease atherosclerotic lesions in the aortic sinus in HFD-induced ApoE -/- mice. These findings suggest the potential of LTC for use as an effective agent against atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Teixeira, Thaisa M; da Costa, Danielly C; Resende, Angela C; Soulage, Christophe O; Bezerra, Flavia F; Daleprane, Julio B
2017-04-01
Background: Obesity is associated with hyperleptinemia and endothelial dysfunction. Hyperleptinemia has been reported to induce both oxidative stress and inflammation by increasing reactive oxygen species production. Objective: The objective of this study was to determine the effects of 1,25-dihydroxycholecalciferol [1,25(OH) 2 D 3 ] against leptin-induced oxidative stress and inflammation in human endothelial cells. Methods: Small interfering RNA (siRNA) were used to knock down the expression of vitamin D receptor (VDR) in human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated for 4 h with physiologic (10 -10 M) or supraphysiologic (10 -7 M) concentrations of 1,25(OH) 2 D 3 and exposed to leptin (10 ng/mL). Superoxide anion production and translocation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and nuclear transcription factor κB (NF-κB) subunit p65 to the nucleus and the activation of their target genes were quantified. Results: Pretreatment of HUVECs with 1,25(OH) 2 D 3 prevented the leptin-induced increase in superoxide anion production ( P < 0.05). Pretreatment with 1,25(OH) 2 D 3 further increased NRF2 translocation to the nucleus (by 3-fold; P < 0.05) and increased mRNA expression of superoxide dismutase 2 ( SOD2 ; by 2-fold), glutathione peroxidase ( GPX ; by 3-fold), NAD(P)H dehydrogenase (quinone) 1 ( NQO1 ; by 4-fold), and heme oxygenase 1 ( HMOX1 ; by 2-fold) ( P < 0.05). Leptin doubled the translocation of NF-κB ( P < 0.05) to the nucleus and increased ( P < 0.05) the upregulation of vascular inflammatory mediators such as monocyte chemoattractant protein 1 ( MCP1 ; by 1-fold), transforming growth factor β ( TGF β by 1-fold), and vascular cell adhesion molecule 1 ( VCAM1 ; by 4-fold) ( P < 0.05), which were prevented ( P < 0.05) by pretreatment with 1,25(OH) 2 D 3 Protective effects of 1,25(OH) 2 D 3 were confirmed to be VDR dependent by using VDR siRNA. Conclusion: Pretreatment with 1,25(OH) 2 D 3 in the presence of a high concentration of leptin has a beneficial effect on HUVECs through the regulation of mediators of antioxidant activity and inflammation. © 2017 American Society for Nutrition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhishan; Humphries, Brock; Xiao, Hua
2013-08-15
Arsenic exposure represents a major health concern increasing cancer risks, yet the mechanism of arsenic carcinogenesis has not been elucidated. We and others recently reported that cell malignant transformation by arsenic is accompanied by epithelial to mesenchymal transition (EMT). However, the role of EMT in arsenic carcinogenesis is not well understood. Although previous studies showed that short term exposure of endothelial cells to arsenic stimulated angiogenesis, it remains to be determined whether cells that were malignantly transformed by long term arsenic exposure have a pro-angiogenic effect. The objective of this study was to investigate the effect of arsenic-transformed human bronchialmore » epithelial cells that underwent EMT on angiogenesis and the underlying mechanism. It was found that the conditioned medium from arsenic-transformed cells strongly stimulated tube formation by human umbilical vein endothelial cells (HUVECs). Moreover, enhanced angiogenesis was detected in mouse xenograft tumor tissues resulting from inoculation of arsenic-transformed cells. Mechanistic studies revealed that β-catenin was activated in arsenic-transformed cells up-regulating its target gene expression including angiogenic-stimulating vascular endothelial growth factor (VEGF). Stably expressing microRNA-200b in arsenic-transformed cells that reversed EMT inhibited β-catenin activation, decreased VEGF expression and reduced tube formation by HUVECs. SiRNA knockdown β-catenin decreased VEGF expression. Adding a VEGF neutralizing antibody into the conditioned medium from arsenic-transformed cells impaired tube formation by HUVECs. Reverse transcriptase-PCR analysis revealed that the mRNA levels of canonical Wnt ligands were not increased in arsenic-transformed cells. These findings suggest that EMT in arsenic-transformed cells promotes angiogenesis through activating β-catenin–VEGF pathway. - Highlights: • Arsenic-transformed cells that underwent EMT displayed a pro-angiogenic effect. • EMT in arsenic-transformed cells activates β-catenin. • β-Catenin activation increases VEGF expression in arsenic-transformed cells. • β-Catenin activation is likely independent of canonical Wnt signaling. • EMT in arsenic-transformed cells promotes angiogenesis via β-catenin–VEGF pathway.« less
Angiogenic and wound healing potency of fermented virgin coconut oil: in vitro and in vivo studies.
Ibrahim, Ahmad H; Li, Haibo; Al-Rawi, Sawsan S; Majid, Aman Shah Abdul; Al-Habib, Omar Am; Xia, Xiaobo; Majid, Amin Ms Abdul; Ji, Dan
2017-01-01
The process of wound healing involves activation of keratinocytes, fibroblasts, endothelial cells, etc. Angiogenesis is crucial during the process of wound healing. Virgin coconut oil is widely utilized in South Asia for various purposes including food, medicinal and industrial applications. This study aimed to evaluate the potency of fermented virgin coconut oil (FVCO) in angiogenesis and wound healing via both in vitro and in vivo assays. Human umbilical vein endothelial (HUVEC), fibroblast (CCD-18) and retinal ganglion (RGC-5) cells were cultured in medium containing different concentrations of FVCO. The proliferation, migration and morphological changes of cells were determined. The angiogenic effect of FVCO was evaluated by rat aortic assay. The therapeutic effect of FVCO on wound healing was further assessed in a wound excision model in Sprague Dawley rats. The expression of phospho-VEGFR2 (vascular endothelial growth factor receptor 2) in HUVECs was detected by Western blot. FVCO (6 and 12 µg/mL) significantly improved the proliferation of HUVEC, CCD-18 and RGC-5 cells ( P < 0.05 or 0.01). FVCO (25 µg/mL) markedly increased the migration ability of CCD-18 and RGC-5 cells ( P < 0.05). FVCO did not affect cell morphology as indicated by fluorescein diacetate (FDA), rhodamine 123 and Hoechst staining. FVCO (25, 50 and 100 µg/mL) significantly stimulated the ex vivo blood vessel formation as compared with negative control ( P < 0.05). Rats in FVCO group had significantly smaller wound size, higher wound healing percentage, and shorter wound closure time when compared with control group since day 8 ( P < 0.05), suggesting that oral FVCO administration notably promoted the wound healing process. FVCO treatment (6 and 12 µg/mL) significantly enhanced the phospho-VEGFR2 expression in HUVECs ( P = 0.006 and 0.000, respectively). Our study confirms a high angiogenic and wound healing potency of FVCO that might be mediated by the regulation of VEGF signing pathway.
Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y
2015-11-18
Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.
Kim, Ki Mo; Kim, No Soo; Kim, Jinhee; Park, Jong-Shik; Yi, Jin Mu; Lee, Jun; Bang, Ok-Sun
2013-01-01
Magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, has been reported to possess anticancer activity. Recent studies have also demonstrated that magnolol inhibits cell growth and induces the apoptosis of cancer cells. However, the effects of magnolol on vascular endothelial growth factor (VEGF)-induced angiogenesis in endothelial cells have not been studied. In the present study, we have used human umbilical vein endothelial cells (HUVECs) to investigate the antiangiogenic effect and molecular mechanism of magnolol. Magnolol inhibited the VEGF-induced proliferation, chemotactic motility and tube formation of HUVECs in vitro as well as the vessel sprouting of the aorta ex vivo. Furthermore, magnolol inhibited VEGF-induced Ras activation and subsequently suppressed extracellular signal-regulated kinase (ERK), phosphatidylinositol-3-kinase (PI3K)/Akt and p38, but not Src and focal adhesion kinase (FAK). Interestingly, the knockdown of Ras by short interfering RNA produced inhibitory effects that were similar to the effects of magnolol on VEGF-induced angiogenic signaling events, such as ERK and Akt/eNOS activation, and resulted in the inhibition of proliferation, migration, and vessel sprouting in HUVECs. In combination, these results demonstrate that magnolol is an inhibitor of angiogenesis and suggest that this compound could be a potential candidate in the treatment of angiogenesis-related diseases.
Tian, Sha-Sha; Jiang, Fu-Sheng; Zhang, Kun; Zhu, Xue-Xin; Jin, Bo; Lu, Jin-Jian; Ding, Zhi-Shan
2014-01-01
The total flavonoids (TFs) were isolated from the leaves of Carya cathayensis Sarg. (LCC), a well-known Chinese medicinal herb commercially cultivated in Tianmu Mountain district, a cross area of Zhejiang and Anhui provinces in China. Five flavonoids, i.e. cardamonin, pinostrobin chalcone (PC), wogonin, chrysin, and pinocembrin were the main components of the TFs. The TFs and these pure compounds suppressed vascular endothelial growth factor (VEGF)-induced angiogenesis as detected in the mouse aortic ring assay, and cardamonin showed the best effect among them. To further elucidate the mechanisms for suppressing angiogenesis of these flavonoids, assays of VEGF-induced proliferation and migration in human umbilical vein endothelial cells (HUVECs) were performed. The TFs, cardamonin, pinocembrin, and chrysin obviously suppressed both VEGF-induced HUVEC proliferation and migration. However, PC and wogonin not only slightly inhibited VEGF-induced proliferation but also remarkably suppressed those of migration in HUVECs. Our further study showed that cardamonin decreased the phosphorylation of ERK and AKT induced by VEGF with a dose-dependent manner in HUVECs. Our findings indicate that the TFs and these pure flavonoids may become potential preventive and/or therapeutic agents against angiogenesis-related diseases. © 2013.
Shkilnyy, Andriy; Proulx, Pierre; Sharp, Jamie; Lepage, Martin; Vermette, Patrick
2012-05-01
Scaffolds with adequate mass transport properties are needed in many tissue engineering applications. Fibrin is considered a good biological material to fabricate such scaffolds. However, very little is known about mass transport in fibrin. Therefore, a method based on the analysis of fluorescence intensity for measuring the apparent diffusion coefficient of rhodamine B and fluorescein-labelled bovine serum albumin (FITC-BSA) is described. The experiments are performed in fibrin gels with and without human umbilical vein endothelial cells (HUVEC). The apparent diffusion coefficients of rhodamine B and FITC-BSA in fibrin (fibrinogen concentration of 4 mg/mL) with different cell densities are reported. A LIVE/DEAD(®) assay is performed to confirm the viability of HUVEC seeded at high densities. Diffusion coefficients for rhodamine B remain more or less constant up to 5×10(5) cells/mL and correlate well with literature values measured by other methods in water systems. This indicates that the presence of HUVEC in the fibrin gels (up to 5×10(5) cells/mL) has almost no effect on the diffusion coefficients. Higher cell densities (>5×10(5) cells/mL) result in a decrease of the diffusion coefficients. Diffusion coefficients of rhodamine B and FITC-BSA obtained by this method agree with diffusion coefficients in water predicted by the Stokes-Einstein equation. The experimental design used in this study can be applied to measure diffusion coefficients in different types of gels seeded or not with living cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Choi, Hoon Young; Lee, Hyun Gyu; Kim, Beom Seok; Ahn, Sun Hee; Jung, Ara; Lee, Mirae; Lee, Jung Eun; Kim, Hyung Jong; Ha, Sung Kyu; Park, Hyeong Cheon
2015-03-11
Microparticles (MPs) derived from kidney-derived mesenchymal stem cells (KMSCs) have recently been reported to ameliorate rarefaction of peritubular capillaries (PTC) in ischemic kidneys via delivery of proangiogenic effectors. This study aimed to investigate whether KMSC-derived MPs show anti-fibrotic effects by ameliorating endothelial-to-mesenchymal transition (EndoMT) in human umbilical vein endothelial cells (HUVEC) in vitro and by preserving PTC in kidneys with unilateral ureteral obstruction (UUO) in vivo. MPs isolated from the supernatants of KMSC were co-cultured with HUVEC to assess their in vitro biologic effects on endothelial cells. Mice were treated with MPs via the tail vein after UUO injury to assess their anti-fibrotic and PTC sparing effects. Renal tubulointerstitial damage and inflammatory cell infiltration were examined with Masson's trichrome, F4/80 and α-smooth muscle actin (α-SMA) staining and PTC rarefaction index was determined by CD31 staining. KMSC-derived MPs significantly ameliorated EndoMT and improved in vitro proliferation of TGF-β1 treated HUVEC. In vivo administration of KMSC-derived MPs significantly inhibited EndoMT of PTC endothelial cells and improved PTC rarefaction in UUO kidneys. Furthermore, administration of KMSC-derived MPs inhibited inflammatory cell infiltration as well as tubulointerstitial fibrosis in UUO mice as demonstrated by decreased F4/80 and α-SMA-positive cells and Masson's trichrome staining, respectively. Our results suggest that KMSC-derived MPs ameliorate PTC rarefaction via inhibition of EndoMT and protect against progression of renal damage by inhibiting tubulointerstitial fibrosis.
Low grade inflammation inhibits VEGF induced HUVECs migration in p53 dependent manner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panta, Sushil; Yamakuchi, Munekazu; Kagoshima University Hospital, Kagoshima
In the course of studying crosstalk between inflammation and angiogenesis, high doses of pro-inflammatory factors have been reported to induce apoptosis in cells. Under normal circumstances also the pro-inflammatory cytokines are being released in low doses and are actively involved in cell signaling pathways. We studied the effects of low grade inflammation in growth factor induced angiogenesis using tumor necrosis factor alfa (TNFα) and vascular endothelial growth factor A (VEGF) respectively. We found that low dose of TNFα can inhibit VEGF induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Low dose of TNFα induces mild upregulation and moreover nuclearmore » localization of tumor suppressor protein 53 (P53) which causes decrease in inhibitor of DNA binding-1 (Id1) expression and shuttling to the cytoplasm. In absence of Id1, HUVECs fail to upregulate β{sub 3}-integrin and cell migration is decreased. Connecting low dose of TNFα induced p53 to β{sub 3}-integrin through Id1, we present additional link in cross talk between inflammation and angiogenesis. - Highlights: • Low grade inflammation (low dose of TNF alfa) inhibits VEGF induced endothelial cells migration. • The low grade inflammation with VEGF treatment upregulates P53 to a nonlethal level. • P53 activation inhibits Id1 shuttling to the cytoplasm in endothelial cells. • Inhibition of Id1 resulted in downregulation of β{sub 3}-integrin which cause decrease in cell migration. • Inflammation and angiogenesis might cross-talk by P53 – Id1 – β{sub 3}-integrin pathway in endothelial cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, Kazuki; Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp; Senokuchi, Takafumi
Highlights: • Statins induce PPARγ activation in vascular smooth muscle cells. • Statin-induced PPARγ activation is mediated by COX-2 expression. • Statins suppress cell migration and proliferation in vascular smooth muscle cells. • Statins inhibit LPS-induced inflammatory responses by PPARγ activation. • Fluvastatin suppress the progression of atherosclerosis and induces PPARγ activation in the aorta of apoE-deficient mice. - Abstract: The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However,more » it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe{sup −/−} mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe{sup −/−} mice. In conclusion, statins mediate anti-atherogenic effects through PPARγ activation in SMCs. These effects of statins on SMCs may be beneficial for the prevention of atherosclerosis.« less
Feng, Bo; Zhang, Qian; Wang, Jianfang; Dong, Hong; Mu, Xiang; Hu, Ge; Zhang, Tao
2018-04-30
IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on IFN-α/β production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of IFN-α/β also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection.
Feng, Bo; Zhang, Qian; Wang, Jianfang; Dong, Hong; Mu, Xiang; Hu, Ge; Zhang, Tao
2018-01-01
IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on IFN-α/β production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of IFN-α/β also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection. PMID:29629559
MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Bing; Xiao, Bo; Liang, Desheng
Highlights: {yields} We evaluated the role of miRNAs in ox-LDL induced apoptosis in ECs. {yields} We found 4 up-regulated and 11 down-regulated miRNAs in apoptotic ECs. {yields} Target genes of the dysregulated miRNAs regulate ECs apoptosis and atherosclerosis. {yields} MiR-365 promotes ECs apoptosis via suppressing Bcl-2 expression. {yields} MiR-365 inhibitor alleviates ECs apoptosis induced by ox-LDL. -- Abstract: Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth,more » proliferation, and apoptosis. However, whether miRNAs are associated with ox-LDL induced apoptosis and their effect on ECs is still unknown. Therefore, this study evaluated potential miRNAs and their involvement in ECs apoptosis in response to ox-LDL stimulation. Microarray and qRT-PCR analysis performed on human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL identified 15 differentially expressed (4 up- and 11 down-regulated) miRNAs. Web-based query tools were utilized to predict the target genes of the differentially expressed miRNAs, and the potential target genes were classified into different function categories with the gene ontology (GO) term and KEGG pathway annotation. In particular, bioinformatics analysis suggested that anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) is a target gene of miR-365, an apoptomir up-regulated by ox-LDL stimulation in HUVECs. We further showed that transfection of miR-365 inhibitor partly restored Bcl-2 expression at both mRNA and protein levels, leading to a reduction of ox-LDL-mediated apoptosis in HUVECs. Taken together, our findings indicate that miRNAs participate in ox-LDL-mediated apoptosis in HUVECs. MiR-365 potentiates ox-LDL-induced ECs apoptosis by regulating the expression of Bcl-2, suggesting potential novel therapeutic targets for atherosclerosis.« less
NASA Astrophysics Data System (ADS)
Poeter, Michaela; Brandherm, Ines; Rossaint, Jan; Rosso, Gonzalo; Shahin, Victor; Skryabin, Boris V.; Zarbock, Alexander; Gerke, Volker; Rescher, Ursula
2014-04-01
To enable leukocyte adhesion to activated endothelium, the leukocyte receptor P-selectin is released from Weibel-Palade bodies (WPB) to the endothelial cell surface where it is stabilized by CD63. Here we report that loss of annexin A8 (anxA8) in human umbilical vein endothelial cells (HUVEC) strongly decreases cell surface presentation of CD63 and P-selectin, with a concomitant reduction in leukocyte rolling and adhesion. We confirm the compromised leukocyte adhesiveness in inflammatory-activated endothelial venules of anxA8-deficient mice. We find that WPB of anxA8-deficient HUVEC contain less CD63, and that this is caused by improper transport of CD63 from late multivesicular endosomes to WPB, with CD63 being retained in intraluminal vesicles. Consequently, reduced CD63 cell surface levels are seen following WPB exocytosis, resulting in enhanced P-selectin re-internalization. Our data support a model in which anxA8 affects leukocyte recruitment to activated endothelial cells by supplying WPB with sufficient amounts of the P-selectin regulator CD63.
Jiang, Yue-hua; Yang, Chuan-hua; Li, Wei; Wu, Sai; Meng, Xian-qing; Li, Dong-na
2016-03-01
To investigate the role of aqueous extracts of Tribulus terrestris (TT) against oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) dysfunction in vitro. HUVECs were pre-incubated for 60 min with TT (30 and 3 μg/mL respectively) or 10(-5) mol/L valsartan (as positive controls) and then the injured endothelium model was established by applying 100 μg/mL ox-LDL for 24 h. Cell viability of HUVECs was observed by real-time cell electronic sensing assay and apoptosis rate by Annexin V/PI staining. The cell migration assay was performed with a transwell insert system. Cytoskeleton remodeling was observed by immunofluorescence assay. The content of endothelial nitric oxide synthase (eNOS) was measured by enzyme-linked immunosorbent assay. Intracellular reactive oxygen species (ROS) generation was assessed by immunofluorescence and flow cytometer. Key genes associated with the metabolism of ox-LDL were chosen for quantitative real-time polymerase chain reaction to explore the possible mechanism of TT against oxidized LDL-induced endothelial dysfunction. TT suppressed ox-LDL-induced HUVEC proliferation and apoptosis rates significantly (41.1% and 43.5% after treatment for 3 and 38 h, respectively; P<0.05). It also prolonged the HUVEC survival time and postponed the cell's decaying stage (from the 69th h to over 100 h). According to the immunofluorescence and transwell insert system assay, TT improved the endothelial cytoskeletal network, and vinculin expression and increased cell migration. Additionally, TT regulated of the synthesis of endothelial nitric oxide synthase and generation of intracellular reactive oxygen species (P<0.05). Both 30 and 3 μg/mL TT demonstrated similar efficacy to valsartan. TT normalized the increased mRNA expression of PI3Kα and Socs3. It also decreased mRNA expression of Akt1, AMPKα1, JAK2, LepR and STAT3 induced by ox-LDL. The most notable changes were JAK2, LepR, PI3Kα, Socs3 and STAT3. TT demonstrated potential lowering lipid benefits, anti-hypertension and endothelial protective effects. It also suggested that the JAK2/STAT3 and/or PI3K/AKT pathway might be a very important pathway which was involved in the pharmacological mechanism of TT as the vascular protective agent.
Pastano, Rocco; Dell'Agnola, Chiara; Bason, Caterina; Gigli, Federica; Rabascio, Cristina; Puccetti, Antonio; Tinazzi, Elisa; Cetto, Gianluigi; Peccatori, Fedro; Martinelli, Giovanni; Lunardi, Claudio
2012-09-01
Human cytomegalovirus (hCMV) infection and its reactivation correlate both with the increased risk and with the worsening of graft-versus-host disease (GVHD). Because scleroderma-like skin lesions can occur in chronic GVHD (cGVHD) in allogeneic stem-cell transplant (HCT) patients and hCMV is relevant in the pathogenesis of systemic sclerosis (SSc), we evaluated the possible pathogenetic link between hCMV and skin cGVHD. Plasma from 18 HCT patients was tested for anti-UL94 and/or anti-NAG-2 antibodies, identified in SSc patients, by direct ELISA assays. Both donors and recipients were anti-hCMV IgG positive, without autoimmune diseases. Patients' purified anti-UL94 and anti-NAG-2 IgG binding to human umbilical endothelial cells (HUVECs) and fibroblasts was performed by FACS analysis and ELISA test. HUVECs apoptosis and fibroblasts proliferation induced by patients' anti-NAG-2 antibodies were measured by DNA fragmentation and cell viability, respectively. About 11/18 patients developed cGVHD and all of them showed skin involvement, ranging from diffuse SSc-like lesions to limited erythema. Eight of eleven cGVHD patients were positive for anti-UL94 and/or anti-NAG-2 antibodies. Remarkably, 4/5 patients who developed diffuse or limited SSc-like lesions had antibodies directed against both UL94 and NAG-2; their anti-NAG-2 IgG-bound HUVECs and fibroblasts induce both endothelial cell apoptosis and fibroblasts proliferation, similar to that induced by purified anti-UL94 and anti-NAG-2 antibodies obtained from SSc patients. In conclusion, our data suggest a pathogenetic link between hCMV infection and scleroderma-like skin cGVHD in HCT patients through a mechanism of molecular mimicry between UL94 viral protein and NAG-2 molecule, as observed in patients with SSc.
Kuehn, Constanze; Tauchi, Miyuki; Stumpf, Christian; Daniel, Christoph; Bäuerle, Tobias; Schwarz, Marc; Kerek, Franz; Steinkasserer, Alexander; Zinser, Elisabeth; Achenbach, Stephan; Dietel, Barbara
2016-02-01
Atherosclerosis is associated with chronic inflammatory responses of the arterial blood vessels. The previously observed protective effect of the MCS-18 substance against the initiation of atherosclerosis in a murine model was explained by its pronounced anti-inflammatory activity. Here, we investigated its impact on murine plaque progression in advanced atherosclerosis and on proatherogenic processes. ApoE-deficient mice were fed a high-fat diet for 12 weeks to induce atherosclerosis, followed by normal chow and intraperitoneal injections of either MCS-18 (500 μg, n = 10) or saline (n = 10) twice a week for another 12 weeks. Plaque size was reduced in MCS-18 treated mice compared to controls (p = 0.001), which was associated with a reduced size of the lipid core (p = 0.01). There was a decrease in apoptotic cells (p = 0.02), endothelial ICAM-1 expression (p < 0.001), and macrophage density (p = 0.01) in the MCS-18 group. In addition, human and murine dendritic cells (DCs) and human umbilical vein endothelial cells (HUVECs) were treated with MCS-18 (50-200 μg/ml) to analyze cell migration and adhesion under flow conditions. MCS-18 reduced human (p = 0.01) and murine (p = 0.006) DC migration. Furthermore, adhesion of MCS-18-treated DCs to a HUVEC monolayer was decreased (p < 0.001). Compared to controls, CD209 (p < 0.001) and CCR7 (p = 0.003) expression was decreased in MCS-18-treated DCs, while in HUVECs lower levels of ICAM-1 (p < 0.001) and of phosphorylated NF-κB-p65 (p = 0.002) were observed. Blocking of ICAM-1 reduced DC adhesion (p < 0.001). MCS-18 exhibits interesting therapeutic effects when applied in advanced murine atherosclerosis. Its antiatherogenic impact might be associated with a suppressed adhesion to the endothelium due to down-regulation of endothelial ICAM-1 expression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Jiang, Xiao-Yu; Sarsons, Christopher D; Gomez-Garcia, M Juliana; Cramb, David T; Rinker, Kristina D; Childs, Sarah J
2017-04-01
Nanoparticle (NP) interactions with biological tissues are affected by the size, shape and surface chemistry of the NPs. Here we use in vivo (zebrafish) and in vitro (HUVEC) models to investigate association of quantum dots (QDs) with endothelial cells and the effect of fluid flow. After injection into the developing zebrafish, circulating QDs associate with endothelium and penetrate surrounding tissue parenchyma over time. Amino-functionalized QDs cluster, interact with cells, and clear more rapidly than carboxy-functionalized QDs in vivo, highlighting charge influences. QDs show stronger accumulation in slow-flowing, small caliber venous vessels than in fast-flowing high caliber arterial vessels. Parallel-plate flow experiments with HUVEC support these findings, showing reduced QD-EC association with increasing flow. In vivo, flow arrest after nanoparticle injection still results in venous accumulation at 18 h. Overall our results suggest that both QD charge and blood flow modulate particle-endothelial cell interactions. Copyright © 2016 Elsevier Inc. All rights reserved.
Guanylyl cyclase-dependent chemotaxis of endothelial cells in response to nitric oxide gradients.
Isenberg, Jeff S; Ridnour, Lisa A; Thomas, Douglas D; Wink, David A; Roberts, David D; Espey, Michael Graham
2006-03-15
Nitric oxide (NO) is an important regulator of angiogenesis and neovascularization. The nature of endothelial cell motility responses to NO was examined using a Boyden chamber method. NO generated via decomposition of either DEA/NO or DETA/NO produced increases in human umbilical vein endothelial cell (HUVEC) chemotaxis, which were completely abrogated by ODQ, a soluble guanylyl cyclase inhibitor. Measurements of NO either directly by chemiluminescence or its chemistry with diaminofluorescein revealed that chemotaxis was driven by subtle NO gradients between the lower and the upper wells in this system. In addition to diffusion and volatilization from the upper chambers, the data showed that HUVEC consumption of NO contributed to these sustained gradients. Comparison of DEA/NO- and DETA/NO-mediated responses suggested that the persistence of spatial NO gradients is as significant as the absolute magnitude of NO exposure per unit time. The findings suggest that subnanomolar NO gradients are sufficient to mobilize endothelial cell migration into hypoxic tissue during neovascularization events, such as in wound healing and cancer.
Increased leukocyte adhesion to vascular endothelium in preeclampsia is inhibited by antioxidants.
Ryu, Seongho; Huppmann, Alison R; Sambangi, Nirmala; Takacs, Peter; Kauma, Scott W
2007-04-01
To test the hypothesis that plasma from women with preeclampsia increases leukocyte adhesion to vascular endothelial cells and that antioxidants inhibit this effect. Plasma from 12 women with severe preeclampsia and 12 with normal pregnancy was tested in an in vitro leukocyte-endothelium adhesion assay in the presence or absence of vitamin E, vitamin C, or N-acetylcysteine. Preeclamptic plasma significantly increased monocyte (U937 cells) and T-cell (Jurkat) adhesion to human umbilical vein (HUVEC) and microvascular endothelial cells, compared with normal pregnant plasma. The antioxidants vitamin E, vitamin C, and N-acetylcysteine significantly inhibited monocyte adhesion to HUVEC in the presence of preeclamptic but not normal pregnant plasma. Increased adhesion in response to preeclamptic plasma was not mediated through a protein kinase C (PKC) mechanism, because the PKC inhibitor bisindolylmaleimide I had no effect on adhesion in the presence of preeclamptic plasma. Severe preeclampsia is associated with increased leukocyte-endothelium adhesion and clinically useful antioxidants can inhibit this effect.
Huang, Yezhou; Li, Shao
2010-01-18
Pathways in biological system often cooperate with each other to function. Changes of interactions among pathways tightly associate with alterations in the properties and functions of the cell and hence alterations in the phenotype. So, the pathway interactions and especially their changes over time corresponding to specific phenotype are critical to understanding cell functions and phenotypic plasticity. With prior-defined pathways and incorporated protein-protein interaction (PPI) data, we counted PPIs between corresponding gene sets of each pair of distinct pathways to construct a comprehensive pathway network. Then we proposed a novel concept, characteristic sub pathway network (CSPN), to realize the phenotype-specific pathway interactions. By adding gene expression data regarding a given phenotype, angiogenesis, active PPIs corresponding to stimulation of interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha) on human umbilical vein endothelial cells (HUVECs) respectively were derived. Two kinds of CSPN, namely the static or the dynamic CSPN, were detected by counting active PPIs. A comprehensive pathway network containing 37 signalling pathways as nodes and 263 pathway interactions were obtained. Two phenotype-specific CSPNs for angiogenesis, corresponding to stimulation of IL-1 and TNF-alpha on HUVEC respectively, were addressed. From phenotype-specific CSPNs, a static CSPN involving interactions among B cell receptor, T cell receptor, Toll-like receptor, MAPK, VEGF, and ErbB signalling pathways, and a dynamic CSPN involving interactions among TGF-beta, Wnt, p53 signalling pathways and cell cycle pathway, were detected for angiogenesis on HUVEC after stimulation of IL-1 and TNF-alpha respectively. We inferred that, in certain case, the static CSPN maintains related basic functions of the cells, whereas the dynamic CSPN manifests the cells' plastic responses to stimulus and therefore reflects the cells' phenotypic plasticity. The comprehensive pathway network helps us realize the cooperative behaviours among pathways. Moreover, two kinds of potential CSPNs found in this work, the static CSPN and the dynamic CSPN, are helpful to deeply understand the specific function of HUVEC and its phenotypic plasticity in regard to angiogenesis.
2010-01-01
Background Pathways in biological system often cooperate with each other to function. Changes of interactions among pathways tightly associate with alterations in the properties and functions of the cell and hence alterations in the phenotype. So, the pathway interactions and especially their changes over time corresponding to specific phenotype are critical to understanding cell functions and phenotypic plasticity. Methods With prior-defined pathways and incorporated protein-protein interaction (PPI) data, we counted PPIs between corresponding gene sets of each pair of distinct pathways to construct a comprehensive pathway network. Then we proposed a novel concept, characteristic sub pathway network (CSPN), to realize the phenotype-specific pathway interactions. By adding gene expression data regarding a given phenotype, angiogenesis, active PPIs corresponding to stimulation of interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α) on human umbilical vein endothelial cells (HUVECs) respectively were derived. Two kinds of CSPN, namely the static or the dynamic CSPN, were detected by counting active PPIs. Results A comprehensive pathway network containing 37 signalling pathways as nodes and 263 pathway interactions were obtained. Two phenotype-specific CSPNs for angiogenesis, corresponding to stimulation of IL-1 and TNF-α on HUVEC respectively, were addressed. From phenotype-specific CSPNs, a static CSPN involving interactions among B cell receptor, T cell receptor, Toll-like receptor, MAPK, VEGF, and ErbB signalling pathways, and a dynamic CSPN involving interactions among TGF-β, Wnt, p53 signalling pathways and cell cycle pathway, were detected for angiogenesis on HUVEC after stimulation of IL-1 and TNF-α respectively. We inferred that, in certain case, the static CSPN maintains related basic functions of the cells, whereas the dynamic CSPN manifests the cells' plastic responses to stimulus and therefore reflects the cells' phenotypic plasticity. Conclusion The comprehensive pathway network helps us realize the cooperative behaviours among pathways. Moreover, two kinds of potential CSPNs found in this work, the static CSPN and the dynamic CSPN, are helpful to deeply understand the specific function of HUVEC and its phenotypic plasticity in regard to angiogenesis. PMID:20122205
Kim, Sokho; Kwon, Jungkee
2015-01-01
The receptor of advanced glycation end products (RAGE) is a cell-surface receptor that is a key factor in the pathogenesis of diabetic complications, including vascular disorders. Dysfunction of the actin cytoskeleton contributes to disruption of cell membrane repair in response to various type of endothelial cell damage. However, mechanism underlying RAGE remodelling of the actin cytoskeleton, by which globular actin (G-actin) forms to filamentous actin (F-actin), remains unclear. In this study we examined the role of thymosin beta 4 (Tβ4) – which binds to actin, blocks actin polymerization, and maintains the dynamic equilibrium between G-actin and F-actin in human umbilical vein endothelial cells (HUVECs) – in the response to RAGE. Tβ4 increased cell viability and decreased levels of reactive oxygen species in HUVECs incubated with AGEs. Tβ4 reduced the expression of RAGE, consistent with a down-regulation of the F-actin to G-actin ratio. The effect of remodelling of the actin cytoskeleton on RAGE expression was clarified by adding Phalloidin, which stabilizes F-actin. Moreover, small interfering RNA was used to determine whether intrinsic Tβ4 regulates RAGE expression in the actin cytoskeleton. The absence of intrinsic Tβ4 in HUVECs evoked actin cytoskeleton disorder and increased RAGE expression. These findings suggest that regulation of the actin cytoskeleton by Tβ4 plays a pivotal role in the RAGE response to AGEs. PMID:25640761
Calcitonin gene-related peptide stimulates proliferation of human endothelial cells.
Haegerstrand, A; Dalsgaard, C J; Jonzon, B; Larsson, O; Nilsson, J
1990-01-01
The effects of the vasoactive perivascular neuropeptides calcitonin gene-related peptide (CGRP), neurokinin A (NKA), neuropeptide Y (NPY), and vasoactive intestinal polypeptide (VIP) on proliferation of cultured human umbilical vein endothelial cells (HUVECs) were investigated. CGRP was shown to increase both cell number and DNA synthesis, whereas NKA, NPY, and VIP were ineffective. 125I-labeled CGRP was shown to bind to HUVECs and this binding was displaced by addition of unlabeled CGRP, suggesting the existence of specific CGRP receptors. The effect of CGRP on formation of adenosine 3',5'-cyclic monophosphate (cAMP) and inositol phosphates (InsP), two intracellular messengers known to be involved in regulation of cell proliferation, was investigated. CGRP stimulated cAMP formation but was without effect on the formation of InsP. Proliferation, as well as cAMP formation, was also stimulated by cholera toxin. Basic fibroblast growth factor stimulated growth without affecting cAMP or InsP formation, whereas thrombin, which increased InsP formation, did not stimulate proliferation. We thus suggest that CGRP may act as a local factor stimulating proliferation of endothelial cells; that the mechanism of action is associated with cAMP formation; and that this effect of CGRP may be important for formation of new vessels during physiological and pathophysiological events such as ischemia, inflammation, and wound healing. PMID:2159144
Calcitonin gene-related peptide stimulates proliferation of human endothelial cells.
Haegerstrand, A; Dalsgaard, C J; Jonzon, B; Larsson, O; Nilsson, J
1990-05-01
The effects of the vasoactive perivascular neuropeptides calcitonin gene-related peptide (CGRP), neurokinin A (NKA), neuropeptide Y (NPY), and vasoactive intestinal polypeptide (VIP) on proliferation of cultured human umbilical vein endothelial cells (HUVECs) were investigated. CGRP was shown to increase both cell number and DNA synthesis, whereas NKA, NPY, and VIP were ineffective. 125I-labeled CGRP was shown to bind to HUVECs and this binding was displaced by addition of unlabeled CGRP, suggesting the existence of specific CGRP receptors. The effect of CGRP on formation of adenosine 3',5'-cyclic monophosphate (cAMP) and inositol phosphates (InsP), two intracellular messengers known to be involved in regulation of cell proliferation, was investigated. CGRP stimulated cAMP formation but was without effect on the formation of InsP. Proliferation, as well as cAMP formation, was also stimulated by cholera toxin. Basic fibroblast growth factor stimulated growth without affecting cAMP or InsP formation, whereas thrombin, which increased InsP formation, did not stimulate proliferation. We thus suggest that CGRP may act as a local factor stimulating proliferation of endothelial cells; that the mechanism of action is associated with cAMP formation; and that this effect of CGRP may be important for formation of new vessels during physiological and pathophysiological events such as ischemia, inflammation, and wound healing.
Strassburg, Sandra; Nabar, Nikita; Lampert, Florian; Goerke, Sebastian M; Pfeifer, Dietmar; Finkenzeller, Günter; Stark, Gerhard B; Simunovic, Filip
2017-07-01
Vascularization is essential for bone development, fracture healing, and bone tissue engineering. We have previously described that coculture of primary human osteoblasts (hOBs) and human umbilical vein endothelial cells (HUVECs) improves differentiation of both cell types. Investigating the role of microRNAs (miRNAs) in this system, we found that miR-126 is highly upregulated in hOBs following coculturing with HUVECs. In this study we performed miR-126 gain-of-function and loss-of-function experiments in hOBs followed by microarray analysis in order to identify targets of miR-126. The transcript cluster IDs were sieved by applying cut-off criteria and by selecting transcripts which were upregulated following miR-126 downregulation and vice versa. The calmodulin regulated spectrin associated protein 1 (CAMSAP1) mRNA was confirmed to be differentially regulated by miR-126. Using the luciferase reporter assay it was demonstrated that CAMSAP1 is directly targeted by miR-126. In this study, we show that miR-126 and CAMSAP1 directly interact in hOBs. This finding has potential implications for tissue engineering applications. J. Cell. Biochem. 118: 1756-1763, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Liu, Ping; Woda, Marcia; Ennis, Francis A.; Libraty, Daniel H.
2013-01-01
Background The morbidity and mortality resulting from dengue hemorrhagic fever (DHF) are largely caused by endothelial barrier dysfunction and a unique vascular leakage syndrome. The mechanisms that lead to the location and timing of vascular leakage in DHF are poorly understood. We hypothesized that direct viral effects on endothelial responsiveness to inflammatory and angiogenesis mediators can explain the DHF vascular leakage syndrome. Methods We used an in vitro model of human endothelium to study the combined effects of dengue virus (DENV) type 2 (DENV2) infection and inflammatory mediators on paracellular macromolecule permeability over time. Results Over the initial 72 h after infection, DENV2 suppressed tumor necrosis factor (TNF)–α–mediated hyperpermeability in human umbilical vein endothelial cell (HUVEC) monolayers. This suppressive effect was mediated by type I interferon (IFN). By 1 week, TNF-α stimulation of DENV2-infected HUVECs synergistically increased cell cycling, angiogenic changes, and macromolecule permeability. This late effect could be prevented by the addition of exogenous type I IFN. Conclusions DENV infection of primary human endothelial cells differentially modulates TNF-α–driven angiogenesis and hyperpermeability over time. Type I IFN plays a central role in this process. Our findings suggest a rational model for the DHF vascular leakage syndrome. PMID:19530939
Niu, Tingting; Xuan, Rongrong; Jiang, Ligang; Wu, Wei; Zhen, Zhanghe; Song, Yuling; Hong, Lili; Zheng, Kaiqin; Zhang, Jiaxing; Xu, Qingshan; Tan, Yinghong; Yan, Xiaojun; Chen, Haimin
2018-02-14
Astaxanthin is a powerful antioxidant that possesses potent protective effects against various human diseases and physiological disorders. However, the mechanisms underlying its antioxidant functions in cells are not fully understood. In the present study, the effects of astaxanthin on reactive oxygen species (ROS) production and antioxidant enzyme activity, as well as mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinase (PI3K)/Akt, and the nuclear factor erythroid 2-related factor 2 (Nrf-2)/heme oxygenase-1 (HO-1) pathways in human umbilical vein endothelial cells (HUVECs), were examined. It was shown that astaxanthin (0.1, 1, and 10 μM) induced ROS production by 9.35%, 14.8%, and 18.06% compared to control, respectively, in HUVECs. In addition, astaxanthin increased the mRNA levels of phase II enzymes HO-1 and also promoted GSH-Px enzyme activity. Furthermore, we observed ERK phosphorylation, nuclear translocation of Nrf-2, and activation of antioxidant response element-driven luciferase activity upon astaxanthin treatment. Knockdown of Nrf-2 by small interfering RNA inhibited HO-1 mRNA expression by 60%, indicating that the Nrf-2/ARE signaling pathway is activated by astaxanthin. Our results suggest that astaxanthin activates the Nrf-2/HO-1 antioxidant pathway by generating small amounts of ROS.
Du, Ping; Suhaeri, Muhammad; Ha, Sang Su; Oh, Seung Ja; Kim, Sang-Heon; Park, Kwideok
2017-05-01
Extracellular matrix (ECM) is crucial to many aspects of vascular morphogenesis and maintenance of vasculature function. Currently the recapitulation of angiogenic ECM microenvironment is still challenging, due mainly to its diverse components and complex organization. Here we investigate the angiogenic potential of human lung fibroblast-derived matrix (hFDM) in creating a three-dimensional (3D) vascular construct. hFDM was obtained via decellularization of in vitro cultured human lung fibroblasts and analyzed via immunofluorescence staining and ELISA, which detect multiple ECM macromolecules and angiogenic growth factors (GFs). Human umbilical vein endothelial cells (HUVECs) morphology was more elongated and better proliferative on hFDM than on gelatin-coated substrate. To prepare 3D construct, hFDM is collected, quantitatively analyzed, and incorporated in collagen hydrogel (Col) with HUVECs. Capillary-like structure (CLS) formation at 7day was significantly better with the groups containing higher doses of hFDM compared to the Col group (control). Moreover, the group (Col/hFDM/GFs) with both hFDM and angiogenic GFs (VEGF, bFGF, SDF-1) showed the synergistic activity on CLS formation and found much larger capillary lumen diameters with time. Further analysis of hFDM via angiogenesis antibody array kit reveals abundant biochemical cues, such as angiogenesis-related cytokines, GFs, and proteolytic enzymes. Significantly up-regulated expression of VE-cadherin and ECM-specific integrin subunits was also noticed in Col/hFDM/GFs. In addition, transplantation of Col/hFMD/GFs with HUVECs in skin wound model presents more effective re-epithelialization, many regenerated hair follicles, better transplanted cells viability, and advanced neovascularization. We believe that current system is a very promising platform for 3D vasculature construction in vitro and for cell delivery toward therapeutic applications in vivo. Functional 3D vasculature construction in vitro is still challenging due to the difficulty of recapitulating the complex angiogenic extracellular matrix (ECM) environment. Herein, we present a simple and practical method to create an angiogenic 3D environment via incorporation of human lung fibroblast-derived matrix (hFDM) into collagen hydrogel. We found that hFDM offers a significantly improved angiogenic microenvironment for HUVECs on 2D substrates and in 3D construct. A synergistic effect of hFDM and angiogenic growth factors has been well confirmed in 3D condition. The prevascularized 3D collagen constructs also facilitate skin wound healing. We believe that current system should be a convenient and powerful platform in engineering 3D vasculature in vitro, and in delivering cells for therapeutic purposes in vivo. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zhao, Yingxin; Valbuena, Gustavo; Walker, David H; Gazi, Michal; Hidalgo, Marylin; DeSousa, Rita; Oteo, Jose Antonio; Goez, Yenny; Brasier, Allan R
2016-01-01
Rickettsia conorii is the etiologic agent of Mediterranean spotted fever, a re-emerging infectious disease with significant mortality. This Gram-negative, obligately intracellular pathogen is transmitted via tick bites, resulting in disseminated vascular endothelial cell infection with vascular leakage. In the infected human, Rickettsia conorii infects endothelial cells, stimulating expression of cytokines and pro-coagulant factors. However, the integrated proteomic response of human endothelial cells to R. conorii infection is not known. In this study, we performed quantitative proteomic profiling of primary human umbilical vein endothelial cells (HUVECs) with established R conorii infection versus those stimulated with endotoxin (LPS) alone. We observed differential expression of 55 proteins in HUVEC whole cell lysates. Of these, we observed induction of signal transducer and activator of transcription (STAT)1, MX dynamin-like GTPase (MX1), and ISG15 ubiquitin-like modifier, indicating activation of the JAK-STAT signaling pathway occurs in R. conorii-infected HUVECs. The down-regulated proteins included those involved in the pyrimidine and arginine biosynthetic pathways. A highly specific biotinylated cross-linking enrichment protocol was performed to identify dysregulation of 11 integral plasma membrane proteins that included up-regulated expression of a sodium/potassium transporter and down-regulation of α-actin 1. Analysis of Golgi and soluble Golgi fractions identified up-regulated proteins involved in platelet-endothelial adhesion, phospholipase activity, and IFN activity. Thirty four rickettsial proteins were identified with high confidence in the Golgi, plasma membrane, or secreted protein fractions. The host proteins associated with rickettsial infections indicate activation of interferon-STAT signaling pathways; the disruption of cellular adhesion and alteration of antigen presentation pathways in response to rickettsial infections are distinct from those produced by nonspecific LPS stimulation. These patterns of differentially expressed proteins suggest mechanisms of pathogenesis as well as methods for diagnosis and monitoring Rickettsia infections. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Bou Khzam, Lara; Boulahya, Rahma; Abou-Saleh, Haissam; Hachem, Ahmed; Zaid, Younes; Merhi, Yahye
2013-01-01
The role of endothelial progenitor cells in vascular repair is related to their incorporation at sites of vascular lesions, differentiation into endothelial cells, and release of various angiogenic factors specifically by a subset of early outgrowth endothelial progenitor cells (EOCs). It has been shown that patients suffering from cardiovascular disease exhibit increased levels of circulating and soluble CD40 ligand (sCD40L), which may influence the function of EOCs. We have previously shown that the inflammatory receptor CD40 is expressed on EOCs and its ligation with sCD40L impairs the anti-platelet function of EOCs. In the present study, we aimed at investigating the effect of sCD40L on the function of EOCs in endothelial repair. Human peripheral blood mononuclear cell-derived EOCs express CD40 and its adaptor proteins, the tumor necrosis factor receptor-associated factors; TRAF1, TRAF2 and TRAF3. Stimulation of EOCs with sCD40L increased the expression of TRAF1, binding of TRAF2 to CD40 and phosphorylation of p38 mitogen activated protein kinase (MAPK). In an in vitro wound healing assay, stimulation of EOCs with sCD40L increased the release of matrix metalloproteinase 9 (MMP-9) in a concentration-dependent manner and significantly enhanced the angiogenic potential of cultured human umbilical vein endothelial cells (HUVECs). Inhibition of p38 MAPK reversed sCD40L-induced MMP-9 release by EOCs, whereas inhibition of MMP-9 reversed their pro-angiogenic effect on HUVECs. This study reveals the existence of a CD40L/CD40/TRAF axis in EOCs and shows that sCD40L increases the pro-angiogenic function of EOCs on cultured HUVECs by inducing a significant increase in MMP-9 release via, at least, the p38 MAPK signaling pathway. PMID:24358353
Bou Khzam, Lara; Boulahya, Rahma; Abou-Saleh, Haissam; Hachem, Ahmed; Zaid, Younes; Merhi, Yahye
2013-01-01
The role of endothelial progenitor cells in vascular repair is related to their incorporation at sites of vascular lesions, differentiation into endothelial cells, and release of various angiogenic factors specifically by a subset of early outgrowth endothelial progenitor cells (EOCs). It has been shown that patients suffering from cardiovascular disease exhibit increased levels of circulating and soluble CD40 ligand (sCD40L), which may influence the function of EOCs. We have previously shown that the inflammatory receptor CD40 is expressed on EOCs and its ligation with sCD40L impairs the anti-platelet function of EOCs. In the present study, we aimed at investigating the effect of sCD40L on the function of EOCs in endothelial repair. Human peripheral blood mononuclear cell-derived EOCs express CD40 and its adaptor proteins, the tumor necrosis factor receptor-associated factors; TRAF1, TRAF2 and TRAF3. Stimulation of EOCs with sCD40L increased the expression of TRAF1, binding of TRAF2 to CD40 and phosphorylation of p38 mitogen activated protein kinase (MAPK). In an in vitro wound healing assay, stimulation of EOCs with sCD40L increased the release of matrix metalloproteinase 9 (MMP-9) in a concentration-dependent manner and significantly enhanced the angiogenic potential of cultured human umbilical vein endothelial cells (HUVECs). Inhibition of p38 MAPK reversed sCD40L-induced MMP-9 release by EOCs, whereas inhibition of MMP-9 reversed their pro-angiogenic effect on HUVECs. This study reveals the existence of a CD40L/CD40/TRAF axis in EOCs and shows that sCD40L increases the pro-angiogenic function of EOCs on cultured HUVECs by inducing a significant increase in MMP-9 release via, at least, the p38 MAPK signaling pathway.
Induction of apoptosis by grape seed extract (Vitis vinifera) in oral squamous cell carcinoma.
Aghbali, Amirala; Hosseini, Sepideh Vosough; Delazar, Abbas; Gharavi, Nader Kalbasi; Shahneh, Fatemeh Zare; Orangi, Mona; Bandehagh, Ali; Baradaran, Behzad
2013-08-01
Development of novel therapeutic modalities is crucial for the treatment of oral squamous cell carcinoma (OSCC). Recent scientific studies have been focused on herbal medicines as potent anti-cancer drug candidates. This study is the first to investigate the cytotoxic effects and the mechanism of cell death induced by grape seed extract (GSE) in oral squamous cell carcinoma (KB cells). MTT (3-(4,5-dimetylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) and trypan blue assays were performed in KB cells as well as human umbilical vein endothelial cells (HUVEC) were used to analyze the cytotoxic activity of GSE. Furthermore, the apoptosis-inducing action of the extract was determined by TUNEL, DNA fragmentation and cell death analysis. Statistical significance was determined by analysis of variance (ANOVA), followed by Duncan's test at a significance level of P≤0.05. The results showed apoptotic potential of GSE, confirmed by significant inhibition of cell growth and viability in a dose- and time- dependent manner without inducing damage to non-cancerous cell line HUVEC. The results of this study suggest that this plant contains potential bioactive compound(s) for the treatment of oral squamous cell carcinoma.
Ledford, Kelly J; Murphy, Nikki; Zeigler, Frank; Bartel, Ronnda L; Tubo, Ross
2015-03-13
Bone marrow derived cellular therapies are an emerging approach to promoting therapeutic angiogenesis in ischemic cardiovascular disease. However, the percentage of regenerative cells in bone marrow mononuclear cells (BMMNCs) is small, and large amounts of BMMNCs are required. Ixmyelocel-T, an expanded autologous multicellular therapy, is manufactured from a small sample of bone marrow aspirate. Ixmyelocel-T contains expanded populations of mesenchymal stromal cells (MSCs) and M2-like macrophages, as well as many of the CD45+ cells found in the bone marrow. It is hypothesized that this expanded multi-cellular therapy would induce angiogenesis and endothelial repair. A rat model of hind limb ischemia was used to determine the effects of ixmyelocel-T on blood flow recovery. To further determine the effects on endothelial cells, ixmyelocel-T was co-cultured with human umbilical vein endothelial cells (HUVEC) in non-contacting Transwell® inserts. Co-culture of HUVECs with ixmyelocel-T resulted secretion of a variety of pro-angiogenic factors. HUVECs stimulated by ixmyelocel-T exhibited enhanced migration, proliferation, and branch formation. Ixmyelocel-T co-culture also resulted in increased endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production. In tumor necrosis factor alpha (TNFα)-stimulated HUVECs, ixmyelocel-T co-culture decreased apoptosis and reactive oxygen species generation, increased super oxide dismutase activity, and decreased nuclear factor kappa B (NFκB) activation. Treatment with ixmyelocel-T in a rat model of hind limb ischemia resulted in significantly increased blood flow perfusion and capillary density, gene expression and plasma levels of the anti-inflammatory cytokine interleukin (IL)-10, plasma nitrates, plasma platelet-derived growth factor (PDGF)-BB, vascular endothelial growth factor (VEGF) expression, and significantly decreased plasma thiobarbituric acid reactive substances (TBARS). This work demonstrates that ixmyelocel-T interacts with endothelial cells in a paracrine manner, resulting in angiogenesis and endothelial protection. This data suggests that ixmyelocel-T could be useful for promoting of angiogenesis and tissue repair in ischemic cardiovascular diseases. In conclusion, ixmyelocel-T therapy may provide a new aspect of therapeutic angiogenesis in this patient population where expanded populations of regenerative cells might be required.
Hecke, Anneke; Brooks, Hilary; Meryet-Figuière, Matthieu; Minne, Stephanie; Konstantinides, Stavros; Hasenfuss, Gerd; Lebleu, Bernard; Schäfer, Katrin
2006-05-01
Clinical as well as experimental evidence suggests that vascular overexpression of plasminogen activator inhibitor (PAI)-1, the primary physiological inhibitor of both urokinase and tissue-type plasminogen activator, may be involved in the pathophysiology of atherosclerosis and cardiovascular disease. We investigated the feasibility, efficacy and functional effects of PAI-1 gene silencing in human vascular endothelial cells using small interfering RNA. Double-stranded 21 bp-RNA molecules targeted at sequences within the human PAI-1 gene were constructed. Successful siRNA transfection of HUVEC was confirmed using fluorescence microscopy and flow cytometry. One of five candidate siRNA sequences reduced PAI-1 mRNA and protein in a concentration- and time-dependent manner. Suppression of PAI-1 mRNA was detected up to 72 hours after transfection. Moreover, siRNA treatment reduced the activity of PAI-1 released from HUVEC, and prevented the oxLDL- or LPS-induced upregulation of PAI-1 secretion. Importantly, siRNA treatment did not affect the expression of other endothelial-cell markers. Moreover, downregulation of PAI-1 significantly enhanced the ability of endothelial cells to adhere to vitronectin, and this effect could be reversed upon addition of recombinant PAI-1. SiRNA-mediated reduction of PAI-1 expression may be a promising strategy for dissecting the effects of PAI-1 on vascular homeostasis.
Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture.
Kuss, Mitchell A; Wu, Shaohua; Wang, Ying; Untrauer, Jason B; Li, Wenlong; Lim, Jung Yul; Duan, Bin
2017-09-13
Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated that 3D co-cultured ADMSC-HUVEC generated capillary-like networks within the porous 3D printed scaffold. The co-culture systems promoted in vitro vascularization, but had no significant effects on osteogenesis. The prevascularized constructs were subcutaneously implanted into nude mice to evaluate the in vivo vascularization capacity and the functionality of engineered vessels. The hydrogel systems facilitated microvessel and lumen formation and promoted anastomosis of vascular networks of human origin with host murine vasculature. These findings demonstrate the potential of prevascularized 3D printed scaffolds with anatomical shape for the healing of larger bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.
Ghanbarzadeh, Saeed; Khorrami, Arash; Pourmoazzen, Zhaleh; Arami, Sanam
2015-05-01
The purpose of the present investigation was to prepare a plasma stable, pH-sensitive niosomal formulation to enhance Sirolimus efficacy and selectivity. pH-sensitive niosomal formulations bearing PEG-Poly (monomethyl itaconate)-CholC6 (PEG-PMMI-CholC6) copolymers and cholesteryl hemisuccinate (CHEMS) were prepared by a modified ethanol injection method and characterized with regard to pH-responsiveness and stability in human serum. The ability of pH-sensitive niosomes to enhance the Sirolimus cytotoxicity was evaluated in vitro using human erythromyeloblastoid leukemia cell line (K562) and compared with cytotoxicity effect on human umbilical vein endothelial cells (HUVEC). This study showed that both formulations can be rendered pH-sensitive property and were found to rapidly release their contents under mildly acidic conditions. However, the CHEMS-based niosomes lost their pH-sensitivity after incubation in plasma, whereas, PEG-PMMI-CholC6 niosomes preserved their ability to respond to pH change. Sirolimus encapsulated in pH-sensitive niosomes exhibited a higher cytotoxicity than the control conventional formulation on K562 cell line. On the other hand, both pH-sensitive niosomes showed lower antiproliferative effect on HUVEC cells. Plasma stable, pH-sensitive PEG-PMMI-CholC6-based niosomes can improve the in vitro efficiency and also reduce the side effects of Sirolimus.
Soraya, Hamid; Moloudizargari, Milad; Aghajanshakeri, Shahin; Javaherypour, Soheil; Mokarizadeh, Aram; Hamedeyazdan, Sanaz; Esmaeli Gouvarchin Ghaleh, Hadi; Mikaili, Peyman; Garjani, Alireza
2015-01-29
Cynodon dactylon, a valuable medicinal plant, is widely used in Iranian folk medicine for the treatment of various cardiovascular diseases such as heart failure and atherosclerosis. Moreover, its anti-diabetic, anti-cancer and anti-microbial properties have been also reported. Concerning the critical role of angiogenesis in the incidence and progression of tumors and also its protective role in cardiovascular diseases, we investigated the effects of the aqueous extract prepared from the rhizomes of C. dactylon on vascular endothelial growth factor (VEGF) expressions in Human Umbilical Vein Endothelial Cells (HUVECs) and also on angiogenesis in carrageenan induced air-pouch model in rats. In the air-pouch model, carrageenan was injected into an air-pouch on the back of the rats and following an IV injection of carmine red dye on day 6, granulation tissue was processed for the assessment of the dye content. Furthermore, in an in vitro study, angiogenic property of the extract was assessed through its effect on VEGF expression in HUVECs. Oral administration of 400 mg/kg/day of the extract significantly increased angiogenesis (p<0.05) and markedly decreased neutrophil (p<0.05) and total leukocyte infiltration (p<0.001) into the granulation tissues. Moreover, the extract increased the expression of total VEGF in HUVECs at a concentration of (100 μl/ml). The present study showed that the aqueous extract of C. dactylon promotes angiogenesis probably through stimulating VEGF expression.
Ezetimibe inhibits platelet activation and uPAR expression on endothelial cells.
Becher, Tobias; Schulze, Torsten J; Schmitt, Melanie; Trinkmann, Frederik; El-Battrawy, Ibrahim; Akin, Ibrahim; Kälsch, Thorsten; Borggrefe, Martin; Stach, Ksenija
2017-01-15
Lipid lowering therapy constitutes the basis of cardiovascular disease therapy. The purpose of this study was to investigate effects of ezetimibe, a selective inhibitor of intestinal cholesterol absorption, on platelets and endothelial cells in an in vitro endothelial cell model. After a 24h incubation period with ezetimibe (concentrations 1, 50, 100 and 1000ng/ml), human umbilical vein endothelial cells (HUVEC) were stimulated for 1h with lipopolysaccharide (LPS) and were then incubated in direct contact with activated platelets. Following this, the expression of CD40L and CD62P on platelets, and the expression of ICAM-1, VCAM-1, uPAR, and MT1-MMP on endothelial cells were measured by flow cytometry. Supernatants were analysed by enzyme linked immunosorbent assay for soluble MCP-1, IL-6 and MMP-1. The increased expression of uPAR on endothelial cells by proinflammatory stimulation with LPS and by direct endothelial contact with activated platelets was significantly reduced through pre-incubation with 100ng/ml and 1000ng/ml ezetimibe (p<0.05). Platelets directly incubated with ezetimibe but without endothelial cell contact showed significantly reduced CD62P and CD40L surface expression (p<0.05). Ezetimibe had no significant effects on HUVEC expression of MT1-MMP, ICAM-1 and VCAM-1 and on CD40L expression on platelets in direct contact with endothelial cells. Levels of soluble IL-6 in HUVEC supernatants were significantly lower after pre-incubation with ezetimibe. In this in vitro analysis, ezetimibe directly attenuates platelet activation and has significant endothelial cell mediated effects on selected markers of atherosclerosis. Copyright © 2016. Published by Elsevier Ireland Ltd.
Diesel Exhaust Particle Exposure Causes Redistribution of Endothelial Tube VE-Cadherin
Chao, Ming-Wei; Kozlosky, John; Po, Iris P.; Strickland, Pamela Ohman; Svoboda, Kathy K. H.; Cooper, Keith; Laumbach, Robert; Gordon, Marion K.
2010-01-01
Whether diesel exhaust particles (DEPs) potentially have a direct effect on capillary endothelia was examined by following the adherens junction component, vascular endothelial cell cadherin (VE-cadherin). This molecule is incorporated into endothelial adherens junctions at the cell surface, where it forms homodimeric associations with adjacent cells and contributes to the barrier function of the vasculature (Dejana et al., 2008; Venkiteswaran et al., 2002; Villasante et al., 2007). Human umbilical vein endothelial cells (HUVECs) that were pre-formed into capillary-like tube networks in vitro were exposed to DEPs for 24 hr. After exposure, the integrity of VE-cadherin in adherens junctions was assessed by immunofluorescence analysis, and demonstrated that increasing concentrations of DEPs caused increasing redistribution of VE-cadherin away from the cell-cell junctions toward intracellular locations. Since HUVEC tube networks are three-dimensional structures, whether particles entered the endothelial cells or tubular lumens was also examined. The data indicate that translocation of the particles does occur. The results, obtained in a setting that removes the confounding effects of inflammatory cells or blood components, suggest that if DEPs encounter alveolar capillaries in vivo, they may be able to directly affect the endothelial cell-cell junctions. PMID:20887764
Bürgin-Maunder, Corinna S; Brooks, Peter R; Russell, Fraser D
2013-11-08
Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) produce cardiovascular benefits by improving endothelial function. Endothelial cells store von Willebrand factor (vWF) in cytoplasmic Weibel-Palade bodies (WPBs). We examined whether LC n-3 PUFAs regulate WPB degranulation using cultured human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with or without 75 or 120 µM docosahexaenoic acid or eicosapentaenoic acid for 5 days at 37 °C. WPB degranulation was stimulated using phorbol 12-myristate 13-acetate (PMA), and this was assessed by immunocytochemical staining for vWF. Actin reorganization was determined using phalloidin-TRITC staining. We found that PMA stimulated WPB degranulation, and that this was significantly reduced by prior incubation of cells with LC n-3 PUFAs. In these cells, WPBs had rounded rather than rod-shaped morphology and localized to the perinuclear region, suggesting interference with cytoskeletal remodeling that is necessary for complete WPB degranulation. In line with this, actin rearrangement was altered in cells containing perinuclear WPBs, where cells exhibited a thickened actin rim in the absence of prominent cytoplasmic stress fibers. These findings indicate that LC n-3 PUFAs provide some protection against WBP degranulation, and may contribute to an improved understanding of the anti-thrombotic effects previously attributed to LC n-3 PUFAs.
Biological and mechanical interplay at the Macro- and Microscales Modulates the Cell-Niche Fate.
Sarig, Udi; Sarig, Hadar; Gora, Aleksander; Krishnamoorthi, Muthu Kumar; Au-Yeung, Gigi Chi Ting; de-Berardinis, Elio; Chaw, Su Yin; Mhaisalkar, Priyadarshini; Bogireddi, Hanumakumar; Ramakrishna, Seeram; Boey, Freddy Yin Chiang; Venkatraman, Subbu S; Machluf, Marcelle
2018-03-02
Tissue development, regeneration, or de-novo tissue engineering in-vitro, are based on reciprocal cell-niche interactions. Early tissue formation mechanisms, however, remain largely unknown given complex in-vivo multifactoriality, and limited tools to effectively characterize and correlate specific micro-scaled bio-mechanical interplay. We developed a unique model system, based on decellularized porcine cardiac extracellular matrices (pcECMs)-as representative natural soft-tissue biomaterial-to study a spectrum of common cell-niche interactions. Model monocultures and 1:1 co-cultures on the pcECM of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) were mechano-biologically characterized using macro- (Instron), and micro- (AFM) mechanical testing, histology, SEM and molecular biology aspects using RT-PCR arrays. The obtained data was analyzed using developed statistics, principal component and gene-set analyses tools. Our results indicated biomechanical cell-type dependency, bi-modal elasticity distributions at the micron cell-ECM interaction level, and corresponding differing gene expression profiles. We further show that hMSCs remodel the ECM, HUVECs enable ECM tissue-specific recognition, and their co-cultures synergistically contribute to tissue integration-mimicking conserved developmental pathways. We also suggest novel quantifiable measures as indicators of tissue assembly and integration. This work may benefit basic and translational research in materials science, developmental biology, tissue engineering, regenerative medicine and cancer biomechanics.
Nattokinase-promoted tissue plasminogen activator release from human cells.
Yatagai, Chieko; Maruyama, Masugi; Kawahara, Tomoko; Sumi, Hiroyuki
2008-01-01
When heated to a temperature of 70 degrees C or higher, the strong fibrinolytic activity of nattokinase in a solution was deactivated. Similar results were observed in the case of using Suc-Ala-Ala-Pro-Phe-pNA and H-D-Val-Leu-Lys-pNA, which are synthetic substrates of nattokinase. In the current study, tests were conducted on the indirect fibrinolytic effects of the substances containing nattokinase that had been deactivated through heating at 121 degrees C for 15 min. Bacillus subtilis natto culture solutions made from three types of bacteria strain were heat-treated and deactivated, and it was found that these culture solutions had the ability to generate tissue plasminogen activators (tPA) from vascular endothelial cells and HeLa cells at certain concentration levels. For example, it was found that the addition of heat-treated culture solution of the Naruse strain (undiluted solution) raises the tPA activity of HeLa cells to about 20 times that of the control. Under the same conditions, tPA activity was raised to a level about 5 times higher for human vascular endothelial cells (HUVEC), and to a level about 24 times higher for nattokinase sold on the market. No change in cell count was observed for HeLa cells and HUVEC in the culture solution at these concentrations, and the level of activity was found to vary with concentration. Copyright 2009 S. Karger AG, Basel.
Scaffold-free Prevascularized Microtissue Spheroids for Pulp Regeneration
Dissanayaka, W.L.; Zhu, L.; Hargreaves, K.M.; Jin, L.; Zhang, C.
2014-01-01
Creating an optimal microenvironment that mimics the extracellular matrix (ECM) of natural pulp and securing an adequate blood supply for the survival of cell transplants are major hurdles that need to be overcome in dental pulp regeneration. However, many currently available scaffolds fail to mimic essential functions of natural ECM. The present study investigated a novel approach involving the use of scaffold-free microtissue spheroids of dental pulp stem cells (DPSCs) prevascularized by human umbilical vein endothelial cells (HUVECs) in pulp regeneration. In vitro-fabricated microtissue spheroids were inserted into the canal space of tooth-root slices and were implanted subcutaneously into immunodeficient mice. Histological examination revealed that, after four-week implantation, tooth-root slices containing microtissue spheroids resulted in well-vascularized and cellular pulp-like tissues, compared with empty tooth-root slices, which were filled with only subcutaneous fat tissue. Immunohistochemical staining indicated that the tissue found in the tooth-root slices was of human origin, as characterized by the expression of human mitochondria, and contained odontoblast-like cells organized along the dentin, as assessed by immunostaining for nestin and dentin sialoprotein (DSP). Vascular structures formed by HUVECs in vitro were successfully anastomosed with the host vasculature upon transplantation in vivo, as shown by immunostaining for human CD31. Collectively, these findings demonstrate that prevascularized, scaffold-free, microtissue spheroids can successfully regenerate vascular dental pulp-like tissue and also highlight the significance of the microtissue microenvironment as an optimal environment for successful pulp-regeneration strategies. PMID:25201919
Tsai, Yi-Fang; Hsu, Chih-Yi; Yang, Muh-Hwa; Shyr, Yi-Ming
2017-01-01
Aims There is good evidence that the tumor microenvironment plays an important role in cancer metastasis and progression. Our previous studies have shown that brain-derived neurotrophic factor (BDNF) participates in the process of metastasis and in the migration of cancer cells. The aim of this study was to investigate the role of BDNF on the tumor cell microenvironment, namely, the cancer cell-endothelial cell interaction of TNBC cells. Methods We conducted oligoneucleotide microarray analysis of potential biomarkers that are able to differentiate recurrent TNBC from non-recurrent TNBC. The MDA-MB-231 and human endothelial HUVEC lines were used for this study and our approaches included functional studies, such as migration assay, as well as Western blot and real-time PCR analysis of migration and angiogenic signaling. In addition, we analyzed the survival outcome of TNBC breast cancer patients according to their expression level of BDNF using clinical samples. Results The results demonstrated that BDNF was able to bring about autocrinal (MDA-MB-231) and paracrinal (HUVECs) regulation of BDNF-TrkB gene expression and this affected cell migratory activity. The BDNF-induced migratory activity was blocked by inhibitors of ERK, PI3K and TrkB when MDA-MB-231 cells were examined, but only an inhibitor of ERK blocked this activity when HUVEC cells were used. Furthermore, decreased migratory activity was found for △BDNF and △TrkB cell lines. Ingenuity pathway analysis (IPA) of MDA-MB-231 cells showed that BDNF is a key factor that is able to regulate a network made up of metalloproteases and calmodulin. Protein expression levels in a tissue array of tumor slices were found to be correlated with patient prognosis and the results showed that there was significant correlation of TrkB expression, but not of BDNF. expressionwith patient DFS and OS. Conclusion Our study demonstrates that up-regulation of the BDNF signaling pathway seems tobe involved in the mechanism associated with early recurrence in triple negative breast cancer cell. In addition, BDNF can function in either an autocrine or a paracrine manner to increase the migration ability of both MDA-MB-231 cells and HUVEC cells. Finally, overexpression of TrkB, but not of BDNF, is significantly associated with a poor survival outcome for TNBC patients. PMID:28604807
Tsai, Yi-Fang; Tseng, Ling-Ming; Hsu, Chih-Yi; Yang, Muh-Hwa; Chiu, Jen-Hwey; Shyr, Yi-Ming
2017-01-01
There is good evidence that the tumor microenvironment plays an important role in cancer metastasis and progression. Our previous studies have shown that brain-derived neurotrophic factor (BDNF) participates in the process of metastasis and in the migration of cancer cells. The aim of this study was to investigate the role of BDNF on the tumor cell microenvironment, namely, the cancer cell-endothelial cell interaction of TNBC cells. We conducted oligoneucleotide microarray analysis of potential biomarkers that are able to differentiate recurrent TNBC from non-recurrent TNBC. The MDA-MB-231 and human endothelial HUVEC lines were used for this study and our approaches included functional studies, such as migration assay, as well as Western blot and real-time PCR analysis of migration and angiogenic signaling. In addition, we analyzed the survival outcome of TNBC breast cancer patients according to their expression level of BDNF using clinical samples. The results demonstrated that BDNF was able to bring about autocrinal (MDA-MB-231) and paracrinal (HUVECs) regulation of BDNF-TrkB gene expression and this affected cell migratory activity. The BDNF-induced migratory activity was blocked by inhibitors of ERK, PI3K and TrkB when MDA-MB-231 cells were examined, but only an inhibitor of ERK blocked this activity when HUVEC cells were used. Furthermore, decreased migratory activity was found for △BDNF and △TrkB cell lines. Ingenuity pathway analysis (IPA) of MDA-MB-231 cells showed that BDNF is a key factor that is able to regulate a network made up of metalloproteases and calmodulin. Protein expression levels in a tissue array of tumor slices were found to be correlated with patient prognosis and the results showed that there was significant correlation of TrkB expression, but not of BDNF. expressionwith patient DFS and OS. Our study demonstrates that up-regulation of the BDNF signaling pathway seems tobe involved in the mechanism associated with early recurrence in triple negative breast cancer cell. In addition, BDNF can function in either an autocrine or a paracrine manner to increase the migration ability of both MDA-MB-231 cells and HUVEC cells. Finally, overexpression of TrkB, but not of BDNF, is significantly associated with a poor survival outcome for TNBC patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukamoto, Ikuko, E-mail: tukamoto@med.kagawa-u.ac.jp; Sakakibara, Norikazu; Maruyama, Tokumi
Research highlights: {yields} A novel nucleic acid analogue (2Cl-C.OXT-A, m.w. 284) showed angiogenic potency. {yields} It stimulated the tube formation, proliferation and migration of HUVEC in vitro. {yields} 2Cl-C.OXT-A induced the activation of ERK1/2 and MEK in HUVEC. {yields} Angiogenic potency in vivo was confirmed in CAM assay and rabbit cornea assay. {yields} A synthesized small angiogenic agent would have great clinical therapeutic value. -- Abstract: A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 {mu}M was stronger than that of vascular endothelial growth factor (VEGF), a positivemore » control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.« less
Activation of endothelial-leukocyte adhesion molecule 1 (ELAM-1) gene transcription
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, K.F.; Tarr, P.I.; Bomsztyk, K.
1991-08-01
Leukocyte adherence to endothelium is in part mediated by the transient expression of endothelial-leukocyte adhesion molecule 1 (ELAM-1) on endothelial surfaces stimulated by tumor necrosis factor {alpha} (TNF), interleukin (IL) 1, or bacterial lipopolysaccharide (LPS). The intracellular factors controlling induction of ELAM-1 mRNA and protein are unknown. In nuclear runoff experiments with cultured human umbilical vein endothelial cells (HUVEC), the authors demonstrate that transcriptional activation of the ELAM-1 gene occurs following stimulation with TNF. Sequence analysis of the 5{prime} flanking region of the ELAM-1 gene reveals consensus DNA-binding sequences for two known transcription factors, NF-{kappa}B and AP-1. Gel mobility shiftmore » assays demonstrate that TNF, IL-1, or LPS induces activation of NF-{kappa}B-like DNA binding activity in HUVEC. Phorbol 12-myristate 13-acetate, a known activator of protein kinase C (PKC), weakly induces NF-{kappa}B-like activity, ELAM-1 mRNA, and ELAM-1 surface expression in HUVEC. However, TNF, IL-1, and LPS do not activate PKC in HUVEC at doses that strongly induce NF-{kappa}B-like protein activation and ELAM-1 gene expression. PKC blockade with H7 does not inhibit activation of these NF-kB-like proteins but does inhibit ELAM-1 gene transcription. They conclude that PKC-independent activation of NF-{kappa}B in HUVEC with TNF, IL-1, or LPS is associated with, but not sufficient for, activation of ELAM-1 gene transcription.« less
E-selectin ligand-1 (ESL-1) is a novel adiponectin binding protein on cell adhesion.
Yamamoto, Hiroyasu; Kuroda, Nana; Uekita, Hiromi; Kochi, Ikoi; Matsumoto, Akane; Niinaga, Ryu; Funahashi, Tohru; Shimomura, Iichiro; Kihara, Shinji
2016-02-05
Adiponectin (APN) is an adipocyte-derived bioactive molecule with anti-diabetic and anti-atherogenic properties. Although anti-diabetic effects are mostly mediated by the adiponectin receptors AdipoR1 and AdipoR2, the anti-atherogenic mechanisms have not been fully elucidated. In this study, we identified E-selectin ligand (ESL)-1 as a novel APN-binding protein by mass spectrometry analysis of HepG2 cell-derived immunoprecipitant with an anti-APN antibody. Cell adhesion assays using fluorescence-labelled monocyte cell line THP-1 cells and human umbilical vein endothelial cells (HUVECs) revealed that APN-pre-treated THP-1 cells had reduced binding ability to HUVECs. This APN-mediated suppressive effect on monocyte binding to endothelial cells was partially abrogated by targeting ESL-1 with shRNA in THP-1 cells. In addition, serial mutagenesis analysis disclosed that five extracellular amino acids close to the N-terminus of ESL-1 were essential for binding with APN. Our results highlight the fact that interaction between APN and ESL-1 could provide a fundamental mechanism underlying the anti-atherogenic properties of APN. Copyright © 2016 Elsevier Inc. All rights reserved.
Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model.
Fotticchia, Iolanda; Guarnieri, Daniela; Fotticchia, Teresa; Falanga, Andrea Patrizia; Vecchione, Raffaele; Giancola, Concetta; Netti, Paolo Antonio
2016-08-01
Targeted therapies represent a challenge in modern medicine. In this contest, we propose a rapid and reliable methodology based on Isothermal Titration Calorimetry (ITC) coupled with confluent cell layers cultured around biocompatible templating microparticles to quantify the number of overexpressing receptors on cell membrane and study the energetics of receptor-ligand binding in near-physiological conditions. In the in vitro model here proposed we used the bEnd3 cell line as brain endothelial cells to mimic the blood brain barrier (BBB) cultured on dextran microbeads ranging from 67μm to 80μm in size (Cytodex) and the primary human umbilical vein cells (HUVEC) for comparison. The revealed affinity between transferrin (Tf) and transferrin receptor (TfR) in both systems is very high, Kd values are in the order of nM. Conversely, the value of TfRs/cell reveals a 100-fold increase in the number of TfRs per bEnd3 cells compared to HUVEC cells. The presented methodology can represent a novel and helpful strategy to identify targets, to address drug design and selectively deliver therapeutics that can cross biological barriers such as the blood brain barrier. Copyright © 2016 Elsevier B.V. All rights reserved.
Baljinnyam, Erdene; Umemura, Masanari; Chuang, Christine; De Lorenzo, Mariana S; Iwatsubo, Mizuka; Chen, Suzie; Goydos, James S; Ishikawa, Yoshihiro; Whitelock, John M; Iwatsubo, Kousaku
2014-01-01
Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N-sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N-sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2-mediated cell–cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM-induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N-sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS–FGF2-mediated cell–cell communication. PMID:24725364
Kapitonova, M Y; Muid, S; Froemming, G R A; Yusoff, W N W; Othman, S; Ali, A M; Nawawi, H M
2012-12-01
Microgravity, hypergravity, vibration, ionizing radiation and temperature fluctuations are major factors of outer space flight affecting human organs and tissues. There are several reports on the effect of space flight on different human cell types of mesenchymal origin while information regarding changes to vascular endothelial cells is scarce. Ultrastructural and cytophysiological features of macrovascular endothelial cells in outer space flight and their persistence during subsequent culturing were demonstrated in the present investigation. At the end of the space flight, endothelial cells displayed profound changes indicating cytoskeletal lesions and increased cell membrane permeability. Readapted cells of subsequent passages exhibited persisting cytoskeletal changes, decreased metabolism and cell growth indicating cellular senescence.
Characteristics of tumor and host cells in 3-D simulated microgravity environment
NASA Astrophysics Data System (ADS)
Chopra, V.; Dinh, T.; Wood, T.; Pellis, N.; Hannigan, E.
Co-cultures of three-dimensional (3-D) constructs of one cell type with dispersed cells of a second cell type in low-shear rotating suspension cultures in simulated microgravity environment have been used to investigate invasive properties of normal and malignant cell types. We have shown that the epithelial and endothelial cells undergo a switch in characteristics when grown in an in vitro 3-D environment, that mimics the in vivo host environment as compared with conventional two-dimensional (2-D) monolayer cultures. Histological preparations and immunohistochemical staining procedures of cocultured harvests demonstrated various markers of interest: like collagen vimentin, mucin, elastin, fibrin, fibrinogen, cytokeratin, adhesion molecules and various angiogenic factors by tumor cells from gynecological cancer patients along with fibroblasts, endothelial cells and patient-derived mononuclear cells (n=8). The growth rate was enhanced 10-15 folds by 3-D cocultures of patient-derived cells as compared with 2-D monolayer cultures and 3-D monocultures. The production of interleukin-2, interleukin-6, interleukin -8, vascular endothelial cell growth factor, basic fibroblast growth factor, and angiogenin was studied by using ELISA and RT- PCR. Human umbilical vein-derived endothelial cell (HUVEC) were used to study the mitogenic response of the conditioned medium collected from 3-D monocultures and cocultures during proliferation and migration assays. The conditioned medium collected from 3-D cocultures of cancer cells also 1) increased the expression of message levels of vascular endothelial growth factor and its receptor flt-1 and KDR was observed by HUVEC, and 2) increased the expression of intracellular and vascular cell adhesion molecules on the surface of HUVEC, when measured by using Live cell ELISA assays and immunofluorescent staining as compared with 3-D monocultures of normal epithelial cells. There was an increase in production of 1) enzymatic activity that could generate bioactive angiostatin from purified human plasminogen, and 2) fibrin (red), mucin (blue), and elastic fiber (black) by cell aggregates of 3-D monocultures of patient-derived cells as compared with 3-D monocultures of normal epithelial cells. This coculture system can be used to study the effectiveness of various antiangiogenic agents on endothelial cell proliferation and migration and also the interaction of multiple cell types in a cost effective fashion, since it provides new insights into the invasive process and its effects on both invading and invaded cells.
Xu, Xiaohui; Ma, Congmin; Liu, Chao; Duan, Zhihui; Zhang, Li
2018-06-14
Atherosclerosis remains to be one of the most common vascular disorders resulting in morbidity and mortality in the world. Recent studies suggested that endothelial cells (ECs) injury caused by oxidative low-density lipoprotein (ox-LDL) is an early marker for atherosclerosis. Nevertheless, the mechanisms of ox-LDL-induced ECs injury are complicated and largely unknown. Here, we found lncRNA XIST (X-inactive specific transcript) was upregulated in human umbilical vein endothelial cells (HUVECs) stimulated by ox-LDL. Knockdown of XIST boosted the cell viability and suppressed cell apoptosis under ox-LDL stimuli. Further experiments identified XIST regulated the expression of Nucleotide-Binding Oligomerization Domain 2 (NOD2) by sponging miR-320. XIST silencing exerted a protective effect on ox-LDL-induced HUVECs injury via miR-320/NOD2 regulatory network. Our data provide insight into the role of the lncRNA XIST in ox-LDL mediated ECs injury, which can aid in developing new therapeutic strategies for the treatment of atherosclerosis. Copyright © 2018 Elsevier Inc. All rights reserved.
The toxic effects of flame retardants: a gene expression study in elucidating their carcinogenicity
NASA Astrophysics Data System (ADS)
Vagula, Mary; Al-Dhumani, Ali; Al-Dhumani, Sajaad; Mastro, Alexandra
2013-05-01
Polybrominated Diphenyl Ethers (PBDEs) are flame retardants widely used in many commercial products, including building materials, electronics, furnishings, motor vehicles, airplanes, plastics, polyurethane foams, and textiles. Although the specific toxic action of these chemicals is not clear, it is reported that they can cause serious damage to the nervous, reproductive, and endocrine systems. These chemicals are branded as "probable carcinogens" by Environmental Protection Agency (EPA). Therefore, this study is taken up to investigate the expression of genes namely, TP-53, RAD1, CRADD, and ATM, which are involved in apoptosis, DNA repair and cell cycle regulation. For this study human umbilical vein endothelial cells (HUVEC) are exposed to 5 μM of BDE-85 (a penta-BDE) and BDE-209 (deca-BDE). The results of this report reveal significant alteration in all the genes under investigation in BDE-85 and BDE-209 exposed cells. The BDE-85 induced responses are significantly more than BDE-209. These results emphasize the congener specific action of PBDEs on the expression of genes relevant to DNA repair and cell division of HUVEC cells.
Nishitani, Wagner Shin; Alencar, Adriano Mesquita; Wang, Yingxiao
2015-01-01
A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7) expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount) and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment) and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion. PMID:25946314
Brouillet, Sophie; Hoffmann, Pascale; Benharouga, Mohamed; Salomon, Aude; Schaal, Jean-Patrick; Feige, Jean-Jacques; Alfaidy, Nadia
2010-08-15
Endocrine gland derived vascular endothelial growth factor (EG-VEGF) also called prokineticin (PK1), has been identified and linked to several biological processes including angiogenesis. EG-VEGF is abundantly expressed in the highest vascularized organ, the human placenta. Here we characterized its angiogenic effect using different experimental procedures. Immunohistochemistry was used to localize EG-VEGF receptors (PROKR1 and PROKR2) in placental and umbilical cord tissue. Primary microvascular placental endothelial cell (HPEC) and umbilical vein-derived macrovascular EC (HUVEC) were used to assess its effects on proliferation, migration, cell survival, pseudovascular organization, spheroid sprouting, permeability and paracellular transport. siRNA and neutralizing antibody strategies were used to differentiate PROKR1- from PROKR2-mediated effects. Our results show that 1) HPEC and HUVEC express both types of receptors 2) EG-VEGF stimulates HPEC's proliferation, migration and survival, but increases only survival in HUVECs. and 3) EG-VEGF was more potent than VEGF in stimulating HPEC sprout formation, pseudovascular organization, and it significantly increases HPEC permeability and paracellular transport. More importantly, we demonstrated that PROKR1 mediates EG-VEGF angiogenic effects, whereas PROKR2 mediates cellular permeability. Altogether, these data characterized angiogenic processes mediated by EG-VEGF, depicted a new angiogenic factor in the placenta, and suggest a novel view of the regulation of angiogenesis in placental pathologies.
Busceti, Carla L.; Marchitti, Simona; Bianchi, Franca; Di Pietro, Paola; Riozzi, Barbara; Stanzione, Rosita; Cannella, Milena; Battaglia, Giuseppe; Bruno, Valeria; Volpe, Massimo; Fornai, Francesco; Nicoletti, Ferdinando; Rubattu, Speranza
2017-01-01
Dkk-3 is a member of the dickkopf protein family of secreted inhibitors of the Wnt pathway, which has been shown to enhance angiogenesis. The mechanism underlying this effect is currently unknown. Here, we used cultured HUVECs to study the involvement of the TGF-β and VEGF on the angiogenic effect of Dkk-3. Addition of hrDkk-3 peptide (1 or 10 ng/ml) to HUVECs for 6 or 12 h enhanced the intracellular and extracellular VEGF protein levels, as assessed by RTPCR, immunoblotting, immunocytochemistry and ELISA. The increase in the extracellular VEGF levels was associated to the VEGFR2 activation. Pharmacological blockade of VEGFR2 abrogated Dkk-3-induced endothelial cell tubes formation, indicating that VEGF is a molecular player of the angiogenic effects of Dkk-3. Moreover, Dkk-3 enhanced Smad1/5/8 phosphorylation and recruited Smad4 to the VEGF gene promoter, suggesting that Dkk-3 activated ALK1 receptor leading to a transcriptional activation of VEGF. This mechanism was instrumental to the increased VEGF expression and endothelial cell tubes formation mediated by Dkk-3, because both effects were abolished by siRNA-mediated ALK1 knockdown. In summary, we have found that Dkk-3 activates ALK1 to stimulate VEGF production and induce angiogenesis in HUVECs. PMID:28352232
Simara, Pavel; Tesarova, Lenka; Rehakova, Daniela; Farkas, Simon; Salingova, Barbara; Kutalkova, Katerina; Vavreckova, Eva; Matula, Pavel; Matula, Petr; Veverkova, Lenka; Koutna, Irena
2018-01-01
New approaches in regenerative medicine and vasculogenesis have generated a demand for sufficient numbers of human endothelial cells (ECs). ECs and their progenitors reside on the interior surface of blood and lymphatic vessels or circulate in peripheral blood; however, their numbers are limited, and they are difficult to expand after isolation. Recent advances in human induced pluripotent stem cell (hiPSC) research have opened possible avenues to generate unlimited numbers of ECs from easily accessible cell sources, such as the peripheral blood. In this study, we reprogrammed peripheral blood mononuclear cells, human umbilical vein endothelial cells (HUVECs), and human saphenous vein endothelial cells (HSVECs) into hiPSCs and differentiated them into ECs. The phenotype profiles, functionality, and genome stability of all hiPSC-derived ECs were assessed and compared with HUVECs and HSVECs. hiPSC-derived ECs resembled their natural EC counterparts, as shown by the expression of the endothelial surface markers CD31 and CD144 and the results of the functional analysis. Higher expression of endothelial progenitor markers CD34 and kinase insert domain receptor (KDR) was measured in hiPSC-derived ECs. An analysis of phosphorylated histone H2AX (γH2AX) foci revealed that an increased number of DNA double-strand breaks upon reprogramming into pluripotent cells. However, differentiation into ECs restored a normal number of γH2AX foci. Our hiPSCs retained a normal karyotype, with the exception of the HSVEC-derived hiPSC line, which displayed mosaicism due to a gain of chromosome 1. Peripheral blood from adult donors is a suitable source for the unlimited production of patient-specific ECs through the hiPSC interstage. hiPSC-derived ECs are fully functional and comparable to natural ECs. The protocol is eligible for clinical applications in regenerative medicine, if the genomic stability of the pluripotent cell stage is closely monitored.
Inhibitory effects of vitamin K3 on DNA polymerase and angiogenesis.
Matsubara, Kiminori; Kayashima, Tomoko; Mori, Masaharu; Yoshida, Hiromi; Mizushina, Yoshiyuki
2008-09-01
Vitamins play essential roles in cellular reactions and maintain human health. Recent studies have revealed that some vitamins including D3, B6 and K2 and their derivatives have an anti-cancer effect. As a mechanism, their inhibitory effect on cancer-related angiogenesis has been demonstrated. Vitamin K2 (menaquinones) has an anti-cancer effect in particular for hepatic cancer and inhibits angiogenesis. In the current study, we demonstrated that sole vitamin K3 (menadione) selectively inhibits the in vitro activity of eukaryotic DNA polymerase gamma, which is a mitochondrial DNA polymerase, and suppresses angiogenesis in a rat aortic ring model. The anti-angiogenic effect of vitamin K3 has been shown in angiogenesis models using human umbilical vein endothelial cells (HUVECs) with regard to HUVEC growth, tube formation on reconstituted basement membrane and chemotaxis. These results suggest that vitamin K3 may be a potential anti-cancer agent like vitamin K2.
Wang, Liqun; Luo, Haihua; Chen, Xiaohuan; Jiang, Yong; Huang, Qiaobing
2014-01-01
S100A8, S100A9 and S100A8/A9 complexes have been known as important endogenous damage-associated molecular pattern (DAMP) proteins. But the pathophysiological roles of S100A8, S100A9 and S100A8/A9 in cardiovascular diseases are incompletely explained. In this present study, the effects of homo S100A8, S100A9 and their hetero-complex S100A8/A9 on endothelial barrier function were tested respectively in cultured human umbilical venous endothelial cells (HUVECs). The involvement of TLR4 and RAGE were observed by using inhibitor of TLR4 and blocking antibody of RAGE. The clarification of different MAPK subtypes in S100A8/A9-induced endothelial response was implemented by using specific inhibitors. The calcium-dependency was detected in the absence of Ca2+ or in the presence of gradient-dose Ca2+. The results showed that S100A8, S100A9 and S100A8/A9 could induce F-actin and ZO-1 disorganization in HUVECs and evoked the increases of HUVEC monolayer permeability in a dose- and time-dependent manner. The effects of S100A8, S100A9 and S100A8/A9 on endothelial barrier function depended on the activation of p38 and ERK1/2 signal pathways through receptors TLR4 and RAGE. Most importantly, we revealed the preference of S100A8 on TLR4 and S100A9 on RAGE in HUVECs. The results also showed the calcium dependency in S100A8- and S100A9-evoked endothelial response, indicating that calcium dependency on formation of S100A8 or A9 dimmers might be the prerequisite for this endothelial functional alteration. PMID:24595267
Tian, Xin; Zhao, Lei; Song, Xianjing; Yan, Youyou; Liu, Ning; Li, Tianyi; Yan, Bingdi; Liu, Bin
2016-01-01
Objectives. Elevated plasma homocysteine (Hcy) could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27), a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs) and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO) level, increase of endothelin-1 (ET-1), intracellular adhesion molecule-1 (ICAM-1), vascular cellular adhesion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1) levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.
6-Gingerol prevents MEHP-induced DNA damage in human umbilical vein endothelia cells.
Yang, G; Gao, X; Jiang, L; Sun, X; Liu, X; Chen, M; Yao, X; Sun, Q; Wang, S
2017-11-01
Mono (2-ethylhexyl) phthalate (MEHP) is the principal metabolite of di (2-etylhexyl) phthalate, which is widely used as a plasticizer, especially in medical devices. MEHP has toxic effects on cardiovascular system. The aim of this study was to investigate the possibility that 6-gingerol may inhibit the oxidative DNA damage of MEHP in human umbilical vein endothelial cells (HUVECs) and the potential mechanism. The comet assay was used to monitor DNA strand breaks. We have shown that 6-gingerol significantly reduced the DNA strand breaks caused by MEHP. MEHP increased the levels of reactive oxygen species and malondialdehyde, decreased the level of glutathione and activity of superoxide dismutase, and altered the mitochondrial membrane potential. In addition, DNA damage-associated proteins (p53 and p-Chk2 (T68)) were significantly increased by the treatment of MEHP. Those effects can all be protected by 6-gingerol. The results firmly indicate that 6-gingerol may have a strong protective ability against the DNA damage caused by MEHP in HUVECs, and the mechanism may relate to the antioxidant activity.
Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis
2011-06-01
To determine whether insulin reverses gestational diabetes mellitus (GDM)-reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine(1177) phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A(2A)-adenosine receptor antagonist). Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO-dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A(2A)-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM.
Lü, Lanxin; Deegan, Anthony; Musa, Faiza; Xu, Tie; Yang, Ying
2018-07-01
The purpose of this work was to investigate if the biomimetically conjugated VEGF and HUVECs co-culture could modulate the osteogenic and angiogenic differentiation of MSCs derived from rat and human bone marrow (rMSCs and hMSCs). After treated by ammonia plasma, Poly(lactic-co-glycolic acid) (PLGA) electrospun nanofibers were immobilized with VEGF through heparin to fulfil the sustained release. The proliferation capacity of rMSCs and hMSCs on neat PLGA nanofibers (NF) and VEGF immobilized NF (NF-VEGF) surfaces were assessed by CCK-8 and compared when MSCs were mono-cultured and co-cultured with HUVECs. The effect of VEGF and HUVECs co-culturing on osteogenic and angiogenic differentiation of rMSCs and hMSCs were investigated by calcium deposits and CD31 expression on NF and NF-VEGF surfaces. The results indicated that VEGF has been biomimetically immobilized onto PLGA nanofibers surface and kept sustained release successfully. The CD31 staining results showed that both VEGF and HUVECs co-culture could enhance the angiogenesis of rMSCs and hMSCs. However, the proliferation and osteogenic differentiation of MSCs when cultured with VEGF and HUVECs showed a species dependent response. Taken together, VEGF immobilization and co-culture with HUVECs promoted angiogenesis of MSCs, indicating a good strategy for vascularization in bone tissue engineering. Copyright © 2018. Published by Elsevier B.V.
Ning, R B; Zhu, J; Chai, D J; Xu, C S; Xie, H; Lin, X Y; Zeng, J Z; Lin, J X
2013-12-13
An inflammatory response induced by high glucose is a cause of endothelial dysfunction in diabetes and is an important contributing link to atherosclerosis. Diabetes is an independent risk factor of atherosclerosis and activation of retinoid X receptor (RXR) has been shown to exert anti-atherogenic effects. In the present study, we examined the effects of the RXR ligands 9-cis-retinoic acid (9-cis-RA) and SR11237 on high glucose-induced inflammation in human umbilical endothelial vein endothelial cells (HUVECs) and explored the potential mechanism. Our results showed that the inflammation induced by high-glucose in HUVECs was mainly mediated by the activation of nuclear factor-B (NF- κB). High glucose-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were in comparison, significantly decreased by treatment with RXR. The effect of RXR agonists was mainly due to the inhibition of NF-κB activation. Using pharmacological inhibitors and siRNA, we confirmed that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was an upstream activator of NF-κB. Furthermore, RXR agonists significantly inhibited high glucose-induced activation of NADPH oxidase and significantly decreased the production of reactive oxygen species (ROS). To explore whether the rapid inhibitory effects of RXR agonists were in fact mediated by RXR, we examined the effect of RXR downregulation by RXR siRNA. Our results showed that RXR siRNA largely abrogated the effects of RXR agonists, suggesting the requirement of RXR expression. Therefore, we have shown that RXR is involved in the regulation of NADPH oxidase- NF-κB signal pathway, as the RXR ligands antagonized the inflammatory response in HUVECs induced by high glucose.
Huang, Shujie; Zhu, Pengli
2016-01-01
Inflammation and reactive oxygen species (ROS) play important roles in the pathogenesis of atherosclerosis. Resveratrol has been shown to possess anti-inflammatory and antioxidative stress activities, but the underlying mechanisms are not fully understood. In the present study, we investigated the molecular basis associated with the protective effects of resveratrol on tumor necrosis factor-alpha (TNF-α)-induced injury in human umbilical endothelial cells (HUVECs) using a variety of approaches including a cell viability assay, reverse transcription and quantitative polymerase chain reaction, western blot, and immunofluorescence staining. We showed that TNF-α induced CD40 expression and ROS production in cultured HUVECs, which were attenuated by resveratrol treatment. Also, resveratrol increased the expression of sirtuin 1 (SIRT1); and repression of SIRT1 by small-interfering RNA (siRNA) and the SIRT1 inhibitor Ex527 reduced the inhibitory effects of resveratrol on CD40 expression and ROS generation. In addition, resveratrol downregulated the levels of p65 and phospho-p38 MAPK, but this inhibitory effect was attenuated by the suppression of SIRT1 activity. Moreover, the p38 MAPK inhibitor SD203580 and the nuclear factor (NF)-κB inhibitor pyrrolidine dithiocarbamate (PDTC) achieved similar repressive effects as resveratrol on TNF-α-induced ROS generation and CD40 expression. Thus, our study provides a mechanistic link between resveratrol and the activation of SIRT1, the latter of which is involved in resveratrol-mediated repression of the p38 MAPK/NF-κB pathway and ROS production in TNF-α-treated HUVECs. PMID:26799794
Imaging specific cellular glycan structures using glycosyltransferases via click chemistry.
Wu, Zhengliang L; Person, Anthony D; Anderson, Matthew; Burroughs, Barbara; Tatge, Timothy; Khatri, Kshitij; Zou, Yonglong; Wang, Lianchun; Geders, Todd; Zaia, Joseph; Sackstein, Robert
2018-02-01
Heparan sulfate (HS) is a polysaccharide fundamentally important for biologically activities. T/Tn antigens are universal carbohydrate cancer markers. Here, we report the specific imaging of these carbohydrates using a mesenchymal stem cell line and human umbilical vein endothelial cells (HUVEC). The staining specificities were demonstrated by comparing imaging of different glycans and validated by either removal of target glycans, which results in loss of signal, or installation of target glycans, which results in gain of signal. As controls, representative key glycans including O-GlcNAc, lactosaminyl glycans and hyaluronan were also imaged. HS staining revealed novel architectural features of the extracellular matrix (ECM) of HUVEC cells. Results from T/Tn antigen staining suggest that O-GalNAcylation is a rate-limiting step for O-glycan synthesis. Overall, these highly specific approaches for HS and T/Tn antigen imaging should greatly facilitate the detection and functional characterization of these biologically important glycans. © The Author(s) 2017. Published by Oxford University Press.
2013-01-01
Background VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, recently, most of these anticancer drugs have some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. Methods We used α-santalol and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVECs) and Prostate tumor cells (PC-3 or LNCaP) in vitro. Tumor xenografts in nude mice were used to examine the in vivo activity of α-santalol. Results α-santalol significantly inhibits HUVEC proliferation, migration, invasion, and tube formation. Western blot analysis indicated that α-santalol inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including AKT, ERK, FAK, Src, mTOR, and pS6K in HUVEC, PC-3 and LNCaP cells. α-santalol treatment inhibited ex vivo and in vivo angiogenesis as evident by rat aortic and sponge implant angiogenesis assay. α-santalol significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model. The antiangiogenic effect by CD31 immunohistochemical staining indicated that α-santalol inhibited tumorigenesis by targeting angiogenesis. Furthermore, α-santalol reduced the cell viability and induced apoptosis in PC-3 cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Molecular docking simulation indicated that α-santalol form hydrogen bonds and aromatic interactions within the ATP-binding region of the VEGFR2 kinase unit. Conclusion α-santalol inhibits angiogenesis by targeting VEGFR2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy. PMID:24261856
Wang, Xiangmin; Pan, Bin; Honda, Goichi; Wang, Xintao; Hashimoto, Yuko; Ohkawara, Hiroshi; Xu, Kailin; Zeng, Lingyu; Ikezoe, Takayuki
2018-06-14
We previously found that the fifth epidermal growth factor-like domain of thrombomodulin (TME5) exerts cytoprotective and pro-angiogenic functions via G-protein coupled receptor 15 (GPR15). TME5 is comprised of three S-S bonds that divide it into three loops: A (TME5A), B (TME5B), and C (TME5C). Here, we identified the minimum structure of TME5 that produces favorable effects in vascular endothelial cells (ECs). We found that TME5C, composed of 19 amino acids, but not TME5A or TME5B, stimulated the proliferation of human umbilical vein endothelial cells (HUVECs) and human hepatic sinusoidal endothelial cells (HHSECs). Matrigel plug assays showed that TME5C stimulates in vivo angiogenesis. In addition, TME5C counteracted calcineurin inhibitor-induced apoptosis and vascular permeability in HUVECs and HHSECs. Western blot analysis indicated that exposure of either HUVECs or HHSECs to TME5C increased the levels of anti-apoptotic myeloid cell leukemia-1 protein in association with the activation of signal transduction pathways, including extracellular signal-regulated kinase, AKT, and mitogen-activated protein kinase p38. Importantly, TME5C did not affect the coagulation pathway in vitro. The cytoprotective function of TME5C was mediated by cell surface-expressed GPR15, as TME5C was not able to protect vascular ECs isolated from GPR15 knock-out mice. Strikingly, TME5C successfully ameliorated sinusoidal obstruction syndrome in a murine model by counteracting the reduction of sinusoidal ECs numbers. Taken together, the cytoprotective and pro-angiogenetic functions of TM are preserved in TME5C. Use of TME5C may be a promising treatment strategy to prevent or treat lethal complications such as sinusoidal obstruction syndrome whose pathogenesis is based on endothelial insults. Copyright © 2018, Ferrata Storti Foundation.
Burgey, Christine; Kern, Winfried V; Römer, Winfried; Sakinc, Türkan; Rieg, Siegbert
2015-05-01
Antimicrobial peptides are multifunctional effector molecules of innate immunity. In this study we investigated whether endothelial cells actively contribute to innate defense mechanisms by expression of antimicrobial peptides. We therefore stimulated human umbilical vein endothelial cells (HUVEC) with inflammatory cytokines, Th17 cytokines, heat-inactivated bacteria, bacterial conditioned medium (BCM) of Staphylococcus aureus and Streptococcus sanguinis, and lipoteichoic acid (LTA). Stimulation with single cytokines induced discrete expression of human β-defensin 3 (hBD3) by IFN-γ or IL-1β and of ribonuclease 7 (RNase7) by TNF-α without any effects on LL-37 gene expression. Stronger hBD3 and RNase7 induction was observed after combined stimulation with IL-1β, TNF-α and IFN-γ and was confirmed by high hBD3 and RNase7 peptide levels in cell culture supernatants. In contrast, Th17 cytokines or stimulation with LTA did not result in AMP production. Moreover, only BCM of an invasive S. aureus bacteremia isolate induced hBD3 in HUVEC. We conclude that endothelial cells actively contribute to prevent dissemination of pathogens at the blood-tissue-barrier by production of AMPs that exhibit microbicidal and immunomodulatory functions. Further investigations should focus on tissue-specific AMP induction in different endothelial cell types, on pathogen-specific induction patterns and potentially involved pattern-recognition receptors of endothelial cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Hummitzsch, Lars; Zitta, Karina; Bein, Berthold; Steinfath, Markus; Albrecht, Martin
2014-03-10
Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (P<0.05) in CM. In CaCo-2 cultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (P<0.001) and elevated levels of hydrogen peroxide (P<0.01). Incubation of CaCo-2 cells with CM reduced the hypoxia-induced signs of cell damage and LDH release (P<0.01) and abrogated the hypoxia-induced increase of hydrogen peroxide. These events were associated with an enhanced phosphorylation status of the prosurvival kinase Erk1/2 (P<0.05) but not Akt and STAT-5. Taken together, CM of hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury. The established culture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC. Copyright © 2014 Elsevier Inc. All rights reserved.
Imbeault, Annie; Bernard, Geneviève; Ouellet, Gabrielle; Bouhout, Sara; Carrier, Serge; Bolduc, Stéphane
2011-11-01
Surgical treatment is indicated in severe cases of Peyronie's disease. Incision of the plaque with subsequent graft material implantation is the option of choice. Ideal graft tissue is not yet available. To evaluate the use of an autologous tissue-engineered endothelialized graft by the self-assembly method, for tunica albuginea (TA) reconstruction in Peyronie's disease. Two TA models were created. Human fibroblasts were isolated from a skin biopsy and cultured in vitro until formation of fibroblast sheets. After 4 weeks of maturation, human umbilical vein endothelial cells (HUVEC) were seeded on fibroblasts sheets and wrapped around a tubular support to form a cylinder of about 10 layers. After 21 days of tube maturation, HUVEC were seeded into the lumen of the fibroblast tubes for the endothelialized tunica albuginea (ETA). No HUVEC were seeded into the lumen for the TA model. Both constructs were placed under perfusion in a bioreactor for 1 week. Histology, immunohistochemistry, and burst pressure were performed to characterize mature tubular graft. Animal manipulations were also performed to demonstrate the impact of endothelial cells in vivo. Histology showed uniform multilayered fibroblasts. Extracellular matrix, produced entirely by fibroblasts, presented a good staining for collagen 1. Some elastin fibers were also present. For the TA model, anti-human von Willebrand antibody revealed the endothelial cells forming capillary-like structures. TA model reached a burst pressure of 584 mm Hg and ETA model obtained a burst pressure of 719 mm Hg. This tissue-engineered endothelialized tubular graft is structurally similar to normal TA and presents an adequate mechanical resistance. The self-assembly method used and the autologous property of this model could represent an advantage comparatively to other available grafts. Further evaluation including functional testing will be necessary to characterize in vivo implantation and behavior of the graft. © 2011 International Society for Sexual Medicine.
TNF-α and LPS activate angiogenesis via VEGF and SIRT1 signalling in human dental pulp cells.
Shin, M R; Kang, S K; Kim, Y S; Lee, S Y; Hong, S C; Kim, E-C
2015-07-01
To assess whether SIRT1 and VEGF are responsible for tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-induced angiogenesis and to examine the molecular mechanism(s) of action in human dental pulp cells (HDPCs). Immortalized HDPCs obtained from Prof. Takashi Takata (Hiroshima University, Japan) were treated with LPS (1 μg mL(-1) ) and TNF-α (10 ng mL(-1) ) for 24 h. mRNA and protein levels were examined by RT-PCR and Western blotting, respectively. Migration and tube formation were examined in human umbilical vein endothelial cells (HUVECs). The data were analysed by one-way anova. Statistical analysis was performed at α = 0.05. LPS and TNF-α upregulated VEGF and SIRT1 mRNA and protein levels. Inhibition of SIRT1 activity by sirtinol and SIRT1 siRNA or inhibition of the VEGF receptor by CBO-P11 significantly attenuated LPS + TNF-α-stimulated MMPs production in HDPCs, as well as migration and tube formation in HUVECs (P < 0.05). Furthermore, sirtinol, SIRT1 siRNA and CBO-P11 attenuated phosphorylation of Akt, extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) and the nuclear translocation of NF-κB p65. Pre-treatment with inhibitors of p38, ERK, JNK, PI3K and NF-κB decreased LPS + TNF-α-induced VEGF and SIRT1 expression, MMPs activity in HDPCs and angiogenesis (P < 0.05) in HUVECs. TNF-α and LPS led to upregulation of VEGF and SIRT1, and subsequent upregulation of MMP-2 and MMP-9 production, and promote angiogenesis via pathways involving PI3K, p38, ERK, JNK and NF-κB. The results suggest that inhibition of SIRT1 and VEGF might attenuate pro-inflammatory mediator-induced pulpal disease. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Chang, Huasong; Yuan, Wenwen; Wu, Haizhu; Yin, Xusheng; Xuan, Hongzhuan
2018-05-03
Propolis, a polyphenol-rich natural product, has been used as a functional food in anti-inflammation. However, its bioactive components and mechanisms have not been fully elucidated. To discover the bioactive components and anti-inflammatory mechanism, we prepared and separated 8 subfractions from ethyl acetate extract of Chinese propolis (EACP) and investigated the mechanism in oxidized low density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs) damage. Eight subfractions were prepared and separated from ethyl acetate extract of Chinese propolis (EACP) with different concentrations of methanol-water solution, and analysed its chemical constituents by HPLC-DAD/Q-TOF-MS. Then 80% confluent HUVECs were stimulated with 40 μg/mL ox-LDL. Cell viability and apoptosis were evaluated by Sulforhodamine B (SRB) assay and Hoechst 33,258 staining, respectively. Levels of caspase 3, PARP, LC3B, p62, p-mTOR, p-p70S6K, p-PI3K, p-Akt, LOX-1 and p-p38 MAPK were assessed by western blotting and immunofluorescence assay, respectively. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Each subfraction exhibited similar protective effect although the contents of chemical constituents were different. EACP attenuated ox-LDL induced HUVECs apoptosis, depressed the ratio of LC3-II/LC3-I and enhanced the p62 level. In addition, treatment with EACP also activated the phosphorylation of PI3K/Akt/mTOR, and deactivated the level of LOX-1 and phosphorylation of p38 MAPK. The overproduction of ROS and the damage of MMP were also ameliorated after ECAP treatment. These findings indicated that the bioactive component of propolis on anti-inflammatory activity was not determined by a single constituent, but a complex interaction including flavonoids, esters and phenolic acids. EACP attenuated ox-LDL induced HUVECs injury by inhibiting LOX-1 level and depressed ROS production against oxidative stress in ox-LDL induced HUVECs, further to activate PI3K/Akt/mTOR pathway and deactivate p38 MAPK to inhibit apoptosis and autophagy, which provide novel insights into the potential application of propolis on modulating chronic inflammation.
Peng, Wenyan; Yu, Ying; Li, Tiejun; Zhu, Yuanyuan
2013-01-01
Purpose Tissue factor (TF) plays an important role in neovascularization (NV). This study aimed to determine whether small interfering RNA–targeting TF (TF-siRNA) could knock down TF expression and inhibit cell proliferation, cell migration, and tube formation in an in vitro model of NV. Methods Lipopolysaccharide (LPS) was used to stimulate human umbilical vein endothelial cell (HUVEC) lines to express TF and mimic certain phenotypes of NV in vitro. HUVECs were transfected with TF-siRNAs and control siRNAs using LipofectamineTM 2000. The inhibitory effect of the siRNAs on the expression of TF mRNA and protein was evaluated by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and western blot analysis. The effects on the cell viability, migration, and tube formation of siRNA-treated cells were examined by MTT assay, wound-healing assay, and Matrigel-induced capillary tube formation. Results Lipopolysaccharide treatment increased the expression of TF. TF-siRNAs effectively knocked down TF expression, with the most efficient TF-siRNA reducing 78.9% of TF expression. TF protein was also notably curtailed by TF-siRNA. The MTT and wound-healing assays showed that the TF-siRNA substantially inhibited the proliferation and migration of HUVECs. Tube formation was decreased by 47.4% and 59.4% in cells treated with the TF-siRNA and vascular endothelial growth factor–siRNA, respectively, compared with the blank control. Conclusions TF-siRNA can knockdown TF expression and inhibit cell proliferation, migration, and tube formation in vitro. TF-siRNA may provide a novel therapeutic candidate for NV-related diseases. PMID:23805036
Dong, Zhaoju; Shi, Yanan; Zhao, Huijuan; Li, Ning; Ye, Liang; Zhang, Shuping; Zhu, Haibo
2018-01-01
Sodium formononetin-3'-sulphonate (Sul-F) is a derivative of the isoflavone formononetin. In this study, we investigated whether Sul-F can regulate angiogenesis and the potential mechanism in vitro. We examined the effects of Sul-F on cell proliferation, cell invasion, and tube formation in the human umbilical vein endothelial cell line (HUVEC). To better understand the mechanism involved, we investigated effects of the following compounds: cAMP response element-binding protein (CREB) inhibitor 2-naphthol-AS-E-phosphate (KG-501), early growth response 3 (Egr-3) siRNA, vascular endothelial growth factor (VEGF) antagonist soluble VEGF receptor 1 (sFlt-1), VEGF receptor 2 blocker SU-1498, Wnt5a antagonist WIF-1 recombinant protein (WIF-1), and inhibitor of Wnt/β-catenin recombinant Dickkopf-1 protein (DKK-1). HUVEC proliferation was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). A scratch adhesion test was used to assess cell invasion ability. Matrigel tube formation assay was performed to test capillary tube formation ability. Activation of the VEGF/CREB/Egr-3/Vascular cell adhesion molecule 1 (VCAM-1) pathway in HUVEC was tested by Western blot analysis. Our results suggest that Sul-F induced angiogenesis in vitro by enhancing cell proliferation, invasion, and tube formation. The increase in proliferation and tube formation by Sul-F was counteracted by DKK-1, WIF-1, SU1498, KG-501, sFlt-1, and Egr-3 siRNA. These results may suggest that Sul-F induces angiogenesis in vitro via a programed Wnt/β-catenin pathway and VEGF/CREB/Egr-3/VCAM-1 signaling axis. © 2017 S. Karger AG, Basel.
Wound healing effects of deoxyshikonin isolated from Jawoongo: In vitro and in vivo studies.
Park, Jun Yeon; Kwak, Jin Ho; Kang, Ki Sung; Jung, Eun Bee; Lee, Dong-Soo; Lee, Sanghyun; Jung, Yujung; Kim, Ki Hyun; Hwang, Gwi Seo; Lee, Hye Lim; Yamabe, Noriko; Kim, Su-Nam
2017-03-06
Jawoongo is a traditional drug ointment (with a traditional botanic formula) used for the treatment of burns and wounds in Korea. One of the components of Jawoongo is Lithospermi Radix (LR, the dried root of Lithospermum erythrorhizon Siebold & Zucc., also known as Zicao or Gromwell), which contains deoxyshikonin and its derivatives. The aim of the present study was to investigate the effects of deoxyshikonin on wound healing. The effects of LR extract and deoxyshikonin on tube formation and migration were measured in human umbilical vein vascular endothelial cells (HUVEC) and HaCaT cells, respectively. We evaluated protein expression of mitogen-activated protein kinase (MAPK) activation by Western blotting. The wound healing effects of deoxyshikonin was assessed in a mouse model of cutaneous wounds. The results showed that deoxyshikonin enhanced tube formation in HUVEC and migration in HaCaT cells. From the western blot analysis, we found that deoxyshikonin stimulated the phosphorylation of p38 and extracellular signal-regulated kinase (ERK) in HaCaT cells. Moreover, 20µm deoxyshikonin-treated groups showed accelerated wound closure compared with the controls in a mouse model of cutaneous wounds. In conclusion, the current data indicate that deoxyshikonin treatment elevated tube formation in HUVECs, and that deoxyshikonin-induced proliferation and migration in HaCaT cells were mediated by the activation of ERK and p38 MAPKs, respectively. Collectively, these data suggest that deoxyshikonin in Jawoongo must be an active compound for may be wound healing. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Schoenfeld, Jonathan; Lessan, Khashayar; Johnson, Nicola A; Charnock-Jones, D Stephen; Evans, Amanda; Vourvouhaki, Ekaterini; Scott, Laurie; Stephens, Richard; Freeman, Tom C; Saidi, Samir A; Tom, Brian; Weston, Gareth C; Rogers, Peter; Smith, Stephen K; Print, Cristin G
2004-01-01
We recently published a review in this journal describing the design, hybridisation and basic data processing required to use gene arrays to investigate vascular biology (Evans et al. Angiogenesis 2003; 6: 93-104). Here, we build on this review by describing a set of powerful and robust methods for the analysis and interpretation of gene array data derived from primary vascular cell cultures. First, we describe the evaluation of transcriptome heterogeneity between primary cultures derived from different individuals, and estimation of the false discovery rate introduced by this heterogeneity and by experimental noise. Then, we discuss the appropriate use of Bayesian t-tests, clustering and independent component analysis to mine the data. We illustrate these principles by analysis of a previously unpublished set of gene array data in which human umbilical vein endothelial cells (HUVEC) cultured in either rich or low-serum media were exposed to vascular endothelial growth factor (VEGF)-A165 or placental growth factor (PlGF)-1(131). We have used Affymetrix U95A gene arrays to map the effects of these factors on the HUVEC transcriptome. These experiments followed a paired design and were biologically replicated three times. In addition, one experiment was repeated using serial analysis of gene expression (SAGE). In contrast to some previous studies, we found that VEGF-A and PlGF consistently regulated only small, non-overlapping and culture media-dependant sets of HUVEC transcripts, despite causing significant cell biological changes.
Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles
NASA Astrophysics Data System (ADS)
Fede, C.; Albertin, Giovanna; Petrelli, L.; De Caro, R.; Fortunati, I.; Weber, V.; Ferrante, Camilla
2017-09-01
Screening nanoparticle toxicity directly on cell culture can be a fast and cheap technique. Nevertheless, to obtain results in accordance with those observed in live animals, the conditions in which cells are cultivated should resemble the one encountered in live systems. Microfluidic devices offer the possibility to satisfy this requirement, in particular with endothelial cell lines, because they are capable to reproduce the flowing media and shear stress experienced by these cell lines in vivo. In this work, we exploit a microfluidic device to observe how human umbilical vein endothelial cells (HUVEC) viability changes when subject to a continuous flow of culture medium, in which spherical citrate-stabilized gold nanoparticles of different sizes and at varying doses are investigated. For comparison, the same experiments are also run in multiwells where the cells do not experience the shear stress induced by the flowing medium. We discuss the results considering the influence of mode of exposure and nanoparticle size (24 and 13 nm). We observed that gold nanoparticles show a lower toxicity under flow conditions with respect to static and the HUVEC viability decreases as the nanoparticle surface area per unit volume increases, regardless of size.
Endothelial cell-derived exosomes protect SH-SY5Y nerve cells against ischemia/reperfusion injury.
Xiao, Bing; Chai, Yi; Lv, Shigang; Ye, Minhua; Wu, Miaojing; Xie, Liyuan; Fan, Yanghua; Zhu, Xingen; Gao, Ziyun
2017-10-01
Cerebral ischemia is a leading cause of death and disability. A previous study indicated that remote ischemic postconditioning (RIP) in the treatment of cerebral ischemia reduces ischemia/reperfusion (I/R) injury. However, the underlying mechanism is not well understood. In the present study, the authors hypothesized that the protective effect of RIP on neurological damage is mediated by exosomes that are released by endothelial cells in femoral arteries. To test this, right middle cerebral artery occlusion/reperfusion with RIP was performed in rats. In addition, an I/R injury cell model was tested that included human umbilical vein endothelial cells (HUVECs) and SH-SY5Y cells. Both the in vivo and in vitro models were examined for injury. Markers of exosomes (CD63, HSP70 and TSG101) were assessed by immunohistochemistry, western blot analysis and flow cytometry. Exosomes were extracted from both animal serum and HUVEC culture medium and identified by electron microscopy. They investigated the role of endothelial cell-derived exosomes in the proliferation, apoptosis, cell cycle, migration and invasion of I/R-injured SH-SY5Y cells. In addition, apoptosis-related molecules caspase-3, Bax and Bcl-2 were detected. RIP was determined to increase the number of exosomes and the expression levels of CD63, HSP70 and TSG101 in plasma, but not in brain hippocampal tissue. The size of exosomes released after I/R in HUVECs was similar to the size of exosomes released in rats subjected to RIP. Endothelial cell-derived exosomes partly suppressed the I/R-induced cell cycle arrest and apoptosis, and inhibited cell proliferation, migration and invasion in SH-SY5Y nerve cells. Endothelial cell-derived exosomes directly protect nerve cells against I/R injury, and are responsible for the protective role of RIP in I/R.
Han, Jong-Min; Li, Hua; Cho, Moon-Hee; Baek, Seung-Hwa; Lee, Chul-Ho; Park, Ho-Yong; Jeong, Tae-Sook
2017-01-01
Soy-leaf extracts exert their cardioprotective effects by inducing endothelium-dependent vasodilation in the arteries, and they favorably modulate the serum lipid profile. In this study, we investigated the atheroprotective effects of an ethanol extract of soy leaf (ESL) in human umbilical vein endothelial cells (HUVECs) and high-cholesterol diet (HCD)-fed low-density lipoprotein receptor deficient (LDLR−/−) mice. ESL induced the expression of Krüppel-like factor 2 (KLF2), an endothelial transcription factor, and endothelial nitric oxide synthase (eNOS), and suppressed the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) through moderate inflammatory signal activation, not only in tumor necrosis factor-α (TNF-α)-stimulated HUVECs but also in 7-ketocholesterol (7-KC)-stimulated HUVECs. ESL supplementation reduced aortic lesion formation in Western diet-fed LDLR−/− mice by 46% (p < 0.01) compared to the HCD group. ESL also markedly decreased the aortic expression levels of VCAM-1, ICAM-1, monocyte chemotactic protein-1 (MCP-1), TNF-α, IL-6, IL-1β, matrix metallopeptidase 9 (MMP-9), and fractalkine, while the expression of KLF2 was significantly increased. These results suggest that ESL supplementation has potential for preventing HCD-induced atherosclerosis effectively. PMID:28208647
Castellano, Immacolata; Di Tomo, Pamela; Di Pietro, Natalia; Mandatori, Domitilla; Pipino, Caterina; Formoso, Gloria; Napolitano, Alessandra; Palumbo, Anna; Pandolfi, Assunta
2018-01-01
Chronic hyperglycemia is associated with oxidative stress and vascular inflammation, both leading to endothelial dysfunction and cardiovascular disease that can be weakened by antioxidant/anti-inflammatory molecules in both healthy and diabetic subjects. Among natural molecules, ovothiol A, produced in sea urchin eggs to protect eggs/embryos from the oxidative burst at fertilization and during development, has been receiving increasing interest for its use as an antioxidant. Here, we evaluated the potential antioxidative/anti-inflammatory effect of purified ovothiol A in an in vitro cellular model of hyperglycemia-induced endothelial dysfunction employing human umbilical vein endothelial cells (HUVECs) from women affected by gestational diabetes (GD) and from healthy mothers. Ovothiol A was rapidly taken up by both cellular systems, resulting in increased glutathione values in GD-HUVECs, likely due to the formation of reduced ovothiol A. In tumor necrosis factor- α -stimulated cells, ovothiol A induced a downregulation of adhesion molecule expression and decrease in monocyte-HUVEC interaction. This was associated with a reduction in reactive oxygen and nitrogen species and an increase in nitric oxide bioavailability. These results point to the potential antiatherogenic properties of the natural antioxidant ovothiol A and support its therapeutic potential in pathologies related to cardiovascular diseases associated with oxidative/inflammatory stress and endothelial dysfunction.
Angiogenic and wound healing potency of fermented virgin coconut oil: in vitro and in vivo studies
Ibrahim, Ahmad H; Li, Haibo; Al-Rawi, Sawsan S; Majid, Aman Shah Abdul; Al-Habib, Omar AM; Xia, Xiaobo; Majid, Amin MS Abdul; Ji, Dan
2017-01-01
Objective: The process of wound healing involves activation of keratinocytes, fibroblasts, endothelial cells, etc. Angiogenesis is crucial during the process of wound healing. Virgin coconut oil is widely utilized in South Asia for various purposes including food, medicinal and industrial applications. This study aimed to evaluate the potency of fermented virgin coconut oil (FVCO) in angiogenesis and wound healing via both in vitro and in vivo assays. Methods: Human umbilical vein endothelial (HUVEC), fibroblast (CCD-18) and retinal ganglion (RGC-5) cells were cultured in medium containing different concentrations of FVCO. The proliferation, migration and morphological changes of cells were determined. The angiogenic effect of FVCO was evaluated by rat aortic assay. The therapeutic effect of FVCO on wound healing was further assessed in a wound excision model in Sprague Dawley rats. The expression of phospho-VEGFR2 (vascular endothelial growth factor receptor 2) in HUVECs was detected by Western blot. Results: FVCO (6 and 12 µg/mL) significantly improved the proliferation of HUVEC, CCD-18 and RGC-5 cells (P < 0.05 or 0.01). FVCO (25 µg/mL) markedly increased the migration ability of CCD-18 and RGC-5 cells (P < 0.05). FVCO did not affect cell morphology as indicated by fluorescein diacetate (FDA), rhodamine 123 and Hoechst staining. FVCO (25, 50 and 100 µg/mL) significantly stimulated the ex vivo blood vessel formation as compared with negative control (P < 0.05). Rats in FVCO group had significantly smaller wound size, higher wound healing percentage, and shorter wound closure time when compared with control group since day 8 (P < 0.05), suggesting that oral FVCO administration notably promoted the wound healing process. FVCO treatment (6 and 12 µg/mL) significantly enhanced the phospho-VEGFR2 expression in HUVECs (P = 0.006 and 0.000, respectively). Conclusion: Our study confirms a high angiogenic and wound healing potency of FVCO that might be mediated by the regulation of VEGF signing pathway. PMID:29218091
Son, Eun Suk; Kim, Young Ock; Park, Chun Geon; Park, Kyung Hun; Jeong, Sung Hwan; Park, Jeong-Woong; Kim, Se-Hee
2017-11-06
Coix lacryma-jobi var. ma-yuen (Rom.Caill.) Stapf has been used in China as an herbal medicine. Many studies of this plant have reported anti-proliferative and apoptotic activities on human cancer cell lines. Therefore, this study of the anti-metastatic effect of Coix lacryma-jobi var. ma-yuen Stapf sprout extract (CLSE) in colorectal cancer cells may provide a scientific basis for exploring anti-cancer effects of edible crops. To evaluate the effect of CLSE on cell proliferation and signaling, we performed a Cell Counting Kit-8 (CCK-8) assay in HCT116 cells and used western blot analysis. Furthermore, scratch-wound healing, transwell migration, matrigel invasion, and adhesion assays were conducted to elucidate the anti-metastatic effects of CLSE under hypoxic conditions in colon cancer cells. First, CLSE decreased deferoxamine (DFO)-induced migration of colon cancer cells by 87%, and blocked colon cancer cell migration by 80% compared with hypoxia control cells. Second, CLSE treatment resulted in a 54% reduction in hypoxia-induced invasiveness of colon cancer cells, and 50% inhibition of adhesive potency through inactivation of the extracellular signal-regulated kinase (ERK) 1/2 and protein kinase b (AKT) pathways. Third, conditioned medium collected from CLSE-treated HCT116 cells suppressed tube formation of human umbilical vein endothelial cells (HUVECs) by 91%. CLSE inhibited migration, invasion, and adhesion of colon cancer cells and tube formation by HUVECs via repression of the ERK1/2 and AKT pathways under hypoxic conditions. Therefore, CLSE may be used to treat patients with colon cancer.
Huang, Xiaoqin; He, Dan; Ming, Jia; He, Yubin; Zhou, Champion; Ren, Hui; He, Xin; Wang, Chenguang; Jin, Jingru; Ji, Liang; Willard, Belinda; Pan, Bing; Zheng, Lemin
2016-02-01
Adhesion of disseminating tumor cells to vascular endothelium is a pivotal starting point in the metastasis cascade. We have shown previously that diabetic high-density lipoprotein (HDL) has the capability of promoting breast cancer metastasis, and this report summarizes our more recent work studying the role of abnormal HDL in facilitating the adhesion of the circulating tumor cells to the endothelium. This is an initiating step in breast cancer metastasis, and this work assesses the role of ICAM-1 and VCAM-1 in this process. MDA-MB-231, MCF 7, and human umbilical vein endothelial cells (HUVECs) were treated with normal HDL from healthy controls (N-HDL), HDL from breast cancer patients (B-HDL), or HDL from breast cancer patients complicated with type 2 diabetes mellitus (BD-HDL), and the cell adhesion abilities were determined. ICAM-1 and VCAM-1 expression as well as the protein kinase C (PKC) activity were evaluated. The effect of PKC inhibitor and PKC siRNA on adhesion was also studied. The immunohistochemical staining of ICAM-1, VCAM-1, and E-selectin from breast cancer patients and breast cancer patients complicated with type 2 diabetes mellitus (T2DM) were examined. Our results indicate that BD-HDL promoted an increase in breast cancer cell adhesion to HUVECs and stimulated higher ICAM-1 and VCAM-1 expression on the cells surface of both breast cancer and HUVEC cells, along with the activation of PKC. Increased tumor cell (TC)-HUVEC adhesion, as well as ICAM-1 and VCAM-1 expression induced by BD-HDL, could be inhibited by staurosporine and PKC siRNA. In addition, a Db/db type 2 diabetes mouse model has more TC-Vascular Endothelium adhesion compared to a normal model. However, BD patients have a lower expression of ICAM-1, VCAM-1, and E-selectin in their tumor tissues. BD-HDL facilitates the adhesion of tumor cells to vascular endothelium by upregulating the expression of ICAM-1 and VCAM-1, thereby promoting the initial progression of breast cancer metastasis. This work indicates a prospective utilization of HDL-based strategies in the treatment of breast cancer patients with type 2 diabetes.
Wang, La-Mei; Tang, Na; Zhong, Hua; Pang, Li-Juan; Zhang, Chun-Jun; He, Fang
2018-06-25
The present study was to investigate the role of the interaction between canonical transient receptor potential channel 1 (TRPC1) and calcium release-activated calcium modulator 1 (Orai1) in extracellular Ca 2+ -sensing receptor (CaR)-induced extracellular Ca 2+ influx and nitric oxide (NO) production. Human umbilical vein endothelial cells (HUVECs) were incubated with CaR agonist Spermine [activating store-operated calcium channels (SOC) and receptor-operated calcium channels (ROC)] alone or in combination with the following reagents: CaR negative allosteric modulator Calhex231 plus ROC analogue TPA (activating ROC and blocking SOC), Ro31-8220 (PKC inhibitor that activates SOC and blocks ROC) or Go6967 (PKCs and PKCµ inhibitor that activates SOC and blocks ROC). The protein expressions and co-localization of TRPC1 and Orai1 were determined using immunofluorescent staining. The interaction between TRPC1 and Orai1 was examined by co-immunoprecipitation. We silenced the expressions of their genes in the HUVECs by transfection of constructed TRPC1 and Orai1 shRNA plasmids. Intracellular Ca 2+ concentration ([Ca 2+ ] i ) was detected using Ca 2+ indicator Fura-2/AM, and NO production was determined by DAF-FM staining. The results showed that TRPC1 and Orai1 protein expressions were co-located on the cell membrane of the HUVECs. Compared with Spermine+Ca 2+ group, Calhex231+ TPA+Spermine+Ca 2+ , Ro31-8220+Spermine+Ca 2+ and Go6976+Spermine+Ca 2+ groups exhibited down-regulated protein expressions of TRPC1 and Orai1 in cytoplasm and decreased co-localization on the cell membrane. Co-immunoprecipitation results showed that the interaction between TRPC1 and Orai1 was reduced by Calhex231 plus TPA, Ro31-8220 or Go6976 addition in the Spermine-stimulated HUVECs. Double knockdown of Trpc1 and Orai1 genes significantly decreased [Ca 2+ ] i level and NO production in all of the Spermine+Ca 2+ , Calhex231+TPA+Spermine+Ca 2+ , Ro31-8220+Spermine+Ca 2+ and Go6976+Spermine+Ca 2+ groups. These results suggest that TRPC1/Orai1 may form a complex that mediates Ca 2+ influx and No production via SOC and ROC activation.
Ashki, Negin; Chan, Ann M.; Qin, Yu; Wang, Wei; Kiyohara, Meagan; Lin, Lin; Braun, Jonathan; Wadehra, Madhuri; Gordon, Lynn K.
2014-01-01
Purpose. Corneal neovascularization (NV) is a sight-threatening condition often associated with infection, inflammation, prolonged contact lens use, corneal burns, and acute corneal graft rejection. Macrophages recruited to the cornea release nitric oxide (NO) and superoxide anion (O2−), which react together to form the highly toxic molecule peroxynitrite (ONOO−). The role of ONOO− in upregulating multiple angiogenic factors in cultured human corneal limbal epithelial (HCLE) cells was investigated. Methods. Human corneal limbal epithelial cells were incubated with 500 μM of ONOO− donor for various times. VEGF-A, BFGF, and hypoxic-inducible factor-alpha (HIF-1α) were investigated via Western blot and RT-PCR was performed for VEGF. Functional assays using human umbilical vein endothelial cells (HUVEC) used conditioned media from ONOO−-exposed HCLE cells. Secreted VEGF from conditioned media was detected and analyzed using ELISA. Results. Increased angiogenic factors were observed as early as 4 hours after HCLE exposure to ONOO−. HIF-1 expression was seen at 4, 6, and 8 hours post-ONOO− exposure (P < 0.05). BFGF expression was elevated at 4 hours and peaked at 8 hours after treatment with ONOO− (P < 0.005). Increased VEGF-A gene expression was observed at 6 and 8 hours post-ONOO− treatment. Functional assays using conditioned media showed increased HUVEC migration and tube formation. Conclusions. Exposure to elevated extracellular concentrations of ONOO− results in upregulation of angiogenic factors in HCLE cells. It is possible that, in the setting of inflammation or infection, that exposure to ONOO− could be one contributor to the complex initiators of corneal NV. Validation in vivo would identify an additional potential control point for corneal NV. PMID:24398102
Ashki, Negin; Chan, Ann M; Qin, Yu; Wang, Wei; Kiyohara, Meagan; Lin, Lin; Braun, Jonathan; Wadehra, Madhuri; Gordon, Lynn K
2014-03-19
Corneal neovascularization (NV) is a sight-threatening condition often associated with infection, inflammation, prolonged contact lens use, corneal burns, and acute corneal graft rejection. Macrophages recruited to the cornea release nitric oxide (NO) and superoxide anion (O2(-)), which react together to form the highly toxic molecule peroxynitrite (ONOO(-)). The role of ONOO(-) in upregulating multiple angiogenic factors in cultured human corneal limbal epithelial (HCLE) cells was investigated. Human corneal limbal epithelial cells were incubated with 500 μM of ONOO(-) donor for various times. VEGF-A, BFGF, and hypoxic-inducible factor-alpha (HIF-1α) were investigated via Western blot and RT-PCR was performed for VEGF. Functional assays using human umbilical vein endothelial cells (HUVEC) used conditioned media from ONOO(-)-exposed HCLE cells. Secreted VEGF from conditioned media was detected and analyzed using ELISA. Increased angiogenic factors were observed as early as 4 hours after HCLE exposure to ONOO(-). HIF-1 expression was seen at 4, 6, and 8 hours post-ONOO(-) exposure (P < 0.05). BFGF expression was elevated at 4 hours and peaked at 8 hours after treatment with ONOO(-) (P < 0.005). Increased VEGF-A gene expression was observed at 6 and 8 hours post-ONOO(-) treatment. Functional assays using conditioned media showed increased HUVEC migration and tube formation. Exposure to elevated extracellular concentrations of ONOO(-) results in upregulation of angiogenic factors in HCLE cells. It is possible that, in the setting of inflammation or infection, that exposure to ONOO(-) could be one contributor to the complex initiators of corneal NV. Validation in vivo would identify an additional potential control point for corneal NV.
Su, Kai; Chen, Fang; Yan, Wei-Ming; Zeng, Qi-Li; Xu, Li; Xi, Dong; Pi, Bin; Luo, Xiao-Ping; Ning, Qin
2008-01-01
AIM: To examine the role of Fibrinogen-like protein 2 (fgl2)/fibroleukin in tumor development. Fgl2 has been reported to play a vital role in the pathogenesis in MHV-3 (mouse hepatitis virus) induced fulminant and severe hepatitis, spontaneous abortion, allo- and xeno- graft rejection by mediating “immune coagulation”. METHODS: Tumor tissues from 133 patients with six types of distinct cancers and the animal tumor tissues from human hepatocellular carcinoma (HCC) model on nude mice (established from high metastasis HCC cell line MHCC97LM6) were obtained. RESULTS: Hfgl2 was detected in tumor tissues from 127 out of 133 patients as well as tumor tissues collected from human HCC nude mice. Hfgl2 was highly expressed both in cancer cells and interstitial inflammatory cells including macrophages, NK cells, and CD8+ T lymphocytes and vascular endothelial cells. Hfgl2 mRNA was localized in cells that expressed hfgl2 protein. Fibrin (nogen) co-localization with hfgl2 expression was determined by dual immunohistochemical staining. In vitro, IL-2 and IFN-γ increased hfgl2 mRNA by 10-100 folds and protein expression in both THP-1 and HUVEC cell lines. One-stage clotting assays demonstrated that THP-1 and HUVEC cells expressing hfgl2 had increased procoagulant activity following cytokines stimulation. CONCLUSION: The hfg12 contributes to the hypercoagulability in cancer and may induce tumor angiogenesis and metastasis via cytokine induction. PMID:18932275
Sudheesh Kumar, P T; Raj, N Mincy; Praveen, G; Chennazhi, Krishna Prasad; Nair, Shantikumar V; Jayakumar, R
2013-02-01
In this work, we have developed chitosan hydrogel/nanofibrin composite bandages (CFBs) and characterized using Fourier transform-infrared spectroscopy and scanning electron microscopy. The homogeneous distribution of nanofibrin in the prepared chitosan hydrogel matrix was confirmed by phosphotungstic acid-hematoxylin staining. The mechanical strength, swelling, biodegradation, porosity, whole-blood clotting, and platelet activation studies were carried out. In addition, the cell viability, cell attachment, and infiltration of the prepared CFBs were evaluated using human umbilical vein endothelial cells (HUVECs) and human dermal fibroblast (HDF) cells. It was found that the CFBs were microporous, flexible, biodegradable, and showed enhanced blood clotting and platelet activity compared to the one without nanofibrin. The prepared CFBs were capable of absorbing fluid and this was confirmed when immersed in phosphate buffered saline. Cell viability studies on HUVECs and HDF cells proved the nontoxic nature of the CFBs. Cell attachment and infiltration studies showed that the cells were found attached and proliferated on the CFBs. In vivo experiments were carried out in Sprague-Dawley rats and found that the wound healing occurred within 2 weeks when treated with CFBs than compared to the bare wound and wound treated with Kaltostat. The deposition of collagen was found to be more on CFB-treated wounds compared to the control. The above results proved the use of these CFBs as an ideal candidate for skin tissue regeneration and wound healing.
Tansriratanawong, Kallapat; Ishikawa, Hiroshi; Toyomura, Junko; Sato, Soh
2017-10-01
In this study, novel human-derived epithelial-like cells (hEPLCs) lines were established from periodontal ligament (PDL) tissues, which were composed of a variety of cell types and exhibited complex cellular activities. To elucidate the putative features distinguishing these from epithelial rest of Malassez (ERM), we characterized hEPLCs based on cell lineage markers and tight junction protein expression. The aim of this study was, therefore, to establish and characterize hEPLCs lines from PDL tissues. The hEPLCs were isolated from PDL of third molar teeth. Cellular morphology and cell organelles were observed thoroughly. The characteristics of epithelial-endothelial-mesenchymal-like cells were compared in several markers by gene expression and immunofluorescence, to ERM and human umbilical-vein endothelial cells (HUVECs). The resistance between cellular junctions was assessed by transepithelial electron resistance, and inflammatory cytokines were detected by ELISA after infecting hEPLCs with periodontopathic bacteria. The hEPLCs developed into small epithelial-like cells in pavement appearance similar to ERM. However, gene expression patterns and immunofluorescence results were different from ERM and HUVECs, especially in tight junction markers (Claudin, ZO-1, and Occludins), and endothelial markers (vWF, CD34). The transepithelial electron resistance indicated higher resistance in hEPLCs, as compared to ERM. Periodontopathic bacteria were phagocytosed with upregulation of inflammatory cytokine secretion within 24 h. In conclusion, hEPLCs that were derived using the single cell isolation method formed tight multilayers colonies, as well as strongly expressed tight junction markers in gene expression and immunofluorescence. Novel hEPLCs lines exhibited differently from ERM, which might provide some specific functions such as metabolic exchange and defense mechanism against bacterial invasion in periodontal tissue.
Non-ideal Solution Thermodynamics of Cytoplasm
Ross-Rodriguez, Lisa U.; McGann, Locksley E.
2012-01-01
Quantitative description of the non-ideal solution thermodynamics of the cytoplasm of a living mammalian cell is critically necessary in mathematical modeling of cryobiology and desiccation and other fields where the passive osmotic response of a cell plays a role. In the solution thermodynamics osmotic virial equation, the quadratic correction to the linear ideal, dilute solution theory is described by the second osmotic virial coefficient. Herein we report, for the first time, intracellular solution second osmotic virial coefficients for four cell types [TF-1 hematopoietic stem cells, human umbilical vein endothelial cells (HUVEC), porcine hepatocytes, and porcine chondrocytes] and further report second osmotic virial coefficients indistinguishable from zero (for the concentration range studied) for human hepatocytes and mouse oocytes. PMID:23840923
Bressan, Eriberto; Gardin, Chiara; Ferroni, Letizia; Soldini, Maria Costanza; Mandelli, Federico; Soldini, Claudio
2017-01-01
Osteogenesis process displays a fundamental role during dental implant osteointegration. In the present work, we studied the influence of Osteon Growth Induction (OGI) surface properties on the angiogenic and osteogenic behaviors of Mesenchymal Stem cells (MSC). MSC derived from dental pulp and HUVEC (Human Umbilical Vein Endothelial Cells) were grown in on OGI titanium surfaces, and cell proliferation and DNA synthesis were evaluated by MTT [3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide] test and DNA quantification. Gene expression has been performed in order to evaluate the presence of mRNA related to endothelial and osteogenesis markers. Moreover, morphological and biochemical analyses of osteogenesis commitments has been performed. On OGI surfaces, MSC and HUVEC are able to proliferate. Gene expression profiler confirms that MSC on OGI surfaces are able to express endothelial and osteogenic markers, and that these expression are higher compared the expression on control surfaces. In conclusion On OGI surfaces proliferation, expression and morphological analyses of angiogenesis-associated markers in MSC are promoted. This process induces an increasing on their osteogenesis commitment. PMID:29149082
Myoferlin is a novel exosomal protein and functional regulator of cancer-derived exosomes.
Blomme, Arnaud; Fahmy, Karim; Peulen, Olivier; Costanza, Brunella; Fontaine, Marie; Struman, Ingrid; Baiwir, Dominique; de Pauw, Edwin; Thiry, Marc; Bellahcène, Akeila; Castronovo, Vincent; Turtoi, Andrei
2016-12-13
Exosomes are communication mediators participating in the intercellular exchange of proteins, metabolites and nucleic acids. Recent studies have demonstrated that exosomes are characterized by a unique proteomic composition that is distinct from the cellular one. The mechanisms responsible for determining the proteome content of the exosomes remain however obscure. In the current study we employ ultrastructural approach to validate a novel exosomal protein myoferlin. This is a multiple C2-domain containing protein, known for its conserved physiological function in endocytosis and vesicle fusion biology. Emerging studies demonstrate that myoferlin is frequently overexpressed in cancer, where it promotes cancer cell migration and invasion. Our data expand these findings by showing that myoferlin is a general component of cancer cell derived exosomes from different breast and pancreatic cancer cell lines. Using proteomic analysis, we demonstrate for the first time that myoferlin depletion in cancer cells leads to a significantly modulated exosomal protein load. Such myoferlin-depleted exosomes were also functionally deficient as shown by their reduced capacity to transfer nucleic acids to human endothelial cells (HUVEC). Beyond this, myoferlin-depleted cancer exosomes also had a significantly reduced ability to induce migration and proliferation of HUVEC. The present study highlights myoferlin as a new functional player in exosome biology, calling for novel strategies to target this emerging oncogene in human cancer.
Persson, Ingrid A L; Persson, Karin; Hägg, Staffan; Andersson, Rolf G G
2011-01-01
Evidence suggests that cocoa from the bean of Theobroma cacao L. has beneficial effects on cardiovascular disease. The aim of this study was to investigate if cocoa extract and dark chocolate influence angiotensin-converting enzyme (ACE) and nitric oxide (NO) in human endothelial cells (in vitro) and in healthy volunteers (in vivo). ACE activity was analyzed with a commercial radioenzymatic assay and measured in human endothelial cells from umbilical veins (HUVEC) after 10 minutes of incubation with cocoa extract. NO was measured after 24 hours of incubation. ACE activity and NO were measured at baseline and after 30, 60, and 180 minutes in 16 healthy volunteers after a single intake of 75 g of dark chocolate containing 72% cocoa. Significant inhibition of ACE activity (P < 0.01) and significant increase of NO (P < 0.001) were seen in HUVEC. In the study subjects, a significant inhibition of ACE activity (mean 18%) 3 hours after intake of dark chocolate was seen, but no significant change in NO was seen. According to ACE genotype, significant inhibition of ACE activity was seen after 3 hours in individuals with genotype insertion/insertion and deletion/deletion (mean 21% and 28%, respectively). Data suggest that intake of dark chocolate containing high amount of cocoa inhibits ACE activity in vitro and in vivo.
Meschiari, Cesar A; Izidoro-Toledo, Tatiane; Gerlach, Raquel F; Tanus-Santos, Jose E
2013-06-01
Cardiovascular diseases involve critical mechanisms including impaired nitric oxide (NO) levels and abnormal matrix metalloproteinase (MMP) activity. While NO downregulates MMP expression in some cell types, no previous study has examined whether NO downregulates MMP levels in endothelial cells. We hypothesized that NO donors could attenuate MMP-9 production by human umbilical vein endothelial cells (HUVECs) as a result of less NFκB activation or cyclic GMP (cGMP)-mediated mechanisms. We studied the effects of DetaNONOate (10-400 μM) or SNAP (50-400 μM) on phorbol 12-myristate 13-acetate (PMA; 10 nM)-induced increases in MMP-9 activity (by gel zymography) or concentrations (by ELISA) as well as on a tissue inhibitor of MMPs' (TIMP)-1 concentrations (by ELISA) in the conditioned medium of HUVECs incubated for 24 h with these drugs. We also examined whether the irreversible inhibitor of soluble guanylyl cyclase ODQ modified the effects of SNAP or whether 8-bromo-cGMP (a cell-permeable analog of cGMP) influenced PMA-induced effects on MMP-9 expression. Total and phospho-NFκB p65 concentrations were measured in HUVEC lysates to assess NFκB activation. Both NO donors attenuated PMA-induced increases in MMP-9 activity and concentrations without significantly affecting TIMP-1 concentrations. This effect was not modified by ODQ, and 8-bromo-cGMP did not affect MMP-9 concentrations. While PMA increased phospho-NFκB p65 concentrations, SNAP had no influence on this effect. In conclusion, this study shows that NO donors may attenuate imbalanced MMP expression and activity in endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Our results may offer an important pharmacological strategy to approach cardiovascular diseases.
Depolymerized products of lambda-carrageenan as a potent angiogenesis inhibitor.
Chen, Haimin; Yan, Xiaojun; Lin, Jing; Wang, Feng; Xu, Weifeng
2007-08-22
Since angiogenesis is involved in initiating and promoting several diseases such as cancer and cardiovascular events, this study was designed to evaluate the anti-angiogenesis of low-molecular-weight (LMW), highly sulfated lambda-carrageenan oligosaccharides (lambda-CO) obtained by carrageenan depolymerization, by CAM (chick chorioallantoic membrane) model and human umbilical vein endothelial cells (HUVECs). Significant inhibition of vessel growth was observed at 200 microg/pellet. A histochemistry assay also revealed a decrease of capillary plexus and connective tissue in lambda-CO treated samples. lambda-CO inhibited the viability of cells at the high concentration of 1 mg/mL, whereas it affected the cell survival slightly (>95%) at a low concentration (<250 microg/mL), and HUVEC is the most sensitive to lambda-CO among three kinds of cells. Furthermore, the inhibitory action of lambda-CO was also observed in the endothelial cell invasion and migration at relatively low concentration (150-300 microg/mL), through down-regulation of intracellular matrix metalloproteinases (MMP-2) expression on endothelial cells. Taken together, these findings demonstrate that lambda-CO is a potential angiogenesis inhibitor with combined effects of inhibiting invasion, migration, and proliferation.
Hattori, Koji; Munehira, Yoichi; Kobayashi, Hideki; Satoh, Taku; Sugiura, Shinji; Kanamori, Toshiyuki
2014-09-01
We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm(2) in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 10(5)) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm(2). Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm(2). Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Kim, Hyo-Soo; Skurk, Carsten; Maatz, Henrike; Shiojima, Ichiro; Ivashchenko, Yuri; Yoon, Suk-Won; Park, Young-Bae; Walsh, Kenneth
2005-06-01
To identify new antiapoptotic targets of the PI3K-Akt signaling pathway in endothelial cells, adenovirus-mediated Akt1 gene transfer and oligonucleotide microarrays were used to examine Akt-regulated transcripts. DNA microarray analysis revealed that HSP70 expression underwent the greatest fold activation of 12,532 transcripts examined in human umbilical vein endothelial cells (HUVEC) transduced with constitutively active Akt1. Akt1 gene transfer increased HSP70 transcript expression by 24.8-fold as determined by quantitative PCR and promoted a dose-dependent up-regulation of HSP70 protein as determined by Western immunoblot analysis. Gene transfer of FOXO3a, a downstream target of Akt in endothelial cells, significantly suppressed both basal and stress-induced HSP70 protein expression. FOXO3a induced caspase-9-dependent apoptosis in HUVEC, and cotransduction with Ad-HSP70 rescued endothelial cells from FOXO3a-induced apoptosis under basal and stress conditions. Our results identify HSP70 as a new antiapoptotic target of Akt-FOXO3a signaling in endothelial cells that controls viability through modulation of the stress-induced intrinsic cell death pathway.
Colman, R W; Pixley, R A; Najamunnisa, S; Yan, W; Wang, J; Mazar, A; McCrae, K R
1997-01-01
The urokinase receptor (uPAR) binds urokinase-type plasminogen activator (u-PA) through specific interactions with uPAR domain 1, and vitronectin through interactions with a site within uPAR domains 2 and 3. These interactions promote the expression of cell surface plasminogen activator activity and cellular adhesion to vitronectin, respectively. High molecular weight kininogen (HK) also stimulates the expression of cell surface plasminogen activator activity through its ability to serve as an acquired receptor for prekallikrein, which, after its activation, may directly activate prourokinase. Here, we report that binding of the cleaved form of HK (HKa) to human umbilical vein endothelial cells (HUVEC) is mediated through zinc-dependent interactions with uPAR. These occur through a site within uPAR domains 2 and 3, since the binding of 125I-HKa to HUVEC is inhibited by vitronectin, anti-uPAR domain 2 and 3 antibodies and soluble, recombinant uPAR (suPAR), but not by antibody 7E3, which recognizes the beta chain of the endothelial cell vitronectin receptor (integrin alphavbeta3), or fibrinogen, another alphavbeta3 ligand. We also demonstrate the formation of a zinc-dependent complex between suPAR and HKa. Interactions of HKa with endothelial cell uPAR may underlie its ability to promote kallikrein-dependent cell surface plasmin generation, and also explain, in part, its antiadhesive properties. PMID:9294114
In vitro antineoplastic effects of brivaracetam and lacosamide on human glioma cells.
Rizzo, Ambra; Donzelli, Sara; Girgenti, Vita; Sacconi, Andrea; Vasco, Chiara; Salmaggi, Andrea; Blandino, Giovanni; Maschio, Marta; Ciusani, Emilio
2017-06-06
Epilepsy is a frequent symptom in patients with glioma. Although treatment with antiepileptic drugs is generally effective in controlling seizures, drug-resistant patients are not uncommon. Multidrug resistance proteins (MRPs) and P-gp are over-represented in brain tissue of patients with drug-resistant epilepsy, suggesting their involvement in the clearance of antiepileptic medications. In addition to their anticonvulsant action, some drugs have been documented for cytotoxic effects. Aim of this study was to evaluate possible in vitro cytotoxic effects of two new-generation antiepileptic drugs on a human glioma cell line U87MG. Cytotoxicity of brivaracetam and lacosamide was tested on U87MG, SW1783 and T98G by MTS assay. Expression of chemoresistance molecules was evaluated using flow cytometry in U87MG and human umbilical vein endothelial cells (HUVECs). To investigate the putative anti-proliferative effect, apoptosis assay, microRNA expression profile and study of cell cycle were performed. Brivaracetam and lacosamide showed a dose-dependent cytotoxic and anti-migratory effects. Cytotoxicity was not related to apoptosis. The exposure of glioma cells to brivaracetam and lacosamide resulted in the modulation of several microRNAs; particularly, the effect of miR-195-5p modulation seemed to affect cell cycle, while miR-107 seemed to be implicated in the inhibition of cells migration. Moreover, brivaracetam and lacosamide treatment did not modulate the expression of chemoresistance-related molecules MRPs1-3-5, GSTπ, P-gp on U87MG and HUVECs. Based on antineoplastic effect of brivaracetam and lacosamide on glioma cells, we assume that patients with glioma could benefit by the treatment with these two molecules, in addition to standard therapeutic options.
Song, Yue; Shen, Keng; Yu, Jing-rong
2007-11-06
To construct recombinant adenoviral vector expressing autocatalysis caspase-3 driven by human telomerase reverse transcriptase promoter (hTERTp), and investigate its antitumor effect on ovarian cancer in vitro and in vivo. Recombinant adenovirus expressing autocatalytic caspase-3 (rev-csapase-3) driven by hTERTp, AdHT-rev-casp3, was constructed. Ad-rev-casp3 expressing rev-caspase-3 driven by cytomegalovirus promoter (CMVp) was used as a positive control. hTERT positive human ovarian cancer cells of the line AO and hTERT-negative human umbilical venous endothelial cells (HUVECs) were cultured and transfected with AdHT-rev-casp3, Ad-rev-casp3, or Ad-EGFG expressing enhanced green fluorescent protein as control group. Western blotting, Cell Counting Kit (CCK-8), flow cytometry, and TUNEL were used to detect the expression of p17, active subunit of caspase-3, and p85, a poly ADP-ribose polymerase (PARP) cleavage fragment, and they were also used to measure the cell survival rate and apoptotic rate. Western blotting was used to detect the expression of active caspase-3 and its substrate PARP in the AO cells and HUVECs. Twenty nude BALB/c mice were inoculated subcutaneously with AO cells to establish subcutaneous tumor models, when the tumor grew to the volume of 150 mm3 the rats were divided into 4 equal groups to undergo intra-tumor injection of AdHT-rev-casp3, Ad-rev-casp3, Ad-EGFG, and phosphate-buffered saline (PBS) respectively, the survival rate tumor inhibition rate was observed, 72 days later the mice were killed with their livers and tumors taken out, and Western blotting was used to detect the expression of active caspase-3. Another 40 mice underwent intraperitoneal injection of AO cells to establish intraperitoneal transplanted tumor models, 21 days later the rats were divided into 4 equal groups to be injected intraperitoneally with AdHT-rev-casp3, Ad-rev-casp3, Ad-EGFG, or PBS, the survival rate was observed, and the blood levels of alanine transaminase (ALT) and aspartate transaminase (AST) were detected. Following the administration of AdHT-rev-casp3, active caspase-3 protein was significantly expressed, and the levels of p17 and p85 expressions were significantly elevated in AO cells, while no expressions of p17 and p85 was observed in HUVEC. In contrast, both AO and HUVEC expressed high levels of p17 and p85 protein after administrations of Ad-rev-casp3. AdHT-rev-casp3 dose-dependently killed the hTERT positive AO cells, however, showed no killing effect on the hTERT-negative HUVEC cells; whereas Ad-rev-casp3 was cytotoxic independent of the hTERT status of the cells. The killing effect of Ad-rev-casp3 was stronger than that of AdHT-rev-casp3. Treated with AdHT-rev-cap3 the expression levels of the caspase-3 fragment p17 and PARP cleavage fragment p85 of the AO cells were significantly higher than those before the treatment, however, the expression levels of p17 and p85 were both weaker than those of the AO cells treated with Ad-rev-casp-3. Though treated with AdHT-rev-casp-3, there was still no remarkable expression of p17 and p85 in the HUVECs, however, rather high protein expression levels of p17 and p85 was shown. After treatment with AdHT-rev-casp3 remarkable expression of active caspase-3 was seen in the tumor collected from the mouse body, but not in the liver; however, high caspase-3 expression level was shown in both the liver and tumor after the treatment of Ad-rev-casp-3. 53 days after treatment the tumor suppression rate of the AdHT-rev-casp3 and ad-rev-casp-3 groups were 60% and 70% respectively, both significantly higher than that of the control group. The survival rates of the mice treated with AdHT-rev-casp3 and Ad-rev-casp-3 were both significantly longer than that of the PBS group; however the survival rate of the Ad-rev-casp-3 group was longer than that of the AdHT-rev-casp3 group. The serum ALT and AST levels were not significantly elevated in the AdHT-rev-casp3-treated mice, whereas 7-9-times that before treatment in the Ad-rev-casp3-treated mice. Recombinant adenovirus AdHT-rev-casp3 expressing rev-caspase-3 driven by hTERTp effectively causes cell apoptosis targeting tumor, significantly suppresses tumor growth and prolongs the mouse survival duration, with mild liver toxicity.
Chan-Chan, L H; Tkaczyk, C; Vargas-Coronado, R F; Cervantes-Uc, J M; Tabrizian, M; Cauich-Rodriguez, J V
2013-07-01
Polyurethanes are very often used in the cardiovascular field due to their tunable physicochemical properties and acceptable hemocompatibility although they suffer from poor endothelialization. With this in mind, we proposed the synthesis of a family of degradable segmented poly(urea)urethanes (SPUUs) using amino acids (L-arginine, glycine and L-aspartic acid) as chain extenders. These polymers degraded slowly in PBS (pH 7.4) after 24 weeks via a gradual decrease in molecular weight. In contrast, accelerated degradation showed higher mass loss under acidic, alkaline and oxidative media. MTT tests on polyurethanes with L-arginine as chain extenders showed no adverse effect on the metabolism of human umbilical vein endothelial cells (HUVECs) indicating the leachables did not provoke any toxic responses. In addition, SPUUs containing L-arginine promoted higher levels of HUVECs adhesion, spreading and viability after 7 days compared to the commonly used Tecoflex(®) polyurethane. The biodegradability and HUVEC proliferation on L-arginine-based SPUUs suggests that they can be used in the design of vascular grafts for tissue engineering.
AGE/RAGE-Induced EMP Release via the NOX-Derived ROS Pathway
Chen, Ying-Hua; Chen, Zhang-Wei; Li, Hong-Mei
2018-01-01
Objective Diabetes is associated with accelerated formation of advanced glycation end products (AGEs) that are extensively found in circulating endothelial microparticles (EMPs). This study aimed to investigate whether AGEs have a direct effect on EMP formation and the possible underlying mechanism. Methods In vitro, cultured human umbilical vein endothelial cells (HUVECs) were incubated with AGEs (200 and 400 μg/ml) for 24 hours with or without pretreatment with anti-RAGE antibody, NOX inhibitor, or ROS scavenger. The number of CD31-positive EMPs was assessed by flow cytometry. Results The number of EMPs was significantly increased in HUVECs stimulated by AGEs in a dose-dependent manner. In addition, receptors for AGEs (RAGE), NAD(P)H oxidase (NOX), and reactive oxygen species (ROS) were increased by AGEs as compared to the control group. These changes could be reversed when HUVECs were pretreated with anti-RAGE antibody. Moreover, inhibition of NOX as well as antioxidant treatment reduced the release of EMPs induced by AGEs. Conclusion Our study suggested that AGEs increased EMP generation, which was mediated by RAGE signaling through NOX-derived ROS. PMID:29744367
AGE/RAGE-Induced EMP Release via the NOX-Derived ROS Pathway.
Chen, Ying-Hua; Chen, Zhang-Wei; Li, Hong-Mei; Yan, Xin-Feng; Feng, Bo
2018-01-01
Diabetes is associated with accelerated formation of advanced glycation end products (AGEs) that are extensively found in circulating endothelial microparticles (EMPs). This study aimed to investigate whether AGEs have a direct effect on EMP formation and the possible underlying mechanism. In vitro, cultured human umbilical vein endothelial cells (HUVECs) were incubated with AGEs (200 and 400 μ g/ml) for 24 hours with or without pretreatment with anti-RAGE antibody, NOX inhibitor, or ROS scavenger. The number of CD31-positive EMPs was assessed by flow cytometry. The number of EMPs was significantly increased in HUVECs stimulated by AGEs in a dose-dependent manner. In addition, receptors for AGEs (RAGE), NAD(P)H oxidase (NOX), and reactive oxygen species (ROS) were increased by AGEs as compared to the control group. These changes could be reversed when HUVECs were pretreated with anti-RAGE antibody. Moreover, inhibition of NOX as well as antioxidant treatment reduced the release of EMPs induced by AGEs. Our study suggested that AGEs increased EMP generation, which was mediated by RAGE signaling through NOX-derived ROS.
Inhibitory effects of Physalis angulata on tumor metastasis and angiogenesis.
Hseu, You-Cheng; Wu, Chi-Rei; Chang, Hsueh-Wei; Kumar, K J Senthil; Lin, Ming-Kuem; Chen, Chih-Sheng; Cho, Hsin-Ju; Huang, Chun-Yin; Huang, Chih-Yang; Lee, Hong-Zin; Hsieh, Wen-Tsong; Chung, Jing-Gung; Wang, Hui-Min; Yang, Hsin-Ling
2011-06-01
ETHNOPHARMACOLOGICAL RELAVENCE: Physalis angulata is well-known in traditional Chinese medicine as a ingredient for various herbal formulation; also, it has been shown to exhibit anti-cancer and anti-inflammatory effects. In this study, the ability of P. angulata to inhibit tumor metastasis and angiogenesis was investigated. Anti-proliferative activity of ethyl acetate extracts of P. angulata (PA extracts), was determined against human oral squamous carcinoma (HSC-3) and human umbilical vein endothelial cells (HUVECs) by trypan blue exclusion method. Wound-healing migration, trans-well invasion, Western blotting and chick chorioallantoic membrane assay were carried out to determine the anti-metastatic and anti-angiogenic effects of PA extracts in vitro and in vivo. We demonstrated that at sub-cytotoxic concentrations of PA extracts (5-15 μg/mL) markedly inhibited the migration and invasion of highly metastatic HSC-3 cells as shown by wound-healing repair assay and trans-well assay. Gelatin zymography assay showed that PA extracts suppressed the activity of matrix metalloproteinase (MMP)-9 and -2, and urokinase plasminogen activator (u-PA) in HSC-3 cells. In addition, Western blot analysis confirmed that PA extracts significantly decreased MMP-2 and u-PA protein expression in HSC-3 cells. Notably, PA extracts significantly augmented the expression of their endogenous inhibitors, including tissue inhibitors of MMP (TIMP-1 and -2), and plasminogen activator inhibitors (PAI-1 and -2). Further investigations revealed that non-cytotoxic concentration of PA extracts (5-15 μg/mL) inhibited vascular endothelial growth factor (VEGF)-induced proliferation, and migration/invasion of HUVECs in vitro. PA extracts also suppressed the activity of MMP-9, but not MMP-2, in HUVECs. Further, we observed, PA extracts strongly suppressed neovessel formation in the chorioallantoic membrane of chick embryos in vivo. These results strongly support an anti-metastatic and anti-angiogenic activity of P. angulata that may contribute to the development of better chemopreventive agent for cancer and inflammation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Shen, Yaqi; Guo, Wei; Wang, Zhijun; Zhang, Yuchen; Zhong, Liangjie; Zhu, Yizhun
2013-01-01
The aim of the study was to investigate the protective effects of sodium hydrosulfide (NaHS), a H2S donor, against hypoxia-induced injury in human umbilical vein endothelial cells (HUVECs) and also to look into the possible mechanisms by which H2S exerts this protective effect. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and scratch wound healing assay were chosen to measure the cell viability and migration-promoting effects. The fluorescent probe, DCFH-DA and 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1) were applied to detect the reactive oxygen species (ROS) level and mitochondrial membrane potential (ΔΨm). Furthermore, western blots were used to measure the expressions of the apoptosis-related proteins. Under hypoxic conditions, 300 μM and 600 μM of H2S could protect HUVECs against hypoxia-induced injury, as determined by MTT assay. Following the treatment of 60 μM NaHS for 18 h, scratch wound healing assays indicated that the scratch became much narrower than control group. After treatment with 60 μM, 120 μM, and 600 μM NaHS, and hypoxia for 30 min, flow cytometry demonstrated that the ROS concentrations decreased to 95.08% ± 5.52%, 73.14% ± 3.36%, and 73.51% ± 3.05%, respectively, compared with the control group. In addition, the JC-1 assay showed NaHS had a protective effect on mitochondria damage. Additionally, NaHS increased Bcl-2 expression and decreased the expression of Bax, Caspase-3 and Caspase-9 in a dose-dependent way. Our results suggest that H2S can protect endothelial cells and promote migration under hypoxic condition in HUVECs. These effects are partially associated with the preservation of mitochondrial function mediated by regulating the mitochondrial-dependent apoptotic pathway. PMID:23799362
Xie, Xiaolong; Zhu, Tiebing; Chen, Lulu; Ding, Shuang; Chu, Han; Wang, Jing; Yao, Honghong; Chao, Jie
2018-01-29
Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) plays a important role in ischemia/reperfusion (I/R) injury. Autophagy is involved in activating endothelial cells in response to I/R. However, researchers have not clearly determined whether MCPIP1 mediates I/R injury in endothelial cells via autophagy, and its downstream mechanism remains unclear. Western blotting analyses and immunocytochemistry were applied to detect protein levels were detected in HUVECs. An in vitro scratch assay was used to detect cell migration. Cells were transfected with siRNAs to knockdown MCPIP1 and high mobility group box 1 (HMGB1) expression. The pharmacological activator of autophagy rapamycin and the specific calcium-sensing receptor (CaSR) inhibitor NPS-2143 were used to confirm the roles of autophagy and CaSR in I/R injury. I/R induced HMGB1 and CaSR expression, which subsequently upreguated the migration and apoptosis of HUVECs and coincided with the increase of autophagy. HMGB1 was involved in cell migration, whereas CaSR specifically participated in I/R-induced HUVEC apoptosis. Based on these findings, I/R-induced MCPIP1 expression regulates the migration and apoptosis of HUVECs via HMGB1 and CaSR, respectively, suggesting a new therapeutic targetof I/R injury.
Dang, Rui-Ying; Liu, Feng-Li; Li, Yan
2017-08-19
Circular RNAs (circRNAs) are a group of non-protein-coding RNAs generated from back splicing. Emerging evidence has demonstrated its vital regulation on angiogenesis. However, the underlying mechanism responsible for circRNAs effects on vascular endothelial cells is still unclear. In the present study, we screened the expression profiles and investigated the physiological role of circRNAs in hypoxia-induced human umbilical vein endothelial cells (HUVECs). Using circRNA microarray analysis, we identified 36 circRNAs that were significantly dysregulated including 14 down-regulated circRNAs and 22 up-regulated with 2-fold change (P < 0.05). From the over-expressed circRNAs, hsa_circ_0010729 was selected as candidate circRNA and which was validated to be significantly up-regulated using RT-PCR. In loss-of-function experiments of HUVECs, hsa_circ_0010729 knockdown suppressed the proliferation and migration ability and enhanced apoptosis. Bioinformatic prediction and luciferase assay revealed that hsa_circ_0010729 and hypoxia inducible factor 1 alpha (HIF-1α) were targeted by miR-186. Validation experiments verified that hsa_circ_0010729 was co-expressed with HIF-1α, being negatively correlated with miR-186. Moreover, rescue experiments demonstrated that miR-186 inhibitor could reverse the role of hsa_circ_0010729 knockdown on HUVECs progression. Overall, the present study identifies the crucial regulation of hsa_circ_0010729 on vascular endothelial cell proliferation and apoptosis via targeting miR-186/HIF-1α axis. Copyright © 2017 Elsevier Inc. All rights reserved.
Brunstein, Flavia; Hoving, Saske; Seynhaeve, Ann L B; van Tiel, Sandra T; Guetens, Gunther; de Bruijn, Ernst A; Eggermont, Alexander M M; ten Hagen, Timo L M
2004-11-03
We have previously shown how tumor response of isolated limb perfusion (ILP) with melphalan was improved when tumor necrosis factor alpha (TNF-alpha) was added. Taking into account that other vasoactive drugs could also improve tumor response to ILP, we evaluated histamine (Hi) as an alternative to TNF-alpha. We used a rat ILP model to assess the combined effects of Hi and melphalan (n = 6) on tumor regression, melphalan uptake (n = 6), and tissue histology (n = 2) compared with Hi or melphalan alone. We also evaluated the growth of BN-175 tumor cells as well as apoptosis, necrosis, cell morphology, and paracellular permeability of human umbilical vein endothelial cells (HUVECs) after Hi treatment alone and in combination with melphalan. The antitumor effect of the combination of Hi and melphalan in vivo was synergistic, and Hi-dependent reduction in tumor volume was blocked by H1 and H2 receptor inhibitors. Tumor regression was observed in 66% of the animals treated with Hi and melphalan, compared with 17% after treatment with Hi or melphalan alone. Tumor melphalan uptake increased and vascular integrity in the surrounding tissue was reduced after ILP treatment with Hi and melphalan compared with melphalan alone. In vitro results paralleled in vivo results. BN-175 tumor cells were more sensitive to the cytotoxicity of combined treatment than HUVECs, and Hi treatment increased the permeability of HUVECs. Hi in combination with melphalan in ILP improved response to that of melphalan alone through direct and indirect mechanisms. These results warrant further evaluation in the clinical ILP setting and, importantly, in organ perfusion.
Hwang, Hwan-Jin; Jung, Tae Woo; Hong, Ho Cheol; Choi, Hae Yoon; Seo, Ji-A; Kim, Sin Gon; Kim, Nan Hee; Choi, Kyung Mook; Choi, Dong Seop; Baik, Sei Hyun; Yoo, Hye Jin
2013-01-01
Atherosclerosis is considered a chronic inflammatory disease, initiated by activation and dysfunction of the endothelium. Recently, progranulin has been regarded as an important modulator of inflammatory processes; however, the role for prgranulin in regulating inflammation in vascular endothelial cells has not been described. Signaling pathways mediated by progranulin were analyzed in human umbilical vein endothelial cells (HUVECs) treated with progranulin. Progranulin significantly induced Akt and endothelial nitric oxide synthase (eNOS) phosphorylation in HUVECs, an effect that was blocked with Akt inhibitor. Furthermore, nitric oxide (NO) level, the end product of Akt/eNOS pathway, was significantly upregulated after progranulin treatment. Next, we showed that progranulin efficiently inhibited lipopolysaccharide (LPS)-mediated pro-inflammatory signaling. LPS-induced phosphorylation of IκB and nuclear factor-κB (NF-κB) levels decreased after progranulin treatment. Also, progranulin blocked translocation of NF-κB from the cytosol to the nucleus. In addition, progranulin significantly reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) by inhibiting binding of NF- κB to their promoter regions and blocked attachment of monocytes to HUVECs. Progranulin also significantly reduced the expression of tumor necrosis factor receptor-α (TNF-α) and monocyte chemo-attractant protein-1 (MCP-1), the crucial inflammatory molecules known to aggravate atherosclerosis. Progranulin efficiently inhibited LPS-mediated pro-inflammatory signaling in endothelial cells through activation of the Akt/eNOS pathway and attenuation of the NF-κB pathway, suggesting its protective roles in vascular endothelium against inflammatory reaction underlying atherosclerosis.
[Biological characteristics of exosomes secreted by human bone marrow mesenchymal stem cells].
Feng, Ying; Lu, Shi-Hong; Wang, Xin; Cui, Jun-Jie; Li, Xue; DU, Wen-Jing; Wang, Ying; Li, Juan-Juan; Song, Bao-Quan; Chen, Fang; Ma, Feng-Xia; Chi, Ying; Yang, Shao-Guang; Han, Zhong-Chao
2014-06-01
This study was aimed to explore the immunoregulatory function and capability supporting the angiogenesis of exosomes secreted by bone marrow mesenchymal stem cells (BMMSC) from healthy persons. Supernatant of BMMSC (P4-P6) was collected for exosome purification. Transmission electron microscopy (TEM) and Western blot were used to identify the quality of isolated exosomes. The amount of exosomes was quantified through bicinchoninic acid (BCA) protein assay. Human peripheral blood mononuclear cells (PBMNC) were isolated from healthy donor and added with isolating exosomes. After co-cultured for 72 h, IFN-γ from the co-culture system was detected by ELISA. The expression of miRNA-associated with immunity were detected by real-time reverse transcription polymerase chain reaction (Real-time RT-PCR). The interactions between exosomes and human umbilical vein endothelial cells (HUVEC) were observed with confocal microscopy. Subconfluent HUVEC were harvested and treated with the indicated concentration of exosomes. Nude mice were injected subcutaneously with exosomes or PBS as control to verify the ability of angiogenesis. The results showed that diameter range of exosomes was range from 40 to 160 nm. The isolated exosomes expressed the CD9. There was approximately linear relation between the secretion of exosomes and cell density. The exosomes suppressed the production of IFN-γ from PBMNC, and contained miRNA associated with immune regulation such as miR301, miR22 and miR-let-7a. Exosomes induced vascular tube formation in vitro and vascularization of Matrigel plugs in vivo. It is concluded that the BMMSC-derived exosomes can regulate immunity and support vascularization.
Liu, Qing; Qiao, Ai-Min; Yi, Li-Tao; Liu, Zhen-Ling; Sheng, Shi-Mei
2016-10-01
Kinsenoside is the major ingredient of Anoectochilus roxburghii which is a traditional Chinese herb using for the treatment of diabetes. The present study investigated the safety and vascular protection of kinsenoside related to advanced glycation end products (AGEs) in human umbilical vein endothelial cells (HUVECs) and the underlying mechanisms. HUVECs were pre-incubated with AGEs (200μg/mL) for 1h, and then co-treated with different concentrations of kinsenoside (10-30μg/mL) for another 48h. After the supernatant was collected, the contents of nitric oxide (NO), the levels of reactive oxygen species (ROS) and inflammatory cytokines, and the expressions of AGEs receptor (RAGE) and nuclear factor kappa B (NF-κB) were measured. No significant changes in cell viability were found in kinsenoside-treated cells at the range of 10-70μg/mL. Pretreatment with kinsenoside induced a significant increase in NO production in AGEs-induced cells. In addition, kinsenoside not only inhibited the expression of RAGE but also decreased intracellular ROS generation induced by AGEs. Furthermore, kinsenoside suppressed the protein and gene expression of NF-κB, and reduced the release of intercellular adhesion molecule-1 (ICAM-1) and human monocyte chemoattractant protein-1 (MCP-1) in a dose-dependent manner remarkably. These results indicated that kinsenoside might attenuate AGEs-induced endothelial dysfunction via AGEs-RAGE-NF-κB pathway. Considering the relatively low toxicity of kinsenoside, it might be a promising agent for treatment of vasculopathy in diabetic patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Lu, Junyan; Xiang, Guangda; Liu, Min; Mei, Wen; Xiang, Lin; Dong, Jing
2015-12-01
The circulating irisin increases energy expenditure and improves insulin resistance in mice and humans. The improvement of insulin resistance ameliorates atherosclerosis. Therefore, we hypothesized that irisin alleviates atherosclerosis in diabetes. Endothelial function was measured by acetylcholine-induced endothelium-dependent vasodilation using aortic rings in apolipoprotein E-Null (apoE(-/-)) streptozotocin-induced diabetic mice. Atherosclerotic lesion was evaluated by plaque area and inflammatory response in aortas. In addition, the endothelium-protective effects of irisin were also further investigated in primary human umbilical vein endothelial cells (HUVECs) in vitro. The in vivo experiments showed that irisin treatment significantly improved endothelial dysfunction, decreased endothelial apoptosis, and predominantly decreased atherosclerotic plaque area of both en face and cross sections when compared with normal saline-treated diabetic mice. Moreover, the infiltrating macrophages and T lymphocytes within plaque and the mRNA expression levels of inflammatory cytokines in aortas were also significantly reduced by irisin treatment in mice. The in vitro experiments revealed that irisin inhibited high glucose-induced apoptosis, oxidative stress and increased antioxidant enzymes expression in HUVECs, and pretreatment with LY294002, l-NAME, AMPK-siRNA or eNOS-siRNA, attenuated the protection of irisin on HUVECs apoptosis induced by high glucose. In addition, the in vivo and in vitro experiments showed that irisin increased the phosphorylation of AMPK, Akt and eNOS in aortas and cultured HUVECs. The present study indicates that systemic administration of irisin may be protected against endothelial injury and ameliorated atherosclerosis in apoE(-/-) diabetic mice. The endothelium-protective action of irisin was through activation of AMPK-PI3K-Akt-eNOS signaling pathway. Irisin could be therapeutic for atherosclerotic vascular diseases in diabetes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Yoshizumi, Masanori; Abe, Jun-Ichi; Tsuchiya, Koichiro; Berk, Bradford C; Tamaki, Toshiaki
2003-03-01
Atherosclerosis preferentially occurs in areas of turbulent blood flow and low fluid shear stress, whereas laminar blood flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. Recent findings suggest a steady laminar blood flow decreases EC apoptosis and inhibits TNF-mediated EC activation. EC apoptosis or activation is suggested to be involved in plaque erosion, which may lead to platelet aggregation. TNF-alpha regulates gene expression in ECs, in part, by stimulating mitogen-activated protein (MAP) kinases, which phosphorylate transcription factors. We hypothesized that steady laminar flow inhibits cytokine-mediated activation of MAP kinases in ECs. To test this hypothesis, we determined the effects of steady laminar flow (shear stress = 12 dynes/cm(2)) on TNF-alpha-stimulated activity of three MAP kinases in human umbilical vein ECs (HUVEC): extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. TNF-alpha activated ERK1/2, JNK, and p38 maximally at 15 min in HUVEC. Pre-exposing HUVEC for 10 min to flow inhibited TNF-alpha activation of JNK, but showed no significant effect on ERK1/2 or p38 activation. Incubation of HUVEC with PD98059, a specific ERK1/2 inhibitor, blocked the flow-mediated inhibition of TNF activation of JNK. Transfection studies with dominant-negative constructs of the protein kinase MEK5 suggested an important role for big mitogen-activated protein kinase 1 (BMK1) in flow-mediated regulation of EC activation by TNF-alpha. Understanding the mechanisms by which steady laminar flow regulates JNK activation by cytokines may provide insight into the atheroprotective mechanisms induced by laminar blood flow.
Rezabakhsh, Aysa; Ahmadi, Mahdi; Khaksar, Majid; Montaseri, Azadeh; Malekinejad, Hassan; Rahbarghazi, Reza; Garjani, Alireza
2017-09-01
Chronic hyperglycemia is a potent risk factor of abnormal angiogenesis with various tissue diseases. Autophagy, as an alternative cell response, is mostly generated by a vast array of insults. Applying autophagic response contributes to normal cell retrieval circumstance during various insults. We aimed to show whether stimulation/inhibition of autophagy could reduce or exacerbate oxidative status and angiogenic potential in endothelial cells after exposure to 30mM glucose. HUVECs were incubated with the combined regime of 100nM Rapamycin and 30mM glucose over a period of 72h. The effect of rapamycin on cell viability, malondialdehyde levels, and nitric oxide were monitored by convenient assays. Intracellular ROS level was measured by flow cytometric analysis and DCFDA. HUVECs migration and angiogenic properties were assessed using scratch test and tubulogenesis assay. The expression of autophagic modulators LC3, Becline-1 and P62 was measured by using western blotting. Data showed 30mM glucose reduced cell viability, migration and in vitro tubulogenesis and level of ROS and nitric oxide were found to increased (p<0.05). Rapamycin had potential to increase cell survival and significantly decreased the total levels of oxidative stress markers after cell exposure to 30mM glucose (p<0.05). Rapamycin potentially improved the detrimental effect of 30mM glucose on cell migration and tubulogenesis capacity (p<0.05). Effective autophagic response was stimulated by rapamycin by increasing beclin-1, and the LC3-II/I ratio and reducing intracellular P62 level (p<0.05), resulting in the improvement of cell health and function. Together, rapamycin protected HUVECs from damages caused by high glucose concentration. This effect was possibly mediated by autophagy-dependent pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Thrombin enhances herpes simplex virus infection of cells involving protease-activated receptor 1.
Sutherland, M R; Friedman, H M; Pryzdial, E L G
2007-05-01
We have previously shown that the surface of purified herpes family viruses can initiate thrombin production by expressing host-encoded and virus-encoded procoagulant factors. These enable the virus to bypass the normal cell-regulated mechanisms for initiating coagulation, and provide a link between infection and vascular disease. In the current study we investigated why these viruses may have evolved to generate thrombin. Using cytolytic viral plaque assays, the current study examines the effect of thrombin on human umbilical vein endothelial cell (HUVEC) or human foreskin fibroblast (HFF) infection by purified herpes simplex virus type 1 (HSV1) and type 2 (HSV2). Demonstrating that the availability of thrombin is an advantage to the virus, purified thrombin added to serum-free inoculation media resulted in up to a 3-fold enhancement of infection depending on the virus strain and cell type. The effect of thrombin on HUVEC infection was generally greater than its effect on HFF. To illustrate the involvement of thrombin produced during inoculation, hirudin was shown to inhibit the infection of each HSV strain, but only when serum containing clotting factors for thrombin production was present in media. The involvement of protease-activated receptor 1 (PAR1) was supported using PAR1-activating peptides in place of thrombin and PAR1-specific antibodies to inhibit the effects of thrombin. These data show that HSV1 and HSV2 initiate thrombin production to increase the susceptibility of cells to infection through a mechanism involving PAR1-mediated cell modulation.
Hsieh, Chiu-Lan; Huang, Chien-Ning; Lin, Yuh-Charn; Peng, Robert Y
2007-10-17
Chronic cardiovascular and neurodegenerative complications induced by hyperglycemia have been considered to be associated most relevantly with endothelial cell damages (ECD). The protective effects of the aqueous extract of Psidium guajava L. budding leaves (PE) on the ECD in human umbilical vein endothelial cell (HUVEC) model were investigated. Results revealed that glyoxal (GO) and methylglyoxal (MGO) resulting from the glycative and autoxidative reactions of the high blood sugar glucose (G) evoked a huge production of ROS and NO, which in turn increased the production of peroxynitrite, combined with the activation of the nuclear factor kappaB (NFkappaB), leading to cell apoptosis. High plasma glucose activated p38-MAPK, and high GO increased the expressions of p38-MAPK and JNK-MAPK, whereas high MGO levels induced the activity of ERK-MAPK. Glucose and dicarbonyl compounds were all found to be good inducers of intracellular PKCs, which together with MAPK acted as the upstream triggering factor to activate NFkappaB. Conclusively, high plasma glucose together with dicarbonyl compounds can trigger the signaling pathways of MAPK and PKC and induce cell apoptosis through ROS and peroxynitrite stimulation and finally by NFkappaB activation. Such effects of PE were ascribed to its high plant polyphenolic (PPP) contents, the latter being potent ROS inhibitors capable of blocking the glycation of proteins, which otherwise could have brought forth severe detrimental effects to the cells.
Wittstein, Kathrin; Rascher, Monique; Rupcic, Zeljka; Löwen, Eduard; Winter, Barbara; Köster, Reinhard W; Stadler, Marc
2016-09-23
Three new natural products, corallocins A-C (1-3), along with two known compounds were isolated from the mushroom Hericium coralloides. Their benzofuranone and isoindolinone structures were elucidated by spectral methods. All corallocins induced nerve growth factor and/or brain-derived neurotrophic factor expression in human 1321N1 astrocytes. Furthermore, corallocin B showed antiproliferative activity against HUVEC and human cancer cell lines MCF-7 and KB-3-1.
MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Martina; Baker, Meredith B.; Moore, Jeffrey P.
Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes inmore » EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 h, 15 dynes/cm{sup 2}) identified 13 miRNAs whose expression was significantly upregulated (p < 0.05). The miRNA with the greatest change was miR-21; it was increased 5.2-fold (p = 0.002) in USS-treated versus control cells. Western analysis demonstrated that PTEN, a known target of miR-21, was downregulated in HUVECs exposed to USS or transfected with pre-miR-21. Importantly, HUVECs overexpressing miR-21 had decreased apoptosis and increased eNOS phosphorylation and nitric oxide (NO{sup {center_dot}}) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO{sup {center_dot}} pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.« less
Semon, Julie A; Nagy, Lauren H; Llamas, Claire B; Tucker, H Alan; Lee, Ryang Hwa; Prockop, Darwin J
2010-07-01
Multipotent mesenchymal stromal cells (MSCs) home to damaged tissue by processes partly regulated by integrins. Integrin subunits expressed by MSCs were identified by flow cytometry (FC), immunocytochemistry (IC), and a panel of integrin-binding antibodies. In subconfluent cultures, over 80% of MSCs expressed integrin subunits beta1, beta2, and alpha3, 20%-55% expressed alpha1, alpha2, alpha4, alpha5, alpha6, and alphaV, and about 10% expressed beta3 when assayed by FC. None of the cells expressed significant levels of 13 other integrins as assayed by FC, but seven of the 13 integrins were detected by IC: beta5, alpha7, alpha8, alpha9, alpha11, alphaX, and alphaD. Expression of some integrins changed with MSC confluency: integrins beta3, alpha1, alpha3, alpha5, and alphaV increased, and alpha6 decreased. Furthermore, alpha4 was the only integrin to vary among preparations of MSCs from different donors. The results resolved some discrepancies in the literature concerning integrin expression by MSCs. We also investigated the role of specific integrins in MSC adhesion to endothelial cells (ECs) from the pulmonary artery (HPAEC), cardiac-derived microvasculature (HMVEC-C), and umbilical veins (HUVEC). In experiments with blocking antibodies to beta integrins, anti-beta5 reduced MSC adhesion to all types of ECs, anti-beta1 to both HUVEC and HPAEC, anti-beta3 to HUVEC, and anti-beta2 to HMVEC-C. With blocking antibodies to alpha integrins, anti-alphaX reduced adhesion to HPAEC and HMVEC-C, anti-alphaV to HPAEC, and both anti-alpha7 and anti-alphaD to HMVEC-C. Thus, MSCs use diverse integrins to adhere to EC from various blood vessels in vitro.
Evaluation of the in vitro and in vivo angiogenic effects of exendin-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Hye-Min; Kang, Yujung; Chun, Hyung J.
2013-04-26
Highlights: •We investigated the effects of exendin-4 on the angiogenic process. •Exendin-4 increased migration, sprouting, and tube formation by HUVECs in in vitro. •Exendin-4 increased sprouts in aortic rings and induced new vessels in Matrigel in in vivo. •Exendin-4 may be of potential use for the treatment of vascular complications of diabetes. -- Abstract: Exendin-4, an analog of glucagon-like peptide (GLP)-1, has beneficial effects on cardiovascular disease induced by diabetes mellitus (DM). Recently, exendin-4 was reported to induce the proliferation of endothelial cells. However, its angiogenic effect on endothelial cells has not been clearly evaluated. Therefore, we investigated the effectsmore » of exendin-4 on the angiogenic process with respect to migration, sprouting, and neovascularization using in vitro and in vivo assays. Treatment with exendin-4 increased the migration of human umbilical vein endothelial cells (HUVECs) in in vitro scratch wound assays, as well as the number of lumenized vessels sprouting from HUVECs in in vitro 3D bead assays. These responses were abolished by co-treatment with exendin (9–39), a GLP-1 receptor antagonist, which suggests that exendin-4 regulates endothelial cell migration and tube formation in a GLP-1 receptor-dependent manner. In an ex vivo assay, treatment of aortic rings with exendin-4 increased the sprouting of endothelial cells. Exendin-4 also significantly increased the number of new vessels and induced blood flow in Matrigel plugs in in vivo assays. Our results provide clear evidence for the angiogenic effect of exendin-4 in in vitro and in vivo assays and provide a mechanism underlying the cardioprotective effects of exendin-4.« less
Su, Min; Fan, Chao; Gao, Sainan; Shen, Aiguo; Wang, Xiaoying; Zhang, Yuquan
2015-11-01
We investigated the expression of human chorionic gonadotropin (HCG) and its effects on vasculogenic mimicry (VM) formation in ovarian cancer cells under normoxic and hypoxic conditions in three-dimensional matrices preconditioned by an endothelial-trophoblast cell co-culture system. The co-culture model was established using human umbilical vein endothelial cells (HUVECs) and HTR-8 trophoblast cells in a three-dimensional culture system. The co-cultured cells were removed with NH4OH, and ovarian cancer cells were implanted into the preconditioned matrix. VM was identified morphologically and by detecting vascular markers expressed by cancer cells. The specificity of the effects of exogenous HCG in the microenvironment was assessed by inhibition with a neutralizing anti-HCG antibody. HCG siRNA was used to knock down endogenous HCG expression in OVCAR-3 ovarian cancer cells. HTR-8 cells 'fingerprinted' HUVECs to form capillary-like tube structures in co-cultures. In the preconditioned HCG-rich microenvironment, the number of vessel-like network structures formed by HCG receptor-positive OVCAR-3 cells and the expression levels of CD31, VEGF and factor VIII were significantly increased. The preconditioned HCG-rich microenvironment significantly increased the expression of hypoxia inducible factor-1α (HIF‑1α) and VM formation in OVCAR-3 cells under hypoxic conditions. Treatment with a neutralizing anti-HCG antibody but not HCG siRNA significantly inhibited the formation of vessel-like network structures. HCG in the microenvironment contributes to OVCAR-3 differentiation into endothelioid cells in three-dimensional matrices preconditioned with an endothelial-trophoblast cell co-culture system. HCG may synergistically enhance hypoxia-induced vascular markers and HIF-1α expression. These findings would provide perspectives on new therapeutic targets for ovarian cancer.
Zuo, Yicong; Liu, Xiaolu; Wei, Dan; Sun, Jing; Xiao, Wenqian; Zhao, Huan; Guo, Likun; Wei, Qingrong; Fan, Hongsong; Zhang, Xingdong
2015-05-20
Modular tissue engineering holds great potential in regenerating natural complex tissues by engineering three-dimensional modular scaffolds with predefined geometry and biological characters. In modular tissue-like construction, a scaffold with an appropriate mechanical rigidity for assembling fabrication and high biocompatibility for cell survival is the key to the successful bioconstruction. In this work, a series of composite hydrogels (GH0, GH1, GH2, and GH3) based on a combination of methacrylated gelatin (GelMA) and hydroxyapatite (HA) was exploited to enhance hydrogel mechanical rigidity and promote cell functional expression for osteon biofabrication. These composite hydrogels presented a lower swelling ratio, higher mechanical moduli, and better biocompatibility when compared to the pure GelMA hydrogel. Furthermore, on the basis of the composite hydrogel and photolithograph technology, we successfully constructed an osteon-like concentric double-ring structure in which the inner ring encapsulating human umbilical vascular endothelial cells (HUVECs) was designed to imitate blood vessel tubule while the outer ring encapsulating human osteoblast-like cells (MG63s) acts as part of bone. During the coculture period, MG63s and HUVECs exhibited not only satisfying growth status but also the enhanced genic expression of osteogenesis-related and angiogenesis-related differentiations. These results demonstrate this GelMA-HA composite hydrogel system is promising for modular tissue engineering.
Shen, Lei; Zeng, Wen; Wu, Yang-Xiao; Hou, Chun-Li; Chen, Wen; Yang, Ming-Can; Li, Li; Zhang, Ya-Fang; Zhu, Chu-Hong
2013-01-01
Angiogenesis is a major obstacle for wound healing in patients with diabetic foot wounds. Mesenchymal stem cells (MSCs) have an important function in wound repair, and neurotrophin-3 (NT-3) can promote nerve regeneration and angiogenesis. We investigated the effect of NT-3 on accelerating wound healing in the diabetic foot by improving human bone marrow MSC (hMSC) activation. In vitro, NT-3 significantly promoted VEGF, NGF, and BDNF secretion in hMSCs. NT-3 improved activation of the hMSC conditioned medium, promoted human umbilical vein endothelial cell (HUVEC) proliferation and migration, and significantly improved the closure rate of HUVEC scratches. In addition, we produced nanofiber mesh biological tissue materials through the electrospinning technique using polylactic acid, mixed silk, and collagen. The hMSCs stimulated by NT-3 were implanted into the material. Compared with the control group, the NT-3-stimulated hMSCs in the biological tissue material significantly promoted angiogenesis in the feet of diabetic C57BL/6J mice and accelerated diabetic foot wound healing. These results suggest that NT-3 significantly promotes hMSC secretion of VEGF, NGF, and other vasoactive factors and that it accelerates wound healing by inducing angiogenesis through improved activation of vascular endothelial cells. The hMSCs stimulated by NT-3 can produce materials that accelerate wound healing in the diabetic foot and other ischemic ulcers.
Ji, Yuejia; Zhu, Mengxiang; Gong, Yu; Tang, Haoyu; Li, Juan; Cao, Yi
2017-01-01
Thermoresponsive polymers have gained extensive attention as biomedical materials especially for targeted drug delivery systems. We have recently developed water-soluble polypeptide-based thermoresponsive polymers that exhibit lower critical solution temperature (LCST)- or upper critical solution temperature (UCST)-type phase behaviours. In this study, the toxicity of these polymers to human umbilical vein endothelial cells (HUVECs) was investigated to assess the safety and biocompatibility. Up to 100 μg/ml, thermoresponsive polymers did not induce cytotoxicity to HUVECs, showing as unaltered mitochondrial viability assessed as cell counting kit-8 (CCK-8) assay and membrane integrity assessed as lactate dehydrogenase (LDH) assay. Inflammatory response, assessed as the release of chemokine-soluble monocyte chemotactic protein 1 (sMCP-1) and interleukin-8 (IL-8) as well as cytokine IL-6, was not significantly affected by the polymers. In addition, 1 μM thapsigargin (TG), an endoplasmic reticulum (ER) stress inducer, significantly decreased mitochondrial viability, but did not affect membrane integrity or inflammatory response. The presence of thermoresponsive polymers with LCST-type phase behaviour did not further affect the effects of TG. In conclusion, the thermoresponsive polymers used in this study are not toxic to endothelial cells and therefore could be further considered as safe materials for biomedical applications. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
On the Normal Force Mechanotransduction of Human Umbilical Vein Endothelial Cells
NASA Astrophysics Data System (ADS)
Vahabikashi, Amir; Wang, Qiuyun; Wilson, James; Wu, Qianhong; Vucbmss Team
2016-11-01
In this paper, we report a cellular biomechanics study to examine the normal force mechanotransduction of Human Umbilical Vein Endothelial Cells (HUVECs) with their implications on hypertension. Endothelial cells sense mechanical forces and adjust their structure and function accordingly. The mechanotransduction of normal forces plays a vital role in hypertension due to the higher pressure buildup inside blood vessels. Herein, HUVECs were cultured to full confluency and then exposed to different mechanical loadings using a novel microfluidic flow chamber. One various pressure levels while keeps the shear stress constant inside the flow chamber. Three groups of cells were examined, the control group (neither shear nor normal stresses), the normal pressure group (10 dyne/cm2 of shear stress and 95 mmHg of pressure), and the hypertensive group (10 dyne/cm2 of shear stress and 142 mmHg of pressure). Cellular response characterized by RT-PCR method indicates that, COX-2 expressed under normal pressure but not high pressure; Mn-SOD expressed under both normal and high pressure while this response was stronger for normal pressure; FOS and e-NOS did not respond under any condition. The differential behavior of COX-2 and Mn-SOD in response to changes in pressure, is instrumental for better understanding the pathogenesis of hypertensive cardiovascular diseases. This research was supported by the National Science Foundation under Award #1511096.
Elmasri, Harun; Ghelfi, Elisa; Yu, Chen-wei; Traphagen, Samantha; Cernadas, Manuela; Cao, Haiming; Shi, Guo-Ping; Plutzky, Jorge; Sahin, Mustafa; Hotamisligil, Gokhan; Cataltepe, Sule
2013-01-01
Fatty acid binding protein 4 (FABP4) plays an important role in regulation of glucose and lipid homeostasis as well as inflammation through its actions in adipocytes and macrophages. FABP4 is also expressed in a subset of endothelial cells, but its role in this cell type is not known. We found that FABP4-deficient human umbilical vein endothelial cells (HUVECs) demonstrate a markedly increased susceptibility to apoptosis as well as decreased migration and capillary network formation. Aortic rings from FABP4−/− mice demonstrated decreased angiogenic sprouting, which was recovered by reconstitution of FABP4. FABP4 was strongly regulated by mTORC1 and inhibited by Rapamycin. FABP4 modulated activation of several important signaling pathways in HUVECs, including downregulation of P38, eNOS, and stem cell factor (SCF)/c-kit signaling. Of these, the SCF/c-kit pathway was found to have a major role in attenuated angiogenic activity of FABP4-deficient ECs as provision of exogenous SCF resulted in a significant recovery in cell proliferation, survival, morphogenesis, and aortic ring sprouting. These data unravel a novel pro-angiogenic role for endothelial cell-FABP4 and suggest that it could be exploited as a potential target for diseases associated with pathological angiogenesis. PMID:22562362
Luo, Jun-Yi; Li, Xiao-Mei; Zhou, Yun; Zhao, Qiang; Chen, Bang-Dang; Liu, Fen; Chen, Xiao-Cui; Zheng, Hong; Ma, Yi-Tong; Gao, Xiao-Ming; Yang, Yi-Ning
2017-02-01
Nuclear factor κappa B (NF-κB) is an important transcription factor in the development and progression of coronary artery disease (CAD). Recent evidence suggests that -94 ATTG ins/del mutant in the promoter of NFKB1 gene is an essential functional mutant. The present study demonstrated the frequencies of the del/del (DD) genotype and del (D) allele were significantly higher in CAD patients than in controls. CAD patients carrying mutant DD genotype had worse stenosis of diseased coronary arteries compared to those carrying ins/ins (II) or ins/del (ID) genotype. Plasma levels of endothelial nitric oxide synthase (eNOS) were lower, while inflammatory cytokine incnterlukin-6 (IL-6) was higher in CAD patients with DD genotype than those with II or ID genotype (both P<0.05). In vitro study showed that mutant human umbilical vein endothelial cells (DD genotype HUVECs) were more susceptible to H 2 O 2 -induced apoptosis, which was accompanied with a decreased Bcl-2 expression. Further, mutant HUVECs had lower eNOS but higher IL-6 mRNA levels and decreased phosphorylation of eNOS under H 2 O 2 -stimulation (both P<0.05). Compared to wild type cells (II genotype), significantly downregulated protein expression of total NF-κB p50 subunit were observed in mutant HUVECs with or without oxidative stress, and a lower expression of unclear p50 was associated with a decreased p50 nuclear translocation in mutant HUVECs versus wild type cells under H 2 O 2 -stimulation (both P<0.05). In conclusion, mutant DD genotype of NFKB1 gene is associated with the risk and severity of CAD. Dwonregulation of NF-κB p50 subunit leads to exacerbated endothelial dysfunction and apoptosis and enhanced inflammatory response that is the potential underlying mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shen, Wen-Ching; Liang, Chan-Jung; Huang, Tao-Ming; Liu, Chen-Wei; Wang, Shu-Huei; Young, Guang-Huar; Tsai, Jaw-Shiun; Tseng, Ying-Chin; Peng, Yu-Sen; Wu, Vin-Cent; Chen, Yuh-Lien
2016-11-01
Uremic toxins are considered a risk factor for cardiovascular disorders in kidney diseases, but it is not known whether, under inflammatory conditions, they affect adhesion molecule expression on endothelial cells, which may play a critical role in acute kidney injury (AKI). In the present study, in cardiovascular surgery-related AKI patients, who are known to have high plasma levels of the uremic toxin indoxyl sulfate (IS), plasma levels of IL-1β were found to be positively correlated with plasma levels of the adhesion molecule E-selectin. In addition, high E-selectin and IL-1β expression were seen in the kidney of ischemia/reperfusion mice in vivo. We also examined the effects of IS on E-selectin expression by IL-1β-treated human umbilical vein endothelial cells (HUVECs) and the underlying mechanism. IS pretreatment of HUVECs significantly increased IL-1β-induced E-selectin expression, monocyte adhesion, and the phosphorylation of mitogen-activated protein kinases (ERK, p38, and JNK) and transcription factors (NF-κB and AP-1), and phosphorylation was decreased by pretreatment with inhibitors of ERK1/2 (PD98059), p38 MAPK (SB202190), and JNK (SP600125). Furthermore, IS increased IL-1β-induced reactive oxygen species (ROS) production and this effect was inhibited by pretreatment with N-acetylcysteine (a ROS scavenger) or apocynin (a NADPH oxidase inhibitor). Gel shift assays and ChIP-PCR demonstrated that IS enhanced E-selectin expression in IL-1-treated HUVECs by increasing NF-κB and AP-1 DNA-binding activities. Moreover, IS-enhanced E-selectin expression in IL-1β-treated HUVECs was inhibited by Bay11-7082, a NF-κB inhibitor. Thus, IS may play an important role in the development of cardiovascular disorders in kidney diseases during inflammation by increasing endothelial expression of E-selectin.
CCL11 promotes angiogenic activity by activating the PI3K/Akt pathway in HUVECs.
Park, Jun Young; Kang, Yeo Wool; Choi, Byung Young; Yang, Young Chul; Cho, Byung Pil; Cho, Won Gil
2017-08-01
CCR3, the receptor for CCL11, is expressed on the surface of immune cells and even on non-immune cells. CCL11-CCR3 interactions can promote cell migration and proliferation. In this study, we investigated the effect of CCL11 on angiogenesis in HUVECs and also examined the molecular mechanisms of this process. We found that CCL11 induced mRNA transcription and protein expression of CCR3 in HUVECs. Moreover, the scratch wound healing assay and MTS proliferation assay both demonstrated that CCL11 promotes endothelial cell migration and induces weak proliferation. CCL11 directly induced microvessel sprouting from the rat aortic ring; these effects occurred earlier and to a greater extent than with VEGF stimulation. Furthermore, CCL11-induced phosphorylation of Akt was abolished by PI3K inhibitors. siRNA-mediated knockdown of CCR3 led to a significant reduction of PI3K phosphorylation. However, the phosphorylation levels of ERK1/2 were not changed, even after CCL11 treatment. Cumulatively, our data suggest that the CCL11-CCR3 interaction mainly activates PI3K/Akt signal transduction pathway in HUVECs.
Yu, Muxin; Xie, Rujuan; Zhang, Yan; Liang, Hui; Hou, Li; Yu, Chengyuan; Zhang, Jinming; Dong, Zengxiang; Tian, Ye; Bi, Yayan; Kou, Junjie; Novakovic, Valerie A; Shi, Jialan
2018-02-26
Relatively little is known about the role of phosphatidylserine (PS) in procoagulant activity (PCA) in patients with diabetic kidney disease (DKD). This study was designed to evaluate whether exposed PS on microparticles (MPs) and MP-origin cells were involved in the hypercoagulability in DKD patients. DKD patients (n = 90) were divided into three groups based on urinary albumin excretion rate, defined as normoalbuminuria (No-A) (<30 mg/24 h), microalbuminuria (Mi-A) (30-299 mg/24 h) or macroalbuminuria (Ma-A) (>300 mg/24 h), and compared with healthy controls (n = 30). Lactadherin was used to quantify PS exposure on MPs and their original cells. Healthy blood cells (BCs) and human umbilical vein endothelial cells (HUVECs) were treated with 25, 5 or 2.5 mmol/L glucose as well as 3-12 mg/dL uric acid and cells were evaluated by clotting time and purified coagulation complex assays. Fibrin production was determined by turbidity. PS exposure and fibrin strands were observed using confocal microscopy. Using flow cytometry, we found that PS+ MPs (derived from platelets, erythrocytes, HUVECs, neutrophils, monocytes and lymphocytes) and BCs were significantly higher in patients than in controls. Furthermore, the number of PS+ MPs and BCs in patients with Ma-A was significantly higher than in patients with No-A. Similarly, we observed markedly elevated PS exposure on HUVECs cultured with serum from patients with Ma-A versus serum from patients with Mi-A or normoalbuminuria. In addition, circulating PS+ MPs cooperated with PS+ cells, contributing to markedly shortened coagulation time and dramatically increased FXa/thrombin generation and fibrin formation in each DKD group. Confocal microscopy images demonstrated colocalization of fibrin with PS on HUVECs. Moreover, blockade of exposed PS on MPs and cells with lactadherin inhibited PCA by ∼80%. In vitro, BCs and endothelial cells exposed more PS in hypoglycemia or hyperglycemia. Interestingly, reconstitution experiments showed that hypoglycemia-treated cells could be further activated or injured when recovery is obtained reaching hyperglycemia. Moreover, uric acid induced PS exposure on cells (excluding platelets) at concentrations >6 mg/dL. Linear regression analysis showed that levels of PS+ BCs and microparticles were positively correlated with uric acid and proteinuria, but negatively correlated with glomerular filtration rate. Our results suggest that PS+ MPs and MP-origin cells play procoagulant roles in patients with DKD. Blockade of PS could become a novel therapeutic modality for the prevention of thrombosis in these patients.
Dynamics of VEGF matrix-retention in vascular network patterning
NASA Astrophysics Data System (ADS)
Köhn-Luque, A.; de Back, W.; Yamaguchi, Y.; Yoshimura, K.; Herrero, M. A.; Miura, T.
2013-12-01
Vascular endothelial growth factor (VEGF) is a central regulator of blood vessel morphogenesis, although its role in patterning of endothelial cells into vascular networks is not fully understood. It has been suggested that binding of soluble VEGF to extracellular matrix components causes spatially restricted cues that guide endothelial cells into network patterns. Yet, current evidence for such a mechanism remains indirect. In this study, we quantitatively analyse the dynamics of VEGF retention in a controlled in vitro situation of human umbilical vascular endothelial cells (HUVECs) in Matrigel. We show that fluorescent VEGF accumulates in pericellular areas and colocalizes with VEGF binding molecules. Analysis of fluorescence recovery after photobleaching reveals that binding/unbinding to matrix molecules dominates VEGF dynamics in the pericellular region. Computational simulations using our experimental measurements of kinetic parameters show that matrix retention of chemotactic signals can lead to the formation of reticular cellular networks on a realistic timescale. Taken together, these results show that VEGF binds to matrix molecules in proximity of HUVECs in Matrigel, and suggest that bound VEGF drives vascular network patterning.
Luzak, Boguslawa; Golanski, Jacek; Rozalski, Marek; Krajewska, Urszula; Olas, Beata
2010-01-01
Introduction Some polyphenolic compounds extracted from Aronia melanocarpa fruits (AM) have been reported to be cardioprotective agents. In this study we evaluated the ability of AM extract to increase the efficacy of human umbilical vein endothelial cells (HUVECs) to inhibit platelet functions in vitro. Material and methods This study encompasses two models of monitoring platelet reactivity: optical aggregation and platelet degranulation (monitored as the surface CD62P expression) in PRP upon the stimulation with ADP. Results We observed that only at low concentrations (5 µg/ml) did AM extract significantly improve antiplatelet action of HUVECs towards ADP-activated platelets in the aggregation test. Conclusions It is concluded that the potentiating effect of AM extract on the endothelial cell-mediated inhibition of platelet aggregation clearly depends on the used concentrations of Aronia-derived active compounds. Therefore, despite these encouraging preliminary outcomes on the beneficial effects of AM extract polyphenols, more profound dose-effect studies should certainly be considered before the implementation of Aronia-originating compounds in antiplatelet therapy and the prevention of cardiovascular diseases. PMID:22371737
Wang, Lijun; Wang, Ying; Du, Huaqing; Jiang, Yao; Tang, Zhichao; Liu, Hongyi; Xiang, Hua; Xiao, Hong
2015-12-01
ER520, a derivative of indenoisoquinoline, is a patented compound. This study was designed to screen its biological properties and to evaluate its antineoplastic and antiangiogenic effect. Western blot was employed to monitor the ERα and ERβ protein expression in human breast cancer MCF-7 cells and endometrial carcinoma Ishikawa cells. MTT assay was employed to determine cell proliferation. Cell adhesion, scratch and Transwell assay were utilized to estimate the ability of cellular adhesion, migration and invasion. ELISA kit was applied to detect the VEGF products in culture medium. In addition, the inhibitory effect of ER520 on the vessel-like construction of HUVEC cells and the angiogenesis of chicken embryos was investigated. The efficiency of ER520 on tumor growth in nude mice was also assessed. ER520 inhibited the expression of ERα in MCF-7 and Ishikawa cells, while it increased ERβ protein level. ER520 also suppressed the proliferation of MCF-7 and Ishikawa cells. Due to its remarkably negative role in cell adhesion, migration and invasion, ER520 showed a potential ability of inhibiting tumor metastasis. Meanwhile, ER520 reduced the VEGF secretion of MCF-7 and Ishikawa cells, prevented the formation of VEGF-stimulated tubular structure and the cell migration of HUVEC cells, and inhibited the angiogenesis of chicken chorioallantoic membrane. Animal experiment also demonstrated that ER520 could frustrate the in vivo tumor growth and the inhibitory ratio was 48.5 % compared with control group. Our findings indicate that ER520 possesses the competence to be a candidate against breast cancer and angiogenesis.
ZHU, Xia; OKUBO, Aya; IGARI, Naoki; NINOMIYA, Kentaro; EGASHIRA, Yukari
2016-01-01
Angiogenesis is implicated in diverse pathological conditions such as cancer, rheumatoid arthritis, psoriasis, atherosclerosis, and retinal neovascularization. In the present study, we investigated the effects of modified rice bran hemicellulose (MRBH), a water-soluble hemicellulose preparation from rice bran treated with shiitake enzymes, on vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and its mechanism. We found that MRBH significantly inhibited VEGF-induced tube formation in human umbilical vein endothelial cells (HUVECs) co-cultured with human dermal fibroblasts. We also observed that MRBH dose-dependently suppressed the VEGF-induced proliferation and migration of HUVECs. Furthermore, examination of the anti-angiogenic mechanism indicated that MRBH reduced not only VEGF-induced activation of VEGF receptor 2 but also of the downstream signaling proteins Akt, extracellular signal-regulated protein kinase 1/2, and p38 mitogen-activated protein kinase. These findings suggest that MRBH has in vitro anti-angiogenic effects that are partially mediated through the inhibition of VEGF signaling. PMID:28439487
Impact of RGD amount in dextran-based hydrogels for cell delivery.
Riahi, Nesrine; Liberelle, Benoît; Henry, Olivier; De Crescenzo, Gregory
2017-04-01
Dextran is one of the hydrophilic polymers that is used for hydrogel preparation. As any polysaccharide, it presents a high density of hydroxyl groups, which make possible several types of derivatization and crosslinking reactions. Furthermore, dextran is an excellent candidate for hydrogel fabrication with controlled cell/scaffold interactions as it is resistant to protein adsorption and cell adhesion. RGD peptide can be grafted to the dextran in order to promote selected cell adhesion and proliferation. Altogether, we have developed a novel strategy to graft the RGD peptide sequence to dextran-based hydrogel using divinyl sulfone as a linker. The resulting RGD functionalized dextran-based hydrogels were transparent, presented a smooth surface and were easy to handle. The impact of varying RGD peptide amounts, hydrogel porosity and topology upon human umbilical vein endothelial cell (HUVEC) adhesion, proliferation and infiltration was investigated. Our results demonstrated that 0.1% of RGD-modified dextran within the gel was sufficient to support HUVEC cells adhesion to the hydrogel surface. Sodium chloride was added (i) to the original hydrogel mix in order to form a macroporous structure presenting interconnected pores and (ii) to the hydrogel surface to create small orifices essential for cells migration inside the matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Yan-Jie; Guo, Xiao-Long; Li, Sheng-An; Zhao, Yu-Qi; Liu, Zi-Chao; Lee, Wen-Hui; Xiang, Yang; Zhang, Yun
2014-07-01
The protease-activated receptor 1 (PAR1) is a G-protein-coupled receptor that is irreversibly activated by either thrombin or metalloprotease 1. Due this irrevocable activation, activated internalization and degradation are critical for PAR1 signaling termination. Prohibitin (PHB) is an evolutionarily conserved, ubiquitously expressed, pleiotropic protein and belongs to the stomatin/prohibitin/flotillin/HflK/C (SPFH) domain family. In a previous study, we found that PHB localized on the platelet membrane and participated in PAR1-mediated human platelet aggregation, suggesting that PHB likely regulates the signaling of PAR1. Unfortunately, PHB's exact function in PAR1 internalization and degradation is unclear. In the current study, flow cytometry revealed that PHB expressed on the surface of endothelial cells (HUVECs) but not cancer cells (MDA-MB-231). Further confocal microscopy revealed that PHB dynamically associates with PAR1 in a time-dependent manner following induction with PAR1-activated peptide (PAR1-AP), though differently between HUVECs and MDA-MB-231 cells. Depletion of PHB by RNA interference significantly inhibited PAR1 activated internalization and led to sustained Erk1/2 phosphorylation in the HUVECs; however, a similar effect was not observed in MDA-MB-231 cells. For both the endothelial and cancel cells, PHB repressed PAR1 degradation, while knockdown of PHB led to increased PAR1 degradation, and PHB overexpression inhibited PAR1 degradation. These results suggest that persistent PAR1 signaling due to the absence of membrane PHB and decreased PAR1 degradation caused by the upregulation of intracellular PHB in cancer cells (such as MDA-MB-231 cells) may render cells highly invasive. As such, PHB may be a novel target in future anti-cancer therapeutics, or in more refined cancer malignancy diagnostics. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Haiyan; He, Jin; Yu, Hongfei; Green, Colin R; Chang, Jiang
2016-04-01
It is well known that gap junctions play an important role in wound healing, and bioactive glass (BG) has been shown to help healing when applied as a wound dressing. However, the effects of BG on gap junctional communication between cells involved in wound healing is not well understood. We hypothesized that BG may be able to affect gap junction mediated cell behavior to enhance wound healing. Therefore, we set out to investigate the effects of BG on gap junction related behavior of endothelial cells in order to elucidate the mechanisms through which BG is operating. In in vitro studies, BG ion extracts prevented death of human umbilical vein endothelial cells (HUVEC) following hypoxia in a dose dependent manner, possibly through connexin hemichannel modulation. In addition, BG showed stimulatory effects on gap junction communication between HUVECs and upregulated connexin43 (Cx43) expression. Furthermore, BG prompted expression of vascular endothelial growth factor and basic fibroblast growth factor as well as their receptors, and vascular endothelial cadherin in HUVECs, all of which are beneficial for vascularization. In vivo wound healing results showed that the wound closure of full-thickness excisional wounds of rats was accelerated by BG with reduced inflammation during initial stages of healing and stimulated angiogenesis during the proliferation stage. Therefore, BG can stimulate wound healing through affecting gap junctions and gap junction related endothelial cell behaviors, including prevention of endothelial cell death following hypoxia, stimulation of gap junction communication and upregulation of critical vascular growth factors, which contributes to the enhancement of angiogenesis in the wound bed and finally to accelerate wound healing. Although many studies have reported that BG stimulates angiogenesis and wound healing, this work reveals the relationship between BG and gap junction connexin 43 mediated endothelial cell behavior and elucidates one of the possible mechanisms through which BG stimulates wound healing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gakhar, Gunjan; Navarro, Vicente N.; Jurish, Madelyn; Lee, Guang Yu.; Tagawa, Scott T.; Akhtar, Naveed H.; Seandel, Marco; Geng, Yue; Liu, He; Bander, Neil H.; Giannakakou, Paraskevi; Christos, Paul J.; King, Michael R.; Nanus, David M.
2013-01-01
Hematogenous metastasis accounts for the majority of cancer-related deaths, yet the mechanism remains unclear. Circulating tumor cells (CTCs) in blood may employ different pathways to cross blood endothelial barrier and establish a metastatic niche. Several studies provide evidence that prostate cancer (PCa) cell tethering and rolling on microvascular endothelium via E-selectin/E-selectin ligand interactions under shear flow theoretically promote extravasation and contribute to the development of metastases. However, it is unknown if CTCs from PCa patients interact with E-selectin expressed on endothelium, initiating a route for tumor metastases. Here we report that CTCs derived from PCa patients showed interactions with E-selectin and E-selectin expressing endothelial cells. To examine E-selectin-mediated interactions of PCa cell lines and CTCs derived from metastatic PCa patients, we used fluorescently-labeled anti-prostate specific membrane antigen (PSMA) monoclonal antibody J591-488 which is internalized following cell-surface binding. We employed a microscale flow device consisting of E-selectin-coated microtubes and human umbilical vein endothelial cells (HUVECs) on parallel-plate flow chamber simulating vascular endothelium. We observed that J591-488 did not significantly alter the rolling behavior in PCa cells at shear stresses below 3 dyn/cm2. CTCs obtained from 31 PCa patient samples showed that CTCs tether and stably interact with E-selectin and E-selectin expressing HUVECs at physiological shear stress. Interestingly, samples collected during disease progression demonstrated significantly more CTC/E-selectin interactions than samples during times of therapeutic response (p=0.016). Analysis of the expression of sialyl Lewis X (sLex) in patient samples showed that a small subset comprising 1.9-18.8% of CTCs possess high sLex expression. Furthermore, E-selectin-mediated interactions between prostate CTCs and HUVECs were diminished in the presence of anti-E-selectin neutralizing antibody. CTC-Endothelial interactions provide a novel insight into potential adhesive mechanisms of prostate CTCs as a means to initiate metastasis. PMID:24386459
Nikolaisen, Julie; Nilsson, Linn I. H.; Pettersen, Ina K. N.; Willems, Peter H. G. M.; Lorens, James B.; Koopman, Werner J. H.; Tronstad, Karl J.
2014-01-01
Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. “mitochondrial dynamics”) are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells. PMID:24988307
Higashimoto, Yuichiro; Matsui, Takanori; Nishino, Yuri; Taira, Junichi; Inoue, Hiroyoshi; Takeuchi, Masayoshi; Yamagishi, Sho-Ichi
2013-11-01
Advanced glycation end products (AGEs) not only inhibit DNA synthesis of retinal pericytes, but also elicit vascular hyperpermeability, pathological angiogenesis, and thrombogenic reactions by inducing vascular endothelial growth factor (VEGF) and plasminogen activator inhibitor-1 (PAI-1) through the interaction with the receptor for AGEs (RAGE), thereby being involved in the pathogenesis of diabetic retinopathy. In this study, we screened novel phosphorothioate-modified aptamers directed against AGEs (AGEs-thioaptamers) using a combinatorial chemistry in vitro, and examined whether these aptamers could inhibit the AGE-induced damage in both retinal pericytes and human umbilical vein endothelial cells (HUVECs). We identified 11 AGEs-thioaptamers; among them, clones #4, #7s and #9s aptamers had higher binding affinity to AGEs-human serum albumin (HSA) than the others. Surface plasmon resonance analysis revealed that KD values of #4s, #7s and #9s were 0.63, 0.36, and 0.57nM, respectively. Furthermore, these 3 clones dose-dependently restored the decrease in DNA synthesis in AGE-exposed pericytes. AGEs significantly increased RAGE, VEGF and PAI-1 mRNA levels in HUVEC, all of which were completely blocked by the treatment with 20nM clone #4s aptamer. Quartz crystal microbalance analysis confirmed that #4s aptamer dose-dependently inhibited the binding of AGEs-HSA to RAGE. Our present study demonstrated that AGEs-thioaptamers could inhibit the harmful effects of AGEs in pericytes and HUVEC by suppressing the binding of AGEs to RAGE. Blockade by AGEs-thioaptamers of the AGEs-RAGE axis might be a novel therapeutic strategy for diabetic retinopathy. © 2013.
Kalani, M; Hodjati, H; GhamarTalepoor, A; Samsami Dehaghani, A; Doroudchi, M
2017-01-30
Given that the basic mechanism of the effect of Helicobacter (H.) pylori in the induction of atherosclerosis remains unknown and regarding the regulatory role of micro RNAs (miRNAs) in endothelial cell (EC) functions, we aimed to investigate the effect of H. pylori on the expression of miRNAs involved in atherosclerosis (atheromiRs) and their correlation with apoptosis in human umbilical vein EC (HUVEC). HUVECs were treated with different cytotoxin associated gene A (CagA) positive and negative H. pylori derived products, then the levels of apoptosis and miR-21, 92a, 155 and 663 were measured using flowcytometry and real time-PCR methods, respectively. Although, comparing induced apoptosis and necrosis in HUVECs revealed that water extract of CagA+ H. pylori (HpWE) was more potent than CagA- one and H. pylori lipopolysacharide (Hp-LPS), no significant difference was observed between LPS extracted from CagA+ and CagA- strains. Besides, CagA+ HpWE significantly increased the levels of anti-apoptotic miR-21, and inflammatory miRNAs 155 and 663 but not miR-92a. A positive correlation was observed between apoptosis and necrosis and miR-155 as well as the expressions of miR-21 with miR-155 (P=0.024) and miR-663 (P=0.0001). As H. pylori products differentially influenced phenotypic and epigenetic changes in ECs pictured in apoptosis and in the expression of atheromiRs, we suggest that the presence of CagA molecule accompanied by these atheromiRs may act as beneficial biomarkers predicting ECs apoptosis as a sign of plaque rupture.
Antiangiogenic effects of AA-PMe on HUVECs in vitro and zebrafish in vivo
Xiao, Qi; Zhou, Yachun; Wei, Yingjie; Gong, Zhunan
2018-01-01
Angiogenesis plays a vital role in many physiological and pathological processes and several diseases are connected with its dysregulation. Asiatic acid (AA) has demonstrated anticancer properties and we suspect this might be attributable to an effect on angio-genesis. A modified derivative of AA, N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-L-proline methyl ester (AA-PMe), has improved efficacy over its parent compound, but its effect on blood vessel development remains unclear. Methods In this study, we investigated the antiangiogenic activity of AA and AA-PMe in zebrafish embryos and human umbilical vein endothelial cells (HUVECs). First of all, we treated HUVECs with increasing concentrations of AA-PMe or AA, with or without vascular endothelial growth factor (VEGF) present, and assessed cell viability, tube formation, and cell migration and invasion. Quantitative real-time polymerase chain reaction and Western blot analysis were later used to determine the role of vascular endothelial growth factor receptor 2 (VEGFR2)-mediated signaling in AA-PMe inhibition of angiogenesis. We extended these studies to follow angiogenesis using Tg(fli:EGFP) transgenic zebrafish embryos. For these experiments, embryos were treated with varying concentrations of AA-PMe or AA from 24 to 72 hours postfertilization prior to morphological observation, angiogenesis assessment, and endogenous alkaline phosphatase assay. VEGFR2 expression in whole embryos following AA-PMe treatment was also determined. Results We found AA-PMe decreased cell viability and inhibited migration and tube formation in a dose-dependent manner in HUVECs. Similarly, AA-PMe disrupted the formation of intersegmental vessels, the dorsal aorta, and the posterior cardinal vein in zebrafish embryos. Both in vitro and in vivo AA-PMe surpassed AA in its ability to block angiogenesis by suppressing VEGF-induced phosphorylation of VEGFR2 and disrupting downstream extracellular regulated protein kinase and AKT signaling. Conclusion For the first time, this study reveals that AA-PMe acts as a potent VEGFR2 kinase inhibitor and exerts powerful antiangiogenic activity, suggesting it to be a promising therapeutic candidate for further research. PMID:29670362
Antiangiogenic effects of AA-PMe on HUVECs in vitro and zebrafish in vivo.
Jing, Yue; Wang, Gang; Xiao, Qi; Zhou, Yachun; Wei, Yingjie; Gong, Zhunan
2018-01-01
Angiogenesis plays a vital role in many physiological and pathological processes and several diseases are connected with its dysregulation. Asiatic acid (AA) has demonstrated anticancer properties and we suspect this might be attributable to an effect on angio-genesis. A modified derivative of AA, N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-L-proline methyl ester (AA-PMe), has improved efficacy over its parent compound, but its effect on blood vessel development remains unclear. In this study, we investigated the antiangiogenic activity of AA and AA-PMe in zebrafish embryos and human umbilical vein endothelial cells (HUVECs). First of all, we treated HUVECs with increasing concentrations of AA-PMe or AA, with or without vascular endothelial growth factor (VEGF) present, and assessed cell viability, tube formation, and cell migration and invasion. Quantitative real-time polymerase chain reaction and Western blot analysis were later used to determine the role of vascular endothelial growth factor receptor 2 (VEGFR2)-mediated signaling in AA-PMe inhibition of angiogenesis. We extended these studies to follow angiogenesis using Tg(fli:EGFP) transgenic zebrafish embryos. For these experiments, embryos were treated with varying concentrations of AA-PMe or AA from 24 to 72 hours postfertilization prior to morphological observation, angiogenesis assessment, and endogenous alkaline phosphatase assay. VEGFR2 expression in whole embryos following AA-PMe treatment was also determined. We found AA-PMe decreased cell viability and inhibited migration and tube formation in a dose-dependent manner in HUVECs. Similarly, AA-PMe disrupted the formation of intersegmental vessels, the dorsal aorta, and the posterior cardinal vein in zebrafish embryos. Both in vitro and in vivo AA-PMe surpassed AA in its ability to block angiogenesis by suppressing VEGF-induced phosphorylation of VEGFR2 and disrupting downstream extracellular regulated protein kinase and AKT signaling. For the first time, this study reveals that AA-PMe acts as a potent VEGFR2 kinase inhibitor and exerts powerful antiangiogenic activity, suggesting it to be a promising therapeutic candidate for further research.
Platelet lysate-based pro-angiogenic nanocoatings.
Oliveira, Sara M; Pirraco, Rogério P; Marques, Alexandra P; Santo, Vítor E; Gomes, Manuela E; Reis, Rui L; Mano, João F
2016-03-01
Human platelet lysate (PL) is a cost-effective and human source of autologous multiple and potent pro-angiogenic factors, such as vascular endothelial growth factor A (VEGF A), fibroblast growth factor b (FGF b) and angiopoietin-1. Nanocoatings previously characterized were prepared by layer-by-layer assembling incorporating PL with marine-origin polysaccharides and were shown to activate human umbilical vein endothelial cells (HUVECs). Within 20 h of incubation, the more sulfated coatings induced the HUVECS to the form tube-like structures accompanied by an increased expression of angiogenic-associated genes, such as angiopoietin-1 and VEGF A. This may be a cost-effective approach to modify 2D/3D constructs to instruct angiogenic cells towards the formation of neo-vascularization, driven by multiple and synergistic stimulations from the PL combined with sulfated polysaccharides. The presence, or fast induction, of a stable and mature vasculature inside 3D constructs is crucial for new tissue formation and its viability. This has been one of the major tissue engineering challenges, limiting the dimensions of efficient tissue constructs. Many approaches based on cells, growth factors, 3D bioprinting and channel incorporation have been proposed. Herein, we explored a versatile technique, layer-by-layer assembling in combination with platelet lysate (PL), that is a cost-effective source of many potent pro-angiogenic proteins and growth factors. Results suggest that the combination of PL with sulfated polyelectrolytes might be used to introduce interfaces onto 2D/3D constructs with potential to induce the formation of cell-based tubular structures. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Goltz, Diane; Hittetiya, Kanishka; Yadegari, Hamideh; Driesen, Julia; Kirfel, Jutta; Neuhaus, Thomas; Steiner, Susanne; Esch, Christiane; Bedorf, Jörg; Hertfelder, Hans-Jörg; Fischer, Hans-Peter
2014-01-01
The ATZ11 antibody has been well established for the identification of α1-anti-trypsin (AAT) molecule type PiZ (Z-AAT) in blood samples and liver tissue. In this study, we systematically analyzed the antibody for additional binding sites in human tissue. Ultrastructural ATZ11 binding was investigated immunoelectron microscopically in human umbilical vein endothelial cells (HUVECs) and in platelets of a healthy individual. Human embryonic kidney (HEK293) cells were transiently transfected with Von Willebrand factor (VWF) and analyzed immunocytochemically using confocal microscopy and SDS-PAGE electrophoresis followed by western blotting (WB). Platelets and serum samples of VWF-competent and VWF-deficient patients were investigated using native PAGE and SDS-PAGE electrophoresis followed by WB. The specificity of the ATZ11 reaction was tested immunohistochemically by extensive antibody-mediated blocking of AAT- and VWF-antigens. ATZ11-positive epitopes could be detected in Weibel-Palade bodies (WPBs) of HUVECs and α-granules of platelets. ATZ11 stains pseudo-WBP containing recombinant wild-type VWF (rVWF-WT) in HEK293 cells. In SDS-PAGE electrophoresis followed by WB, anti-VWF and ATZ11 both identified rVWF-WT. However, neither rVWF-WT-multimers, human VWF-multimers, nor serum proteins of VWF-deficient patients were detected using ATZ11 by WB, whereas anti-VWF antibody (anti-VWF) detected rVWF-WT-multimers as well as human VWF-multimers. In human tissue specimens, AAT-antigen blockade using anti-AAT antibody abolished ATZ11 staining of Z-AAT in a heterozygous AAT-deficient patient, whereas VWF-antigen blockade using anti-VWF abolished ATZ11 staining of endothelial cells and megakaryocytes. ATZ11 reacts with cellular bound and denatured rVWF-WT and human VWF as shown using immunocytochemistry and subsequent confocal imaging, immunoelectron microscopy, SDS-PAGE and WB, and immunohistology. These immunoreactions are independent of the binding of Z-AAT-molecules and non-Z-AAT complexes.
Ahwach, Salma Makhoul; Thomas, Melanie; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J
2015-08-01
Reactive oxygen species are associated with cardiovascular disease, diabetes, and atherosclerosis, yet the use of antioxidants in clinical trials has been ineffective at improving outcomes. In endothelial cells, high-dextrose-induced oxidative stress and endoplasmic reticulum stress promote endothelial dysfunction leading to the recruitment and activation of peripheral blood lymphocytes and the breakdown of barrier function. Ebselen, a glutathione peroxidase 1 (GPX1) mimic, has been shown to improve β-cell function in diabetes and prevent atherosclerosis. To determine if ebselen inhibits both oxidative stress and endoplasmic reticulum (ER) stress in endothelial cells, we examined its effects in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) with and without high-dextrose. Oxidative stress and ER stress were measured by 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence and ER stress alkaline phosphatase assays, respectively. GPX1 over-expression and knockdown were performed by transfecting cells with a GPX1 expression construct or a GPX1-specific siRNA, respectively. Ebselen inhibited dextrose-induced oxidative stress but not ER stress in both HUVEC and HCAEC. Ebselen also had no effect on tunicamycin-induced ER stress in HCAEC. Furthermore, augmentation of GPX1 activity directly by sodium selenite supplementation or transfection of a GPX1 expression plasmid decreased dextrose-induced oxidative stress but not ER stress, while GPX1 knockout enhanced oxidative stress but had no effect on ER stress. These results suggest that ebselen targets only oxidative stress but not ER stress. Copyright © 2015. Published by Elsevier Inc.
Shoajei, Shahrokh; Tafazzoli-Shahdpour, Mohammad; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin
2014-05-01
Biomechanical environments affect the function of cells. In this study we analysed the effects of five mechanical stimuli on the gene expression of human umbilical vein endothelial cells (HUVECs) in mRNA level using real-time PCR. The following loading regimes were applied on HUVECs for 48 h: intermittent (0-5 dyn/cm(2) , 1 Hz) and uniform (5 dyn/cm(2) ) shear stresses concomitant by 10% intermittent equiaxial stretch (1 Hz), uniform shear stress alone (5 dyn/cm(2) ), and intermittent uniaxial and equiaxial stretches (10%, 1 Hz). A new bioreactor was made to apply uniform/cyclic shear and tensile loadings. Three endothelial suggestive specific genes (vascular endothelial growth factor receptor-2 (VEGFR-2, also known as FLK-1), von Willebrand Factor (vWF) and vascular endothelial-cadherin (VE-cadherin)), and two smooth muscle genes (α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SMMHC)) were chosen for assessment of alteration in gene expression of endothelial cells and transdifferentiation toward smooth cells following load applications. Shear stress alone enhanced the endothelial gene expression significantly, while stretching alone was identified as a transdifferentiating factor. Cyclic equiaxial stretch contributed less to elevation of smooth muscle genes compared to uniaxial stretch. Cyclic shear stress in comparison to uniform shear stress concurrent with cyclic stretch was more influential on promotion of endothelial genes expression. Influence of different mechanical stimuli on gene expression may open a wider horizon to regulate functions of cell for tissue engineering purposes. © 2013 International Federation for Cell Biology.